spa_misc.c revision 262093
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa_impl.h>
30#include <sys/spa_boot.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
39#include <sys/metaslab.h>
40#include <sys/uberblock_impl.h>
41#include <sys/txg.h>
42#include <sys/avl.h>
43#include <sys/unique.h>
44#include <sys/dsl_pool.h>
45#include <sys/dsl_dir.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_scan.h>
48#include <sys/fs/zfs.h>
49#include <sys/metaslab_impl.h>
50#include <sys/arc.h>
51#include <sys/ddt.h>
52#include "zfs_prop.h"
53#include "zfeature_common.h"
54
55/*
56 * SPA locking
57 *
58 * There are four basic locks for managing spa_t structures:
59 *
60 * spa_namespace_lock (global mutex)
61 *
62 *	This lock must be acquired to do any of the following:
63 *
64 *		- Lookup a spa_t by name
65 *		- Add or remove a spa_t from the namespace
66 *		- Increase spa_refcount from non-zero
67 *		- Check if spa_refcount is zero
68 *		- Rename a spa_t
69 *		- add/remove/attach/detach devices
70 *		- Held for the duration of create/destroy/import/export
71 *
72 *	It does not need to handle recursion.  A create or destroy may
73 *	reference objects (files or zvols) in other pools, but by
74 *	definition they must have an existing reference, and will never need
75 *	to lookup a spa_t by name.
76 *
77 * spa_refcount (per-spa refcount_t protected by mutex)
78 *
79 *	This reference count keep track of any active users of the spa_t.  The
80 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81 *	the refcount is never really 'zero' - opening a pool implicitly keeps
82 *	some references in the DMU.  Internally we check against spa_minref, but
83 *	present the image of a zero/non-zero value to consumers.
84 *
85 * spa_config_lock[] (per-spa array of rwlocks)
86 *
87 *	This protects the spa_t from config changes, and must be held in
88 *	the following circumstances:
89 *
90 *		- RW_READER to perform I/O to the spa
91 *		- RW_WRITER to change the vdev config
92 *
93 * The locking order is fairly straightforward:
94 *
95 *		spa_namespace_lock	->	spa_refcount
96 *
97 *	The namespace lock must be acquired to increase the refcount from 0
98 *	or to check if it is zero.
99 *
100 *		spa_refcount		->	spa_config_lock[]
101 *
102 *	There must be at least one valid reference on the spa_t to acquire
103 *	the config lock.
104 *
105 *		spa_namespace_lock	->	spa_config_lock[]
106 *
107 *	The namespace lock must always be taken before the config lock.
108 *
109 *
110 * The spa_namespace_lock can be acquired directly and is globally visible.
111 *
112 * The namespace is manipulated using the following functions, all of which
113 * require the spa_namespace_lock to be held.
114 *
115 *	spa_lookup()		Lookup a spa_t by name.
116 *
117 *	spa_add()		Create a new spa_t in the namespace.
118 *
119 *	spa_remove()		Remove a spa_t from the namespace.  This also
120 *				frees up any memory associated with the spa_t.
121 *
122 *	spa_next()		Returns the next spa_t in the system, or the
123 *				first if NULL is passed.
124 *
125 *	spa_evict_all()		Shutdown and remove all spa_t structures in
126 *				the system.
127 *
128 *	spa_guid_exists()	Determine whether a pool/device guid exists.
129 *
130 * The spa_refcount is manipulated using the following functions:
131 *
132 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133 *				called with spa_namespace_lock held if the
134 *				refcount is currently zero.
135 *
136 *	spa_close()		Remove a reference from the spa_t.  This will
137 *				not free the spa_t or remove it from the
138 *				namespace.  No locking is required.
139 *
140 *	spa_refcount_zero()	Returns true if the refcount is currently
141 *				zero.  Must be called with spa_namespace_lock
142 *				held.
143 *
144 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 *
148 * To read the configuration, it suffices to hold one of these locks as reader.
149 * To modify the configuration, you must hold all locks as writer.  To modify
150 * vdev state without altering the vdev tree's topology (e.g. online/offline),
151 * you must hold SCL_STATE and SCL_ZIO as writer.
152 *
153 * We use these distinct config locks to avoid recursive lock entry.
154 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155 * block allocations (SCL_ALLOC), which may require reading space maps
156 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 *
158 * The spa config locks cannot be normal rwlocks because we need the
159 * ability to hand off ownership.  For example, SCL_ZIO is acquired
160 * by the issuing thread and later released by an interrupt thread.
161 * They do, however, obey the usual write-wanted semantics to prevent
162 * writer (i.e. system administrator) starvation.
163 *
164 * The lock acquisition rules are as follows:
165 *
166 * SCL_CONFIG
167 *	Protects changes to the vdev tree topology, such as vdev
168 *	add/remove/attach/detach.  Protects the dirty config list
169 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170 *
171 * SCL_STATE
172 *	Protects changes to pool state and vdev state, such as vdev
173 *	online/offline/fault/degrade/clear.  Protects the dirty state list
174 *	(spa_state_dirty_list) and global pool state (spa_state).
175 *
176 * SCL_ALLOC
177 *	Protects changes to metaslab groups and classes.
178 *	Held as reader by metaslab_alloc() and metaslab_claim().
179 *
180 * SCL_ZIO
181 *	Held by bp-level zios (those which have no io_vd upon entry)
182 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184 *
185 * SCL_FREE
186 *	Protects changes to metaslab groups and classes.
187 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189 *	blocks in zio_done() while another i/o that holds either
190 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 *
192 * SCL_VDEV
193 *	Held as reader to prevent changes to the vdev tree during trivial
194 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195 *	other locks, and lower than all of them, to ensure that it's safe
196 *	to acquire regardless of caller context.
197 *
198 * In addition, the following rules apply:
199 *
200 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201 *	The lock ordering is SCL_CONFIG > spa_props_lock.
202 *
203 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205 *	or zio_write_phys() -- the caller must ensure that the config cannot
206 *	cannot change in the interim, and that the vdev cannot be reopened.
207 *	SCL_STATE as reader suffices for both.
208 *
209 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 *
211 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212 *				for writing.
213 *
214 *	spa_vdev_exit()		Release the config lock, wait for all I/O
215 *				to complete, sync the updated configs to the
216 *				cache, and release the namespace lock.
217 *
218 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 *
222 * spa_rename() is also implemented within this file since it requires
223 * manipulation of the namespace.
