spa_misc.c revision 285001
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
257 */
258boolean_t zfs_recover = B_FALSE;
259SYSCTL_DECL(_vfs_zfs);
260TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
261SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
262    "Try to recover from otherwise-fatal errors.");
263
264/*
265 * If destroy encounters an EIO while reading metadata (e.g. indirect
266 * blocks), space referenced by the missing metadata can not be freed.
267 * Normally this causes the background destroy to become "stalled", as
268 * it is unable to make forward progress.  While in this stalled state,
269 * all remaining space to free from the error-encountering filesystem is
270 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
271 * permanently leak the space from indirect blocks that can not be read,
272 * and continue to free everything else that it can.
273 *
274 * The default, "stalling" behavior is useful if the storage partially
275 * fails (i.e. some but not all i/os fail), and then later recovers.  In
276 * this case, we will be able to continue pool operations while it is
277 * partially failed, and when it recovers, we can continue to free the
278 * space, with no leaks.  However, note that this case is actually
279 * fairly rare.
280 *
281 * Typically pools either (a) fail completely (but perhaps temporarily,
282 * e.g. a top-level vdev going offline), or (b) have localized,
283 * permanent errors (e.g. disk returns the wrong data due to bit flip or
284 * firmware bug).  In case (a), this setting does not matter because the
285 * pool will be suspended and the sync thread will not be able to make
286 * forward progress regardless.  In case (b), because the error is
287 * permanent, the best we can do is leak the minimum amount of space,
288 * which is what setting this flag will do.  Therefore, it is reasonable
289 * for this flag to normally be set, but we chose the more conservative
290 * approach of not setting it, so that there is no possibility of
291 * leaking space in the "partial temporary" failure case.
292 */
293boolean_t zfs_free_leak_on_eio = B_FALSE;
294
295/*
296 * Expiration time in milliseconds. This value has two meanings. First it is
297 * used to determine when the spa_deadman() logic should fire. By default the
298 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
299 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
300 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
301 * in a system panic.
302 */
303uint64_t zfs_deadman_synctime_ms = 1000000ULL;
304TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
305SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
306    &zfs_deadman_synctime_ms, 0,
307    "Stalled ZFS I/O expiration time in milliseconds");
308
309/*
310 * Check time in milliseconds. This defines the frequency at which we check
311 * for hung I/O.
312 */
313uint64_t zfs_deadman_checktime_ms = 5000ULL;
314TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
315SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
316    &zfs_deadman_checktime_ms, 0,
317    "Period of checks for stalled ZFS I/O in milliseconds");
318
319/*
320 * Default value of -1 for zfs_deadman_enabled is resolved in
321 * zfs_deadman_init()
322 */
323int zfs_deadman_enabled = -1;
324TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
325SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
326    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
327
328/*
329 * The worst case is single-sector max-parity RAID-Z blocks, in which
330 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
331 * times the size; so just assume that.  Add to this the fact that
332 * we can have up to 3 DVAs per bp, and one more factor of 2 because
333 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
334 * the worst case is:
335 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
336 */
337int spa_asize_inflation = 24;
338TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
339SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
340    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
341
342#ifndef illumos
343#ifdef _KERNEL
344static void
345zfs_deadman_init()
346{
347	/*
348	 * If we are not i386 or amd64 or in a virtual machine,
349	 * disable ZFS deadman thread by default
350	 */
351	if (zfs_deadman_enabled == -1) {
352#if defined(__amd64__) || defined(__i386__)
353		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
354#else
355		zfs_deadman_enabled = 0;
356#endif
357	}
358}
359#endif	/* _KERNEL */
360#endif	/* !illumos */
361
362/*
363 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
364 * the pool to be consumed.  This ensures that we don't run the pool
365 * completely out of space, due to unaccounted changes (e.g. to the MOS).
366 * It also limits the worst-case time to allocate space.  If we have
367 * less than this amount of free space, most ZPL operations (e.g. write,
368 * create) will return ENOSPC.
369 *
370 * Certain operations (e.g. file removal, most administrative actions) can
371 * use half the slop space.  They will only return ENOSPC if less than half
372 * the slop space is free.  Typically, once the pool has less than the slop
373 * space free, the user will use these operations to free up space in the pool.
374 * These are the operations that call dsl_pool_adjustedsize() with the netfree
375 * argument set to TRUE.
376 *
377 * A very restricted set of operations are always permitted, regardless of
378 * the amount of free space.  These are the operations that call
379 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
380 * operations result in a net increase in the amount of space used,
381 * it is possible to run the pool completely out of space, causing it to
382 * be permanently read-only.
383 *
384 * See also the comments in zfs_space_check_t.
