spa_misc.c revision 263397
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
257 */
258int zfs_recover = 0;
259SYSCTL_DECL(_vfs_zfs);
260TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
261SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
262    "Try to recover from otherwise-fatal errors.");
263
264/*
265 * Expiration time in milliseconds. This value has two meanings. First it is
266 * used to determine when the spa_deadman() logic should fire. By default the
267 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
268 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
269 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
270 * in a system panic.
271 */
272uint64_t zfs_deadman_synctime_ms = 1000000ULL;
273TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
274SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
275    &zfs_deadman_synctime_ms, 0,
276    "Stalled ZFS I/O expiration time in milliseconds");
277
278/*
279 * Check time in milliseconds. This defines the frequency at which we check
280 * for hung I/O.
281 */
282uint64_t zfs_deadman_checktime_ms = 5000ULL;
283TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
284SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
285    &zfs_deadman_checktime_ms, 0,
286    "Period of checks for stalled ZFS I/O in milliseconds");
287
288/*
289 * Default value of -1 for zfs_deadman_enabled is resolved in
290 * zfs_deadman_init()
291 */
292int zfs_deadman_enabled = -1;
293TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
294SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
295    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
296
297/*
298 * The worst case is single-sector max-parity RAID-Z blocks, in which
299 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
300 * times the size; so just assume that.  Add to this the fact that
301 * we can have up to 3 DVAs per bp, and one more factor of 2 because
302 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
303 * the worst case is:
304 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
305 */
306int spa_asize_inflation = 24;
307TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
308SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
309    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
310
311#ifndef illumos
312#ifdef _KERNEL
313static void
314zfs_deadman_init()
315{
316	/*
317	 * If we are not i386 or amd64 or in a virtual machine,
318	 * disable ZFS deadman thread by default
319	 */
320	if (zfs_deadman_enabled == -1) {
321#if defined(__amd64__) || defined(__i386__)
322		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
323#else
324		zfs_deadman_enabled = 0;
325#endif
326	}
327}
328#endif	/* _KERNEL */
329#endif	/* !illumos */
330
331/*
332 * ==========================================================================
333 * SPA config locking
334 * ==========================================================================
335 */
336static void
337spa_config_lock_init(spa_t *spa)
338{
339	for (int i = 0; i < SCL_LOCKS; i++) {
340		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
342		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
343		refcount_create_untracked(&scl->scl_count);
344		scl->scl_writer = NULL;
345		scl->scl_write_wanted = 0;
346	}
347}
348
349static void
350spa_config_lock_destroy(spa_t *spa)
351{
352	for (int i = 0; i < SCL_LOCKS; i++) {
353		spa_config_lock_t *scl = &spa->spa_config_lock[i];
354		mutex_destroy(&scl->scl_lock);
355		cv_destroy(&scl->scl_cv);
356		refcount_destroy(&scl->scl_count);
357		ASSERT(scl->scl_writer == NULL);
358		ASSERT(scl->scl_write_wanted == 0);
359	}
360}
361
362int
363spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
364{
365	for (int i = 0; i < SCL_LOCKS; i++) {
366		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367		if (!(locks & (1 << i)))
368			continue;
369		mutex_enter(&scl->scl_lock);
370		if (rw == RW_READER) {
371			if (scl->scl_writer || scl->scl_write_wanted) {
372				mutex_exit(&scl->scl_lock);
373				spa_config_exit(spa, locks ^ (1 << i), tag);
374				return (0);
375			}
376		} else {
377			ASSERT(scl->scl_writer != curthread);
378			if (!refcount_is_zero(&scl->scl_count)) {
379				mutex_exit(&scl->scl_lock);
380				spa_config_exit(spa, locks ^ (1 << i), tag);
381				return (0);
382			}
383			scl->scl_writer = curthread;
384		}
385		(void) refcount_add(&scl->scl_count, tag);
386		mutex_exit(&scl->scl_lock);
387	}
388	return (1);
389}
390
391void
392spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
393{
394	int wlocks_held = 0;
395
396	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
397
398	for (int i = 0; i < SCL_LOCKS; i++) {
399		spa_config_lock_t *scl = &spa->spa_config_lock[i];
400		if (scl->scl_writer == curthread)
401			wlocks_held |= (1 << i);
402		if (!(locks & (1 << i)))
403			continue;
404		mutex_enter(&scl->scl_lock);
405		if (rw == RW_READER) {
406			while (scl->scl_writer || scl->scl_write_wanted) {
407				cv_wait(&scl->scl_cv, &scl->scl_lock);
408			}
409		} else {
410			ASSERT(scl->scl_writer != curthread);
411			while (!refcount_is_zero(&scl->scl_count)) {
412				scl->scl_write_wanted++;
413				cv_wait(&scl->scl_cv, &scl->scl_lock);
414				scl->scl_write_wanted--;
415			}
416			scl->scl_writer = curthread;
417		}
418		(void) refcount_add(&scl->scl_count, tag);
419		mutex_exit(&scl->scl_lock);
420	}
421	ASSERT(wlocks_held <= locks);
422}
423
424void
425spa_config_exit(spa_t *spa, int locks, void *tag)
426{
427	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
428		spa_config_lock_t *scl = &spa->spa_config_lock[i];
429		if (!(locks & (1 << i)))
430			continue;
431		mutex_enter(&scl->scl_lock);
432		ASSERT(!refcount_is_zero(&scl->scl_count));
433		if (refcount_remove(&scl->scl_count, tag) == 0) {
434			ASSERT(scl->scl_writer == NULL ||
435			    scl->scl_writer == curthread);
436			scl->scl_writer = NULL;	/* OK in either case */
437			cv_broadcast(&scl->scl_cv);
438		}
439		mutex_exit(&scl->scl_lock);
440	}
441}
442
443int
444spa_config_held(spa_t *spa, int locks, krw_t rw)
445{
446	int locks_held = 0;
447
448	for (int i = 0; i < SCL_LOCKS; i++) {
449		spa_config_lock_t *scl = &spa->spa_config_lock[i];
450		if (!(locks & (1 << i)))
451			continue;
452		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
453		    (rw == RW_WRITER && scl->scl_writer == curthread))
454			locks_held |= 1 << i;
455	}
456
457	return (locks_held);
458}
459
460/*
461 * ==========================================================================
462 * SPA namespace functions
463 * ==========================================================================
464 */
465
466/*
467 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
468 * Returns NULL if no matching spa_t is found.