224 */
225
226static avl_tree_t spa_namespace_avl;
227kmutex_t spa_namespace_lock;
228static kcondvar_t spa_namespace_cv;
229static int spa_active_count;
230int spa_max_replication_override = SPA_DVAS_PER_BP;
231
232static kmutex_t spa_spare_lock;
233static avl_tree_t spa_spare_avl;
234static kmutex_t spa_l2cache_lock;
235static avl_tree_t spa_l2cache_avl;
236
237kmem_cache_t *spa_buffer_pool;
238int spa_mode_global;
239
240#ifdef ZFS_DEBUG
241/* Everything except dprintf and spa is on by default in debug builds */
242int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243#else
244int zfs_flags = 0;
245#endif
246SYSCTL_DECL(_debug);
247TUNABLE_INT("debug.zfs_flags", &zfs_flags);
248SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
249    "ZFS debug flags.");
250
251/*
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption.  When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 */
256int zfs_recover = 0;
257SYSCTL_DECL(_vfs_zfs);
258TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
259SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RDTUN, &zfs_recover, 0,
260    "Try to recover from otherwise-fatal errors.");
261
262/*
263 * Expiration time in milliseconds. This value has two meanings. First it is
264 * used to determine when the spa_deadman() logic should fire. By default the
265 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
266 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
267 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
268 * in a system panic.
269 */
270uint64_t zfs_deadman_synctime_ms = 1000000ULL;
271TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
272SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
273    &zfs_deadman_synctime_ms, 0,
274    "Stalled ZFS I/O expiration time in milliseconds");
275
276/*
277 * Check time in milliseconds. This defines the frequency at which we check
278 * for hung I/O.
279 */
280uint64_t zfs_deadman_checktime_ms = 5000ULL;
281TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
282SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
283    &zfs_deadman_checktime_ms, 0,
284    "Period of checks for stalled ZFS I/O in milliseconds");
285
286/*
287 * Default value of -1 for zfs_deadman_enabled is resolved in
288 * zfs_deadman_init()
289 */
290int zfs_deadman_enabled = -1;
291TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
292SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
293    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
294
295/*
296 * The worst case is single-sector max-parity RAID-Z blocks, in which
297 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
298 * times the size; so just assume that.  Add to this the fact that
299 * we can have up to 3 DVAs per bp, and one more factor of 2 because
300 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
301 * the worst case is:
302 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
303 */
304int spa_asize_inflation = 24;
305
306#ifndef illumos
307#ifdef _KERNEL
308static void
309zfs_deadman_init()
310{
311	/*
312	 * If we are not i386 or amd64 or in a virtual machine,
313	 * disable ZFS deadman thread by default
314	 */
315	if (zfs_deadman_enabled == -1) {
316#if defined(__amd64__) || defined(__i386__)
317		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
318#else
319		zfs_deadman_enabled = 0;
320#endif
321	}
322}
323#endif	/* _KERNEL */
324#endif	/* !illumos */
325
326/*
327 * ==========================================================================
328 * SPA config locking
329 * ==========================================================================
330 */
331static void
332spa_config_lock_init(spa_t *spa)
333{
334	for (int i = 0; i < SCL_LOCKS; i++) {
335		spa_config_lock_t *scl = &spa->spa_config_lock[i];
336		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
337		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
338		refcount_create_untracked(&scl->scl_count);
339		scl->scl_writer = NULL;
340		scl->scl_write_wanted = 0;
341	}
342}
343
344static void
345spa_config_lock_destroy(spa_t *spa)
346{
347	for (int i = 0; i < SCL_LOCKS; i++) {
348		spa_config_lock_t *scl = &spa->spa_config_lock[i];
349		mutex_destroy(&scl->scl_lock);
350		cv_destroy(&scl->scl_cv);
351		refcount_destroy(&scl->scl_count);
352		ASSERT(scl->scl_writer == NULL);
353		ASSERT(scl->scl_write_wanted == 0);
354	}
355}
356
357int
358spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
359{
360	for (int i = 0; i < SCL_LOCKS; i++) {
361		spa_config_lock_t *scl = &spa->spa_config_lock[i];
362		if (!(locks & (1 << i)))
363			continue;
364		mutex_enter(&scl->scl_lock);
365		if (rw == RW_READER) {
366			if (scl->scl_writer || scl->scl_write_wanted) {
367				mutex_exit(&scl->scl_lock);
368				spa_config_exit(spa, locks ^ (1 << i), tag);
369				return (0);
370			}
371		} else {
372			ASSERT(scl->scl_writer != curthread);
373			if (!refcount_is_zero(&scl->scl_count)) {
374				mutex_exit(&scl->scl_lock);
375				spa_config_exit(spa, locks ^ (1 << i), tag);
376				return (0);
377			}
378			scl->scl_writer = curthread;
379		}
380		(void) refcount_add(&scl->scl_count, tag);
381		mutex_exit(&scl->scl_lock);
382	}
383	return (1);
384}
385
386void
387spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
388{
389	int wlocks_held = 0;
390
391	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
392
393	for (int i = 0; i < SCL_LOCKS; i++) {
394		spa_config_lock_t *scl = &spa->spa_config_lock[i];
395		if (scl->scl_writer == curthread)
396			wlocks_held |= (1 << i);
397		if (!(locks & (1 << i)))
398			continue;
399		mutex_enter(&scl->scl_lock);
400		if (rw == RW_READER) {
401			while (scl->scl_writer || scl->scl_write_wanted) {
402				cv_wait(&scl->scl_cv, &scl->scl_lock);
403			}
404		} else {
405			ASSERT(scl->scl_writer != curthread);
406			while (!refcount_is_zero(&scl->scl_count)) {
407				scl->scl_write_wanted++;
408				cv_wait(&scl->scl_cv, &scl->scl_lock);
409				scl->scl_write_wanted--;
410			}
411			scl->scl_writer = curthread;
412		}
413		(void) refcount_add(&scl->scl_count, tag);
414		mutex_exit(&scl->scl_lock);
415	}
416	ASSERT(wlocks_held <= locks);
417}
418
419void
420spa_config_exit(spa_t *spa, int locks, void *tag)
421{
422	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
423		spa_config_lock_t *scl = &spa->spa_config_lock[i];
424		if (!(locks & (1 << i)))
425			continue;
426		mutex_enter(&scl->scl_lock);
427		ASSERT(!refcount_is_zero(&scl->scl_count));
428		if (refcount_remove(&scl->scl_count, tag) == 0) {
429			ASSERT(scl->scl_writer == NULL ||
430			    scl->scl_writer == curthread);
431			scl->scl_writer = NULL;	/* OK in either case */
432			cv_broadcast(&scl->scl_cv);
433		}
434		mutex_exit(&scl->scl_lock);
435	}
436}
437
438int
439spa_config_held(spa_t *spa, int locks, krw_t rw)
440{
441	int locks_held = 0;
442
443	for (int i = 0; i < SCL_LOCKS; i++) {
444		spa_config_lock_t *scl = &spa->spa_config_lock[i];
445		if (!(locks & (1 << i)))
446			continue;
447		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
448		    (rw == RW_WRITER && scl->scl_writer == curthread))
449			locks_held |= 1 << i;
450	}
451
452	return (locks_held);
453}
454
455/*
456 * ==========================================================================
457 * SPA namespace functions
458 * ==========================================================================
459 */
460
461/*
462 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
463 * Returns NULL if no matching spa_t is found.
