spa.c revision 323747
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
156static void spa_event_post(sysevent_t *ev);
157static void spa_sync_version(void *arg, dmu_tx_t *tx);
158static void spa_sync_props(void *arg, dmu_tx_t *tx);
159static boolean_t spa_has_active_shared_spare(spa_t *spa);
160static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
161    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
162    char **ereport);
163static void spa_vdev_resilver_done(spa_t *spa);
164
165uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166#ifdef PSRSET_BIND
167id_t		zio_taskq_psrset_bind = PS_NONE;
168#endif
169#ifdef SYSDC
170boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
171uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
172#endif
173
174boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
175extern int	zfs_sync_pass_deferred_free;
176
177/*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181#define	TRYIMPORT_NAME	"$import"
182
183/*
184 * ==========================================================================
185 * SPA properties routines
186 * ==========================================================================
187 */
188
189/*
190 * Add a (source=src, propname=propval) list to an nvlist.
191 */
192static void
193spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
194    uint64_t intval, zprop_source_t src)
195{
196	const char *propname = zpool_prop_to_name(prop);
197	nvlist_t *propval;
198
199	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
200	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
201
202	if (strval != NULL)
203		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
204	else
205		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
206
207	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
208	nvlist_free(propval);
209}
210
211/*
212 * Get property values from the spa configuration.
213 */
214static void
215spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
216{
217	vdev_t *rvd = spa->spa_root_vdev;
218	dsl_pool_t *pool = spa->spa_dsl_pool;
219	uint64_t size, alloc, cap, version;
220	zprop_source_t src = ZPROP_SRC_NONE;
221	spa_config_dirent_t *dp;
222	metaslab_class_t *mc = spa_normal_class(spa);
223
224	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
225
226	if (rvd != NULL) {
227		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
228		size = metaslab_class_get_space(spa_normal_class(spa));
229		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
233		    size - alloc, src);
234
235		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
236		    metaslab_class_fragmentation(mc), src);
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
238		    metaslab_class_expandable_space(mc), src);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
240		    (spa_mode(spa) == FREAD), src);
241
242		cap = (size == 0) ? 0 : (alloc * 100 / size);
243		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
244
245		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
246		    ddt_get_pool_dedup_ratio(spa), src);
247
248		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
249		    rvd->vdev_state, src);
250
251		version = spa_version(spa);
252		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
253			src = ZPROP_SRC_DEFAULT;
254		else
255			src = ZPROP_SRC_LOCAL;
256		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
257	}
258
259	if (pool != NULL) {
260		/*
261		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
262		 * when opening pools before this version freedir will be NULL.
263		 */
264		if (pool->dp_free_dir != NULL) {
265			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
266			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
267			    src);
268		} else {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
270			    NULL, 0, src);
271		}
272
273		if (pool->dp_leak_dir != NULL) {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
275			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
276			    src);
277		} else {
278			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
279			    NULL, 0, src);
280		}
281	}
282
283	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
284
285	if (spa->spa_comment != NULL) {
286		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
287		    0, ZPROP_SRC_LOCAL);
288	}
289
290	if (spa->spa_root != NULL)
291		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
292		    0, ZPROP_SRC_LOCAL);
293
294	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
295		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
296		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
297	} else {
298		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
299		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
300	}
301
302	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
303		if (dp->scd_path == NULL) {
304			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
305			    "none", 0, ZPROP_SRC_LOCAL);
306		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
307			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
308			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
309		}
310	}
311}
312
313/*
314 * Get zpool property values.
315 */
316int
317spa_prop_get(spa_t *spa, nvlist_t **nvp)
318{
319	objset_t *mos = spa->spa_meta_objset;
320	zap_cursor_t zc;
321	zap_attribute_t za;
322	int err;
323
324	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
325
326	mutex_enter(&spa->spa_props_lock);
327
328	/*
329	 * Get properties from the spa config.
330	 */
331	spa_prop_get_config(spa, nvp);
332
333	/* If no pool property object, no more prop to get. */
334	if (mos == NULL || spa->spa_pool_props_object == 0) {
335		mutex_exit(&spa->spa_props_lock);
336		return (0);
337	}
338
339	/*
340	 * Get properties from the MOS pool property object.
341	 */
342	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
343	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
344	    zap_cursor_advance(&zc)) {
345		uint64_t intval = 0;
346		char *strval = NULL;
347		zprop_source_t src = ZPROP_SRC_DEFAULT;
348		zpool_prop_t prop;
349
350		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
351			continue;
352
353		switch (za.za_integer_length) {
354		case 8:
355			/* integer property */
356			if (za.za_first_integer !=
357			    zpool_prop_default_numeric(prop))
358				src = ZPROP_SRC_LOCAL;
359
360			if (prop == ZPOOL_PROP_BOOTFS) {
361				dsl_pool_t *dp;
362				dsl_dataset_t *ds = NULL;
363
364				dp = spa_get_dsl(spa);
365				dsl_pool_config_enter(dp, FTAG);
366				if (err = dsl_dataset_hold_obj(dp,
367				    za.za_first_integer, FTAG, &ds)) {
368					dsl_pool_config_exit(dp, FTAG);
369					break;
370				}
371
372				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
373				    KM_SLEEP);
374				dsl_dataset_name(ds, strval);
375				dsl_dataset_rele(ds, FTAG);
376				dsl_pool_config_exit(dp, FTAG);
377			} else {
378				strval = NULL;
379				intval = za.za_first_integer;
380			}
381
382			spa_prop_add_list(*nvp, prop, strval, intval, src);
383
384			if (strval != NULL)
385				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
386
387			break;
388
389		case 1:
390			/* string property */
391			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
392			err = zap_lookup(mos, spa->spa_pool_props_object,
393			    za.za_name, 1, za.za_num_integers, strval);
394			if (err) {
395				kmem_free(strval, za.za_num_integers);
396				break;
397			}
398			spa_prop_add_list(*nvp, prop, strval, 0, src);
399			kmem_free(strval, za.za_num_integers);
400			break;
401
402		default:
403			break;
404		}
405	}
406	zap_cursor_fini(&zc);
407	mutex_exit(&spa->spa_props_lock);
408out:
409	if (err && err != ENOENT) {
410		nvlist_free(*nvp);
411		*nvp = NULL;
412		return (err);
413	}
414
415	return (0);
416}
417
418/*
419 * Validate the given pool properties nvlist and modify the list
420 * for the property values to be set.
421 */
422static int
423spa_prop_validate(spa_t *spa, nvlist_t *props)
424{
425	nvpair_t *elem;
426	int error = 0, reset_bootfs = 0;
427	uint64_t objnum = 0;
428	boolean_t has_feature = B_FALSE;
429
430	elem = NULL;
431	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
432		uint64_t intval;
433		char *strval, *slash, *check, *fname;
434		const char *propname = nvpair_name(elem);
435		zpool_prop_t prop = zpool_name_to_prop(propname);
436
437		switch (prop) {
438		case ZPROP_INVAL:
439			if (!zpool_prop_feature(propname)) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			/*
445			 * Sanitize the input.
446			 */
447			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
448				error = SET_ERROR(EINVAL);
449				break;
450			}
451
452			if (nvpair_value_uint64(elem, &intval) != 0) {
453				error = SET_ERROR(EINVAL);
454				break;
455			}
456
457			if (intval != 0) {
458				error = SET_ERROR(EINVAL);
459				break;
460			}
461
462			fname = strchr(propname, '@') + 1;
463			if (zfeature_lookup_name(fname, NULL) != 0) {
464				error = SET_ERROR(EINVAL);
465				break;
466			}
467
468			has_feature = B_TRUE;
469			break;
470
471		case ZPOOL_PROP_VERSION:
472			error = nvpair_value_uint64(elem, &intval);
473			if (!error &&
474			    (intval < spa_version(spa) ||
475			    intval > SPA_VERSION_BEFORE_FEATURES ||
476			    has_feature))
477				error = SET_ERROR(EINVAL);
478			break;
479
480		case ZPOOL_PROP_DELEGATION:
481		case ZPOOL_PROP_AUTOREPLACE:
482		case ZPOOL_PROP_LISTSNAPS:
483		case ZPOOL_PROP_AUTOEXPAND:
484			error = nvpair_value_uint64(elem, &intval);
485			if (!error && intval > 1)
486				error = SET_ERROR(EINVAL);
487			break;
488
489		case ZPOOL_PROP_BOOTFS:
490			/*
491			 * If the pool version is less than SPA_VERSION_BOOTFS,
492			 * or the pool is still being created (version == 0),
493			 * the bootfs property cannot be set.
494			 */
495			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
496				error = SET_ERROR(ENOTSUP);
497				break;
498			}
499
500			/*
501			 * Make sure the vdev config is bootable
502			 */
503			if (!vdev_is_bootable(spa->spa_root_vdev)) {
504				error = SET_ERROR(ENOTSUP);
505				break;
506			}
507
508			reset_bootfs = 1;
509
510			error = nvpair_value_string(elem, &strval);
511
512			if (!error) {
513				objset_t *os;
514				uint64_t propval;
515
516				if (strval == NULL || strval[0] == '\0') {
517					objnum = zpool_prop_default_numeric(
518					    ZPOOL_PROP_BOOTFS);
519					break;
520				}
521
522				if (error = dmu_objset_hold(strval, FTAG, &os))
523					break;
524
525				/*
526				 * Must be ZPL, and its property settings
527				 * must be supported by GRUB (compression
528				 * is not gzip, and large blocks are not used).
529				 */
530
531				if (dmu_objset_type(os) != DMU_OST_ZFS) {
532					error = SET_ERROR(ENOTSUP);
533				} else if ((error =
534				    dsl_prop_get_int_ds(dmu_objset_ds(os),
535				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
536				    &propval)) == 0 &&
537				    !BOOTFS_COMPRESS_VALID(propval)) {
538					error = SET_ERROR(ENOTSUP);
539				} else if ((error =
540				    dsl_prop_get_int_ds(dmu_objset_ds(os),
541				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
542				    &propval)) == 0 &&
543				    propval > SPA_OLD_MAXBLOCKSIZE) {
544					error = SET_ERROR(ENOTSUP);
545				} else {
546					objnum = dmu_objset_id(os);
547				}
548				dmu_objset_rele(os, FTAG);
549			}
550			break;
551
552		case ZPOOL_PROP_FAILUREMODE:
553			error = nvpair_value_uint64(elem, &intval);
554			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
555			    intval > ZIO_FAILURE_MODE_PANIC))
556				error = SET_ERROR(EINVAL);
557
558			/*
559			 * This is a special case which only occurs when
560			 * the pool has completely failed. This allows
561			 * the user to change the in-core failmode property
562			 * without syncing it out to disk (I/Os might
563			 * currently be blocked). We do this by returning
564			 * EIO to the caller (spa_prop_set) to trick it
565			 * into thinking we encountered a property validation
566			 * error.
567			 */
568			if (!error && spa_suspended(spa)) {
569				spa->spa_failmode = intval;
570				error = SET_ERROR(EIO);
571			}
572			break;
573
574		case ZPOOL_PROP_CACHEFILE:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577
578			if (strval[0] == '\0')
579				break;
580
581			if (strcmp(strval, "none") == 0)
582				break;
583
584			if (strval[0] != '/') {
585				error = SET_ERROR(EINVAL);
586				break;
587			}
588
589			slash = strrchr(strval, '/');
590			ASSERT(slash != NULL);
591
592			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
593			    strcmp(slash, "/..") == 0)
594				error = SET_ERROR(EINVAL);
595			break;
596
597		case ZPOOL_PROP_COMMENT:
598			if ((error = nvpair_value_string(elem, &strval)) != 0)
599				break;
600			for (check = strval; *check != '\0'; check++) {
601				/*
602				 * The kernel doesn't have an easy isprint()
603				 * check.  For this kernel check, we merely
604				 * check ASCII apart from DEL.  Fix this if
605				 * there is an easy-to-use kernel isprint().
606				 */
607				if (*check >= 0x7f) {
608					error = SET_ERROR(EINVAL);
609					break;
610				}
611			}
612			if (strlen(strval) > ZPROP_MAX_COMMENT)
613				error = E2BIG;
614			break;
615
616		case ZPOOL_PROP_DEDUPDITTO:
617			if (spa_version(spa) < SPA_VERSION_DEDUP)
618				error = SET_ERROR(ENOTSUP);
619			else
620				error = nvpair_value_uint64(elem, &intval);
621			if (error == 0 &&
622			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
623				error = SET_ERROR(EINVAL);
624			break;
625		}
626
627		if (error)
628			break;
629	}
630
631	if (!error && reset_bootfs) {
632		error = nvlist_remove(props,
633		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
634
635		if (!error) {
636			error = nvlist_add_uint64(props,
637			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
638		}
639	}
640
641	return (error);
642}
643
644void
645spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
646{
647	char *cachefile;
648	spa_config_dirent_t *dp;
649
650	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
651	    &cachefile) != 0)
652		return;
653
654	dp = kmem_alloc(sizeof (spa_config_dirent_t),
655	    KM_SLEEP);
656
657	if (cachefile[0] == '\0')
658		dp->scd_path = spa_strdup(spa_config_path);
659	else if (strcmp(cachefile, "none") == 0)
660		dp->scd_path = NULL;
661	else
662		dp->scd_path = spa_strdup(cachefile);
663
664	list_insert_head(&spa->spa_config_list, dp);
665	if (need_sync)
666		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
667}
668
669int
670spa_prop_set(spa_t *spa, nvlist_t *nvp)
671{
672	int error;
673	nvpair_t *elem = NULL;
674	boolean_t need_sync = B_FALSE;
675
676	if ((error = spa_prop_validate(spa, nvp)) != 0)
677		return (error);
678
679	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
680		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
681
682		if (prop == ZPOOL_PROP_CACHEFILE ||
683		    prop == ZPOOL_PROP_ALTROOT ||
684		    prop == ZPOOL_PROP_READONLY)
685			continue;
686
687		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
688			uint64_t ver;
689
690			if (prop == ZPOOL_PROP_VERSION) {
691				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
692			} else {
693				ASSERT(zpool_prop_feature(nvpair_name(elem)));
694				ver = SPA_VERSION_FEATURES;
695				need_sync = B_TRUE;
696			}
697
698			/* Save time if the version is already set. */
699			if (ver == spa_version(spa))
700				continue;
701
702			/*
703			 * In addition to the pool directory object, we might
704			 * create the pool properties object, the features for
705			 * read object, the features for write object, or the
706			 * feature descriptions object.
707			 */
708			error = dsl_sync_task(spa->spa_name, NULL,
709			    spa_sync_version, &ver,
710			    6, ZFS_SPACE_CHECK_RESERVED);
711			if (error)
712				return (error);
713			continue;
714		}
715
716		need_sync = B_TRUE;
717		break;
718	}
719
720	if (need_sync) {
721		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
722		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
723	}
724
725	return (0);
726}
727
728/*
729 * If the bootfs property value is dsobj, clear it.
730 */
731void
732spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
733{
734	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
735		VERIFY(zap_remove(spa->spa_meta_objset,
736		    spa->spa_pool_props_object,
737		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
738		spa->spa_bootfs = 0;
739	}
740}
741
742/*ARGSUSED*/
743static int
744spa_change_guid_check(void *arg, dmu_tx_t *tx)
745{
746	uint64_t *newguid = arg;
747	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
748	vdev_t *rvd = spa->spa_root_vdev;
749	uint64_t vdev_state;
750
751	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
752	vdev_state = rvd->vdev_state;
753	spa_config_exit(spa, SCL_STATE, FTAG);
754
755	if (vdev_state != VDEV_STATE_HEALTHY)
756		return (SET_ERROR(ENXIO));
757
758	ASSERT3U(spa_guid(spa), !=, *newguid);
759
760	return (0);
761}
762
763static void
764spa_change_guid_sync(void *arg, dmu_tx_t *tx)
765{
766	uint64_t *newguid = arg;
767	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
768	uint64_t oldguid;
769	vdev_t *rvd = spa->spa_root_vdev;
770
771	oldguid = spa_guid(spa);
772
773	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
774	rvd->vdev_guid = *newguid;
775	rvd->vdev_guid_sum += (*newguid - oldguid);
776	vdev_config_dirty(rvd);
777	spa_config_exit(spa, SCL_STATE, FTAG);
778
779	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
780	    oldguid, *newguid);
781}
782
783/*
784 * Change the GUID for the pool.  This is done so that we can later
785 * re-import a pool built from a clone of our own vdevs.  We will modify
786 * the root vdev's guid, our own pool guid, and then mark all of our
787 * vdevs dirty.  Note that we must make sure that all our vdevs are
788 * online when we do this, or else any vdevs that weren't present
789 * would be orphaned from our pool.  We are also going to issue a
790 * sysevent to update any watchers.
791 */
792int
793spa_change_guid(spa_t *spa)
794{
795	int error;
796	uint64_t guid;
797
798	mutex_enter(&spa->spa_vdev_top_lock);
799	mutex_enter(&spa_namespace_lock);
800	guid = spa_generate_guid(NULL);
801
802	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
803	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
804
805	if (error == 0) {
806		spa_config_sync(spa, B_FALSE, B_TRUE);
807		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
808	}
809
810	mutex_exit(&spa_namespace_lock);
811	mutex_exit(&spa->spa_vdev_top_lock);
812
813	return (error);
814}
815
816/*
817 * ==========================================================================
818 * SPA state manipulation (open/create/destroy/import/export)
819 * ==========================================================================
820 */
821
822static int
823spa_error_entry_compare(const void *a, const void *b)
824{
825	spa_error_entry_t *sa = (spa_error_entry_t *)a;
826	spa_error_entry_t *sb = (spa_error_entry_t *)b;
827	int ret;
828
829	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
830	    sizeof (zbookmark_phys_t));
831
832	if (ret < 0)
833		return (-1);
834	else if (ret > 0)
835		return (1);
836	else
837		return (0);
838}
839
840/*
841 * Utility function which retrieves copies of the current logs and
842 * re-initializes them in the process.
843 */
844void
845spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
846{
847	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
848
849	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
850	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
851
852	avl_create(&spa->spa_errlist_scrub,
853	    spa_error_entry_compare, sizeof (spa_error_entry_t),
854	    offsetof(spa_error_entry_t, se_avl));
855	avl_create(&spa->spa_errlist_last,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858}
859
860static void
861spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
862{
863	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
864	enum zti_modes mode = ztip->zti_mode;
865	uint_t value = ztip->zti_value;
866	uint_t count = ztip->zti_count;
867	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
868	char name[32];
869	uint_t flags = 0;
870	boolean_t batch = B_FALSE;
871
872	if (mode == ZTI_MODE_NULL) {
873		tqs->stqs_count = 0;
874		tqs->stqs_taskq = NULL;
875		return;
876	}
877
878	ASSERT3U(count, >, 0);
879
880	tqs->stqs_count = count;
881	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
882
883	switch (mode) {
884	case ZTI_MODE_FIXED:
885		ASSERT3U(value, >=, 1);
886		value = MAX(value, 1);
887		break;
888
889	case ZTI_MODE_BATCH:
890		batch = B_TRUE;
891		flags |= TASKQ_THREADS_CPU_PCT;
892		value = zio_taskq_batch_pct;
893		break;
894
895	default:
896		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
897		    "spa_activate()",
898		    zio_type_name[t], zio_taskq_types[q], mode, value);
899		break;
900	}
901
902	for (uint_t i = 0; i < count; i++) {
903		taskq_t *tq;
904
905		if (count > 1) {
906			(void) snprintf(name, sizeof (name), "%s_%s_%u",
907			    zio_type_name[t], zio_taskq_types[q], i);
908		} else {
909			(void) snprintf(name, sizeof (name), "%s_%s",
910			    zio_type_name[t], zio_taskq_types[q]);
911		}
912
913#ifdef SYSDC
914		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
915			if (batch)
916				flags |= TASKQ_DC_BATCH;
917
918			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
919			    spa->spa_proc, zio_taskq_basedc, flags);
920		} else {
921#endif
922			pri_t pri = maxclsyspri;
923			/*
924			 * The write issue taskq can be extremely CPU
925			 * intensive.  Run it at slightly lower priority
926			 * than the other taskqs.
927			 * FreeBSD notes:
928			 * - numerically higher priorities are lower priorities;
929			 * - if priorities divided by four (RQ_PPQ) are equal
930			 *   then a difference between them is insignificant.
931			 */
932			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
933#ifdef illumos
934				pri--;
935#else
936				pri += 4;
937#endif
938
939			tq = taskq_create_proc(name, value, pri, 50,
940			    INT_MAX, spa->spa_proc, flags);
941#ifdef SYSDC
942		}
943#endif
944
945		tqs->stqs_taskq[i] = tq;
946	}
947}
948
949static void
950spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
951{
952	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
953
954	if (tqs->stqs_taskq == NULL) {
955		ASSERT0(tqs->stqs_count);
956		return;
957	}
958
959	for (uint_t i = 0; i < tqs->stqs_count; i++) {
960		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
961		taskq_destroy(tqs->stqs_taskq[i]);
962	}
963
964	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
965	tqs->stqs_taskq = NULL;
966}
967
968/*
969 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
970 * Note that a type may have multiple discrete taskqs to avoid lock contention
971 * on the taskq itself. In that case we choose which taskq at random by using
972 * the low bits of gethrtime().
973 */
974void
975spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
976    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
977{
978	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
979	taskq_t *tq;
980
981	ASSERT3P(tqs->stqs_taskq, !=, NULL);
982	ASSERT3U(tqs->stqs_count, !=, 0);
983
984	if (tqs->stqs_count == 1) {
985		tq = tqs->stqs_taskq[0];
986	} else {
987#ifdef _KERNEL
988		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
989#else
990		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
991#endif
992	}
993
994	taskq_dispatch_ent(tq, func, arg, flags, ent);
995}
996
997static void
998spa_create_zio_taskqs(spa_t *spa)
999{
1000	for (int t = 0; t < ZIO_TYPES; t++) {
1001		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1002			spa_taskqs_init(spa, t, q);
1003		}
1004	}
1005}
1006
1007#ifdef _KERNEL
1008#ifdef SPA_PROCESS
1009static void
1010spa_thread(void *arg)
1011{
1012	callb_cpr_t cprinfo;
1013
1014	spa_t *spa = arg;
1015	user_t *pu = PTOU(curproc);
1016
1017	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1018	    spa->spa_name);
1019
1020	ASSERT(curproc != &p0);
1021	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1022	    "zpool-%s", spa->spa_name);
1023	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1024
1025#ifdef PSRSET_BIND
1026	/* bind this thread to the requested psrset */
1027	if (zio_taskq_psrset_bind != PS_NONE) {
1028		pool_lock();
1029		mutex_enter(&cpu_lock);
1030		mutex_enter(&pidlock);
1031		mutex_enter(&curproc->p_lock);
1032
1033		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1034		    0, NULL, NULL) == 0)  {
1035			curthread->t_bind_pset = zio_taskq_psrset_bind;
1036		} else {
1037			cmn_err(CE_WARN,
1038			    "Couldn't bind process for zfs pool \"%s\" to "
1039			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1040		}
1041
1042		mutex_exit(&curproc->p_lock);
1043		mutex_exit(&pidlock);
1044		mutex_exit(&cpu_lock);
1045		pool_unlock();
1046	}
1047#endif
1048
1049#ifdef SYSDC
1050	if (zio_taskq_sysdc) {
1051		sysdc_thread_enter(curthread, 100, 0);
1052	}
1053#endif
1054
1055	spa->spa_proc = curproc;
1056	spa->spa_did = curthread->t_did;
1057
1058	spa_create_zio_taskqs(spa);
1059
1060	mutex_enter(&spa->spa_proc_lock);
1061	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1062
1063	spa->spa_proc_state = SPA_PROC_ACTIVE;
1064	cv_broadcast(&spa->spa_proc_cv);
1065
1066	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1067	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1068		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1069	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1070
1071	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1072	spa->spa_proc_state = SPA_PROC_GONE;
1073	spa->spa_proc = &p0;
1074	cv_broadcast(&spa->spa_proc_cv);
1075	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1076
1077	mutex_enter(&curproc->p_lock);
1078	lwp_exit();
1079}
1080#endif	/* SPA_PROCESS */
1081#endif
1082
1083/*
1084 * Activate an uninitialized pool.
1085 */
1086static void
1087spa_activate(spa_t *spa, int mode)
1088{
1089	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1090
1091	spa->spa_state = POOL_STATE_ACTIVE;
1092	spa->spa_mode = mode;
1093
1094	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1095	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1096
1097	/* Try to create a covering process */
1098	mutex_enter(&spa->spa_proc_lock);
1099	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1100	ASSERT(spa->spa_proc == &p0);
1101	spa->spa_did = 0;
1102
1103#ifdef SPA_PROCESS
1104	/* Only create a process if we're going to be around a while. */
1105	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1106		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1107		    NULL, 0) == 0) {
1108			spa->spa_proc_state = SPA_PROC_CREATED;
1109			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1110				cv_wait(&spa->spa_proc_cv,
1111				    &spa->spa_proc_lock);
1112			}
1113			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1114			ASSERT(spa->spa_proc != &p0);
1115			ASSERT(spa->spa_did != 0);
1116		} else {
1117#ifdef _KERNEL
1118			cmn_err(CE_WARN,
1119			    "Couldn't create process for zfs pool \"%s\"\n",
1120			    spa->spa_name);
1121#endif
1122		}
1123	}
1124#endif	/* SPA_PROCESS */
1125	mutex_exit(&spa->spa_proc_lock);
1126
1127	/* If we didn't create a process, we need to create our taskqs. */
1128	ASSERT(spa->spa_proc == &p0);
1129	if (spa->spa_proc == &p0) {
1130		spa_create_zio_taskqs(spa);
1131	}
1132
1133	/*
1134	 * Start TRIM thread.