469 */
470spa_t *
471spa_lookup(const char *name)
472{
473	static spa_t search;	/* spa_t is large; don't allocate on stack */
474	spa_t *spa;
475	avl_index_t where;
476	char *cp;
477
478	ASSERT(MUTEX_HELD(&spa_namespace_lock));
479
480	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
481
482	/*
483	 * If it's a full dataset name, figure out the pool name and
484	 * just use that.
485	 */
486	cp = strpbrk(search.spa_name, "/@");
487	if (cp != NULL)
488		*cp = '\0';
489
490	spa = avl_find(&spa_namespace_avl, &search, &where);
491
492	return (spa);
493}
494
495/*
496 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
497 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
498 * looking for potentially hung I/Os.
499 */
500void
501spa_deadman(void *arg)
502{
503	spa_t *spa = arg;
504
505	/*
506	 * Disable the deadman timer if the pool is suspended.
507	 */
508	if (spa_suspended(spa)) {
509#ifdef illumos
510		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
511#else
512		/* Nothing.  just don't schedule any future callouts. */
513#endif
514		return;
515	}
516
517	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
518	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
519	    ++spa->spa_deadman_calls);
520	if (zfs_deadman_enabled)
521		vdev_deadman(spa->spa_root_vdev);
522}
523
524/*
525 * Create an uninitialized spa_t with the given name.  Requires
526 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
527 * exist by calling spa_lookup() first.
528 */
529spa_t *
530spa_add(const char *name, nvlist_t *config, const char *altroot)
531{
532	spa_t *spa;
533	spa_config_dirent_t *dp;
534#ifdef illumos
535	cyc_handler_t hdlr;
536	cyc_time_t when;
537#endif
538
539	ASSERT(MUTEX_HELD(&spa_namespace_lock));
540
541	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
542
543	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
544	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
545	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
546	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
547	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
548	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
549	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
550	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
551	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
552
553	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
554	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
555	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
556	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
557
558	for (int t = 0; t < TXG_SIZE; t++)
559		bplist_create(&spa->spa_free_bplist[t]);
560
561	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
562	spa->spa_state = POOL_STATE_UNINITIALIZED;
563	spa->spa_freeze_txg = UINT64_MAX;
564	spa->spa_final_txg = UINT64_MAX;
565	spa->spa_load_max_txg = UINT64_MAX;
566	spa->spa_proc = &p0;
567	spa->spa_proc_state = SPA_PROC_NONE;
568
569#ifdef illumos
570	hdlr.cyh_func = spa_deadman;
571	hdlr.cyh_arg = spa;
572	hdlr.cyh_level = CY_LOW_LEVEL;
573#endif
574
575	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
576
577#ifdef illumos
578	/*
579	 * This determines how often we need to check for hung I/Os after
580	 * the cyclic has already fired. Since checking for hung I/Os is
581	 * an expensive operation we don't want to check too frequently.
582	 * Instead wait for 5 seconds before checking again.
583	 */
584	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
585	when.cyt_when = CY_INFINITY;
586	mutex_enter(&cpu_lock);
587	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
588	mutex_exit(&cpu_lock);
589#else	/* !illumos */
590#ifdef _KERNEL
591	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
592#endif
593#endif
594	refcount_create(&spa->spa_refcount);
595	spa_config_lock_init(spa);
596
597	avl_add(&spa_namespace_avl, spa);
598
599	/*
600	 * Set the alternate root, if there is one.
601	 */
602	if (altroot) {
603		spa->spa_root = spa_strdup(altroot);
604		spa_active_count++;
605	}
606
607	/*
608	 * Every pool starts with the default cachefile
609	 */
610	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
611	    offsetof(spa_config_dirent_t, scd_link));
612
613	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
614	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
615	list_insert_head(&spa->spa_config_list, dp);
616
617	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
618	    KM_SLEEP) == 0);
619
620	if (config != NULL) {
621		nvlist_t *features;
622
623		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
624		    &features) == 0) {
625			VERIFY(nvlist_dup(features, &spa->spa_label_features,
626			    0) == 0);
627		}
628
629		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
630	}
631
632	if (spa->spa_label_features == NULL) {
633		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
634		    KM_SLEEP) == 0);
635	}
636
637	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
638
639	/*
640	 * As a pool is being created, treat all features as disabled by
641	 * setting SPA_FEATURE_DISABLED for all entries in the feature
642	 * refcount cache.
643	 */
644	for (int i = 0; i < SPA_FEATURES; i++) {
645		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
646	}
647
648	return (spa);
649}
650
651/*
652 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
653 * spa_namespace_lock.  This is called only after the spa_t has been closed and
654 * deactivated.