464 */
465spa_t *
466spa_lookup(const char *name)
467{
468	static spa_t search;	/* spa_t is large; don't allocate on stack */
469	spa_t *spa;
470	avl_index_t where;
471	char *cp;
472
473	ASSERT(MUTEX_HELD(&spa_namespace_lock));
474
475	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
476
477	/*
478	 * If it's a full dataset name, figure out the pool name and
479	 * just use that.
480	 */
481	cp = strpbrk(search.spa_name, "/@");
482	if (cp != NULL)
483		*cp = '\0';
484
485	spa = avl_find(&spa_namespace_avl, &search, &where);
486
487	return (spa);
488}
489
490/*
491 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
492 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
493 * looking for potentially hung I/Os.
494 */
495void
496spa_deadman(void *arg)
497{
498	spa_t *spa = arg;
499
500	/*
501	 * Disable the deadman timer if the pool is suspended.
502	 */
503	if (spa_suspended(spa)) {
504#ifdef illumos
505		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
506#else
507		/* Nothing.  just don't schedule any future callouts. */
508#endif
509		return;
510	}
511
512	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
513	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
514	    ++spa->spa_deadman_calls);
515	if (zfs_deadman_enabled)
516		vdev_deadman(spa->spa_root_vdev);
517}
518
519/*
520 * Create an uninitialized spa_t with the given name.  Requires
521 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
522 * exist by calling spa_lookup() first.
523 */
524spa_t *
525spa_add(const char *name, nvlist_t *config, const char *altroot)
526{
527	spa_t *spa;
528	spa_config_dirent_t *dp;
529#ifdef illumos
530	cyc_handler_t hdlr;
531	cyc_time_t when;
532#endif
533
534	ASSERT(MUTEX_HELD(&spa_namespace_lock));
535
536	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
537
538	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
539	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
540	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
541	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
542	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
543	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
544	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
545	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
546	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
547
548	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
549	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
550	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
551	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
552
553	for (int t = 0; t < TXG_SIZE; t++)
554		bplist_create(&spa->spa_free_bplist[t]);
555
556	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
557	spa->spa_state = POOL_STATE_UNINITIALIZED;
558	spa->spa_freeze_txg = UINT64_MAX;
559	spa->spa_final_txg = UINT64_MAX;
560	spa->spa_load_max_txg = UINT64_MAX;
561	spa->spa_proc = &p0;
562	spa->spa_proc_state = SPA_PROC_NONE;
563
564#ifdef illumos
565	hdlr.cyh_func = spa_deadman;
566	hdlr.cyh_arg = spa;
567	hdlr.cyh_level = CY_LOW_LEVEL;
568#endif
569
570	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
571
572#ifdef illumos
573	/*
574	 * This determines how often we need to check for hung I/Os after
575	 * the cyclic has already fired. Since checking for hung I/Os is
576	 * an expensive operation we don't want to check too frequently.
577	 * Instead wait for 5 seconds before checking again.
578	 */
579	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
580	when.cyt_when = CY_INFINITY;
581	mutex_enter(&cpu_lock);
582	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
583	mutex_exit(&cpu_lock);
584#else	/* !illumos */
585#ifdef _KERNEL
586	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
587#endif
588#endif
589	refcount_create(&spa->spa_refcount);
590	spa_config_lock_init(spa);
591
592	avl_add(&spa_namespace_avl, spa);
593
594	/*
595	 * Set the alternate root, if there is one.
596	 */
597	if (altroot) {
598		spa->spa_root = spa_strdup(altroot);
599		spa_active_count++;
600	}
601
602	/*
603	 * Every pool starts with the default cachefile
604	 */
605	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
606	    offsetof(spa_config_dirent_t, scd_link));
607
608	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
609	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
610	list_insert_head(&spa->spa_config_list, dp);
611
612	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
613	    KM_SLEEP) == 0);
614
615	if (config != NULL) {
616		nvlist_t *features;
617
618		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
619		    &features) == 0) {
620			VERIFY(nvlist_dup(features, &spa->spa_label_features,
621			    0) == 0);
622		}
623
624		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
625	}
626
627	if (spa->spa_label_features == NULL) {
628		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
629		    KM_SLEEP) == 0);
630	}
631
632	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
633
634	return (spa);
635}
636
637/*
638 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
639 * spa_namespace_lock.  This is called only after the spa_t has been closed and
640 * deactivated.
641 */
642void
643spa_remove(spa_t *spa)
644{
645	spa_config_dirent_t *dp;
646
647	ASSERT(MUTEX_HELD(&spa_namespace_lock));
648	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
649
650	nvlist_free(spa->spa_config_splitting);
651
652	avl_remove(&spa_namespace_avl, spa);
653	cv_broadcast(&spa_namespace_cv);
654
655	if (spa->spa_root) {
656		spa_strfree(spa->spa_root);
657		spa_active_count--;
658	}
659
660	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
661		list_remove(&spa->spa_config_list, dp);
662		if (dp->scd_path != NULL)
663			spa_strfree(dp->scd_path);
664		kmem_free(dp, sizeof (spa_config_dirent_t));
665	}
666
667	list_destroy(&spa->spa_config_list);
668
669	nvlist_free(spa->spa_label_features);
670	nvlist_free(spa->spa_load_info);
671	spa_config_set(spa, NULL);
672
673#ifdef illumos
674	mutex_enter(&cpu_lock);
675	if (spa->spa_deadman_cycid != CYCLIC_NONE)
676		cyclic_remove(spa->spa_deadman_cycid);
677	mutex_exit(&cpu_lock);
678	spa->spa_deadman_cycid = CYCLIC_NONE;
679#else	/* !illumos */
680#ifdef _KERNEL
681	callout_drain(&spa->spa_deadman_cycid);
682#endif
683#endif
684
685	refcount_destroy(&spa->spa_refcount);
686
687	spa_config_lock_destroy(spa);
688
689	for (int t = 0; t < TXG_SIZE; t++)
690		bplist_destroy(&spa->spa_free_bplist[t]);
691
692	cv_destroy(&spa->spa_async_cv);
693	cv_destroy(&spa->spa_proc_cv);
694	cv_destroy(&spa->spa_scrub_io_cv);
695	cv_destroy(&spa->spa_suspend_cv);
696
697	mutex_destroy(&spa->spa_async_lock);
698	mutex_destroy(&spa->spa_errlist_lock);
699	mutex_destroy(&spa->spa_errlog_lock);
700	mutex_destroy(&spa->spa_history_lock);
701	mutex_destroy(&spa->spa_proc_lock);
702	mutex_destroy(&spa->spa_props_lock);
703	mutex_destroy(&spa->spa_scrub_lock);
704	mutex_destroy(&spa->spa_suspend_lock);
705	mutex_destroy(&spa->spa_vdev_top_lock);
706
707	kmem_free(spa, sizeof (spa_t));
708}
709
710/*
711 * Given a pool, return the next pool in the namespace, or NULL if there is
712 * none.  If 'prev' is NULL, return the first pool.
