spa_misc.c revision 262179
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
257 */
258int zfs_recover = 0;
259SYSCTL_DECL(_vfs_zfs);
260TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
261SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
262    "Try to recover from otherwise-fatal errors.");
263
264/*
265 * Expiration time in milliseconds. This value has two meanings. First it is
266 * used to determine when the spa_deadman() logic should fire. By default the
267 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
268 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
269 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
270 * in a system panic.
271 */
272uint64_t zfs_deadman_synctime_ms = 1000000ULL;
273TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
274SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
275    &zfs_deadman_synctime_ms, 0,
276    "Stalled ZFS I/O expiration time in milliseconds");
277
278/*
279 * Check time in milliseconds. This defines the frequency at which we check
280 * for hung I/O.
281 */
282uint64_t zfs_deadman_checktime_ms = 5000ULL;
283TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
284SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
285    &zfs_deadman_checktime_ms, 0,
286    "Period of checks for stalled ZFS I/O in milliseconds");
287
288/*
289 * Default value of -1 for zfs_deadman_enabled is resolved in
290 * zfs_deadman_init()
291 */
292int zfs_deadman_enabled = -1;
293TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
294SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
295    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
296
297/*
298 * The worst case is single-sector max-parity RAID-Z blocks, in which
299 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
300 * times the size; so just assume that.  Add to this the fact that
301 * we can have up to 3 DVAs per bp, and one more factor of 2 because
302 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
303 * the worst case is:
304 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
305 */
306int spa_asize_inflation = 24;
307TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
308SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
309    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
310
311#ifndef illumos
312#ifdef _KERNEL
313static void
314zfs_deadman_init()
315{
316	/*
317	 * If we are not i386 or amd64 or in a virtual machine,
318	 * disable ZFS deadman thread by default
319	 */
320	if (zfs_deadman_enabled == -1) {
321#if defined(__amd64__) || defined(__i386__)
322		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
323#else
324		zfs_deadman_enabled = 0;
325#endif
326	}
327}
328#endif	/* _KERNEL */
329#endif	/* !illumos */
330
331/*
332 * ==========================================================================
333 * SPA config locking
334 * ==========================================================================
335 */
336static void
337spa_config_lock_init(spa_t *spa)
338{
339	for (int i = 0; i < SCL_LOCKS; i++) {
340		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
342		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
343		refcount_create_untracked(&scl->scl_count);
344		scl->scl_writer = NULL;
345		scl->scl_write_wanted = 0;
346	}
347}
348
349static void
350spa_config_lock_destroy(spa_t *spa)
351{
352	for (int i = 0; i < SCL_LOCKS; i++) {
353		spa_config_lock_t *scl = &spa->spa_config_lock[i];
354		mutex_destroy(&scl->scl_lock);
355		cv_destroy(&scl->scl_cv);
356		refcount_destroy(&scl->scl_count);
357		ASSERT(scl->scl_writer == NULL);
358		ASSERT(scl->scl_write_wanted == 0);
359	}
360}
361
362int
363spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
364{
365	for (int i = 0; i < SCL_LOCKS; i++) {
366		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367		if (!(locks & (1 << i)))
368			continue;
369		mutex_enter(&scl->scl_lock);
370		if (rw == RW_READER) {
371			if (scl->scl_writer || scl->scl_write_wanted) {
372				mutex_exit(&scl->scl_lock);
373				spa_config_exit(spa, locks ^ (1 << i), tag);
374				return (0);
375			}
376		} else {
377			ASSERT(scl->scl_writer != curthread);
378			if (!refcount_is_zero(&scl->scl_count)) {
379				mutex_exit(&scl->scl_lock);
380				spa_config_exit(spa, locks ^ (1 << i), tag);
381				return (0);
382			}
383			scl->scl_writer = curthread;
384		}
385		(void) refcount_add(&scl->scl_count, tag);
386		mutex_exit(&scl->scl_lock);
387	}
388	return (1);
389}
390
391void
392spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
393{
394	int wlocks_held = 0;
395
396	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
397
398	for (int i = 0; i < SCL_LOCKS; i++) {
399		spa_config_lock_t *scl = &spa->spa_config_lock[i];
400		if (scl->scl_writer == curthread)
401			wlocks_held |= (1 << i);
402		if (!(locks & (1 << i)))
403			continue;
404		mutex_enter(&scl->scl_lock);
405		if (rw == RW_READER) {
406			while (scl->scl_writer || scl->scl_write_wanted) {
407				cv_wait(&scl->scl_cv, &scl->scl_lock);
408			}
409		} else {
410			ASSERT(scl->scl_writer != curthread);
411			while (!refcount_is_zero(&scl->scl_count)) {
412				scl->scl_write_wanted++;
413				cv_wait(&scl->scl_cv, &scl->scl_lock);
414				scl->scl_write_wanted--;
415			}
416			scl->scl_writer = curthread;
417		}
418		(void) refcount_add(&scl->scl_count, tag);
419		mutex_exit(&scl->scl_lock);
420	}
421	ASSERT(wlocks_held <= locks);
422}
423
424void
425spa_config_exit(spa_t *spa, int locks, void *tag)
426{
427	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
428		spa_config_lock_t *scl = &spa->spa_config_lock[i];
429		if (!(locks & (1 << i)))
430			continue;
431		mutex_enter(&scl->scl_lock);
432		ASSERT(!refcount_is_zero(&scl->scl_count));
433		if (refcount_remove(&scl->scl_count, tag) == 0) {
434			ASSERT(scl->scl_writer == NULL ||
435			    scl->scl_writer == curthread);
436			scl->scl_writer = NULL;	/* OK in either case */
437			cv_broadcast(&scl->scl_cv);
438		}
439		mutex_exit(&scl->scl_lock);
440	}
441}
442
443int
444spa_config_held(spa_t *spa, int locks, krw_t rw)
445{
446	int locks_held = 0;
447
448	for (int i = 0; i < SCL_LOCKS; i++) {
449		spa_config_lock_t *scl = &spa->spa_config_lock[i];
450		if (!(locks & (1 << i)))
451			continue;
452		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
453		    (rw == RW_WRITER && scl->scl_writer == curthread))
454			locks_held |= 1 << i;
455	}
456
457	return (locks_held);
458}
459
460/*
461 * ==========================================================================
462 * SPA namespace functions
463 * ==========================================================================
464 */
465
466/*
467 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
468 * Returns NULL if no matching spa_t is found.
