spa_misc.c revision 262120
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
257 */
258int zfs_recover = 0;
259SYSCTL_DECL(_vfs_zfs);
260TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
261SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
262    "Try to recover from otherwise-fatal errors.");
263
264/*
265 * Expiration time in milliseconds. This value has two meanings. First it is
266 * used to determine when the spa_deadman() logic should fire. By default the
267 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
268 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
269 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
270 * in a system panic.
271 */
272uint64_t zfs_deadman_synctime_ms = 1000000ULL;
273TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
274SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
275    &zfs_deadman_synctime_ms, 0,
276    "Stalled ZFS I/O expiration time in milliseconds");
277
278/*
279 * Check time in milliseconds. This defines the frequency at which we check
280 * for hung I/O.
281 */
282uint64_t zfs_deadman_checktime_ms = 5000ULL;
283TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
284SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
285    &zfs_deadman_checktime_ms, 0,
286    "Period of checks for stalled ZFS I/O in milliseconds");
287
288/*
289 * Default value of -1 for zfs_deadman_enabled is resolved in
290 * zfs_deadman_init()
291 */
292int zfs_deadman_enabled = -1;
293TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
294SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
295    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
296
297/*
298 * The worst case is single-sector max-parity RAID-Z blocks, in which
299 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
300 * times the size; so just assume that.  Add to this the fact that
301 * we can have up to 3 DVAs per bp, and one more factor of 2 because
302 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
303 * the worst case is:
304 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
305 */
306int spa_asize_inflation = 24;
307
308#ifndef illumos
309#ifdef _KERNEL
310static void
311zfs_deadman_init()
312{
313	/*
314	 * If we are not i386 or amd64 or in a virtual machine,
315	 * disable ZFS deadman thread by default
316	 */
317	if (zfs_deadman_enabled == -1) {
318#if defined(__amd64__) || defined(__i386__)
319		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
320#else
321		zfs_deadman_enabled = 0;
322#endif
323	}
324}
325#endif	/* _KERNEL */
326#endif	/* !illumos */
327
328/*
329 * ==========================================================================
330 * SPA config locking
331 * ==========================================================================
332 */
333static void
334spa_config_lock_init(spa_t *spa)
335{
336	for (int i = 0; i < SCL_LOCKS; i++) {
337		spa_config_lock_t *scl = &spa->spa_config_lock[i];
338		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
339		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
340		refcount_create_untracked(&scl->scl_count);
341		scl->scl_writer = NULL;
342		scl->scl_write_wanted = 0;
343	}
344}
345
346static void
347spa_config_lock_destroy(spa_t *spa)
348{
349	for (int i = 0; i < SCL_LOCKS; i++) {
350		spa_config_lock_t *scl = &spa->spa_config_lock[i];
351		mutex_destroy(&scl->scl_lock);
352		cv_destroy(&scl->scl_cv);
353		refcount_destroy(&scl->scl_count);
354		ASSERT(scl->scl_writer == NULL);
355		ASSERT(scl->scl_write_wanted == 0);
356	}
357}
358
359int
360spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
361{
362	for (int i = 0; i < SCL_LOCKS; i++) {
363		spa_config_lock_t *scl = &spa->spa_config_lock[i];
364		if (!(locks & (1 << i)))
365			continue;
366		mutex_enter(&scl->scl_lock);
367		if (rw == RW_READER) {
368			if (scl->scl_writer || scl->scl_write_wanted) {
369				mutex_exit(&scl->scl_lock);
370				spa_config_exit(spa, locks ^ (1 << i), tag);
371				return (0);
372			}
373		} else {
374			ASSERT(scl->scl_writer != curthread);
375			if (!refcount_is_zero(&scl->scl_count)) {
376				mutex_exit(&scl->scl_lock);
377				spa_config_exit(spa, locks ^ (1 << i), tag);
378				return (0);
379			}
380			scl->scl_writer = curthread;
381		}
382		(void) refcount_add(&scl->scl_count, tag);
383		mutex_exit(&scl->scl_lock);
384	}
385	return (1);
386}
387
388void
389spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
390{
391	int wlocks_held = 0;
392
393	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
394
395	for (int i = 0; i < SCL_LOCKS; i++) {
396		spa_config_lock_t *scl = &spa->spa_config_lock[i];
397		if (scl->scl_writer == curthread)
398			wlocks_held |= (1 << i);
399		if (!(locks & (1 << i)))
400			continue;
401		mutex_enter(&scl->scl_lock);
402		if (rw == RW_READER) {
403			while (scl->scl_writer || scl->scl_write_wanted) {
404				cv_wait(&scl->scl_cv, &scl->scl_lock);
405			}
406		} else {
407			ASSERT(scl->scl_writer != curthread);
408			while (!refcount_is_zero(&scl->scl_count)) {
409				scl->scl_write_wanted++;
410				cv_wait(&scl->scl_cv, &scl->scl_lock);
411				scl->scl_write_wanted--;
412			}
413			scl->scl_writer = curthread;
414		}
415		(void) refcount_add(&scl->scl_count, tag);
416		mutex_exit(&scl->scl_lock);
417	}
418	ASSERT(wlocks_held <= locks);
419}
420
421void
422spa_config_exit(spa_t *spa, int locks, void *tag)
423{
424	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
425		spa_config_lock_t *scl = &spa->spa_config_lock[i];
426		if (!(locks & (1 << i)))
427			continue;
428		mutex_enter(&scl->scl_lock);
429		ASSERT(!refcount_is_zero(&scl->scl_count));
430		if (refcount_remove(&scl->scl_count, tag) == 0) {
431			ASSERT(scl->scl_writer == NULL ||
432			    scl->scl_writer == curthread);
433			scl->scl_writer = NULL;	/* OK in either case */
434			cv_broadcast(&scl->scl_cv);
435		}
436		mutex_exit(&scl->scl_lock);
437	}
438}
439
440int
441spa_config_held(spa_t *spa, int locks, krw_t rw)
442{
443	int locks_held = 0;
444
445	for (int i = 0; i < SCL_LOCKS; i++) {
446		spa_config_lock_t *scl = &spa->spa_config_lock[i];
447		if (!(locks & (1 << i)))
448			continue;
449		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
450		    (rw == RW_WRITER && scl->scl_writer == curthread))
451			locks_held |= 1 << i;
452	}
453
454	return (locks_held);
455}
456
457/*
458 * ==========================================================================
459 * SPA namespace functions
460 * ==========================================================================
461 */
462
463/*
464 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
465 * Returns NULL if no matching spa_t is found.