1135	 */
1136	trim_thread_create(spa);
1137
1138	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1139	    offsetof(vdev_t, vdev_config_dirty_node));
1140	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1141	    offsetof(objset_t, os_evicting_node));
1142	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1143	    offsetof(vdev_t, vdev_state_dirty_node));
1144
1145	txg_list_create(&spa->spa_vdev_txg_list,
1146	    offsetof(struct vdev, vdev_txg_node));
1147
1148	avl_create(&spa->spa_errlist_scrub,
1149	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1150	    offsetof(spa_error_entry_t, se_avl));
1151	avl_create(&spa->spa_errlist_last,
1152	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1153	    offsetof(spa_error_entry_t, se_avl));
1154}
1155
1156/*
1157 * Opposite of spa_activate().
1158 */
1159static void
1160spa_deactivate(spa_t *spa)
1161{
1162	ASSERT(spa->spa_sync_on == B_FALSE);
1163	ASSERT(spa->spa_dsl_pool == NULL);
1164	ASSERT(spa->spa_root_vdev == NULL);
1165	ASSERT(spa->spa_async_zio_root == NULL);
1166	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1167
1168	/*
1169	 * Stop TRIM thread in case spa_unload() wasn't called directly
1170	 * before spa_deactivate().
1171	 */
1172	trim_thread_destroy(spa);
1173
1174	spa_evicting_os_wait(spa);
1175
1176	txg_list_destroy(&spa->spa_vdev_txg_list);
1177
1178	list_destroy(&spa->spa_config_dirty_list);
1179	list_destroy(&spa->spa_evicting_os_list);
1180	list_destroy(&spa->spa_state_dirty_list);
1181
1182	for (int t = 0; t < ZIO_TYPES; t++) {
1183		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1184			spa_taskqs_fini(spa, t, q);
1185		}
1186	}
1187
1188	metaslab_class_destroy(spa->spa_normal_class);
1189	spa->spa_normal_class = NULL;
1190
1191	metaslab_class_destroy(spa->spa_log_class);
1192	spa->spa_log_class = NULL;
1193
1194	/*
1195	 * If this was part of an import or the open otherwise failed, we may
1196	 * still have errors left in the queues.  Empty them just in case.
1197	 */
1198	spa_errlog_drain(spa);
1199
1200	avl_destroy(&spa->spa_errlist_scrub);
1201	avl_destroy(&spa->spa_errlist_last);
1202
1203	spa->spa_state = POOL_STATE_UNINITIALIZED;
1204
1205	mutex_enter(&spa->spa_proc_lock);
1206	if (spa->spa_proc_state != SPA_PROC_NONE) {
1207		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1208		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1209		cv_broadcast(&spa->spa_proc_cv);
1210		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1211			ASSERT(spa->spa_proc != &p0);
1212			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1213		}
1214		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1215		spa->spa_proc_state = SPA_PROC_NONE;
1216	}
1217	ASSERT(spa->spa_proc == &p0);
1218	mutex_exit(&spa->spa_proc_lock);
1219
1220#ifdef SPA_PROCESS
1221	/*
1222	 * We want to make sure spa_thread() has actually exited the ZFS
1223	 * module, so that the module can't be unloaded out from underneath
1224	 * it.
1225	 */
1226	if (spa->spa_did != 0) {
1227		thread_join(spa->spa_did);
1228		spa->spa_did = 0;
1229	}
1230#endif	/* SPA_PROCESS */
1231}
1232
1233/*
1234 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1235 * will create all the necessary vdevs in the appropriate layout, with each vdev
1236 * in the CLOSED state.  This will prep the pool before open/creation/import.
1237 * All vdev validation is done by the vdev_alloc() routine.
1238 */
1239static int
1240spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1241    uint_t id, int atype)
1242{
1243	nvlist_t **child;
1244	uint_t children;
1245	int error;
1246
1247	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1248		return (error);
1249
1250	if ((*vdp)->vdev_ops->vdev_op_leaf)
1251		return (0);
1252
1253	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1254	    &child, &children);
1255
1256	if (error == ENOENT)
1257		return (0);
1258
1259	if (error) {
1260		vdev_free(*vdp);
1261		*vdp = NULL;
1262		return (SET_ERROR(EINVAL));
1263	}
1264
1265	for (int c = 0; c < children; c++) {
1266		vdev_t *vd;
1267		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1268		    atype)) != 0) {
1269			vdev_free(*vdp);
1270			*vdp = NULL;
1271			return (error);
1272		}
1273	}
1274
1275	ASSERT(*vdp != NULL);
1276
1277	return (0);
1278}
1279
1280/*
1281 * Opposite of spa_load().
1282 */
1283static void
1284spa_unload(spa_t *spa)
1285{
1286	int i;
1287
1288	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1289
1290	/*
1291	 * Stop TRIM thread.
1292	 */
1293	trim_thread_destroy(spa);
1294
1295	/*
1296	 * Stop async tasks.
1297	 */
1298	spa_async_suspend(spa);
1299
1300	/*
1301	 * Stop syncing.
1302	 */
1303	if (spa->spa_sync_on) {
1304		txg_sync_stop(spa->spa_dsl_pool);
1305		spa->spa_sync_on = B_FALSE;
1306	}
1307
1308	/*
1309	 * Wait for any outstanding async I/O to complete.
1310	 */
1311	if (spa->spa_async_zio_root != NULL) {
1312		for (int i = 0; i < max_ncpus; i++)
1313			(void) zio_wait(spa->spa_async_zio_root[i]);
1314		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1315		spa->spa_async_zio_root = NULL;
1316	}
1317
1318	bpobj_close(&spa->spa_deferred_bpobj);
1319
1320	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1321
1322	/*
1323	 * Close all vdevs.
1324	 */
1325	if (spa->spa_root_vdev)
1326		vdev_free(spa->spa_root_vdev);
1327	ASSERT(spa->spa_root_vdev == NULL);
1328
1329	/*
1330	 * Close the dsl pool.
1331	 */
1332	if (spa->spa_dsl_pool) {
1333		dsl_pool_close(spa->spa_dsl_pool);
1334		spa->spa_dsl_pool = NULL;
1335		spa->spa_meta_objset = NULL;
1336	}
1337
1338	ddt_unload(spa);
1339
1340	/*
1341	 * Drop and purge level 2 cache
1342	 */
1343	spa_l2cache_drop(spa);
1344
1345	for (i = 0; i < spa->spa_spares.sav_count; i++)
1346		vdev_free(spa->spa_spares.sav_vdevs[i]);
1347	if (spa->spa_spares.sav_vdevs) {
1348		kmem_free(spa->spa_spares.sav_vdevs,
1349		    spa->spa_spares.sav_count * sizeof (void *));
1350		spa->spa_spares.sav_vdevs = NULL;
1351	}
1352	if (spa->spa_spares.sav_config) {
1353		nvlist_free(spa->spa_spares.sav_config);
1354		spa->spa_spares.sav_config = NULL;
1355	}
1356	spa->spa_spares.sav_count = 0;
1357
1358	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1359		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1360		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1361	}
1362	if (spa->spa_l2cache.sav_vdevs) {
1363		kmem_free(spa->spa_l2cache.sav_vdevs,
1364		    spa->spa_l2cache.sav_count * sizeof (void *));
1365		spa->spa_l2cache.sav_vdevs = NULL;
1366	}
1367	if (spa->spa_l2cache.sav_config) {
1368		nvlist_free(spa->spa_l2cache.sav_config);
1369		spa->spa_l2cache.sav_config = NULL;
1370	}
1371	spa->spa_l2cache.sav_count = 0;
1372
1373	spa->spa_async_suspended = 0;
1374
1375	if (spa->spa_comment != NULL) {
1376		spa_strfree(spa->spa_comment);
1377		spa->spa_comment = NULL;
1378	}
1379
1380	spa_config_exit(spa, SCL_ALL, FTAG);
1381}
1382
1383/*
1384 * Load (or re-load) the current list of vdevs describing the active spares for
1385 * this pool.  When this is called, we have some form of basic information in
1386 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1387 * then re-generate a more complete list including status information.
1388 */
1389static void
1390spa_load_spares(spa_t *spa)
1391{
1392	nvlist_t **spares;
1393	uint_t nspares;
1394	int i;
1395	vdev_t *vd, *tvd;
1396
1397	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1398
1399	/*
1400	 * First, close and free any existing spare vdevs.
1401	 */
1402	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1403		vd = spa->spa_spares.sav_vdevs[i];
1404
1405		/* Undo the call to spa_activate() below */
1406		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1407		    B_FALSE)) != NULL && tvd->vdev_isspare)
1408			spa_spare_remove(tvd);
1409		vdev_close(vd);
1410		vdev_free(vd);
1411	}
1412
1413	if (spa->spa_spares.sav_vdevs)
1414		kmem_free(spa->spa_spares.sav_vdevs,
1415		    spa->spa_spares.sav_count * sizeof (void *));
1416
1417	if (spa->spa_spares.sav_config == NULL)
1418		nspares = 0;
1419	else
1420		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1421		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1422
1423	spa->spa_spares.sav_count = (int)nspares;
1424	spa->spa_spares.sav_vdevs = NULL;
1425
1426	if (nspares == 0)
1427		return;
1428
1429	/*
1430	 * Construct the array of vdevs, opening them to get status in the
1431	 * process.   For each spare, there is potentially two different vdev_t
1432	 * structures associated with it: one in the list of spares (used only
1433	 * for basic validation purposes) and one in the active vdev
1434	 * configuration (if it's spared in).  During this phase we open and
1435	 * validate each vdev on the spare list.  If the vdev also exists in the
1436	 * active configuration, then we also mark this vdev as an active spare.
1437	 */
1438	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1439	    KM_SLEEP);
1440	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1441		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1442		    VDEV_ALLOC_SPARE) == 0);
1443		ASSERT(vd != NULL);
1444
1445		spa->spa_spares.sav_vdevs[i] = vd;
1446
1447		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1448		    B_FALSE)) != NULL) {
1449			if (!tvd->vdev_isspare)
1450				spa_spare_add(tvd);
1451
1452			/*
1453			 * We only mark the spare active if we were successfully
1454			 * able to load the vdev.  Otherwise, importing a pool
1455			 * with a bad active spare would result in strange
1456			 * behavior, because multiple pool would think the spare
1457			 * is actively in use.
1458			 *
1459			 * There is a vulnerability here to an equally bizarre
1460			 * circumstance, where a dead active spare is later
1461			 * brought back to life (onlined or otherwise).  Given
1462			 * the rarity of this scenario, and the extra complexity
1463			 * it adds, we ignore the possibility.
1464			 */
1465			if (!vdev_is_dead(tvd))
1466				spa_spare_activate(tvd);
1467		}
1468
1469		vd->vdev_top = vd;
1470		vd->vdev_aux = &spa->spa_spares;
1471
1472		if (vdev_open(vd) != 0)
1473			continue;
1474
1475		if (vdev_validate_aux(vd) == 0)
1476			spa_spare_add(vd);
1477	}
1478
1479	/*
1480	 * Recompute the stashed list of spares, with status information
1481	 * this time.
1482	 */
1483	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1484	    DATA_TYPE_NVLIST_ARRAY) == 0);
1485
1486	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1487	    KM_SLEEP);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		spares[i] = vdev_config_generate(spa,
1490		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1491	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1492	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1493	for (i = 0; i < spa->spa_spares.sav_count; i++)
1494		nvlist_free(spares[i]);
1495	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1496}
1497
1498/*
1499 * Load (or re-load) the current list of vdevs describing the active l2cache for
1500 * this pool.  When this is called, we have some form of basic information in
1501 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1502 * then re-generate a more complete list including status information.
1503 * Devices which are already active have their details maintained, and are
1504 * not re-opened.
1505 */
1506static void
1507spa_load_l2cache(spa_t *spa)
1508{
1509	nvlist_t **l2cache;
1510	uint_t nl2cache;
1511	int i, j, oldnvdevs;
1512	uint64_t guid;
1513	vdev_t *vd, **oldvdevs, **newvdevs;
1514	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1515
1516	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1517
1518	if (sav->sav_config != NULL) {
1519		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1520		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1521		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1522	} else {
1523		nl2cache = 0;
1524		newvdevs = NULL;
1525	}
1526
1527	oldvdevs = sav->sav_vdevs;
1528	oldnvdevs = sav->sav_count;
1529	sav->sav_vdevs = NULL;
1530	sav->sav_count = 0;
1531
1532	/*
1533	 * Process new nvlist of vdevs.
1534	 */
1535	for (i = 0; i < nl2cache; i++) {
1536		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1537		    &guid) == 0);
1538
1539		newvdevs[i] = NULL;
1540		for (j = 0; j < oldnvdevs; j++) {
1541			vd = oldvdevs[j];
1542			if (vd != NULL && guid == vd->vdev_guid) {
1543				/*
1544				 * Retain previous vdev for add/remove ops.
1545				 */
1546				newvdevs[i] = vd;
1547				oldvdevs[j] = NULL;
1548				break;
1549			}
1550		}
1551
1552		if (newvdevs[i] == NULL) {
1553			/*
1554			 * Create new vdev
1555			 */
1556			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1557			    VDEV_ALLOC_L2CACHE) == 0);
1558			ASSERT(vd != NULL);
1559			newvdevs[i] = vd;
1560
1561			/*
1562			 * Commit this vdev as an l2cache device,
1563			 * even if it fails to open.
1564			 */
1565			spa_l2cache_add(vd);
1566
1567			vd->vdev_top = vd;
1568			vd->vdev_aux = sav;
1569
1570			spa_l2cache_activate(vd);
1571
1572			if (vdev_open(vd) != 0)
1573				continue;
1574
1575			(void) vdev_validate_aux(vd);
1576
1577			if (!vdev_is_dead(vd))
1578				l2arc_add_vdev(spa, vd);
1579		}
1580	}
1581
1582	/*
1583	 * Purge vdevs that were dropped
1584	 */
1585	for (i = 0; i < oldnvdevs; i++) {
1586		uint64_t pool;
1587
1588		vd = oldvdevs[i];
1589		if (vd != NULL) {
1590			ASSERT(vd->vdev_isl2cache);
1591
1592			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1593			    pool != 0ULL && l2arc_vdev_present(vd))
1594				l2arc_remove_vdev(vd);
1595			vdev_clear_stats(vd);
1596			vdev_free(vd);
1597		}
1598	}
1599
1600	if (oldvdevs)
1601		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1602
1603	if (sav->sav_config == NULL)
1604		goto out;
1605
1606	sav->sav_vdevs = newvdevs;
1607	sav->sav_count = (int)nl2cache;
1608
1609	/*
1610	 * Recompute the stashed list of l2cache devices, with status
1611	 * information this time.
1612	 */
1613	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1614	    DATA_TYPE_NVLIST_ARRAY) == 0);
1615
1616	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1617	for (i = 0; i < sav->sav_count; i++)
1618		l2cache[i] = vdev_config_generate(spa,
1619		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1620	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1621	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1622out:
1623	for (i = 0; i < sav->sav_count; i++)
1624		nvlist_free(l2cache[i]);
1625	if (sav->sav_count)
1626		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1627}
1628
1629static int
1630load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1631{
1632	dmu_buf_t *db;
1633	char *packed = NULL;
1634	size_t nvsize = 0;
1635	int error;
1636	*value = NULL;
1637
1638	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1639	if (error != 0)
1640		return (error);
1641
1642	nvsize = *(uint64_t *)db->db_data;
1643	dmu_buf_rele(db, FTAG);
1644
1645	packed = kmem_alloc(nvsize, KM_SLEEP);
1646	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1647	    DMU_READ_PREFETCH);
1648	if (error == 0)
1649		error = nvlist_unpack(packed, nvsize, value, 0);
1650	kmem_free(packed, nvsize);
1651
1652	return (error);
1653}
1654
1655/*
1656 * Checks to see if the given vdev could not be opened, in which case we post a
1657 * sysevent to notify the autoreplace code that the device has been removed.
1658 */
1659static void
1660spa_check_removed(vdev_t *vd)
1661{
1662	for (int c = 0; c < vd->vdev_children; c++)
1663		spa_check_removed(vd->vdev_child[c]);
1664
1665	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1666	    !vd->vdev_ishole) {
1667		zfs_post_autoreplace(vd->vdev_spa, vd);
1668		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1669	}
1670}
1671
1672/*
1673 * Validate the current config against the MOS config
1674 */
1675static boolean_t
1676spa_config_valid(spa_t *spa, nvlist_t *config)
1677{
1678	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1679	nvlist_t *nv;
1680
1681	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1682
1683	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1684	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1685
1686	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1687
1688	/*
1689	 * If we're doing a normal import, then build up any additional
1690	 * diagnostic information about missing devices in this config.
1691	 * We'll pass this up to the user for further processing.
1692	 */
1693	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1694		nvlist_t **child, *nv;
1695		uint64_t idx = 0;
1696
1697		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1698		    KM_SLEEP);
1699		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1700
1701		for (int c = 0; c < rvd->vdev_children; c++) {
1702			vdev_t *tvd = rvd->vdev_child[c];
1703			vdev_t *mtvd  = mrvd->vdev_child[c];
1704
1705			if (tvd->vdev_ops == &vdev_missing_ops &&
1706			    mtvd->vdev_ops != &vdev_missing_ops &&
1707			    mtvd->vdev_islog)
1708				child[idx++] = vdev_config_generate(spa, mtvd,
1709				    B_FALSE, 0);
1710		}
1711
1712		if (idx) {
1713			VERIFY(nvlist_add_nvlist_array(nv,
1714			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1715			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1716			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1717
1718			for (int i = 0; i < idx; i++)
1719				nvlist_free(child[i]);
1720		}
1721		nvlist_free(nv);
1722		kmem_free(child, rvd->vdev_children * sizeof (char **));
1723	}
1724
1725	/*
1726	 * Compare the root vdev tree with the information we have
1727	 * from the MOS config (mrvd). Check each top-level vdev
1728	 * with the corresponding MOS config top-level (mtvd).
1729	 */
1730	for (int c = 0; c < rvd->vdev_children; c++) {
1731		vdev_t *tvd = rvd->vdev_child[c];
1732		vdev_t *mtvd  = mrvd->vdev_child[c];
1733
1734		/*
1735		 * Resolve any "missing" vdevs in the current configuration.
1736		 * If we find that the MOS config has more accurate information
1737		 * about the top-level vdev then use that vdev instead.
1738		 */
1739		if (tvd->vdev_ops == &vdev_missing_ops &&
1740		    mtvd->vdev_ops != &vdev_missing_ops) {
1741
1742			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1743				continue;
1744
1745			/*
1746			 * Device specific actions.
1747			 */
1748			if (mtvd->vdev_islog) {
1749				spa_set_log_state(spa, SPA_LOG_CLEAR);
1750			} else {
1751				/*
1752				 * XXX - once we have 'readonly' pool
1753				 * support we should be able to handle
1754				 * missing data devices by transitioning
1755				 * the pool to readonly.
1756				 */
1757				continue;
1758			}
1759
1760			/*
1761			 * Swap the missing vdev with the data we were
1762			 * able to obtain from the MOS config.
1763			 */
1764			vdev_remove_child(rvd, tvd);
1765			vdev_remove_child(mrvd, mtvd);
1766
1767			vdev_add_child(rvd, mtvd);
1768			vdev_add_child(mrvd, tvd);
1769
1770			spa_config_exit(spa, SCL_ALL, FTAG);
1771			vdev_load(mtvd);
1772			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1773
1774			vdev_reopen(rvd);
1775		} else if (mtvd->vdev_islog) {
1776			/*
1777			 * Load the slog device's state from the MOS config
1778			 * since it's possible that the label does not
1779			 * contain the most up-to-date information.
1780			 */
1781			vdev_load_log_state(tvd, mtvd);
1782			vdev_reopen(tvd);
1783		}
1784	}
1785	vdev_free(mrvd);
1786	spa_config_exit(spa, SCL_ALL, FTAG);
1787
1788	/*
1789	 * Ensure we were able to validate the config.
1790	 */
1791	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1792}
1793
1794/*
1795 * Check for missing log devices
1796 */
1797static boolean_t
1798spa_check_logs(spa_t *spa)
1799{
1800	boolean_t rv = B_FALSE;
1801	dsl_pool_t *dp = spa_get_dsl(spa);
1802
1803	switch (spa->spa_log_state) {
1804	case SPA_LOG_MISSING:
1805		/* need to recheck in case slog has been restored */
1806	case SPA_LOG_UNKNOWN:
1807		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1808		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1809		if (rv)
1810			spa_set_log_state(spa, SPA_LOG_MISSING);
1811		break;
1812	}
1813	return (rv);
1814}
1815
1816static boolean_t
1817spa_passivate_log(spa_t *spa)
1818{
1819	vdev_t *rvd = spa->spa_root_vdev;
1820	boolean_t slog_found = B_FALSE;
1821
1822	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1823
1824	if (!spa_has_slogs(spa))
1825		return (B_FALSE);
1826
1827	for (int c = 0; c < rvd->vdev_children; c++) {
1828		vdev_t *tvd = rvd->vdev_child[c];
1829		metaslab_group_t *mg = tvd->vdev_mg;
1830
1831		if (tvd->vdev_islog) {
1832			metaslab_group_passivate(mg);
1833			slog_found = B_TRUE;
1834		}
1835	}
1836
1837	return (slog_found);
1838}
1839
1840static void
1841spa_activate_log(spa_t *spa)
1842{
1843	vdev_t *rvd = spa->spa_root_vdev;
1844
1845	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1846
1847	for (int c = 0; c < rvd->vdev_children; c++) {
1848		vdev_t *tvd = rvd->vdev_child[c];
1849		metaslab_group_t *mg = tvd->vdev_mg;
1850
1851		if (tvd->vdev_islog)
1852			metaslab_group_activate(mg);
1853	}
1854}
1855
1856int
1857spa_offline_log(spa_t *spa)
1858{
1859	int error;
1860
1861	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1862	    NULL, DS_FIND_CHILDREN);
1863	if (error == 0) {
1864		/*
1865		 * We successfully offlined the log device, sync out the
1866		 * current txg so that the "stubby" block can be removed
1867		 * by zil_sync().
1868		 */
1869		txg_wait_synced(spa->spa_dsl_pool, 0);
1870	}
1871	return (error);
1872}
1873
1874static void
1875spa_aux_check_removed(spa_aux_vdev_t *sav)
1876{
1877	int i;
1878
1879	for (i = 0; i < sav->sav_count; i++)
1880		spa_check_removed(sav->sav_vdevs[i]);
1881}
1882
1883void
1884spa_claim_notify(zio_t *zio)
1885{
1886	spa_t *spa = zio->io_spa;
1887
1888	if (zio->io_error)
1889		return;
1890
1891	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1892	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1893		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1894	mutex_exit(&spa->spa_props_lock);
1895}
1896
1897typedef struct spa_load_error {
1898	uint64_t	sle_meta_count;
1899	uint64_t	sle_data_count;
1900} spa_load_error_t;
1901
1902static void
1903spa_load_verify_done(zio_t *zio)
1904{
1905	blkptr_t *bp = zio->io_bp;
1906	spa_load_error_t *sle = zio->io_private;
1907	dmu_object_type_t type = BP_GET_TYPE(bp);
1908	int error = zio->io_error;
1909	spa_t *spa = zio->io_spa;
1910
1911	if (error) {
1912		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1913		    type != DMU_OT_INTENT_LOG)
1914			atomic_inc_64(&sle->sle_meta_count);
1915		else
1916			atomic_inc_64(&sle->sle_data_count);
1917	}
1918	zio_data_buf_free(zio->io_data, zio->io_size);
1919
1920	mutex_enter(&spa->spa_scrub_lock);
1921	spa->spa_scrub_inflight--;
1922	cv_broadcast(&spa->spa_scrub_io_cv);
1923	mutex_exit(&spa->spa_scrub_lock);
1924}
1925
1926/*
1927 * Maximum number of concurrent scrub i/os to create while verifying
1928 * a pool while importing it.
1929 */
1930int spa_load_verify_maxinflight = 10000;
1931boolean_t spa_load_verify_metadata = B_TRUE;
1932boolean_t spa_load_verify_data = B_TRUE;
1933
1934SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1935    &spa_load_verify_maxinflight, 0,
1936    "Maximum number of concurrent scrub I/Os to create while verifying a "
1937    "pool while importing it");
1938
1939SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1940    &spa_load_verify_metadata, 0,
1941    "Check metadata on import?");
1942
1943SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1944    &spa_load_verify_data, 0,
1945    "Check user data on import?");
1946
1947/*ARGSUSED*/
1948static int
1949spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1950    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1951{
1952	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1953		return (0);
1954	/*
1955	 * Note: normally this routine will not be called if
1956	 * spa_load_verify_metadata is not set.  However, it may be useful
1957	 * to manually set the flag after the traversal has begun.