655 */
656void
657spa_remove(spa_t *spa)
658{
659	spa_config_dirent_t *dp;
660
661	ASSERT(MUTEX_HELD(&spa_namespace_lock));
662	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
663
664	nvlist_free(spa->spa_config_splitting);
665
666	avl_remove(&spa_namespace_avl, spa);
667	cv_broadcast(&spa_namespace_cv);
668
669	if (spa->spa_root) {
670		spa_strfree(spa->spa_root);
671		spa_active_count--;
672	}
673
674	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
675		list_remove(&spa->spa_config_list, dp);
676		if (dp->scd_path != NULL)
677			spa_strfree(dp->scd_path);
678		kmem_free(dp, sizeof (spa_config_dirent_t));
679	}
680
681	list_destroy(&spa->spa_config_list);
682
683	nvlist_free(spa->spa_label_features);
684	nvlist_free(spa->spa_load_info);
685	spa_config_set(spa, NULL);
686
687#ifdef illumos
688	mutex_enter(&cpu_lock);
689	if (spa->spa_deadman_cycid != CYCLIC_NONE)
690		cyclic_remove(spa->spa_deadman_cycid);
691	mutex_exit(&cpu_lock);
692	spa->spa_deadman_cycid = CYCLIC_NONE;
693#else	/* !illumos */
694#ifdef _KERNEL
695	callout_drain(&spa->spa_deadman_cycid);
696#endif
697#endif
698
699	refcount_destroy(&spa->spa_refcount);
700
701	spa_config_lock_destroy(spa);
702
703	for (int t = 0; t < TXG_SIZE; t++)
704		bplist_destroy(&spa->spa_free_bplist[t]);
705
706	cv_destroy(&spa->spa_async_cv);
707	cv_destroy(&spa->spa_proc_cv);
708	cv_destroy(&spa->spa_scrub_io_cv);
709	cv_destroy(&spa->spa_suspend_cv);
710
711	mutex_destroy(&spa->spa_async_lock);
712	mutex_destroy(&spa->spa_errlist_lock);
713	mutex_destroy(&spa->spa_errlog_lock);
714	mutex_destroy(&spa->spa_history_lock);
715	mutex_destroy(&spa->spa_proc_lock);
716	mutex_destroy(&spa->spa_props_lock);
717	mutex_destroy(&spa->spa_scrub_lock);
718	mutex_destroy(&spa->spa_suspend_lock);
719	mutex_destroy(&spa->spa_vdev_top_lock);
720
721	kmem_free(spa, sizeof (spa_t));
722}
723
724/*
725 * Given a pool, return the next pool in the namespace, or NULL if there is
726 * none.  If 'prev' is NULL, return the first pool.
727 */
728spa_t *
729spa_next(spa_t *prev)
730{
731	ASSERT(MUTEX_HELD(&spa_namespace_lock));
732
733	if (prev)
734		return (AVL_NEXT(&spa_namespace_avl, prev));
735	else
736		return (avl_first(&spa_namespace_avl));
737}
738
739/*
740 * ==========================================================================
741 * SPA refcount functions
742 * ==========================================================================
743 */
744
745/*
746 * Add a reference to the given spa_t.  Must have at least one reference, or
747 * have the namespace lock held.
748 */
749void
750spa_open_ref(spa_t *spa, void *tag)
751{
752	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
753	    MUTEX_HELD(&spa_namespace_lock));
754	(void) refcount_add(&spa->spa_refcount, tag);
755}
756
757/*
758 * Remove a reference to the given spa_t.  Must have at least one reference, or
759 * have the namespace lock held.
760 */
761void
762spa_close(spa_t *spa, void *tag)
763{
764	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
765	    MUTEX_HELD(&spa_namespace_lock));
766	(void) refcount_remove(&spa->spa_refcount, tag);
767}
768
769/*
770 * Check to see if the spa refcount is zero.  Must be called with
771 * spa_namespace_lock held.  We really compare against spa_minref, which is the
772 * number of references acquired when opening a pool
773 */
774boolean_t
775spa_refcount_zero(spa_t *spa)
776{
777	ASSERT(MUTEX_HELD(&spa_namespace_lock));
778
779	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
780}
781
782/*
783 * ==========================================================================
784 * SPA spare and l2cache tracking
785 * ==========================================================================
786 */
787
788/*
789 * Hot spares and cache devices are tracked using the same code below,
790 * for 'auxiliary' devices.
791 */
792
793typedef struct spa_aux {
794	uint64_t	aux_guid;
795	uint64_t	aux_pool;
796	avl_node_t	aux_avl;
797	int		aux_count;
798} spa_aux_t;
799
800static int
801spa_aux_compare(const void *a, const void *b)
802{
803	const spa_aux_t *sa = a;
804	const spa_aux_t *sb = b;
805
806	if (sa->aux_guid < sb->aux_guid)
807		return (-1);
808	else if (sa->aux_guid > sb->aux_guid)
809		return (1);
810	else
811		return (0);
812}
813
814void
815spa_aux_add(vdev_t *vd, avl_tree_t *avl)
816{
817	avl_index_t where;
818	spa_aux_t search;
819	spa_aux_t *aux;
820
821	search.aux_guid = vd->vdev_guid;
822	if ((aux = avl_find(avl, &search, &where)) != NULL) {
823		aux->aux_count++;
824	} else {
825		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
826		aux->aux_guid = vd->vdev_guid;
827		aux->aux_count = 1;
828		avl_insert(avl, aux, where);
829	}
830}
831
832void
833spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
834{
835	spa_aux_t search;
836	spa_aux_t *aux;
837	avl_index_t where;
838
839	search.aux_guid = vd->vdev_guid;
840	aux = avl_find(avl, &search, &where);
841
842	ASSERT(aux != NULL);
843
844	if (--aux->aux_count == 0) {
845		avl_remove(avl, aux);
846		kmem_free(aux, sizeof (spa_aux_t));
847	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
848		aux->aux_pool = 0ULL;
849	}
850}
851
852boolean_t
853spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
854{
855	spa_aux_t search, *found;
856
857	search.aux_guid = guid;
858	found = avl_find(avl, &search, NULL);
859
860	if (pool) {
861		if (found)
862			*pool = found->aux_pool;
863		else
864			*pool = 0ULL;
865	}
866
867	if (refcnt) {
868		if (found)
869			*refcnt = found->aux_count;
870		else
871			*refcnt = 0;
872	}
873
874	return (found != NULL);
875}
876
877void
878spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
879{
880	spa_aux_t search, *found;
881	avl_index_t where;
882
883	search.aux_guid = vd->vdev_guid;
884	found = avl_find(avl, &search, &where);
885	ASSERT(found != NULL);
886	ASSERT(found->aux_pool == 0ULL);
887
888	found->aux_pool = spa_guid(vd->vdev_spa);
889}
890
891/*
892 * Spares are tracked globally due to the following constraints:
893 *
894 * 	- A spare may be part of multiple pools.