466 */
467spa_t *
468spa_lookup(const char *name)
469{
470	static spa_t search;	/* spa_t is large; don't allocate on stack */
471	spa_t *spa;
472	avl_index_t where;
473	char *cp;
474
475	ASSERT(MUTEX_HELD(&spa_namespace_lock));
476
477	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
478
479	/*
480	 * If it's a full dataset name, figure out the pool name and
481	 * just use that.
482	 */
483	cp = strpbrk(search.spa_name, "/@");
484	if (cp != NULL)
485		*cp = '\0';
486
487	spa = avl_find(&spa_namespace_avl, &search, &where);
488
489	return (spa);
490}
491
492/*
493 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
494 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
495 * looking for potentially hung I/Os.
496 */
497void
498spa_deadman(void *arg)
499{
500	spa_t *spa = arg;
501
502	/*
503	 * Disable the deadman timer if the pool is suspended.
504	 */
505	if (spa_suspended(spa)) {
506#ifdef illumos
507		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
508#else
509		/* Nothing.  just don't schedule any future callouts. */
510#endif
511		return;
512	}
513
514	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
515	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
516	    ++spa->spa_deadman_calls);
517	if (zfs_deadman_enabled)
518		vdev_deadman(spa->spa_root_vdev);
519}
520
521/*
522 * Create an uninitialized spa_t with the given name.  Requires
523 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
524 * exist by calling spa_lookup() first.
525 */
526spa_t *
527spa_add(const char *name, nvlist_t *config, const char *altroot)
528{
529	spa_t *spa;
530	spa_config_dirent_t *dp;
531#ifdef illumos
532	cyc_handler_t hdlr;
533	cyc_time_t when;
534#endif
535
536	ASSERT(MUTEX_HELD(&spa_namespace_lock));
537
538	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
539
540	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
541	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
542	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
543	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
544	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
545	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
546	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
547	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
548	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
549
550	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
551	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
552	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
553	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
554
555	for (int t = 0; t < TXG_SIZE; t++)
556		bplist_create(&spa->spa_free_bplist[t]);
557
558	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
559	spa->spa_state = POOL_STATE_UNINITIALIZED;
560	spa->spa_freeze_txg = UINT64_MAX;
561	spa->spa_final_txg = UINT64_MAX;
562	spa->spa_load_max_txg = UINT64_MAX;
563	spa->spa_proc = &p0;
564	spa->spa_proc_state = SPA_PROC_NONE;
565
566#ifdef illumos
567	hdlr.cyh_func = spa_deadman;
568	hdlr.cyh_arg = spa;
569	hdlr.cyh_level = CY_LOW_LEVEL;
570#endif
571
572	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
573
574#ifdef illumos
575	/*
576	 * This determines how often we need to check for hung I/Os after
577	 * the cyclic has already fired. Since checking for hung I/Os is
578	 * an expensive operation we don't want to check too frequently.
579	 * Instead wait for 5 seconds before checking again.
580	 */
581	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
582	when.cyt_when = CY_INFINITY;
583	mutex_enter(&cpu_lock);
584	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
585	mutex_exit(&cpu_lock);
586#else	/* !illumos */
587#ifdef _KERNEL
588	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
589#endif
590#endif
591	refcount_create(&spa->spa_refcount);
592	spa_config_lock_init(spa);
593
594	avl_add(&spa_namespace_avl, spa);
595
596	/*
597	 * Set the alternate root, if there is one.
598	 */
599	if (altroot) {
600		spa->spa_root = spa_strdup(altroot);
601		spa_active_count++;
602	}
603
604	/*
605	 * Every pool starts with the default cachefile
606	 */
607	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
608	    offsetof(spa_config_dirent_t, scd_link));
609
610	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
611	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
612	list_insert_head(&spa->spa_config_list, dp);
613
614	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
615	    KM_SLEEP) == 0);
616
617	if (config != NULL) {
618		nvlist_t *features;
619
620		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
621		    &features) == 0) {
622			VERIFY(nvlist_dup(features, &spa->spa_label_features,
623			    0) == 0);
624		}
625
626		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
627	}
628
629	if (spa->spa_label_features == NULL) {
630		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
631		    KM_SLEEP) == 0);
632	}
633
634	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
635
636	return (spa);
637}
638
639/*
640 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
641 * spa_namespace_lock.  This is called only after the spa_t has been closed and
642 * deactivated.
