spa_config.c revision 297115
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa_impl.h>
32#include <sys/nvpair.h>
33#include <sys/uio.h>
34#include <sys/fs/zfs.h>
35#include <sys/vdev_impl.h>
36#include <sys/zfs_ioctl.h>
37#include <sys/utsname.h>
38#include <sys/sunddi.h>
39#include <sys/zfeature.h>
40#ifdef _KERNEL
41#include <sys/kobj.h>
42#include <sys/zone.h>
43#endif
44
45/*
46 * Pool configuration repository.
47 *
48 * Pool configuration is stored as a packed nvlist on the filesystem.  By
49 * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
50 * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
51 * property set that allows them to be stored in an alternate location until
52 * the control of external software.
53 *
54 * For each cache file, we have a single nvlist which holds all the
55 * configuration information.  When the module loads, we read this information
56 * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
57 * maintained independently in spa.c.  Whenever the namespace is modified, or
58 * the configuration of a pool is changed, we call spa_config_sync(), which
59 * walks through all the active pools and writes the configuration to disk.
60 */
61
62static uint64_t spa_config_generation = 1;
63
64/*
65 * This can be overridden in userland to preserve an alternate namespace for
66 * userland pools when doing testing.
67 */
68const char *spa_config_path = ZPOOL_CACHE;
69
70/*
71 * Called when the module is first loaded, this routine loads the configuration
72 * file into the SPA namespace.  It does not actually open or load the pools; it
73 * only populates the namespace.
74 */
75void
76spa_config_load(void)
77{
78	void *buf = NULL;
79	nvlist_t *nvlist, *child;
80	nvpair_t *nvpair;
81	char *pathname;
82	struct _buf *file;
83	uint64_t fsize;
84
85	/*
86	 * Open the configuration file.
87	 */
88	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
89
90	(void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
91
92	file = kobj_open_file(pathname);
93
94	kmem_free(pathname, MAXPATHLEN);
95
96	if (file == (struct _buf *)-1)
97		return;
98
99	if (kobj_get_filesize(file, &fsize) != 0)
100		goto out;
101
102	buf = kmem_alloc(fsize, KM_SLEEP);
103
104	/*
105	 * Read the nvlist from the file.
106	 */
107	if (kobj_read_file(file, buf, fsize, 0) < 0)
108		goto out;
109
110	/*
111	 * Unpack the nvlist.
112	 */
113	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
114		goto out;
115
116	/*
117	 * Iterate over all elements in the nvlist, creating a new spa_t for
118	 * each one with the specified configuration.
119	 */
120	mutex_enter(&spa_namespace_lock);
121	nvpair = NULL;
122	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
123		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
124			continue;
125
126		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
127
128		if (spa_lookup(nvpair_name(nvpair)) != NULL)
129			continue;
130		(void) spa_add(nvpair_name(nvpair), child, NULL);
131	}
132	mutex_exit(&spa_namespace_lock);
133
134	nvlist_free(nvlist);
135
136out:
137	if (buf != NULL)
138		kmem_free(buf, fsize);
139
140	kobj_close_file(file);
141}
142
143static void
144spa_config_clean(nvlist_t *nvl)
145{
146	nvlist_t **child;
147	nvlist_t *nvroot = NULL;
148	uint_t c, children;
149
150	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
151	    &children) == 0) {
152		for (c = 0; c < children; c++)
153			spa_config_clean(child[c]);
154	}
155
156	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0)
157		spa_config_clean(nvroot);
158
159	nvlist_remove(nvl, ZPOOL_CONFIG_VDEV_STATS, DATA_TYPE_UINT64_ARRAY);
160	nvlist_remove(nvl, ZPOOL_CONFIG_SCAN_STATS, DATA_TYPE_UINT64_ARRAY);
161}
162
163static int
164spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
165{
166	size_t buflen;
167	char *buf;
168	vnode_t *vp;
169	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
170	char *temp;
171	int err;
172
173	/*
174	 * If the nvlist is empty (NULL), then remove the old cachefile.
