spa.c revision 314356
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
156static void spa_event_post(sysevent_t *ev);
157static void spa_sync_version(void *arg, dmu_tx_t *tx);
158static void spa_sync_props(void *arg, dmu_tx_t *tx);
159static boolean_t spa_has_active_shared_spare(spa_t *spa);
160static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
161    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
162    char **ereport);
163static void spa_vdev_resilver_done(spa_t *spa);
164
165uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166#ifdef PSRSET_BIND
167id_t		zio_taskq_psrset_bind = PS_NONE;
168#endif
169#ifdef SYSDC
170boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
171uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
172#endif
173
174boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
175extern int	zfs_sync_pass_deferred_free;
176
177#ifndef illumos
178extern void spa_deadman(void *arg);
179#endif
180
181/*
182 * This (illegal) pool name is used when temporarily importing a spa_t in order
183 * to get the vdev stats associated with the imported devices.
184 */
185#define	TRYIMPORT_NAME	"$import"
186
187/*
188 * ==========================================================================
189 * SPA properties routines
190 * ==========================================================================
191 */
192
193/*
194 * Add a (source=src, propname=propval) list to an nvlist.
195 */
196static void
197spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
198    uint64_t intval, zprop_source_t src)
199{
200	const char *propname = zpool_prop_to_name(prop);
201	nvlist_t *propval;
202
203	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
204	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
205
206	if (strval != NULL)
207		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
208	else
209		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
210
211	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
212	nvlist_free(propval);
213}
214
215/*
216 * Get property values from the spa configuration.
217 */
218static void
219spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
220{
221	vdev_t *rvd = spa->spa_root_vdev;
222	dsl_pool_t *pool = spa->spa_dsl_pool;
223	uint64_t size, alloc, cap, version;
224	zprop_source_t src = ZPROP_SRC_NONE;
225	spa_config_dirent_t *dp;
226	metaslab_class_t *mc = spa_normal_class(spa);
227
228	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
229
230	if (rvd != NULL) {
231		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
232		size = metaslab_class_get_space(spa_normal_class(spa));
233		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
237		    size - alloc, src);
238
239		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
240		    metaslab_class_fragmentation(mc), src);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
242		    metaslab_class_expandable_space(mc), src);
243		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
244		    (spa_mode(spa) == FREAD), src);
245
246		cap = (size == 0) ? 0 : (alloc * 100 / size);
247		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
250		    ddt_get_pool_dedup_ratio(spa), src);
251
252		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
253		    rvd->vdev_state, src);
254
255		version = spa_version(spa);
256		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
257			src = ZPROP_SRC_DEFAULT;
258		else
259			src = ZPROP_SRC_LOCAL;
260		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
261	}
262
263	if (pool != NULL) {
264		/*
265		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
266		 * when opening pools before this version freedir will be NULL.
267		 */
268		if (pool->dp_free_dir != NULL) {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
270			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
271			    src);
272		} else {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
274			    NULL, 0, src);
275		}
276
277		if (pool->dp_leak_dir != NULL) {
278			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
279			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
280			    src);
281		} else {
282			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
283			    NULL, 0, src);
284		}
285	}
286
287	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
288
289	if (spa->spa_comment != NULL) {
290		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
291		    0, ZPROP_SRC_LOCAL);
292	}
293
294	if (spa->spa_root != NULL)
295		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
296		    0, ZPROP_SRC_LOCAL);
297
298	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
299		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
300		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
301	} else {
302		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
303		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
304	}
305
306	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
307		if (dp->scd_path == NULL) {
308			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309			    "none", 0, ZPROP_SRC_LOCAL);
310		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
311			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
312			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
313		}
314	}
315}
316
317/*
318 * Get zpool property values.
319 */
320int
321spa_prop_get(spa_t *spa, nvlist_t **nvp)
322{
323	objset_t *mos = spa->spa_meta_objset;
324	zap_cursor_t zc;
325	zap_attribute_t za;
326	int err;
327
328	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
329
330	mutex_enter(&spa->spa_props_lock);
331
332	/*
333	 * Get properties from the spa config.
334	 */
335	spa_prop_get_config(spa, nvp);
336
337	/* If no pool property object, no more prop to get. */
338	if (mos == NULL || spa->spa_pool_props_object == 0) {
339		mutex_exit(&spa->spa_props_lock);
340		return (0);
341	}
342
343	/*
344	 * Get properties from the MOS pool property object.
345	 */
346	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
347	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
348	    zap_cursor_advance(&zc)) {
349		uint64_t intval = 0;
350		char *strval = NULL;
351		zprop_source_t src = ZPROP_SRC_DEFAULT;
352		zpool_prop_t prop;
353
354		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
355			continue;
356
357		switch (za.za_integer_length) {
358		case 8:
359			/* integer property */
360			if (za.za_first_integer !=
361			    zpool_prop_default_numeric(prop))
362				src = ZPROP_SRC_LOCAL;
363
364			if (prop == ZPOOL_PROP_BOOTFS) {
365				dsl_pool_t *dp;
366				dsl_dataset_t *ds = NULL;
367
368				dp = spa_get_dsl(spa);
369				dsl_pool_config_enter(dp, FTAG);
370				if (err = dsl_dataset_hold_obj(dp,
371				    za.za_first_integer, FTAG, &ds)) {
372					dsl_pool_config_exit(dp, FTAG);
373					break;
374				}
375
376				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
377				    KM_SLEEP);
378				dsl_dataset_name(ds, strval);
379				dsl_dataset_rele(ds, FTAG);
380				dsl_pool_config_exit(dp, FTAG);
381			} else {
382				strval = NULL;
383				intval = za.za_first_integer;
384			}
385
386			spa_prop_add_list(*nvp, prop, strval, intval, src);
387
388			if (strval != NULL)
389				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
390
391			break;
392
393		case 1:
394			/* string property */
395			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
396			err = zap_lookup(mos, spa->spa_pool_props_object,
397			    za.za_name, 1, za.za_num_integers, strval);
398			if (err) {
399				kmem_free(strval, za.za_num_integers);
400				break;
401			}
402			spa_prop_add_list(*nvp, prop, strval, 0, src);
403			kmem_free(strval, za.za_num_integers);
404			break;
405
406		default:
407			break;
408		}
409	}
410	zap_cursor_fini(&zc);
411	mutex_exit(&spa->spa_props_lock);
412out:
413	if (err && err != ENOENT) {
414		nvlist_free(*nvp);
415		*nvp = NULL;
416		return (err);
417	}
418
419	return (0);
420}
421
422/*
423 * Validate the given pool properties nvlist and modify the list
424 * for the property values to be set.
425 */
426static int
427spa_prop_validate(spa_t *spa, nvlist_t *props)
428{
429	nvpair_t *elem;
430	int error = 0, reset_bootfs = 0;
431	uint64_t objnum = 0;
432	boolean_t has_feature = B_FALSE;
433
434	elem = NULL;
435	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
436		uint64_t intval;
437		char *strval, *slash, *check, *fname;
438		const char *propname = nvpair_name(elem);
439		zpool_prop_t prop = zpool_name_to_prop(propname);
440
441		switch (prop) {
442		case ZPROP_INVAL:
443			if (!zpool_prop_feature(propname)) {
444				error = SET_ERROR(EINVAL);
445				break;
446			}
447
448			/*
449			 * Sanitize the input.