1958	 */
1959	if (!spa_load_verify_metadata)
1960		return (0);
1961	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1962		return (0);
1963
1964	zio_t *rio = arg;
1965	size_t size = BP_GET_PSIZE(bp);
1966	void *data = zio_data_buf_alloc(size);
1967
1968	mutex_enter(&spa->spa_scrub_lock);
1969	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1970		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1971	spa->spa_scrub_inflight++;
1972	mutex_exit(&spa->spa_scrub_lock);
1973
1974	zio_nowait(zio_read(rio, spa, bp, data, size,
1975	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1976	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1977	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1978	return (0);
1979}
1980
1981/* ARGSUSED */
1982int
1983verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1984{
1985	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1986		return (SET_ERROR(ENAMETOOLONG));
1987
1988	return (0);
1989}
1990
1991static int
1992spa_load_verify(spa_t *spa)
1993{
1994	zio_t *rio;
1995	spa_load_error_t sle = { 0 };
1996	zpool_rewind_policy_t policy;
1997	boolean_t verify_ok = B_FALSE;
1998	int error = 0;
1999
2000	zpool_get_rewind_policy(spa->spa_config, &policy);
2001
2002	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2003		return (0);
2004
2005	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2006	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2007	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2008	    DS_FIND_CHILDREN);
2009	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2010	if (error != 0)
2011		return (error);
2012
2013	rio = zio_root(spa, NULL, &sle,
2014	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2015
2016	if (spa_load_verify_metadata) {
2017		error = traverse_pool(spa, spa->spa_verify_min_txg,
2018		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2019		    spa_load_verify_cb, rio);
2020	}
2021
2022	(void) zio_wait(rio);
2023
2024	spa->spa_load_meta_errors = sle.sle_meta_count;
2025	spa->spa_load_data_errors = sle.sle_data_count;
2026
2027	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2028	    sle.sle_data_count <= policy.zrp_maxdata) {
2029		int64_t loss = 0;
2030
2031		verify_ok = B_TRUE;
2032		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2033		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2034
2035		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2036		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2037		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2038		VERIFY(nvlist_add_int64(spa->spa_load_info,
2039		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2040		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2041		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2042	} else {
2043		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2044	}
2045
2046	if (error) {
2047		if (error != ENXIO && error != EIO)
2048			error = SET_ERROR(EIO);
2049		return (error);
2050	}
2051
2052	return (verify_ok ? 0 : EIO);
2053}
2054
2055/*
2056 * Find a value in the pool props object.
2057 */
2058static void
2059spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2060{
2061	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2062	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2063}
2064
2065/*
2066 * Find a value in the pool directory object.
2067 */
2068static int
2069spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2070{
2071	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2072	    name, sizeof (uint64_t), 1, val));
2073}
2074
2075static int
2076spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2077{
2078	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2079	return (err);
2080}
2081
2082/*
2083 * Fix up config after a partly-completed split.  This is done with the
2084 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2085 * pool have that entry in their config, but only the splitting one contains
2086 * a list of all the guids of the vdevs that are being split off.
2087 *
2088 * This function determines what to do with that list: either rejoin
2089 * all the disks to the pool, or complete the splitting process.  To attempt
2090 * the rejoin, each disk that is offlined is marked online again, and
2091 * we do a reopen() call.  If the vdev label for every disk that was
2092 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2093 * then we call vdev_split() on each disk, and complete the split.
2094 *
2095 * Otherwise we leave the config alone, with all the vdevs in place in
2096 * the original pool.
2097 */
2098static void
2099spa_try_repair(spa_t *spa, nvlist_t *config)
2100{
2101	uint_t extracted;
2102	uint64_t *glist;
2103	uint_t i, gcount;
2104	nvlist_t *nvl;
2105	vdev_t **vd;
2106	boolean_t attempt_reopen;
2107
2108	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2109		return;
2110
2111	/* check that the config is complete */
2112	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2113	    &glist, &gcount) != 0)
2114		return;
2115
2116	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2117
2118	/* attempt to online all the vdevs & validate */
2119	attempt_reopen = B_TRUE;
2120	for (i = 0; i < gcount; i++) {
2121		if (glist[i] == 0)	/* vdev is hole */
2122			continue;
2123
2124		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2125		if (vd[i] == NULL) {
2126			/*
2127			 * Don't bother attempting to reopen the disks;
2128			 * just do the split.
2129			 */
2130			attempt_reopen = B_FALSE;
2131		} else {
2132			/* attempt to re-online it */
2133			vd[i]->vdev_offline = B_FALSE;
2134		}
2135	}
2136
2137	if (attempt_reopen) {
2138		vdev_reopen(spa->spa_root_vdev);
2139
2140		/* check each device to see what state it's in */
2141		for (extracted = 0, i = 0; i < gcount; i++) {
2142			if (vd[i] != NULL &&
2143			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2144				break;
2145			++extracted;
2146		}
2147	}
2148
2149	/*
2150	 * If every disk has been moved to the new pool, or if we never
2151	 * even attempted to look at them, then we split them off for
2152	 * good.
2153	 */
2154	if (!attempt_reopen || gcount == extracted) {
2155		for (i = 0; i < gcount; i++)
2156			if (vd[i] != NULL)
2157				vdev_split(vd[i]);
2158		vdev_reopen(spa->spa_root_vdev);
2159	}
2160
2161	kmem_free(vd, gcount * sizeof (vdev_t *));
2162}
2163
2164static int
2165spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2166    boolean_t mosconfig)
2167{
2168	nvlist_t *config = spa->spa_config;
2169	char *ereport = FM_EREPORT_ZFS_POOL;
2170	char *comment;
2171	int error;
2172	uint64_t pool_guid;
2173	nvlist_t *nvl;
2174
2175	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2176		return (SET_ERROR(EINVAL));
2177
2178	ASSERT(spa->spa_comment == NULL);
2179	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2180		spa->spa_comment = spa_strdup(comment);
2181
2182	/*
2183	 * Versioning wasn't explicitly added to the label until later, so if
2184	 * it's not present treat it as the initial version.
2185	 */
2186	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2187	    &spa->spa_ubsync.ub_version) != 0)
2188		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2189
2190	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2191	    &spa->spa_config_txg);
2192
2193	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2194	    spa_guid_exists(pool_guid, 0)) {
2195		error = SET_ERROR(EEXIST);
2196	} else {
2197		spa->spa_config_guid = pool_guid;
2198
2199		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2200		    &nvl) == 0) {
2201			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2202			    KM_SLEEP) == 0);
2203		}
2204
2205		nvlist_free(spa->spa_load_info);
2206		spa->spa_load_info = fnvlist_alloc();
2207
2208		gethrestime(&spa->spa_loaded_ts);
2209		error = spa_load_impl(spa, pool_guid, config, state, type,
2210		    mosconfig, &ereport);
2211	}
2212
2213	/*
2214	 * Don't count references from objsets that are already closed
2215	 * and are making their way through the eviction process.
2216	 */
2217	spa_evicting_os_wait(spa);
2218	spa->spa_minref = refcount_count(&spa->spa_refcount);
2219	if (error) {
2220		if (error != EEXIST) {
2221			spa->spa_loaded_ts.tv_sec = 0;
2222			spa->spa_loaded_ts.tv_nsec = 0;
2223		}
2224		if (error != EBADF) {
2225			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2226		}
2227	}
2228	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2229	spa->spa_ena = 0;
2230
2231	return (error);
2232}
2233
2234/*
2235 * Load an existing storage pool, using the pool's builtin spa_config as a
2236 * source of configuration information.
2237 */
2238static int
2239spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2240    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2241    char **ereport)
2242{
2243	int error = 0;
2244	nvlist_t *nvroot = NULL;
2245	nvlist_t *label;
2246	vdev_t *rvd;
2247	uberblock_t *ub = &spa->spa_uberblock;
2248	uint64_t children, config_cache_txg = spa->spa_config_txg;
2249	int orig_mode = spa->spa_mode;
2250	int parse;
2251	uint64_t obj;
2252	boolean_t missing_feat_write = B_FALSE;
2253
2254	/*
2255	 * If this is an untrusted config, access the pool in read-only mode.
2256	 * This prevents things like resilvering recently removed devices.
2257	 */
2258	if (!mosconfig)
2259		spa->spa_mode = FREAD;
2260
2261	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2262
2263	spa->spa_load_state = state;
2264
2265	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2266		return (SET_ERROR(EINVAL));
2267
2268	parse = (type == SPA_IMPORT_EXISTING ?
2269	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2270
2271	/*
2272	 * Create "The Godfather" zio to hold all async IOs
2273	 */
2274	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2275	    KM_SLEEP);
2276	for (int i = 0; i < max_ncpus; i++) {
2277		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2278		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2279		    ZIO_FLAG_GODFATHER);
2280	}
2281
2282	/*
2283	 * Parse the configuration into a vdev tree.  We explicitly set the
2284	 * value that will be returned by spa_version() since parsing the
2285	 * configuration requires knowing the version number.
2286	 */
2287	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2288	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2289	spa_config_exit(spa, SCL_ALL, FTAG);
2290
2291	if (error != 0)
2292		return (error);
2293
2294	ASSERT(spa->spa_root_vdev == rvd);
2295	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2296	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2297
2298	if (type != SPA_IMPORT_ASSEMBLE) {
2299		ASSERT(spa_guid(spa) == pool_guid);
2300	}
2301
2302	/*
2303	 * Try to open all vdevs, loading each label in the process.
2304	 */
2305	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2306	error = vdev_open(rvd);
2307	spa_config_exit(spa, SCL_ALL, FTAG);
2308	if (error != 0)
2309		return (error);
2310
2311	/*
2312	 * We need to validate the vdev labels against the configuration that
2313	 * we have in hand, which is dependent on the setting of mosconfig. If
2314	 * mosconfig is true then we're validating the vdev labels based on
2315	 * that config.  Otherwise, we're validating against the cached config
2316	 * (zpool.cache) that was read when we loaded the zfs module, and then
2317	 * later we will recursively call spa_load() and validate against
2318	 * the vdev config.
2319	 *
2320	 * If we're assembling a new pool that's been split off from an
2321	 * existing pool, the labels haven't yet been updated so we skip
2322	 * validation for now.
2323	 */
2324	if (type != SPA_IMPORT_ASSEMBLE) {
2325		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2326		error = vdev_validate(rvd, mosconfig);
2327		spa_config_exit(spa, SCL_ALL, FTAG);
2328
2329		if (error != 0)
2330			return (error);
2331
2332		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2333			return (SET_ERROR(ENXIO));
2334	}
2335
2336	/*
2337	 * Find the best uberblock.
2338	 */
2339	vdev_uberblock_load(rvd, ub, &label);
2340
2341	/*
2342	 * If we weren't able to find a single valid uberblock, return failure.
2343	 */
2344	if (ub->ub_txg == 0) {
2345		nvlist_free(label);
2346		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2347	}
2348
2349	/*
2350	 * If the pool has an unsupported version we can't open it.
2351	 */
2352	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2353		nvlist_free(label);
2354		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2355	}
2356
2357	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2358		nvlist_t *features;
2359
2360		/*
2361		 * If we weren't able to find what's necessary for reading the
2362		 * MOS in the label, return failure.
2363		 */
2364		if (label == NULL || nvlist_lookup_nvlist(label,
2365		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2366			nvlist_free(label);
2367			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2368			    ENXIO));
2369		}
2370
2371		/*
2372		 * Update our in-core representation with the definitive values
2373		 * from the label.
2374		 */
2375		nvlist_free(spa->spa_label_features);
2376		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2377	}
2378
2379	nvlist_free(label);
2380
2381	/*
2382	 * Look through entries in the label nvlist's features_for_read. If
2383	 * there is a feature listed there which we don't understand then we
2384	 * cannot open a pool.
2385	 */
2386	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2387		nvlist_t *unsup_feat;
2388
2389		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2390		    0);
2391
2392		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2393		    NULL); nvp != NULL;
2394		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2395			if (!zfeature_is_supported(nvpair_name(nvp))) {
2396				VERIFY(nvlist_add_string(unsup_feat,
2397				    nvpair_name(nvp), "") == 0);
2398			}
2399		}
2400
2401		if (!nvlist_empty(unsup_feat)) {
2402			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2403			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2404			nvlist_free(unsup_feat);
2405			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2406			    ENOTSUP));
2407		}
2408
2409		nvlist_free(unsup_feat);
2410	}
2411
2412	/*
2413	 * If the vdev guid sum doesn't match the uberblock, we have an
2414	 * incomplete configuration.  We first check to see if the pool
2415	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2416	 * If it is, defer the vdev_guid_sum check till later so we
2417	 * can handle missing vdevs.
2418	 */
2419	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2420	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2421	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2422		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2423
2424	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2425		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2426		spa_try_repair(spa, config);
2427		spa_config_exit(spa, SCL_ALL, FTAG);
2428		nvlist_free(spa->spa_config_splitting);
2429		spa->spa_config_splitting = NULL;
2430	}
2431
2432	/*
2433	 * Initialize internal SPA structures.
2434	 */
2435	spa->spa_state = POOL_STATE_ACTIVE;
2436	spa->spa_ubsync = spa->spa_uberblock;
2437	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2438	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2439	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2440	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2441	spa->spa_claim_max_txg = spa->spa_first_txg;
2442	spa->spa_prev_software_version = ub->ub_software_version;
2443
2444	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2445	if (error)
2446		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2448
2449	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2450		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2451
2452	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2453		boolean_t missing_feat_read = B_FALSE;
2454		nvlist_t *unsup_feat, *enabled_feat;
2455
2456		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2457		    &spa->spa_feat_for_read_obj) != 0) {
2458			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459		}
2460
2461		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2462		    &spa->spa_feat_for_write_obj) != 0) {
2463			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464		}
2465
2466		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2467		    &spa->spa_feat_desc_obj) != 0) {
2468			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469		}
2470
2471		enabled_feat = fnvlist_alloc();
2472		unsup_feat = fnvlist_alloc();
2473
2474		if (!spa_features_check(spa, B_FALSE,
2475		    unsup_feat, enabled_feat))
2476			missing_feat_read = B_TRUE;
2477
2478		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2479			if (!spa_features_check(spa, B_TRUE,
2480			    unsup_feat, enabled_feat)) {
2481				missing_feat_write = B_TRUE;
2482			}
2483		}
2484
2485		fnvlist_add_nvlist(spa->spa_load_info,
2486		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2487
2488		if (!nvlist_empty(unsup_feat)) {
2489			fnvlist_add_nvlist(spa->spa_load_info,
2490			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2491		}
2492
2493		fnvlist_free(enabled_feat);
2494		fnvlist_free(unsup_feat);
2495
2496		if (!missing_feat_read) {
2497			fnvlist_add_boolean(spa->spa_load_info,
2498			    ZPOOL_CONFIG_CAN_RDONLY);
2499		}
2500
2501		/*
2502		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2503		 * twofold: to determine whether the pool is available for
2504		 * import in read-write mode and (if it is not) whether the
2505		 * pool is available for import in read-only mode. If the pool
2506		 * is available for import in read-write mode, it is displayed
2507		 * as available in userland; if it is not available for import
2508		 * in read-only mode, it is displayed as unavailable in
2509		 * userland. If the pool is available for import in read-only
2510		 * mode but not read-write mode, it is displayed as unavailable
2511		 * in userland with a special note that the pool is actually
2512		 * available for open in read-only mode.
2513		 *
2514		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2515		 * missing a feature for write, we must first determine whether
2516		 * the pool can be opened read-only before returning to
2517		 * userland in order to know whether to display the
2518		 * abovementioned note.
2519		 */
2520		if (missing_feat_read || (missing_feat_write &&
2521		    spa_writeable(spa))) {
2522			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2523			    ENOTSUP));
2524		}
2525
2526		/*
2527		 * Load refcounts for ZFS features from disk into an in-memory
2528		 * cache during SPA initialization.
2529		 */
2530		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2531			uint64_t refcount;
2532
2533			error = feature_get_refcount_from_disk(spa,
2534			    &spa_feature_table[i], &refcount);
2535			if (error == 0) {
2536				spa->spa_feat_refcount_cache[i] = refcount;
2537			} else if (error == ENOTSUP) {
2538				spa->spa_feat_refcount_cache[i] =
2539				    SPA_FEATURE_DISABLED;
2540			} else {
2541				return (spa_vdev_err(rvd,
2542				    VDEV_AUX_CORRUPT_DATA, EIO));
2543			}
2544		}
2545	}
2546
2547	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2548		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2549		    &spa->spa_feat_enabled_txg_obj) != 0)
2550			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551	}
2552
2553	spa->spa_is_initializing = B_TRUE;
2554	error = dsl_pool_open(spa->spa_dsl_pool);
2555	spa->spa_is_initializing = B_FALSE;
2556	if (error != 0)
2557		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2558
2559	if (!mosconfig) {
2560		uint64_t hostid;
2561		nvlist_t *policy = NULL, *nvconfig;
2562
2563		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2564			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565
2566		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2567		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2568			char *hostname;
2569			unsigned long myhostid = 0;
2570
2571			VERIFY(nvlist_lookup_string(nvconfig,
2572			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2573
2574#ifdef	_KERNEL
2575			myhostid = zone_get_hostid(NULL);
2576#else	/* _KERNEL */
2577			/*
2578			 * We're emulating the system's hostid in userland, so
2579			 * we can't use zone_get_hostid().
2580			 */
2581			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2582#endif	/* _KERNEL */
2583			if (check_hostid && hostid != 0 && myhostid != 0 &&
2584			    hostid != myhostid) {
2585				nvlist_free(nvconfig);
2586				cmn_err(CE_WARN, "pool '%s' could not be "
2587				    "loaded as it was last accessed by "
2588				    "another system (host: %s hostid: 0x%lx). "
2589				    "See: http://illumos.org/msg/ZFS-8000-EY",
2590				    spa_name(spa), hostname,
2591				    (unsigned long)hostid);
2592				return (SET_ERROR(EBADF));
2593			}
2594		}
2595		if (nvlist_lookup_nvlist(spa->spa_config,
2596		    ZPOOL_REWIND_POLICY, &policy) == 0)
2597			VERIFY(nvlist_add_nvlist(nvconfig,
2598			    ZPOOL_REWIND_POLICY, policy) == 0);
2599
2600		spa_config_set(spa, nvconfig);
2601		spa_unload(spa);
2602		spa_deactivate(spa);
2603		spa_activate(spa, orig_mode);
2604
2605		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2606	}
2607
2608	/* Grab the secret checksum salt from the MOS. */
2609	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2610	    DMU_POOL_CHECKSUM_SALT, 1,
2611	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2612	    spa->spa_cksum_salt.zcs_bytes);
2613	if (error == ENOENT) {
2614		/* Generate a new salt for subsequent use */
2615		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2616		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2617	} else if (error != 0) {
2618		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619	}
2620
2621	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2622		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2624	if (error != 0)
2625		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626
2627	/*
2628	 * Load the bit that tells us to use the new accounting function
2629	 * (raid-z deflation).  If we have an older pool, this will not
2630	 * be present.
2631	 */
2632	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635
2636	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2637	    &spa->spa_creation_version);
2638	if (error != 0 && error != ENOENT)
2639		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640
2641	/*
2642	 * Load the persistent error log.  If we have an older pool, this will
2643	 * not be present.
2644	 */
2645	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2646	if (error != 0 && error != ENOENT)
2647		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2648
2649	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2650	    &spa->spa_errlog_scrub);
2651	if (error != 0 && error != ENOENT)
2652		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653
2654	/*
2655	 * Load the history object.  If we have an older pool, this
2656	 * will not be present.
2657	 */
2658	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2659	if (error != 0 && error != ENOENT)
2660		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2661
2662	/*
2663	 * If we're assembling the pool from the split-off vdevs of
2664	 * an existing pool, we don't want to attach the spares & cache
2665	 * devices.
2666	 */
2667
2668	/*
2669	 * Load any hot spares for this pool.
2670	 */
2671	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2672	if (error != 0 && error != ENOENT)
2673		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2675		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2676		if (load_nvlist(spa, spa->spa_spares.sav_object,
2677		    &spa->spa_spares.sav_config) != 0)
2678			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2679
2680		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2681		spa_load_spares(spa);
2682		spa_config_exit(spa, SCL_ALL, FTAG);
2683	} else if (error == 0) {
2684		spa->spa_spares.sav_sync = B_TRUE;
2685	}
2686
2687	/*
2688	 * Load any level 2 ARC devices for this pool.
2689	 */
2690	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2691	    &spa->spa_l2cache.sav_object);
2692	if (error != 0 && error != ENOENT)
2693		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2695		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2696		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2697		    &spa->spa_l2cache.sav_config) != 0)
2698			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2699
2700		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2701		spa_load_l2cache(spa);
2702		spa_config_exit(spa, SCL_ALL, FTAG);
2703	} else if (error == 0) {
2704		spa->spa_l2cache.sav_sync = B_TRUE;
2705	}
2706
2707	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2708
2709	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2710	if (error && error != ENOENT)
2711		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712
2713	if (error == 0) {
2714		uint64_t autoreplace;
2715
2716		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2717		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2718		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2719		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2720		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2721		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2722		    &spa->spa_dedup_ditto);
2723
2724		spa->spa_autoreplace = (autoreplace != 0);
2725	}
2726
2727	/*
2728	 * If the 'autoreplace' property is set, then post a resource notifying
2729	 * the ZFS DE that it should not issue any faults for unopenable
2730	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2731	 * unopenable vdevs so that the normal autoreplace handler can take
2732	 * over.
2733	 */
2734	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2735		spa_check_removed(spa->spa_root_vdev);
2736		/*
2737		 * For the import case, this is done in spa_import(), because
2738		 * at this point we're using the spare definitions from
2739		 * the MOS config, not necessarily from the userland config.
2740		 */
2741		if (state != SPA_LOAD_IMPORT) {
2742			spa_aux_check_removed(&spa->spa_spares);
2743			spa_aux_check_removed(&spa->spa_l2cache);
2744		}
2745	}
2746
2747	/*
2748	 * Load the vdev state for all toplevel vdevs.
2749	 */
2750	vdev_load(rvd);
2751
2752	/*
2753	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2754	 */
2755	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2756	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2757	spa_config_exit(spa, SCL_ALL, FTAG);
2758
2759	/*
2760	 * Load the DDTs (dedup tables).
2761	 */
2762	error = ddt_load(spa);
2763	if (error != 0)
2764		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2765
2766	spa_update_dspace(spa);
2767
2768	/*
2769	 * Validate the config, using the MOS config to fill in any
2770	 * information which might be missing.  If we fail to validate
2771	 * the config then declare the pool unfit for use. If we're
2772	 * assembling a pool from a split, the log is not transferred
2773	 * over.
2774	 */
2775	if (type != SPA_IMPORT_ASSEMBLE) {
2776		nvlist_t *nvconfig;
2777
2778		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2779			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2780
2781		if (!spa_config_valid(spa, nvconfig)) {
2782			nvlist_free(nvconfig);
2783			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2784			    ENXIO));
2785		}
2786		nvlist_free(nvconfig);
2787
2788		/*
2789		 * Now that we've validated the config, check the state of the
2790		 * root vdev.  If it can't be opened, it indicates one or
2791		 * more toplevel vdevs are faulted.
2792		 */
2793		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2794			return (SET_ERROR(ENXIO));
2795
2796		if (spa_writeable(spa) && spa_check_logs(spa)) {
2797			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2798			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2799		}
2800	}
2801
2802	if (missing_feat_write) {
2803		ASSERT(state == SPA_LOAD_TRYIMPORT);
2804
2805		/*
2806		 * At this point, we know that we can open the pool in
2807		 * read-only mode but not read-write mode. We now have enough
2808		 * information and can return to userland.
2809		 */
2810		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2811	}
2812
2813	/*
2814	 * We've successfully opened the pool, verify that we're ready
2815	 * to start pushing transactions.
2816	 */
2817	if (state != SPA_LOAD_TRYIMPORT) {
2818		if (error = spa_load_verify(spa))
2819			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2820			    error));
2821	}
2822
2823	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2824	    spa->spa_load_max_txg == UINT64_MAX)) {
2825		dmu_tx_t *tx;
2826		int need_update = B_FALSE;
2827		dsl_pool_t *dp = spa_get_dsl(spa);
2828
2829		ASSERT(state != SPA_LOAD_TRYIMPORT);
2830
2831		/*
2832		 * Claim log blocks that haven't been committed yet.
2833		 * This must all happen in a single txg.
2834		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2835		 * invoked from zil_claim_log_block()'s i/o done callback.
2836		 * Price of rollback is that we abandon the log.
