spa_misc.c revision 268650
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
257 */
258boolean_t zfs_recover = B_FALSE;
259SYSCTL_DECL(_vfs_zfs);
260TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
261SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
262    "Try to recover from otherwise-fatal errors.");
263
264/*
265 * If destroy encounters an EIO while reading metadata (e.g. indirect
266 * blocks), space referenced by the missing metadata can not be freed.
267 * Normally this causes the background destroy to become "stalled", as
268 * it is unable to make forward progress.  While in this stalled state,
269 * all remaining space to free from the error-encountering filesystem is
270 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
271 * permanently leak the space from indirect blocks that can not be read,
272 * and continue to free everything else that it can.
273 *
274 * The default, "stalling" behavior is useful if the storage partially
275 * fails (i.e. some but not all i/os fail), and then later recovers.  In
276 * this case, we will be able to continue pool operations while it is
277 * partially failed, and when it recovers, we can continue to free the
278 * space, with no leaks.  However, note that this case is actually
279 * fairly rare.
280 *
281 * Typically pools either (a) fail completely (but perhaps temporarily,
282 * e.g. a top-level vdev going offline), or (b) have localized,
283 * permanent errors (e.g. disk returns the wrong data due to bit flip or
284 * firmware bug).  In case (a), this setting does not matter because the
285 * pool will be suspended and the sync thread will not be able to make
286 * forward progress regardless.  In case (b), because the error is
287 * permanent, the best we can do is leak the minimum amount of space,
288 * which is what setting this flag will do.  Therefore, it is reasonable
289 * for this flag to normally be set, but we chose the more conservative
290 * approach of not setting it, so that there is no possibility of
291 * leaking space in the "partial temporary" failure case.
292 */
293boolean_t zfs_free_leak_on_eio = B_FALSE;
294
295/*
296 * Expiration time in milliseconds. This value has two meanings. First it is
297 * used to determine when the spa_deadman() logic should fire. By default the
298 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
299 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
300 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
301 * in a system panic.
302 */
303uint64_t zfs_deadman_synctime_ms = 1000000ULL;
304TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
305SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
306    &zfs_deadman_synctime_ms, 0,
307    "Stalled ZFS I/O expiration time in milliseconds");
308
309/*
310 * Check time in milliseconds. This defines the frequency at which we check
311 * for hung I/O.
312 */
313uint64_t zfs_deadman_checktime_ms = 5000ULL;
314TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
315SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
316    &zfs_deadman_checktime_ms, 0,
317    "Period of checks for stalled ZFS I/O in milliseconds");
318
319/*
320 * Default value of -1 for zfs_deadman_enabled is resolved in
321 * zfs_deadman_init()
322 */
323int zfs_deadman_enabled = -1;
324TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
325SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
326    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
327
328/*
329 * The worst case is single-sector max-parity RAID-Z blocks, in which
330 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
331 * times the size; so just assume that.  Add to this the fact that
332 * we can have up to 3 DVAs per bp, and one more factor of 2 because
333 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
334 * the worst case is:
335 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
336 */
337int spa_asize_inflation = 24;
338TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
339SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
340    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
341
342#ifndef illumos
343#ifdef _KERNEL
344static void
345zfs_deadman_init()
346{
347	/*
348	 * If we are not i386 or amd64 or in a virtual machine,
349	 * disable ZFS deadman thread by default
350	 */
351	if (zfs_deadman_enabled == -1) {
352#if defined(__amd64__) || defined(__i386__)
353		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
354#else
355		zfs_deadman_enabled = 0;
356#endif
357	}
358}
359#endif	/* _KERNEL */
360#endif	/* !illumos */
361
362/*
363 * ==========================================================================
364 * SPA config locking
365 * ==========================================================================
366 */
367static void
368spa_config_lock_init(spa_t *spa)
369{
370	for (int i = 0; i < SCL_LOCKS; i++) {
371		spa_config_lock_t *scl = &spa->spa_config_lock[i];
372		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
373		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
374		refcount_create_untracked(&scl->scl_count);
375		scl->scl_writer = NULL;
376		scl->scl_write_wanted = 0;
377	}
378}
379
380static void
381spa_config_lock_destroy(spa_t *spa)
382{
383	for (int i = 0; i < SCL_LOCKS; i++) {
384		spa_config_lock_t *scl = &spa->spa_config_lock[i];
385		mutex_destroy(&scl->scl_lock);
386		cv_destroy(&scl->scl_cv);
387		refcount_destroy(&scl->scl_count);
388		ASSERT(scl->scl_writer == NULL);
389		ASSERT(scl->scl_write_wanted == 0);
390	}
391}
392
393int
394spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
395{
396	for (int i = 0; i < SCL_LOCKS; i++) {
397		spa_config_lock_t *scl = &spa->spa_config_lock[i];
398		if (!(locks & (1 << i)))
399			continue;
400		mutex_enter(&scl->scl_lock);
401		if (rw == RW_READER) {
402			if (scl->scl_writer || scl->scl_write_wanted) {
403				mutex_exit(&scl->scl_lock);
404				spa_config_exit(spa, locks ^ (1 << i), tag);
405				return (0);
406			}
407		} else {
408			ASSERT(scl->scl_writer != curthread);
409			if (!refcount_is_zero(&scl->scl_count)) {
410				mutex_exit(&scl->scl_lock);
411				spa_config_exit(spa, locks ^ (1 << i), tag);
412				return (0);
413			}
414			scl->scl_writer = curthread;
415		}
416		(void) refcount_add(&scl->scl_count, tag);