175	 */
176	if (nvl == NULL) {
177		err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
178		return (err);
179	}
180
181	/*
182	 * Pack the configuration into a buffer.
183	 */
184	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
185
186	buf = kmem_alloc(buflen, KM_SLEEP);
187	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
188
189	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
190	    KM_SLEEP) == 0);
191
192	/*
193	 * Write the configuration to disk.  We need to do the traditional
194	 * 'write to temporary file, sync, move over original' to make sure we
195	 * always have a consistent view of the data.
196	 */
197	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
198
199	err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
200	if (err == 0) {
201		err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
202		    0, RLIM64_INFINITY, kcred, NULL);
203		if (err == 0)
204			err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
205		if (err == 0)
206			err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
207		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
208	}
209
210	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
211
212	kmem_free(buf, buflen);
213	kmem_free(temp, MAXPATHLEN);
214	return (err);
215}
216
217/*
218 * Synchronize pool configuration to disk.  This must be called with the
219 * namespace lock held. Synchronizing the pool cache is typically done after
220 * the configuration has been synced to the MOS. This exposes a window where
221 * the MOS config will have been updated but the cache file has not. If
222 * the system were to crash at that instant then the cached config may not
223 * contain the correct information to open the pool and an explicity import
224 * would be required.
225 */
226void
227spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
228{
229	spa_config_dirent_t *dp, *tdp;
230	nvlist_t *nvl;
231	boolean_t ccw_failure;
232	int error;
233
234	ASSERT(MUTEX_HELD(&spa_namespace_lock));
235
236	if (rootdir == NULL || !(spa_mode_global & FWRITE))
237		return;
238
239	/*
240	 * Iterate over all cachefiles for the pool, past or present.  When the
241	 * cachefile is changed, the new one is pushed onto this list, allowing
242	 * us to update previous cachefiles that no longer contain this pool.
243	 */
244	ccw_failure = B_FALSE;
245	for (dp = list_head(&target->spa_config_list); dp != NULL;
246	    dp = list_next(&target->spa_config_list, dp)) {
247		spa_t *spa = NULL;
248		if (dp->scd_path == NULL)
249			continue;
250
251		/*
252		 * Iterate over all pools, adding any matching pools to 'nvl'.
253		 */
254		nvl = NULL;
255		while ((spa = spa_next(spa)) != NULL) {
256			nvlist_t *nvroot = NULL;
257			/*
258			 * Skip over our own pool if we're about to remove
259			 * ourselves from the spa namespace or any pool that
260			 * is readonly. Since we cannot guarantee that a
261			 * readonly pool would successfully import upon reboot,
262			 * we don't allow them to be written to the cache file.
263			 */
264			if ((spa == target && removing) ||
265			    (spa_state(spa) == POOL_STATE_ACTIVE &&
266			    !spa_writeable(spa)))
267				continue;
268
269			mutex_enter(&spa->spa_props_lock);
270			tdp = list_head(&spa->spa_config_list);
271			if (spa->spa_config == NULL ||
272			    tdp->scd_path == NULL ||
273			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
274				mutex_exit(&spa->spa_props_lock);
275				continue;
276			}
277
278			if (nvl == NULL)
279				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
280				    KM_SLEEP) == 0);
281
282			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
283			    spa->spa_config) == 0);
284			mutex_exit(&spa->spa_props_lock);
285
286			if (nvlist_lookup_nvlist(nvl, spa->spa_name, &nvroot) == 0)
287				spa_config_clean(nvroot);
288		}
289
290		error = spa_config_write(dp, nvl);
291		if (error != 0)
292			ccw_failure = B_TRUE;
293		nvlist_free(nvl);
294	}
295
296	if (ccw_failure) {
297		/*
298		 * Keep trying so that configuration data is
299		 * written if/when any temporary filesystem
300		 * resource issues are resolved.