895 * 	- A spare may be added to a pool even if it's actively in use within
896 *	  another pool.
897 * 	- A spare in use in any pool can only be the source of a replacement if
898 *	  the target is a spare in the same pool.
899 *
900 * We keep track of all spares on the system through the use of a reference
901 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
902 * spare, then we bump the reference count in the AVL tree.  In addition, we set
903 * the 'vdev_isspare' member to indicate that the device is a spare (active or
904 * inactive).  When a spare is made active (used to replace a device in the
905 * pool), we also keep track of which pool its been made a part of.
906 *
907 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
908 * called under the spa_namespace lock as part of vdev reconfiguration.  The
909 * separate spare lock exists for the status query path, which does not need to
910 * be completely consistent with respect to other vdev configuration changes.
911 */
912
913static int
914spa_spare_compare(const void *a, const void *b)
915{
916	return (spa_aux_compare(a, b));
917}
918
919void
920spa_spare_add(vdev_t *vd)
921{
922	mutex_enter(&spa_spare_lock);
923	ASSERT(!vd->vdev_isspare);
924	spa_aux_add(vd, &spa_spare_avl);
925	vd->vdev_isspare = B_TRUE;
926	mutex_exit(&spa_spare_lock);
927}
928
929void
930spa_spare_remove(vdev_t *vd)
931{
932	mutex_enter(&spa_spare_lock);
933	ASSERT(vd->vdev_isspare);
934	spa_aux_remove(vd, &spa_spare_avl);
935	vd->vdev_isspare = B_FALSE;
936	mutex_exit(&spa_spare_lock);
937}
938
939boolean_t
940spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
941{
942	boolean_t found;
943
944	mutex_enter(&spa_spare_lock);
945	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
946	mutex_exit(&spa_spare_lock);
947
948	return (found);
949}
950
951void
952spa_spare_activate(vdev_t *vd)
953{
954	mutex_enter(&spa_spare_lock);
955	ASSERT(vd->vdev_isspare);
956	spa_aux_activate(vd, &spa_spare_avl);
957	mutex_exit(&spa_spare_lock);
958}
959
960/*
961 * Level 2 ARC devices are tracked globally for the same reasons as spares.
962 * Cache devices currently only support one pool per cache device, and so
963 * for these devices the aux reference count is currently unused beyond 1.
964 */
965
966static int
967spa_l2cache_compare(const void *a, const void *b)
968{
969	return (spa_aux_compare(a, b));
970}
971
972void
973spa_l2cache_add(vdev_t *vd)
974{
975	mutex_enter(&spa_l2cache_lock);
976	ASSERT(!vd->vdev_isl2cache);
977	spa_aux_add(vd, &spa_l2cache_avl);
978	vd->vdev_isl2cache = B_TRUE;
979	mutex_exit(&spa_l2cache_lock);
980}
981
982void
983spa_l2cache_remove(vdev_t *vd)
984{
985	mutex_enter(&spa_l2cache_lock);
986	ASSERT(vd->vdev_isl2cache);
987	spa_aux_remove(vd, &spa_l2cache_avl);
988	vd->vdev_isl2cache = B_FALSE;
989	mutex_exit(&spa_l2cache_lock);
990}
991
992boolean_t
993spa_l2cache_exists(uint64_t guid, uint64_t *pool)
994{
995	boolean_t found;
996
997	mutex_enter(&spa_l2cache_lock);
998	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
999	mutex_exit(&spa_l2cache_lock);
1000
1001	return (found);
1002}
1003
1004void
1005spa_l2cache_activate(vdev_t *vd)
1006{
1007	mutex_enter(&spa_l2cache_lock);
1008	ASSERT(vd->vdev_isl2cache);
1009	spa_aux_activate(vd, &spa_l2cache_avl);
1010	mutex_exit(&spa_l2cache_lock);
1011}
1012
1013/*
1014 * ==========================================================================
1015 * SPA vdev locking
1016 * ==========================================================================
1017 */
1018
1019/*
1020 * Lock the given spa_t for the purpose of adding or removing a vdev.
1021 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1022 * It returns the next transaction group for the spa_t.
1023 */
1024uint64_t
1025spa_vdev_enter(spa_t *spa)
1026{
1027	mutex_enter(&spa->spa_vdev_top_lock);
1028	mutex_enter(&spa_namespace_lock);
1029	return (spa_vdev_config_enter(spa));
1030}
1031
1032/*
1033 * Internal implementation for spa_vdev_enter().  Used when a vdev
1034 * operation requires multiple syncs (i.e. removing a device) while
1035 * keeping the spa_namespace_lock held.
1036 */
1037uint64_t
1038spa_vdev_config_enter(spa_t *spa)
1039{
1040	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1041
1042	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1043
1044	return (spa_last_synced_txg(spa) + 1);
1045}
1046
1047/*
1048 * Used in combination with spa_vdev_config_enter() to allow the syncing
1049 * of multiple transactions without releasing the spa_namespace_lock.