417		mutex_exit(&scl->scl_lock);
418	}
419	return (1);
420}
421
422void
423spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
424{
425	int wlocks_held = 0;
426
427	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
428
429	for (int i = 0; i < SCL_LOCKS; i++) {
430		spa_config_lock_t *scl = &spa->spa_config_lock[i];
431		if (scl->scl_writer == curthread)
432			wlocks_held |= (1 << i);
433		if (!(locks & (1 << i)))
434			continue;
435		mutex_enter(&scl->scl_lock);
436		if (rw == RW_READER) {
437			while (scl->scl_writer || scl->scl_write_wanted) {
438				cv_wait(&scl->scl_cv, &scl->scl_lock);
439			}
440		} else {
441			ASSERT(scl->scl_writer != curthread);
442			while (!refcount_is_zero(&scl->scl_count)) {
443				scl->scl_write_wanted++;
444				cv_wait(&scl->scl_cv, &scl->scl_lock);
445				scl->scl_write_wanted--;
446			}
447			scl->scl_writer = curthread;
448		}
449		(void) refcount_add(&scl->scl_count, tag);
450		mutex_exit(&scl->scl_lock);
451	}
452	ASSERT(wlocks_held <= locks);
453}
454
455void
456spa_config_exit(spa_t *spa, int locks, void *tag)
457{
458	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
459		spa_config_lock_t *scl = &spa->spa_config_lock[i];
460		if (!(locks & (1 << i)))
461			continue;
462		mutex_enter(&scl->scl_lock);
463		ASSERT(!refcount_is_zero(&scl->scl_count));
464		if (refcount_remove(&scl->scl_count, tag) == 0) {
465			ASSERT(scl->scl_writer == NULL ||
466			    scl->scl_writer == curthread);
467			scl->scl_writer = NULL;	/* OK in either case */
468			cv_broadcast(&scl->scl_cv);
469		}
470		mutex_exit(&scl->scl_lock);
471	}
472}
473
474int
475spa_config_held(spa_t *spa, int locks, krw_t rw)
476{
477	int locks_held = 0;
478
479	for (int i = 0; i < SCL_LOCKS; i++) {
480		spa_config_lock_t *scl = &spa->spa_config_lock[i];
481		if (!(locks & (1 << i)))
482			continue;
483		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
484		    (rw == RW_WRITER && scl->scl_writer == curthread))
485			locks_held |= 1 << i;
486	}
487
488	return (locks_held);
489}
490
491/*
492 * ==========================================================================
493 * SPA namespace functions
494 * ==========================================================================
495 */
496
497/*
498 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
499 * Returns NULL if no matching spa_t is found.
500 */
501spa_t *
502spa_lookup(const char *name)
503{
504	static spa_t search;	/* spa_t is large; don't allocate on stack */
505	spa_t *spa;
506	avl_index_t where;
507	char *cp;
508
509	ASSERT(MUTEX_HELD(&spa_namespace_lock));
510
511	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
512
513	/*
514	 * If it's a full dataset name, figure out the pool name and
515	 * just use that.
516	 */
517	cp = strpbrk(search.spa_name, "/@#");
518	if (cp != NULL)
519		*cp = '\0';
520
521	spa = avl_find(&spa_namespace_avl, &search, &where);
522
523	return (spa);
524}
525
526/*
527 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
528 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
529 * looking for potentially hung I/Os.
530 */
531void
532spa_deadman(void *arg)
533{
534	spa_t *spa = arg;
535
536	/*
537	 * Disable the deadman timer if the pool is suspended.
538	 */
539	if (spa_suspended(spa)) {
540#ifdef illumos
541		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
542#else
543		/* Nothing.  just don't schedule any future callouts. */
544#endif
545		return;
546	}
547
548	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
549	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
550	    ++spa->spa_deadman_calls);
551	if (zfs_deadman_enabled)
552		vdev_deadman(spa->spa_root_vdev);
553}
554
555/*
556 * Create an uninitialized spa_t with the given name.  Requires
557 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
558 * exist by calling spa_lookup() first.
559 */
560spa_t *
561spa_add(const char *name, nvlist_t *config, const char *altroot)
562{
563	spa_t *spa;
564	spa_config_dirent_t *dp;
565#ifdef illumos
566	cyc_handler_t hdlr;
567	cyc_time_t when;
568#endif
569
570	ASSERT(MUTEX_HELD(&spa_namespace_lock));
571
572	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
573
574	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
575	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
576	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
577	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
578	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
579	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
580	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
581	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
582	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
583
584	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
585	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
586	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
587	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
588
589	for (int t = 0; t < TXG_SIZE; t++)
590		bplist_create(&spa->spa_free_bplist[t]);
591
592	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
593	spa->spa_state = POOL_STATE_UNINITIALIZED;
594	spa->spa_freeze_txg = UINT64_MAX;
595	spa->spa_final_txg = UINT64_MAX;
596	spa->spa_load_max_txg = UINT64_MAX;
597	spa->spa_proc = &p0;
598	spa->spa_proc_state = SPA_PROC_NONE;
599
600#ifdef illumos
601	hdlr.cyh_func = spa_deadman;
602	hdlr.cyh_arg = spa;
603	hdlr.cyh_level = CY_LOW_LEVEL;
604#endif
605
606	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
607
608#ifdef illumos
609	/*
610	 * This determines how often we need to check for hung I/Os after
611	 * the cyclic has already fired. Since checking for hung I/Os is
612	 * an expensive operation we don't want to check too frequently.
613	 * Instead wait for 5 seconds before checking again.
614	 */
615	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
616	when.cyt_when = CY_INFINITY;
617	mutex_enter(&cpu_lock);
618	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
619	mutex_exit(&cpu_lock);
620#else	/* !illumos */
621#ifdef _KERNEL
622	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
623#endif
624#endif
625	refcount_create(&spa->spa_refcount);
626	spa_config_lock_init(spa);
627
628	avl_add(&spa_namespace_avl, spa);
629
630	/*
631	 * Set the alternate root, if there is one.