713 */
714spa_t *
715spa_next(spa_t *prev)
716{
717	ASSERT(MUTEX_HELD(&spa_namespace_lock));
718
719	if (prev)
720		return (AVL_NEXT(&spa_namespace_avl, prev));
721	else
722		return (avl_first(&spa_namespace_avl));
723}
724
725/*
726 * ==========================================================================
727 * SPA refcount functions
728 * ==========================================================================
729 */
730
731/*
732 * Add a reference to the given spa_t.  Must have at least one reference, or
733 * have the namespace lock held.
734 */
735void
736spa_open_ref(spa_t *spa, void *tag)
737{
738	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
739	    MUTEX_HELD(&spa_namespace_lock));
740	(void) refcount_add(&spa->spa_refcount, tag);
741}
742
743/*
744 * Remove a reference to the given spa_t.  Must have at least one reference, or
745 * have the namespace lock held.
746 */
747void
748spa_close(spa_t *spa, void *tag)
749{
750	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
751	    MUTEX_HELD(&spa_namespace_lock));
752	(void) refcount_remove(&spa->spa_refcount, tag);
753}
754
755/*
756 * Check to see if the spa refcount is zero.  Must be called with
757 * spa_namespace_lock held.  We really compare against spa_minref, which is the
758 * number of references acquired when opening a pool
759 */
760boolean_t
761spa_refcount_zero(spa_t *spa)
762{
763	ASSERT(MUTEX_HELD(&spa_namespace_lock));
764
765	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
766}
767
768/*
769 * ==========================================================================
770 * SPA spare and l2cache tracking
771 * ==========================================================================
772 */
773
774/*
775 * Hot spares and cache devices are tracked using the same code below,
776 * for 'auxiliary' devices.
777 */
778
779typedef struct spa_aux {
780	uint64_t	aux_guid;
781	uint64_t	aux_pool;
782	avl_node_t	aux_avl;
783	int		aux_count;
784} spa_aux_t;
785
786static int
787spa_aux_compare(const void *a, const void *b)
788{
789	const spa_aux_t *sa = a;
790	const spa_aux_t *sb = b;
791
792	if (sa->aux_guid < sb->aux_guid)
793		return (-1);
794	else if (sa->aux_guid > sb->aux_guid)
795		return (1);
796	else
797		return (0);
798}
799
800void
801spa_aux_add(vdev_t *vd, avl_tree_t *avl)
802{
803	avl_index_t where;
804	spa_aux_t search;
805	spa_aux_t *aux;
806
807	search.aux_guid = vd->vdev_guid;
808	if ((aux = avl_find(avl, &search, &where)) != NULL) {
809		aux->aux_count++;
810	} else {
811		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
812		aux->aux_guid = vd->vdev_guid;
813		aux->aux_count = 1;
814		avl_insert(avl, aux, where);
815	}
816}
817
818void
819spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
820{
821	spa_aux_t search;
822	spa_aux_t *aux;
823	avl_index_t where;
824
825	search.aux_guid = vd->vdev_guid;
826	aux = avl_find(avl, &search, &where);
827
828	ASSERT(aux != NULL);
829
830	if (--aux->aux_count == 0) {
831		avl_remove(avl, aux);
832		kmem_free(aux, sizeof (spa_aux_t));
833	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
834		aux->aux_pool = 0ULL;
835	}
836}
837
838boolean_t
839spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
840{
841	spa_aux_t search, *found;
842
843	search.aux_guid = guid;
844	found = avl_find(avl, &search, NULL);
845
846	if (pool) {
847		if (found)
848			*pool = found->aux_pool;
849		else
850			*pool = 0ULL;
851	}
852
853	if (refcnt) {
854		if (found)
855			*refcnt = found->aux_count;
856		else
857			*refcnt = 0;
858	}
859
860	return (found != NULL);
861}
862
863void
864spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
865{
866	spa_aux_t search, *found;
867	avl_index_t where;
868
869	search.aux_guid = vd->vdev_guid;
870	found = avl_find(avl, &search, &where);
871	ASSERT(found != NULL);
872	ASSERT(found->aux_pool == 0ULL);
873
874	found->aux_pool = spa_guid(vd->vdev_spa);
875}
876
877/*
878 * Spares are tracked globally due to the following constraints:
879 *
880 * 	- A spare may be part of multiple pools.
881 * 	- A spare may be added to a pool even if it's actively in use within
882 *	  another pool.
883 * 	- A spare in use in any pool can only be the source of a replacement if
884 *	  the target is a spare in the same pool.
885 *
886 * We keep track of all spares on the system through the use of a reference
887 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
888 * spare, then we bump the reference count in the AVL tree.  In addition, we set
889 * the 'vdev_isspare' member to indicate that the device is a spare (active or
890 * inactive).  When a spare is made active (used to replace a device in the
891 * pool), we also keep track of which pool its been made a part of.
892 *
893 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
894 * called under the spa_namespace lock as part of vdev reconfiguration.  The
895 * separate spare lock exists for the status query path, which does not need to
896 * be completely consistent with respect to other vdev configuration changes.