1050 */
1051void
1052spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1053{
1054	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1055
1056	int config_changed = B_FALSE;
1057
1058	ASSERT(txg > spa_last_synced_txg(spa));
1059
1060	spa->spa_pending_vdev = NULL;
1061
1062	/*
1063	 * Reassess the DTLs.
1064	 */
1065	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1066
1067	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1068		config_changed = B_TRUE;
1069		spa->spa_config_generation++;
1070	}
1071
1072	/*
1073	 * Verify the metaslab classes.
1074	 */
1075	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1076	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1077
1078	spa_config_exit(spa, SCL_ALL, spa);
1079
1080	/*
1081	 * Panic the system if the specified tag requires it.  This
1082	 * is useful for ensuring that configurations are updated
1083	 * transactionally.
1084	 */
1085	if (zio_injection_enabled)
1086		zio_handle_panic_injection(spa, tag, 0);
1087
1088	/*
1089	 * Note: this txg_wait_synced() is important because it ensures
1090	 * that there won't be more than one config change per txg.
1091	 * This allows us to use the txg as the generation number.
1092	 */
1093	if (error == 0)
1094		txg_wait_synced(spa->spa_dsl_pool, txg);
1095
1096	if (vd != NULL) {
1097		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1098		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1099		vdev_free(vd);
1100		spa_config_exit(spa, SCL_ALL, spa);
1101	}
1102
1103	/*
1104	 * If the config changed, update the config cache.
1105	 */
1106	if (config_changed)
1107		spa_config_sync(spa, B_FALSE, B_TRUE);
1108}
1109
1110/*
1111 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1112 * locking of spa_vdev_enter(), we also want make sure the transactions have
1113 * synced to disk, and then update the global configuration cache with the new
1114 * information.
1115 */
1116int
1117spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1118{
1119	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1120	mutex_exit(&spa_namespace_lock);
1121	mutex_exit(&spa->spa_vdev_top_lock);
1122
1123	return (error);
1124}
1125
1126/*
1127 * Lock the given spa_t for the purpose of changing vdev state.
1128 */
1129void
1130spa_vdev_state_enter(spa_t *spa, int oplocks)
1131{
1132	int locks = SCL_STATE_ALL | oplocks;
1133
1134	/*
1135	 * Root pools may need to read of the underlying devfs filesystem
1136	 * when opening up a vdev.  Unfortunately if we're holding the
1137	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1138	 * the read from the root filesystem.  Instead we "prefetch"
1139	 * the associated vnodes that we need prior to opening the
1140	 * underlying devices and cache them so that we can prevent
1141	 * any I/O when we are doing the actual open.
1142	 */
1143	if (spa_is_root(spa)) {
1144		int low = locks & ~(SCL_ZIO - 1);
1145		int high = locks & ~low;
1146
1147		spa_config_enter(spa, high, spa, RW_WRITER);
1148		vdev_hold(spa->spa_root_vdev);
1149		spa_config_enter(spa, low, spa, RW_WRITER);
1150	} else {
1151		spa_config_enter(spa, locks, spa, RW_WRITER);
1152	}
1153	spa->spa_vdev_locks = locks;
1154}
1155
1156int
1157spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1158{
1159	boolean_t config_changed = B_FALSE;
1160
1161	if (vd != NULL || error == 0)
1162		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1163		    0, 0, B_FALSE);
1164
1165	if (vd != NULL) {
1166		vdev_state_dirty(vd->vdev_top);
1167		config_changed = B_TRUE;
1168		spa->spa_config_generation++;
1169	}
1170
1171	if (spa_is_root(spa))
1172		vdev_rele(spa->spa_root_vdev);
1173
1174	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1175	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1176
1177	/*
1178	 * If anything changed, wait for it to sync.  This ensures that,
1179	 * from the system administrator's perspective, zpool(1M) commands
1180	 * are synchronous.  This is important for things like zpool offline:
1181	 * when the command completes, you expect no further I/O from ZFS.
1182	 */
1183	if (vd != NULL)
1184		txg_wait_synced(spa->spa_dsl_pool, 0);
1185
1186	/*
1187	 * If the config changed, update the config cache.
1188	 */
1189	if (config_changed) {
1190		mutex_enter(&spa_namespace_lock);
1191		spa_config_sync(spa, B_FALSE, B_TRUE);
1192		mutex_exit(&spa_namespace_lock);
1193	}
1194
1195	return (error);
1196}
1197
1198/*
1199 * ==========================================================================
1200 * Miscellaneous functions
1201 * ==========================================================================
1202 */
1203
1204void
1205spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1206{
1207	if (!nvlist_exists(spa->spa_label_features, feature)) {
1208		fnvlist_add_boolean(spa->spa_label_features, feature);
1209		/*
1210		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1211		 * dirty the vdev config because lock SCL_CONFIG is not held.
1212		 * Thankfully, in this case we don't need to dirty the config
1213		 * because it will be written out anyway when we finish
1214		 * creating the pool.
1215		 */
1216		if (tx->tx_txg != TXG_INITIAL)
1217			vdev_config_dirty(spa->spa_root_vdev);
1218	}
1219}
1220
1221void
1222spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1223{
1224	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1225		vdev_config_dirty(spa->spa_root_vdev);
1226}
1227
1228/*
1229 * Rename a spa_t.
1230 */
1231int
1232spa_rename(const char *name, const char *newname)
1233{
1234	spa_t *spa;
1235	int err;
1236
1237	/*
1238	 * Lookup the spa_t and grab the config lock for writing.  We need to
1239	 * actually open the pool so that we can sync out the necessary labels.
1240	 * It's OK to call spa_open() with the namespace lock held because we
1241	 * allow recursive calls for other reasons.