632	 */
633	if (altroot) {
634		spa->spa_root = spa_strdup(altroot);
635		spa_active_count++;
636	}
637
638	/*
639	 * Every pool starts with the default cachefile
640	 */
641	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
642	    offsetof(spa_config_dirent_t, scd_link));
643
644	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
645	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
646	list_insert_head(&spa->spa_config_list, dp);
647
648	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
649	    KM_SLEEP) == 0);
650
651	if (config != NULL) {
652		nvlist_t *features;
653
654		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
655		    &features) == 0) {
656			VERIFY(nvlist_dup(features, &spa->spa_label_features,
657			    0) == 0);
658		}
659
660		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
661	}
662
663	if (spa->spa_label_features == NULL) {
664		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
665		    KM_SLEEP) == 0);
666	}
667
668	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
669
670	/*
671	 * As a pool is being created, treat all features as disabled by
672	 * setting SPA_FEATURE_DISABLED for all entries in the feature
673	 * refcount cache.
674	 */
675	for (int i = 0; i < SPA_FEATURES; i++) {
676		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
677	}
678
679	return (spa);
680}
681
682/*
683 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
684 * spa_namespace_lock.  This is called only after the spa_t has been closed and
685 * deactivated.
686 */
687void
688spa_remove(spa_t *spa)
689{
690	spa_config_dirent_t *dp;
691
692	ASSERT(MUTEX_HELD(&spa_namespace_lock));
693	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
694
695	nvlist_free(spa->spa_config_splitting);
696
697	avl_remove(&spa_namespace_avl, spa);
698	cv_broadcast(&spa_namespace_cv);
699
700	if (spa->spa_root) {
701		spa_strfree(spa->spa_root);
702		spa_active_count--;
703	}
704
705	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
706		list_remove(&spa->spa_config_list, dp);
707		if (dp->scd_path != NULL)
708			spa_strfree(dp->scd_path);
709		kmem_free(dp, sizeof (spa_config_dirent_t));
710	}
711
712	list_destroy(&spa->spa_config_list);
713
714	nvlist_free(spa->spa_label_features);
715	nvlist_free(spa->spa_load_info);
716	spa_config_set(spa, NULL);
717
718#ifdef illumos
719	mutex_enter(&cpu_lock);
720	if (spa->spa_deadman_cycid != CYCLIC_NONE)
721		cyclic_remove(spa->spa_deadman_cycid);
722	mutex_exit(&cpu_lock);
723	spa->spa_deadman_cycid = CYCLIC_NONE;
724#else	/* !illumos */
725#ifdef _KERNEL
726	callout_drain(&spa->spa_deadman_cycid);
727#endif
728#endif
729
730	refcount_destroy(&spa->spa_refcount);
731
732	spa_config_lock_destroy(spa);
733
734	for (int t = 0; t < TXG_SIZE; t++)
735		bplist_destroy(&spa->spa_free_bplist[t]);
736
737	cv_destroy(&spa->spa_async_cv);
738	cv_destroy(&spa->spa_proc_cv);
739	cv_destroy(&spa->spa_scrub_io_cv);
740	cv_destroy(&spa->spa_suspend_cv);
741
742	mutex_destroy(&spa->spa_async_lock);
743	mutex_destroy(&spa->spa_errlist_lock);
744	mutex_destroy(&spa->spa_errlog_lock);
745	mutex_destroy(&spa->spa_history_lock);
746	mutex_destroy(&spa->spa_proc_lock);
747	mutex_destroy(&spa->spa_props_lock);
748	mutex_destroy(&spa->spa_scrub_lock);
749	mutex_destroy(&spa->spa_suspend_lock);
750	mutex_destroy(&spa->spa_vdev_top_lock);
751
752	kmem_free(spa, sizeof (spa_t));
753}
754
755/*
756 * Given a pool, return the next pool in the namespace, or NULL if there is
757 * none.  If 'prev' is NULL, return the first pool.
758 */
759spa_t *
760spa_next(spa_t *prev)
761{
762	ASSERT(MUTEX_HELD(&spa_namespace_lock));
763
764	if (prev)
765		return (AVL_NEXT(&spa_namespace_avl, prev));
766	else
767		return (avl_first(&spa_namespace_avl));
768}
769
770/*
771 * ==========================================================================
772 * SPA refcount functions
773 * ==========================================================================
774 */
775
776/*
777 * Add a reference to the given spa_t.  Must have at least one reference, or
778 * have the namespace lock held.
779 */
780void
781spa_open_ref(spa_t *spa, void *tag)
782{
783	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
784	    MUTEX_HELD(&spa_namespace_lock));
785	(void) refcount_add(&spa->spa_refcount, tag);
786}
787
788/*
789 * Remove a reference to the given spa_t.  Must have at least one reference, or
790 * have the namespace lock held.
791 */
792void
793spa_close(spa_t *spa, void *tag)
794{
795	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
796	    MUTEX_HELD(&spa_namespace_lock));
797	(void) refcount_remove(&spa->spa_refcount, tag);
798}
799
800/*
801 * Check to see if the spa refcount is zero.  Must be called with
802 * spa_namespace_lock held.  We really compare against spa_minref, which is the
803 * number of references acquired when opening a pool
804 */
805boolean_t
806spa_refcount_zero(spa_t *spa)
807{
808	ASSERT(MUTEX_HELD(&spa_namespace_lock));
809
810	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
811}
812
813/*
814 * ==========================================================================
815 * SPA spare and l2cache tracking
816 * ==========================================================================
817 */
818
819/*
820 * Hot spares and cache devices are tracked using the same code below,
821 * for 'auxiliary' devices.