643 */
644void
645spa_remove(spa_t *spa)
646{
647	spa_config_dirent_t *dp;
648
649	ASSERT(MUTEX_HELD(&spa_namespace_lock));
650	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
651
652	nvlist_free(spa->spa_config_splitting);
653
654	avl_remove(&spa_namespace_avl, spa);
655	cv_broadcast(&spa_namespace_cv);
656
657	if (spa->spa_root) {
658		spa_strfree(spa->spa_root);
659		spa_active_count--;
660	}
661
662	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
663		list_remove(&spa->spa_config_list, dp);
664		if (dp->scd_path != NULL)
665			spa_strfree(dp->scd_path);
666		kmem_free(dp, sizeof (spa_config_dirent_t));
667	}
668
669	list_destroy(&spa->spa_config_list);
670
671	nvlist_free(spa->spa_label_features);
672	nvlist_free(spa->spa_load_info);
673	spa_config_set(spa, NULL);
674
675#ifdef illumos
676	mutex_enter(&cpu_lock);
677	if (spa->spa_deadman_cycid != CYCLIC_NONE)
678		cyclic_remove(spa->spa_deadman_cycid);
679	mutex_exit(&cpu_lock);
680	spa->spa_deadman_cycid = CYCLIC_NONE;
681#else	/* !illumos */
682#ifdef _KERNEL
683	callout_drain(&spa->spa_deadman_cycid);
684#endif
685#endif
686
687	refcount_destroy(&spa->spa_refcount);
688
689	spa_config_lock_destroy(spa);
690
691	for (int t = 0; t < TXG_SIZE; t++)
692		bplist_destroy(&spa->spa_free_bplist[t]);
693
694	cv_destroy(&spa->spa_async_cv);
695	cv_destroy(&spa->spa_proc_cv);
696	cv_destroy(&spa->spa_scrub_io_cv);
697	cv_destroy(&spa->spa_suspend_cv);
698
699	mutex_destroy(&spa->spa_async_lock);
700	mutex_destroy(&spa->spa_errlist_lock);
701	mutex_destroy(&spa->spa_errlog_lock);
702	mutex_destroy(&spa->spa_history_lock);
703	mutex_destroy(&spa->spa_proc_lock);
704	mutex_destroy(&spa->spa_props_lock);
705	mutex_destroy(&spa->spa_scrub_lock);
706	mutex_destroy(&spa->spa_suspend_lock);
707	mutex_destroy(&spa->spa_vdev_top_lock);
708
709	kmem_free(spa, sizeof (spa_t));
710}
711
712/*
713 * Given a pool, return the next pool in the namespace, or NULL if there is
714 * none.  If 'prev' is NULL, return the first pool.
715 */
716spa_t *
717spa_next(spa_t *prev)
718{
719	ASSERT(MUTEX_HELD(&spa_namespace_lock));
720
721	if (prev)
722		return (AVL_NEXT(&spa_namespace_avl, prev));
723	else
724		return (avl_first(&spa_namespace_avl));
725}
726
727/*
728 * ==========================================================================
729 * SPA refcount functions
730 * ==========================================================================
731 */
732
733/*
734 * Add a reference to the given spa_t.  Must have at least one reference, or
735 * have the namespace lock held.
736 */
737void
738spa_open_ref(spa_t *spa, void *tag)
739{
740	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
741	    MUTEX_HELD(&spa_namespace_lock));
742	(void) refcount_add(&spa->spa_refcount, tag);
743}
744
745/*
746 * Remove a reference to the given spa_t.  Must have at least one reference, or
747 * have the namespace lock held.
748 */
749void
750spa_close(spa_t *spa, void *tag)
751{
752	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
753	    MUTEX_HELD(&spa_namespace_lock));
754	(void) refcount_remove(&spa->spa_refcount, tag);
755}
756
757/*
758 * Check to see if the spa refcount is zero.  Must be called with
759 * spa_namespace_lock held.  We really compare against spa_minref, which is the
760 * number of references acquired when opening a pool
761 */
762boolean_t
763spa_refcount_zero(spa_t *spa)
764{
765	ASSERT(MUTEX_HELD(&spa_namespace_lock));
766
767	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
768}
769
770/*
771 * ==========================================================================
772 * SPA spare and l2cache tracking
773 * ==========================================================================
774 */
775
776/*
777 * Hot spares and cache devices are tracked using the same code below,
778 * for 'auxiliary' devices.
779 */
780
781typedef struct spa_aux {
782	uint64_t	aux_guid;
783	uint64_t	aux_pool;
784	avl_node_t	aux_avl;
785	int		aux_count;
786} spa_aux_t;
787
788static int
789spa_aux_compare(const void *a, const void *b)
790{
791	const spa_aux_t *sa = a;
792	const spa_aux_t *sb = b;
793
794	if (sa->aux_guid < sb->aux_guid)
795		return (-1);
796	else if (sa->aux_guid > sb->aux_guid)
797		return (1);
798	else
799		return (0);
800}
801
802void
803spa_aux_add(vdev_t *vd, avl_tree_t *avl)
804{
805	avl_index_t where;
806	spa_aux_t search;
807	spa_aux_t *aux;
808
809	search.aux_guid = vd->vdev_guid;
810	if ((aux = avl_find(avl, &search, &where)) != NULL) {
811		aux->aux_count++;
812	} else {
813		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
814		aux->aux_guid = vd->vdev_guid;
815		aux->aux_count = 1;
816		avl_insert(avl, aux, where);
817	}
818}
819
820void
821spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
822{
823	spa_aux_t search;
824	spa_aux_t *aux;
825	avl_index_t where;
826
827	search.aux_guid = vd->vdev_guid;
828	aux = avl_find(avl, &search, &where);
829
830	ASSERT(aux != NULL);
831
832	if (--aux->aux_count == 0) {
833		avl_remove(avl, aux);
834		kmem_free(aux, sizeof (spa_aux_t));
835	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
836		aux->aux_pool = 0ULL;
837	}
838}
839
840boolean_t
841spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
842{
843	spa_aux_t search, *found;
844
845	search.aux_guid = guid;
846	found = avl_find(avl, &search, NULL);
847
848	if (pool) {
849		if (found)
850			*pool = found->aux_pool;
851		else
852			*pool = 0ULL;
853	}
854
855	if (refcnt) {
856		if (found)
857			*refcnt = found->aux_count;
858		else
859			*refcnt = 0;
860	}
861
862	return (found != NULL);
863}
864
865void
866spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
867{
868	spa_aux_t search, *found;
869	avl_index_t where;
870
871	search.aux_guid = vd->vdev_guid;
872	found = avl_find(avl, &search, &where);
873	ASSERT(found != NULL);
874	ASSERT(found->aux_pool == 0ULL);
875
876	found->aux_pool = spa_guid(vd->vdev_spa);
877}
878
879/*
880 * Spares are tracked globally due to the following constraints:
881 *
882 * 	- A spare may be part of multiple pools.