450			 */
451			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (nvpair_value_uint64(elem, &intval) != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			if (intval != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			fname = strchr(propname, '@') + 1;
467			if (zfeature_lookup_name(fname, NULL) != 0) {
468				error = SET_ERROR(EINVAL);
469				break;
470			}
471
472			has_feature = B_TRUE;
473			break;
474
475		case ZPOOL_PROP_VERSION:
476			error = nvpair_value_uint64(elem, &intval);
477			if (!error &&
478			    (intval < spa_version(spa) ||
479			    intval > SPA_VERSION_BEFORE_FEATURES ||
480			    has_feature))
481				error = SET_ERROR(EINVAL);
482			break;
483
484		case ZPOOL_PROP_DELEGATION:
485		case ZPOOL_PROP_AUTOREPLACE:
486		case ZPOOL_PROP_LISTSNAPS:
487		case ZPOOL_PROP_AUTOEXPAND:
488			error = nvpair_value_uint64(elem, &intval);
489			if (!error && intval > 1)
490				error = SET_ERROR(EINVAL);
491			break;
492
493		case ZPOOL_PROP_BOOTFS:
494			/*
495			 * If the pool version is less than SPA_VERSION_BOOTFS,
496			 * or the pool is still being created (version == 0),
497			 * the bootfs property cannot be set.
498			 */
499			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
500				error = SET_ERROR(ENOTSUP);
501				break;
502			}
503
504			/*
505			 * Make sure the vdev config is bootable
506			 */
507			if (!vdev_is_bootable(spa->spa_root_vdev)) {
508				error = SET_ERROR(ENOTSUP);
509				break;
510			}
511
512			reset_bootfs = 1;
513
514			error = nvpair_value_string(elem, &strval);
515
516			if (!error) {
517				objset_t *os;
518				uint64_t propval;
519
520				if (strval == NULL || strval[0] == '\0') {
521					objnum = zpool_prop_default_numeric(
522					    ZPOOL_PROP_BOOTFS);
523					break;
524				}
525
526				if (error = dmu_objset_hold(strval, FTAG, &os))
527					break;
528
529				/*
530				 * Must be ZPL, and its property settings
531				 * must be supported by GRUB (compression
532				 * is not gzip, and large blocks are not used).
533				 */
534
535				if (dmu_objset_type(os) != DMU_OST_ZFS) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
540				    &propval)) == 0 &&
541				    !BOOTFS_COMPRESS_VALID(propval)) {
542					error = SET_ERROR(ENOTSUP);
543				} else if ((error =
544				    dsl_prop_get_int_ds(dmu_objset_ds(os),
545				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
546				    &propval)) == 0 &&
547				    propval > SPA_OLD_MAXBLOCKSIZE) {
548					error = SET_ERROR(ENOTSUP);
549				} else {
550					objnum = dmu_objset_id(os);
551				}
552				dmu_objset_rele(os, FTAG);
553			}
554			break;
555
556		case ZPOOL_PROP_FAILUREMODE:
557			error = nvpair_value_uint64(elem, &intval);
558			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
559			    intval > ZIO_FAILURE_MODE_PANIC))
560				error = SET_ERROR(EINVAL);
561
562			/*
563			 * This is a special case which only occurs when
564			 * the pool has completely failed. This allows
565			 * the user to change the in-core failmode property
566			 * without syncing it out to disk (I/Os might
567			 * currently be blocked). We do this by returning
568			 * EIO to the caller (spa_prop_set) to trick it
569			 * into thinking we encountered a property validation
570			 * error.
571			 */
572			if (!error && spa_suspended(spa)) {
573				spa->spa_failmode = intval;
574				error = SET_ERROR(EIO);
575			}
576			break;
577
578		case ZPOOL_PROP_CACHEFILE:
579			if ((error = nvpair_value_string(elem, &strval)) != 0)
580				break;
581
582			if (strval[0] == '\0')
583				break;
584
585			if (strcmp(strval, "none") == 0)
586				break;
587
588			if (strval[0] != '/') {
589				error = SET_ERROR(EINVAL);
590				break;
591			}
592
593			slash = strrchr(strval, '/');
594			ASSERT(slash != NULL);
595
596			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
597			    strcmp(slash, "/..") == 0)
598				error = SET_ERROR(EINVAL);
599			break;
600
601		case ZPOOL_PROP_COMMENT:
602			if ((error = nvpair_value_string(elem, &strval)) != 0)
603				break;
604			for (check = strval; *check != '\0'; check++) {
605				/*
606				 * The kernel doesn't have an easy isprint()
607				 * check.  For this kernel check, we merely
608				 * check ASCII apart from DEL.  Fix this if
609				 * there is an easy-to-use kernel isprint().
610				 */
611				if (*check >= 0x7f) {
612					error = SET_ERROR(EINVAL);
613					break;
614				}
615			}
616			if (strlen(strval) > ZPROP_MAX_COMMENT)
617				error = E2BIG;
618			break;
619
620		case ZPOOL_PROP_DEDUPDITTO:
621			if (spa_version(spa) < SPA_VERSION_DEDUP)
622				error = SET_ERROR(ENOTSUP);
623			else
624				error = nvpair_value_uint64(elem, &intval);
625			if (error == 0 &&
626			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
627				error = SET_ERROR(EINVAL);
628			break;
629		}
630
631		if (error)
632			break;
633	}
634
635	if (!error && reset_bootfs) {
636		error = nvlist_remove(props,
637		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
638
639		if (!error) {
640			error = nvlist_add_uint64(props,
641			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
642		}
643	}
644
645	return (error);
646}
647
648void
649spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
650{
651	char *cachefile;
652	spa_config_dirent_t *dp;
653
654	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
655	    &cachefile) != 0)
656		return;
657
658	dp = kmem_alloc(sizeof (spa_config_dirent_t),
659	    KM_SLEEP);
660
661	if (cachefile[0] == '\0')
662		dp->scd_path = spa_strdup(spa_config_path);
663	else if (strcmp(cachefile, "none") == 0)
664		dp->scd_path = NULL;
665	else
666		dp->scd_path = spa_strdup(cachefile);
667
668	list_insert_head(&spa->spa_config_list, dp);
669	if (need_sync)
670		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
671}
672
673int
674spa_prop_set(spa_t *spa, nvlist_t *nvp)
675{
676	int error;
677	nvpair_t *elem = NULL;
678	boolean_t need_sync = B_FALSE;
679
680	if ((error = spa_prop_validate(spa, nvp)) != 0)
681		return (error);
682
683	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
684		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
685
686		if (prop == ZPOOL_PROP_CACHEFILE ||
687		    prop == ZPOOL_PROP_ALTROOT ||
688		    prop == ZPOOL_PROP_READONLY)
689			continue;
690
691		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
692			uint64_t ver;
693
694			if (prop == ZPOOL_PROP_VERSION) {
695				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
696			} else {
697				ASSERT(zpool_prop_feature(nvpair_name(elem)));
698				ver = SPA_VERSION_FEATURES;
699				need_sync = B_TRUE;
700			}
701
702			/* Save time if the version is already set. */
703			if (ver == spa_version(spa))
704				continue;
705
706			/*
707			 * In addition to the pool directory object, we might
708			 * create the pool properties object, the features for
709			 * read object, the features for write object, or the
710			 * feature descriptions object.
711			 */
712			error = dsl_sync_task(spa->spa_name, NULL,
713			    spa_sync_version, &ver,
714			    6, ZFS_SPACE_CHECK_RESERVED);
715			if (error)
716				return (error);
717			continue;
718		}
719
720		need_sync = B_TRUE;
721		break;
722	}
723
724	if (need_sync) {
725		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
726		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
727	}
728
729	return (0);
730}
731
732/*
733 * If the bootfs property value is dsobj, clear it.