469 */
470spa_t *
471spa_lookup(const char *name)
472{
473	static spa_t search;	/* spa_t is large; don't allocate on stack */
474	spa_t *spa;
475	avl_index_t where;
476	char *cp;
477
478	ASSERT(MUTEX_HELD(&spa_namespace_lock));
479
480	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
481
482	/*
483	 * If it's a full dataset name, figure out the pool name and
484	 * just use that.
485	 */
486	cp = strpbrk(search.spa_name, "/@");
487	if (cp != NULL)
488		*cp = '\0';
489
490	spa = avl_find(&spa_namespace_avl, &search, &where);
491
492	return (spa);
493}
494
495/*
496 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
497 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
498 * looking for potentially hung I/Os.
499 */
500void
501spa_deadman(void *arg)
502{
503	spa_t *spa = arg;
504
505	/*
506	 * Disable the deadman timer if the pool is suspended.
507	 */
508	if (spa_suspended(spa)) {
509#ifdef illumos
510		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
511#else
512		/* Nothing.  just don't schedule any future callouts. */
513#endif
514		return;
515	}
516
517	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
518	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
519	    ++spa->spa_deadman_calls);
520	if (zfs_deadman_enabled)
521		vdev_deadman(spa->spa_root_vdev);
522}
523
524/*
525 * Create an uninitialized spa_t with the given name.  Requires
526 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
527 * exist by calling spa_lookup() first.
528 */
529spa_t *
530spa_add(const char *name, nvlist_t *config, const char *altroot)
531{
532	spa_t *spa;
533	spa_config_dirent_t *dp;
534#ifdef illumos
535	cyc_handler_t hdlr;
536	cyc_time_t when;
537#endif
538
539	ASSERT(MUTEX_HELD(&spa_namespace_lock));
540
541	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
542
543	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
544	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
545	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
546	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
547	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
548	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
549	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
550	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
551	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
552
553	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
554	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
555	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
556	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
557
558	for (int t = 0; t < TXG_SIZE; t++)
559		bplist_create(&spa->spa_free_bplist[t]);
560
561	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
562	spa->spa_state = POOL_STATE_UNINITIALIZED;
563	spa->spa_freeze_txg = UINT64_MAX;
564	spa->spa_final_txg = UINT64_MAX;
565	spa->spa_load_max_txg = UINT64_MAX;
566	spa->spa_proc = &p0;
567	spa->spa_proc_state = SPA_PROC_NONE;
568
569#ifdef illumos
570	hdlr.cyh_func = spa_deadman;
571	hdlr.cyh_arg = spa;
572	hdlr.cyh_level = CY_LOW_LEVEL;
573#endif
574
575	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
576
577#ifdef illumos
578	/*
579	 * This determines how often we need to check for hung I/Os after
580	 * the cyclic has already fired. Since checking for hung I/Os is
581	 * an expensive operation we don't want to check too frequently.
582	 * Instead wait for 5 seconds before checking again.
583	 */
584	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
585	when.cyt_when = CY_INFINITY;
586	mutex_enter(&cpu_lock);
587	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
588	mutex_exit(&cpu_lock);
589#else	/* !illumos */
590#ifdef _KERNEL
591	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
592#endif
593#endif
594	refcount_create(&spa->spa_refcount);
595	spa_config_lock_init(spa);
596
597	avl_add(&spa_namespace_avl, spa);
598
599	/*
600	 * Set the alternate root, if there is one.
601	 */
602	if (altroot) {
603		spa->spa_root = spa_strdup(altroot);
604		spa_active_count++;
605	}
606
607	/*
608	 * Every pool starts with the default cachefile
609	 */
610	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
611	    offsetof(spa_config_dirent_t, scd_link));
612
613	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
614	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
615	list_insert_head(&spa->spa_config_list, dp);
616
617	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
618	    KM_SLEEP) == 0);
619
620	if (config != NULL) {
621		nvlist_t *features;
622
623		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
624		    &features) == 0) {
625			VERIFY(nvlist_dup(features, &spa->spa_label_features,
626			    0) == 0);
627		}
628
629		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
630	}
631
632	if (spa->spa_label_features == NULL) {
633		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
634		    KM_SLEEP) == 0);
635	}
636
637	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
638
639	return (spa);
640}
641
642/*
643 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
644 * spa_namespace_lock.  This is called only after the spa_t has been closed and
645 * deactivated.