301		 */
302		if (target->spa_ccw_fail_time == 0) {
303			zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
304			    target, NULL, NULL, 0, 0);
305		}
306		target->spa_ccw_fail_time = gethrtime();
307		spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
308	} else {
309		/*
310		 * Do not rate limit future attempts to update
311		 * the config cache.
312		 */
313		target->spa_ccw_fail_time = 0;
314	}
315
316	/*
317	 * Remove any config entries older than the current one.
318	 */
319	dp = list_head(&target->spa_config_list);
320	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
321		list_remove(&target->spa_config_list, tdp);
322		if (tdp->scd_path != NULL)
323			spa_strfree(tdp->scd_path);
324		kmem_free(tdp, sizeof (spa_config_dirent_t));
325	}
326
327	spa_config_generation++;
328
329	if (postsysevent)
330		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
331}
332
333/*
334 * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
335 * and we don't want to allow the local zone to see all the pools anyway.
336 * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
337 * information for all pool visible within the zone.
338 */
339nvlist_t *
340spa_all_configs(uint64_t *generation)
341{
342	nvlist_t *pools;
343	spa_t *spa = NULL;
344
345	if (*generation == spa_config_generation)
346		return (NULL);
347
348	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
349
350	mutex_enter(&spa_namespace_lock);
351	while ((spa = spa_next(spa)) != NULL) {
352		if (INGLOBALZONE(curthread) ||
353		    zone_dataset_visible(spa_name(spa), NULL)) {
354			mutex_enter(&spa->spa_props_lock);
355			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
356			    spa->spa_config) == 0);
357			mutex_exit(&spa->spa_props_lock);
358		}
359	}
360	*generation = spa_config_generation;
361	mutex_exit(&spa_namespace_lock);
362
363	return (pools);
364}
365
366void
367spa_config_set(spa_t *spa, nvlist_t *config)
368{
369	mutex_enter(&spa->spa_props_lock);
370	nvlist_free(spa->spa_config);
371	spa->spa_config = config;
372	mutex_exit(&spa->spa_props_lock);
373}
374
375/*
376 * Generate the pool's configuration based on the current in-core state.
377 *
378 * We infer whether to generate a complete config or just one top-level config
379 * based on whether vd is the root vdev.
380 */
381nvlist_t *
382spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
383{
384	nvlist_t *config, *nvroot;
385	vdev_t *rvd = spa->spa_root_vdev;
386	unsigned long hostid = 0;
387	boolean_t locked = B_FALSE;
388	uint64_t split_guid;
389
390	if (vd == NULL) {
391		vd = rvd;
392		locked = B_TRUE;
393		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
394	}
395
396	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
397	    (SCL_CONFIG | SCL_STATE));
398
399	/*
400	 * If txg is -1, report the current value of spa->spa_config_txg.
401	 */
402	if (txg == -1ULL)
403		txg = spa->spa_config_txg;
404
405	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
406
407	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
408	    spa_version(spa)) == 0);
409	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
410	    spa_name(spa)) == 0);
411	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
412	    spa_state(spa)) == 0);
413	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
414	    txg) == 0);
415	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
416	    spa_guid(spa)) == 0);
417	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
418	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
419
420
421#ifdef	_KERNEL
422	hostid = zone_get_hostid(NULL);
423#else	/* _KERNEL */
424	/*
425	 * We're emulating the system's hostid in userland, so we can't use
426	 * zone_get_hostid().