734 */
735void
736spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
737{
738	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
739		VERIFY(zap_remove(spa->spa_meta_objset,
740		    spa->spa_pool_props_object,
741		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
742		spa->spa_bootfs = 0;
743	}
744}
745
746/*ARGSUSED*/
747static int
748spa_change_guid_check(void *arg, dmu_tx_t *tx)
749{
750	uint64_t *newguid = arg;
751	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752	vdev_t *rvd = spa->spa_root_vdev;
753	uint64_t vdev_state;
754
755	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756	vdev_state = rvd->vdev_state;
757	spa_config_exit(spa, SCL_STATE, FTAG);
758
759	if (vdev_state != VDEV_STATE_HEALTHY)
760		return (SET_ERROR(ENXIO));
761
762	ASSERT3U(spa_guid(spa), !=, *newguid);
763
764	return (0);
765}
766
767static void
768spa_change_guid_sync(void *arg, dmu_tx_t *tx)
769{
770	uint64_t *newguid = arg;
771	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
772	uint64_t oldguid;
773	vdev_t *rvd = spa->spa_root_vdev;
774
775	oldguid = spa_guid(spa);
776
777	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
778	rvd->vdev_guid = *newguid;
779	rvd->vdev_guid_sum += (*newguid - oldguid);
780	vdev_config_dirty(rvd);
781	spa_config_exit(spa, SCL_STATE, FTAG);
782
783	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
784	    oldguid, *newguid);
785}
786
787/*
788 * Change the GUID for the pool.  This is done so that we can later
789 * re-import a pool built from a clone of our own vdevs.  We will modify
790 * the root vdev's guid, our own pool guid, and then mark all of our
791 * vdevs dirty.  Note that we must make sure that all our vdevs are
792 * online when we do this, or else any vdevs that weren't present
793 * would be orphaned from our pool.  We are also going to issue a
794 * sysevent to update any watchers.
795 */
796int
797spa_change_guid(spa_t *spa)
798{
799	int error;
800	uint64_t guid;
801
802	mutex_enter(&spa->spa_vdev_top_lock);
803	mutex_enter(&spa_namespace_lock);
804	guid = spa_generate_guid(NULL);
805
806	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
807	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
808
809	if (error == 0) {
810		spa_config_sync(spa, B_FALSE, B_TRUE);
811		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
812	}
813
814	mutex_exit(&spa_namespace_lock);
815	mutex_exit(&spa->spa_vdev_top_lock);
816
817	return (error);
818}
819
820/*
821 * ==========================================================================
822 * SPA state manipulation (open/create/destroy/import/export)
823 * ==========================================================================
824 */
825
826static int
827spa_error_entry_compare(const void *a, const void *b)
828{
829	spa_error_entry_t *sa = (spa_error_entry_t *)a;
830	spa_error_entry_t *sb = (spa_error_entry_t *)b;
831	int ret;
832
833	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
834	    sizeof (zbookmark_phys_t));
835
836	if (ret < 0)
837		return (-1);
838	else if (ret > 0)
839		return (1);
840	else
841		return (0);
842}
843
844/*
845 * Utility function which retrieves copies of the current logs and
846 * re-initializes them in the process.
847 */
848void
849spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
850{
851	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
852
853	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
854	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
855
856	avl_create(&spa->spa_errlist_scrub,
857	    spa_error_entry_compare, sizeof (spa_error_entry_t),
858	    offsetof(spa_error_entry_t, se_avl));
859	avl_create(&spa->spa_errlist_last,
860	    spa_error_entry_compare, sizeof (spa_error_entry_t),
861	    offsetof(spa_error_entry_t, se_avl));
862}
863
864static void
865spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
866{
867	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
868	enum zti_modes mode = ztip->zti_mode;
869	uint_t value = ztip->zti_value;
870	uint_t count = ztip->zti_count;
871	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
872	char name[32];
873	uint_t flags = 0;
874	boolean_t batch = B_FALSE;
875
876	if (mode == ZTI_MODE_NULL) {
877		tqs->stqs_count = 0;
878		tqs->stqs_taskq = NULL;
879		return;
880	}
881
882	ASSERT3U(count, >, 0);
883
884	tqs->stqs_count = count;
885	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
886
887	switch (mode) {
888	case ZTI_MODE_FIXED:
889		ASSERT3U(value, >=, 1);
890		value = MAX(value, 1);
891		break;
892
893	case ZTI_MODE_BATCH:
894		batch = B_TRUE;
895		flags |= TASKQ_THREADS_CPU_PCT;
896		value = zio_taskq_batch_pct;
897		break;
898
899	default:
900		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
901		    "spa_activate()",
902		    zio_type_name[t], zio_taskq_types[q], mode, value);
903		break;
904	}
905
906	for (uint_t i = 0; i < count; i++) {
907		taskq_t *tq;
908
909		if (count > 1) {
910			(void) snprintf(name, sizeof (name), "%s_%s_%u",
911			    zio_type_name[t], zio_taskq_types[q], i);
912		} else {
913			(void) snprintf(name, sizeof (name), "%s_%s",
914			    zio_type_name[t], zio_taskq_types[q]);
915		}
916
917#ifdef SYSDC
918		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
919			if (batch)
920				flags |= TASKQ_DC_BATCH;
921
922			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
923			    spa->spa_proc, zio_taskq_basedc, flags);
924		} else {
925#endif
926			pri_t pri = maxclsyspri;
927			/*
928			 * The write issue taskq can be extremely CPU
929			 * intensive.  Run it at slightly lower priority
930			 * than the other taskqs.
931			 */
932			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
933				pri++;
934
935			tq = taskq_create_proc(name, value, pri, 50,
936			    INT_MAX, spa->spa_proc, flags);
937#ifdef SYSDC
938		}
939#endif
940
941		tqs->stqs_taskq[i] = tq;
942	}
943}
944
945static void
946spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947{
948	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949
950	if (tqs->stqs_taskq == NULL) {
951		ASSERT0(tqs->stqs_count);
952		return;
953	}
954
955	for (uint_t i = 0; i < tqs->stqs_count; i++) {
956		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
957		taskq_destroy(tqs->stqs_taskq[i]);
958	}
959
960	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
961	tqs->stqs_taskq = NULL;
962}
963
964/*
965 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
966 * Note that a type may have multiple discrete taskqs to avoid lock contention
967 * on the taskq itself. In that case we choose which taskq at random by using
968 * the low bits of gethrtime().