1242	 */
1243	mutex_enter(&spa_namespace_lock);
1244	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1245		mutex_exit(&spa_namespace_lock);
1246		return (err);
1247	}
1248
1249	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1250
1251	avl_remove(&spa_namespace_avl, spa);
1252	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1253	avl_add(&spa_namespace_avl, spa);
1254
1255	/*
1256	 * Sync all labels to disk with the new names by marking the root vdev
1257	 * dirty and waiting for it to sync.  It will pick up the new pool name
1258	 * during the sync.
1259	 */
1260	vdev_config_dirty(spa->spa_root_vdev);
1261
1262	spa_config_exit(spa, SCL_ALL, FTAG);
1263
1264	txg_wait_synced(spa->spa_dsl_pool, 0);
1265
1266	/*
1267	 * Sync the updated config cache.
1268	 */
1269	spa_config_sync(spa, B_FALSE, B_TRUE);
1270
1271	spa_close(spa, FTAG);
1272
1273	mutex_exit(&spa_namespace_lock);
1274
1275	return (0);
1276}
1277
1278/*
1279 * Return the spa_t associated with given pool_guid, if it exists.  If
1280 * device_guid is non-zero, determine whether the pool exists *and* contains
1281 * a device with the specified device_guid.
1282 */
1283spa_t *
1284spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1285{
1286	spa_t *spa;
1287	avl_tree_t *t = &spa_namespace_avl;
1288
1289	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1290
1291	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1292		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1293			continue;
1294		if (spa->spa_root_vdev == NULL)
1295			continue;
1296		if (spa_guid(spa) == pool_guid) {
1297			if (device_guid == 0)
1298				break;
1299
1300			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1301			    device_guid) != NULL)
1302				break;
1303
1304			/*
1305			 * Check any devices we may be in the process of adding.
1306			 */
1307			if (spa->spa_pending_vdev) {
1308				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1309				    device_guid) != NULL)
1310					break;
1311			}
1312		}
1313	}
1314
1315	return (spa);
1316}
1317
1318/*
1319 * Determine whether a pool with the given pool_guid exists.
1320 */
1321boolean_t
1322spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1323{
1324	return (spa_by_guid(pool_guid, device_guid) != NULL);
1325}
1326
1327char *
1328spa_strdup(const char *s)
1329{
1330	size_t len;
1331	char *new;
1332
1333	len = strlen(s);
1334	new = kmem_alloc(len + 1, KM_SLEEP);
1335	bcopy(s, new, len);
1336	new[len] = '\0';
1337
1338	return (new);
1339}
1340
1341void
1342spa_strfree(char *s)
1343{
1344	kmem_free(s, strlen(s) + 1);
1345}
1346
1347uint64_t
1348spa_get_random(uint64_t range)
1349{
1350	uint64_t r;
1351
1352	ASSERT(range != 0);
1353
1354	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1355
1356	return (r % range);
1357}
1358
1359uint64_t
1360spa_generate_guid(spa_t *spa)
1361{
1362	uint64_t guid = spa_get_random(-1ULL);
1363
1364	if (spa != NULL) {
1365		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1366			guid = spa_get_random(-1ULL);
1367	} else {
1368		while (guid == 0 || spa_guid_exists(guid, 0))
1369			guid = spa_get_random(-1ULL);
1370	}
1371
1372	return (guid);
1373}
1374
1375void
1376snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1377{
1378	char type[256];
1379	char *checksum = NULL;
1380	char *compress = NULL;
1381
1382	if (bp != NULL) {
1383		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1384			dmu_object_byteswap_t bswap =
1385			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1386			(void) snprintf(type, sizeof (type), "bswap %s %s",
1387			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1388			    "metadata" : "data",
1389			    dmu_ot_byteswap[bswap].ob_name);
1390		} else {
1391			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1392			    sizeof (type));
1393		}
1394		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1395		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1396	}
1397
1398	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1399	    compress);
1400}
1401
1402void
1403spa_freeze(spa_t *spa)
1404{
1405	uint64_t freeze_txg = 0;
1406
1407	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1408	if (spa->spa_freeze_txg == UINT64_MAX) {
1409		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1410		spa->spa_freeze_txg = freeze_txg;
1411	}
1412	spa_config_exit(spa, SCL_ALL, FTAG);
1413	if (freeze_txg != 0)
1414		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1415}
1416
1417void
1418zfs_panic_recover(const char *fmt, ...)
1419{
1420	va_list adx;
1421
1422	va_start(adx, fmt);
1423	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1424	va_end(adx);
1425}
1426
1427/*
1428 * This is a stripped-down version of strtoull, suitable only for converting
1429 * lowercase hexadecimal numbers that don't overflow.
1430 */
1431uint64_t
1432zfs_strtonum(const char *str, char **nptr)
1433{
1434	uint64_t val = 0;
1435	char c;
1436	int digit;
1437
1438	while ((c = *str) != '\0') {
1439		if (c >= '0' && c <= '9')
1440			digit = c - '0';
1441		else if (c >= 'a' && c <= 'f')
1442			digit = 10 + c - 'a';
1443		else
1444			break;
1445
1446		val *= 16;
1447		val += digit;
1448
1449		str++;
1450	}
1451
1452	if (nptr)
1453		*nptr = (char *)str;
1454
1455	return (val);
1456}
1457
1458/*
1459 * ==========================================================================
1460 * Accessor functions
1461 * ==========================================================================
1462 */
1463
1464boolean_t
1465spa_shutting_down(spa_t *spa)
1466{
1467	return (spa->spa_async_suspended);
1468}
1469
1470dsl_pool_t *
1471spa_get_dsl(spa_t *spa)
1472{
1473	return (spa->spa_dsl_pool);
1474}
1475
1476boolean_t
1477spa_is_initializing(spa_t *spa)
1478{
1479	return (spa->spa_is_initializing);
1480}
1481
1482blkptr_t *
1483spa_get_rootblkptr(spa_t *spa)
1484{
1485	return (&spa->spa_ubsync.ub_rootbp);
1486}
1487
1488void
1489spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1490{
1491	spa->spa_uberblock.ub_rootbp = *bp;
1492}
1493
1494void
1495spa_altroot(spa_t *spa, char *buf, size_t buflen)
1496{
1497	if (spa->spa_root == NULL)
1498		buf[0] = '\0';
1499	else
1500		(void) strncpy(buf, spa->spa_root, buflen);
1501}
1502
1503int
1504spa_sync_pass(spa_t *spa)
1505{
1506	return (spa->spa_sync_pass);
1507}
1508
1509char *
1510spa_name(spa_t *spa)
1511{
1512	return (spa->spa_name);
1513}
1514
1515uint64_t
1516spa_guid(spa_t *spa)
1517{
1518	dsl_pool_t *dp = spa_get_dsl(spa);
1519	uint64_t guid;
1520
1521	/*
1522	 * If we fail to parse the config during spa_load(), we can go through
1523	 * the error path (which posts an ereport) and end up here with no root
1524	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1525	 * this case.