646 */
647void
648spa_remove(spa_t *spa)
649{
650	spa_config_dirent_t *dp;
651
652	ASSERT(MUTEX_HELD(&spa_namespace_lock));
653	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
654
655	nvlist_free(spa->spa_config_splitting);
656
657	avl_remove(&spa_namespace_avl, spa);
658	cv_broadcast(&spa_namespace_cv);
659
660	if (spa->spa_root) {
661		spa_strfree(spa->spa_root);
662		spa_active_count--;
663	}
664
665	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
666		list_remove(&spa->spa_config_list, dp);
667		if (dp->scd_path != NULL)
668			spa_strfree(dp->scd_path);
669		kmem_free(dp, sizeof (spa_config_dirent_t));
670	}
671
672	list_destroy(&spa->spa_config_list);
673
674	nvlist_free(spa->spa_label_features);
675	nvlist_free(spa->spa_load_info);
676	spa_config_set(spa, NULL);
677
678#ifdef illumos
679	mutex_enter(&cpu_lock);
680	if (spa->spa_deadman_cycid != CYCLIC_NONE)
681		cyclic_remove(spa->spa_deadman_cycid);
682	mutex_exit(&cpu_lock);
683	spa->spa_deadman_cycid = CYCLIC_NONE;
684#else	/* !illumos */
685#ifdef _KERNEL
686	callout_drain(&spa->spa_deadman_cycid);
687#endif
688#endif
689
690	refcount_destroy(&spa->spa_refcount);
691
692	spa_config_lock_destroy(spa);
693
694	for (int t = 0; t < TXG_SIZE; t++)
695		bplist_destroy(&spa->spa_free_bplist[t]);
696
697	cv_destroy(&spa->spa_async_cv);
698	cv_destroy(&spa->spa_proc_cv);
699	cv_destroy(&spa->spa_scrub_io_cv);
700	cv_destroy(&spa->spa_suspend_cv);
701
702	mutex_destroy(&spa->spa_async_lock);
703	mutex_destroy(&spa->spa_errlist_lock);
704	mutex_destroy(&spa->spa_errlog_lock);
705	mutex_destroy(&spa->spa_history_lock);
706	mutex_destroy(&spa->spa_proc_lock);
707	mutex_destroy(&spa->spa_props_lock);
708	mutex_destroy(&spa->spa_scrub_lock);
709	mutex_destroy(&spa->spa_suspend_lock);
710	mutex_destroy(&spa->spa_vdev_top_lock);
711
712	kmem_free(spa, sizeof (spa_t));
713}
714
715/*
716 * Given a pool, return the next pool in the namespace, or NULL if there is
717 * none.  If 'prev' is NULL, return the first pool.
718 */
719spa_t *
720spa_next(spa_t *prev)
721{
722	ASSERT(MUTEX_HELD(&spa_namespace_lock));
723
724	if (prev)
725		return (AVL_NEXT(&spa_namespace_avl, prev));
726	else
727		return (avl_first(&spa_namespace_avl));
728}
729
730/*
731 * ==========================================================================
732 * SPA refcount functions
733 * ==========================================================================
734 */
735
736/*
737 * Add a reference to the given spa_t.  Must have at least one reference, or
738 * have the namespace lock held.
739 */
740void
741spa_open_ref(spa_t *spa, void *tag)
742{
743	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
744	    MUTEX_HELD(&spa_namespace_lock));
745	(void) refcount_add(&spa->spa_refcount, tag);
746}
747
748/*
749 * Remove a reference to the given spa_t.  Must have at least one reference, or
750 * have the namespace lock held.
751 */
752void
753spa_close(spa_t *spa, void *tag)
754{
755	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
756	    MUTEX_HELD(&spa_namespace_lock));
757	(void) refcount_remove(&spa->spa_refcount, tag);
758}
759
760/*
761 * Check to see if the spa refcount is zero.  Must be called with
762 * spa_namespace_lock held.  We really compare against spa_minref, which is the
763 * number of references acquired when opening a pool
764 */
765boolean_t
766spa_refcount_zero(spa_t *spa)
767{
768	ASSERT(MUTEX_HELD(&spa_namespace_lock));
769
770	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
771}
772
773/*
774 * ==========================================================================
775 * SPA spare and l2cache tracking
776 * ==========================================================================
777 */
778
779/*
780 * Hot spares and cache devices are tracked using the same code below,
781 * for 'auxiliary' devices.
782 */
783
784typedef struct spa_aux {
785	uint64_t	aux_guid;
786	uint64_t	aux_pool;
787	avl_node_t	aux_avl;
788	int		aux_count;
789} spa_aux_t;
790
791static int
792spa_aux_compare(const void *a, const void *b)
793{
794	const spa_aux_t *sa = a;
795	const spa_aux_t *sb = b;
796
797	if (sa->aux_guid < sb->aux_guid)
798		return (-1);
799	else if (sa->aux_guid > sb->aux_guid)
800		return (1);
801	else
802		return (0);
803}
804
805void
806spa_aux_add(vdev_t *vd, avl_tree_t *avl)
807{
808	avl_index_t where;
809	spa_aux_t search;
810	spa_aux_t *aux;
811
812	search.aux_guid = vd->vdev_guid;
813	if ((aux = avl_find(avl, &search, &where)) != NULL) {
814		aux->aux_count++;
815	} else {
816		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
817		aux->aux_guid = vd->vdev_guid;
818		aux->aux_count = 1;
819		avl_insert(avl, aux, where);
820	}
821}
822
823void
824spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
825{
826	spa_aux_t search;
827	spa_aux_t *aux;
828	avl_index_t where;
829
830	search.aux_guid = vd->vdev_guid;
831	aux = avl_find(avl, &search, &where);
832
833	ASSERT(aux != NULL);
834
835	if (--aux->aux_count == 0) {
836		avl_remove(avl, aux);
837		kmem_free(aux, sizeof (spa_aux_t));
838	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
839		aux->aux_pool = 0ULL;
840	}
841}
842
843boolean_t
844spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
845{
846	spa_aux_t search, *found;
847
848	search.aux_guid = guid;
849	found = avl_find(avl, &search, NULL);
850
851	if (pool) {
852		if (found)
853			*pool = found->aux_pool;
854		else
855			*pool = 0ULL;
856	}
857
858	if (refcnt) {
859		if (found)
860			*refcnt = found->aux_count;
861		else
862			*refcnt = 0;
863	}
864
865	return (found != NULL);
866}
867
868void
869spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
870{
871	spa_aux_t search, *found;
872	avl_index_t where;
873
874	search.aux_guid = vd->vdev_guid;
875	found = avl_find(avl, &search, &where);
876	ASSERT(found != NULL);
877	ASSERT(found->aux_pool == 0ULL);
878
879	found->aux_pool = spa_guid(vd->vdev_spa);
880}
881
882/*
883 * Spares are tracked globally due to the following constraints:
884 *
885 * 	- A spare may be part of multiple pools.