969 */
970void
971spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
972    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
973{
974	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
975	taskq_t *tq;
976
977	ASSERT3P(tqs->stqs_taskq, !=, NULL);
978	ASSERT3U(tqs->stqs_count, !=, 0);
979
980	if (tqs->stqs_count == 1) {
981		tq = tqs->stqs_taskq[0];
982	} else {
983#ifdef _KERNEL
984		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
985#else
986		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
987#endif
988	}
989
990	taskq_dispatch_ent(tq, func, arg, flags, ent);
991}
992
993static void
994spa_create_zio_taskqs(spa_t *spa)
995{
996	for (int t = 0; t < ZIO_TYPES; t++) {
997		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
998			spa_taskqs_init(spa, t, q);
999		}
1000	}
1001}
1002
1003#ifdef _KERNEL
1004#ifdef SPA_PROCESS
1005static void
1006spa_thread(void *arg)
1007{
1008	callb_cpr_t cprinfo;
1009
1010	spa_t *spa = arg;
1011	user_t *pu = PTOU(curproc);
1012
1013	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1014	    spa->spa_name);
1015
1016	ASSERT(curproc != &p0);
1017	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1018	    "zpool-%s", spa->spa_name);
1019	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1020
1021#ifdef PSRSET_BIND
1022	/* bind this thread to the requested psrset */
1023	if (zio_taskq_psrset_bind != PS_NONE) {
1024		pool_lock();
1025		mutex_enter(&cpu_lock);
1026		mutex_enter(&pidlock);
1027		mutex_enter(&curproc->p_lock);
1028
1029		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030		    0, NULL, NULL) == 0)  {
1031			curthread->t_bind_pset = zio_taskq_psrset_bind;
1032		} else {
1033			cmn_err(CE_WARN,
1034			    "Couldn't bind process for zfs pool \"%s\" to "
1035			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036		}
1037
1038		mutex_exit(&curproc->p_lock);
1039		mutex_exit(&pidlock);
1040		mutex_exit(&cpu_lock);
1041		pool_unlock();
1042	}
1043#endif
1044
1045#ifdef SYSDC
1046	if (zio_taskq_sysdc) {
1047		sysdc_thread_enter(curthread, 100, 0);
1048	}
1049#endif
1050
1051	spa->spa_proc = curproc;
1052	spa->spa_did = curthread->t_did;
1053
1054	spa_create_zio_taskqs(spa);
1055
1056	mutex_enter(&spa->spa_proc_lock);
1057	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1058
1059	spa->spa_proc_state = SPA_PROC_ACTIVE;
1060	cv_broadcast(&spa->spa_proc_cv);
1061
1062	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1063	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1064		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1065	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1066
1067	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1068	spa->spa_proc_state = SPA_PROC_GONE;
1069	spa->spa_proc = &p0;
1070	cv_broadcast(&spa->spa_proc_cv);
1071	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1072
1073	mutex_enter(&curproc->p_lock);
1074	lwp_exit();
1075}
1076#endif	/* SPA_PROCESS */
1077#endif
1078
1079/*
1080 * Activate an uninitialized pool.
1081 */
1082static void
1083spa_activate(spa_t *spa, int mode)
1084{
1085	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1086
1087	spa->spa_state = POOL_STATE_ACTIVE;
1088	spa->spa_mode = mode;
1089
1090	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1092
1093	/* Try to create a covering process */
1094	mutex_enter(&spa->spa_proc_lock);
1095	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1096	ASSERT(spa->spa_proc == &p0);
1097	spa->spa_did = 0;
1098
1099#ifdef SPA_PROCESS
1100	/* Only create a process if we're going to be around a while. */
1101	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1102		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1103		    NULL, 0) == 0) {
1104			spa->spa_proc_state = SPA_PROC_CREATED;
1105			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1106				cv_wait(&spa->spa_proc_cv,
1107				    &spa->spa_proc_lock);
1108			}
1109			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1110			ASSERT(spa->spa_proc != &p0);
1111			ASSERT(spa->spa_did != 0);
1112		} else {
1113#ifdef _KERNEL
1114			cmn_err(CE_WARN,
1115			    "Couldn't create process for zfs pool \"%s\"\n",
1116			    spa->spa_name);
1117#endif
1118		}
1119	}
1120#endif	/* SPA_PROCESS */
1121	mutex_exit(&spa->spa_proc_lock);
1122
1123	/* If we didn't create a process, we need to create our taskqs. */
1124	ASSERT(spa->spa_proc == &p0);
1125	if (spa->spa_proc == &p0) {
1126		spa_create_zio_taskqs(spa);
1127	}
1128
1129	/*
1130	 * Start TRIM thread.
1131	 */
1132	trim_thread_create(spa);
1133
1134	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1135	    offsetof(vdev_t, vdev_config_dirty_node));
1136	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1137	    offsetof(objset_t, os_evicting_node));
1138	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1139	    offsetof(vdev_t, vdev_state_dirty_node));
1140
1141	txg_list_create(&spa->spa_vdev_txg_list,
1142	    offsetof(struct vdev, vdev_txg_node));
1143
1144	avl_create(&spa->spa_errlist_scrub,
1145	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1146	    offsetof(spa_error_entry_t, se_avl));
1147	avl_create(&spa->spa_errlist_last,
1148	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1149	    offsetof(spa_error_entry_t, se_avl));
1150}
1151
1152/*
1153 * Opposite of spa_activate().
1154 */
1155static void
1156spa_deactivate(spa_t *spa)
1157{
1158	ASSERT(spa->spa_sync_on == B_FALSE);
1159	ASSERT(spa->spa_dsl_pool == NULL);
1160	ASSERT(spa->spa_root_vdev == NULL);
1161	ASSERT(spa->spa_async_zio_root == NULL);
1162	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1163
1164	/*
1165	 * Stop TRIM thread in case spa_unload() wasn't called directly
1166	 * before spa_deactivate().
1167	 */
1168	trim_thread_destroy(spa);
1169
1170	spa_evicting_os_wait(spa);
1171
1172	txg_list_destroy(&spa->spa_vdev_txg_list);
1173
1174	list_destroy(&spa->spa_config_dirty_list);
1175	list_destroy(&spa->spa_evicting_os_list);
1176	list_destroy(&spa->spa_state_dirty_list);
1177
1178	for (int t = 0; t < ZIO_TYPES; t++) {
1179		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1180			spa_taskqs_fini(spa, t, q);
1181		}
1182	}
1183
1184	metaslab_class_destroy(spa->spa_normal_class);
1185	spa->spa_normal_class = NULL;
1186
1187	metaslab_class_destroy(spa->spa_log_class);
1188	spa->spa_log_class = NULL;
1189
1190	/*
1191	 * If this was part of an import or the open otherwise failed, we may
1192	 * still have errors left in the queues.  Empty them just in case.
1193	 */
1194	spa_errlog_drain(spa);
1195
1196	avl_destroy(&spa->spa_errlist_scrub);
1197	avl_destroy(&spa->spa_errlist_last);
1198
1199	spa->spa_state = POOL_STATE_UNINITIALIZED;
1200
1201	mutex_enter(&spa->spa_proc_lock);
1202	if (spa->spa_proc_state != SPA_PROC_NONE) {
1203		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1204		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1205		cv_broadcast(&spa->spa_proc_cv);
1206		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1207			ASSERT(spa->spa_proc != &p0);
1208			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1209		}
1210		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1211		spa->spa_proc_state = SPA_PROC_NONE;
1212	}
1213	ASSERT(spa->spa_proc == &p0);
1214	mutex_exit(&spa->spa_proc_lock);
1215
1216#ifdef SPA_PROCESS
1217	/*
1218	 * We want to make sure spa_thread() has actually exited the ZFS
1219	 * module, so that the module can't be unloaded out from underneath
1220	 * it.
1221	 */
1222	if (spa->spa_did != 0) {
1223		thread_join(spa->spa_did);
1224		spa->spa_did = 0;
1225	}
1226#endif	/* SPA_PROCESS */
1227}
1228
1229/*
1230 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1231 * will create all the necessary vdevs in the appropriate layout, with each vdev
1232 * in the CLOSED state.  This will prep the pool before open/creation/import.
1233 * All vdev validation is done by the vdev_alloc() routine.
1234 */
1235static int
1236spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1237    uint_t id, int atype)
1238{
1239	nvlist_t **child;
1240	uint_t children;
1241	int error;
1242
1243	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1244		return (error);
1245
1246	if ((*vdp)->vdev_ops->vdev_op_leaf)
1247		return (0);
1248
1249	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1250	    &child, &children);
1251
1252	if (error == ENOENT)
1253		return (0);
1254
1255	if (error) {
1256		vdev_free(*vdp);
1257		*vdp = NULL;
1258		return (SET_ERROR(EINVAL));
1259	}
1260
1261	for (int c = 0; c < children; c++) {
1262		vdev_t *vd;
1263		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1264		    atype)) != 0) {
1265			vdev_free(*vdp);
1266			*vdp = NULL;
1267			return (error);
1268		}
1269	}
1270
1271	ASSERT(*vdp != NULL);
1272
1273	return (0);
1274}
1275
1276/*
1277 * Opposite of spa_load().