2837		 */
2838		spa->spa_claiming = B_TRUE;
2839
2840		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2841		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2842		    zil_claim, tx, DS_FIND_CHILDREN);
2843		dmu_tx_commit(tx);
2844
2845		spa->spa_claiming = B_FALSE;
2846
2847		spa_set_log_state(spa, SPA_LOG_GOOD);
2848		spa->spa_sync_on = B_TRUE;
2849		txg_sync_start(spa->spa_dsl_pool);
2850
2851		/*
2852		 * Wait for all claims to sync.  We sync up to the highest
2853		 * claimed log block birth time so that claimed log blocks
2854		 * don't appear to be from the future.  spa_claim_max_txg
2855		 * will have been set for us by either zil_check_log_chain()
2856		 * (invoked from spa_check_logs()) or zil_claim() above.
2857		 */
2858		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2859
2860		/*
2861		 * If the config cache is stale, or we have uninitialized
2862		 * metaslabs (see spa_vdev_add()), then update the config.
2863		 *
2864		 * If this is a verbatim import, trust the current
2865		 * in-core spa_config and update the disk labels.
2866		 */
2867		if (config_cache_txg != spa->spa_config_txg ||
2868		    state == SPA_LOAD_IMPORT ||
2869		    state == SPA_LOAD_RECOVER ||
2870		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2871			need_update = B_TRUE;
2872
2873		for (int c = 0; c < rvd->vdev_children; c++)
2874			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2875				need_update = B_TRUE;
2876
2877		/*
2878		 * Update the config cache asychronously in case we're the
2879		 * root pool, in which case the config cache isn't writable yet.
2880		 */
2881		if (need_update)
2882			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2883
2884		/*
2885		 * Check all DTLs to see if anything needs resilvering.
2886		 */
2887		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2888		    vdev_resilver_needed(rvd, NULL, NULL))
2889			spa_async_request(spa, SPA_ASYNC_RESILVER);
2890
2891		/*
2892		 * Log the fact that we booted up (so that we can detect if
2893		 * we rebooted in the middle of an operation).
2894		 */
2895		spa_history_log_version(spa, "open");
2896
2897		/*
2898		 * Delete any inconsistent datasets.
2899		 */
2900		(void) dmu_objset_find(spa_name(spa),
2901		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2902
2903		/*
2904		 * Clean up any stale temporary dataset userrefs.
2905		 */
2906		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2907	}
2908
2909	return (0);
2910}
2911
2912static int
2913spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2914{
2915	int mode = spa->spa_mode;
2916
2917	spa_unload(spa);
2918	spa_deactivate(spa);
2919
2920	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2921
2922	spa_activate(spa, mode);
2923	spa_async_suspend(spa);
2924
2925	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2926}
2927
2928/*
2929 * If spa_load() fails this function will try loading prior txg's. If
2930 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2931 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2932 * function will not rewind the pool and will return the same error as
2933 * spa_load().
2934 */
2935static int
2936spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2937    uint64_t max_request, int rewind_flags)
2938{
2939	nvlist_t *loadinfo = NULL;
2940	nvlist_t *config = NULL;
2941	int load_error, rewind_error;
2942	uint64_t safe_rewind_txg;
2943	uint64_t min_txg;
2944
2945	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2946		spa->spa_load_max_txg = spa->spa_load_txg;
2947		spa_set_log_state(spa, SPA_LOG_CLEAR);
2948	} else {
2949		spa->spa_load_max_txg = max_request;
2950		if (max_request != UINT64_MAX)
2951			spa->spa_extreme_rewind = B_TRUE;
2952	}
2953
2954	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2955	    mosconfig);
2956	if (load_error == 0)
2957		return (0);
2958
2959	if (spa->spa_root_vdev != NULL)
2960		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2961
2962	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2963	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2964
2965	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2966		nvlist_free(config);
2967		return (load_error);
2968	}
2969
2970	if (state == SPA_LOAD_RECOVER) {
2971		/* Price of rolling back is discarding txgs, including log */
2972		spa_set_log_state(spa, SPA_LOG_CLEAR);
2973	} else {
2974		/*
2975		 * If we aren't rolling back save the load info from our first
2976		 * import attempt so that we can restore it after attempting
2977		 * to rewind.
2978		 */
2979		loadinfo = spa->spa_load_info;
2980		spa->spa_load_info = fnvlist_alloc();
2981	}
2982
2983	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2984	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2985	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2986	    TXG_INITIAL : safe_rewind_txg;
2987
2988	/*
2989	 * Continue as long as we're finding errors, we're still within
2990	 * the acceptable rewind range, and we're still finding uberblocks
2991	 */
2992	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2993	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2994		if (spa->spa_load_max_txg < safe_rewind_txg)
2995			spa->spa_extreme_rewind = B_TRUE;
2996		rewind_error = spa_load_retry(spa, state, mosconfig);
2997	}
2998
2999	spa->spa_extreme_rewind = B_FALSE;
3000	spa->spa_load_max_txg = UINT64_MAX;
3001
3002	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3003		spa_config_set(spa, config);
3004
3005	if (state == SPA_LOAD_RECOVER) {
3006		ASSERT3P(loadinfo, ==, NULL);
3007		return (rewind_error);
3008	} else {
3009		/* Store the rewind info as part of the initial load info */
3010		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3011		    spa->spa_load_info);
3012
3013		/* Restore the initial load info */
3014		fnvlist_free(spa->spa_load_info);
3015		spa->spa_load_info = loadinfo;
3016
3017		return (load_error);
3018	}
3019}
3020
3021/*
3022 * Pool Open/Import
3023 *
3024 * The import case is identical to an open except that the configuration is sent
3025 * down from userland, instead of grabbed from the configuration cache.  For the
3026 * case of an open, the pool configuration will exist in the
3027 * POOL_STATE_UNINITIALIZED state.
3028 *
3029 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3030 * the same time open the pool, without having to keep around the spa_t in some
3031 * ambiguous state.
3032 */
3033static int
3034spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3035    nvlist_t **config)
3036{
3037	spa_t *spa;
3038	spa_load_state_t state = SPA_LOAD_OPEN;
3039	int error;
3040	int locked = B_FALSE;
3041	int firstopen = B_FALSE;
3042
3043	*spapp = NULL;
3044
3045	/*
3046	 * As disgusting as this is, we need to support recursive calls to this
3047	 * function because dsl_dir_open() is called during spa_load(), and ends
3048	 * up calling spa_open() again.  The real fix is to figure out how to
3049	 * avoid dsl_dir_open() calling this in the first place.
3050	 */
3051	if (mutex_owner(&spa_namespace_lock) != curthread) {
3052		mutex_enter(&spa_namespace_lock);
3053		locked = B_TRUE;
3054	}
3055
3056	if ((spa = spa_lookup(pool)) == NULL) {
3057		if (locked)
3058			mutex_exit(&spa_namespace_lock);
3059		return (SET_ERROR(ENOENT));
3060	}
3061
3062	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3063		zpool_rewind_policy_t policy;
3064
3065		firstopen = B_TRUE;
3066
3067		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3068		    &policy);
3069		if (policy.zrp_request & ZPOOL_DO_REWIND)
3070			state = SPA_LOAD_RECOVER;
3071
3072		spa_activate(spa, spa_mode_global);
3073
3074		if (state != SPA_LOAD_RECOVER)
3075			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3076
3077		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3078		    policy.zrp_request);
3079
3080		if (error == EBADF) {
3081			/*
3082			 * If vdev_validate() returns failure (indicated by
3083			 * EBADF), it indicates that one of the vdevs indicates
3084			 * that the pool has been exported or destroyed.  If
3085			 * this is the case, the config cache is out of sync and
3086			 * we should remove the pool from the namespace.
3087			 */
3088			spa_unload(spa);
3089			spa_deactivate(spa);
3090			spa_config_sync(spa, B_TRUE, B_TRUE);
3091			spa_remove(spa);
3092			if (locked)
3093				mutex_exit(&spa_namespace_lock);
3094			return (SET_ERROR(ENOENT));
3095		}
3096
3097		if (error) {
3098			/*
3099			 * We can't open the pool, but we still have useful
3100			 * information: the state of each vdev after the
3101			 * attempted vdev_open().  Return this to the user.
3102			 */
3103			if (config != NULL && spa->spa_config) {
3104				VERIFY(nvlist_dup(spa->spa_config, config,
3105				    KM_SLEEP) == 0);
3106				VERIFY(nvlist_add_nvlist(*config,
3107				    ZPOOL_CONFIG_LOAD_INFO,
3108				    spa->spa_load_info) == 0);
3109			}
3110			spa_unload(spa);
3111			spa_deactivate(spa);
3112			spa->spa_last_open_failed = error;
3113			if (locked)
3114				mutex_exit(&spa_namespace_lock);
3115			*spapp = NULL;
3116			return (error);
3117		}
3118	}
3119
3120	spa_open_ref(spa, tag);
3121
3122	if (config != NULL)
3123		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3124
3125	/*
3126	 * If we've recovered the pool, pass back any information we
3127	 * gathered while doing the load.
3128	 */
3129	if (state == SPA_LOAD_RECOVER) {
3130		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3131		    spa->spa_load_info) == 0);
3132	}
3133
3134	if (locked) {
3135		spa->spa_last_open_failed = 0;
3136		spa->spa_last_ubsync_txg = 0;
3137		spa->spa_load_txg = 0;
3138		mutex_exit(&spa_namespace_lock);
3139#ifdef __FreeBSD__
3140#ifdef _KERNEL
3141		if (firstopen)
3142			zvol_create_minors(spa->spa_name);
3143#endif
3144#endif
3145	}
3146
3147	*spapp = spa;
3148
3149	return (0);
3150}
3151
3152int
3153spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3154    nvlist_t **config)
3155{
3156	return (spa_open_common(name, spapp, tag, policy, config));
3157}
3158
3159int
3160spa_open(const char *name, spa_t **spapp, void *tag)
3161{
3162	return (spa_open_common(name, spapp, tag, NULL, NULL));
3163}
3164
3165/*
3166 * Lookup the given spa_t, incrementing the inject count in the process,
3167 * preventing it from being exported or destroyed.
3168 */
3169spa_t *
3170spa_inject_addref(char *name)
3171{
3172	spa_t *spa;
3173
3174	mutex_enter(&spa_namespace_lock);
3175	if ((spa = spa_lookup(name)) == NULL) {
3176		mutex_exit(&spa_namespace_lock);
3177		return (NULL);
3178	}
3179	spa->spa_inject_ref++;
3180	mutex_exit(&spa_namespace_lock);
3181
3182	return (spa);
3183}
3184
3185void
3186spa_inject_delref(spa_t *spa)
3187{
3188	mutex_enter(&spa_namespace_lock);
3189	spa->spa_inject_ref--;
3190	mutex_exit(&spa_namespace_lock);
3191}
3192
3193/*
3194 * Add spares device information to the nvlist.
3195 */
3196static void
3197spa_add_spares(spa_t *spa, nvlist_t *config)
3198{
3199	nvlist_t **spares;
3200	uint_t i, nspares;
3201	nvlist_t *nvroot;
3202	uint64_t guid;
3203	vdev_stat_t *vs;
3204	uint_t vsc;
3205	uint64_t pool;
3206
3207	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3208
3209	if (spa->spa_spares.sav_count == 0)
3210		return;
3211
3212	VERIFY(nvlist_lookup_nvlist(config,
3213	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3214	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3215	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3216	if (nspares != 0) {
3217		VERIFY(nvlist_add_nvlist_array(nvroot,
3218		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3219		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3220		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3221
3222		/*
3223		 * Go through and find any spares which have since been
3224		 * repurposed as an active spare.  If this is the case, update
3225		 * their status appropriately.
3226		 */
3227		for (i = 0; i < nspares; i++) {
3228			VERIFY(nvlist_lookup_uint64(spares[i],
3229			    ZPOOL_CONFIG_GUID, &guid) == 0);
3230			if (spa_spare_exists(guid, &pool, NULL) &&
3231			    pool != 0ULL) {
3232				VERIFY(nvlist_lookup_uint64_array(
3233				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3234				    (uint64_t **)&vs, &vsc) == 0);
3235				vs->vs_state = VDEV_STATE_CANT_OPEN;
3236				vs->vs_aux = VDEV_AUX_SPARED;
3237			}
3238		}
3239	}
3240}
3241
3242/*
3243 * Add l2cache device information to the nvlist, including vdev stats.
3244 */
3245static void
3246spa_add_l2cache(spa_t *spa, nvlist_t *config)
3247{
3248	nvlist_t **l2cache;
3249	uint_t i, j, nl2cache;
3250	nvlist_t *nvroot;
3251	uint64_t guid;
3252	vdev_t *vd;
3253	vdev_stat_t *vs;
3254	uint_t vsc;
3255
3256	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3257
3258	if (spa->spa_l2cache.sav_count == 0)
3259		return;
3260
3261	VERIFY(nvlist_lookup_nvlist(config,
3262	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3263	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3264	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3265	if (nl2cache != 0) {
3266		VERIFY(nvlist_add_nvlist_array(nvroot,
3267		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3268		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3269		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3270
3271		/*
3272		 * Update level 2 cache device stats.
3273		 */
3274
3275		for (i = 0; i < nl2cache; i++) {
3276			VERIFY(nvlist_lookup_uint64(l2cache[i],
3277			    ZPOOL_CONFIG_GUID, &guid) == 0);
3278
3279			vd = NULL;
3280			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3281				if (guid ==
3282				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3283					vd = spa->spa_l2cache.sav_vdevs[j];
3284					break;
3285				}
3286			}
3287			ASSERT(vd != NULL);
3288
3289			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3290			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3291			    == 0);
3292			vdev_get_stats(vd, vs);
3293		}
3294	}
3295}
3296
3297static void
3298spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3299{
3300	nvlist_t *features;
3301	zap_cursor_t zc;
3302	zap_attribute_t za;
3303
3304	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3305	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3306
3307	/* We may be unable to read features if pool is suspended. */
3308	if (spa_suspended(spa))
3309		goto out;
3310
3311	if (spa->spa_feat_for_read_obj != 0) {
3312		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3313		    spa->spa_feat_for_read_obj);
3314		    zap_cursor_retrieve(&zc, &za) == 0;
3315		    zap_cursor_advance(&zc)) {
3316			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3317			    za.za_num_integers == 1);
3318			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3319			    za.za_first_integer));
3320		}
3321		zap_cursor_fini(&zc);
3322	}
3323
3324	if (spa->spa_feat_for_write_obj != 0) {
3325		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3326		    spa->spa_feat_for_write_obj);
3327		    zap_cursor_retrieve(&zc, &za) == 0;
3328		    zap_cursor_advance(&zc)) {
3329			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3330			    za.za_num_integers == 1);
3331			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3332			    za.za_first_integer));
3333		}
3334		zap_cursor_fini(&zc);
3335	}
3336
3337out:
3338	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3339	    features) == 0);
3340	nvlist_free(features);
3341}
3342
3343int
3344spa_get_stats(const char *name, nvlist_t **config,
3345    char *altroot, size_t buflen)
3346{
3347	int error;
3348	spa_t *spa;
3349
3350	*config = NULL;
3351	error = spa_open_common(name, &spa, FTAG, NULL, config);
3352
3353	if (spa != NULL) {
3354		/*
3355		 * This still leaves a window of inconsistency where the spares
3356		 * or l2cache devices could change and the config would be
3357		 * self-inconsistent.
3358		 */
3359		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3360
3361		if (*config != NULL) {
3362			uint64_t loadtimes[2];
3363
3364			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3365			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3366			VERIFY(nvlist_add_uint64_array(*config,
3367			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3368
3369			VERIFY(nvlist_add_uint64(*config,
3370			    ZPOOL_CONFIG_ERRCOUNT,
3371			    spa_get_errlog_size(spa)) == 0);
3372
3373			if (spa_suspended(spa))
3374				VERIFY(nvlist_add_uint64(*config,
3375				    ZPOOL_CONFIG_SUSPENDED,
3376				    spa->spa_failmode) == 0);
3377
3378			spa_add_spares(spa, *config);
3379			spa_add_l2cache(spa, *config);
3380			spa_add_feature_stats(spa, *config);
3381		}
3382	}
3383
3384	/*
3385	 * We want to get the alternate root even for faulted pools, so we cheat
3386	 * and call spa_lookup() directly.
3387	 */
3388	if (altroot) {
3389		if (spa == NULL) {
3390			mutex_enter(&spa_namespace_lock);
3391			spa = spa_lookup(name);
3392			if (spa)
3393				spa_altroot(spa, altroot, buflen);
3394			else
3395				altroot[0] = '\0';
3396			spa = NULL;
3397			mutex_exit(&spa_namespace_lock);
3398		} else {
3399			spa_altroot(spa, altroot, buflen);
3400		}
3401	}
3402
3403	if (spa != NULL) {
3404		spa_config_exit(spa, SCL_CONFIG, FTAG);
3405		spa_close(spa, FTAG);
3406	}
3407
3408	return (error);
3409}
3410
3411/*
3412 * Validate that the auxiliary device array is well formed.  We must have an
3413 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3414 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3415 * specified, as long as they are well-formed.
3416 */
3417static int
3418spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3419    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3420    vdev_labeltype_t label)
3421{
3422	nvlist_t **dev;
3423	uint_t i, ndev;
3424	vdev_t *vd;
3425	int error;
3426
3427	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3428
3429	/*
3430	 * It's acceptable to have no devs specified.
3431	 */
3432	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3433		return (0);
3434
3435	if (ndev == 0)
3436		return (SET_ERROR(EINVAL));
3437
3438	/*
3439	 * Make sure the pool is formatted with a version that supports this
3440	 * device type.
3441	 */
3442	if (spa_version(spa) < version)
3443		return (SET_ERROR(ENOTSUP));
3444
3445	/*
3446	 * Set the pending device list so we correctly handle device in-use
3447	 * checking.
3448	 */
3449	sav->sav_pending = dev;
3450	sav->sav_npending = ndev;
3451
3452	for (i = 0; i < ndev; i++) {
3453		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3454		    mode)) != 0)
3455			goto out;
3456
3457		if (!vd->vdev_ops->vdev_op_leaf) {
3458			vdev_free(vd);
3459			error = SET_ERROR(EINVAL);
3460			goto out;
3461		}
3462
3463		/*
3464		 * The L2ARC currently only supports disk devices in
3465		 * kernel context.  For user-level testing, we allow it.
3466		 */
3467#ifdef _KERNEL
3468		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3469		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3470			error = SET_ERROR(ENOTBLK);
3471			vdev_free(vd);
3472			goto out;
3473		}
3474#endif
3475		vd->vdev_top = vd;
3476
3477		if ((error = vdev_open(vd)) == 0 &&
3478		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3479			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3480			    vd->vdev_guid) == 0);
3481		}
3482
3483		vdev_free(vd);
3484
3485		if (error &&
3486		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3487			goto out;
3488		else
3489			error = 0;
3490	}
3491
3492out:
3493	sav->sav_pending = NULL;
3494	sav->sav_npending = 0;
3495	return (error);
3496}
3497
3498static int
3499spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3500{
3501	int error;
3502
3503	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3504
3505	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3506	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3507	    VDEV_LABEL_SPARE)) != 0) {
3508		return (error);
3509	}
3510
3511	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3512	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3513	    VDEV_LABEL_L2CACHE));
3514}
3515
3516static void
3517spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3518    const char *config)
3519{
3520	int i;
3521
3522	if (sav->sav_config != NULL) {
3523		nvlist_t **olddevs;
3524		uint_t oldndevs;
3525		nvlist_t **newdevs;
3526
3527		/*
3528		 * Generate new dev list by concatentating with the
3529		 * current dev list.
3530		 */
3531		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3532		    &olddevs, &oldndevs) == 0);
3533
3534		newdevs = kmem_alloc(sizeof (void *) *
3535		    (ndevs + oldndevs), KM_SLEEP);
3536		for (i = 0; i < oldndevs; i++)
3537			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3538			    KM_SLEEP) == 0);
3539		for (i = 0; i < ndevs; i++)
3540			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3541			    KM_SLEEP) == 0);
3542
3543		VERIFY(nvlist_remove(sav->sav_config, config,
3544		    DATA_TYPE_NVLIST_ARRAY) == 0);
3545
3546		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3547		    config, newdevs, ndevs + oldndevs) == 0);
3548		for (i = 0; i < oldndevs + ndevs; i++)
3549			nvlist_free(newdevs[i]);
3550		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3551	} else {
3552		/*
3553		 * Generate a new dev list.
3554		 */
3555		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3556		    KM_SLEEP) == 0);
3557		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3558		    devs, ndevs) == 0);
3559	}
3560}
3561
3562/*
3563 * Stop and drop level 2 ARC devices
3564 */
3565void
3566spa_l2cache_drop(spa_t *spa)
3567{
3568	vdev_t *vd;
3569	int i;
3570	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3571
3572	for (i = 0; i < sav->sav_count; i++) {
3573		uint64_t pool;
3574
3575		vd = sav->sav_vdevs[i];
3576		ASSERT(vd != NULL);
3577
3578		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3579		    pool != 0ULL && l2arc_vdev_present(vd))
3580			l2arc_remove_vdev(vd);
3581	}
3582}
3583
3584/*
3585 * Pool Creation
3586 */
3587int
3588spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3589    nvlist_t *zplprops)
3590{
3591	spa_t *spa;
3592	char *altroot = NULL;
3593	vdev_t *rvd;
3594	dsl_pool_t *dp;
3595	dmu_tx_t *tx;
3596	int error = 0;
3597	uint64_t txg = TXG_INITIAL;
3598	nvlist_t **spares, **l2cache;
3599	uint_t nspares, nl2cache;
3600	uint64_t version, obj;
3601	boolean_t has_features;
3602
3603	/*
3604	 * If this pool already exists, return failure.
3605	 */
3606	mutex_enter(&spa_namespace_lock);
3607	if (spa_lookup(pool) != NULL) {
3608		mutex_exit(&spa_namespace_lock);
3609		return (SET_ERROR(EEXIST));
3610	}
3611
3612	/*
3613	 * Allocate a new spa_t structure.
3614	 */
3615	(void) nvlist_lookup_string(props,
3616	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3617	spa = spa_add(pool, NULL, altroot);
3618	spa_activate(spa, spa_mode_global);
3619
3620	if (props && (error = spa_prop_validate(spa, props))) {
3621		spa_deactivate(spa);
3622		spa_remove(spa);
3623		mutex_exit(&spa_namespace_lock);
3624		return (error);
3625	}
3626
3627	has_features = B_FALSE;
3628	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3629	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3630		if (zpool_prop_feature(nvpair_name(elem)))
3631			has_features = B_TRUE;
3632	}
3633
3634	if (has_features || nvlist_lookup_uint64(props,
3635	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3636		version = SPA_VERSION;
3637	}
3638	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3639
3640	spa->spa_first_txg = txg;
3641	spa->spa_uberblock.ub_txg = txg - 1;
3642	spa->spa_uberblock.ub_version = version;
3643	spa->spa_ubsync = spa->spa_uberblock;
3644	spa->spa_load_state = SPA_LOAD_CREATE;
3645
3646	/*
3647	 * Create "The Godfather" zio to hold all async IOs
3648	 */
3649	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3650	    KM_SLEEP);
3651	for (int i = 0; i < max_ncpus; i++) {
3652		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3653		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3654		    ZIO_FLAG_GODFATHER);
3655	}
3656
3657	/*
3658	 * Create the root vdev.
3659	 */
3660	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3661
3662	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3663
3664	ASSERT(error != 0 || rvd != NULL);
3665	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3666
3667	if (error == 0 && !zfs_allocatable_devs(nvroot))
3668		error = SET_ERROR(EINVAL);
3669
3670	if (error == 0 &&
3671	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3672	    (error = spa_validate_aux(spa, nvroot, txg,
3673	    VDEV_ALLOC_ADD)) == 0) {
3674		for (int c = 0; c < rvd->vdev_children; c++) {
3675			vdev_ashift_optimize(rvd->vdev_child[c]);
3676			vdev_metaslab_set_size(rvd->vdev_child[c]);
3677			vdev_expand(rvd->vdev_child[c], txg);
3678		}
3679	}
3680
3681	spa_config_exit(spa, SCL_ALL, FTAG);
3682
3683	if (error != 0) {
3684		spa_unload(spa);
3685		spa_deactivate(spa);
3686		spa_remove(spa);
3687		mutex_exit(&spa_namespace_lock);
3688		return (error);
3689	}
3690
3691	/*
3692	 * Get the list of spares, if specified.
3693	 */
3694	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3695	    &spares, &nspares) == 0) {
3696		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3697		    KM_SLEEP) == 0);
3698		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3699		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3700		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3701		spa_load_spares(spa);
3702		spa_config_exit(spa, SCL_ALL, FTAG);
3703		spa->spa_spares.sav_sync = B_TRUE;
3704	}
3705
3706	/*
3707	 * Get the list of level 2 cache devices, if specified.
3708	 */
3709	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3710	    &l2cache, &nl2cache) == 0) {
3711		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3712		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3713		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3714		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3715		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3716		spa_load_l2cache(spa);
3717		spa_config_exit(spa, SCL_ALL, FTAG);
3718		spa->spa_l2cache.sav_sync = B_TRUE;
3719	}
3720
3721	spa->spa_is_initializing = B_TRUE;
3722	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3723	spa->spa_meta_objset = dp->dp_meta_objset;
3724	spa->spa_is_initializing = B_FALSE;
3725
3726	/*
3727	 * Create DDTs (dedup tables).