886 * 	- A spare may be added to a pool even if it's actively in use within
887 *	  another pool.
888 * 	- A spare in use in any pool can only be the source of a replacement if
889 *	  the target is a spare in the same pool.
890 *
891 * We keep track of all spares on the system through the use of a reference
892 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
893 * spare, then we bump the reference count in the AVL tree.  In addition, we set
894 * the 'vdev_isspare' member to indicate that the device is a spare (active or
895 * inactive).  When a spare is made active (used to replace a device in the
896 * pool), we also keep track of which pool its been made a part of.
897 *
898 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
899 * called under the spa_namespace lock as part of vdev reconfiguration.  The
900 * separate spare lock exists for the status query path, which does not need to
901 * be completely consistent with respect to other vdev configuration changes.
902 */
903
904static int
905spa_spare_compare(const void *a, const void *b)
906{
907	return (spa_aux_compare(a, b));
908}
909
910void
911spa_spare_add(vdev_t *vd)
912{
913	mutex_enter(&spa_spare_lock);
914	ASSERT(!vd->vdev_isspare);
915	spa_aux_add(vd, &spa_spare_avl);
916	vd->vdev_isspare = B_TRUE;
917	mutex_exit(&spa_spare_lock);
918}
919
920void
921spa_spare_remove(vdev_t *vd)
922{
923	mutex_enter(&spa_spare_lock);
924	ASSERT(vd->vdev_isspare);
925	spa_aux_remove(vd, &spa_spare_avl);
926	vd->vdev_isspare = B_FALSE;
927	mutex_exit(&spa_spare_lock);
928}
929
930boolean_t
931spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
932{
933	boolean_t found;
934
935	mutex_enter(&spa_spare_lock);
936	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
937	mutex_exit(&spa_spare_lock);
938
939	return (found);
940}
941
942void
943spa_spare_activate(vdev_t *vd)
944{
945	mutex_enter(&spa_spare_lock);
946	ASSERT(vd->vdev_isspare);
947	spa_aux_activate(vd, &spa_spare_avl);
948	mutex_exit(&spa_spare_lock);
949}
950
951/*
952 * Level 2 ARC devices are tracked globally for the same reasons as spares.
953 * Cache devices currently only support one pool per cache device, and so
954 * for these devices the aux reference count is currently unused beyond 1.
955 */
956
957static int
958spa_l2cache_compare(const void *a, const void *b)
959{
960	return (spa_aux_compare(a, b));
961}
962
963void
964spa_l2cache_add(vdev_t *vd)
965{
966	mutex_enter(&spa_l2cache_lock);
967	ASSERT(!vd->vdev_isl2cache);
968	spa_aux_add(vd, &spa_l2cache_avl);
969	vd->vdev_isl2cache = B_TRUE;
970	mutex_exit(&spa_l2cache_lock);
971}
972
973void
974spa_l2cache_remove(vdev_t *vd)
975{
976	mutex_enter(&spa_l2cache_lock);
977	ASSERT(vd->vdev_isl2cache);
978	spa_aux_remove(vd, &spa_l2cache_avl);
979	vd->vdev_isl2cache = B_FALSE;
980	mutex_exit(&spa_l2cache_lock);
981}
982
983boolean_t
984spa_l2cache_exists(uint64_t guid, uint64_t *pool)
985{
986	boolean_t found;
987
988	mutex_enter(&spa_l2cache_lock);
989	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
990	mutex_exit(&spa_l2cache_lock);
991
992	return (found);
993}
994
995void
996spa_l2cache_activate(vdev_t *vd)
997{
998	mutex_enter(&spa_l2cache_lock);
999	ASSERT(vd->vdev_isl2cache);
1000	spa_aux_activate(vd, &spa_l2cache_avl);
1001	mutex_exit(&spa_l2cache_lock);
1002}
1003
1004/*
1005 * ==========================================================================
1006 * SPA vdev locking
1007 * ==========================================================================
1008 */
1009
1010/*
1011 * Lock the given spa_t for the purpose of adding or removing a vdev.
1012 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1013 * It returns the next transaction group for the spa_t.
1014 */
1015uint64_t
1016spa_vdev_enter(spa_t *spa)
1017{
1018	mutex_enter(&spa->spa_vdev_top_lock);
1019	mutex_enter(&spa_namespace_lock);
1020	return (spa_vdev_config_enter(spa));
1021}
1022
1023/*
1024 * Internal implementation for spa_vdev_enter().  Used when a vdev
1025 * operation requires multiple syncs (i.e. removing a device) while
1026 * keeping the spa_namespace_lock held.
1027 */
1028uint64_t
1029spa_vdev_config_enter(spa_t *spa)
1030{
1031	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1032
1033	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1034
1035	return (spa_last_synced_txg(spa) + 1);
1036}
1037
1038/*
1039 * Used in combination with spa_vdev_config_enter() to allow the syncing
1040 * of multiple transactions without releasing the spa_namespace_lock.