822 */
823
824typedef struct spa_aux {
825	uint64_t	aux_guid;
826	uint64_t	aux_pool;
827	avl_node_t	aux_avl;
828	int		aux_count;
829} spa_aux_t;
830
831static int
832spa_aux_compare(const void *a, const void *b)
833{
834	const spa_aux_t *sa = a;
835	const spa_aux_t *sb = b;
836
837	if (sa->aux_guid < sb->aux_guid)
838		return (-1);
839	else if (sa->aux_guid > sb->aux_guid)
840		return (1);
841	else
842		return (0);
843}
844
845void
846spa_aux_add(vdev_t *vd, avl_tree_t *avl)
847{
848	avl_index_t where;
849	spa_aux_t search;
850	spa_aux_t *aux;
851
852	search.aux_guid = vd->vdev_guid;
853	if ((aux = avl_find(avl, &search, &where)) != NULL) {
854		aux->aux_count++;
855	} else {
856		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
857		aux->aux_guid = vd->vdev_guid;
858		aux->aux_count = 1;
859		avl_insert(avl, aux, where);
860	}
861}
862
863void
864spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
865{
866	spa_aux_t search;
867	spa_aux_t *aux;
868	avl_index_t where;
869
870	search.aux_guid = vd->vdev_guid;
871	aux = avl_find(avl, &search, &where);
872
873	ASSERT(aux != NULL);
874
875	if (--aux->aux_count == 0) {
876		avl_remove(avl, aux);
877		kmem_free(aux, sizeof (spa_aux_t));
878	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
879		aux->aux_pool = 0ULL;
880	}
881}
882
883boolean_t
884spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
885{
886	spa_aux_t search, *found;
887
888	search.aux_guid = guid;
889	found = avl_find(avl, &search, NULL);
890
891	if (pool) {
892		if (found)
893			*pool = found->aux_pool;
894		else
895			*pool = 0ULL;
896	}
897
898	if (refcnt) {
899		if (found)
900			*refcnt = found->aux_count;
901		else
902			*refcnt = 0;
903	}
904
905	return (found != NULL);
906}
907
908void
909spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
910{
911	spa_aux_t search, *found;
912	avl_index_t where;
913
914	search.aux_guid = vd->vdev_guid;
915	found = avl_find(avl, &search, &where);
916	ASSERT(found != NULL);
917	ASSERT(found->aux_pool == 0ULL);
918
919	found->aux_pool = spa_guid(vd->vdev_spa);
920}
921
922/*
923 * Spares are tracked globally due to the following constraints:
924 *
925 * 	- A spare may be part of multiple pools.
926 * 	- A spare may be added to a pool even if it's actively in use within
927 *	  another pool.
928 * 	- A spare in use in any pool can only be the source of a replacement if
929 *	  the target is a spare in the same pool.
930 *
931 * We keep track of all spares on the system through the use of a reference
932 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
933 * spare, then we bump the reference count in the AVL tree.  In addition, we set
934 * the 'vdev_isspare' member to indicate that the device is a spare (active or
935 * inactive).  When a spare is made active (used to replace a device in the
936 * pool), we also keep track of which pool its been made a part of.
937 *
938 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
939 * called under the spa_namespace lock as part of vdev reconfiguration.  The
940 * separate spare lock exists for the status query path, which does not need to
941 * be completely consistent with respect to other vdev configuration changes.
942 */
943
944static int
945spa_spare_compare(const void *a, const void *b)
946{
947	return (spa_aux_compare(a, b));
948}
949
950void
951spa_spare_add(vdev_t *vd)
952{
953	mutex_enter(&spa_spare_lock);
954	ASSERT(!vd->vdev_isspare);
955	spa_aux_add(vd, &spa_spare_avl);
956	vd->vdev_isspare = B_TRUE;
957	mutex_exit(&spa_spare_lock);
958}
959
960void
961spa_spare_remove(vdev_t *vd)
962{
963	mutex_enter(&spa_spare_lock);
964	ASSERT(vd->vdev_isspare);
965	spa_aux_remove(vd, &spa_spare_avl);
966	vd->vdev_isspare = B_FALSE;
967	mutex_exit(&spa_spare_lock);
968}
969
970boolean_t
971spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
972{
973	boolean_t found;
974
975	mutex_enter(&spa_spare_lock);
976	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
977	mutex_exit(&spa_spare_lock);
978
979	return (found);
980}
981
982void
983spa_spare_activate(vdev_t *vd)
984{
985	mutex_enter(&spa_spare_lock);
986	ASSERT(vd->vdev_isspare);
987	spa_aux_activate(vd, &spa_spare_avl);
988	mutex_exit(&spa_spare_lock);
989}
990
991/*
992 * Level 2 ARC devices are tracked globally for the same reasons as spares.
993 * Cache devices currently only support one pool per cache device, and so
994 * for these devices the aux reference count is currently unused beyond 1.
995 */
996
997static int
998spa_l2cache_compare(const void *a, const void *b)
999{
1000	return (spa_aux_compare(a, b));
1001}
1002
1003void
1004spa_l2cache_add(vdev_t *vd)
1005{
1006	mutex_enter(&spa_l2cache_lock);
1007	ASSERT(!vd->vdev_isl2cache);
1008	spa_aux_add(vd, &spa_l2cache_avl);
1009	vd->vdev_isl2cache = B_TRUE;
1010	mutex_exit(&spa_l2cache_lock);
1011}
1012
1013void
1014spa_l2cache_remove(vdev_t *vd)
1015{
1016	mutex_enter(&spa_l2cache_lock);
1017	ASSERT(vd->vdev_isl2cache);
1018	spa_aux_remove(vd, &spa_l2cache_avl);
1019	vd->vdev_isl2cache = B_FALSE;
1020	mutex_exit(&spa_l2cache_lock);
1021}
1022
1023boolean_t
1024spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1025{
1026	boolean_t found;
1027
1028	mutex_enter(&spa_l2cache_lock);
1029	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1030	mutex_exit(&spa_l2cache_lock);
1031
1032	return (found);
1033}
1034
1035void
1036spa_l2cache_activate(vdev_t *vd)
1037{
1038	mutex_enter(&spa_l2cache_lock);
1039	ASSERT(vd->vdev_isl2cache);
1040	spa_aux_activate(vd, &spa_l2cache_avl);
1041	mutex_exit(&spa_l2cache_lock);
1042}
1043
1044/*
1045 * ==========================================================================
1046 * SPA vdev locking
1047 * ==========================================================================
1048 */
1049
1050/*
1051 * Lock the given spa_t for the purpose of adding or removing a vdev.
1052 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1053 * It returns the next transaction group for the spa_t.