1526	 */
1527	if (spa->spa_root_vdev == NULL)
1528		return (spa->spa_config_guid);
1529
1530	guid = spa->spa_last_synced_guid != 0 ?
1531	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1532
1533	/*
1534	 * Return the most recently synced out guid unless we're
1535	 * in syncing context.
1536	 */
1537	if (dp && dsl_pool_sync_context(dp))
1538		return (spa->spa_root_vdev->vdev_guid);
1539	else
1540		return (guid);
1541}
1542
1543uint64_t
1544spa_load_guid(spa_t *spa)
1545{
1546	/*
1547	 * This is a GUID that exists solely as a reference for the
1548	 * purposes of the arc.  It is generated at load time, and
1549	 * is never written to persistent storage.
1550	 */
1551	return (spa->spa_load_guid);
1552}
1553
1554uint64_t
1555spa_last_synced_txg(spa_t *spa)
1556{
1557	return (spa->spa_ubsync.ub_txg);
1558}
1559
1560uint64_t
1561spa_first_txg(spa_t *spa)
1562{
1563	return (spa->spa_first_txg);
1564}
1565
1566uint64_t
1567spa_syncing_txg(spa_t *spa)
1568{
1569	return (spa->spa_syncing_txg);
1570}
1571
1572pool_state_t
1573spa_state(spa_t *spa)
1574{
1575	return (spa->spa_state);
1576}
1577
1578spa_load_state_t
1579spa_load_state(spa_t *spa)
1580{
1581	return (spa->spa_load_state);
1582}
1583
1584uint64_t
1585spa_freeze_txg(spa_t *spa)
1586{
1587	return (spa->spa_freeze_txg);
1588}
1589
1590/* ARGSUSED */
1591uint64_t
1592spa_get_asize(spa_t *spa, uint64_t lsize)
1593{
1594	return (lsize * spa_asize_inflation);
1595}
1596
1597uint64_t
1598spa_get_dspace(spa_t *spa)
1599{
1600	return (spa->spa_dspace);
1601}
1602
1603void
1604spa_update_dspace(spa_t *spa)
1605{
1606	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1607	    ddt_get_dedup_dspace(spa);
1608}
1609
1610/*
1611 * Return the failure mode that has been set to this pool. The default
1612 * behavior will be to block all I/Os when a complete failure occurs.
1613 */
1614uint8_t
1615spa_get_failmode(spa_t *spa)
1616{
1617	return (spa->spa_failmode);
1618}
1619
1620boolean_t
1621spa_suspended(spa_t *spa)
1622{
1623	return (spa->spa_suspended);
1624}
1625
1626uint64_t
1627spa_version(spa_t *spa)
1628{
1629	return (spa->spa_ubsync.ub_version);
1630}
1631
1632boolean_t
1633spa_deflate(spa_t *spa)
1634{
1635	return (spa->spa_deflate);
1636}
1637
1638metaslab_class_t *
1639spa_normal_class(spa_t *spa)
1640{
1641	return (spa->spa_normal_class);
1642}
1643
1644metaslab_class_t *
1645spa_log_class(spa_t *spa)
1646{
1647	return (spa->spa_log_class);
1648}
1649
1650int
1651spa_max_replication(spa_t *spa)
1652{
1653	/*
1654	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1655	 * handle BPs with more than one DVA allocated.  Set our max
1656	 * replication level accordingly.