385 */
386int spa_slop_shift = 5;
387SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
388    &spa_slop_shift, 0,
389    "Shift value of reserved space (1/(2^spa_slop_shift)).");
390
391/*
392 * ==========================================================================
393 * SPA config locking
394 * ==========================================================================
395 */
396static void
397spa_config_lock_init(spa_t *spa)
398{
399	for (int i = 0; i < SCL_LOCKS; i++) {
400		spa_config_lock_t *scl = &spa->spa_config_lock[i];
401		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
402		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
403		refcount_create_untracked(&scl->scl_count);
404		scl->scl_writer = NULL;
405		scl->scl_write_wanted = 0;
406	}
407}
408
409static void
410spa_config_lock_destroy(spa_t *spa)
411{
412	for (int i = 0; i < SCL_LOCKS; i++) {
413		spa_config_lock_t *scl = &spa->spa_config_lock[i];
414		mutex_destroy(&scl->scl_lock);
415		cv_destroy(&scl->scl_cv);
416		refcount_destroy(&scl->scl_count);
417		ASSERT(scl->scl_writer == NULL);
418		ASSERT(scl->scl_write_wanted == 0);
419	}
420}
421
422int
423spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
424{
425	for (int i = 0; i < SCL_LOCKS; i++) {
426		spa_config_lock_t *scl = &spa->spa_config_lock[i];
427		if (!(locks & (1 << i)))
428			continue;
429		mutex_enter(&scl->scl_lock);
430		if (rw == RW_READER) {
431			if (scl->scl_writer || scl->scl_write_wanted) {
432				mutex_exit(&scl->scl_lock);
433				spa_config_exit(spa, locks ^ (1 << i), tag);
434				return (0);
435			}
436		} else {
437			ASSERT(scl->scl_writer != curthread);
438			if (!refcount_is_zero(&scl->scl_count)) {
439				mutex_exit(&scl->scl_lock);
440				spa_config_exit(spa, locks ^ (1 << i), tag);
441				return (0);
442			}
443			scl->scl_writer = curthread;
444		}
445		(void) refcount_add(&scl->scl_count, tag);
446		mutex_exit(&scl->scl_lock);
447	}
448	return (1);
449}
450
451void
452spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
453{
454	int wlocks_held = 0;
455
456	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
457
458	for (int i = 0; i < SCL_LOCKS; i++) {
459		spa_config_lock_t *scl = &spa->spa_config_lock[i];
460		if (scl->scl_writer == curthread)
461			wlocks_held |= (1 << i);
462		if (!(locks & (1 << i)))
463			continue;
464		mutex_enter(&scl->scl_lock);
465		if (rw == RW_READER) {
466			while (scl->scl_writer || scl->scl_write_wanted) {
467				cv_wait(&scl->scl_cv, &scl->scl_lock);
468			}
469		} else {
470			ASSERT(scl->scl_writer != curthread);
471			while (!refcount_is_zero(&scl->scl_count)) {
472				scl->scl_write_wanted++;
473				cv_wait(&scl->scl_cv, &scl->scl_lock);
474				scl->scl_write_wanted--;
475			}
476			scl->scl_writer = curthread;
477		}
478		(void) refcount_add(&scl->scl_count, tag);
479		mutex_exit(&scl->scl_lock);
480	}
481	ASSERT(wlocks_held <= locks);
482}
483
484void
485spa_config_exit(spa_t *spa, int locks, void *tag)
486{
487	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
488		spa_config_lock_t *scl = &spa->spa_config_lock[i];
489		if (!(locks & (1 << i)))
490			continue;
491		mutex_enter(&scl->scl_lock);
492		ASSERT(!refcount_is_zero(&scl->scl_count));
493		if (refcount_remove(&scl->scl_count, tag) == 0) {
494			ASSERT(scl->scl_writer == NULL ||
495			    scl->scl_writer == curthread);
496			scl->scl_writer = NULL;	/* OK in either case */
497			cv_broadcast(&scl->scl_cv);
498		}
499		mutex_exit(&scl->scl_lock);
500	}
501}
502
503int
504spa_config_held(spa_t *spa, int locks, krw_t rw)
505{
506	int locks_held = 0;
507
508	for (int i = 0; i < SCL_LOCKS; i++) {
509		spa_config_lock_t *scl = &spa->spa_config_lock[i];
510		if (!(locks & (1 << i)))
511			continue;
512		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
513		    (rw == RW_WRITER && scl->scl_writer == curthread))
514			locks_held |= 1 << i;
515	}
516
517	return (locks_held);
518}
519
520/*
521 * ==========================================================================
522 * SPA namespace functions
523 * ==========================================================================
524 */
525
526/*
527 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
528 * Returns NULL if no matching spa_t is found.
529 */
530spa_t *
531spa_lookup(const char *name)
532{
533	static spa_t search;	/* spa_t is large; don't allocate on stack */
534	spa_t *spa;
535	avl_index_t where;
536	char *cp;
537
538	ASSERT(MUTEX_HELD(&spa_namespace_lock));
539
540	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
541
542	/*
543	 * If it's a full dataset name, figure out the pool name and
544	 * just use that.
545	 */
546	cp = strpbrk(search.spa_name, "/@#");
547	if (cp != NULL)
548		*cp = '\0';
549
550	spa = avl_find(&spa_namespace_avl, &search, &where);
551
552	return (spa);
553}
554
555/*
556 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
557 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
558 * looking for potentially hung I/Os.
559 */
560void
561spa_deadman(void *arg)
562{
563	spa_t *spa = arg;
564
565	/*
566	 * Disable the deadman timer if the pool is suspended.
567	 */
568	if (spa_suspended(spa)) {
569#ifdef illumos
570		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
571#else
572		/* Nothing.  just don't schedule any future callouts. */
573#endif
574		return;
575	}
576
577	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
578	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
579	    ++spa->spa_deadman_calls);
580	if (zfs_deadman_enabled)
581		vdev_deadman(spa->spa_root_vdev);
582}
583
584/*
585 * Create an uninitialized spa_t with the given name.  Requires
586 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
587 * exist by calling spa_lookup() first.
588 */
589spa_t *
590spa_add(const char *name, nvlist_t *config, const char *altroot)
591{
592	spa_t *spa;
593	spa_config_dirent_t *dp;
594#ifdef illumos
595	cyc_handler_t hdlr;
596	cyc_time_t when;
597#endif
598
599	ASSERT(MUTEX_HELD(&spa_namespace_lock));
600
601	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
602
603	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
604	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
605	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
606	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
607	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
608	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
609	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
610	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
611	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
612
613	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
614	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
615	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
616	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
617
618	for (int t = 0; t < TXG_SIZE; t++)
619		bplist_create(&spa->spa_free_bplist[t]);
620
621	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
622	spa->spa_state = POOL_STATE_UNINITIALIZED;
623	spa->spa_freeze_txg = UINT64_MAX;
624	spa->spa_final_txg = UINT64_MAX;
625	spa->spa_load_max_txg = UINT64_MAX;
626	spa->spa_proc = &p0;
627	spa->spa_proc_state = SPA_PROC_NONE;
628
629#ifdef illumos
630	hdlr.cyh_func = spa_deadman;
631	hdlr.cyh_arg = spa;
632	hdlr.cyh_level = CY_LOW_LEVEL;
633#endif
634
635	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
636
637#ifdef illumos
638	/*
639	 * This determines how often we need to check for hung I/Os after
640	 * the cyclic has already fired. Since checking for hung I/Os is
641	 * an expensive operation we don't want to check too frequently.
642	 * Instead wait for 5 seconds before checking again.
643	 */
644	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
645	when.cyt_when = CY_INFINITY;
646	mutex_enter(&cpu_lock);
647	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
648	mutex_exit(&cpu_lock);
649#else	/* !illumos */
650#ifdef _KERNEL
651	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
652#endif
653#endif
654	refcount_create(&spa->spa_refcount);
655	spa_config_lock_init(spa);
656
657	avl_add(&spa_namespace_avl, spa);
658
659	/*
660	 * Set the alternate root, if there is one.