883 * 	- A spare may be added to a pool even if it's actively in use within
884 *	  another pool.
885 * 	- A spare in use in any pool can only be the source of a replacement if
886 *	  the target is a spare in the same pool.
887 *
888 * We keep track of all spares on the system through the use of a reference
889 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
890 * spare, then we bump the reference count in the AVL tree.  In addition, we set
891 * the 'vdev_isspare' member to indicate that the device is a spare (active or
892 * inactive).  When a spare is made active (used to replace a device in the
893 * pool), we also keep track of which pool its been made a part of.
894 *
895 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
896 * called under the spa_namespace lock as part of vdev reconfiguration.  The
897 * separate spare lock exists for the status query path, which does not need to
898 * be completely consistent with respect to other vdev configuration changes.
899 */
900
901static int
902spa_spare_compare(const void *a, const void *b)
903{
904	return (spa_aux_compare(a, b));
905}
906
907void
908spa_spare_add(vdev_t *vd)
909{
910	mutex_enter(&spa_spare_lock);
911	ASSERT(!vd->vdev_isspare);
912	spa_aux_add(vd, &spa_spare_avl);
913	vd->vdev_isspare = B_TRUE;
914	mutex_exit(&spa_spare_lock);
915}
916
917void
918spa_spare_remove(vdev_t *vd)
919{
920	mutex_enter(&spa_spare_lock);
921	ASSERT(vd->vdev_isspare);
922	spa_aux_remove(vd, &spa_spare_avl);
923	vd->vdev_isspare = B_FALSE;
924	mutex_exit(&spa_spare_lock);
925}
926
927boolean_t
928spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
929{
930	boolean_t found;
931
932	mutex_enter(&spa_spare_lock);
933	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
934	mutex_exit(&spa_spare_lock);
935
936	return (found);
937}
938
939void
940spa_spare_activate(vdev_t *vd)
941{
942	mutex_enter(&spa_spare_lock);
943	ASSERT(vd->vdev_isspare);
944	spa_aux_activate(vd, &spa_spare_avl);
945	mutex_exit(&spa_spare_lock);
946}
947
948/*
949 * Level 2 ARC devices are tracked globally for the same reasons as spares.
950 * Cache devices currently only support one pool per cache device, and so
951 * for these devices the aux reference count is currently unused beyond 1.
952 */
953
954static int
955spa_l2cache_compare(const void *a, const void *b)
956{
957	return (spa_aux_compare(a, b));
958}
959
960void
961spa_l2cache_add(vdev_t *vd)
962{
963	mutex_enter(&spa_l2cache_lock);
964	ASSERT(!vd->vdev_isl2cache);
965	spa_aux_add(vd, &spa_l2cache_avl);
966	vd->vdev_isl2cache = B_TRUE;
967	mutex_exit(&spa_l2cache_lock);
968}
969
970void
971spa_l2cache_remove(vdev_t *vd)
972{
973	mutex_enter(&spa_l2cache_lock);
974	ASSERT(vd->vdev_isl2cache);
975	spa_aux_remove(vd, &spa_l2cache_avl);
976	vd->vdev_isl2cache = B_FALSE;
977	mutex_exit(&spa_l2cache_lock);
978}
979
980boolean_t
981spa_l2cache_exists(uint64_t guid, uint64_t *pool)
982{
983	boolean_t found;
984
985	mutex_enter(&spa_l2cache_lock);
986	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
987	mutex_exit(&spa_l2cache_lock);
988
989	return (found);
990}
991
992void
993spa_l2cache_activate(vdev_t *vd)
994{
995	mutex_enter(&spa_l2cache_lock);
996	ASSERT(vd->vdev_isl2cache);
997	spa_aux_activate(vd, &spa_l2cache_avl);
998	mutex_exit(&spa_l2cache_lock);
999}
1000
1001/*
1002 * ==========================================================================
1003 * SPA vdev locking
1004 * ==========================================================================
1005 */
1006
1007/*
1008 * Lock the given spa_t for the purpose of adding or removing a vdev.
1009 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1010 * It returns the next transaction group for the spa_t.
1011 */
1012uint64_t
1013spa_vdev_enter(spa_t *spa)
1014{
1015	mutex_enter(&spa->spa_vdev_top_lock);
1016	mutex_enter(&spa_namespace_lock);
1017	return (spa_vdev_config_enter(spa));
1018}
1019
1020/*
1021 * Internal implementation for spa_vdev_enter().  Used when a vdev
1022 * operation requires multiple syncs (i.e. removing a device) while
1023 * keeping the spa_namespace_lock held.
1024 */
1025uint64_t
1026spa_vdev_config_enter(spa_t *spa)
1027{
1028	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1029
1030	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1031
1032	return (spa_last_synced_txg(spa) + 1);
1033}
1034
1035/*
1036 * Used in combination with spa_vdev_config_enter() to allow the syncing
1037 * of multiple transactions without releasing the spa_namespace_lock.