1278 */
1279static void
1280spa_unload(spa_t *spa)
1281{
1282	int i;
1283
1284	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285
1286	/*
1287	 * Stop TRIM thread.
1288	 */
1289	trim_thread_destroy(spa);
1290
1291	/*
1292	 * Stop async tasks.
1293	 */
1294	spa_async_suspend(spa);
1295
1296	/*
1297	 * Stop syncing.
1298	 */
1299	if (spa->spa_sync_on) {
1300		txg_sync_stop(spa->spa_dsl_pool);
1301		spa->spa_sync_on = B_FALSE;
1302	}
1303
1304	/*
1305	 * Wait for any outstanding async I/O to complete.
1306	 */
1307	if (spa->spa_async_zio_root != NULL) {
1308		for (int i = 0; i < max_ncpus; i++)
1309			(void) zio_wait(spa->spa_async_zio_root[i]);
1310		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1311		spa->spa_async_zio_root = NULL;
1312	}
1313
1314	bpobj_close(&spa->spa_deferred_bpobj);
1315
1316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1317
1318	/*
1319	 * Close all vdevs.
1320	 */
1321	if (spa->spa_root_vdev)
1322		vdev_free(spa->spa_root_vdev);
1323	ASSERT(spa->spa_root_vdev == NULL);
1324
1325	/*
1326	 * Close the dsl pool.
1327	 */
1328	if (spa->spa_dsl_pool) {
1329		dsl_pool_close(spa->spa_dsl_pool);
1330		spa->spa_dsl_pool = NULL;
1331		spa->spa_meta_objset = NULL;
1332	}
1333
1334	ddt_unload(spa);
1335
1336	/*
1337	 * Drop and purge level 2 cache
1338	 */
1339	spa_l2cache_drop(spa);
1340
1341	for (i = 0; i < spa->spa_spares.sav_count; i++)
1342		vdev_free(spa->spa_spares.sav_vdevs[i]);
1343	if (spa->spa_spares.sav_vdevs) {
1344		kmem_free(spa->spa_spares.sav_vdevs,
1345		    spa->spa_spares.sav_count * sizeof (void *));
1346		spa->spa_spares.sav_vdevs = NULL;
1347	}
1348	if (spa->spa_spares.sav_config) {
1349		nvlist_free(spa->spa_spares.sav_config);
1350		spa->spa_spares.sav_config = NULL;
1351	}
1352	spa->spa_spares.sav_count = 0;
1353
1354	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1355		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1356		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1357	}
1358	if (spa->spa_l2cache.sav_vdevs) {
1359		kmem_free(spa->spa_l2cache.sav_vdevs,
1360		    spa->spa_l2cache.sav_count * sizeof (void *));
1361		spa->spa_l2cache.sav_vdevs = NULL;
1362	}
1363	if (spa->spa_l2cache.sav_config) {
1364		nvlist_free(spa->spa_l2cache.sav_config);
1365		spa->spa_l2cache.sav_config = NULL;
1366	}
1367	spa->spa_l2cache.sav_count = 0;
1368
1369	spa->spa_async_suspended = 0;
1370
1371	if (spa->spa_comment != NULL) {
1372		spa_strfree(spa->spa_comment);
1373		spa->spa_comment = NULL;
1374	}
1375
1376	spa_config_exit(spa, SCL_ALL, FTAG);
1377}
1378
1379/*
1380 * Load (or re-load) the current list of vdevs describing the active spares for
1381 * this pool.  When this is called, we have some form of basic information in
1382 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1383 * then re-generate a more complete list including status information.
1384 */
1385static void
1386spa_load_spares(spa_t *spa)
1387{
1388	nvlist_t **spares;
1389	uint_t nspares;
1390	int i;
1391	vdev_t *vd, *tvd;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	/*
1396	 * First, close and free any existing spare vdevs.
1397	 */
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		vd = spa->spa_spares.sav_vdevs[i];
1400
1401		/* Undo the call to spa_activate() below */
1402		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1403		    B_FALSE)) != NULL && tvd->vdev_isspare)
1404			spa_spare_remove(tvd);
1405		vdev_close(vd);
1406		vdev_free(vd);
1407	}
1408
1409	if (spa->spa_spares.sav_vdevs)
1410		kmem_free(spa->spa_spares.sav_vdevs,
1411		    spa->spa_spares.sav_count * sizeof (void *));
1412
1413	if (spa->spa_spares.sav_config == NULL)
1414		nspares = 0;
1415	else
1416		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1417		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1418
1419	spa->spa_spares.sav_count = (int)nspares;
1420	spa->spa_spares.sav_vdevs = NULL;
1421
1422	if (nspares == 0)
1423		return;
1424
1425	/*
1426	 * Construct the array of vdevs, opening them to get status in the
1427	 * process.   For each spare, there is potentially two different vdev_t
1428	 * structures associated with it: one in the list of spares (used only
1429	 * for basic validation purposes) and one in the active vdev
1430	 * configuration (if it's spared in).  During this phase we open and
1431	 * validate each vdev on the spare list.  If the vdev also exists in the
1432	 * active configuration, then we also mark this vdev as an active spare.
1433	 */
1434	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1435	    KM_SLEEP);
1436	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1437		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1438		    VDEV_ALLOC_SPARE) == 0);
1439		ASSERT(vd != NULL);
1440
1441		spa->spa_spares.sav_vdevs[i] = vd;
1442
1443		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1444		    B_FALSE)) != NULL) {
1445			if (!tvd->vdev_isspare)
1446				spa_spare_add(tvd);
1447
1448			/*
1449			 * We only mark the spare active if we were successfully
1450			 * able to load the vdev.  Otherwise, importing a pool
1451			 * with a bad active spare would result in strange
1452			 * behavior, because multiple pool would think the spare
1453			 * is actively in use.
1454			 *
1455			 * There is a vulnerability here to an equally bizarre
1456			 * circumstance, where a dead active spare is later
1457			 * brought back to life (onlined or otherwise).  Given
1458			 * the rarity of this scenario, and the extra complexity
1459			 * it adds, we ignore the possibility.
1460			 */
1461			if (!vdev_is_dead(tvd))
1462				spa_spare_activate(tvd);
1463		}
1464
1465		vd->vdev_top = vd;
1466		vd->vdev_aux = &spa->spa_spares;
1467
1468		if (vdev_open(vd) != 0)
1469			continue;
1470
1471		if (vdev_validate_aux(vd) == 0)
1472			spa_spare_add(vd);
1473	}
1474
1475	/*
1476	 * Recompute the stashed list of spares, with status information
1477	 * this time.
1478	 */
1479	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1483	    KM_SLEEP);
1484	for (i = 0; i < spa->spa_spares.sav_count; i++)
1485		spares[i] = vdev_config_generate(spa,
1486		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1487	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1488	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1489	for (i = 0; i < spa->spa_spares.sav_count; i++)
1490		nvlist_free(spares[i]);
1491	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1492}
1493
1494/*
1495 * Load (or re-load) the current list of vdevs describing the active l2cache for
1496 * this pool.  When this is called, we have some form of basic information in
1497 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1498 * then re-generate a more complete list including status information.
1499 * Devices which are already active have their details maintained, and are
1500 * not re-opened.