661	 */
662	if (altroot) {
663		spa->spa_root = spa_strdup(altroot);
664		spa_active_count++;
665	}
666
667	/*
668	 * Every pool starts with the default cachefile
669	 */
670	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
671	    offsetof(spa_config_dirent_t, scd_link));
672
673	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
674	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
675	list_insert_head(&spa->spa_config_list, dp);
676
677	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
678	    KM_SLEEP) == 0);
679
680	if (config != NULL) {
681		nvlist_t *features;
682
683		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
684		    &features) == 0) {
685			VERIFY(nvlist_dup(features, &spa->spa_label_features,
686			    0) == 0);
687		}
688
689		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
690	}
691
692	if (spa->spa_label_features == NULL) {
693		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
694		    KM_SLEEP) == 0);
695	}
696
697	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
698
699	spa->spa_min_ashift = INT_MAX;
700	spa->spa_max_ashift = 0;
701
702	/*
703	 * As a pool is being created, treat all features as disabled by
704	 * setting SPA_FEATURE_DISABLED for all entries in the feature
705	 * refcount cache.
706	 */
707	for (int i = 0; i < SPA_FEATURES; i++) {
708		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
709	}
710
711	return (spa);
712}
713
714/*
715 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
716 * spa_namespace_lock.  This is called only after the spa_t has been closed and
717 * deactivated.
718 */
719void
720spa_remove(spa_t *spa)
721{
722	spa_config_dirent_t *dp;
723
724	ASSERT(MUTEX_HELD(&spa_namespace_lock));
725	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
726
727	nvlist_free(spa->spa_config_splitting);
728
729	avl_remove(&spa_namespace_avl, spa);
730	cv_broadcast(&spa_namespace_cv);
731
732	if (spa->spa_root) {
733		spa_strfree(spa->spa_root);
734		spa_active_count--;
735	}
736
737	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
738		list_remove(&spa->spa_config_list, dp);
739		if (dp->scd_path != NULL)
740			spa_strfree(dp->scd_path);
741		kmem_free(dp, sizeof (spa_config_dirent_t));
742	}
743
744	list_destroy(&spa->spa_config_list);
745
746	nvlist_free(spa->spa_label_features);
747	nvlist_free(spa->spa_load_info);
748	spa_config_set(spa, NULL);
749
750#ifdef illumos
751	mutex_enter(&cpu_lock);
752	if (spa->spa_deadman_cycid != CYCLIC_NONE)
753		cyclic_remove(spa->spa_deadman_cycid);
754	mutex_exit(&cpu_lock);
755	spa->spa_deadman_cycid = CYCLIC_NONE;
756#else	/* !illumos */
757#ifdef _KERNEL
758	callout_drain(&spa->spa_deadman_cycid);
759#endif
760#endif
761
762	refcount_destroy(&spa->spa_refcount);
763
764	spa_config_lock_destroy(spa);
765
766	for (int t = 0; t < TXG_SIZE; t++)
767		bplist_destroy(&spa->spa_free_bplist[t]);
768
769	cv_destroy(&spa->spa_async_cv);
770	cv_destroy(&spa->spa_proc_cv);
771	cv_destroy(&spa->spa_scrub_io_cv);
772	cv_destroy(&spa->spa_suspend_cv);
773
774	mutex_destroy(&spa->spa_async_lock);
775	mutex_destroy(&spa->spa_errlist_lock);
776	mutex_destroy(&spa->spa_errlog_lock);
777	mutex_destroy(&spa->spa_history_lock);
778	mutex_destroy(&spa->spa_proc_lock);
779	mutex_destroy(&spa->spa_props_lock);
780	mutex_destroy(&spa->spa_scrub_lock);
781	mutex_destroy(&spa->spa_suspend_lock);
782	mutex_destroy(&spa->spa_vdev_top_lock);
783
784	kmem_free(spa, sizeof (spa_t));
785}
786
787/*
788 * Given a pool, return the next pool in the namespace, or NULL if there is
789 * none.  If 'prev' is NULL, return the first pool.
790 */
791spa_t *
792spa_next(spa_t *prev)
793{
794	ASSERT(MUTEX_HELD(&spa_namespace_lock));
795
796	if (prev)
797		return (AVL_NEXT(&spa_namespace_avl, prev));
798	else
799		return (avl_first(&spa_namespace_avl));
800}
801
802/*
803 * ==========================================================================
804 * SPA refcount functions
805 * ==========================================================================
806 */
807
808/*
809 * Add a reference to the given spa_t.  Must have at least one reference, or
810 * have the namespace lock held.
811 */
812void
813spa_open_ref(spa_t *spa, void *tag)
814{
815	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
816	    MUTEX_HELD(&spa_namespace_lock));
817	(void) refcount_add(&spa->spa_refcount, tag);
818}
819
820/*
821 * Remove a reference to the given spa_t.  Must have at least one reference, or
822 * have the namespace lock held.
823 */
824void
825spa_close(spa_t *spa, void *tag)
826{
827	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
828	    MUTEX_HELD(&spa_namespace_lock));
829	(void) refcount_remove(&spa->spa_refcount, tag);
830}
831
832/*
833 * Check to see if the spa refcount is zero.  Must be called with
834 * spa_namespace_lock held.  We really compare against spa_minref, which is the
835 * number of references acquired when opening a pool
836 */
837boolean_t
838spa_refcount_zero(spa_t *spa)
839{
840	ASSERT(MUTEX_HELD(&spa_namespace_lock));
841
842	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
843}
844
845/*
846 * ==========================================================================
847 * SPA spare and l2cache tracking
848 * ==========================================================================
849 */
850
851/*
852 * Hot spares and cache devices are tracked using the same code below,
853 * for 'auxiliary' devices.