1041 */
1042void
1043spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1044{
1045	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1046
1047	int config_changed = B_FALSE;
1048
1049	ASSERT(txg > spa_last_synced_txg(spa));
1050
1051	spa->spa_pending_vdev = NULL;
1052
1053	/*
1054	 * Reassess the DTLs.
1055	 */
1056	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1057
1058	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1059		config_changed = B_TRUE;
1060		spa->spa_config_generation++;
1061	}
1062
1063	/*
1064	 * Verify the metaslab classes.
1065	 */
1066	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1067	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1068
1069	spa_config_exit(spa, SCL_ALL, spa);
1070
1071	/*
1072	 * Panic the system if the specified tag requires it.  This
1073	 * is useful for ensuring that configurations are updated
1074	 * transactionally.
1075	 */
1076	if (zio_injection_enabled)
1077		zio_handle_panic_injection(spa, tag, 0);
1078
1079	/*
1080	 * Note: this txg_wait_synced() is important because it ensures
1081	 * that there won't be more than one config change per txg.
1082	 * This allows us to use the txg as the generation number.
1083	 */
1084	if (error == 0)
1085		txg_wait_synced(spa->spa_dsl_pool, txg);
1086
1087	if (vd != NULL) {
1088		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1089		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1090		vdev_free(vd);
1091		spa_config_exit(spa, SCL_ALL, spa);
1092	}
1093
1094	/*
1095	 * If the config changed, update the config cache.
1096	 */
1097	if (config_changed)
1098		spa_config_sync(spa, B_FALSE, B_TRUE);
1099}
1100
1101/*
1102 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1103 * locking of spa_vdev_enter(), we also want make sure the transactions have
1104 * synced to disk, and then update the global configuration cache with the new
1105 * information.
1106 */
1107int
1108spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1109{
1110	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1111	mutex_exit(&spa_namespace_lock);
1112	mutex_exit(&spa->spa_vdev_top_lock);
1113
1114	return (error);
1115}
1116
1117/*
1118 * Lock the given spa_t for the purpose of changing vdev state.
1119 */
1120void
1121spa_vdev_state_enter(spa_t *spa, int oplocks)
1122{
1123	int locks = SCL_STATE_ALL | oplocks;
1124
1125	/*
1126	 * Root pools may need to read of the underlying devfs filesystem
1127	 * when opening up a vdev.  Unfortunately if we're holding the
1128	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1129	 * the read from the root filesystem.  Instead we "prefetch"
1130	 * the associated vnodes that we need prior to opening the
1131	 * underlying devices and cache them so that we can prevent
1132	 * any I/O when we are doing the actual open.
1133	 */
1134	if (spa_is_root(spa)) {
1135		int low = locks & ~(SCL_ZIO - 1);
1136		int high = locks & ~low;
1137
1138		spa_config_enter(spa, high, spa, RW_WRITER);
1139		vdev_hold(spa->spa_root_vdev);
1140		spa_config_enter(spa, low, spa, RW_WRITER);
1141	} else {
1142		spa_config_enter(spa, locks, spa, RW_WRITER);
1143	}
1144	spa->spa_vdev_locks = locks;
1145}
1146
1147int
1148spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1149{
1150	boolean_t config_changed = B_FALSE;
1151
1152	if (vd != NULL || error == 0)
1153		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1154		    0, 0, B_FALSE);
1155
1156	if (vd != NULL) {
1157		vdev_state_dirty(vd->vdev_top);
1158		config_changed = B_TRUE;
1159		spa->spa_config_generation++;
1160	}
1161
1162	if (spa_is_root(spa))
1163		vdev_rele(spa->spa_root_vdev);
1164
1165	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1166	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1167
1168	/*
1169	 * If anything changed, wait for it to sync.  This ensures that,
1170	 * from the system administrator's perspective, zpool(1M) commands
1171	 * are synchronous.  This is important for things like zpool offline:
1172	 * when the command completes, you expect no further I/O from ZFS.
1173	 */
1174	if (vd != NULL)
1175		txg_wait_synced(spa->spa_dsl_pool, 0);
1176
1177	/*
1178	 * If the config changed, update the config cache.
1179	 */
1180	if (config_changed) {
1181		mutex_enter(&spa_namespace_lock);
1182		spa_config_sync(spa, B_FALSE, B_TRUE);
1183		mutex_exit(&spa_namespace_lock);
1184	}
1185
1186	return (error);
1187}
1188
1189/*
1190 * ==========================================================================
1191 * Miscellaneous functions
1192 * ==========================================================================
1193 */
1194
1195void
1196spa_activate_mos_feature(spa_t *spa, const char *feature)
1197{
1198	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1199	vdev_config_dirty(spa->spa_root_vdev);
1200}
1201
1202void
1203spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1204{
1205	(void) nvlist_remove_all(spa->spa_label_features, feature);
1206	vdev_config_dirty(spa->spa_root_vdev);
1207}
1208
1209/*
1210 * Rename a spa_t.
1211 */
1212int
1213spa_rename(const char *name, const char *newname)
1214{
1215	spa_t *spa;
1216	int err;
1217
1218	/*
1219	 * Lookup the spa_t and grab the config lock for writing.  We need to
1220	 * actually open the pool so that we can sync out the necessary labels.
1221	 * It's OK to call spa_open() with the namespace lock held because we
1222	 * allow recursive calls for other reasons.
1223	 */
1224	mutex_enter(&spa_namespace_lock);
1225	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1226		mutex_exit(&spa_namespace_lock);
1227		return (err);
1228	}
1229
1230	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231
1232	avl_remove(&spa_namespace_avl, spa);
1233	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1234	avl_add(&spa_namespace_avl, spa);
1235
1236	/*
1237	 * Sync all labels to disk with the new names by marking the root vdev
1238	 * dirty and waiting for it to sync.  It will pick up the new pool name
1239	 * during the sync.