897 */
898
899static int
900spa_spare_compare(const void *a, const void *b)
901{
902	return (spa_aux_compare(a, b));
903}
904
905void
906spa_spare_add(vdev_t *vd)
907{
908	mutex_enter(&spa_spare_lock);
909	ASSERT(!vd->vdev_isspare);
910	spa_aux_add(vd, &spa_spare_avl);
911	vd->vdev_isspare = B_TRUE;
912	mutex_exit(&spa_spare_lock);
913}
914
915void
916spa_spare_remove(vdev_t *vd)
917{
918	mutex_enter(&spa_spare_lock);
919	ASSERT(vd->vdev_isspare);
920	spa_aux_remove(vd, &spa_spare_avl);
921	vd->vdev_isspare = B_FALSE;
922	mutex_exit(&spa_spare_lock);
923}
924
925boolean_t
926spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
927{
928	boolean_t found;
929
930	mutex_enter(&spa_spare_lock);
931	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
932	mutex_exit(&spa_spare_lock);
933
934	return (found);
935}
936
937void
938spa_spare_activate(vdev_t *vd)
939{
940	mutex_enter(&spa_spare_lock);
941	ASSERT(vd->vdev_isspare);
942	spa_aux_activate(vd, &spa_spare_avl);
943	mutex_exit(&spa_spare_lock);
944}
945
946/*
947 * Level 2 ARC devices are tracked globally for the same reasons as spares.
948 * Cache devices currently only support one pool per cache device, and so
949 * for these devices the aux reference count is currently unused beyond 1.
950 */
951
952static int
953spa_l2cache_compare(const void *a, const void *b)
954{
955	return (spa_aux_compare(a, b));
956}
957
958void
959spa_l2cache_add(vdev_t *vd)
960{
961	mutex_enter(&spa_l2cache_lock);
962	ASSERT(!vd->vdev_isl2cache);
963	spa_aux_add(vd, &spa_l2cache_avl);
964	vd->vdev_isl2cache = B_TRUE;
965	mutex_exit(&spa_l2cache_lock);
966}
967
968void
969spa_l2cache_remove(vdev_t *vd)
970{
971	mutex_enter(&spa_l2cache_lock);
972	ASSERT(vd->vdev_isl2cache);
973	spa_aux_remove(vd, &spa_l2cache_avl);
974	vd->vdev_isl2cache = B_FALSE;
975	mutex_exit(&spa_l2cache_lock);
976}
977
978boolean_t
979spa_l2cache_exists(uint64_t guid, uint64_t *pool)
980{
981	boolean_t found;
982
983	mutex_enter(&spa_l2cache_lock);
984	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
985	mutex_exit(&spa_l2cache_lock);
986
987	return (found);
988}
989
990void
991spa_l2cache_activate(vdev_t *vd)
992{
993	mutex_enter(&spa_l2cache_lock);
994	ASSERT(vd->vdev_isl2cache);
995	spa_aux_activate(vd, &spa_l2cache_avl);
996	mutex_exit(&spa_l2cache_lock);
997}
998
999/*
1000 * ==========================================================================
1001 * SPA vdev locking
1002 * ==========================================================================
1003 */
1004
1005/*
1006 * Lock the given spa_t for the purpose of adding or removing a vdev.
1007 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1008 * It returns the next transaction group for the spa_t.
1009 */
1010uint64_t
1011spa_vdev_enter(spa_t *spa)
1012{
1013	mutex_enter(&spa->spa_vdev_top_lock);
1014	mutex_enter(&spa_namespace_lock);
1015	return (spa_vdev_config_enter(spa));
1016}
1017
1018/*
1019 * Internal implementation for spa_vdev_enter().  Used when a vdev
1020 * operation requires multiple syncs (i.e. removing a device) while
1021 * keeping the spa_namespace_lock held.
1022 */
1023uint64_t
1024spa_vdev_config_enter(spa_t *spa)
1025{
1026	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1027
1028	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1029
1030	return (spa_last_synced_txg(spa) + 1);
1031}
1032
1033/*
1034 * Used in combination with spa_vdev_config_enter() to allow the syncing
1035 * of multiple transactions without releasing the spa_namespace_lock.
1036 */
1037void
1038spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1039{
1040	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1041
1042	int config_changed = B_FALSE;
1043
1044	ASSERT(txg > spa_last_synced_txg(spa));
1045
1046	spa->spa_pending_vdev = NULL;
1047
1048	/*
1049	 * Reassess the DTLs.
1050	 */
1051	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1052
1053	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1054		config_changed = B_TRUE;
1055		spa->spa_config_generation++;
1056	}
1057
1058	/*
1059	 * Verify the metaslab classes.
1060	 */
1061	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1062	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1063
1064	spa_config_exit(spa, SCL_ALL, spa);
1065
1066	/*
1067	 * Panic the system if the specified tag requires it.  This
1068	 * is useful for ensuring that configurations are updated
1069	 * transactionally.
1070	 */
1071	if (zio_injection_enabled)
1072		zio_handle_panic_injection(spa, tag, 0);
1073
1074	/*
1075	 * Note: this txg_wait_synced() is important because it ensures
1076	 * that there won't be more than one config change per txg.
1077	 * This allows us to use the txg as the generation number.
1078	 */
1079	if (error == 0)
1080		txg_wait_synced(spa->spa_dsl_pool, txg);
1081
1082	if (vd != NULL) {
1083		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1084		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1085		vdev_free(vd);
1086		spa_config_exit(spa, SCL_ALL, spa);
1087	}
1088
1089	/*
1090	 * If the config changed, update the config cache.
1091	 */
1092	if (config_changed)
1093		spa_config_sync(spa, B_FALSE, B_TRUE);
1094}
1095
1096/*
1097 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1098 * locking of spa_vdev_enter(), we also want make sure the transactions have
1099 * synced to disk, and then update the global configuration cache with the new
1100 * information.
1101 */
1102int
1103spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1104{
1105	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1106	mutex_exit(&spa_namespace_lock);
1107	mutex_exit(&spa->spa_vdev_top_lock);
1108
1109	return (error);
1110}
1111
1112/*
1113 * Lock the given spa_t for the purpose of changing vdev state.
1114 */
1115void
1116spa_vdev_state_enter(spa_t *spa, int oplocks)
1117{
1118	int locks = SCL_STATE_ALL | oplocks;
1119
1120	/*
1121	 * Root pools may need to read of the underlying devfs filesystem
1122	 * when opening up a vdev.  Unfortunately if we're holding the
1123	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1124	 * the read from the root filesystem.  Instead we "prefetch"
1125	 * the associated vnodes that we need prior to opening the
1126	 * underlying devices and cache them so that we can prevent
1127	 * any I/O when we are doing the actual open.