1054 */
1055uint64_t
1056spa_vdev_enter(spa_t *spa)
1057{
1058	mutex_enter(&spa->spa_vdev_top_lock);
1059	mutex_enter(&spa_namespace_lock);
1060	return (spa_vdev_config_enter(spa));
1061}
1062
1063/*
1064 * Internal implementation for spa_vdev_enter().  Used when a vdev
1065 * operation requires multiple syncs (i.e. removing a device) while
1066 * keeping the spa_namespace_lock held.
1067 */
1068uint64_t
1069spa_vdev_config_enter(spa_t *spa)
1070{
1071	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1072
1073	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1074
1075	return (spa_last_synced_txg(spa) + 1);
1076}
1077
1078/*
1079 * Used in combination with spa_vdev_config_enter() to allow the syncing
1080 * of multiple transactions without releasing the spa_namespace_lock.
1081 */
1082void
1083spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1084{
1085	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1086
1087	int config_changed = B_FALSE;
1088
1089	ASSERT(txg > spa_last_synced_txg(spa));
1090
1091	spa->spa_pending_vdev = NULL;
1092
1093	/*
1094	 * Reassess the DTLs.
1095	 */
1096	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1097
1098	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1099		config_changed = B_TRUE;
1100		spa->spa_config_generation++;
1101	}
1102
1103	/*
1104	 * Verify the metaslab classes.
1105	 */
1106	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1107	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1108
1109	spa_config_exit(spa, SCL_ALL, spa);
1110
1111	/*
1112	 * Panic the system if the specified tag requires it.  This
1113	 * is useful for ensuring that configurations are updated
1114	 * transactionally.
1115	 */
1116	if (zio_injection_enabled)
1117		zio_handle_panic_injection(spa, tag, 0);
1118
1119	/*
1120	 * Note: this txg_wait_synced() is important because it ensures
1121	 * that there won't be more than one config change per txg.
1122	 * This allows us to use the txg as the generation number.
1123	 */
1124	if (error == 0)
1125		txg_wait_synced(spa->spa_dsl_pool, txg);
1126
1127	if (vd != NULL) {
1128		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1129		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1130		vdev_free(vd);
1131		spa_config_exit(spa, SCL_ALL, spa);
1132	}
1133
1134	/*
1135	 * If the config changed, update the config cache.
1136	 */
1137	if (config_changed)
1138		spa_config_sync(spa, B_FALSE, B_TRUE);
1139}
1140
1141/*
1142 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1143 * locking of spa_vdev_enter(), we also want make sure the transactions have
1144 * synced to disk, and then update the global configuration cache with the new
1145 * information.
1146 */
1147int
1148spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1149{
1150	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1151	mutex_exit(&spa_namespace_lock);
1152	mutex_exit(&spa->spa_vdev_top_lock);
1153
1154	return (error);
1155}
1156
1157/*
1158 * Lock the given spa_t for the purpose of changing vdev state.
1159 */
1160void
1161spa_vdev_state_enter(spa_t *spa, int oplocks)
1162{
1163	int locks = SCL_STATE_ALL | oplocks;
1164
1165	/*
1166	 * Root pools may need to read of the underlying devfs filesystem
1167	 * when opening up a vdev.  Unfortunately if we're holding the
1168	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1169	 * the read from the root filesystem.  Instead we "prefetch"
1170	 * the associated vnodes that we need prior to opening the
1171	 * underlying devices and cache them so that we can prevent
1172	 * any I/O when we are doing the actual open.
1173	 */
1174	if (spa_is_root(spa)) {
1175		int low = locks & ~(SCL_ZIO - 1);
1176		int high = locks & ~low;
1177
1178		spa_config_enter(spa, high, spa, RW_WRITER);
1179		vdev_hold(spa->spa_root_vdev);
1180		spa_config_enter(spa, low, spa, RW_WRITER);
1181	} else {
1182		spa_config_enter(spa, locks, spa, RW_WRITER);
1183	}
1184	spa->spa_vdev_locks = locks;
1185}
1186
1187int
1188spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1189{
1190	boolean_t config_changed = B_FALSE;
1191
1192	if (vd != NULL || error == 0)
1193		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1194		    0, 0, B_FALSE);
1195
1196	if (vd != NULL) {
1197		vdev_state_dirty(vd->vdev_top);
1198		config_changed = B_TRUE;
1199		spa->spa_config_generation++;
1200	}
1201
1202	if (spa_is_root(spa))
1203		vdev_rele(spa->spa_root_vdev);
1204
1205	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1206	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1207
1208	/*
1209	 * If anything changed, wait for it to sync.  This ensures that,
1210	 * from the system administrator's perspective, zpool(1M) commands
1211	 * are synchronous.  This is important for things like zpool offline:
1212	 * when the command completes, you expect no further I/O from ZFS.
1213	 */
1214	if (vd != NULL)
1215		txg_wait_synced(spa->spa_dsl_pool, 0);
1216
1217	/*
1218	 * If the config changed, update the config cache.
1219	 */
1220	if (config_changed) {
1221		mutex_enter(&spa_namespace_lock);
1222		spa_config_sync(spa, B_FALSE, B_TRUE);
1223		mutex_exit(&spa_namespace_lock);
1224	}
1225
1226	return (error);
1227}
1228
1229/*
1230 * ==========================================================================
1231 * Miscellaneous functions
1232 * ==========================================================================
1233 */
1234
1235void
1236spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1237{
1238	if (!nvlist_exists(spa->spa_label_features, feature)) {
1239		fnvlist_add_boolean(spa->spa_label_features, feature);
1240		/*
1241		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1242		 * dirty the vdev config because lock SCL_CONFIG is not held.
1243		 * Thankfully, in this case we don't need to dirty the config
1244		 * because it will be written out anyway when we finish
1245		 * creating the pool.
1246		 */
1247		if (tx->tx_txg != TXG_INITIAL)
1248			vdev_config_dirty(spa->spa_root_vdev);
1249	}
1250}
1251
1252void
1253spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1254{
1255	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1256		vdev_config_dirty(spa->spa_root_vdev);
1257}
1258
1259/*
1260 * Rename a spa_t.