1240	 */
1241	vdev_config_dirty(spa->spa_root_vdev);
1242
1243	spa_config_exit(spa, SCL_ALL, FTAG);
1244
1245	txg_wait_synced(spa->spa_dsl_pool, 0);
1246
1247	/*
1248	 * Sync the updated config cache.
1249	 */
1250	spa_config_sync(spa, B_FALSE, B_TRUE);
1251
1252	spa_close(spa, FTAG);
1253
1254	mutex_exit(&spa_namespace_lock);
1255
1256	return (0);
1257}
1258
1259/*
1260 * Return the spa_t associated with given pool_guid, if it exists.  If
1261 * device_guid is non-zero, determine whether the pool exists *and* contains
1262 * a device with the specified device_guid.
1263 */
1264spa_t *
1265spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1266{
1267	spa_t *spa;
1268	avl_tree_t *t = &spa_namespace_avl;
1269
1270	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1271
1272	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1273		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1274			continue;
1275		if (spa->spa_root_vdev == NULL)
1276			continue;
1277		if (spa_guid(spa) == pool_guid) {
1278			if (device_guid == 0)
1279				break;
1280
1281			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1282			    device_guid) != NULL)
1283				break;
1284
1285			/*
1286			 * Check any devices we may be in the process of adding.
1287			 */
1288			if (spa->spa_pending_vdev) {
1289				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1290				    device_guid) != NULL)
1291					break;
1292			}
1293		}
1294	}
1295
1296	return (spa);
1297}
1298
1299/*
1300 * Determine whether a pool with the given pool_guid exists.
1301 */
1302boolean_t
1303spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1304{
1305	return (spa_by_guid(pool_guid, device_guid) != NULL);
1306}
1307
1308char *
1309spa_strdup(const char *s)
1310{
1311	size_t len;
1312	char *new;
1313
1314	len = strlen(s);
1315	new = kmem_alloc(len + 1, KM_SLEEP);
1316	bcopy(s, new, len);
1317	new[len] = '\0';
1318
1319	return (new);
1320}
1321
1322void
1323spa_strfree(char *s)
1324{
1325	kmem_free(s, strlen(s) + 1);
1326}
1327
1328uint64_t
1329spa_get_random(uint64_t range)
1330{
1331	uint64_t r;
1332
1333	ASSERT(range != 0);
1334
1335	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1336
1337	return (r % range);
1338}
1339
1340uint64_t
1341spa_generate_guid(spa_t *spa)
1342{
1343	uint64_t guid = spa_get_random(-1ULL);
1344
1345	if (spa != NULL) {
1346		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1347			guid = spa_get_random(-1ULL);
1348	} else {
1349		while (guid == 0 || spa_guid_exists(guid, 0))
1350			guid = spa_get_random(-1ULL);
1351	}
1352
1353	return (guid);
1354}
1355
1356void
1357sprintf_blkptr(char *buf, const blkptr_t *bp)
1358{
1359	char type[256];
1360	char *checksum = NULL;
1361	char *compress = NULL;
1362
1363	if (bp != NULL) {
1364		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1365			dmu_object_byteswap_t bswap =
1366			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1367			(void) snprintf(type, sizeof (type), "bswap %s %s",
1368			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1369			    "metadata" : "data",
1370			    dmu_ot_byteswap[bswap].ob_name);
1371		} else {
1372			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1373			    sizeof (type));
1374		}
1375		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1376		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1377	}
1378
1379	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1380}
1381
1382void
1383spa_freeze(spa_t *spa)
1384{
1385	uint64_t freeze_txg = 0;
1386
1387	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1388	if (spa->spa_freeze_txg == UINT64_MAX) {
1389		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1390		spa->spa_freeze_txg = freeze_txg;
1391	}
1392	spa_config_exit(spa, SCL_ALL, FTAG);
1393	if (freeze_txg != 0)
1394		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1395}
1396
1397void
1398zfs_panic_recover(const char *fmt, ...)
1399{
1400	va_list adx;
1401
1402	va_start(adx, fmt);
1403	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1404	va_end(adx);
1405}
1406
1407/*
1408 * This is a stripped-down version of strtoull, suitable only for converting
1409 * lowercase hexadecimal numbers that don't overflow.
1410 */
1411uint64_t
1412zfs_strtonum(const char *str, char **nptr)
1413{
1414	uint64_t val = 0;
1415	char c;
1416	int digit;
1417
1418	while ((c = *str) != '\0') {
1419		if (c >= '0' && c <= '9')
1420			digit = c - '0';
1421		else if (c >= 'a' && c <= 'f')
1422			digit = 10 + c - 'a';
1423		else
1424			break;
1425
1426		val *= 16;
1427		val += digit;
1428
1429		str++;
1430	}
1431
1432	if (nptr)
1433		*nptr = (char *)str;
1434
1435	return (val);
1436}
1437
1438/*
1439 * ==========================================================================
1440 * Accessor functions
1441 * ==========================================================================
1442 */
1443
1444boolean_t
1445spa_shutting_down(spa_t *spa)
1446{
1447	return (spa->spa_async_suspended);
1448}
1449
1450dsl_pool_t *
1451spa_get_dsl(spa_t *spa)
1452{
1453	return (spa->spa_dsl_pool);
1454}
1455
1456boolean_t
1457spa_is_initializing(spa_t *spa)
1458{
1459	return (spa->spa_is_initializing);
1460}
1461
1462blkptr_t *
1463spa_get_rootblkptr(spa_t *spa)
1464{
1465	return (&spa->spa_ubsync.ub_rootbp);
1466}
1467
1468void
1469spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1470{
1471	spa->spa_uberblock.ub_rootbp = *bp;
1472}
1473
1474void
1475spa_altroot(spa_t *spa, char *buf, size_t buflen)
1476{
1477	if (spa->spa_root == NULL)
1478		buf[0] = '\0';
1479	else
1480		(void) strncpy(buf, spa->spa_root, buflen);
1481}
1482
1483int
1484spa_sync_pass(spa_t *spa)
1485{
1486	return (spa->spa_sync_pass);
1487}
1488
1489char *
1490spa_name(spa_t *spa)
1491{
1492	return (spa->spa_name);
1493}
1494
1495uint64_t
1496spa_guid(spa_t *spa)
1497{
1498	dsl_pool_t *dp = spa_get_dsl(spa);
1499	uint64_t guid;
1500
1501	/*
1502	 * If we fail to parse the config during spa_load(), we can go through
1503	 * the error path (which posts an ereport) and end up here with no root
1504	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1505	 * this case.