854 */
855
856typedef struct spa_aux {
857	uint64_t	aux_guid;
858	uint64_t	aux_pool;
859	avl_node_t	aux_avl;
860	int		aux_count;
861} spa_aux_t;
862
863static int
864spa_aux_compare(const void *a, const void *b)
865{
866	const spa_aux_t *sa = a;
867	const spa_aux_t *sb = b;
868
869	if (sa->aux_guid < sb->aux_guid)
870		return (-1);
871	else if (sa->aux_guid > sb->aux_guid)
872		return (1);
873	else
874		return (0);
875}
876
877void
878spa_aux_add(vdev_t *vd, avl_tree_t *avl)
879{
880	avl_index_t where;
881	spa_aux_t search;
882	spa_aux_t *aux;
883
884	search.aux_guid = vd->vdev_guid;
885	if ((aux = avl_find(avl, &search, &where)) != NULL) {
886		aux->aux_count++;
887	} else {
888		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
889		aux->aux_guid = vd->vdev_guid;
890		aux->aux_count = 1;
891		avl_insert(avl, aux, where);
892	}
893}
894
895void
896spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
897{
898	spa_aux_t search;
899	spa_aux_t *aux;
900	avl_index_t where;
901
902	search.aux_guid = vd->vdev_guid;
903	aux = avl_find(avl, &search, &where);
904
905	ASSERT(aux != NULL);
906
907	if (--aux->aux_count == 0) {
908		avl_remove(avl, aux);
909		kmem_free(aux, sizeof (spa_aux_t));
910	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
911		aux->aux_pool = 0ULL;
912	}
913}
914
915boolean_t
916spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
917{
918	spa_aux_t search, *found;
919
920	search.aux_guid = guid;
921	found = avl_find(avl, &search, NULL);
922
923	if (pool) {
924		if (found)
925			*pool = found->aux_pool;
926		else
927			*pool = 0ULL;
928	}
929
930	if (refcnt) {
931		if (found)
932			*refcnt = found->aux_count;
933		else
934			*refcnt = 0;
935	}
936
937	return (found != NULL);
938}
939
940void
941spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
942{
943	spa_aux_t search, *found;
944	avl_index_t where;
945
946	search.aux_guid = vd->vdev_guid;
947	found = avl_find(avl, &search, &where);
948	ASSERT(found != NULL);
949	ASSERT(found->aux_pool == 0ULL);
950
951	found->aux_pool = spa_guid(vd->vdev_spa);
952}
953
954/*
955 * Spares are tracked globally due to the following constraints:
956 *
957 * 	- A spare may be part of multiple pools.
958 * 	- A spare may be added to a pool even if it's actively in use within
959 *	  another pool.
960 * 	- A spare in use in any pool can only be the source of a replacement if
961 *	  the target is a spare in the same pool.
962 *
963 * We keep track of all spares on the system through the use of a reference
964 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
965 * spare, then we bump the reference count in the AVL tree.  In addition, we set
966 * the 'vdev_isspare' member to indicate that the device is a spare (active or
967 * inactive).  When a spare is made active (used to replace a device in the
968 * pool), we also keep track of which pool its been made a part of.
969 *
970 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
971 * called under the spa_namespace lock as part of vdev reconfiguration.  The
972 * separate spare lock exists for the status query path, which does not need to
973 * be completely consistent with respect to other vdev configuration changes.
974 */
975
976static int
977spa_spare_compare(const void *a, const void *b)
978{
979	return (spa_aux_compare(a, b));
980}
981
982void
983spa_spare_add(vdev_t *vd)
984{
985	mutex_enter(&spa_spare_lock);
986	ASSERT(!vd->vdev_isspare);
987	spa_aux_add(vd, &spa_spare_avl);
988	vd->vdev_isspare = B_TRUE;
989	mutex_exit(&spa_spare_lock);
990}
991
992void
993spa_spare_remove(vdev_t *vd)
994{
995	mutex_enter(&spa_spare_lock);
996	ASSERT(vd->vdev_isspare);
997	spa_aux_remove(vd, &spa_spare_avl);
998	vd->vdev_isspare = B_FALSE;
999	mutex_exit(&spa_spare_lock);
1000}
1001
1002boolean_t
1003spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1004{
1005	boolean_t found;
1006
1007	mutex_enter(&spa_spare_lock);
1008	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1009	mutex_exit(&spa_spare_lock);
1010
1011	return (found);
1012}
1013
1014void
1015spa_spare_activate(vdev_t *vd)
1016{
1017	mutex_enter(&spa_spare_lock);
1018	ASSERT(vd->vdev_isspare);
1019	spa_aux_activate(vd, &spa_spare_avl);
1020	mutex_exit(&spa_spare_lock);
1021}
1022
1023/*
1024 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1025 * Cache devices currently only support one pool per cache device, and so
1026 * for these devices the aux reference count is currently unused beyond 1.
1027 */
1028
1029static int
1030spa_l2cache_compare(const void *a, const void *b)
1031{
1032	return (spa_aux_compare(a, b));
1033}
1034
1035void
1036spa_l2cache_add(vdev_t *vd)
1037{
1038	mutex_enter(&spa_l2cache_lock);
1039	ASSERT(!vd->vdev_isl2cache);
1040	spa_aux_add(vd, &spa_l2cache_avl);
1041	vd->vdev_isl2cache = B_TRUE;
1042	mutex_exit(&spa_l2cache_lock);
1043}
1044
1045void
1046spa_l2cache_remove(vdev_t *vd)
1047{
1048	mutex_enter(&spa_l2cache_lock);
1049	ASSERT(vd->vdev_isl2cache);
1050	spa_aux_remove(vd, &spa_l2cache_avl);
1051	vd->vdev_isl2cache = B_FALSE;
1052	mutex_exit(&spa_l2cache_lock);
1053}
1054
1055boolean_t
1056spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1057{
1058	boolean_t found;
1059
1060	mutex_enter(&spa_l2cache_lock);
1061	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1062	mutex_exit(&spa_l2cache_lock);
1063
1064	return (found);
1065}
1066
1067void
1068spa_l2cache_activate(vdev_t *vd)
1069{
1070	mutex_enter(&spa_l2cache_lock);
1071	ASSERT(vd->vdev_isl2cache);
1072	spa_aux_activate(vd, &spa_l2cache_avl);
1073	mutex_exit(&spa_l2cache_lock);
1074}
1075
1076/*
1077 * ==========================================================================
1078 * SPA vdev locking
1079 * ==========================================================================
1080 */
1081
1082/*
1083 * Lock the given spa_t for the purpose of adding or removing a vdev.