1128	 */
1129	if (spa_is_root(spa)) {
1130		int low = locks & ~(SCL_ZIO - 1);
1131		int high = locks & ~low;
1132
1133		spa_config_enter(spa, high, spa, RW_WRITER);
1134		vdev_hold(spa->spa_root_vdev);
1135		spa_config_enter(spa, low, spa, RW_WRITER);
1136	} else {
1137		spa_config_enter(spa, locks, spa, RW_WRITER);
1138	}
1139	spa->spa_vdev_locks = locks;
1140}
1141
1142int
1143spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1144{
1145	boolean_t config_changed = B_FALSE;
1146
1147	if (vd != NULL || error == 0)
1148		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1149		    0, 0, B_FALSE);
1150
1151	if (vd != NULL) {
1152		vdev_state_dirty(vd->vdev_top);
1153		config_changed = B_TRUE;
1154		spa->spa_config_generation++;
1155	}
1156
1157	if (spa_is_root(spa))
1158		vdev_rele(spa->spa_root_vdev);
1159
1160	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1161	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1162
1163	/*
1164	 * If anything changed, wait for it to sync.  This ensures that,
1165	 * from the system administrator's perspective, zpool(1M) commands
1166	 * are synchronous.  This is important for things like zpool offline:
1167	 * when the command completes, you expect no further I/O from ZFS.
1168	 */
1169	if (vd != NULL)
1170		txg_wait_synced(spa->spa_dsl_pool, 0);
1171
1172	/*
1173	 * If the config changed, update the config cache.
1174	 */
1175	if (config_changed) {
1176		mutex_enter(&spa_namespace_lock);
1177		spa_config_sync(spa, B_FALSE, B_TRUE);
1178		mutex_exit(&spa_namespace_lock);
1179	}
1180
1181	return (error);
1182}
1183
1184/*
1185 * ==========================================================================
1186 * Miscellaneous functions
1187 * ==========================================================================
1188 */
1189
1190void
1191spa_activate_mos_feature(spa_t *spa, const char *feature)
1192{
1193	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1194	vdev_config_dirty(spa->spa_root_vdev);
1195}
1196
1197void
1198spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1199{
1200	(void) nvlist_remove_all(spa->spa_label_features, feature);
1201	vdev_config_dirty(spa->spa_root_vdev);
1202}
1203
1204/*
1205 * Rename a spa_t.
1206 */
1207int
1208spa_rename(const char *name, const char *newname)
1209{
1210	spa_t *spa;
1211	int err;
1212
1213	/*
1214	 * Lookup the spa_t and grab the config lock for writing.  We need to
1215	 * actually open the pool so that we can sync out the necessary labels.
1216	 * It's OK to call spa_open() with the namespace lock held because we
1217	 * allow recursive calls for other reasons.
1218	 */
1219	mutex_enter(&spa_namespace_lock);
1220	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1221		mutex_exit(&spa_namespace_lock);
1222		return (err);
1223	}
1224
1225	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1226
1227	avl_remove(&spa_namespace_avl, spa);
1228	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1229	avl_add(&spa_namespace_avl, spa);
1230
1231	/*
1232	 * Sync all labels to disk with the new names by marking the root vdev
1233	 * dirty and waiting for it to sync.  It will pick up the new pool name
1234	 * during the sync.
1235	 */
1236	vdev_config_dirty(spa->spa_root_vdev);
1237
1238	spa_config_exit(spa, SCL_ALL, FTAG);
1239
1240	txg_wait_synced(spa->spa_dsl_pool, 0);
1241
1242	/*
1243	 * Sync the updated config cache.
1244	 */
1245	spa_config_sync(spa, B_FALSE, B_TRUE);
1246
1247	spa_close(spa, FTAG);
1248
1249	mutex_exit(&spa_namespace_lock);
1250
1251	return (0);
1252}
1253
1254/*
1255 * Return the spa_t associated with given pool_guid, if it exists.  If
1256 * device_guid is non-zero, determine whether the pool exists *and* contains
1257 * a device with the specified device_guid.
1258 */
1259spa_t *
1260spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1261{
1262	spa_t *spa;
1263	avl_tree_t *t = &spa_namespace_avl;
1264
1265	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1266
1267	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1268		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1269			continue;
1270		if (spa->spa_root_vdev == NULL)
1271			continue;
1272		if (spa_guid(spa) == pool_guid) {
1273			if (device_guid == 0)
1274				break;
1275
1276			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1277			    device_guid) != NULL)
1278				break;
1279
1280			/*
1281			 * Check any devices we may be in the process of adding.
1282			 */
1283			if (spa->spa_pending_vdev) {
1284				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1285				    device_guid) != NULL)
1286					break;
1287			}
1288		}
1289	}
1290
1291	return (spa);
1292}
1293
1294/*
1295 * Determine whether a pool with the given pool_guid exists.
1296 */
1297boolean_t
1298spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1299{
1300	return (spa_by_guid(pool_guid, device_guid) != NULL);
1301}
1302
1303char *
1304spa_strdup(const char *s)
1305{
1306	size_t len;
1307	char *new;
1308
1309	len = strlen(s);
1310	new = kmem_alloc(len + 1, KM_SLEEP);
1311	bcopy(s, new, len);
1312	new[len] = '\0';
1313
1314	return (new);
1315}
1316
1317void
1318spa_strfree(char *s)
1319{
1320	kmem_free(s, strlen(s) + 1);
1321}
1322
1323uint64_t
1324spa_get_random(uint64_t range)
1325{
1326	uint64_t r;
1327
1328	ASSERT(range != 0);
1329
1330	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1331
1332	return (r % range);
1333}
1334
1335uint64_t
1336spa_generate_guid(spa_t *spa)
1337{
1338	uint64_t guid = spa_get_random(-1ULL);
1339
1340	if (spa != NULL) {
1341		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1342			guid = spa_get_random(-1ULL);
1343	} else {
1344		while (guid == 0 || spa_guid_exists(guid, 0))
1345			guid = spa_get_random(-1ULL);
1346	}
1347
1348	return (guid);
1349}
1350
1351void
1352sprintf_blkptr(char *buf, const blkptr_t *bp)
1353{
1354	char type[256];
1355	char *checksum = NULL;
1356	char *compress = NULL;
1357
1358	if (bp != NULL) {
1359		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1360			dmu_object_byteswap_t bswap =
1361			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1362			(void) snprintf(type, sizeof (type), "bswap %s %s",
1363			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1364			    "metadata" : "data",
1365			    dmu_ot_byteswap[bswap].ob_name);
1366		} else {
1367			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1368			    sizeof (type));
1369		}
1370		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1371		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1372	}
1373
1374	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1375}
1376
1377void
1378spa_freeze(spa_t *spa)
1379{
1380	uint64_t freeze_txg = 0;
1381
1382	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1383	if (spa->spa_freeze_txg == UINT64_MAX) {
1384		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1385		spa->spa_freeze_txg = freeze_txg;
1386	}
1387	spa_config_exit(spa, SCL_ALL, FTAG);
1388	if (freeze_txg != 0)
1389		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1390}
1391
1392void
1393zfs_panic_recover(const char *fmt, ...)