1506	 */
1507	if (spa->spa_root_vdev == NULL)
1508		return (spa->spa_config_guid);
1509
1510	guid = spa->spa_last_synced_guid != 0 ?
1511	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1512
1513	/*
1514	 * Return the most recently synced out guid unless we're
1515	 * in syncing context.
1516	 */
1517	if (dp && dsl_pool_sync_context(dp))
1518		return (spa->spa_root_vdev->vdev_guid);
1519	else
1520		return (guid);
1521}
1522
1523uint64_t
1524spa_load_guid(spa_t *spa)
1525{
1526	/*
1527	 * This is a GUID that exists solely as a reference for the
1528	 * purposes of the arc.  It is generated at load time, and
1529	 * is never written to persistent storage.
1530	 */
1531	return (spa->spa_load_guid);
1532}
1533
1534uint64_t
1535spa_last_synced_txg(spa_t *spa)
1536{
1537	return (spa->spa_ubsync.ub_txg);
1538}
1539
1540uint64_t
1541spa_first_txg(spa_t *spa)
1542{
1543	return (spa->spa_first_txg);
1544}
1545
1546uint64_t
1547spa_syncing_txg(spa_t *spa)
1548{
1549	return (spa->spa_syncing_txg);
1550}
1551
1552pool_state_t
1553spa_state(spa_t *spa)
1554{
1555	return (spa->spa_state);
1556}
1557
1558spa_load_state_t
1559spa_load_state(spa_t *spa)
1560{
1561	return (spa->spa_load_state);
1562}
1563
1564uint64_t
1565spa_freeze_txg(spa_t *spa)
1566{
1567	return (spa->spa_freeze_txg);
1568}
1569
1570/* ARGSUSED */
1571uint64_t
1572spa_get_asize(spa_t *spa, uint64_t lsize)
1573{
1574	return (lsize * spa_asize_inflation);
1575}
1576
1577uint64_t
1578spa_get_dspace(spa_t *spa)
1579{
1580	return (spa->spa_dspace);
1581}
1582
1583void
1584spa_update_dspace(spa_t *spa)
1585{
1586	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1587	    ddt_get_dedup_dspace(spa);
1588}
1589
1590/*
1591 * Return the failure mode that has been set to this pool. The default
1592 * behavior will be to block all I/Os when a complete failure occurs.
1593 */
1594uint8_t
1595spa_get_failmode(spa_t *spa)
1596{
1597	return (spa->spa_failmode);
1598}
1599
1600boolean_t
1601spa_suspended(spa_t *spa)
1602{
1603	return (spa->spa_suspended);
1604}
1605
1606uint64_t
1607spa_version(spa_t *spa)
1608{
1609	return (spa->spa_ubsync.ub_version);
1610}
1611
1612boolean_t
1613spa_deflate(spa_t *spa)
1614{
1615	return (spa->spa_deflate);
1616}
1617
1618metaslab_class_t *
1619spa_normal_class(spa_t *spa)
1620{
1621	return (spa->spa_normal_class);
1622}
1623
1624metaslab_class_t *
1625spa_log_class(spa_t *spa)
1626{
1627	return (spa->spa_log_class);
1628}
1629
1630int
1631spa_max_replication(spa_t *spa)
1632{
1633	/*
1634	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1635	 * handle BPs with more than one DVA allocated.  Set our max
1636	 * replication level accordingly.