1501 */
1502static void
1503spa_load_l2cache(spa_t *spa)
1504{
1505	nvlist_t **l2cache;
1506	uint_t nl2cache;
1507	int i, j, oldnvdevs;
1508	uint64_t guid;
1509	vdev_t *vd, **oldvdevs, **newvdevs;
1510	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1511
1512	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1513
1514	if (sav->sav_config != NULL) {
1515		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1516		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1517		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1518	} else {
1519		nl2cache = 0;
1520		newvdevs = NULL;
1521	}
1522
1523	oldvdevs = sav->sav_vdevs;
1524	oldnvdevs = sav->sav_count;
1525	sav->sav_vdevs = NULL;
1526	sav->sav_count = 0;
1527
1528	/*
1529	 * Process new nvlist of vdevs.
1530	 */
1531	for (i = 0; i < nl2cache; i++) {
1532		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1533		    &guid) == 0);
1534
1535		newvdevs[i] = NULL;
1536		for (j = 0; j < oldnvdevs; j++) {
1537			vd = oldvdevs[j];
1538			if (vd != NULL && guid == vd->vdev_guid) {
1539				/*
1540				 * Retain previous vdev for add/remove ops.
1541				 */
1542				newvdevs[i] = vd;
1543				oldvdevs[j] = NULL;
1544				break;
1545			}
1546		}
1547
1548		if (newvdevs[i] == NULL) {
1549			/*
1550			 * Create new vdev
1551			 */
1552			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1553			    VDEV_ALLOC_L2CACHE) == 0);
1554			ASSERT(vd != NULL);
1555			newvdevs[i] = vd;
1556
1557			/*
1558			 * Commit this vdev as an l2cache device,
1559			 * even if it fails to open.
1560			 */
1561			spa_l2cache_add(vd);
1562
1563			vd->vdev_top = vd;
1564			vd->vdev_aux = sav;
1565
1566			spa_l2cache_activate(vd);
1567
1568			if (vdev_open(vd) != 0)
1569				continue;
1570
1571			(void) vdev_validate_aux(vd);
1572
1573			if (!vdev_is_dead(vd))
1574				l2arc_add_vdev(spa, vd);
1575		}
1576	}
1577
1578	/*
1579	 * Purge vdevs that were dropped
1580	 */
1581	for (i = 0; i < oldnvdevs; i++) {
1582		uint64_t pool;
1583
1584		vd = oldvdevs[i];
1585		if (vd != NULL) {
1586			ASSERT(vd->vdev_isl2cache);
1587
1588			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1589			    pool != 0ULL && l2arc_vdev_present(vd))
1590				l2arc_remove_vdev(vd);
1591			vdev_clear_stats(vd);
1592			vdev_free(vd);
1593		}
1594	}
1595
1596	if (oldvdevs)
1597		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1598
1599	if (sav->sav_config == NULL)
1600		goto out;
1601
1602	sav->sav_vdevs = newvdevs;
1603	sav->sav_count = (int)nl2cache;
1604
1605	/*
1606	 * Recompute the stashed list of l2cache devices, with status
1607	 * information this time.
1608	 */
1609	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1610	    DATA_TYPE_NVLIST_ARRAY) == 0);
1611
1612	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1613	for (i = 0; i < sav->sav_count; i++)
1614		l2cache[i] = vdev_config_generate(spa,
1615		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1616	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1617	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1618out:
1619	for (i = 0; i < sav->sav_count; i++)
1620		nvlist_free(l2cache[i]);
1621	if (sav->sav_count)
1622		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1623}
1624
1625static int
1626load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1627{
1628	dmu_buf_t *db;
1629	char *packed = NULL;
1630	size_t nvsize = 0;
1631	int error;
1632	*value = NULL;
1633
1634	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1635	if (error != 0)
1636		return (error);
1637
1638	nvsize = *(uint64_t *)db->db_data;
1639	dmu_buf_rele(db, FTAG);
1640
1641	packed = kmem_alloc(nvsize, KM_SLEEP);
1642	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1643	    DMU_READ_PREFETCH);
1644	if (error == 0)
1645		error = nvlist_unpack(packed, nvsize, value, 0);
1646	kmem_free(packed, nvsize);
1647
1648	return (error);
1649}
1650
1651/*
1652 * Checks to see if the given vdev could not be opened, in which case we post a
1653 * sysevent to notify the autoreplace code that the device has been removed.
1654 */
1655static void
1656spa_check_removed(vdev_t *vd)
1657{
1658	for (int c = 0; c < vd->vdev_children; c++)
1659		spa_check_removed(vd->vdev_child[c]);
1660
1661	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1662	    !vd->vdev_ishole) {
1663		zfs_post_autoreplace(vd->vdev_spa, vd);
1664		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1665	}
1666}
1667
1668/*
1669 * Validate the current config against the MOS config
1670 */
1671static boolean_t
1672spa_config_valid(spa_t *spa, nvlist_t *config)
1673{
1674	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1675	nvlist_t *nv;
1676
1677	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1678
1679	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1681
1682	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1683
1684	/*
1685	 * If we're doing a normal import, then build up any additional
1686	 * diagnostic information about missing devices in this config.
1687	 * We'll pass this up to the user for further processing.
1688	 */
1689	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1690		nvlist_t **child, *nv;
1691		uint64_t idx = 0;
1692
1693		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1694		    KM_SLEEP);
1695		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1696
1697		for (int c = 0; c < rvd->vdev_children; c++) {
1698			vdev_t *tvd = rvd->vdev_child[c];
1699			vdev_t *mtvd  = mrvd->vdev_child[c];
1700
1701			if (tvd->vdev_ops == &vdev_missing_ops &&
1702			    mtvd->vdev_ops != &vdev_missing_ops &&
1703			    mtvd->vdev_islog)
1704				child[idx++] = vdev_config_generate(spa, mtvd,
1705				    B_FALSE, 0);
1706		}
1707
1708		if (idx) {
1709			VERIFY(nvlist_add_nvlist_array(nv,
1710			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1711			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1712			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1713
1714			for (int i = 0; i < idx; i++)
1715				nvlist_free(child[i]);
1716		}
1717		nvlist_free(nv);
1718		kmem_free(child, rvd->vdev_children * sizeof (char **));
1719	}
1720
1721	/*
1722	 * Compare the root vdev tree with the information we have
1723	 * from the MOS config (mrvd). Check each top-level vdev
1724	 * with the corresponding MOS config top-level (mtvd).
1725	 */
1726	for (int c = 0; c < rvd->vdev_children; c++) {
1727		vdev_t *tvd = rvd->vdev_child[c];
1728		vdev_t *mtvd  = mrvd->vdev_child[c];
1729
1730		/*
1731		 * Resolve any "missing" vdevs in the current configuration.
1732		 * If we find that the MOS config has more accurate information
1733		 * about the top-level vdev then use that vdev instead.
1734		 */
1735		if (tvd->vdev_ops == &vdev_missing_ops &&
1736		    mtvd->vdev_ops != &vdev_missing_ops) {
1737
1738			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1739				continue;
1740
1741			/*
1742			 * Device specific actions.
1743			 */
1744			if (mtvd->vdev_islog) {
1745				spa_set_log_state(spa, SPA_LOG_CLEAR);
1746			} else {
1747				/*
1748				 * XXX - once we have 'readonly' pool
1749				 * support we should be able to handle
1750				 * missing data devices by transitioning
1751				 * the pool to readonly.
1752				 */
1753				continue;
1754			}
1755
1756			/*
1757			 * Swap the missing vdev with the data we were
1758			 * able to obtain from the MOS config.