1084 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1085 * It returns the next transaction group for the spa_t.
1086 */
1087uint64_t
1088spa_vdev_enter(spa_t *spa)
1089{
1090	mutex_enter(&spa->spa_vdev_top_lock);
1091	mutex_enter(&spa_namespace_lock);
1092	return (spa_vdev_config_enter(spa));
1093}
1094
1095/*
1096 * Internal implementation for spa_vdev_enter().  Used when a vdev
1097 * operation requires multiple syncs (i.e. removing a device) while
1098 * keeping the spa_namespace_lock held.
1099 */
1100uint64_t
1101spa_vdev_config_enter(spa_t *spa)
1102{
1103	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1104
1105	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1106
1107	return (spa_last_synced_txg(spa) + 1);
1108}
1109
1110/*
1111 * Used in combination with spa_vdev_config_enter() to allow the syncing
1112 * of multiple transactions without releasing the spa_namespace_lock.
1113 */
1114void
1115spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1116{
1117	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118
1119	int config_changed = B_FALSE;
1120
1121	ASSERT(txg > spa_last_synced_txg(spa));
1122
1123	spa->spa_pending_vdev = NULL;
1124
1125	/*
1126	 * Reassess the DTLs.
1127	 */
1128	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1129
1130	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1131		config_changed = B_TRUE;
1132		spa->spa_config_generation++;
1133	}
1134
1135	/*
1136	 * Verify the metaslab classes.
1137	 */
1138	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1139	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1140
1141	spa_config_exit(spa, SCL_ALL, spa);
1142
1143	/*
1144	 * Panic the system if the specified tag requires it.  This
1145	 * is useful for ensuring that configurations are updated
1146	 * transactionally.
1147	 */
1148	if (zio_injection_enabled)
1149		zio_handle_panic_injection(spa, tag, 0);
1150
1151	/*
1152	 * Note: this txg_wait_synced() is important because it ensures
1153	 * that there won't be more than one config change per txg.
1154	 * This allows us to use the txg as the generation number.
1155	 */
1156	if (error == 0)
1157		txg_wait_synced(spa->spa_dsl_pool, txg);
1158
1159	if (vd != NULL) {
1160		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1161		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1162		vdev_free(vd);
1163		spa_config_exit(spa, SCL_ALL, spa);
1164	}
1165
1166	/*
1167	 * If the config changed, update the config cache.
1168	 */
1169	if (config_changed)
1170		spa_config_sync(spa, B_FALSE, B_TRUE);
1171}
1172
1173/*
1174 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1175 * locking of spa_vdev_enter(), we also want make sure the transactions have
1176 * synced to disk, and then update the global configuration cache with the new
1177 * information.
1178 */
1179int
1180spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1181{
1182	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1183	mutex_exit(&spa_namespace_lock);
1184	mutex_exit(&spa->spa_vdev_top_lock);
1185
1186	return (error);
1187}
1188
1189/*
1190 * Lock the given spa_t for the purpose of changing vdev state.
1191 */
1192void
1193spa_vdev_state_enter(spa_t *spa, int oplocks)
1194{
1195	int locks = SCL_STATE_ALL | oplocks;
1196
1197	/*
1198	 * Root pools may need to read of the underlying devfs filesystem
1199	 * when opening up a vdev.  Unfortunately if we're holding the
1200	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1201	 * the read from the root filesystem.  Instead we "prefetch"
1202	 * the associated vnodes that we need prior to opening the
1203	 * underlying devices and cache them so that we can prevent
1204	 * any I/O when we are doing the actual open.
1205	 */
1206	if (spa_is_root(spa)) {
1207		int low = locks & ~(SCL_ZIO - 1);
1208		int high = locks & ~low;
1209
1210		spa_config_enter(spa, high, spa, RW_WRITER);
1211		vdev_hold(spa->spa_root_vdev);
1212		spa_config_enter(spa, low, spa, RW_WRITER);
1213	} else {
1214		spa_config_enter(spa, locks, spa, RW_WRITER);
1215	}
1216	spa->spa_vdev_locks = locks;
1217}
1218
1219int
1220spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1221{
1222	boolean_t config_changed = B_FALSE;
1223
1224	if (vd != NULL || error == 0)
1225		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1226		    0, 0, B_FALSE);
1227
1228	if (vd != NULL) {
1229		vdev_state_dirty(vd->vdev_top);
1230		config_changed = B_TRUE;
1231		spa->spa_config_generation++;
1232	}
1233
1234	if (spa_is_root(spa))
1235		vdev_rele(spa->spa_root_vdev);
1236
1237	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1238	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1239
1240	/*
1241	 * If anything changed, wait for it to sync.  This ensures that,
1242	 * from the system administrator's perspective, zpool(1M) commands
1243	 * are synchronous.  This is important for things like zpool offline:
1244	 * when the command completes, you expect no further I/O from ZFS.
1245	 */
1246	if (vd != NULL)
1247		txg_wait_synced(spa->spa_dsl_pool, 0);
1248
1249	/*
1250	 * If the config changed, update the config cache.
1251	 */
1252	if (config_changed) {
1253		mutex_enter(&spa_namespace_lock);
1254		spa_config_sync(spa, B_FALSE, B_TRUE);
1255		mutex_exit(&spa_namespace_lock);
1256	}
1257
1258	return (error);
1259}
1260
1261/*
1262 * ==========================================================================
1263 * Miscellaneous functions
1264 * ==========================================================================
1265 */
1266
1267void
1268spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1269{
1270	if (!nvlist_exists(spa->spa_label_features, feature)) {
1271		fnvlist_add_boolean(spa->spa_label_features, feature);
1272		/*
1273		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1274		 * dirty the vdev config because lock SCL_CONFIG is not held.
1275		 * Thankfully, in this case we don't need to dirty the config
1276		 * because it will be written out anyway when we finish
1277		 * creating the pool.
1278		 */
1279		if (tx->tx_txg != TXG_INITIAL)
1280			vdev_config_dirty(spa->spa_root_vdev);
1281	}
1282}
1283
1284void
1285spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1286{
1287	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1288		vdev_config_dirty(spa->spa_root_vdev);
1289}
1290
1291/*
1292 * Rename a spa_t.