427	 */
428	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
429#endif	/* _KERNEL */
430	if (hostid != 0) {
431		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
432		    hostid) == 0);
433	}
434	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
435	    utsname.nodename) == 0);
436
437	if (vd != rvd) {
438		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
439		    vd->vdev_top->vdev_guid) == 0);
440		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
441		    vd->vdev_guid) == 0);
442		if (vd->vdev_isspare)
443			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
444			    1ULL) == 0);
445		if (vd->vdev_islog)
446			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
447			    1ULL) == 0);
448		vd = vd->vdev_top;		/* label contains top config */
449	} else {
450		/*
451		 * Only add the (potentially large) split information
452		 * in the mos config, and not in the vdev labels
453		 */
454		if (spa->spa_config_splitting != NULL)
455			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
456			    spa->spa_config_splitting) == 0);
457	}
458
459	/*
460	 * Add the top-level config.  We even add this on pools which
461	 * don't support holes in the namespace.
462	 */
463	vdev_top_config_generate(spa, config);
464
465	/*
466	 * If we're splitting, record the original pool's guid.
467	 */
468	if (spa->spa_config_splitting != NULL &&
469	    nvlist_lookup_uint64(spa->spa_config_splitting,
470	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
471		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
472		    split_guid) == 0);
473	}
474
475	nvroot = vdev_config_generate(spa, vd, getstats, 0);
476	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
477	nvlist_free(nvroot);
478
479	/*
480	 * Store what's necessary for reading the MOS in the label.
481	 */
482	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
483	    spa->spa_label_features) == 0);
484
485	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
486		ddt_histogram_t *ddh;
487		ddt_stat_t *dds;
488		ddt_object_t *ddo;
489
490		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
491		ddt_get_dedup_histogram(spa, ddh);
492		VERIFY(nvlist_add_uint64_array(config,
493		    ZPOOL_CONFIG_DDT_HISTOGRAM,
494		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
495		kmem_free(ddh, sizeof (ddt_histogram_t));
496
497		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
498		ddt_get_dedup_object_stats(spa, ddo);
499		VERIFY(nvlist_add_uint64_array(config,
500		    ZPOOL_CONFIG_DDT_OBJ_STATS,
501		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
502		kmem_free(ddo, sizeof (ddt_object_t));
503
504		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
505		ddt_get_dedup_stats(spa, dds);
506		VERIFY(nvlist_add_uint64_array(config,
507		    ZPOOL_CONFIG_DDT_STATS,
508		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
509		kmem_free(dds, sizeof (ddt_stat_t));
510	}
511
512	if (locked)
513		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
514
515	return (config);
516}
517
518/*
519 * Update all disk labels, generate a fresh config based on the current
520 * in-core state, and sync the global config cache (do not sync the config
521 * cache if this is a booting rootpool).
522 */
523void
524spa_config_update(spa_t *spa, int what)
525{
526	vdev_t *rvd = spa->spa_root_vdev;
527	uint64_t txg;
528	int c;
529
530	ASSERT(MUTEX_HELD(&spa_namespace_lock));
531
532	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
533	txg = spa_last_synced_txg(spa) + 1;
534	if (what == SPA_CONFIG_UPDATE_POOL) {
535		vdev_config_dirty(rvd);
536	} else {
537		/*
538		 * If we have top-level vdevs that were added but have
539		 * not yet been prepared for allocation, do that now.
540		 * (It's safe now because the config cache is up to date,
541		 * so it will be able to translate the new DVAs.)
542		 * See comments in spa_vdev_add() for full details.
543		 */
544		for (c = 0; c < rvd->vdev_children; c++) {
545			vdev_t *tvd = rvd->vdev_child[c];
546			if (tvd->vdev_ms_array == 0) {
547				vdev_ashift_optimize(tvd);
548				vdev_metaslab_set_size(tvd);
549			}
550			vdev_expand(tvd, txg);
551		}
552	}
553	spa_config_exit(spa, SCL_ALL, FTAG);
554
555	/*
556	 * Wait for the mosconfig to be regenerated and synced.
557	 */
558	txg_wait_synced(spa->spa_dsl_pool, txg);
559
560	/*
561	 * Update the global config cache to reflect the new mosconfig.
562	 */
563	spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
564
565	if (what == SPA_CONFIG_UPDATE_POOL)
566		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
567}
568