1394{
1395	va_list adx;
1396
1397	va_start(adx, fmt);
1398	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1399	va_end(adx);
1400}
1401
1402/*
1403 * This is a stripped-down version of strtoull, suitable only for converting
1404 * lowercase hexadecimal numbers that don't overflow.
1405 */
1406uint64_t
1407zfs_strtonum(const char *str, char **nptr)
1408{
1409	uint64_t val = 0;
1410	char c;
1411	int digit;
1412
1413	while ((c = *str) != '\0') {
1414		if (c >= '0' && c <= '9')
1415			digit = c - '0';
1416		else if (c >= 'a' && c <= 'f')
1417			digit = 10 + c - 'a';
1418		else
1419			break;
1420
1421		val *= 16;
1422		val += digit;
1423
1424		str++;
1425	}
1426
1427	if (nptr)
1428		*nptr = (char *)str;
1429
1430	return (val);
1431}
1432
1433/*
1434 * ==========================================================================
1435 * Accessor functions
1436 * ==========================================================================
1437 */
1438
1439boolean_t
1440spa_shutting_down(spa_t *spa)
1441{
1442	return (spa->spa_async_suspended);
1443}
1444
1445dsl_pool_t *
1446spa_get_dsl(spa_t *spa)
1447{
1448	return (spa->spa_dsl_pool);
1449}
1450
1451boolean_t
1452spa_is_initializing(spa_t *spa)
1453{
1454	return (spa->spa_is_initializing);
1455}
1456
1457blkptr_t *
1458spa_get_rootblkptr(spa_t *spa)
1459{
1460	return (&spa->spa_ubsync.ub_rootbp);
1461}
1462
1463void
1464spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1465{
1466	spa->spa_uberblock.ub_rootbp = *bp;
1467}
1468
1469void
1470spa_altroot(spa_t *spa, char *buf, size_t buflen)
1471{
1472	if (spa->spa_root == NULL)
1473		buf[0] = '\0';
1474	else
1475		(void) strncpy(buf, spa->spa_root, buflen);
1476}
1477
1478int
1479spa_sync_pass(spa_t *spa)
1480{
1481	return (spa->spa_sync_pass);
1482}
1483
1484char *
1485spa_name(spa_t *spa)
1486{
1487	return (spa->spa_name);
1488}
1489
1490uint64_t
1491spa_guid(spa_t *spa)
1492{
1493	dsl_pool_t *dp = spa_get_dsl(spa);
1494	uint64_t guid;
1495
1496	/*
1497	 * If we fail to parse the config during spa_load(), we can go through
1498	 * the error path (which posts an ereport) and end up here with no root
1499	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1500	 * this case.
1501	 */
1502	if (spa->spa_root_vdev == NULL)
1503		return (spa->spa_config_guid);
1504
1505	guid = spa->spa_last_synced_guid != 0 ?
1506	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1507
1508	/*
1509	 * Return the most recently synced out guid unless we're
1510	 * in syncing context.
1511	 */
1512	if (dp && dsl_pool_sync_context(dp))
1513		return (spa->spa_root_vdev->vdev_guid);
1514	else
1515		return (guid);
1516}
1517
1518uint64_t
1519spa_load_guid(spa_t *spa)
1520{
1521	/*
1522	 * This is a GUID that exists solely as a reference for the
1523	 * purposes of the arc.  It is generated at load time, and
1524	 * is never written to persistent storage.
1525	 */
1526	return (spa->spa_load_guid);
1527}
1528
1529uint64_t
1530spa_last_synced_txg(spa_t *spa)
1531{
1532	return (spa->spa_ubsync.ub_txg);
1533}
1534
1535uint64_t
1536spa_first_txg(spa_t *spa)
1537{
1538	return (spa->spa_first_txg);
1539}
1540
1541uint64_t
1542spa_syncing_txg(spa_t *spa)
1543{
1544	return (spa->spa_syncing_txg);
1545}
1546
1547pool_state_t
1548spa_state(spa_t *spa)
1549{
1550	return (spa->spa_state);
1551}
1552
1553spa_load_state_t
1554spa_load_state(spa_t *spa)
1555{
1556	return (spa->spa_load_state);
1557}
1558
1559uint64_t
1560spa_freeze_txg(spa_t *spa)
1561{
1562	return (spa->spa_freeze_txg);
1563}
1564
1565/* ARGSUSED */
1566uint64_t
1567spa_get_asize(spa_t *spa, uint64_t lsize)
1568{
1569	return (lsize * spa_asize_inflation);
1570}
1571
1572uint64_t
1573spa_get_dspace(spa_t *spa)
1574{
1575	return (spa->spa_dspace);
1576}
1577
1578void
1579spa_update_dspace(spa_t *spa)
1580{
1581	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1582	    ddt_get_dedup_dspace(spa);
1583}
1584
1585/*
1586 * Return the failure mode that has been set to this pool. The default
1587 * behavior will be to block all I/Os when a complete failure occurs.
1588 */
1589uint8_t
1590spa_get_failmode(spa_t *spa)
1591{
1592	return (spa->spa_failmode);
1593}
1594
1595boolean_t
1596spa_suspended(spa_t *spa)
1597{
1598	return (spa->spa_suspended);
1599}
1600
1601uint64_t
1602spa_version(spa_t *spa)
1603{
1604	return (spa->spa_ubsync.ub_version);
1605}
1606
1607boolean_t
1608spa_deflate(spa_t *spa)
1609{
1610	return (spa->spa_deflate);
1611}
1612
1613metaslab_class_t *
1614spa_normal_class(spa_t *spa)
1615{
1616	return (spa->spa_normal_class);
1617}
1618
1619metaslab_class_t *
1620spa_log_class(spa_t *spa)
1621{
1622	return (spa->spa_log_class);
1623}
1624
1625int
1626spa_max_replication(spa_t *spa)
1627{
1628	/*
1629	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1630	 * handle BPs with more than one DVA allocated.  Set our max
1631	 * replication level accordingly.