1293 */
1294int
1295spa_rename(const char *name, const char *newname)
1296{
1297	spa_t *spa;
1298	int err;
1299
1300	/*
1301	 * Lookup the spa_t and grab the config lock for writing.  We need to
1302	 * actually open the pool so that we can sync out the necessary labels.
1303	 * It's OK to call spa_open() with the namespace lock held because we
1304	 * allow recursive calls for other reasons.
1305	 */
1306	mutex_enter(&spa_namespace_lock);
1307	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1308		mutex_exit(&spa_namespace_lock);
1309		return (err);
1310	}
1311
1312	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1313
1314	avl_remove(&spa_namespace_avl, spa);
1315	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1316	avl_add(&spa_namespace_avl, spa);
1317
1318	/*
1319	 * Sync all labels to disk with the new names by marking the root vdev
1320	 * dirty and waiting for it to sync.  It will pick up the new pool name
1321	 * during the sync.
1322	 */
1323	vdev_config_dirty(spa->spa_root_vdev);
1324
1325	spa_config_exit(spa, SCL_ALL, FTAG);
1326
1327	txg_wait_synced(spa->spa_dsl_pool, 0);
1328
1329	/*
1330	 * Sync the updated config cache.
1331	 */
1332	spa_config_sync(spa, B_FALSE, B_TRUE);
1333
1334	spa_close(spa, FTAG);
1335
1336	mutex_exit(&spa_namespace_lock);
1337
1338	return (0);
1339}
1340
1341/*
1342 * Return the spa_t associated with given pool_guid, if it exists.  If
1343 * device_guid is non-zero, determine whether the pool exists *and* contains
1344 * a device with the specified device_guid.
1345 */
1346spa_t *
1347spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1348{
1349	spa_t *spa;
1350	avl_tree_t *t = &spa_namespace_avl;
1351
1352	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1353
1354	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1355		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1356			continue;
1357		if (spa->spa_root_vdev == NULL)
1358			continue;
1359		if (spa_guid(spa) == pool_guid) {
1360			if (device_guid == 0)
1361				break;
1362
1363			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1364			    device_guid) != NULL)
1365				break;
1366
1367			/*
1368			 * Check any devices we may be in the process of adding.
1369			 */
1370			if (spa->spa_pending_vdev) {
1371				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1372				    device_guid) != NULL)
1373					break;
1374			}
1375		}
1376	}
1377
1378	return (spa);
1379}
1380
1381/*
1382 * Determine whether a pool with the given pool_guid exists.
1383 */
1384boolean_t
1385spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1386{
1387	return (spa_by_guid(pool_guid, device_guid) != NULL);
1388}
1389
1390char *
1391spa_strdup(const char *s)
1392{
1393	size_t len;
1394	char *new;
1395
1396	len = strlen(s);
1397	new = kmem_alloc(len + 1, KM_SLEEP);
1398	bcopy(s, new, len);
1399	new[len] = '\0';
1400
1401	return (new);
1402}
1403
1404void
1405spa_strfree(char *s)
1406{
1407	kmem_free(s, strlen(s) + 1);
1408}
1409
1410uint64_t
1411spa_get_random(uint64_t range)
1412{
1413	uint64_t r;
1414
1415	ASSERT(range != 0);
1416
1417	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1418
1419	return (r % range);
1420}
1421
1422uint64_t
1423spa_generate_guid(spa_t *spa)
1424{
1425	uint64_t guid = spa_get_random(-1ULL);
1426
1427	if (spa != NULL) {
1428		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1429			guid = spa_get_random(-1ULL);
1430	} else {
1431		while (guid == 0 || spa_guid_exists(guid, 0))
1432			guid = spa_get_random(-1ULL);
1433	}
1434
1435	return (guid);
1436}
1437
1438void
1439snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1440{
1441	char type[256];
1442	char *checksum = NULL;
1443	char *compress = NULL;
1444
1445	if (bp != NULL) {
1446		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1447			dmu_object_byteswap_t bswap =
1448			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1449			(void) snprintf(type, sizeof (type), "bswap %s %s",
1450			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1451			    "metadata" : "data",
1452			    dmu_ot_byteswap[bswap].ob_name);
1453		} else {
1454			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1455			    sizeof (type));
1456		}
1457		if (!BP_IS_EMBEDDED(bp)) {
1458			checksum =
1459			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1460		}
1461		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1462	}
1463
1464	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1465	    compress);
1466}
1467
1468void
1469spa_freeze(spa_t *spa)
1470{
1471	uint64_t freeze_txg = 0;
1472
1473	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1474	if (spa->spa_freeze_txg == UINT64_MAX) {
1475		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1476		spa->spa_freeze_txg = freeze_txg;
1477	}
1478	spa_config_exit(spa, SCL_ALL, FTAG);
1479	if (freeze_txg != 0)
1480		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1481}
1482
1483void
1484zfs_panic_recover(const char *fmt, ...)
1485{
1486	va_list adx;
1487
1488	va_start(adx, fmt);
1489	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1490	va_end(adx);
1491}
1492
1493/*
1494 * This is a stripped-down version of strtoull, suitable only for converting
1495 * lowercase hexadecimal numbers that don't overflow.