1657	 */
1658	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1659		return (1);
1660	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1661}
1662
1663int
1664spa_prev_software_version(spa_t *spa)
1665{
1666	return (spa->spa_prev_software_version);
1667}
1668
1669uint64_t
1670spa_deadman_synctime(spa_t *spa)
1671{
1672	return (spa->spa_deadman_synctime);
1673}
1674
1675uint64_t
1676dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1677{
1678	uint64_t asize = DVA_GET_ASIZE(dva);
1679	uint64_t dsize = asize;
1680
1681	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1682
1683	if (asize != 0 && spa->spa_deflate) {
1684		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1685		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1686	}
1687
1688	return (dsize);
1689}
1690
1691uint64_t
1692bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1693{
1694	uint64_t dsize = 0;
1695
1696	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1697		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1698
1699	return (dsize);
1700}
1701
1702uint64_t
1703bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1704{
1705	uint64_t dsize = 0;
1706
1707	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1708
1709	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1710		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1711
1712	spa_config_exit(spa, SCL_VDEV, FTAG);
1713
1714	return (dsize);
1715}
1716
1717/*
1718 * ==========================================================================
1719 * Initialization and Termination
1720 * ==========================================================================
1721 */
1722
1723static int
1724spa_name_compare(const void *a1, const void *a2)
1725{
1726	const spa_t *s1 = a1;
1727	const spa_t *s2 = a2;
1728	int s;
1729
1730	s = strcmp(s1->spa_name, s2->spa_name);
1731	if (s > 0)
1732		return (1);
1733	if (s < 0)
1734		return (-1);
1735	return (0);
1736}
1737
1738int
1739spa_busy(void)
1740{
1741	return (spa_active_count);
1742}
1743
1744void
1745spa_boot_init()
1746{
1747	spa_config_load();
1748}
1749
1750#ifdef _KERNEL
1751EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1752#endif
1753
1754void
1755spa_init(int mode)
1756{
1757	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1758	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1759	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1760	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1761
1762	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1763	    offsetof(spa_t, spa_avl));
1764
1765	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1766	    offsetof(spa_aux_t, aux_avl));
1767
1768	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1769	    offsetof(spa_aux_t, aux_avl));
1770
1771	spa_mode_global = mode;
1772
1773#ifdef illumos
1774#ifdef _KERNEL
1775	spa_arch_init();
1776#else
1777	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1778		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1779		if (arc_procfd == -1) {
1780			perror("could not enable watchpoints: "
1781			    "opening /proc/self/ctl failed: ");
1782		} else {
1783			arc_watch = B_TRUE;
1784		}
1785	}
1786#endif
1787#endif /* illumos */
1788	refcount_sysinit();
1789	unique_init();
1790	range_tree_init();
1791	zio_init();
1792	lz4_init();
1793	dmu_init();
1794	zil_init();
1795	vdev_cache_stat_init();
1796	zfs_prop_init();
1797	zpool_prop_init();
1798	zpool_feature_init();
1799	spa_config_load();
1800	l2arc_start();
1801#ifndef illumos
1802#ifdef _KERNEL
1803	zfs_deadman_init();
1804#endif
1805#endif	/* !illumos */
1806}
1807
1808void
1809spa_fini(void)
1810{
1811	l2arc_stop();
1812
1813	spa_evict_all();
1814
1815	vdev_cache_stat_fini();
1816	zil_fini();
1817	dmu_fini();
1818	lz4_fini();
1819	zio_fini();
1820	range_tree_fini();
1821	unique_fini();
1822	refcount_fini();
1823
1824	avl_destroy(&spa_namespace_avl);
1825	avl_destroy(&spa_spare_avl);
1826	avl_destroy(&spa_l2cache_avl);
1827
1828	cv_destroy(&spa_namespace_cv);
1829	mutex_destroy(&spa_namespace_lock);
1830	mutex_destroy(&spa_spare_lock);
1831	mutex_destroy(&spa_l2cache_lock);
1832}
1833
1834/*
1835 * Return whether this pool has slogs. No locking needed.
1836 * It's not a problem if the wrong answer is returned as it's only for
1837 * performance and not correctness
1838 */
1839boolean_t
1840spa_has_slogs(spa_t *spa)
1841{
1842	return (spa->spa_log_class->mc_rotor != NULL);
1843}
1844
1845spa_log_state_t
1846spa_get_log_state(spa_t *spa)
1847{
1848	return (spa->spa_log_state);
1849}
1850
1851void
1852spa_set_log_state(spa_t *spa, spa_log_state_t state)
1853{
1854	spa->spa_log_state = state;
1855}
1856
1857boolean_t
1858spa_is_root(spa_t *spa)
1859{
1860	return (spa->spa_is_root);
1861}
1862
1863boolean_t
1864spa_writeable(spa_t *spa)
1865{
1866	return (!!(spa->spa_mode & FWRITE));
1867}
1868
1869int
1870spa_mode(spa_t *spa)
1871{
1872	return (spa->spa_mode);
1873}
1874
1875uint64_t
1876spa_bootfs(spa_t *spa)
1877{
1878	return (spa->spa_bootfs);
1879}
1880
1881uint64_t
1882spa_delegation(spa_t *spa)
1883{
1884	return (spa->spa_delegation);
1885}
1886
1887objset_t *
1888spa_meta_objset(spa_t *spa)
1889{
1890	return (spa->spa_meta_objset);
1891}
1892
1893enum zio_checksum
1894spa_dedup_checksum(spa_t *spa)
1895{
1896	return (spa->spa_dedup_checksum);
1897}
1898
1899/*
1900 * Reset pool scan stat per scan pass (or reboot).
1901 */
1902void
1903spa_scan_stat_init(spa_t *spa)
1904{
1905	/* data not stored on disk */
1906	spa->spa_scan_pass_start = gethrestime_sec();
1907	spa->spa_scan_pass_exam = 0;
1908	vdev_scan_stat_init(spa->spa_root_vdev);
1909}
1910
1911/*
1912 * Get scan stats for zpool status reports
1913 */
1914int
1915spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1916{
1917	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1918
1919	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1920		return (SET_ERROR(ENOENT));
1921	bzero(ps, sizeof (pool_scan_stat_t));
1922
1923	/* data stored on disk */
1924	ps->pss_func = scn->scn_phys.scn_func;
1925	ps->pss_start_time = scn->scn_phys.scn_start_time;
1926	ps->pss_end_time = scn->scn_phys.scn_end_time;
1927	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1928	ps->pss_examined = scn->scn_phys.scn_examined;
1929	ps->pss_to_process = scn->scn_phys.scn_to_process;
1930	ps->pss_processed = scn->scn_phys.scn_processed;
1931	ps->pss_errors = scn->scn_phys.scn_errors;
1932	ps->pss_state = scn->scn_phys.scn_state;
1933
1934	/* data not stored on disk */
1935	ps->pss_pass_start = spa->spa_scan_pass_start;
1936	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1937
1938	return (0);
1939}
1940
1941boolean_t
1942spa_debug_enabled(spa_t *spa)
1943{
1944	return (spa->spa_debug);
1945}
1946