1759			 */
1760			vdev_remove_child(rvd, tvd);
1761			vdev_remove_child(mrvd, mtvd);
1762
1763			vdev_add_child(rvd, mtvd);
1764			vdev_add_child(mrvd, tvd);
1765
1766			spa_config_exit(spa, SCL_ALL, FTAG);
1767			vdev_load(mtvd);
1768			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1769
1770			vdev_reopen(rvd);
1771		} else if (mtvd->vdev_islog) {
1772			/*
1773			 * Load the slog device's state from the MOS config
1774			 * since it's possible that the label does not
1775			 * contain the most up-to-date information.
1776			 */
1777			vdev_load_log_state(tvd, mtvd);
1778			vdev_reopen(tvd);
1779		}
1780	}
1781	vdev_free(mrvd);
1782	spa_config_exit(spa, SCL_ALL, FTAG);
1783
1784	/*
1785	 * Ensure we were able to validate the config.
1786	 */
1787	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1788}
1789
1790/*
1791 * Check for missing log devices
1792 */
1793static boolean_t
1794spa_check_logs(spa_t *spa)
1795{
1796	boolean_t rv = B_FALSE;
1797	dsl_pool_t *dp = spa_get_dsl(spa);
1798
1799	switch (spa->spa_log_state) {
1800	case SPA_LOG_MISSING:
1801		/* need to recheck in case slog has been restored */
1802	case SPA_LOG_UNKNOWN:
1803		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1804		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1805		if (rv)
1806			spa_set_log_state(spa, SPA_LOG_MISSING);
1807		break;
1808	}
1809	return (rv);
1810}
1811
1812static boolean_t
1813spa_passivate_log(spa_t *spa)
1814{
1815	vdev_t *rvd = spa->spa_root_vdev;
1816	boolean_t slog_found = B_FALSE;
1817
1818	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1819
1820	if (!spa_has_slogs(spa))
1821		return (B_FALSE);
1822
1823	for (int c = 0; c < rvd->vdev_children; c++) {
1824		vdev_t *tvd = rvd->vdev_child[c];
1825		metaslab_group_t *mg = tvd->vdev_mg;
1826
1827		if (tvd->vdev_islog) {
1828			metaslab_group_passivate(mg);
1829			slog_found = B_TRUE;
1830		}
1831	}
1832
1833	return (slog_found);
1834}
1835
1836static void
1837spa_activate_log(spa_t *spa)
1838{
1839	vdev_t *rvd = spa->spa_root_vdev;
1840
1841	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1842
1843	for (int c = 0; c < rvd->vdev_children; c++) {
1844		vdev_t *tvd = rvd->vdev_child[c];
1845		metaslab_group_t *mg = tvd->vdev_mg;
1846
1847		if (tvd->vdev_islog)
1848			metaslab_group_activate(mg);
1849	}
1850}
1851
1852int
1853spa_offline_log(spa_t *spa)
1854{
1855	int error;
1856
1857	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1858	    NULL, DS_FIND_CHILDREN);
1859	if (error == 0) {
1860		/*
1861		 * We successfully offlined the log device, sync out the
1862		 * current txg so that the "stubby" block can be removed
1863		 * by zil_sync().
1864		 */
1865		txg_wait_synced(spa->spa_dsl_pool, 0);
1866	}
1867	return (error);
1868}
1869
1870static void
1871spa_aux_check_removed(spa_aux_vdev_t *sav)
1872{
1873	int i;
1874
1875	for (i = 0; i < sav->sav_count; i++)
1876		spa_check_removed(sav->sav_vdevs[i]);
1877}
1878
1879void
1880spa_claim_notify(zio_t *zio)
1881{
1882	spa_t *spa = zio->io_spa;
1883
1884	if (zio->io_error)
1885		return;
1886
1887	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1888	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1889		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1890	mutex_exit(&spa->spa_props_lock);
1891}
1892
1893typedef struct spa_load_error {
1894	uint64_t	sle_meta_count;
1895	uint64_t	sle_data_count;
1896} spa_load_error_t;
1897
1898static void
1899spa_load_verify_done(zio_t *zio)
1900{
1901	blkptr_t *bp = zio->io_bp;
1902	spa_load_error_t *sle = zio->io_private;
1903	dmu_object_type_t type = BP_GET_TYPE(bp);
1904	int error = zio->io_error;
1905	spa_t *spa = zio->io_spa;
1906
1907	if (error) {
1908		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1909		    type != DMU_OT_INTENT_LOG)
1910			atomic_inc_64(&sle->sle_meta_count);
1911		else
1912			atomic_inc_64(&sle->sle_data_count);
1913	}
1914	zio_data_buf_free(zio->io_data, zio->io_size);
1915
1916	mutex_enter(&spa->spa_scrub_lock);
1917	spa->spa_scrub_inflight--;
1918	cv_broadcast(&spa->spa_scrub_io_cv);
1919	mutex_exit(&spa->spa_scrub_lock);
1920}
1921
1922/*
1923 * Maximum number of concurrent scrub i/os to create while verifying
1924 * a pool while importing it.
1925 */
1926int spa_load_verify_maxinflight = 10000;
1927boolean_t spa_load_verify_metadata = B_TRUE;
1928boolean_t spa_load_verify_data = B_TRUE;
1929
1930SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1931    &spa_load_verify_maxinflight, 0,
1932    "Maximum number of concurrent scrub I/Os to create while verifying a "
1933    "pool while importing it");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1936    &spa_load_verify_metadata, 0,
1937    "Check metadata on import?");
1938
1939SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1940    &spa_load_verify_data, 0,
1941    "Check user data on import?");
1942
1943/*ARGSUSED*/
1944static int
1945spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1946    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1947{
1948	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1949		return (0);
1950	/*
1951	 * Note: normally this routine will not be called if
1952	 * spa_load_verify_metadata is not set.  However, it may be useful
1953	 * to manually set the flag after the traversal has begun.
1954	 */
1955	if (!spa_load_verify_metadata)
1956		return (0);
1957	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1958		return (0);
1959
1960	zio_t *rio = arg;
1961	size_t size = BP_GET_PSIZE(bp);
1962	void *data = zio_data_buf_alloc(size);
1963
1964	mutex_enter(&spa->spa_scrub_lock);
1965	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1966		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1967	spa->spa_scrub_inflight++;
1968	mutex_exit(&spa->spa_scrub_lock);
1969
1970	zio_nowait(zio_read(rio, spa, bp, data, size,
1971	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1972	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1973	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1974	return (0);
1975}
1976
1977/* ARGSUSED */
1978int
1979verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1980{
1981	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1982		return (SET_ERROR(ENAMETOOLONG));
1983
1984	return (0);
1985}
1986
1987static int
1988spa_load_verify(spa_t *spa)
1989{
1990	zio_t *rio;
1991	spa_load_error_t sle = { 0 };
1992	zpool_rewind_policy_t policy;
1993	boolean_t verify_ok = B_FALSE;
1994	int error = 0;
1995
1996	zpool_get_rewind_policy(spa->spa_config, &policy);
1997
1998	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1999		return (0);
2000
2001	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2002	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2003	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2004	    DS_FIND_CHILDREN);
2005	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2006	if (error != 0)
2007		return (error);
2008
2009	rio = zio_root(spa, NULL, &sle,
2010	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2011
2012	if (spa_load_verify_metadata) {
2013		error = traverse_pool(spa, spa->spa_verify_min_txg,
2014		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2015		    spa_load_verify_cb, rio);
2016	}
2017
2018	(void) zio_wait(rio);
2019
2020	spa->spa_load_meta_errors = sle.sle_meta_count;
2021	spa->spa_load_data_errors = sle.sle_data_count;
2022
2023	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2024	    sle.sle_data_count <= policy.zrp_maxdata) {
2025		int64_t loss = 0;
2026
2027		verify_ok = B_TRUE;
2028		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2029		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2030
2031		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2032		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2033		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2034		VERIFY(nvlist_add_int64(spa->spa_load_info,
2035		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2036		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2037		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2038	} else {
2039		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2040	}
2041
2042	if (error) {
2043		if (error != ENXIO && error != EIO)
2044			error = SET_ERROR(EIO);
2045		return (error);
2046	}
2047
2048	return (verify_ok ? 0 : EIO);
2049}
2050
2051/*
2052 * Find a value in the pool props object.