1496 */
1497uint64_t
1498zfs_strtonum(const char *str, char **nptr)
1499{
1500	uint64_t val = 0;
1501	char c;
1502	int digit;
1503
1504	while ((c = *str) != '\0') {
1505		if (c >= '0' && c <= '9')
1506			digit = c - '0';
1507		else if (c >= 'a' && c <= 'f')
1508			digit = 10 + c - 'a';
1509		else
1510			break;
1511
1512		val *= 16;
1513		val += digit;
1514
1515		str++;
1516	}
1517
1518	if (nptr)
1519		*nptr = (char *)str;
1520
1521	return (val);
1522}
1523
1524/*
1525 * ==========================================================================
1526 * Accessor functions
1527 * ==========================================================================
1528 */
1529
1530boolean_t
1531spa_shutting_down(spa_t *spa)
1532{
1533	return (spa->spa_async_suspended);
1534}
1535
1536dsl_pool_t *
1537spa_get_dsl(spa_t *spa)
1538{
1539	return (spa->spa_dsl_pool);
1540}
1541
1542boolean_t
1543spa_is_initializing(spa_t *spa)
1544{
1545	return (spa->spa_is_initializing);
1546}
1547
1548blkptr_t *
1549spa_get_rootblkptr(spa_t *spa)
1550{
1551	return (&spa->spa_ubsync.ub_rootbp);
1552}
1553
1554void
1555spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1556{
1557	spa->spa_uberblock.ub_rootbp = *bp;
1558}
1559
1560void
1561spa_altroot(spa_t *spa, char *buf, size_t buflen)
1562{
1563	if (spa->spa_root == NULL)
1564		buf[0] = '\0';
1565	else
1566		(void) strncpy(buf, spa->spa_root, buflen);
1567}
1568
1569int
1570spa_sync_pass(spa_t *spa)
1571{
1572	return (spa->spa_sync_pass);
1573}
1574
1575char *
1576spa_name(spa_t *spa)
1577{
1578	return (spa->spa_name);
1579}
1580
1581uint64_t
1582spa_guid(spa_t *spa)
1583{
1584	dsl_pool_t *dp = spa_get_dsl(spa);
1585	uint64_t guid;
1586
1587	/*
1588	 * If we fail to parse the config during spa_load(), we can go through
1589	 * the error path (which posts an ereport) and end up here with no root
1590	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1591	 * this case.
1592	 */
1593	if (spa->spa_root_vdev == NULL)
1594		return (spa->spa_config_guid);
1595
1596	guid = spa->spa_last_synced_guid != 0 ?
1597	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1598
1599	/*
1600	 * Return the most recently synced out guid unless we're
1601	 * in syncing context.
1602	 */
1603	if (dp && dsl_pool_sync_context(dp))
1604		return (spa->spa_root_vdev->vdev_guid);
1605	else
1606		return (guid);
1607}
1608
1609uint64_t
1610spa_load_guid(spa_t *spa)
1611{
1612	/*
1613	 * This is a GUID that exists solely as a reference for the
1614	 * purposes of the arc.  It is generated at load time, and
1615	 * is never written to persistent storage.
1616	 */
1617	return (spa->spa_load_guid);
1618}
1619
1620uint64_t
1621spa_last_synced_txg(spa_t *spa)
1622{
1623	return (spa->spa_ubsync.ub_txg);
1624}
1625
1626uint64_t
1627spa_first_txg(spa_t *spa)
1628{
1629	return (spa->spa_first_txg);
1630}
1631
1632uint64_t
1633spa_syncing_txg(spa_t *spa)
1634{
1635	return (spa->spa_syncing_txg);
1636}
1637
1638pool_state_t
1639spa_state(spa_t *spa)
1640{
1641	return (spa->spa_state);
1642}
1643
1644spa_load_state_t
1645spa_load_state(spa_t *spa)
1646{
1647	return (spa->spa_load_state);
1648}
1649
1650uint64_t
1651spa_freeze_txg(spa_t *spa)
1652{
1653	return (spa->spa_freeze_txg);
1654}
1655
1656/* ARGSUSED */
1657uint64_t
1658spa_get_asize(spa_t *spa, uint64_t lsize)
1659{
1660	return (lsize * spa_asize_inflation);
1661}
1662
1663/*
1664 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1665 * or at least 32MB.
1666 *
1667 * See the comment above spa_slop_shift for details.
1668 */
1669uint64_t
1670spa_get_slop_space(spa_t *spa) {
1671	uint64_t space = spa_get_dspace(spa);
1672	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1673}
1674
1675uint64_t
1676spa_get_dspace(spa_t *spa)
1677{
1678	return (spa->spa_dspace);
1679}
1680
1681void
1682spa_update_dspace(spa_t *spa)
1683{
1684	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1685	    ddt_get_dedup_dspace(spa);
1686}
1687
1688/*
1689 * Return the failure mode that has been set to this pool. The default
1690 * behavior will be to block all I/Os when a complete failure occurs.
1691 */
1692uint8_t
1693spa_get_failmode(spa_t *spa)
1694{
1695	return (spa->spa_failmode);
1696}
1697
1698boolean_t
1699spa_suspended(spa_t *spa)
1700{
1701	return (spa->spa_suspended);
1702}
1703
1704uint64_t
1705spa_version(spa_t *spa)
1706{
1707	return (spa->spa_ubsync.ub_version);
1708}
1709
1710boolean_t
1711spa_deflate(spa_t *spa)
1712{
1713	return (spa->spa_deflate);
1714}
1715
1716metaslab_class_t *
1717spa_normal_class(spa_t *spa)
1718{
1719	return (spa->spa_normal_class);
1720}
1721
1722metaslab_class_t *
1723spa_log_class(spa_t *spa)
1724{
1725	return (spa->spa_log_class);
1726}
1727
1728int
1729spa_max_replication(spa_t *spa)
1730{
1731	/*
1732	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1733	 * handle BPs with more than one DVA allocated.  Set our max
1734	 * replication level accordingly.