1632	 */
1633	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1634		return (1);
1635	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1636}
1637
1638int
1639spa_prev_software_version(spa_t *spa)
1640{
1641	return (spa->spa_prev_software_version);
1642}
1643
1644uint64_t
1645spa_deadman_synctime(spa_t *spa)
1646{
1647	return (spa->spa_deadman_synctime);
1648}
1649
1650uint64_t
1651dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1652{
1653	uint64_t asize = DVA_GET_ASIZE(dva);
1654	uint64_t dsize = asize;
1655
1656	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1657
1658	if (asize != 0 && spa->spa_deflate) {
1659		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1660		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1661	}
1662
1663	return (dsize);
1664}
1665
1666uint64_t
1667bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1668{
1669	uint64_t dsize = 0;
1670
1671	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1672		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1673
1674	return (dsize);
1675}
1676
1677uint64_t
1678bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1679{
1680	uint64_t dsize = 0;
1681
1682	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1683
1684	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1685		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1686
1687	spa_config_exit(spa, SCL_VDEV, FTAG);
1688
1689	return (dsize);
1690}
1691
1692/*
1693 * ==========================================================================
1694 * Initialization and Termination
1695 * ==========================================================================
1696 */
1697
1698static int
1699spa_name_compare(const void *a1, const void *a2)
1700{
1701	const spa_t *s1 = a1;
1702	const spa_t *s2 = a2;
1703	int s;
1704
1705	s = strcmp(s1->spa_name, s2->spa_name);
1706	if (s > 0)
1707		return (1);
1708	if (s < 0)
1709		return (-1);
1710	return (0);
1711}
1712
1713int
1714spa_busy(void)
1715{
1716	return (spa_active_count);
1717}
1718
1719void
1720spa_boot_init()
1721{
1722	spa_config_load();
1723}
1724
1725#ifdef _KERNEL
1726EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1727#endif
1728
1729void
1730spa_init(int mode)
1731{
1732	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1733	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1734	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1735	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1736
1737	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1738	    offsetof(spa_t, spa_avl));
1739
1740	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1741	    offsetof(spa_aux_t, aux_avl));
1742
1743	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1744	    offsetof(spa_aux_t, aux_avl));
1745
1746	spa_mode_global = mode;
1747
1748#ifdef illumos
1749#ifdef _KERNEL
1750	spa_arch_init();
1751#else
1752	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1753		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1754		if (arc_procfd == -1) {
1755			perror("could not enable watchpoints: "
1756			    "opening /proc/self/ctl failed: ");
1757		} else {
1758			arc_watch = B_TRUE;
1759		}
1760	}
1761#endif
1762#endif /* illumos */
1763	refcount_sysinit();
1764	unique_init();
1765	range_tree_init();
1766	zio_init();
1767	lz4_init();
1768	dmu_init();
1769	zil_init();
1770	vdev_cache_stat_init();
1771	zfs_prop_init();
1772	zpool_prop_init();
1773	zpool_feature_init();
1774	spa_config_load();
1775	l2arc_start();
1776#ifndef illumos
1777#ifdef _KERNEL
1778	zfs_deadman_init();
1779#endif
1780#endif	/* !illumos */
1781}
1782
1783void
1784spa_fini(void)
1785{
1786	l2arc_stop();
1787
1788	spa_evict_all();
1789
1790	vdev_cache_stat_fini();
1791	zil_fini();
1792	dmu_fini();
1793	lz4_fini();
1794	zio_fini();
1795	range_tree_fini();
1796	unique_fini();
1797	refcount_fini();
1798
1799	avl_destroy(&spa_namespace_avl);
1800	avl_destroy(&spa_spare_avl);
1801	avl_destroy(&spa_l2cache_avl);
1802
1803	cv_destroy(&spa_namespace_cv);
1804	mutex_destroy(&spa_namespace_lock);
1805	mutex_destroy(&spa_spare_lock);
1806	mutex_destroy(&spa_l2cache_lock);
1807}
1808
1809/*
1810 * Return whether this pool has slogs. No locking needed.
1811 * It's not a problem if the wrong answer is returned as it's only for
1812 * performance and not correctness
1813 */
1814boolean_t
1815spa_has_slogs(spa_t *spa)
1816{
1817	return (spa->spa_log_class->mc_rotor != NULL);
1818}
1819
1820spa_log_state_t
1821spa_get_log_state(spa_t *spa)
1822{
1823	return (spa->spa_log_state);
1824}
1825
1826void
1827spa_set_log_state(spa_t *spa, spa_log_state_t state)
1828{
1829	spa->spa_log_state = state;
1830}
1831
1832boolean_t
1833spa_is_root(spa_t *spa)
1834{
1835	return (spa->spa_is_root);
1836}
1837
1838boolean_t
1839spa_writeable(spa_t *spa)
1840{
1841	return (!!(spa->spa_mode & FWRITE));
1842}
1843
1844int
1845spa_mode(spa_t *spa)
1846{
1847	return (spa->spa_mode);
1848}
1849
1850uint64_t
1851spa_bootfs(spa_t *spa)
1852{
1853	return (spa->spa_bootfs);
1854}
1855
1856uint64_t
1857spa_delegation(spa_t *spa)
1858{
1859	return (spa->spa_delegation);
1860}
1861
1862objset_t *
1863spa_meta_objset(spa_t *spa)
1864{
1865	return (spa->spa_meta_objset);
1866}
1867
1868enum zio_checksum
1869spa_dedup_checksum(spa_t *spa)
1870{
1871	return (spa->spa_dedup_checksum);
1872}
1873
1874/*
1875 * Reset pool scan stat per scan pass (or reboot).
1876 */
1877void
1878spa_scan_stat_init(spa_t *spa)
1879{
1880	/* data not stored on disk */
1881	spa->spa_scan_pass_start = gethrestime_sec();
1882	spa->spa_scan_pass_exam = 0;
1883	vdev_scan_stat_init(spa->spa_root_vdev);
1884}
1885
1886/*
1887 * Get scan stats for zpool status reports
1888 */
1889int
1890spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1891{
1892	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1893
1894	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1895		return (SET_ERROR(ENOENT));
1896	bzero(ps, sizeof (pool_scan_stat_t));
1897
1898	/* data stored on disk */
1899	ps->pss_func = scn->scn_phys.scn_func;
1900	ps->pss_start_time = scn->scn_phys.scn_start_time;
1901	ps->pss_end_time = scn->scn_phys.scn_end_time;
1902	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1903	ps->pss_examined = scn->scn_phys.scn_examined;
1904	ps->pss_to_process = scn->scn_phys.scn_to_process;
1905	ps->pss_processed = scn->scn_phys.scn_processed;
1906	ps->pss_errors = scn->scn_phys.scn_errors;
1907	ps->pss_state = scn->scn_phys.scn_state;
1908
1909	/* data not stored on disk */
1910	ps->pss_pass_start = spa->spa_scan_pass_start;
1911	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1912
1913	return (0);
1914}
1915
1916boolean_t
1917spa_debug_enabled(spa_t *spa)
1918{
1919	return (spa->spa_debug);
1920}
1921