3728	 */
3729	ddt_create(spa);
3730
3731	spa_update_dspace(spa);
3732
3733	tx = dmu_tx_create_assigned(dp, txg);
3734
3735	/*
3736	 * Create the pool config object.
3737	 */
3738	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3739	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3740	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3741
3742	if (zap_add(spa->spa_meta_objset,
3743	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3744	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3745		cmn_err(CE_PANIC, "failed to add pool config");
3746	}
3747
3748	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3749		spa_feature_create_zap_objects(spa, tx);
3750
3751	if (zap_add(spa->spa_meta_objset,
3752	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3753	    sizeof (uint64_t), 1, &version, tx) != 0) {
3754		cmn_err(CE_PANIC, "failed to add pool version");
3755	}
3756
3757	/* Newly created pools with the right version are always deflated. */
3758	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3759		spa->spa_deflate = TRUE;
3760		if (zap_add(spa->spa_meta_objset,
3761		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3762		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3763			cmn_err(CE_PANIC, "failed to add deflate");
3764		}
3765	}
3766
3767	/*
3768	 * Create the deferred-free bpobj.  Turn off compression
3769	 * because sync-to-convergence takes longer if the blocksize
3770	 * keeps changing.
3771	 */
3772	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3773	dmu_object_set_compress(spa->spa_meta_objset, obj,
3774	    ZIO_COMPRESS_OFF, tx);
3775	if (zap_add(spa->spa_meta_objset,
3776	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3777	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3778		cmn_err(CE_PANIC, "failed to add bpobj");
3779	}
3780	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3781	    spa->spa_meta_objset, obj));
3782
3783	/*
3784	 * Create the pool's history object.
3785	 */
3786	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3787		spa_history_create_obj(spa, tx);
3788
3789	/*
3790	 * Generate some random noise for salted checksums to operate on.
3791	 */
3792	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3793	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3794
3795	/*
3796	 * Set pool properties.
3797	 */
3798	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3799	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3800	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3801	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3802
3803	if (props != NULL) {
3804		spa_configfile_set(spa, props, B_FALSE);
3805		spa_sync_props(props, tx);
3806	}
3807
3808	dmu_tx_commit(tx);
3809
3810	spa->spa_sync_on = B_TRUE;
3811	txg_sync_start(spa->spa_dsl_pool);
3812
3813	/*
3814	 * We explicitly wait for the first transaction to complete so that our
3815	 * bean counters are appropriately updated.
3816	 */
3817	txg_wait_synced(spa->spa_dsl_pool, txg);
3818
3819	spa_config_sync(spa, B_FALSE, B_TRUE);
3820	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3821
3822	spa_history_log_version(spa, "create");
3823
3824	/*
3825	 * Don't count references from objsets that are already closed
3826	 * and are making their way through the eviction process.
3827	 */
3828	spa_evicting_os_wait(spa);
3829	spa->spa_minref = refcount_count(&spa->spa_refcount);
3830	spa->spa_load_state = SPA_LOAD_NONE;
3831
3832	mutex_exit(&spa_namespace_lock);
3833
3834	return (0);
3835}
3836
3837#ifdef _KERNEL
3838#ifdef illumos
3839/*
3840 * Get the root pool information from the root disk, then import the root pool
3841 * during the system boot up time.
3842 */
3843extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3844
3845static nvlist_t *
3846spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3847{
3848	nvlist_t *config;
3849	nvlist_t *nvtop, *nvroot;
3850	uint64_t pgid;
3851
3852	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3853		return (NULL);
3854
3855	/*
3856	 * Add this top-level vdev to the child array.
3857	 */
3858	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3859	    &nvtop) == 0);
3860	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3861	    &pgid) == 0);
3862	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3863
3864	/*
3865	 * Put this pool's top-level vdevs into a root vdev.
3866	 */
3867	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3868	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3869	    VDEV_TYPE_ROOT) == 0);
3870	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3871	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3872	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3873	    &nvtop, 1) == 0);
3874
3875	/*
3876	 * Replace the existing vdev_tree with the new root vdev in
3877	 * this pool's configuration (remove the old, add the new).
3878	 */
3879	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3880	nvlist_free(nvroot);
3881	return (config);
3882}
3883
3884/*
3885 * Walk the vdev tree and see if we can find a device with "better"
3886 * configuration. A configuration is "better" if the label on that
3887 * device has a more recent txg.
3888 */
3889static void
3890spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3891{
3892	for (int c = 0; c < vd->vdev_children; c++)
3893		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3894
3895	if (vd->vdev_ops->vdev_op_leaf) {
3896		nvlist_t *label;
3897		uint64_t label_txg;
3898
3899		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3900		    &label) != 0)
3901			return;
3902
3903		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3904		    &label_txg) == 0);
3905
3906		/*
3907		 * Do we have a better boot device?
3908		 */
3909		if (label_txg > *txg) {
3910			*txg = label_txg;
3911			*avd = vd;
3912		}
3913		nvlist_free(label);
3914	}
3915}
3916
3917/*
3918 * Import a root pool.
3919 *
3920 * For x86. devpath_list will consist of devid and/or physpath name of
3921 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3922 * The GRUB "findroot" command will return the vdev we should boot.
3923 *
3924 * For Sparc, devpath_list consists the physpath name of the booting device
3925 * no matter the rootpool is a single device pool or a mirrored pool.
3926 * e.g.
3927 *	"/pci@1f,0/ide@d/disk@0,0:a"
3928 */
3929int
3930spa_import_rootpool(char *devpath, char *devid)
3931{
3932	spa_t *spa;
3933	vdev_t *rvd, *bvd, *avd = NULL;
3934	nvlist_t *config, *nvtop;
3935	uint64_t guid, txg;
3936	char *pname;
3937	int error;
3938
3939	/*
3940	 * Read the label from the boot device and generate a configuration.
3941	 */
3942	config = spa_generate_rootconf(devpath, devid, &guid);
3943#if defined(_OBP) && defined(_KERNEL)
3944	if (config == NULL) {
3945		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3946			/* iscsi boot */
3947			get_iscsi_bootpath_phy(devpath);
3948			config = spa_generate_rootconf(devpath, devid, &guid);
3949		}
3950	}
3951#endif
3952	if (config == NULL) {
3953		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3954		    devpath);
3955		return (SET_ERROR(EIO));
3956	}
3957
3958	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3959	    &pname) == 0);
3960	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3961
3962	mutex_enter(&spa_namespace_lock);
3963	if ((spa = spa_lookup(pname)) != NULL) {
3964		/*
3965		 * Remove the existing root pool from the namespace so that we
3966		 * can replace it with the correct config we just read in.
3967		 */
3968		spa_remove(spa);
3969	}
3970
3971	spa = spa_add(pname, config, NULL);
3972	spa->spa_is_root = B_TRUE;
3973	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3974
3975	/*
3976	 * Build up a vdev tree based on the boot device's label config.
3977	 */
3978	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3979	    &nvtop) == 0);
3980	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3981	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3982	    VDEV_ALLOC_ROOTPOOL);
3983	spa_config_exit(spa, SCL_ALL, FTAG);
3984	if (error) {
3985		mutex_exit(&spa_namespace_lock);
3986		nvlist_free(config);
3987		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3988		    pname);
3989		return (error);
3990	}
3991
3992	/*
3993	 * Get the boot vdev.
3994	 */
3995	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3996		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3997		    (u_longlong_t)guid);
3998		error = SET_ERROR(ENOENT);
3999		goto out;
4000	}
4001
4002	/*
4003	 * Determine if there is a better boot device.
4004	 */
4005	avd = bvd;
4006	spa_alt_rootvdev(rvd, &avd, &txg);
4007	if (avd != bvd) {
4008		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4009		    "try booting from '%s'", avd->vdev_path);
4010		error = SET_ERROR(EINVAL);
4011		goto out;
4012	}
4013
4014	/*
4015	 * If the boot device is part of a spare vdev then ensure that
4016	 * we're booting off the active spare.
4017	 */
4018	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4019	    !bvd->vdev_isspare) {
4020		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4021		    "try booting from '%s'",
4022		    bvd->vdev_parent->
4023		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4024		error = SET_ERROR(EINVAL);
4025		goto out;
4026	}
4027
4028	error = 0;
4029out:
4030	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4031	vdev_free(rvd);
4032	spa_config_exit(spa, SCL_ALL, FTAG);
4033	mutex_exit(&spa_namespace_lock);
4034
4035	nvlist_free(config);
4036	return (error);
4037}
4038
4039#else	/* !illumos */
4040
4041extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4042    uint64_t *count);
4043
4044static nvlist_t *
4045spa_generate_rootconf(const char *name)
4046{
4047	nvlist_t **configs, **tops;
4048	nvlist_t *config;
4049	nvlist_t *best_cfg, *nvtop, *nvroot;
4050	uint64_t *holes;
4051	uint64_t best_txg;
4052	uint64_t nchildren;
4053	uint64_t pgid;
4054	uint64_t count;
4055	uint64_t i;
4056	uint_t   nholes;
4057
4058	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4059		return (NULL);
4060
4061	ASSERT3U(count, !=, 0);
4062	best_txg = 0;
4063	for (i = 0; i < count; i++) {
4064		uint64_t txg;
4065
4066		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4067		    &txg) == 0);
4068		if (txg > best_txg) {
4069			best_txg = txg;
4070			best_cfg = configs[i];
4071		}
4072	}
4073
4074	/*
4075	 * Multi-vdev root pool configuration discovery is not supported yet.
4076	 */
4077	nchildren = 1;
4078	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4079	holes = NULL;
4080	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4081	    &holes, &nholes);
4082
4083	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4084	for (i = 0; i < nchildren; i++) {
4085		if (i >= count)
4086			break;
4087		if (configs[i] == NULL)
4088			continue;
4089		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4090		    &nvtop) == 0);
4091		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4092	}
4093	for (i = 0; holes != NULL && i < nholes; i++) {
4094		if (i >= nchildren)
4095			continue;
4096		if (tops[holes[i]] != NULL)
4097			continue;
4098		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4099		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4100		    VDEV_TYPE_HOLE) == 0);
4101		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4102		    holes[i]) == 0);
4103		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4104		    0) == 0);
4105	}
4106	for (i = 0; i < nchildren; i++) {
4107		if (tops[i] != NULL)
4108			continue;
4109		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4110		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4111		    VDEV_TYPE_MISSING) == 0);
4112		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4113		    i) == 0);
4114		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4115		    0) == 0);
4116	}
4117
4118	/*
4119	 * Create pool config based on the best vdev config.
4120	 */
4121	nvlist_dup(best_cfg, &config, KM_SLEEP);
4122
4123	/*
4124	 * Put this pool's top-level vdevs into a root vdev.
4125	 */
4126	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4127	    &pgid) == 0);
4128	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4129	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4130	    VDEV_TYPE_ROOT) == 0);
4131	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4132	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4133	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4134	    tops, nchildren) == 0);
4135
4136	/*
4137	 * Replace the existing vdev_tree with the new root vdev in
4138	 * this pool's configuration (remove the old, add the new).
4139	 */
4140	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4141
4142	/*
4143	 * Drop vdev config elements that should not be present at pool level.
4144	 */
4145	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4146	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4147
4148	for (i = 0; i < count; i++)
4149		nvlist_free(configs[i]);
4150	kmem_free(configs, count * sizeof(void *));
4151	for (i = 0; i < nchildren; i++)
4152		nvlist_free(tops[i]);
4153	kmem_free(tops, nchildren * sizeof(void *));
4154	nvlist_free(nvroot);
4155	return (config);
4156}
4157
4158int
4159spa_import_rootpool(const char *name)
4160{
4161	spa_t *spa;
4162	vdev_t *rvd, *bvd, *avd = NULL;
4163	nvlist_t *config, *nvtop;
4164	uint64_t txg;
4165	char *pname;
4166	int error;
4167
4168	/*
4169	 * Read the label from the boot device and generate a configuration.
4170	 */
4171	config = spa_generate_rootconf(name);
4172
4173	mutex_enter(&spa_namespace_lock);
4174	if (config != NULL) {
4175		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4176		    &pname) == 0 && strcmp(name, pname) == 0);
4177		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4178		    == 0);
4179
4180		if ((spa = spa_lookup(pname)) != NULL) {
4181			/*
4182			 * The pool could already be imported,
4183			 * e.g., after reboot -r.
4184			 */
4185			if (spa->spa_state == POOL_STATE_ACTIVE) {
4186				mutex_exit(&spa_namespace_lock);
4187				nvlist_free(config);
4188				return (0);
4189			}
4190
4191			/*
4192			 * Remove the existing root pool from the namespace so
4193			 * that we can replace it with the correct config
4194			 * we just read in.
4195			 */
4196			spa_remove(spa);
4197		}
4198		spa = spa_add(pname, config, NULL);
4199
4200		/*
4201		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4202		 * via spa_version().
4203		 */
4204		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4205		    &spa->spa_ubsync.ub_version) != 0)
4206			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4207	} else if ((spa = spa_lookup(name)) == NULL) {
4208		mutex_exit(&spa_namespace_lock);
4209		nvlist_free(config);
4210		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4211		    name);
4212		return (EIO);
4213	} else {
4214		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4215	}
4216	spa->spa_is_root = B_TRUE;
4217	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4218
4219	/*
4220	 * Build up a vdev tree based on the boot device's label config.
4221	 */
4222	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4223	    &nvtop) == 0);
4224	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4225	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4226	    VDEV_ALLOC_ROOTPOOL);
4227	spa_config_exit(spa, SCL_ALL, FTAG);
4228	if (error) {
4229		mutex_exit(&spa_namespace_lock);
4230		nvlist_free(config);
4231		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4232		    pname);
4233		return (error);
4234	}
4235
4236	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4237	vdev_free(rvd);
4238	spa_config_exit(spa, SCL_ALL, FTAG);
4239	mutex_exit(&spa_namespace_lock);
4240
4241	nvlist_free(config);
4242	return (0);
4243}
4244
4245#endif	/* illumos */
4246#endif	/* _KERNEL */
4247
4248/*
4249 * Import a non-root pool into the system.
4250 */
4251int
4252spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4253{
4254	spa_t *spa;
4255	char *altroot = NULL;
4256	spa_load_state_t state = SPA_LOAD_IMPORT;
4257	zpool_rewind_policy_t policy;
4258	uint64_t mode = spa_mode_global;
4259	uint64_t readonly = B_FALSE;
4260	int error;
4261	nvlist_t *nvroot;
4262	nvlist_t **spares, **l2cache;
4263	uint_t nspares, nl2cache;
4264
4265	/*
4266	 * If a pool with this name exists, return failure.
4267	 */
4268	mutex_enter(&spa_namespace_lock);
4269	if (spa_lookup(pool) != NULL) {
4270		mutex_exit(&spa_namespace_lock);
4271		return (SET_ERROR(EEXIST));
4272	}
4273
4274	/*
4275	 * Create and initialize the spa structure.
4276	 */
4277	(void) nvlist_lookup_string(props,
4278	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4279	(void) nvlist_lookup_uint64(props,
4280	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4281	if (readonly)
4282		mode = FREAD;
4283	spa = spa_add(pool, config, altroot);
4284	spa->spa_import_flags = flags;
4285
4286	/*
4287	 * Verbatim import - Take a pool and insert it into the namespace
4288	 * as if it had been loaded at boot.
4289	 */
4290	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4291		if (props != NULL)
4292			spa_configfile_set(spa, props, B_FALSE);
4293
4294		spa_config_sync(spa, B_FALSE, B_TRUE);
4295		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4296
4297		mutex_exit(&spa_namespace_lock);
4298		return (0);
4299	}
4300
4301	spa_activate(spa, mode);
4302
4303	/*
4304	 * Don't start async tasks until we know everything is healthy.
4305	 */
4306	spa_async_suspend(spa);
4307
4308	zpool_get_rewind_policy(config, &policy);
4309	if (policy.zrp_request & ZPOOL_DO_REWIND)
4310		state = SPA_LOAD_RECOVER;
4311
4312	/*
4313	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4314	 * because the user-supplied config is actually the one to trust when
4315	 * doing an import.
4316	 */
4317	if (state != SPA_LOAD_RECOVER)
4318		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4319
4320	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4321	    policy.zrp_request);
4322
4323	/*
4324	 * Propagate anything learned while loading the pool and pass it
4325	 * back to caller (i.e. rewind info, missing devices, etc).
4326	 */
4327	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4328	    spa->spa_load_info) == 0);
4329
4330	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4331	/*
4332	 * Toss any existing sparelist, as it doesn't have any validity
4333	 * anymore, and conflicts with spa_has_spare().
4334	 */
4335	if (spa->spa_spares.sav_config) {
4336		nvlist_free(spa->spa_spares.sav_config);
4337		spa->spa_spares.sav_config = NULL;
4338		spa_load_spares(spa);
4339	}
4340	if (spa->spa_l2cache.sav_config) {
4341		nvlist_free(spa->spa_l2cache.sav_config);
4342		spa->spa_l2cache.sav_config = NULL;
4343		spa_load_l2cache(spa);
4344	}
4345
4346	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4347	    &nvroot) == 0);
4348	if (error == 0)
4349		error = spa_validate_aux(spa, nvroot, -1ULL,
4350		    VDEV_ALLOC_SPARE);
4351	if (error == 0)
4352		error = spa_validate_aux(spa, nvroot, -1ULL,
4353		    VDEV_ALLOC_L2CACHE);
4354	spa_config_exit(spa, SCL_ALL, FTAG);
4355
4356	if (props != NULL)
4357		spa_configfile_set(spa, props, B_FALSE);
4358
4359	if (error != 0 || (props && spa_writeable(spa) &&
4360	    (error = spa_prop_set(spa, props)))) {
4361		spa_unload(spa);
4362		spa_deactivate(spa);
4363		spa_remove(spa);
4364		mutex_exit(&spa_namespace_lock);
4365		return (error);
4366	}
4367
4368	spa_async_resume(spa);
4369
4370	/*
4371	 * Override any spares and level 2 cache devices as specified by
4372	 * the user, as these may have correct device names/devids, etc.
4373	 */
4374	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4375	    &spares, &nspares) == 0) {
4376		if (spa->spa_spares.sav_config)
4377			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4378			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4379		else
4380			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4381			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4382		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4383		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4384		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4385		spa_load_spares(spa);
4386		spa_config_exit(spa, SCL_ALL, FTAG);
4387		spa->spa_spares.sav_sync = B_TRUE;
4388	}
4389	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4390	    &l2cache, &nl2cache) == 0) {
4391		if (spa->spa_l2cache.sav_config)
4392			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4393			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4394		else
4395			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4396			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4397		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4398		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4399		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4400		spa_load_l2cache(spa);
4401		spa_config_exit(spa, SCL_ALL, FTAG);
4402		spa->spa_l2cache.sav_sync = B_TRUE;
4403	}
4404
4405	/*
4406	 * Check for any removed devices.
4407	 */
4408	if (spa->spa_autoreplace) {
4409		spa_aux_check_removed(&spa->spa_spares);
4410		spa_aux_check_removed(&spa->spa_l2cache);
4411	}
4412
4413	if (spa_writeable(spa)) {
4414		/*
4415		 * Update the config cache to include the newly-imported pool.
4416		 */
4417		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4418	}
4419
4420	/*
4421	 * It's possible that the pool was expanded while it was exported.
4422	 * We kick off an async task to handle this for us.
4423	 */
4424	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4425
4426	spa_history_log_version(spa, "import");
4427
4428	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4429
4430	mutex_exit(&spa_namespace_lock);
4431
4432#ifdef __FreeBSD__
4433#ifdef _KERNEL
4434	zvol_create_minors(pool);
4435#endif
4436#endif
4437	return (0);
4438}
4439
4440nvlist_t *
4441spa_tryimport(nvlist_t *tryconfig)
4442{
4443	nvlist_t *config = NULL;
4444	char *poolname;
4445	spa_t *spa;
4446	uint64_t state;
4447	int error;
4448
4449	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4450		return (NULL);
4451
4452	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4453		return (NULL);
4454
4455	/*
4456	 * Create and initialize the spa structure.
4457	 */
4458	mutex_enter(&spa_namespace_lock);
4459	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4460	spa_activate(spa, FREAD);
4461
4462	/*
4463	 * Pass off the heavy lifting to spa_load().
4464	 * Pass TRUE for mosconfig because the user-supplied config
4465	 * is actually the one to trust when doing an import.
4466	 */
4467	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4468
4469	/*
4470	 * If 'tryconfig' was at least parsable, return the current config.
4471	 */
4472	if (spa->spa_root_vdev != NULL) {
4473		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4474		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4475		    poolname) == 0);
4476		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4477		    state) == 0);
4478		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4479		    spa->spa_uberblock.ub_timestamp) == 0);
4480		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4481		    spa->spa_load_info) == 0);
4482
4483		/*
4484		 * If the bootfs property exists on this pool then we
4485		 * copy it out so that external consumers can tell which
4486		 * pools are bootable.
4487		 */
4488		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4489			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4490
4491			/*
4492			 * We have to play games with the name since the
4493			 * pool was opened as TRYIMPORT_NAME.
4494			 */
4495			if (dsl_dsobj_to_dsname(spa_name(spa),
4496			    spa->spa_bootfs, tmpname) == 0) {
4497				char *cp;
4498				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4499
4500				cp = strchr(tmpname, '/');
4501				if (cp == NULL) {
4502					(void) strlcpy(dsname, tmpname,
4503					    MAXPATHLEN);
4504				} else {
4505					(void) snprintf(dsname, MAXPATHLEN,
4506					    "%s/%s", poolname, ++cp);
4507				}
4508				VERIFY(nvlist_add_string(config,
4509				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4510				kmem_free(dsname, MAXPATHLEN);
4511			}
4512			kmem_free(tmpname, MAXPATHLEN);
4513		}
4514
4515		/*
4516		 * Add the list of hot spares and level 2 cache devices.
4517		 */
4518		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4519		spa_add_spares(spa, config);
4520		spa_add_l2cache(spa, config);
4521		spa_config_exit(spa, SCL_CONFIG, FTAG);
4522	}
4523
4524	spa_unload(spa);
4525	spa_deactivate(spa);
4526	spa_remove(spa);
4527	mutex_exit(&spa_namespace_lock);
4528
4529	return (config);
4530}
4531
4532/*
4533 * Pool export/destroy
4534 *
4535 * The act of destroying or exporting a pool is very simple.  We make sure there
4536 * is no more pending I/O and any references to the pool are gone.  Then, we
4537 * update the pool state and sync all the labels to disk, removing the
4538 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4539 * we don't sync the labels or remove the configuration cache.
4540 */
4541static int
4542spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4543    boolean_t force, boolean_t hardforce)
4544{
4545	spa_t *spa;
4546
4547	if (oldconfig)
4548		*oldconfig = NULL;
4549
4550	if (!(spa_mode_global & FWRITE))
4551		return (SET_ERROR(EROFS));
4552
4553	mutex_enter(&spa_namespace_lock);
4554	if ((spa = spa_lookup(pool)) == NULL) {
4555		mutex_exit(&spa_namespace_lock);
4556		return (SET_ERROR(ENOENT));
4557	}
4558
4559	/*
4560	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4561	 * reacquire the namespace lock, and see if we can export.
4562	 */
4563	spa_open_ref(spa, FTAG);
4564	mutex_exit(&spa_namespace_lock);
4565	spa_async_suspend(spa);
4566	mutex_enter(&spa_namespace_lock);
4567	spa_close(spa, FTAG);
4568
4569	/*
4570	 * The pool will be in core if it's openable,
4571	 * in which case we can modify its state.
4572	 */
4573	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4574		/*
4575		 * Objsets may be open only because they're dirty, so we
4576		 * have to force it to sync before checking spa_refcnt.
4577		 */
4578		txg_wait_synced(spa->spa_dsl_pool, 0);
4579		spa_evicting_os_wait(spa);
4580
4581		/*
4582		 * A pool cannot be exported or destroyed if there are active
4583		 * references.  If we are resetting a pool, allow references by
4584		 * fault injection handlers.
4585		 */
4586		if (!spa_refcount_zero(spa) ||
4587		    (spa->spa_inject_ref != 0 &&
4588		    new_state != POOL_STATE_UNINITIALIZED)) {
4589			spa_async_resume(spa);
4590			mutex_exit(&spa_namespace_lock);
4591			return (SET_ERROR(EBUSY));
4592		}
4593
4594		/*
4595		 * A pool cannot be exported if it has an active shared spare.
4596		 * This is to prevent other pools stealing the active spare
4597		 * from an exported pool. At user's own will, such pool can
4598		 * be forcedly exported.
4599		 */
4600		if (!force && new_state == POOL_STATE_EXPORTED &&
4601		    spa_has_active_shared_spare(spa)) {
4602			spa_async_resume(spa);
4603			mutex_exit(&spa_namespace_lock);
4604			return (SET_ERROR(EXDEV));
4605		}
4606
4607		/*
4608		 * We want this to be reflected on every label,
4609		 * so mark them all dirty.  spa_unload() will do the
4610		 * final sync that pushes these changes out.