1735	 */
1736	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1737		return (1);
1738	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1739}
1740
1741int
1742spa_prev_software_version(spa_t *spa)
1743{
1744	return (spa->spa_prev_software_version);
1745}
1746
1747uint64_t
1748spa_deadman_synctime(spa_t *spa)
1749{
1750	return (spa->spa_deadman_synctime);
1751}
1752
1753uint64_t
1754dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1755{
1756	uint64_t asize = DVA_GET_ASIZE(dva);
1757	uint64_t dsize = asize;
1758
1759	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1760
1761	if (asize != 0 && spa->spa_deflate) {
1762		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1763		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1764	}
1765
1766	return (dsize);
1767}
1768
1769uint64_t
1770bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1771{
1772	uint64_t dsize = 0;
1773
1774	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1775		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1776
1777	return (dsize);
1778}
1779
1780uint64_t
1781bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1782{
1783	uint64_t dsize = 0;
1784
1785	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1786
1787	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1788		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1789
1790	spa_config_exit(spa, SCL_VDEV, FTAG);
1791
1792	return (dsize);
1793}
1794
1795/*
1796 * ==========================================================================
1797 * Initialization and Termination
1798 * ==========================================================================
1799 */
1800
1801static int
1802spa_name_compare(const void *a1, const void *a2)
1803{
1804	const spa_t *s1 = a1;
1805	const spa_t *s2 = a2;
1806	int s;
1807
1808	s = strcmp(s1->spa_name, s2->spa_name);
1809	if (s > 0)
1810		return (1);
1811	if (s < 0)
1812		return (-1);
1813	return (0);
1814}
1815
1816int
1817spa_busy(void)
1818{
1819	return (spa_active_count);
1820}
1821
1822void
1823spa_boot_init()
1824{
1825	spa_config_load();
1826}
1827
1828#ifdef _KERNEL
1829EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1830#endif
1831
1832void
1833spa_init(int mode)
1834{
1835	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1836	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1837	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1838	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1839
1840	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1841	    offsetof(spa_t, spa_avl));
1842
1843	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1844	    offsetof(spa_aux_t, aux_avl));
1845
1846	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1847	    offsetof(spa_aux_t, aux_avl));
1848
1849	spa_mode_global = mode;
1850
1851#ifdef illumos
1852#ifdef _KERNEL
1853	spa_arch_init();
1854#else
1855	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1856		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1857		if (arc_procfd == -1) {
1858			perror("could not enable watchpoints: "
1859			    "opening /proc/self/ctl failed: ");
1860		} else {
1861			arc_watch = B_TRUE;
1862		}
1863	}
1864#endif
1865#endif /* illumos */
1866	refcount_sysinit();
1867	unique_init();
1868	range_tree_init();
1869	zio_init();
1870	lz4_init();
1871	dmu_init();
1872	zil_init();
1873	vdev_cache_stat_init();
1874	zfs_prop_init();
1875	zpool_prop_init();
1876	zpool_feature_init();
1877	spa_config_load();
1878	l2arc_start();
1879#ifndef illumos
1880#ifdef _KERNEL
1881	zfs_deadman_init();
1882#endif
1883#endif	/* !illumos */
1884}
1885
1886void
1887spa_fini(void)
1888{
1889	l2arc_stop();
1890
1891	spa_evict_all();
1892
1893	vdev_cache_stat_fini();
1894	zil_fini();
1895	dmu_fini();
1896	lz4_fini();
1897	zio_fini();
1898	range_tree_fini();
1899	unique_fini();
1900	refcount_fini();
1901
1902	avl_destroy(&spa_namespace_avl);
1903	avl_destroy(&spa_spare_avl);
1904	avl_destroy(&spa_l2cache_avl);
1905
1906	cv_destroy(&spa_namespace_cv);
1907	mutex_destroy(&spa_namespace_lock);
1908	mutex_destroy(&spa_spare_lock);
1909	mutex_destroy(&spa_l2cache_lock);
1910}
1911
1912/*
1913 * Return whether this pool has slogs. No locking needed.
1914 * It's not a problem if the wrong answer is returned as it's only for
1915 * performance and not correctness
1916 */
1917boolean_t
1918spa_has_slogs(spa_t *spa)
1919{
1920	return (spa->spa_log_class->mc_rotor != NULL);
1921}
1922
1923spa_log_state_t
1924spa_get_log_state(spa_t *spa)
1925{
1926	return (spa->spa_log_state);
1927}
1928
1929void
1930spa_set_log_state(spa_t *spa, spa_log_state_t state)
1931{
1932	spa->spa_log_state = state;
1933}
1934
1935boolean_t
1936spa_is_root(spa_t *spa)
1937{
1938	return (spa->spa_is_root);
1939}
1940
1941boolean_t
1942spa_writeable(spa_t *spa)
1943{
1944	return (!!(spa->spa_mode & FWRITE));
1945}
1946
1947/*
1948 * Returns true if there is a pending sync task in any of the current
1949 * syncing txg, the current quiescing txg, or the current open txg.
1950 */
1951boolean_t
1952spa_has_pending_synctask(spa_t *spa)
1953{
1954	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1955}
1956
1957int
1958spa_mode(spa_t *spa)
1959{
1960	return (spa->spa_mode);
1961}
1962
1963uint64_t
1964spa_bootfs(spa_t *spa)
1965{
1966	return (spa->spa_bootfs);
1967}
1968
1969uint64_t
1970spa_delegation(spa_t *spa)
1971{
1972	return (spa->spa_delegation);
1973}
1974
1975objset_t *
1976spa_meta_objset(spa_t *spa)
1977{
1978	return (spa->spa_meta_objset);
1979}
1980
1981enum zio_checksum
1982spa_dedup_checksum(spa_t *spa)
1983{
1984	return (spa->spa_dedup_checksum);
1985}
1986
1987/*
1988 * Reset pool scan stat per scan pass (or reboot).
1989 */
1990void
1991spa_scan_stat_init(spa_t *spa)
1992{
1993	/* data not stored on disk */
1994	spa->spa_scan_pass_start = gethrestime_sec();
1995	spa->spa_scan_pass_exam = 0;
1996	vdev_scan_stat_init(spa->spa_root_vdev);
1997}
1998
1999/*
2000 * Get scan stats for zpool status reports
2001 */
2002int
2003spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2004{
2005	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2006
2007	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2008		return (SET_ERROR(ENOENT));
2009	bzero(ps, sizeof (pool_scan_stat_t));
2010
2011	/* data stored on disk */
2012	ps->pss_func = scn->scn_phys.scn_func;
2013	ps->pss_start_time = scn->scn_phys.scn_start_time;
2014	ps->pss_end_time = scn->scn_phys.scn_end_time;
2015	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2016	ps->pss_examined = scn->scn_phys.scn_examined;
2017	ps->pss_to_process = scn->scn_phys.scn_to_process;
2018	ps->pss_processed = scn->scn_phys.scn_processed;
2019	ps->pss_errors = scn->scn_phys.scn_errors;
2020	ps->pss_state = scn->scn_phys.scn_state;
2021
2022	/* data not stored on disk */
2023	ps->pss_pass_start = spa->spa_scan_pass_start;
2024	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2025
2026	return (0);
2027}
2028
2029boolean_t
2030spa_debug_enabled(spa_t *spa)
2031{
2032	return (spa->spa_debug);
2033}
2034
2035int
2036spa_maxblocksize(spa_t *spa)
2037{
2038	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2039		return (SPA_MAXBLOCKSIZE);
2040	else
2041		return (SPA_OLD_MAXBLOCKSIZE);
2042}
2043