1261 */
1262int
1263spa_rename(const char *name, const char *newname)
1264{
1265	spa_t *spa;
1266	int err;
1267
1268	/*
1269	 * Lookup the spa_t and grab the config lock for writing.  We need to
1270	 * actually open the pool so that we can sync out the necessary labels.
1271	 * It's OK to call spa_open() with the namespace lock held because we
1272	 * allow recursive calls for other reasons.
1273	 */
1274	mutex_enter(&spa_namespace_lock);
1275	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1276		mutex_exit(&spa_namespace_lock);
1277		return (err);
1278	}
1279
1280	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1281
1282	avl_remove(&spa_namespace_avl, spa);
1283	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1284	avl_add(&spa_namespace_avl, spa);
1285
1286	/*
1287	 * Sync all labels to disk with the new names by marking the root vdev
1288	 * dirty and waiting for it to sync.  It will pick up the new pool name
1289	 * during the sync.
1290	 */
1291	vdev_config_dirty(spa->spa_root_vdev);
1292
1293	spa_config_exit(spa, SCL_ALL, FTAG);
1294
1295	txg_wait_synced(spa->spa_dsl_pool, 0);
1296
1297	/*
1298	 * Sync the updated config cache.
1299	 */
1300	spa_config_sync(spa, B_FALSE, B_TRUE);
1301
1302	spa_close(spa, FTAG);
1303
1304	mutex_exit(&spa_namespace_lock);
1305
1306	return (0);
1307}
1308
1309/*
1310 * Return the spa_t associated with given pool_guid, if it exists.  If
1311 * device_guid is non-zero, determine whether the pool exists *and* contains
1312 * a device with the specified device_guid.
1313 */
1314spa_t *
1315spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1316{
1317	spa_t *spa;
1318	avl_tree_t *t = &spa_namespace_avl;
1319
1320	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1321
1322	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1323		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1324			continue;
1325		if (spa->spa_root_vdev == NULL)
1326			continue;
1327		if (spa_guid(spa) == pool_guid) {
1328			if (device_guid == 0)
1329				break;
1330
1331			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1332			    device_guid) != NULL)
1333				break;
1334
1335			/*
1336			 * Check any devices we may be in the process of adding.
1337			 */
1338			if (spa->spa_pending_vdev) {
1339				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1340				    device_guid) != NULL)
1341					break;
1342			}
1343		}
1344	}
1345
1346	return (spa);
1347}
1348
1349/*
1350 * Determine whether a pool with the given pool_guid exists.
1351 */
1352boolean_t
1353spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1354{
1355	return (spa_by_guid(pool_guid, device_guid) != NULL);
1356}
1357
1358char *
1359spa_strdup(const char *s)
1360{
1361	size_t len;
1362	char *new;
1363
1364	len = strlen(s);
1365	new = kmem_alloc(len + 1, KM_SLEEP);
1366	bcopy(s, new, len);
1367	new[len] = '\0';
1368
1369	return (new);
1370}
1371
1372void
1373spa_strfree(char *s)
1374{
1375	kmem_free(s, strlen(s) + 1);
1376}
1377
1378uint64_t
1379spa_get_random(uint64_t range)
1380{
1381	uint64_t r;
1382
1383	ASSERT(range != 0);
1384
1385	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1386
1387	return (r % range);
1388}
1389
1390uint64_t
1391spa_generate_guid(spa_t *spa)
1392{
1393	uint64_t guid = spa_get_random(-1ULL);
1394
1395	if (spa != NULL) {
1396		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1397			guid = spa_get_random(-1ULL);
1398	} else {
1399		while (guid == 0 || spa_guid_exists(guid, 0))
1400			guid = spa_get_random(-1ULL);
1401	}
1402
1403	return (guid);
1404}
1405
1406void
1407snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1408{
1409	char type[256];
1410	char *checksum = NULL;
1411	char *compress = NULL;
1412
1413	if (bp != NULL) {
1414		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1415			dmu_object_byteswap_t bswap =
1416			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1417			(void) snprintf(type, sizeof (type), "bswap %s %s",
1418			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1419			    "metadata" : "data",
1420			    dmu_ot_byteswap[bswap].ob_name);
1421		} else {
1422			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1423			    sizeof (type));
1424		}
1425		if (!BP_IS_EMBEDDED(bp)) {
1426			checksum =
1427			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1428		}
1429		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1430	}
1431
1432	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1433	    compress);
1434}
1435
1436void
1437spa_freeze(spa_t *spa)
1438{
1439	uint64_t freeze_txg = 0;
1440
1441	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1442	if (spa->spa_freeze_txg == UINT64_MAX) {
1443		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1444		spa->spa_freeze_txg = freeze_txg;
1445	}
1446	spa_config_exit(spa, SCL_ALL, FTAG);
1447	if (freeze_txg != 0)
1448		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1449}
1450
1451void
1452zfs_panic_recover(const char *fmt, ...)
1453{
1454	va_list adx;
1455
1456	va_start(adx, fmt);
1457	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1458	va_end(adx);
1459}
1460
1461/*
1462 * This is a stripped-down version of strtoull, suitable only for converting
1463 * lowercase hexadecimal numbers that don't overflow.