4611		 */
4612		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4613			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4614			spa->spa_state = new_state;
4615			spa->spa_final_txg = spa_last_synced_txg(spa) +
4616			    TXG_DEFER_SIZE + 1;
4617			vdev_config_dirty(spa->spa_root_vdev);
4618			spa_config_exit(spa, SCL_ALL, FTAG);
4619		}
4620	}
4621
4622	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4623
4624	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4625		spa_unload(spa);
4626		spa_deactivate(spa);
4627	}
4628
4629	if (oldconfig && spa->spa_config)
4630		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4631
4632	if (new_state != POOL_STATE_UNINITIALIZED) {
4633		if (!hardforce)
4634			spa_config_sync(spa, B_TRUE, B_TRUE);
4635		spa_remove(spa);
4636	}
4637	mutex_exit(&spa_namespace_lock);
4638
4639	return (0);
4640}
4641
4642/*
4643 * Destroy a storage pool.
4644 */
4645int
4646spa_destroy(char *pool)
4647{
4648	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4649	    B_FALSE, B_FALSE));
4650}
4651
4652/*
4653 * Export a storage pool.
4654 */
4655int
4656spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4657    boolean_t hardforce)
4658{
4659	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4660	    force, hardforce));
4661}
4662
4663/*
4664 * Similar to spa_export(), this unloads the spa_t without actually removing it
4665 * from the namespace in any way.
4666 */
4667int
4668spa_reset(char *pool)
4669{
4670	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4671	    B_FALSE, B_FALSE));
4672}
4673
4674/*
4675 * ==========================================================================
4676 * Device manipulation
4677 * ==========================================================================
4678 */
4679
4680/*
4681 * Add a device to a storage pool.
4682 */
4683int
4684spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4685{
4686	uint64_t txg, id;
4687	int error;
4688	vdev_t *rvd = spa->spa_root_vdev;
4689	vdev_t *vd, *tvd;
4690	nvlist_t **spares, **l2cache;
4691	uint_t nspares, nl2cache;
4692
4693	ASSERT(spa_writeable(spa));
4694
4695	txg = spa_vdev_enter(spa);
4696
4697	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4698	    VDEV_ALLOC_ADD)) != 0)
4699		return (spa_vdev_exit(spa, NULL, txg, error));
4700
4701	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4702
4703	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4704	    &nspares) != 0)
4705		nspares = 0;
4706
4707	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4708	    &nl2cache) != 0)
4709		nl2cache = 0;
4710
4711	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4712		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4713
4714	if (vd->vdev_children != 0 &&
4715	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4716		return (spa_vdev_exit(spa, vd, txg, error));
4717
4718	/*
4719	 * We must validate the spares and l2cache devices after checking the
4720	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4721	 */
4722	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4723		return (spa_vdev_exit(spa, vd, txg, error));
4724
4725	/*
4726	 * Transfer each new top-level vdev from vd to rvd.
4727	 */
4728	for (int c = 0; c < vd->vdev_children; c++) {
4729
4730		/*
4731		 * Set the vdev id to the first hole, if one exists.
4732		 */
4733		for (id = 0; id < rvd->vdev_children; id++) {
4734			if (rvd->vdev_child[id]->vdev_ishole) {
4735				vdev_free(rvd->vdev_child[id]);
4736				break;
4737			}
4738		}
4739		tvd = vd->vdev_child[c];
4740		vdev_remove_child(vd, tvd);
4741		tvd->vdev_id = id;
4742		vdev_add_child(rvd, tvd);
4743		vdev_config_dirty(tvd);
4744	}
4745
4746	if (nspares != 0) {
4747		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4748		    ZPOOL_CONFIG_SPARES);
4749		spa_load_spares(spa);
4750		spa->spa_spares.sav_sync = B_TRUE;
4751	}
4752
4753	if (nl2cache != 0) {
4754		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4755		    ZPOOL_CONFIG_L2CACHE);
4756		spa_load_l2cache(spa);
4757		spa->spa_l2cache.sav_sync = B_TRUE;
4758	}
4759
4760	/*
4761	 * We have to be careful when adding new vdevs to an existing pool.
4762	 * If other threads start allocating from these vdevs before we
4763	 * sync the config cache, and we lose power, then upon reboot we may
4764	 * fail to open the pool because there are DVAs that the config cache
4765	 * can't translate.  Therefore, we first add the vdevs without
4766	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4767	 * and then let spa_config_update() initialize the new metaslabs.
4768	 *
4769	 * spa_load() checks for added-but-not-initialized vdevs, so that
4770	 * if we lose power at any point in this sequence, the remaining
4771	 * steps will be completed the next time we load the pool.
4772	 */
4773	(void) spa_vdev_exit(spa, vd, txg, 0);
4774
4775	mutex_enter(&spa_namespace_lock);
4776	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4777	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4778	mutex_exit(&spa_namespace_lock);
4779
4780	return (0);
4781}
4782
4783/*
4784 * Attach a device to a mirror.  The arguments are the path to any device
4785 * in the mirror, and the nvroot for the new device.  If the path specifies
4786 * a device that is not mirrored, we automatically insert the mirror vdev.
4787 *
4788 * If 'replacing' is specified, the new device is intended to replace the
4789 * existing device; in this case the two devices are made into their own
4790 * mirror using the 'replacing' vdev, which is functionally identical to
4791 * the mirror vdev (it actually reuses all the same ops) but has a few
4792 * extra rules: you can't attach to it after it's been created, and upon
4793 * completion of resilvering, the first disk (the one being replaced)
4794 * is automatically detached.
4795 */
4796int
4797spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4798{
4799	uint64_t txg, dtl_max_txg;
4800	vdev_t *rvd = spa->spa_root_vdev;
4801	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4802	vdev_ops_t *pvops;
4803	char *oldvdpath, *newvdpath;
4804	int newvd_isspare;
4805	int error;
4806
4807	ASSERT(spa_writeable(spa));
4808
4809	txg = spa_vdev_enter(spa);
4810
4811	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4812
4813	if (oldvd == NULL)
4814		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4815
4816	if (!oldvd->vdev_ops->vdev_op_leaf)
4817		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4818
4819	pvd = oldvd->vdev_parent;
4820
4821	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4822	    VDEV_ALLOC_ATTACH)) != 0)
4823		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4824
4825	if (newrootvd->vdev_children != 1)
4826		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4827
4828	newvd = newrootvd->vdev_child[0];
4829
4830	if (!newvd->vdev_ops->vdev_op_leaf)
4831		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4832
4833	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4834		return (spa_vdev_exit(spa, newrootvd, txg, error));
4835
4836	/*
4837	 * Spares can't replace logs
4838	 */
4839	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4840		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4841
4842	if (!replacing) {
4843		/*
4844		 * For attach, the only allowable parent is a mirror or the root
4845		 * vdev.
4846		 */
4847		if (pvd->vdev_ops != &vdev_mirror_ops &&
4848		    pvd->vdev_ops != &vdev_root_ops)
4849			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4850
4851		pvops = &vdev_mirror_ops;
4852	} else {
4853		/*
4854		 * Active hot spares can only be replaced by inactive hot
4855		 * spares.
4856		 */
4857		if (pvd->vdev_ops == &vdev_spare_ops &&
4858		    oldvd->vdev_isspare &&
4859		    !spa_has_spare(spa, newvd->vdev_guid))
4860			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4861
4862		/*
4863		 * If the source is a hot spare, and the parent isn't already a
4864		 * spare, then we want to create a new hot spare.  Otherwise, we
4865		 * want to create a replacing vdev.  The user is not allowed to
4866		 * attach to a spared vdev child unless the 'isspare' state is
4867		 * the same (spare replaces spare, non-spare replaces
4868		 * non-spare).
4869		 */
4870		if (pvd->vdev_ops == &vdev_replacing_ops &&
4871		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4872			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4873		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4874		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4875			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4876		}
4877
4878		if (newvd->vdev_isspare)
4879			pvops = &vdev_spare_ops;
4880		else
4881			pvops = &vdev_replacing_ops;
4882	}
4883
4884	/*
4885	 * Make sure the new device is big enough.
4886	 */
4887	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4888		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4889
4890	/*
4891	 * The new device cannot have a higher alignment requirement
4892	 * than the top-level vdev.
4893	 */
4894	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4895		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4896
4897	/*
4898	 * If this is an in-place replacement, update oldvd's path and devid
4899	 * to make it distinguishable from newvd, and unopenable from now on.
4900	 */
4901	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4902		spa_strfree(oldvd->vdev_path);
4903		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4904		    KM_SLEEP);
4905		(void) sprintf(oldvd->vdev_path, "%s/%s",
4906		    newvd->vdev_path, "old");
4907		if (oldvd->vdev_devid != NULL) {
4908			spa_strfree(oldvd->vdev_devid);
4909			oldvd->vdev_devid = NULL;
4910		}
4911	}
4912
4913	/* mark the device being resilvered */
4914	newvd->vdev_resilver_txg = txg;
4915
4916	/*
4917	 * If the parent is not a mirror, or if we're replacing, insert the new
4918	 * mirror/replacing/spare vdev above oldvd.
4919	 */
4920	if (pvd->vdev_ops != pvops)
4921		pvd = vdev_add_parent(oldvd, pvops);
4922
4923	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4924	ASSERT(pvd->vdev_ops == pvops);
4925	ASSERT(oldvd->vdev_parent == pvd);
4926
4927	/*
4928	 * Extract the new device from its root and add it to pvd.
4929	 */
4930	vdev_remove_child(newrootvd, newvd);
4931	newvd->vdev_id = pvd->vdev_children;
4932	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4933	vdev_add_child(pvd, newvd);
4934
4935	tvd = newvd->vdev_top;
4936	ASSERT(pvd->vdev_top == tvd);
4937	ASSERT(tvd->vdev_parent == rvd);
4938
4939	vdev_config_dirty(tvd);
4940
4941	/*
4942	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4943	 * for any dmu_sync-ed blocks.  It will propagate upward when
4944	 * spa_vdev_exit() calls vdev_dtl_reassess().
4945	 */
4946	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4947
4948	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4949	    dtl_max_txg - TXG_INITIAL);
4950
4951	if (newvd->vdev_isspare) {
4952		spa_spare_activate(newvd);
4953		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4954	}
4955
4956	oldvdpath = spa_strdup(oldvd->vdev_path);
4957	newvdpath = spa_strdup(newvd->vdev_path);
4958	newvd_isspare = newvd->vdev_isspare;
4959
4960	/*
4961	 * Mark newvd's DTL dirty in this txg.
4962	 */
4963	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4964
4965	/*
4966	 * Schedule the resilver to restart in the future. We do this to
4967	 * ensure that dmu_sync-ed blocks have been stitched into the
4968	 * respective datasets.
4969	 */
4970	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4971
4972	if (spa->spa_bootfs)
4973		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4974
4975	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4976
4977	/*
4978	 * Commit the config
4979	 */
4980	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4981
4982	spa_history_log_internal(spa, "vdev attach", NULL,
4983	    "%s vdev=%s %s vdev=%s",
4984	    replacing && newvd_isspare ? "spare in" :
4985	    replacing ? "replace" : "attach", newvdpath,
4986	    replacing ? "for" : "to", oldvdpath);
4987
4988	spa_strfree(oldvdpath);
4989	spa_strfree(newvdpath);
4990
4991	return (0);
4992}
4993
4994/*
4995 * Detach a device from a mirror or replacing vdev.
4996 *
4997 * If 'replace_done' is specified, only detach if the parent
4998 * is a replacing vdev.
4999 */
5000int
5001spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5002{
5003	uint64_t txg;
5004	int error;
5005	vdev_t *rvd = spa->spa_root_vdev;
5006	vdev_t *vd, *pvd, *cvd, *tvd;
5007	boolean_t unspare = B_FALSE;
5008	uint64_t unspare_guid = 0;
5009	char *vdpath;
5010
5011	ASSERT(spa_writeable(spa));
5012
5013	txg = spa_vdev_enter(spa);
5014
5015	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5016
5017	if (vd == NULL)
5018		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5019
5020	if (!vd->vdev_ops->vdev_op_leaf)
5021		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5022
5023	pvd = vd->vdev_parent;
5024
5025	/*
5026	 * If the parent/child relationship is not as expected, don't do it.
5027	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5028	 * vdev that's replacing B with C.  The user's intent in replacing
5029	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5030	 * the replace by detaching C, the expected behavior is to end up
5031	 * M(A,B).  But suppose that right after deciding to detach C,
5032	 * the replacement of B completes.  We would have M(A,C), and then
5033	 * ask to detach C, which would leave us with just A -- not what
5034	 * the user wanted.  To prevent this, we make sure that the
5035	 * parent/child relationship hasn't changed -- in this example,
5036	 * that C's parent is still the replacing vdev R.
5037	 */
5038	if (pvd->vdev_guid != pguid && pguid != 0)
5039		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5040
5041	/*
5042	 * Only 'replacing' or 'spare' vdevs can be replaced.
5043	 */
5044	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5045	    pvd->vdev_ops != &vdev_spare_ops)
5046		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5047
5048	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5049	    spa_version(spa) >= SPA_VERSION_SPARES);
5050
5051	/*
5052	 * Only mirror, replacing, and spare vdevs support detach.
5053	 */
5054	if (pvd->vdev_ops != &vdev_replacing_ops &&
5055	    pvd->vdev_ops != &vdev_mirror_ops &&
5056	    pvd->vdev_ops != &vdev_spare_ops)
5057		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5058
5059	/*
5060	 * If this device has the only valid copy of some data,
5061	 * we cannot safely detach it.
5062	 */
5063	if (vdev_dtl_required(vd))
5064		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5065
5066	ASSERT(pvd->vdev_children >= 2);
5067
5068	/*
5069	 * If we are detaching the second disk from a replacing vdev, then
5070	 * check to see if we changed the original vdev's path to have "/old"
5071	 * at the end in spa_vdev_attach().  If so, undo that change now.
5072	 */
5073	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5074	    vd->vdev_path != NULL) {
5075		size_t len = strlen(vd->vdev_path);
5076
5077		for (int c = 0; c < pvd->vdev_children; c++) {
5078			cvd = pvd->vdev_child[c];
5079
5080			if (cvd == vd || cvd->vdev_path == NULL)
5081				continue;
5082
5083			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5084			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5085				spa_strfree(cvd->vdev_path);
5086				cvd->vdev_path = spa_strdup(vd->vdev_path);
5087				break;
5088			}
5089		}
5090	}
5091
5092	/*
5093	 * If we are detaching the original disk from a spare, then it implies
5094	 * that the spare should become a real disk, and be removed from the
5095	 * active spare list for the pool.
5096	 */
5097	if (pvd->vdev_ops == &vdev_spare_ops &&
5098	    vd->vdev_id == 0 &&
5099	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5100		unspare = B_TRUE;
5101
5102	/*
5103	 * Erase the disk labels so the disk can be used for other things.
5104	 * This must be done after all other error cases are handled,
5105	 * but before we disembowel vd (so we can still do I/O to it).
5106	 * But if we can't do it, don't treat the error as fatal --
5107	 * it may be that the unwritability of the disk is the reason
5108	 * it's being detached!
5109	 */
5110	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5111
5112	/*
5113	 * Remove vd from its parent and compact the parent's children.
5114	 */
5115	vdev_remove_child(pvd, vd);
5116	vdev_compact_children(pvd);
5117
5118	/*
5119	 * Remember one of the remaining children so we can get tvd below.
5120	 */
5121	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5122
5123	/*
5124	 * If we need to remove the remaining child from the list of hot spares,
5125	 * do it now, marking the vdev as no longer a spare in the process.
5126	 * We must do this before vdev_remove_parent(), because that can
5127	 * change the GUID if it creates a new toplevel GUID.  For a similar
5128	 * reason, we must remove the spare now, in the same txg as the detach;
5129	 * otherwise someone could attach a new sibling, change the GUID, and
5130	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5131	 */
5132	if (unspare) {
5133		ASSERT(cvd->vdev_isspare);
5134		spa_spare_remove(cvd);
5135		unspare_guid = cvd->vdev_guid;
5136		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5137		cvd->vdev_unspare = B_TRUE;
5138	}
5139
5140	/*
5141	 * If the parent mirror/replacing vdev only has one child,
5142	 * the parent is no longer needed.  Remove it from the tree.
5143	 */
5144	if (pvd->vdev_children == 1) {
5145		if (pvd->vdev_ops == &vdev_spare_ops)
5146			cvd->vdev_unspare = B_FALSE;
5147		vdev_remove_parent(cvd);
5148	}
5149
5150
5151	/*
5152	 * We don't set tvd until now because the parent we just removed
5153	 * may have been the previous top-level vdev.
5154	 */
5155	tvd = cvd->vdev_top;
5156	ASSERT(tvd->vdev_parent == rvd);
5157
5158	/*
5159	 * Reevaluate the parent vdev state.
5160	 */
5161	vdev_propagate_state(cvd);
5162
5163	/*
5164	 * If the 'autoexpand' property is set on the pool then automatically
5165	 * try to expand the size of the pool. For example if the device we
5166	 * just detached was smaller than the others, it may be possible to
5167	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5168	 * first so that we can obtain the updated sizes of the leaf vdevs.
5169	 */
5170	if (spa->spa_autoexpand) {
5171		vdev_reopen(tvd);
5172		vdev_expand(tvd, txg);
5173	}
5174
5175	vdev_config_dirty(tvd);
5176
5177	/*
5178	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5179	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5180	 * But first make sure we're not on any *other* txg's DTL list, to
5181	 * prevent vd from being accessed after it's freed.
5182	 */
5183	vdpath = spa_strdup(vd->vdev_path);
5184	for (int t = 0; t < TXG_SIZE; t++)
5185		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5186	vd->vdev_detached = B_TRUE;
5187	vdev_dirty(tvd, VDD_DTL, vd, txg);
5188
5189	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5190
5191	/* hang on to the spa before we release the lock */
5192	spa_open_ref(spa, FTAG);
5193
5194	error = spa_vdev_exit(spa, vd, txg, 0);
5195
5196	spa_history_log_internal(spa, "detach", NULL,
5197	    "vdev=%s", vdpath);
5198	spa_strfree(vdpath);
5199
5200	/*
5201	 * If this was the removal of the original device in a hot spare vdev,
5202	 * then we want to go through and remove the device from the hot spare
5203	 * list of every other pool.
5204	 */
5205	if (unspare) {
5206		spa_t *altspa = NULL;
5207
5208		mutex_enter(&spa_namespace_lock);
5209		while ((altspa = spa_next(altspa)) != NULL) {
5210			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5211			    altspa == spa)
5212				continue;
5213
5214			spa_open_ref(altspa, FTAG);
5215			mutex_exit(&spa_namespace_lock);
5216			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5217			mutex_enter(&spa_namespace_lock);
5218			spa_close(altspa, FTAG);
5219		}
5220		mutex_exit(&spa_namespace_lock);
5221
5222		/* search the rest of the vdevs for spares to remove */
5223		spa_vdev_resilver_done(spa);
5224	}
5225
5226	/* all done with the spa; OK to release */
5227	mutex_enter(&spa_namespace_lock);
5228	spa_close(spa, FTAG);
5229	mutex_exit(&spa_namespace_lock);
5230
5231	return (error);
5232}
5233
5234/*
5235 * Split a set of devices from their mirrors, and create a new pool from them.
5236 */
5237int
5238spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5239    nvlist_t *props, boolean_t exp)
5240{
5241	int error = 0;
5242	uint64_t txg, *glist;
5243	spa_t *newspa;
5244	uint_t c, children, lastlog;
5245	nvlist_t **child, *nvl, *tmp;
5246	dmu_tx_t *tx;
5247	char *altroot = NULL;
5248	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5249	boolean_t activate_slog;
5250
5251	ASSERT(spa_writeable(spa));
5252
5253	txg = spa_vdev_enter(spa);
5254
5255	/* clear the log and flush everything up to now */
5256	activate_slog = spa_passivate_log(spa);
5257	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5258	error = spa_offline_log(spa);
5259	txg = spa_vdev_config_enter(spa);
5260
5261	if (activate_slog)
5262		spa_activate_log(spa);
5263
5264	if (error != 0)
5265		return (spa_vdev_exit(spa, NULL, txg, error));
5266
5267	/* check new spa name before going any further */
5268	if (spa_lookup(newname) != NULL)
5269		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5270
5271	/*
5272	 * scan through all the children to ensure they're all mirrors
5273	 */
5274	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5275	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5276	    &children) != 0)
5277		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5278
5279	/* first, check to ensure we've got the right child count */
5280	rvd = spa->spa_root_vdev;
5281	lastlog = 0;
5282	for (c = 0; c < rvd->vdev_children; c++) {
5283		vdev_t *vd = rvd->vdev_child[c];
5284
5285		/* don't count the holes & logs as children */
5286		if (vd->vdev_islog || vd->vdev_ishole) {
5287			if (lastlog == 0)
5288				lastlog = c;
5289			continue;
5290		}
5291
5292		lastlog = 0;
5293	}
5294	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5295		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5296
5297	/* next, ensure no spare or cache devices are part of the split */
5298	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5299	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5300		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5301
5302	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5303	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5304
5305	/* then, loop over each vdev and validate it */
5306	for (c = 0; c < children; c++) {
5307		uint64_t is_hole = 0;
5308
5309		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5310		    &is_hole);
5311
5312		if (is_hole != 0) {
5313			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5314			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5315				continue;
5316			} else {
5317				error = SET_ERROR(EINVAL);
5318				break;
5319			}
5320		}
5321
5322		/* which disk is going to be split? */
5323		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5324		    &glist[c]) != 0) {
5325			error = SET_ERROR(EINVAL);
5326			break;
5327		}
5328
5329		/* look it up in the spa */
5330		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5331		if (vml[c] == NULL) {
5332			error = SET_ERROR(ENODEV);
5333			break;
5334		}
5335
5336		/* make sure there's nothing stopping the split */
5337		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5338		    vml[c]->vdev_islog ||
5339		    vml[c]->vdev_ishole ||
5340		    vml[c]->vdev_isspare ||
5341		    vml[c]->vdev_isl2cache ||
5342		    !vdev_writeable(vml[c]) ||
5343		    vml[c]->vdev_children != 0 ||
5344		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5345		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5346			error = SET_ERROR(EINVAL);
5347			break;
5348		}
5349
5350		if (vdev_dtl_required(vml[c])) {
5351			error = SET_ERROR(EBUSY);
5352			break;
5353		}
5354
5355		/* we need certain info from the top level */
5356		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5357		    vml[c]->vdev_top->vdev_ms_array) == 0);
5358		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5359		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5360		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5361		    vml[c]->vdev_top->vdev_asize) == 0);
5362		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5363		    vml[c]->vdev_top->vdev_ashift) == 0);
5364	}
5365
5366	if (error != 0) {
5367		kmem_free(vml, children * sizeof (vdev_t *));
5368		kmem_free(glist, children * sizeof (uint64_t));
5369		return (spa_vdev_exit(spa, NULL, txg, error));
5370	}
5371
5372	/* stop writers from using the disks */
5373	for (c = 0; c < children; c++) {
5374		if (vml[c] != NULL)
5375			vml[c]->vdev_offline = B_TRUE;
5376	}
5377	vdev_reopen(spa->spa_root_vdev);
5378
5379	/*
5380	 * Temporarily record the splitting vdevs in the spa config.  This
5381	 * will disappear once the config is regenerated.