1038 */
1039void
1040spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1041{
1042	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1043
1044	int config_changed = B_FALSE;
1045
1046	ASSERT(txg > spa_last_synced_txg(spa));
1047
1048	spa->spa_pending_vdev = NULL;
1049
1050	/*
1051	 * Reassess the DTLs.
1052	 */
1053	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1054
1055	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1056		config_changed = B_TRUE;
1057		spa->spa_config_generation++;
1058	}
1059
1060	/*
1061	 * Verify the metaslab classes.
1062	 */
1063	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1064	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1065
1066	spa_config_exit(spa, SCL_ALL, spa);
1067
1068	/*
1069	 * Panic the system if the specified tag requires it.  This
1070	 * is useful for ensuring that configurations are updated
1071	 * transactionally.
1072	 */
1073	if (zio_injection_enabled)
1074		zio_handle_panic_injection(spa, tag, 0);
1075
1076	/*
1077	 * Note: this txg_wait_synced() is important because it ensures
1078	 * that there won't be more than one config change per txg.
1079	 * This allows us to use the txg as the generation number.
1080	 */
1081	if (error == 0)
1082		txg_wait_synced(spa->spa_dsl_pool, txg);
1083
1084	if (vd != NULL) {
1085		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1086		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1087		vdev_free(vd);
1088		spa_config_exit(spa, SCL_ALL, spa);
1089	}
1090
1091	/*
1092	 * If the config changed, update the config cache.
1093	 */
1094	if (config_changed)
1095		spa_config_sync(spa, B_FALSE, B_TRUE);
1096}
1097
1098/*
1099 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1100 * locking of spa_vdev_enter(), we also want make sure the transactions have
1101 * synced to disk, and then update the global configuration cache with the new
1102 * information.
1103 */
1104int
1105spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1106{
1107	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1108	mutex_exit(&spa_namespace_lock);
1109	mutex_exit(&spa->spa_vdev_top_lock);
1110
1111	return (error);
1112}
1113
1114/*
1115 * Lock the given spa_t for the purpose of changing vdev state.
1116 */
1117void
1118spa_vdev_state_enter(spa_t *spa, int oplocks)
1119{
1120	int locks = SCL_STATE_ALL | oplocks;
1121
1122	/*
1123	 * Root pools may need to read of the underlying devfs filesystem
1124	 * when opening up a vdev.  Unfortunately if we're holding the
1125	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1126	 * the read from the root filesystem.  Instead we "prefetch"
1127	 * the associated vnodes that we need prior to opening the
1128	 * underlying devices and cache them so that we can prevent
1129	 * any I/O when we are doing the actual open.
1130	 */
1131	if (spa_is_root(spa)) {
1132		int low = locks & ~(SCL_ZIO - 1);
1133		int high = locks & ~low;
1134
1135		spa_config_enter(spa, high, spa, RW_WRITER);
1136		vdev_hold(spa->spa_root_vdev);
1137		spa_config_enter(spa, low, spa, RW_WRITER);
1138	} else {
1139		spa_config_enter(spa, locks, spa, RW_WRITER);
1140	}
1141	spa->spa_vdev_locks = locks;
1142}
1143
1144int
1145spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1146{
1147	boolean_t config_changed = B_FALSE;
1148
1149	if (vd != NULL || error == 0)
1150		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1151		    0, 0, B_FALSE);
1152
1153	if (vd != NULL) {
1154		vdev_state_dirty(vd->vdev_top);
1155		config_changed = B_TRUE;
1156		spa->spa_config_generation++;
1157	}
1158
1159	if (spa_is_root(spa))
1160		vdev_rele(spa->spa_root_vdev);
1161
1162	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1163	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1164
1165	/*
1166	 * If anything changed, wait for it to sync.  This ensures that,
1167	 * from the system administrator's perspective, zpool(1M) commands
1168	 * are synchronous.  This is important for things like zpool offline:
1169	 * when the command completes, you expect no further I/O from ZFS.
1170	 */
1171	if (vd != NULL)
1172		txg_wait_synced(spa->spa_dsl_pool, 0);
1173
1174	/*
1175	 * If the config changed, update the config cache.
1176	 */
1177	if (config_changed) {
1178		mutex_enter(&spa_namespace_lock);
1179		spa_config_sync(spa, B_FALSE, B_TRUE);
1180		mutex_exit(&spa_namespace_lock);
1181	}
1182
1183	return (error);
1184}
1185
1186/*
1187 * ==========================================================================
1188 * Miscellaneous functions
1189 * ==========================================================================
1190 */
1191
1192void
1193spa_activate_mos_feature(spa_t *spa, const char *feature)
1194{
1195	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1196	vdev_config_dirty(spa->spa_root_vdev);
1197}
1198
1199void
1200spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1201{
1202	(void) nvlist_remove_all(spa->spa_label_features, feature);
1203	vdev_config_dirty(spa->spa_root_vdev);
1204}
1205
1206/*
1207 * Rename a spa_t.
1208 */
1209int
1210spa_rename(const char *name, const char *newname)
1211{
1212	spa_t *spa;
1213	int err;
1214
1215	/*
1216	 * Lookup the spa_t and grab the config lock for writing.  We need to
1217	 * actually open the pool so that we can sync out the necessary labels.
1218	 * It's OK to call spa_open() with the namespace lock held because we
1219	 * allow recursive calls for other reasons.
1220	 */
1221	mutex_enter(&spa_namespace_lock);
1222	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1223		mutex_exit(&spa_namespace_lock);
1224		return (err);
1225	}
1226
1227	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1228
1229	avl_remove(&spa_namespace_avl, spa);
1230	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1231	avl_add(&spa_namespace_avl, spa);
1232
1233	/*
1234	 * Sync all labels to disk with the new names by marking the root vdev
1235	 * dirty and waiting for it to sync.  It will pick up the new pool name
1236	 * during the sync.