1464 */
1465uint64_t
1466zfs_strtonum(const char *str, char **nptr)
1467{
1468	uint64_t val = 0;
1469	char c;
1470	int digit;
1471
1472	while ((c = *str) != '\0') {
1473		if (c >= '0' && c <= '9')
1474			digit = c - '0';
1475		else if (c >= 'a' && c <= 'f')
1476			digit = 10 + c - 'a';
1477		else
1478			break;
1479
1480		val *= 16;
1481		val += digit;
1482
1483		str++;
1484	}
1485
1486	if (nptr)
1487		*nptr = (char *)str;
1488
1489	return (val);
1490}
1491
1492/*
1493 * ==========================================================================
1494 * Accessor functions
1495 * ==========================================================================
1496 */
1497
1498boolean_t
1499spa_shutting_down(spa_t *spa)
1500{
1501	return (spa->spa_async_suspended);
1502}
1503
1504dsl_pool_t *
1505spa_get_dsl(spa_t *spa)
1506{
1507	return (spa->spa_dsl_pool);
1508}
1509
1510boolean_t
1511spa_is_initializing(spa_t *spa)
1512{
1513	return (spa->spa_is_initializing);
1514}
1515
1516blkptr_t *
1517spa_get_rootblkptr(spa_t *spa)
1518{
1519	return (&spa->spa_ubsync.ub_rootbp);
1520}
1521
1522void
1523spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1524{
1525	spa->spa_uberblock.ub_rootbp = *bp;
1526}
1527
1528void
1529spa_altroot(spa_t *spa, char *buf, size_t buflen)
1530{
1531	if (spa->spa_root == NULL)
1532		buf[0] = '\0';
1533	else
1534		(void) strncpy(buf, spa->spa_root, buflen);
1535}
1536
1537int
1538spa_sync_pass(spa_t *spa)
1539{
1540	return (spa->spa_sync_pass);
1541}
1542
1543char *
1544spa_name(spa_t *spa)
1545{
1546	return (spa->spa_name);
1547}
1548
1549uint64_t
1550spa_guid(spa_t *spa)
1551{
1552	dsl_pool_t *dp = spa_get_dsl(spa);
1553	uint64_t guid;
1554
1555	/*
1556	 * If we fail to parse the config during spa_load(), we can go through
1557	 * the error path (which posts an ereport) and end up here with no root
1558	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1559	 * this case.
1560	 */
1561	if (spa->spa_root_vdev == NULL)
1562		return (spa->spa_config_guid);
1563
1564	guid = spa->spa_last_synced_guid != 0 ?
1565	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1566
1567	/*
1568	 * Return the most recently synced out guid unless we're
1569	 * in syncing context.
1570	 */
1571	if (dp && dsl_pool_sync_context(dp))
1572		return (spa->spa_root_vdev->vdev_guid);
1573	else
1574		return (guid);
1575}
1576
1577uint64_t
1578spa_load_guid(spa_t *spa)
1579{
1580	/*
1581	 * This is a GUID that exists solely as a reference for the
1582	 * purposes of the arc.  It is generated at load time, and
1583	 * is never written to persistent storage.
1584	 */
1585	return (spa->spa_load_guid);
1586}
1587
1588uint64_t
1589spa_last_synced_txg(spa_t *spa)
1590{
1591	return (spa->spa_ubsync.ub_txg);
1592}
1593
1594uint64_t
1595spa_first_txg(spa_t *spa)
1596{
1597	return (spa->spa_first_txg);
1598}
1599
1600uint64_t
1601spa_syncing_txg(spa_t *spa)
1602{
1603	return (spa->spa_syncing_txg);
1604}
1605
1606pool_state_t
1607spa_state(spa_t *spa)
1608{
1609	return (spa->spa_state);
1610}
1611
1612spa_load_state_t
1613spa_load_state(spa_t *spa)
1614{
1615	return (spa->spa_load_state);
1616}
1617
1618uint64_t
1619spa_freeze_txg(spa_t *spa)
1620{
1621	return (spa->spa_freeze_txg);
1622}
1623
1624/* ARGSUSED */
1625uint64_t
1626spa_get_asize(spa_t *spa, uint64_t lsize)
1627{
1628	return (lsize * spa_asize_inflation);
1629}
1630
1631uint64_t
1632spa_get_dspace(spa_t *spa)
1633{
1634	return (spa->spa_dspace);
1635}
1636
1637void
1638spa_update_dspace(spa_t *spa)
1639{
1640	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1641	    ddt_get_dedup_dspace(spa);
1642}
1643
1644/*
1645 * Return the failure mode that has been set to this pool. The default
1646 * behavior will be to block all I/Os when a complete failure occurs.
1647 */
1648uint8_t
1649spa_get_failmode(spa_t *spa)
1650{
1651	return (spa->spa_failmode);
1652}
1653
1654boolean_t
1655spa_suspended(spa_t *spa)
1656{
1657	return (spa->spa_suspended);
1658}
1659
1660uint64_t
1661spa_version(spa_t *spa)
1662{
1663	return (spa->spa_ubsync.ub_version);
1664}
1665
1666boolean_t
1667spa_deflate(spa_t *spa)
1668{
1669	return (spa->spa_deflate);
1670}
1671
1672metaslab_class_t *
1673spa_normal_class(spa_t *spa)
1674{
1675	return (spa->spa_normal_class);
1676}
1677
1678metaslab_class_t *
1679spa_log_class(spa_t *spa)
1680{
1681	return (spa->spa_log_class);
1682}
1683
1684int
1685spa_max_replication(spa_t *spa)
1686{
1687	/*
1688	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1689	 * handle BPs with more than one DVA allocated.  Set our max
1690	 * replication level accordingly.