1637	 */
1638	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1639		return (1);
1640	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1641}
1642
1643int
1644spa_prev_software_version(spa_t *spa)
1645{
1646	return (spa->spa_prev_software_version);
1647}
1648
1649uint64_t
1650spa_deadman_synctime(spa_t *spa)
1651{
1652	return (spa->spa_deadman_synctime);
1653}
1654
1655uint64_t
1656dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1657{
1658	uint64_t asize = DVA_GET_ASIZE(dva);
1659	uint64_t dsize = asize;
1660
1661	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1662
1663	if (asize != 0 && spa->spa_deflate) {
1664		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1665		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1666	}
1667
1668	return (dsize);
1669}
1670
1671uint64_t
1672bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1673{
1674	uint64_t dsize = 0;
1675
1676	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1677		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1678
1679	return (dsize);
1680}
1681
1682uint64_t
1683bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1684{
1685	uint64_t dsize = 0;
1686
1687	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1688
1689	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1690		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1691
1692	spa_config_exit(spa, SCL_VDEV, FTAG);
1693
1694	return (dsize);
1695}
1696
1697/*
1698 * ==========================================================================
1699 * Initialization and Termination
1700 * ==========================================================================
1701 */
1702
1703static int
1704spa_name_compare(const void *a1, const void *a2)
1705{
1706	const spa_t *s1 = a1;
1707	const spa_t *s2 = a2;
1708	int s;
1709
1710	s = strcmp(s1->spa_name, s2->spa_name);
1711	if (s > 0)
1712		return (1);
1713	if (s < 0)
1714		return (-1);
1715	return (0);
1716}
1717
1718int
1719spa_busy(void)
1720{
1721	return (spa_active_count);
1722}
1723
1724void
1725spa_boot_init()
1726{
1727	spa_config_load();
1728}
1729
1730#ifdef _KERNEL
1731EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1732#endif
1733
1734void
1735spa_init(int mode)
1736{
1737	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1738	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1739	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1740	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1741
1742	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1743	    offsetof(spa_t, spa_avl));
1744
1745	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1746	    offsetof(spa_aux_t, aux_avl));
1747
1748	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1749	    offsetof(spa_aux_t, aux_avl));
1750
1751	spa_mode_global = mode;
1752
1753#ifdef illumos
1754#ifdef _KERNEL
1755	spa_arch_init();
1756#else
1757	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1758		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1759		if (arc_procfd == -1) {
1760			perror("could not enable watchpoints: "
1761			    "opening /proc/self/ctl failed: ");
1762		} else {
1763			arc_watch = B_TRUE;
1764		}
1765	}
1766#endif
1767#endif /* illumos */
1768	refcount_sysinit();
1769	unique_init();
1770	range_tree_init();
1771	zio_init();
1772	lz4_init();
1773	dmu_init();
1774	zil_init();
1775	vdev_cache_stat_init();
1776	zfs_prop_init();
1777	zpool_prop_init();
1778	zpool_feature_init();
1779	spa_config_load();
1780	l2arc_start();
1781#ifndef illumos
1782#ifdef _KERNEL
1783	zfs_deadman_init();
1784#endif
1785#endif	/* !illumos */
1786}
1787
1788void
1789spa_fini(void)
1790{
1791	l2arc_stop();
1792
1793	spa_evict_all();
1794
1795	vdev_cache_stat_fini();
1796	zil_fini();
1797	dmu_fini();
1798	lz4_fini();
1799	zio_fini();
1800	range_tree_fini();
1801	unique_fini();
1802	refcount_fini();
1803
1804	avl_destroy(&spa_namespace_avl);
1805	avl_destroy(&spa_spare_avl);
1806	avl_destroy(&spa_l2cache_avl);
1807
1808	cv_destroy(&spa_namespace_cv);
1809	mutex_destroy(&spa_namespace_lock);
1810	mutex_destroy(&spa_spare_lock);
1811	mutex_destroy(&spa_l2cache_lock);
1812}
1813
1814/*
1815 * Return whether this pool has slogs. No locking needed.
1816 * It's not a problem if the wrong answer is returned as it's only for
1817 * performance and not correctness
1818 */
1819boolean_t
1820spa_has_slogs(spa_t *spa)
1821{
1822	return (spa->spa_log_class->mc_rotor != NULL);
1823}
1824
1825spa_log_state_t
1826spa_get_log_state(spa_t *spa)
1827{
1828	return (spa->spa_log_state);
1829}
1830
1831void
1832spa_set_log_state(spa_t *spa, spa_log_state_t state)
1833{
1834	spa->spa_log_state = state;
1835}
1836
1837boolean_t
1838spa_is_root(spa_t *spa)
1839{
1840	return (spa->spa_is_root);
1841}
1842
1843boolean_t
1844spa_writeable(spa_t *spa)
1845{
1846	return (!!(spa->spa_mode & FWRITE));
1847}
1848
1849int
1850spa_mode(spa_t *spa)
1851{
1852	return (spa->spa_mode);
1853}
1854
1855uint64_t
1856spa_bootfs(spa_t *spa)
1857{
1858	return (spa->spa_bootfs);
1859}
1860
1861uint64_t
1862spa_delegation(spa_t *spa)
1863{
1864	return (spa->spa_delegation);
1865}
1866
1867objset_t *
1868spa_meta_objset(spa_t *spa)
1869{
1870	return (spa->spa_meta_objset);
1871}
1872
1873enum zio_checksum
1874spa_dedup_checksum(spa_t *spa)
1875{
1876	return (spa->spa_dedup_checksum);
1877}
1878
1879/*
1880 * Reset pool scan stat per scan pass (or reboot).
1881 */
1882void
1883spa_scan_stat_init(spa_t *spa)
1884{
1885	/* data not stored on disk */
1886	spa->spa_scan_pass_start = gethrestime_sec();
1887	spa->spa_scan_pass_exam = 0;
1888	vdev_scan_stat_init(spa->spa_root_vdev);
1889}
1890
1891/*
1892 * Get scan stats for zpool status reports
1893 */
1894int
1895spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1896{
1897	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1898
1899	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1900		return (SET_ERROR(ENOENT));
1901	bzero(ps, sizeof (pool_scan_stat_t));
1902
1903	/* data stored on disk */
1904	ps->pss_func = scn->scn_phys.scn_func;
1905	ps->pss_start_time = scn->scn_phys.scn_start_time;
1906	ps->pss_end_time = scn->scn_phys.scn_end_time;
1907	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1908	ps->pss_examined = scn->scn_phys.scn_examined;
1909	ps->pss_to_process = scn->scn_phys.scn_to_process;
1910	ps->pss_processed = scn->scn_phys.scn_processed;
1911	ps->pss_errors = scn->scn_phys.scn_errors;
1912	ps->pss_state = scn->scn_phys.scn_state;
1913
1914	/* data not stored on disk */
1915	ps->pss_pass_start = spa->spa_scan_pass_start;
1916	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1917
1918	return (0);
1919}
1920
1921boolean_t
1922spa_debug_enabled(spa_t *spa)
1923{
1924	return (spa->spa_debug);
1925}
1926