5382	 */
5383	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5384	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5385	    glist, children) == 0);
5386	kmem_free(glist, children * sizeof (uint64_t));
5387
5388	mutex_enter(&spa->spa_props_lock);
5389	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5390	    nvl) == 0);
5391	mutex_exit(&spa->spa_props_lock);
5392	spa->spa_config_splitting = nvl;
5393	vdev_config_dirty(spa->spa_root_vdev);
5394
5395	/* configure and create the new pool */
5396	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5397	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5398	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5399	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5400	    spa_version(spa)) == 0);
5401	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5402	    spa->spa_config_txg) == 0);
5403	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5404	    spa_generate_guid(NULL)) == 0);
5405	(void) nvlist_lookup_string(props,
5406	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5407
5408	/* add the new pool to the namespace */
5409	newspa = spa_add(newname, config, altroot);
5410	newspa->spa_config_txg = spa->spa_config_txg;
5411	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5412
5413	/* release the spa config lock, retaining the namespace lock */
5414	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5415
5416	if (zio_injection_enabled)
5417		zio_handle_panic_injection(spa, FTAG, 1);
5418
5419	spa_activate(newspa, spa_mode_global);
5420	spa_async_suspend(newspa);
5421
5422#ifndef illumos
5423	/* mark that we are creating new spa by splitting */
5424	newspa->spa_splitting_newspa = B_TRUE;
5425#endif
5426	/* create the new pool from the disks of the original pool */
5427	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5428#ifndef illumos
5429	newspa->spa_splitting_newspa = B_FALSE;
5430#endif
5431	if (error)
5432		goto out;
5433
5434	/* if that worked, generate a real config for the new pool */
5435	if (newspa->spa_root_vdev != NULL) {
5436		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5437		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5438		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5439		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5440		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5441		    B_TRUE));
5442	}
5443
5444	/* set the props */
5445	if (props != NULL) {
5446		spa_configfile_set(newspa, props, B_FALSE);
5447		error = spa_prop_set(newspa, props);
5448		if (error)
5449			goto out;
5450	}
5451
5452	/* flush everything */
5453	txg = spa_vdev_config_enter(newspa);
5454	vdev_config_dirty(newspa->spa_root_vdev);
5455	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5456
5457	if (zio_injection_enabled)
5458		zio_handle_panic_injection(spa, FTAG, 2);
5459
5460	spa_async_resume(newspa);
5461
5462	/* finally, update the original pool's config */
5463	txg = spa_vdev_config_enter(spa);
5464	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5465	error = dmu_tx_assign(tx, TXG_WAIT);
5466	if (error != 0)
5467		dmu_tx_abort(tx);
5468	for (c = 0; c < children; c++) {
5469		if (vml[c] != NULL) {
5470			vdev_split(vml[c]);
5471			if (error == 0)
5472				spa_history_log_internal(spa, "detach", tx,
5473				    "vdev=%s", vml[c]->vdev_path);
5474			vdev_free(vml[c]);
5475		}
5476	}
5477	vdev_config_dirty(spa->spa_root_vdev);
5478	spa->spa_config_splitting = NULL;
5479	nvlist_free(nvl);
5480	if (error == 0)
5481		dmu_tx_commit(tx);
5482	(void) spa_vdev_exit(spa, NULL, txg, 0);
5483
5484	if (zio_injection_enabled)
5485		zio_handle_panic_injection(spa, FTAG, 3);
5486
5487	/* split is complete; log a history record */
5488	spa_history_log_internal(newspa, "split", NULL,
5489	    "from pool %s", spa_name(spa));
5490
5491	kmem_free(vml, children * sizeof (vdev_t *));
5492
5493	/* if we're not going to mount the filesystems in userland, export */
5494	if (exp)
5495		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5496		    B_FALSE, B_FALSE);
5497
5498	return (error);
5499
5500out:
5501	spa_unload(newspa);
5502	spa_deactivate(newspa);
5503	spa_remove(newspa);
5504
5505	txg = spa_vdev_config_enter(spa);
5506
5507	/* re-online all offlined disks */
5508	for (c = 0; c < children; c++) {
5509		if (vml[c] != NULL)
5510			vml[c]->vdev_offline = B_FALSE;
5511	}
5512	vdev_reopen(spa->spa_root_vdev);
5513
5514	nvlist_free(spa->spa_config_splitting);
5515	spa->spa_config_splitting = NULL;
5516	(void) spa_vdev_exit(spa, NULL, txg, error);
5517
5518	kmem_free(vml, children * sizeof (vdev_t *));
5519	return (error);
5520}
5521
5522static nvlist_t *
5523spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5524{
5525	for (int i = 0; i < count; i++) {
5526		uint64_t guid;
5527
5528		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5529		    &guid) == 0);
5530
5531		if (guid == target_guid)
5532			return (nvpp[i]);
5533	}
5534
5535	return (NULL);
5536}
5537
5538static void
5539spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5540    nvlist_t *dev_to_remove)
5541{
5542	nvlist_t **newdev = NULL;
5543
5544	if (count > 1)
5545		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5546
5547	for (int i = 0, j = 0; i < count; i++) {
5548		if (dev[i] == dev_to_remove)
5549			continue;
5550		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5551	}
5552
5553	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5554	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5555
5556	for (int i = 0; i < count - 1; i++)
5557		nvlist_free(newdev[i]);
5558
5559	if (count > 1)
5560		kmem_free(newdev, (count - 1) * sizeof (void *));
5561}
5562
5563/*
5564 * Evacuate the device.
5565 */
5566static int
5567spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5568{
5569	uint64_t txg;
5570	int error = 0;
5571
5572	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5573	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5574	ASSERT(vd == vd->vdev_top);
5575
5576	/*
5577	 * Evacuate the device.  We don't hold the config lock as writer
5578	 * since we need to do I/O but we do keep the
5579	 * spa_namespace_lock held.  Once this completes the device
5580	 * should no longer have any blocks allocated on it.
5581	 */
5582	if (vd->vdev_islog) {
5583		if (vd->vdev_stat.vs_alloc != 0)
5584			error = spa_offline_log(spa);
5585	} else {
5586		error = SET_ERROR(ENOTSUP);
5587	}
5588
5589	if (error)
5590		return (error);
5591
5592	/*
5593	 * The evacuation succeeded.  Remove any remaining MOS metadata
5594	 * associated with this vdev, and wait for these changes to sync.
5595	 */
5596	ASSERT0(vd->vdev_stat.vs_alloc);
5597	txg = spa_vdev_config_enter(spa);
5598	vd->vdev_removing = B_TRUE;
5599	vdev_dirty_leaves(vd, VDD_DTL, txg);
5600	vdev_config_dirty(vd);
5601	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5602
5603	return (0);
5604}
5605
5606/*
5607 * Complete the removal by cleaning up the namespace.
5608 */
5609static void
5610spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5611{
5612	vdev_t *rvd = spa->spa_root_vdev;
5613	uint64_t id = vd->vdev_id;
5614	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5615
5616	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5617	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5618	ASSERT(vd == vd->vdev_top);
5619
5620	/*
5621	 * Only remove any devices which are empty.
5622	 */
5623	if (vd->vdev_stat.vs_alloc != 0)
5624		return;
5625
5626	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5627
5628	if (list_link_active(&vd->vdev_state_dirty_node))
5629		vdev_state_clean(vd);
5630	if (list_link_active(&vd->vdev_config_dirty_node))
5631		vdev_config_clean(vd);
5632
5633	vdev_free(vd);
5634
5635	if (last_vdev) {
5636		vdev_compact_children(rvd);
5637	} else {
5638		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5639		vdev_add_child(rvd, vd);
5640	}
5641	vdev_config_dirty(rvd);
5642
5643	/*
5644	 * Reassess the health of our root vdev.
5645	 */
5646	vdev_reopen(rvd);
5647}
5648
5649/*
5650 * Remove a device from the pool -
5651 *
5652 * Removing a device from the vdev namespace requires several steps
5653 * and can take a significant amount of time.  As a result we use
5654 * the spa_vdev_config_[enter/exit] functions which allow us to
5655 * grab and release the spa_config_lock while still holding the namespace
5656 * lock.  During each step the configuration is synced out.
5657 *
5658 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5659 * devices.
5660 */
5661int
5662spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5663{
5664	vdev_t *vd;
5665	sysevent_t *ev = NULL;
5666	metaslab_group_t *mg;
5667	nvlist_t **spares, **l2cache, *nv;
5668	uint64_t txg = 0;
5669	uint_t nspares, nl2cache;
5670	int error = 0;
5671	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5672
5673	ASSERT(spa_writeable(spa));
5674
5675	if (!locked)
5676		txg = spa_vdev_enter(spa);
5677
5678	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5679
5680	if (spa->spa_spares.sav_vdevs != NULL &&
5681	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5682	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5683	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5684		/*
5685		 * Only remove the hot spare if it's not currently in use
5686		 * in this pool.
5687		 */
5688		if (vd == NULL || unspare) {
5689			if (vd == NULL)
5690				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5691			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5692			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5693			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5694			spa_load_spares(spa);
5695			spa->spa_spares.sav_sync = B_TRUE;
5696		} else {
5697			error = SET_ERROR(EBUSY);
5698		}
5699	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5700	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5701	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5702	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5703		/*
5704		 * Cache devices can always be removed.
5705		 */
5706		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5707		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5708		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5709		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5710		spa_load_l2cache(spa);
5711		spa->spa_l2cache.sav_sync = B_TRUE;
5712	} else if (vd != NULL && vd->vdev_islog) {
5713		ASSERT(!locked);
5714		ASSERT(vd == vd->vdev_top);
5715
5716		mg = vd->vdev_mg;
5717
5718		/*
5719		 * Stop allocating from this vdev.
5720		 */
5721		metaslab_group_passivate(mg);
5722
5723		/*
5724		 * Wait for the youngest allocations and frees to sync,
5725		 * and then wait for the deferral of those frees to finish.
5726		 */
5727		spa_vdev_config_exit(spa, NULL,
5728		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5729
5730		/*
5731		 * Attempt to evacuate the vdev.
5732		 */
5733		error = spa_vdev_remove_evacuate(spa, vd);
5734
5735		txg = spa_vdev_config_enter(spa);
5736
5737		/*
5738		 * If we couldn't evacuate the vdev, unwind.
5739		 */
5740		if (error) {
5741			metaslab_group_activate(mg);
5742			return (spa_vdev_exit(spa, NULL, txg, error));
5743		}
5744
5745		/*
5746		 * Clean up the vdev namespace.
5747		 */
5748		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5749		spa_vdev_remove_from_namespace(spa, vd);
5750
5751	} else if (vd != NULL) {
5752		/*
5753		 * Normal vdevs cannot be removed (yet).
5754		 */
5755		error = SET_ERROR(ENOTSUP);
5756	} else {
5757		/*
5758		 * There is no vdev of any kind with the specified guid.
5759		 */
5760		error = SET_ERROR(ENOENT);
5761	}
5762
5763	if (!locked)
5764		error = spa_vdev_exit(spa, NULL, txg, error);
5765
5766	if (ev)
5767		spa_event_post(ev);
5768
5769	return (error);
5770}
5771
5772/*
5773 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5774 * currently spared, so we can detach it.
5775 */
5776static vdev_t *
5777spa_vdev_resilver_done_hunt(vdev_t *vd)
5778{
5779	vdev_t *newvd, *oldvd;
5780
5781	for (int c = 0; c < vd->vdev_children; c++) {
5782		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5783		if (oldvd != NULL)
5784			return (oldvd);
5785	}
5786
5787	/*
5788	 * Check for a completed replacement.  We always consider the first
5789	 * vdev in the list to be the oldest vdev, and the last one to be
5790	 * the newest (see spa_vdev_attach() for how that works).  In
5791	 * the case where the newest vdev is faulted, we will not automatically
5792	 * remove it after a resilver completes.  This is OK as it will require
5793	 * user intervention to determine which disk the admin wishes to keep.
5794	 */
5795	if (vd->vdev_ops == &vdev_replacing_ops) {
5796		ASSERT(vd->vdev_children > 1);
5797
5798		newvd = vd->vdev_child[vd->vdev_children - 1];
5799		oldvd = vd->vdev_child[0];
5800
5801		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5802		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5803		    !vdev_dtl_required(oldvd))
5804			return (oldvd);
5805	}
5806
5807	/*
5808	 * Check for a completed resilver with the 'unspare' flag set.
5809	 */
5810	if (vd->vdev_ops == &vdev_spare_ops) {
5811		vdev_t *first = vd->vdev_child[0];
5812		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5813
5814		if (last->vdev_unspare) {
5815			oldvd = first;
5816			newvd = last;
5817		} else if (first->vdev_unspare) {
5818			oldvd = last;
5819			newvd = first;
5820		} else {
5821			oldvd = NULL;
5822		}
5823
5824		if (oldvd != NULL &&
5825		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5826		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5827		    !vdev_dtl_required(oldvd))
5828			return (oldvd);
5829
5830		/*
5831		 * If there are more than two spares attached to a disk,
5832		 * and those spares are not required, then we want to
5833		 * attempt to free them up now so that they can be used
5834		 * by other pools.  Once we're back down to a single
5835		 * disk+spare, we stop removing them.
5836		 */
5837		if (vd->vdev_children > 2) {
5838			newvd = vd->vdev_child[1];
5839
5840			if (newvd->vdev_isspare && last->vdev_isspare &&
5841			    vdev_dtl_empty(last, DTL_MISSING) &&
5842			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5843			    !vdev_dtl_required(newvd))
5844				return (newvd);
5845		}
5846	}
5847
5848	return (NULL);
5849}
5850
5851static void
5852spa_vdev_resilver_done(spa_t *spa)
5853{
5854	vdev_t *vd, *pvd, *ppvd;
5855	uint64_t guid, sguid, pguid, ppguid;
5856
5857	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5858
5859	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5860		pvd = vd->vdev_parent;
5861		ppvd = pvd->vdev_parent;
5862		guid = vd->vdev_guid;
5863		pguid = pvd->vdev_guid;
5864		ppguid = ppvd->vdev_guid;
5865		sguid = 0;
5866		/*
5867		 * If we have just finished replacing a hot spared device, then
5868		 * we need to detach the parent's first child (the original hot
5869		 * spare) as well.
5870		 */
5871		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5872		    ppvd->vdev_children == 2) {
5873			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5874			sguid = ppvd->vdev_child[1]->vdev_guid;
5875		}
5876		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5877
5878		spa_config_exit(spa, SCL_ALL, FTAG);
5879		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5880			return;
5881		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5882			return;
5883		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5884	}
5885
5886	spa_config_exit(spa, SCL_ALL, FTAG);
5887}
5888
5889/*
5890 * Update the stored path or FRU for this vdev.
5891 */
5892int
5893spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5894    boolean_t ispath)
5895{
5896	vdev_t *vd;
5897	boolean_t sync = B_FALSE;
5898
5899	ASSERT(spa_writeable(spa));
5900
5901	spa_vdev_state_enter(spa, SCL_ALL);
5902
5903	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5904		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5905
5906	if (!vd->vdev_ops->vdev_op_leaf)
5907		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5908
5909	if (ispath) {
5910		if (strcmp(value, vd->vdev_path) != 0) {
5911			spa_strfree(vd->vdev_path);
5912			vd->vdev_path = spa_strdup(value);
5913			sync = B_TRUE;
5914		}
5915	} else {
5916		if (vd->vdev_fru == NULL) {
5917			vd->vdev_fru = spa_strdup(value);
5918			sync = B_TRUE;
5919		} else if (strcmp(value, vd->vdev_fru) != 0) {
5920			spa_strfree(vd->vdev_fru);
5921			vd->vdev_fru = spa_strdup(value);
5922			sync = B_TRUE;
5923		}
5924	}
5925
5926	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5927}
5928
5929int
5930spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5931{
5932	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5933}
5934
5935int
5936spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5937{
5938	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5939}
5940
5941/*
5942 * ==========================================================================
5943 * SPA Scanning
5944 * ==========================================================================
5945 */
5946
5947int
5948spa_scan_stop(spa_t *spa)
5949{
5950	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5951	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5952		return (SET_ERROR(EBUSY));
5953	return (dsl_scan_cancel(spa->spa_dsl_pool));
5954}
5955
5956int
5957spa_scan(spa_t *spa, pool_scan_func_t func)
5958{
5959	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5960
5961	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5962		return (SET_ERROR(ENOTSUP));
5963
5964	/*
5965	 * If a resilver was requested, but there is no DTL on a
5966	 * writeable leaf device, we have nothing to do.
5967	 */
5968	if (func == POOL_SCAN_RESILVER &&
5969	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5970		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5971		return (0);
5972	}
5973
5974	return (dsl_scan(spa->spa_dsl_pool, func));
5975}
5976
5977/*
5978 * ==========================================================================
5979 * SPA async task processing
5980 * ==========================================================================
5981 */
5982
5983static void
5984spa_async_remove(spa_t *spa, vdev_t *vd)
5985{
5986	if (vd->vdev_remove_wanted) {
5987		vd->vdev_remove_wanted = B_FALSE;
5988		vd->vdev_delayed_close = B_FALSE;
5989		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5990
5991		/*
5992		 * We want to clear the stats, but we don't want to do a full
5993		 * vdev_clear() as that will cause us to throw away
5994		 * degraded/faulted state as well as attempt to reopen the
5995		 * device, all of which is a waste.
5996		 */
5997		vd->vdev_stat.vs_read_errors = 0;
5998		vd->vdev_stat.vs_write_errors = 0;
5999		vd->vdev_stat.vs_checksum_errors = 0;
6000
6001		vdev_state_dirty(vd->vdev_top);
6002		/* Tell userspace that the vdev is gone. */
6003		zfs_post_remove(spa, vd);
6004	}
6005
6006	for (int c = 0; c < vd->vdev_children; c++)
6007		spa_async_remove(spa, vd->vdev_child[c]);
6008}
6009
6010static void
6011spa_async_probe(spa_t *spa, vdev_t *vd)
6012{
6013	if (vd->vdev_probe_wanted) {
6014		vd->vdev_probe_wanted = B_FALSE;
6015		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6016	}
6017
6018	for (int c = 0; c < vd->vdev_children; c++)
6019		spa_async_probe(spa, vd->vdev_child[c]);
6020}
6021
6022static void
6023spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6024{
6025	sysevent_id_t eid;
6026	nvlist_t *attr;
6027	char *physpath;
6028
6029	if (!spa->spa_autoexpand)
6030		return;
6031
6032	for (int c = 0; c < vd->vdev_children; c++) {
6033		vdev_t *cvd = vd->vdev_child[c];
6034		spa_async_autoexpand(spa, cvd);
6035	}
6036
6037	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6038		return;
6039
6040	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6041	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6042
6043	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6044	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6045
6046	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6047	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6048
6049	nvlist_free(attr);
6050	kmem_free(physpath, MAXPATHLEN);
6051}
6052
6053static void
6054spa_async_thread(void *arg)
6055{
6056	spa_t *spa = arg;
6057	int tasks;
6058
6059	ASSERT(spa->spa_sync_on);
6060
6061	mutex_enter(&spa->spa_async_lock);
6062	tasks = spa->spa_async_tasks;
6063	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6064	mutex_exit(&spa->spa_async_lock);
6065
6066	/*
6067	 * See if the config needs to be updated.
6068	 */
6069	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6070		uint64_t old_space, new_space;
6071
6072		mutex_enter(&spa_namespace_lock);
6073		old_space = metaslab_class_get_space(spa_normal_class(spa));
6074		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6075		new_space = metaslab_class_get_space(spa_normal_class(spa));
6076		mutex_exit(&spa_namespace_lock);
6077
6078		/*
6079		 * If the pool grew as a result of the config update,
6080		 * then log an internal history event.
6081		 */
6082		if (new_space != old_space) {
6083			spa_history_log_internal(spa, "vdev online", NULL,
6084			    "pool '%s' size: %llu(+%llu)",
6085			    spa_name(spa), new_space, new_space - old_space);
6086		}
6087	}
6088
6089	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6090		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6091		spa_async_autoexpand(spa, spa->spa_root_vdev);
6092		spa_config_exit(spa, SCL_CONFIG, FTAG);
6093	}
6094
6095	/*
6096	 * See if any devices need to be probed.
6097	 */
6098	if (tasks & SPA_ASYNC_PROBE) {
6099		spa_vdev_state_enter(spa, SCL_NONE);
6100		spa_async_probe(spa, spa->spa_root_vdev);
6101		(void) spa_vdev_state_exit(spa, NULL, 0);
6102	}
6103
6104	/*
6105	 * If any devices are done replacing, detach them.
6106	 */
6107	if (tasks & SPA_ASYNC_RESILVER_DONE)
6108		spa_vdev_resilver_done(spa);
6109
6110	/*
6111	 * Kick off a resilver.
6112	 */
6113	if (tasks & SPA_ASYNC_RESILVER)
6114		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6115
6116	/*
6117	 * Let the world know that we're done.
6118	 */
6119	mutex_enter(&spa->spa_async_lock);
6120	spa->spa_async_thread = NULL;
6121	cv_broadcast(&spa->spa_async_cv);
6122	mutex_exit(&spa->spa_async_lock);
6123	thread_exit();
6124}
6125
6126static void
6127spa_async_thread_vd(void *arg)
6128{
6129	spa_t *spa = arg;
6130	int tasks;
6131
6132	ASSERT(spa->spa_sync_on);
6133
6134	mutex_enter(&spa->spa_async_lock);
6135	tasks = spa->spa_async_tasks;
6136retry:
6137	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6138	mutex_exit(&spa->spa_async_lock);
6139
6140	/*
6141	 * See if any devices need to be marked REMOVED.
6142	 */
6143	if (tasks & SPA_ASYNC_REMOVE) {
6144		spa_vdev_state_enter(spa, SCL_NONE);
6145		spa_async_remove(spa, spa->spa_root_vdev);
6146		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6147			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6148		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6149			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6150		(void) spa_vdev_state_exit(spa, NULL, 0);
6151	}
6152
6153	/*
6154	 * Let the world know that we're done.
6155	 */
6156	mutex_enter(&spa->spa_async_lock);
6157	tasks = spa->spa_async_tasks;
6158	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6159		goto retry;
6160	spa->spa_async_thread_vd = NULL;
6161	cv_broadcast(&spa->spa_async_cv);
6162	mutex_exit(&spa->spa_async_lock);
6163	thread_exit();
6164}
6165
6166void
6167spa_async_suspend(spa_t *spa)
6168{
6169	mutex_enter(&spa->spa_async_lock);
6170	spa->spa_async_suspended++;
6171	while (spa->spa_async_thread != NULL &&
6172	    spa->spa_async_thread_vd != NULL)
6173		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6174	mutex_exit(&spa->spa_async_lock);
6175}
6176
6177void
6178spa_async_resume(spa_t *spa)
6179{
6180	mutex_enter(&spa->spa_async_lock);
6181	ASSERT(spa->spa_async_suspended != 0);
6182	spa->spa_async_suspended--;
6183	mutex_exit(&spa->spa_async_lock);
6184}
6185
6186static boolean_t
6187spa_async_tasks_pending(spa_t *spa)
6188{
6189	uint_t non_config_tasks;
6190	uint_t config_task;
6191	boolean_t config_task_suspended;
6192
6193	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6194	    SPA_ASYNC_REMOVE);
6195	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6196	if (spa->spa_ccw_fail_time == 0) {
6197		config_task_suspended = B_FALSE;
6198	} else {
6199		config_task_suspended =
6200		    (gethrtime() - spa->spa_ccw_fail_time) <
6201		    (zfs_ccw_retry_interval * NANOSEC);
6202	}
6203
6204	return (non_config_tasks || (config_task && !config_task_suspended));
6205}
6206
6207static void
6208spa_async_dispatch(spa_t *spa)
6209{
6210	mutex_enter(&spa->spa_async_lock);
6211	if (spa_async_tasks_pending(spa) &&
6212	    !spa->spa_async_suspended &&
6213	    spa->spa_async_thread == NULL &&
6214	    rootdir != NULL)
6215		spa->spa_async_thread = thread_create(NULL, 0,
6216		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6217	mutex_exit(&spa->spa_async_lock);
6218}
6219
6220static void
6221spa_async_dispatch_vd(spa_t *spa)
6222{
6223	mutex_enter(&spa->spa_async_lock);
6224	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6225	    !spa->spa_async_suspended &&
6226	    spa->spa_async_thread_vd == NULL &&
6227	    rootdir != NULL)
6228		spa->spa_async_thread_vd = thread_create(NULL, 0,
6229		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6230	mutex_exit(&spa->spa_async_lock);
6231}
6232
6233void
6234spa_async_request(spa_t *spa, int task)
6235{
6236	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6237	mutex_enter(&spa->spa_async_lock);
6238	spa->spa_async_tasks |= task;
6239	mutex_exit(&spa->spa_async_lock);
6240	spa_async_dispatch_vd(spa);
6241}
6242
6243/*
6244 * ==========================================================================
6245 * SPA syncing routines
6246 * ==========================================================================
6247 */
6248
6249static int
6250bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6251{
6252	bpobj_t *bpo = arg;
6253	bpobj_enqueue(bpo, bp, tx);
6254	return (0);
6255}
6256
6257static int
6258spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6259{
6260	zio_t *zio = arg;
6261
6262	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6263	    BP_GET_PSIZE(bp), zio->io_flags));
6264	return (0);
6265}
6266
6267/*
6268 * Note: this simple function is not inlined to make it easier to dtrace the
6269 * amount of time spent syncing frees.
6270 */
6271static void
6272spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6273{
6274	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6275	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6276	VERIFY(zio_wait(zio) == 0);
6277}
6278
6279/*
6280 * Note: this simple function is not inlined to make it easier to dtrace the
6281 * amount of time spent syncing deferred frees.
6282 */
6283static void
6284spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6285{
6286	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6287	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6288	    spa_free_sync_cb, zio, tx), ==, 0);
6289	VERIFY0(zio_wait(zio));
6290}
6291
6292
6293static void
6294spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6295{
6296	char *packed = NULL;
6297	size_t bufsize;
6298	size_t nvsize = 0;
6299	dmu_buf_t *db;
6300
6301	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6302
6303	/*
6304	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6305	 * information.  This avoids the dmu_buf_will_dirty() path and
6306	 * saves us a pre-read to get data we don't actually care about.
6307	 */
6308	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6309	packed = kmem_alloc(bufsize, KM_SLEEP);
6310
6311	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6312	    KM_SLEEP) == 0);
6313	bzero(packed + nvsize, bufsize - nvsize);
6314
6315	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6316
6317	kmem_free(packed, bufsize);
6318
6319	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6320	dmu_buf_will_dirty(db, tx);
6321	*(uint64_t *)db->db_data = nvsize;
6322	dmu_buf_rele(db, FTAG);
6323}
6324
6325static void
6326spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6327    const char *config, const char *entry)
6328{
6329	nvlist_t *nvroot;
6330	nvlist_t **list;
6331	int i;
6332
6333	if (!sav->sav_sync)
6334		return;
6335
6336	/*
6337	 * Update the MOS nvlist describing the list of available devices.