1237	 */
1238	vdev_config_dirty(spa->spa_root_vdev);
1239
1240	spa_config_exit(spa, SCL_ALL, FTAG);
1241
1242	txg_wait_synced(spa->spa_dsl_pool, 0);
1243
1244	/*
1245	 * Sync the updated config cache.
1246	 */
1247	spa_config_sync(spa, B_FALSE, B_TRUE);
1248
1249	spa_close(spa, FTAG);
1250
1251	mutex_exit(&spa_namespace_lock);
1252
1253	return (0);
1254}
1255
1256/*
1257 * Return the spa_t associated with given pool_guid, if it exists.  If
1258 * device_guid is non-zero, determine whether the pool exists *and* contains
1259 * a device with the specified device_guid.
1260 */
1261spa_t *
1262spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1263{
1264	spa_t *spa;
1265	avl_tree_t *t = &spa_namespace_avl;
1266
1267	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1268
1269	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1270		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1271			continue;
1272		if (spa->spa_root_vdev == NULL)
1273			continue;
1274		if (spa_guid(spa) == pool_guid) {
1275			if (device_guid == 0)
1276				break;
1277
1278			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1279			    device_guid) != NULL)
1280				break;
1281
1282			/*
1283			 * Check any devices we may be in the process of adding.
1284			 */
1285			if (spa->spa_pending_vdev) {
1286				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1287				    device_guid) != NULL)
1288					break;
1289			}
1290		}
1291	}
1292
1293	return (spa);
1294}
1295
1296/*
1297 * Determine whether a pool with the given pool_guid exists.
1298 */
1299boolean_t
1300spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1301{
1302	return (spa_by_guid(pool_guid, device_guid) != NULL);
1303}
1304
1305char *
1306spa_strdup(const char *s)
1307{
1308	size_t len;
1309	char *new;
1310
1311	len = strlen(s);
1312	new = kmem_alloc(len + 1, KM_SLEEP);
1313	bcopy(s, new, len);
1314	new[len] = '\0';
1315
1316	return (new);
1317}
1318
1319void
1320spa_strfree(char *s)
1321{
1322	kmem_free(s, strlen(s) + 1);
1323}
1324
1325uint64_t
1326spa_get_random(uint64_t range)
1327{
1328	uint64_t r;
1329
1330	ASSERT(range != 0);
1331
1332	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1333
1334	return (r % range);
1335}
1336
1337uint64_t
1338spa_generate_guid(spa_t *spa)
1339{
1340	uint64_t guid = spa_get_random(-1ULL);
1341
1342	if (spa != NULL) {
1343		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1344			guid = spa_get_random(-1ULL);
1345	} else {
1346		while (guid == 0 || spa_guid_exists(guid, 0))
1347			guid = spa_get_random(-1ULL);
1348	}
1349
1350	return (guid);
1351}
1352
1353void
1354sprintf_blkptr(char *buf, const blkptr_t *bp)
1355{
1356	char type[256];
1357	char *checksum = NULL;
1358	char *compress = NULL;
1359
1360	if (bp != NULL) {
1361		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1362			dmu_object_byteswap_t bswap =
1363			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1364			(void) snprintf(type, sizeof (type), "bswap %s %s",
1365			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1366			    "metadata" : "data",
1367			    dmu_ot_byteswap[bswap].ob_name);
1368		} else {
1369			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1370			    sizeof (type));
1371		}
1372		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1373		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1374	}
1375
1376	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1377}
1378
1379void
1380spa_freeze(spa_t *spa)
1381{
1382	uint64_t freeze_txg = 0;
1383
1384	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1385	if (spa->spa_freeze_txg == UINT64_MAX) {
1386		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1387		spa->spa_freeze_txg = freeze_txg;
1388	}
1389	spa_config_exit(spa, SCL_ALL, FTAG);
1390	if (freeze_txg != 0)
1391		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1392}
1393
1394void
1395zfs_panic_recover(const char *fmt, ...)
1396{
1397	va_list adx;
1398
1399	va_start(adx, fmt);
1400	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1401	va_end(adx);
1402}
1403
1404/*
1405 * This is a stripped-down version of strtoull, suitable only for converting
1406 * lowercase hexadecimal numbers that don't overflow.
1407 */
1408uint64_t
1409zfs_strtonum(const char *str, char **nptr)
1410{
1411	uint64_t val = 0;
1412	char c;
1413	int digit;
1414
1415	while ((c = *str) != '\0') {
1416		if (c >= '0' && c <= '9')
1417			digit = c - '0';
1418		else if (c >= 'a' && c <= 'f')
1419			digit = 10 + c - 'a';
1420		else
1421			break;
1422
1423		val *= 16;
1424		val += digit;
1425
1426		str++;
1427	}
1428
1429	if (nptr)
1430		*nptr = (char *)str;
1431
1432	return (val);
1433}
1434
1435/*
1436 * ==========================================================================
1437 * Accessor functions
1438 * ==========================================================================
1439 */
1440
1441boolean_t
1442spa_shutting_down(spa_t *spa)
1443{
1444	return (spa->spa_async_suspended);
1445}
1446
1447dsl_pool_t *
1448spa_get_dsl(spa_t *spa)
1449{
1450	return (spa->spa_dsl_pool);
1451}
1452
1453boolean_t
1454spa_is_initializing(spa_t *spa)
1455{
1456	return (spa->spa_is_initializing);
1457}
1458
1459blkptr_t *
1460spa_get_rootblkptr(spa_t *spa)
1461{
1462	return (&spa->spa_ubsync.ub_rootbp);
1463}
1464
1465void
1466spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1467{
1468	spa->spa_uberblock.ub_rootbp = *bp;
1469}
1470
1471void
1472spa_altroot(spa_t *spa, char *buf, size_t buflen)
1473{
1474	if (spa->spa_root == NULL)
1475		buf[0] = '\0';
1476	else
1477		(void) strncpy(buf, spa->spa_root, buflen);
1478}
1479
1480int
1481spa_sync_pass(spa_t *spa)
1482{
1483	return (spa->spa_sync_pass);
1484}
1485
1486char *
1487spa_name(spa_t *spa)
1488{
1489	return (spa->spa_name);
1490}
1491
1492uint64_t
1493spa_guid(spa_t *spa)
1494{
1495	dsl_pool_t *dp = spa_get_dsl(spa);
1496	uint64_t guid;
1497
1498	/*
1499	 * If we fail to parse the config during spa_load(), we can go through
1500	 * the error path (which posts an ereport) and end up here with no root
1501	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1502	 * this case.