1691	 */
1692	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1693		return (1);
1694	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1695}
1696
1697int
1698spa_prev_software_version(spa_t *spa)
1699{
1700	return (spa->spa_prev_software_version);
1701}
1702
1703uint64_t
1704spa_deadman_synctime(spa_t *spa)
1705{
1706	return (spa->spa_deadman_synctime);
1707}
1708
1709uint64_t
1710dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1711{
1712	uint64_t asize = DVA_GET_ASIZE(dva);
1713	uint64_t dsize = asize;
1714
1715	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1716
1717	if (asize != 0 && spa->spa_deflate) {
1718		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1719		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1720	}
1721
1722	return (dsize);
1723}
1724
1725uint64_t
1726bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1727{
1728	uint64_t dsize = 0;
1729
1730	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1731		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1732
1733	return (dsize);
1734}
1735
1736uint64_t
1737bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1738{
1739	uint64_t dsize = 0;
1740
1741	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1742
1743	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1744		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1745
1746	spa_config_exit(spa, SCL_VDEV, FTAG);
1747
1748	return (dsize);
1749}
1750
1751/*
1752 * ==========================================================================
1753 * Initialization and Termination
1754 * ==========================================================================
1755 */
1756
1757static int
1758spa_name_compare(const void *a1, const void *a2)
1759{
1760	const spa_t *s1 = a1;
1761	const spa_t *s2 = a2;
1762	int s;
1763
1764	s = strcmp(s1->spa_name, s2->spa_name);
1765	if (s > 0)
1766		return (1);
1767	if (s < 0)
1768		return (-1);
1769	return (0);
1770}
1771
1772int
1773spa_busy(void)
1774{
1775	return (spa_active_count);
1776}
1777
1778void
1779spa_boot_init()
1780{
1781	spa_config_load();
1782}
1783
1784#ifdef _KERNEL
1785EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1786#endif
1787
1788void
1789spa_init(int mode)
1790{
1791	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1792	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1793	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1794	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1795
1796	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1797	    offsetof(spa_t, spa_avl));
1798
1799	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1800	    offsetof(spa_aux_t, aux_avl));
1801
1802	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1803	    offsetof(spa_aux_t, aux_avl));
1804
1805	spa_mode_global = mode;
1806
1807#ifdef illumos
1808#ifdef _KERNEL
1809	spa_arch_init();
1810#else
1811	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1812		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1813		if (arc_procfd == -1) {
1814			perror("could not enable watchpoints: "
1815			    "opening /proc/self/ctl failed: ");
1816		} else {
1817			arc_watch = B_TRUE;
1818		}
1819	}
1820#endif
1821#endif /* illumos */
1822	refcount_sysinit();
1823	unique_init();
1824	range_tree_init();
1825	zio_init();
1826	lz4_init();
1827	dmu_init();
1828	zil_init();
1829	vdev_cache_stat_init();
1830	zfs_prop_init();
1831	zpool_prop_init();
1832	zpool_feature_init();
1833	spa_config_load();
1834	l2arc_start();
1835#ifndef illumos
1836#ifdef _KERNEL
1837	zfs_deadman_init();
1838#endif
1839#endif	/* !illumos */
1840}
1841
1842void
1843spa_fini(void)
1844{
1845	l2arc_stop();
1846
1847	spa_evict_all();
1848
1849	vdev_cache_stat_fini();
1850	zil_fini();
1851	dmu_fini();
1852	lz4_fini();
1853	zio_fini();
1854	range_tree_fini();
1855	unique_fini();
1856	refcount_fini();
1857
1858	avl_destroy(&spa_namespace_avl);
1859	avl_destroy(&spa_spare_avl);
1860	avl_destroy(&spa_l2cache_avl);
1861
1862	cv_destroy(&spa_namespace_cv);
1863	mutex_destroy(&spa_namespace_lock);
1864	mutex_destroy(&spa_spare_lock);
1865	mutex_destroy(&spa_l2cache_lock);
1866}
1867
1868/*
1869 * Return whether this pool has slogs. No locking needed.
1870 * It's not a problem if the wrong answer is returned as it's only for
1871 * performance and not correctness
1872 */
1873boolean_t
1874spa_has_slogs(spa_t *spa)
1875{
1876	return (spa->spa_log_class->mc_rotor != NULL);
1877}
1878
1879spa_log_state_t
1880spa_get_log_state(spa_t *spa)
1881{
1882	return (spa->spa_log_state);
1883}
1884
1885void
1886spa_set_log_state(spa_t *spa, spa_log_state_t state)
1887{
1888	spa->spa_log_state = state;
1889}
1890
1891boolean_t
1892spa_is_root(spa_t *spa)
1893{
1894	return (spa->spa_is_root);
1895}
1896
1897boolean_t
1898spa_writeable(spa_t *spa)
1899{
1900	return (!!(spa->spa_mode & FWRITE));
1901}
1902
1903int
1904spa_mode(spa_t *spa)
1905{
1906	return (spa->spa_mode);
1907}
1908
1909uint64_t
1910spa_bootfs(spa_t *spa)
1911{
1912	return (spa->spa_bootfs);
1913}
1914
1915uint64_t
1916spa_delegation(spa_t *spa)
1917{
1918	return (spa->spa_delegation);
1919}
1920
1921objset_t *
1922spa_meta_objset(spa_t *spa)
1923{
1924	return (spa->spa_meta_objset);
1925}
1926
1927enum zio_checksum
1928spa_dedup_checksum(spa_t *spa)
1929{
1930	return (spa->spa_dedup_checksum);
1931}
1932
1933/*
1934 * Reset pool scan stat per scan pass (or reboot).
1935 */
1936void
1937spa_scan_stat_init(spa_t *spa)
1938{
1939	/* data not stored on disk */
1940	spa->spa_scan_pass_start = gethrestime_sec();
1941	spa->spa_scan_pass_exam = 0;
1942	vdev_scan_stat_init(spa->spa_root_vdev);
1943}
1944
1945/*
1946 * Get scan stats for zpool status reports
1947 */
1948int
1949spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1950{
1951	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1952
1953	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1954		return (SET_ERROR(ENOENT));
1955	bzero(ps, sizeof (pool_scan_stat_t));
1956
1957	/* data stored on disk */
1958	ps->pss_func = scn->scn_phys.scn_func;
1959	ps->pss_start_time = scn->scn_phys.scn_start_time;
1960	ps->pss_end_time = scn->scn_phys.scn_end_time;
1961	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1962	ps->pss_examined = scn->scn_phys.scn_examined;
1963	ps->pss_to_process = scn->scn_phys.scn_to_process;
1964	ps->pss_processed = scn->scn_phys.scn_processed;
1965	ps->pss_errors = scn->scn_phys.scn_errors;
1966	ps->pss_state = scn->scn_phys.scn_state;
1967
1968	/* data not stored on disk */
1969	ps->pss_pass_start = spa->spa_scan_pass_start;
1970	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1971
1972	return (0);
1973}
1974
1975boolean_t
1976spa_debug_enabled(spa_t *spa)
1977{
1978	return (spa->spa_debug);
1979}
1980