6338	 * spa_validate_aux() will have already made sure this nvlist is
6339	 * valid and the vdevs are labeled appropriately.
6340	 */
6341	if (sav->sav_object == 0) {
6342		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6343		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6344		    sizeof (uint64_t), tx);
6345		VERIFY(zap_update(spa->spa_meta_objset,
6346		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6347		    &sav->sav_object, tx) == 0);
6348	}
6349
6350	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6351	if (sav->sav_count == 0) {
6352		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6353	} else {
6354		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6355		for (i = 0; i < sav->sav_count; i++)
6356			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6357			    B_FALSE, VDEV_CONFIG_L2CACHE);
6358		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6359		    sav->sav_count) == 0);
6360		for (i = 0; i < sav->sav_count; i++)
6361			nvlist_free(list[i]);
6362		kmem_free(list, sav->sav_count * sizeof (void *));
6363	}
6364
6365	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6366	nvlist_free(nvroot);
6367
6368	sav->sav_sync = B_FALSE;
6369}
6370
6371static void
6372spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6373{
6374	nvlist_t *config;
6375
6376	if (list_is_empty(&spa->spa_config_dirty_list))
6377		return;
6378
6379	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6380
6381	config = spa_config_generate(spa, spa->spa_root_vdev,
6382	    dmu_tx_get_txg(tx), B_FALSE);
6383
6384	/*
6385	 * If we're upgrading the spa version then make sure that
6386	 * the config object gets updated with the correct version.
6387	 */
6388	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6389		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6390		    spa->spa_uberblock.ub_version);
6391
6392	spa_config_exit(spa, SCL_STATE, FTAG);
6393
6394	nvlist_free(spa->spa_config_syncing);
6395	spa->spa_config_syncing = config;
6396
6397	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6398}
6399
6400static void
6401spa_sync_version(void *arg, dmu_tx_t *tx)
6402{
6403	uint64_t *versionp = arg;
6404	uint64_t version = *versionp;
6405	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6406
6407	/*
6408	 * Setting the version is special cased when first creating the pool.
6409	 */
6410	ASSERT(tx->tx_txg != TXG_INITIAL);
6411
6412	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6413	ASSERT(version >= spa_version(spa));
6414
6415	spa->spa_uberblock.ub_version = version;
6416	vdev_config_dirty(spa->spa_root_vdev);
6417	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6418}
6419
6420/*
6421 * Set zpool properties.
6422 */
6423static void
6424spa_sync_props(void *arg, dmu_tx_t *tx)
6425{
6426	nvlist_t *nvp = arg;
6427	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6428	objset_t *mos = spa->spa_meta_objset;
6429	nvpair_t *elem = NULL;
6430
6431	mutex_enter(&spa->spa_props_lock);
6432
6433	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6434		uint64_t intval;
6435		char *strval, *fname;
6436		zpool_prop_t prop;
6437		const char *propname;
6438		zprop_type_t proptype;
6439		spa_feature_t fid;
6440
6441		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6442		case ZPROP_INVAL:
6443			/*
6444			 * We checked this earlier in spa_prop_validate().
6445			 */
6446			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6447
6448			fname = strchr(nvpair_name(elem), '@') + 1;
6449			VERIFY0(zfeature_lookup_name(fname, &fid));
6450
6451			spa_feature_enable(spa, fid, tx);
6452			spa_history_log_internal(spa, "set", tx,
6453			    "%s=enabled", nvpair_name(elem));
6454			break;
6455
6456		case ZPOOL_PROP_VERSION:
6457			intval = fnvpair_value_uint64(elem);
6458			/*
6459			 * The version is synced seperatly before other
6460			 * properties and should be correct by now.
6461			 */
6462			ASSERT3U(spa_version(spa), >=, intval);
6463			break;
6464
6465		case ZPOOL_PROP_ALTROOT:
6466			/*
6467			 * 'altroot' is a non-persistent property. It should
6468			 * have been set temporarily at creation or import time.
6469			 */
6470			ASSERT(spa->spa_root != NULL);
6471			break;
6472
6473		case ZPOOL_PROP_READONLY:
6474		case ZPOOL_PROP_CACHEFILE:
6475			/*
6476			 * 'readonly' and 'cachefile' are also non-persisitent
6477			 * properties.
6478			 */
6479			break;
6480		case ZPOOL_PROP_COMMENT:
6481			strval = fnvpair_value_string(elem);
6482			if (spa->spa_comment != NULL)
6483				spa_strfree(spa->spa_comment);
6484			spa->spa_comment = spa_strdup(strval);
6485			/*
6486			 * We need to dirty the configuration on all the vdevs
6487			 * so that their labels get updated.  It's unnecessary
6488			 * to do this for pool creation since the vdev's
6489			 * configuratoin has already been dirtied.
6490			 */
6491			if (tx->tx_txg != TXG_INITIAL)
6492				vdev_config_dirty(spa->spa_root_vdev);
6493			spa_history_log_internal(spa, "set", tx,
6494			    "%s=%s", nvpair_name(elem), strval);
6495			break;
6496		default:
6497			/*
6498			 * Set pool property values in the poolprops mos object.
6499			 */
6500			if (spa->spa_pool_props_object == 0) {
6501				spa->spa_pool_props_object =
6502				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6503				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6504				    tx);
6505			}
6506
6507			/* normalize the property name */
6508			propname = zpool_prop_to_name(prop);
6509			proptype = zpool_prop_get_type(prop);
6510
6511			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6512				ASSERT(proptype == PROP_TYPE_STRING);
6513				strval = fnvpair_value_string(elem);
6514				VERIFY0(zap_update(mos,
6515				    spa->spa_pool_props_object, propname,
6516				    1, strlen(strval) + 1, strval, tx));
6517				spa_history_log_internal(spa, "set", tx,
6518				    "%s=%s", nvpair_name(elem), strval);
6519			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6520				intval = fnvpair_value_uint64(elem);
6521
6522				if (proptype == PROP_TYPE_INDEX) {
6523					const char *unused;
6524					VERIFY0(zpool_prop_index_to_string(
6525					    prop, intval, &unused));
6526				}
6527				VERIFY0(zap_update(mos,
6528				    spa->spa_pool_props_object, propname,
6529				    8, 1, &intval, tx));
6530				spa_history_log_internal(spa, "set", tx,
6531				    "%s=%lld", nvpair_name(elem), intval);
6532			} else {
6533				ASSERT(0); /* not allowed */
6534			}
6535
6536			switch (prop) {
6537			case ZPOOL_PROP_DELEGATION:
6538				spa->spa_delegation = intval;
6539				break;
6540			case ZPOOL_PROP_BOOTFS:
6541				spa->spa_bootfs = intval;
6542				break;
6543			case ZPOOL_PROP_FAILUREMODE:
6544				spa->spa_failmode = intval;
6545				break;
6546			case ZPOOL_PROP_AUTOEXPAND:
6547				spa->spa_autoexpand = intval;
6548				if (tx->tx_txg != TXG_INITIAL)
6549					spa_async_request(spa,
6550					    SPA_ASYNC_AUTOEXPAND);
6551				break;
6552			case ZPOOL_PROP_DEDUPDITTO:
6553				spa->spa_dedup_ditto = intval;
6554				break;
6555			default:
6556				break;
6557			}
6558		}
6559
6560	}
6561
6562	mutex_exit(&spa->spa_props_lock);
6563}
6564
6565/*
6566 * Perform one-time upgrade on-disk changes.  spa_version() does not
6567 * reflect the new version this txg, so there must be no changes this
6568 * txg to anything that the upgrade code depends on after it executes.
6569 * Therefore this must be called after dsl_pool_sync() does the sync
6570 * tasks.
6571 */
6572static void
6573spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6574{
6575	dsl_pool_t *dp = spa->spa_dsl_pool;
6576
6577	ASSERT(spa->spa_sync_pass == 1);
6578
6579	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6580
6581	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6582	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6583		dsl_pool_create_origin(dp, tx);
6584
6585		/* Keeping the origin open increases spa_minref */
6586		spa->spa_minref += 3;
6587	}
6588
6589	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6590	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6591		dsl_pool_upgrade_clones(dp, tx);
6592	}
6593
6594	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6595	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6596		dsl_pool_upgrade_dir_clones(dp, tx);
6597
6598		/* Keeping the freedir open increases spa_minref */
6599		spa->spa_minref += 3;
6600	}
6601
6602	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6603	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6604		spa_feature_create_zap_objects(spa, tx);
6605	}
6606
6607	/*
6608	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6609	 * when possibility to use lz4 compression for metadata was added
6610	 * Old pools that have this feature enabled must be upgraded to have
6611	 * this feature active
6612	 */
6613	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6614		boolean_t lz4_en = spa_feature_is_enabled(spa,
6615		    SPA_FEATURE_LZ4_COMPRESS);
6616		boolean_t lz4_ac = spa_feature_is_active(spa,
6617		    SPA_FEATURE_LZ4_COMPRESS);
6618
6619		if (lz4_en && !lz4_ac)
6620			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6621	}
6622
6623	/*
6624	 * If we haven't written the salt, do so now.  Note that the
6625	 * feature may not be activated yet, but that's fine since
6626	 * the presence of this ZAP entry is backwards compatible.
6627	 */
6628	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6629	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6630		VERIFY0(zap_add(spa->spa_meta_objset,
6631		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6632		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6633		    spa->spa_cksum_salt.zcs_bytes, tx));
6634	}
6635
6636	rrw_exit(&dp->dp_config_rwlock, FTAG);
6637}
6638
6639/*
6640 * Sync the specified transaction group.  New blocks may be dirtied as
6641 * part of the process, so we iterate until it converges.
6642 */
6643void
6644spa_sync(spa_t *spa, uint64_t txg)
6645{
6646	dsl_pool_t *dp = spa->spa_dsl_pool;
6647	objset_t *mos = spa->spa_meta_objset;
6648	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6649	vdev_t *rvd = spa->spa_root_vdev;
6650	vdev_t *vd;
6651	dmu_tx_t *tx;
6652	int error;
6653	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6654	    zfs_vdev_queue_depth_pct / 100;
6655
6656	VERIFY(spa_writeable(spa));
6657
6658	/*
6659	 * Lock out configuration changes.
6660	 */
6661	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6662
6663	spa->spa_syncing_txg = txg;
6664	spa->spa_sync_pass = 0;
6665
6666	mutex_enter(&spa->spa_alloc_lock);
6667	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6668	mutex_exit(&spa->spa_alloc_lock);
6669
6670	/*
6671	 * If there are any pending vdev state changes, convert them
6672	 * into config changes that go out with this transaction group.
6673	 */
6674	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6675	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6676		/*
6677		 * We need the write lock here because, for aux vdevs,
6678		 * calling vdev_config_dirty() modifies sav_config.
6679		 * This is ugly and will become unnecessary when we
6680		 * eliminate the aux vdev wart by integrating all vdevs
6681		 * into the root vdev tree.
6682		 */
6683		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6684		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6685		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6686			vdev_state_clean(vd);
6687			vdev_config_dirty(vd);
6688		}
6689		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6690		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6691	}
6692	spa_config_exit(spa, SCL_STATE, FTAG);
6693
6694	tx = dmu_tx_create_assigned(dp, txg);
6695
6696	spa->spa_sync_starttime = gethrtime();
6697#ifdef illumos
6698	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6699	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6700#else	/* !illumos */
6701#ifdef _KERNEL
6702	callout_schedule(&spa->spa_deadman_cycid,
6703	    hz * spa->spa_deadman_synctime / NANOSEC);
6704#endif
6705#endif	/* illumos */
6706
6707	/*
6708	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6709	 * set spa_deflate if we have no raid-z vdevs.
6710	 */
6711	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6712	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6713		int i;
6714
6715		for (i = 0; i < rvd->vdev_children; i++) {
6716			vd = rvd->vdev_child[i];
6717			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6718				break;
6719		}
6720		if (i == rvd->vdev_children) {
6721			spa->spa_deflate = TRUE;
6722			VERIFY(0 == zap_add(spa->spa_meta_objset,
6723			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6724			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6725		}
6726	}
6727
6728	/*
6729	 * Set the top-level vdev's max queue depth. Evaluate each
6730	 * top-level's async write queue depth in case it changed.
6731	 * The max queue depth will not change in the middle of syncing
6732	 * out this txg.
6733	 */
6734	uint64_t queue_depth_total = 0;
6735	for (int c = 0; c < rvd->vdev_children; c++) {
6736		vdev_t *tvd = rvd->vdev_child[c];
6737		metaslab_group_t *mg = tvd->vdev_mg;
6738
6739		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6740		    !metaslab_group_initialized(mg))
6741			continue;
6742
6743		/*
6744		 * It is safe to do a lock-free check here because only async
6745		 * allocations look at mg_max_alloc_queue_depth, and async
6746		 * allocations all happen from spa_sync().
6747		 */
6748		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6749		mg->mg_max_alloc_queue_depth = max_queue_depth;
6750		queue_depth_total += mg->mg_max_alloc_queue_depth;
6751	}
6752	metaslab_class_t *mc = spa_normal_class(spa);
6753	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6754	mc->mc_alloc_max_slots = queue_depth_total;
6755	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6756
6757	ASSERT3U(mc->mc_alloc_max_slots, <=,
6758	    max_queue_depth * rvd->vdev_children);
6759
6760	/*
6761	 * Iterate to convergence.
6762	 */
6763	do {
6764		int pass = ++spa->spa_sync_pass;
6765
6766		spa_sync_config_object(spa, tx);
6767		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6768		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6769		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6770		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6771		spa_errlog_sync(spa, txg);
6772		dsl_pool_sync(dp, txg);
6773
6774		if (pass < zfs_sync_pass_deferred_free) {
6775			spa_sync_frees(spa, free_bpl, tx);
6776		} else {
6777			/*
6778			 * We can not defer frees in pass 1, because
6779			 * we sync the deferred frees later in pass 1.
6780			 */
6781			ASSERT3U(pass, >, 1);
6782			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6783			    &spa->spa_deferred_bpobj, tx);
6784		}
6785
6786		ddt_sync(spa, txg);
6787		dsl_scan_sync(dp, tx);
6788
6789		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6790			vdev_sync(vd, txg);
6791
6792		if (pass == 1) {
6793			spa_sync_upgrades(spa, tx);
6794			ASSERT3U(txg, >=,
6795			    spa->spa_uberblock.ub_rootbp.blk_birth);
6796			/*
6797			 * Note: We need to check if the MOS is dirty
6798			 * because we could have marked the MOS dirty
6799			 * without updating the uberblock (e.g. if we
6800			 * have sync tasks but no dirty user data).  We
6801			 * need to check the uberblock's rootbp because
6802			 * it is updated if we have synced out dirty
6803			 * data (though in this case the MOS will most
6804			 * likely also be dirty due to second order
6805			 * effects, we don't want to rely on that here).
6806			 */
6807			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6808			    !dmu_objset_is_dirty(mos, txg)) {
6809				/*
6810				 * Nothing changed on the first pass,
6811				 * therefore this TXG is a no-op.  Avoid
6812				 * syncing deferred frees, so that we
6813				 * can keep this TXG as a no-op.
6814				 */
6815				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6816				    txg));
6817				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6818				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6819				break;
6820			}
6821			spa_sync_deferred_frees(spa, tx);
6822		}
6823
6824	} while (dmu_objset_is_dirty(mos, txg));
6825
6826	/*
6827	 * Rewrite the vdev configuration (which includes the uberblock)
6828	 * to commit the transaction group.
6829	 *
6830	 * If there are no dirty vdevs, we sync the uberblock to a few
6831	 * random top-level vdevs that are known to be visible in the
6832	 * config cache (see spa_vdev_add() for a complete description).
6833	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6834	 */
6835	for (;;) {
6836		/*
6837		 * We hold SCL_STATE to prevent vdev open/close/etc.
6838		 * while we're attempting to write the vdev labels.
6839		 */
6840		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6841
6842		if (list_is_empty(&spa->spa_config_dirty_list)) {
6843			vdev_t *svd[SPA_DVAS_PER_BP];
6844			int svdcount = 0;
6845			int children = rvd->vdev_children;
6846			int c0 = spa_get_random(children);
6847
6848			for (int c = 0; c < children; c++) {
6849				vd = rvd->vdev_child[(c0 + c) % children];
6850				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6851					continue;
6852				svd[svdcount++] = vd;
6853				if (svdcount == SPA_DVAS_PER_BP)
6854					break;
6855			}
6856			error = vdev_config_sync(svd, svdcount, txg);
6857		} else {
6858			error = vdev_config_sync(rvd->vdev_child,
6859			    rvd->vdev_children, txg);
6860		}
6861
6862		if (error == 0)
6863			spa->spa_last_synced_guid = rvd->vdev_guid;
6864
6865		spa_config_exit(spa, SCL_STATE, FTAG);
6866
6867		if (error == 0)
6868			break;
6869		zio_suspend(spa, NULL);
6870		zio_resume_wait(spa);
6871	}
6872	dmu_tx_commit(tx);
6873
6874#ifdef illumos
6875	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6876#else	/* !illumos */
6877#ifdef _KERNEL
6878	callout_drain(&spa->spa_deadman_cycid);
6879#endif
6880#endif	/* illumos */
6881
6882	/*
6883	 * Clear the dirty config list.
6884	 */
6885	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6886		vdev_config_clean(vd);
6887
6888	/*
6889	 * Now that the new config has synced transactionally,
6890	 * let it become visible to the config cache.
6891	 */
6892	if (spa->spa_config_syncing != NULL) {
6893		spa_config_set(spa, spa->spa_config_syncing);
6894		spa->spa_config_txg = txg;
6895		spa->spa_config_syncing = NULL;
6896	}
6897
6898	dsl_pool_sync_done(dp, txg);
6899
6900	mutex_enter(&spa->spa_alloc_lock);
6901	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6902	mutex_exit(&spa->spa_alloc_lock);
6903
6904	/*
6905	 * Update usable space statistics.
6906	 */
6907	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6908		vdev_sync_done(vd, txg);
6909
6910	spa_update_dspace(spa);
6911
6912	/*
6913	 * It had better be the case that we didn't dirty anything
6914	 * since vdev_config_sync().
6915	 */
6916	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6917	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6918	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6919
6920	spa->spa_sync_pass = 0;
6921
6922	/*
6923	 * Update the last synced uberblock here. We want to do this at
6924	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6925	 * will be guaranteed that all the processing associated with
6926	 * that txg has been completed.
6927	 */
6928	spa->spa_ubsync = spa->spa_uberblock;
6929	spa_config_exit(spa, SCL_CONFIG, FTAG);
6930
6931	spa_handle_ignored_writes(spa);
6932
6933	/*
6934	 * If any async tasks have been requested, kick them off.
6935	 */
6936	spa_async_dispatch(spa);
6937	spa_async_dispatch_vd(spa);
6938}
6939
6940/*
6941 * Sync all pools.  We don't want to hold the namespace lock across these
6942 * operations, so we take a reference on the spa_t and drop the lock during the
6943 * sync.
6944 */
6945void
6946spa_sync_allpools(void)
6947{
6948	spa_t *spa = NULL;
6949	mutex_enter(&spa_namespace_lock);
6950	while ((spa = spa_next(spa)) != NULL) {
6951		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6952		    !spa_writeable(spa) || spa_suspended(spa))
6953			continue;
6954		spa_open_ref(spa, FTAG);
6955		mutex_exit(&spa_namespace_lock);
6956		txg_wait_synced(spa_get_dsl(spa), 0);
6957		mutex_enter(&spa_namespace_lock);
6958		spa_close(spa, FTAG);
6959	}
6960	mutex_exit(&spa_namespace_lock);
6961}
6962
6963/*
6964 * ==========================================================================
6965 * Miscellaneous routines
6966 * ==========================================================================
6967 */
6968
6969/*
6970 * Remove all pools in the system.
6971 */
6972void
6973spa_evict_all(void)
6974{
6975	spa_t *spa;
6976
6977	/*
6978	 * Remove all cached state.  All pools should be closed now,
6979	 * so every spa in the AVL tree should be unreferenced.
6980	 */
6981	mutex_enter(&spa_namespace_lock);
6982	while ((spa = spa_next(NULL)) != NULL) {
6983		/*
6984		 * Stop async tasks.  The async thread may need to detach
6985		 * a device that's been replaced, which requires grabbing
6986		 * spa_namespace_lock, so we must drop it here.
6987		 */
6988		spa_open_ref(spa, FTAG);
6989		mutex_exit(&spa_namespace_lock);
6990		spa_async_suspend(spa);
6991		mutex_enter(&spa_namespace_lock);
6992		spa_close(spa, FTAG);
6993
6994		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6995			spa_unload(spa);
6996			spa_deactivate(spa);
6997		}
6998		spa_remove(spa);
6999	}
7000	mutex_exit(&spa_namespace_lock);
7001}
7002
7003vdev_t *
7004spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7005{
7006	vdev_t *vd;
7007	int i;
7008
7009	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7010		return (vd);
7011
7012	if (aux) {
7013		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7014			vd = spa->spa_l2cache.sav_vdevs[i];
7015			if (vd->vdev_guid == guid)
7016				return (vd);
7017		}
7018
7019		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7020			vd = spa->spa_spares.sav_vdevs[i];
7021			if (vd->vdev_guid == guid)
7022				return (vd);
7023		}
7024	}
7025
7026	return (NULL);
7027}
7028
7029void
7030spa_upgrade(spa_t *spa, uint64_t version)
7031{
7032	ASSERT(spa_writeable(spa));
7033
7034	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7035
7036	/*
7037	 * This should only be called for a non-faulted pool, and since a
7038	 * future version would result in an unopenable pool, this shouldn't be
7039	 * possible.
7040	 */
7041	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7042	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7043
7044	spa->spa_uberblock.ub_version = version;
7045	vdev_config_dirty(spa->spa_root_vdev);
7046
7047	spa_config_exit(spa, SCL_ALL, FTAG);
7048
7049	txg_wait_synced(spa_get_dsl(spa), 0);
7050}
7051
7052boolean_t
7053spa_has_spare(spa_t *spa, uint64_t guid)
7054{
7055	int i;
7056	uint64_t spareguid;
7057	spa_aux_vdev_t *sav = &spa->spa_spares;
7058
7059	for (i = 0; i < sav->sav_count; i++)
7060		if (sav->sav_vdevs[i]->vdev_guid == guid)
7061			return (B_TRUE);
7062
7063	for (i = 0; i < sav->sav_npending; i++) {
7064		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7065		    &spareguid) == 0 && spareguid == guid)
7066			return (B_TRUE);
7067	}
7068
7069	return (B_FALSE);
7070}
7071
7072/*
7073 * Check if a pool has an active shared spare device.
7074 * Note: reference count of an active spare is 2, as a spare and as a replace
7075 */
7076static boolean_t
7077spa_has_active_shared_spare(spa_t *spa)
7078{
7079	int i, refcnt;
7080	uint64_t pool;
7081	spa_aux_vdev_t *sav = &spa->spa_spares;
7082
7083	for (i = 0; i < sav->sav_count; i++) {
7084		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7085		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7086		    refcnt > 2)
7087			return (B_TRUE);
7088	}
7089
7090	return (B_FALSE);
7091}
7092
7093static sysevent_t *
7094spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7095{
7096	sysevent_t		*ev = NULL;
7097#ifdef _KERNEL
7098	sysevent_attr_list_t	*attr = NULL;
7099	sysevent_value_t	value;
7100
7101	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7102	    SE_SLEEP);
7103	ASSERT(ev != NULL);
7104
7105	value.value_type = SE_DATA_TYPE_STRING;
7106	value.value.sv_string = spa_name(spa);
7107	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7108		goto done;
7109
7110	value.value_type = SE_DATA_TYPE_UINT64;
7111	value.value.sv_uint64 = spa_guid(spa);
7112	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7113		goto done;
7114
7115	if (vd) {
7116		value.value_type = SE_DATA_TYPE_UINT64;
7117		value.value.sv_uint64 = vd->vdev_guid;
7118		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7119		    SE_SLEEP) != 0)
7120			goto done;
7121
7122		if (vd->vdev_path) {
7123			value.value_type = SE_DATA_TYPE_STRING;
7124			value.value.sv_string = vd->vdev_path;
7125			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7126			    &value, SE_SLEEP) != 0)
7127				goto done;
7128		}
7129	}
7130
7131	if (sysevent_attach_attributes(ev, attr) != 0)
7132		goto done;
7133	attr = NULL;
7134
7135done:
7136	if (attr)
7137		sysevent_free_attr(attr);
7138
7139#endif
7140	return (ev);
7141}
7142
7143static void
7144spa_event_post(sysevent_t *ev)
7145{
7146#ifdef _KERNEL
7147	sysevent_id_t		eid;
7148
7149	(void) log_sysevent(ev, SE_SLEEP, &eid);
7150	sysevent_free(ev);
7151#endif
7152}
7153
7154/*
7155 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7156 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7157 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7158 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7159 * or zdb as real changes.
7160 */
7161void
7162spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7163{
7164	spa_event_post(spa_event_create(spa, vd, name));
7165}
7166