1503	 */
1504	if (spa->spa_root_vdev == NULL)
1505		return (spa->spa_config_guid);
1506
1507	guid = spa->spa_last_synced_guid != 0 ?
1508	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1509
1510	/*
1511	 * Return the most recently synced out guid unless we're
1512	 * in syncing context.
1513	 */
1514	if (dp && dsl_pool_sync_context(dp))
1515		return (spa->spa_root_vdev->vdev_guid);
1516	else
1517		return (guid);
1518}
1519
1520uint64_t
1521spa_load_guid(spa_t *spa)
1522{
1523	/*
1524	 * This is a GUID that exists solely as a reference for the
1525	 * purposes of the arc.  It is generated at load time, and
1526	 * is never written to persistent storage.
1527	 */
1528	return (spa->spa_load_guid);
1529}
1530
1531uint64_t
1532spa_last_synced_txg(spa_t *spa)
1533{
1534	return (spa->spa_ubsync.ub_txg);
1535}
1536
1537uint64_t
1538spa_first_txg(spa_t *spa)
1539{
1540	return (spa->spa_first_txg);
1541}
1542
1543uint64_t
1544spa_syncing_txg(spa_t *spa)
1545{
1546	return (spa->spa_syncing_txg);
1547}
1548
1549pool_state_t
1550spa_state(spa_t *spa)
1551{
1552	return (spa->spa_state);
1553}
1554
1555spa_load_state_t
1556spa_load_state(spa_t *spa)
1557{
1558	return (spa->spa_load_state);
1559}
1560
1561uint64_t
1562spa_freeze_txg(spa_t *spa)
1563{
1564	return (spa->spa_freeze_txg);
1565}
1566
1567/* ARGSUSED */
1568uint64_t
1569spa_get_asize(spa_t *spa, uint64_t lsize)
1570{
1571	return (lsize * spa_asize_inflation);
1572}
1573
1574uint64_t
1575spa_get_dspace(spa_t *spa)
1576{
1577	return (spa->spa_dspace);
1578}
1579
1580void
1581spa_update_dspace(spa_t *spa)
1582{
1583	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1584	    ddt_get_dedup_dspace(spa);
1585}
1586
1587/*
1588 * Return the failure mode that has been set to this pool. The default
1589 * behavior will be to block all I/Os when a complete failure occurs.
1590 */
1591uint8_t
1592spa_get_failmode(spa_t *spa)
1593{
1594	return (spa->spa_failmode);
1595}
1596
1597boolean_t
1598spa_suspended(spa_t *spa)
1599{
1600	return (spa->spa_suspended);
1601}
1602
1603uint64_t
1604spa_version(spa_t *spa)
1605{
1606	return (spa->spa_ubsync.ub_version);
1607}
1608
1609boolean_t
1610spa_deflate(spa_t *spa)
1611{
1612	return (spa->spa_deflate);
1613}
1614
1615metaslab_class_t *
1616spa_normal_class(spa_t *spa)
1617{
1618	return (spa->spa_normal_class);
1619}
1620
1621metaslab_class_t *
1622spa_log_class(spa_t *spa)
1623{
1624	return (spa->spa_log_class);
1625}
1626
1627int
1628spa_max_replication(spa_t *spa)
1629{
1630	/*
1631	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1632	 * handle BPs with more than one DVA allocated.  Set our max
1633	 * replication level accordingly.
1634	 */
1635	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1636		return (1);
1637	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1638}
1639
1640int
1641spa_prev_software_version(spa_t *spa)
1642{
1643	return (spa->spa_prev_software_version);
1644}
1645
1646uint64_t
1647spa_deadman_synctime(spa_t *spa)
1648{
1649	return (spa->spa_deadman_synctime);
1650}
1651
1652uint64_t
1653dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1654{
1655	uint64_t asize = DVA_GET_ASIZE(dva);
1656	uint64_t dsize = asize;
1657
1658	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1659
1660	if (asize != 0 && spa->spa_deflate) {
1661		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1662		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1663	}
1664
1665	return (dsize);
1666}
1667
1668uint64_t
1669bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1670{
1671	uint64_t dsize = 0;
1672
1673	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1674		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1675
1676	return (dsize);
1677}
1678
1679uint64_t
1680bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1681{
1682	uint64_t dsize = 0;
1683
1684	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1685
1686	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1687		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1688
1689	spa_config_exit(spa, SCL_VDEV, FTAG);
1690
1691	return (dsize);
1692}
1693
1694/*
1695 * ==========================================================================
1696 * Initialization and Termination
1697 * ==========================================================================
1698 */
1699
1700static int
1701spa_name_compare(const void *a1, const void *a2)
1702{
1703	const spa_t *s1 = a1;
1704	const spa_t *s2 = a2;
1705	int s;
1706
1707	s = strcmp(s1->spa_name, s2->spa_name);
1708	if (s > 0)
1709		return (1);
1710	if (s < 0)
1711		return (-1);
1712	return (0);
1713}
1714
1715int
1716spa_busy(void)
1717{
1718	return (spa_active_count);
1719}
1720
1721void
1722spa_boot_init()
1723{
1724	spa_config_load();
1725}
1726
1727#ifdef _KERNEL
1728EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1729#endif
1730
1731void
1732spa_init(int mode)
1733{
1734	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1735	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1736	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1737	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1738
1739	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1740	    offsetof(spa_t, spa_avl));
1741
1742	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1743	    offsetof(spa_aux_t, aux_avl));
1744
1745	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1746	    offsetof(spa_aux_t, aux_avl));
1747
1748	spa_mode_global = mode;
1749
1750#ifdef illumos
1751#ifdef _KERNEL
1752	spa_arch_init();
1753#else
1754	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1755		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1756		if (arc_procfd == -1) {
1757			perror("could not enable watchpoints: "
1758			    "opening /proc/self/ctl failed: ");
1759		} else {
1760			arc_watch = B_TRUE;
1761		}
1762	}
1763#endif
1764#endif /* illumos */
1765	refcount_sysinit();
1766	unique_init();
1767	range_tree_init();
1768	zio_init();
1769	lz4_init();
1770	dmu_init();
1771	zil_init();
1772	vdev_cache_stat_init();
1773	zfs_prop_init();
1774	zpool_prop_init();
1775	zpool_feature_init();
1776	spa_config_load();
1777	l2arc_start();
1778#ifndef illumos
1779#ifdef _KERNEL
1780	zfs_deadman_init();
1781#endif
1782#endif	/* !illumos */
1783}
1784
1785void
1786spa_fini(void)
1787{
1788	l2arc_stop();
1789
1790	spa_evict_all();
1791
1792	vdev_cache_stat_fini();
1793	zil_fini();
1794	dmu_fini();
1795	lz4_fini();
1796	zio_fini();
1797	range_tree_fini();
1798	unique_fini();
1799	refcount_fini();
1800
1801	avl_destroy(&spa_namespace_avl);
1802	avl_destroy(&spa_spare_avl);
1803	avl_destroy(&spa_l2cache_avl);
1804
1805	cv_destroy(&spa_namespace_cv);
1806	mutex_destroy(&spa_namespace_lock);
1807	mutex_destroy(&spa_spare_lock);
1808	mutex_destroy(&spa_l2cache_lock);
1809}
1810
1811/*
1812 * Return whether this pool has slogs. No locking needed.
1813 * It's not a problem if the wrong answer is returned as it's only for
1814 * performance and not correctness
1815 */
1816boolean_t
1817spa_has_slogs(spa_t *spa)
1818{
1819	return (spa->spa_log_class->mc_rotor != NULL);
1820}
1821
1822spa_log_state_t
1823spa_get_log_state(spa_t *spa)
1824{
1825	return (spa->spa_log_state);
1826}
1827
1828void
1829spa_set_log_state(spa_t *spa, spa_log_state_t state)
1830{
1831	spa->spa_log_state = state;
1832}
1833
1834boolean_t
1835spa_is_root(spa_t *spa)
1836{
1837	return (spa->spa_is_root);
1838}
1839
1840boolean_t
1841spa_writeable(spa_t *spa)
1842{
1843	return (!!(spa->spa_mode & FWRITE));
1844}
1845
1846int
1847spa_mode(spa_t *spa)
1848{
1849	return (spa->spa_mode);
1850}
1851
1852uint64_t
1853spa_bootfs(spa_t *spa)
1854{
1855	return (spa->spa_bootfs);
1856}
1857
1858uint64_t
1859spa_delegation(spa_t *spa)
1860{
1861	return (spa->spa_delegation);
1862}
1863
1864objset_t *
1865spa_meta_objset(spa_t *spa)
1866{
1867	return (spa->spa_meta_objset);
1868}
1869
1870enum zio_checksum
1871spa_dedup_checksum(spa_t *spa)
1872{
1873	return (spa->spa_dedup_checksum);
1874}
1875
1876/*
1877 * Reset pool scan stat per scan pass (or reboot).
1878 */
1879void
1880spa_scan_stat_init(spa_t *spa)
1881{
1882	/* data not stored on disk */
1883	spa->spa_scan_pass_start = gethrestime_sec();
1884	spa->spa_scan_pass_exam = 0;
1885	vdev_scan_stat_init(spa->spa_root_vdev);
1886}
1887
1888/*
1889 * Get scan stats for zpool status reports
1890 */
1891int
1892spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1893{
1894	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1895
1896	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1897		return (SET_ERROR(ENOENT));
1898	bzero(ps, sizeof (pool_scan_stat_t));
1899
1900	/* data stored on disk */
1901	ps->pss_func = scn->scn_phys.scn_func;
1902	ps->pss_start_time = scn->scn_phys.scn_start_time;
1903	ps->pss_end_time = scn->scn_phys.scn_end_time;
1904	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1905	ps->pss_examined = scn->scn_phys.scn_examined;
1906	ps->pss_to_process = scn->scn_phys.scn_to_process;
1907	ps->pss_processed = scn->scn_phys.scn_processed;
1908	ps->pss_errors = scn->scn_phys.scn_errors;
1909	ps->pss_state = scn->scn_phys.scn_state;
1910
1911	/* data not stored on disk */
1912	ps->pss_pass_start = spa->spa_scan_pass_start;
1913	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1914
1915	return (0);
1916}
1917
1918boolean_t
1919spa_debug_enabled(spa_t *spa)
1920{
1921	return (spa->spa_debug);
1922}
1923