2053 */
2054static void
2055spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2056{
2057	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2058	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2059}
2060
2061/*
2062 * Find a value in the pool directory object.
2063 */
2064static int
2065spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2066{
2067	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2068	    name, sizeof (uint64_t), 1, val));
2069}
2070
2071static int
2072spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2073{
2074	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2075	return (err);
2076}
2077
2078/*
2079 * Fix up config after a partly-completed split.  This is done with the
2080 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2081 * pool have that entry in their config, but only the splitting one contains
2082 * a list of all the guids of the vdevs that are being split off.
2083 *
2084 * This function determines what to do with that list: either rejoin
2085 * all the disks to the pool, or complete the splitting process.  To attempt
2086 * the rejoin, each disk that is offlined is marked online again, and
2087 * we do a reopen() call.  If the vdev label for every disk that was
2088 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2089 * then we call vdev_split() on each disk, and complete the split.
2090 *
2091 * Otherwise we leave the config alone, with all the vdevs in place in
2092 * the original pool.
2093 */
2094static void
2095spa_try_repair(spa_t *spa, nvlist_t *config)
2096{
2097	uint_t extracted;
2098	uint64_t *glist;
2099	uint_t i, gcount;
2100	nvlist_t *nvl;
2101	vdev_t **vd;
2102	boolean_t attempt_reopen;
2103
2104	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2105		return;
2106
2107	/* check that the config is complete */
2108	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2109	    &glist, &gcount) != 0)
2110		return;
2111
2112	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2113
2114	/* attempt to online all the vdevs & validate */
2115	attempt_reopen = B_TRUE;
2116	for (i = 0; i < gcount; i++) {
2117		if (glist[i] == 0)	/* vdev is hole */
2118			continue;
2119
2120		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2121		if (vd[i] == NULL) {
2122			/*
2123			 * Don't bother attempting to reopen the disks;
2124			 * just do the split.
2125			 */
2126			attempt_reopen = B_FALSE;
2127		} else {
2128			/* attempt to re-online it */
2129			vd[i]->vdev_offline = B_FALSE;
2130		}
2131	}
2132
2133	if (attempt_reopen) {
2134		vdev_reopen(spa->spa_root_vdev);
2135
2136		/* check each device to see what state it's in */
2137		for (extracted = 0, i = 0; i < gcount; i++) {
2138			if (vd[i] != NULL &&
2139			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2140				break;
2141			++extracted;
2142		}
2143	}
2144
2145	/*
2146	 * If every disk has been moved to the new pool, or if we never
2147	 * even attempted to look at them, then we split them off for
2148	 * good.
2149	 */
2150	if (!attempt_reopen || gcount == extracted) {
2151		for (i = 0; i < gcount; i++)
2152			if (vd[i] != NULL)
2153				vdev_split(vd[i]);
2154		vdev_reopen(spa->spa_root_vdev);
2155	}
2156
2157	kmem_free(vd, gcount * sizeof (vdev_t *));
2158}
2159
2160static int
2161spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2162    boolean_t mosconfig)
2163{
2164	nvlist_t *config = spa->spa_config;
2165	char *ereport = FM_EREPORT_ZFS_POOL;
2166	char *comment;
2167	int error;
2168	uint64_t pool_guid;
2169	nvlist_t *nvl;
2170
2171	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2172		return (SET_ERROR(EINVAL));
2173
2174	ASSERT(spa->spa_comment == NULL);
2175	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2176		spa->spa_comment = spa_strdup(comment);
2177
2178	/*
2179	 * Versioning wasn't explicitly added to the label until later, so if
2180	 * it's not present treat it as the initial version.
2181	 */
2182	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2183	    &spa->spa_ubsync.ub_version) != 0)
2184		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2185
2186	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2187	    &spa->spa_config_txg);
2188
2189	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2190	    spa_guid_exists(pool_guid, 0)) {
2191		error = SET_ERROR(EEXIST);
2192	} else {
2193		spa->spa_config_guid = pool_guid;
2194
2195		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2196		    &nvl) == 0) {
2197			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2198			    KM_SLEEP) == 0);
2199		}
2200
2201		nvlist_free(spa->spa_load_info);
2202		spa->spa_load_info = fnvlist_alloc();
2203
2204		gethrestime(&spa->spa_loaded_ts);
2205		error = spa_load_impl(spa, pool_guid, config, state, type,
2206		    mosconfig, &ereport);
2207	}
2208
2209	/*
2210	 * Don't count references from objsets that are already closed
2211	 * and are making their way through the eviction process.
2212	 */
2213	spa_evicting_os_wait(spa);
2214	spa->spa_minref = refcount_count(&spa->spa_refcount);
2215	if (error) {
2216		if (error != EEXIST) {
2217			spa->spa_loaded_ts.tv_sec = 0;
2218			spa->spa_loaded_ts.tv_nsec = 0;
2219		}
2220		if (error != EBADF) {
2221			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2222		}
2223	}
2224	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2225	spa->spa_ena = 0;
2226
2227	return (error);
2228}
2229
2230/*
2231 * Load an existing storage pool, using the pool's builtin spa_config as a
2232 * source of configuration information.
2233 */
2234static int
2235spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2236    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2237    char **ereport)
2238{
2239	int error = 0;
2240	nvlist_t *nvroot = NULL;
2241	nvlist_t *label;
2242	vdev_t *rvd;
2243	uberblock_t *ub = &spa->spa_uberblock;
2244	uint64_t children, config_cache_txg = spa->spa_config_txg;
2245	int orig_mode = spa->spa_mode;
2246	int parse;
2247	uint64_t obj;
2248	boolean_t missing_feat_write = B_FALSE;
2249
2250	/*
2251	 * If this is an untrusted config, access the pool in read-only mode.
2252	 * This prevents things like resilvering recently removed devices.
2253	 */
2254	if (!mosconfig)
2255		spa->spa_mode = FREAD;
2256
2257	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2258
2259	spa->spa_load_state = state;
2260
2261	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2262		return (SET_ERROR(EINVAL));
2263
2264	parse = (type == SPA_IMPORT_EXISTING ?
2265	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2266
2267	/*
2268	 * Create "The Godfather" zio to hold all async IOs
2269	 */
2270	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2271	    KM_SLEEP);
2272	for (int i = 0; i < max_ncpus; i++) {
2273		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2274		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2275		    ZIO_FLAG_GODFATHER);
2276	}
2277
2278	/*
2279	 * Parse the configuration into a vdev tree.  We explicitly set the
2280	 * value that will be returned by spa_version() since parsing the
2281	 * configuration requires knowing the version number.
2282	 */
2283	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2284	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2285	spa_config_exit(spa, SCL_ALL, FTAG);
2286
2287	if (error != 0)
2288		return (error);
2289
2290	ASSERT(spa->spa_root_vdev == rvd);
2291	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2292	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2293
2294	if (type != SPA_IMPORT_ASSEMBLE) {
2295		ASSERT(spa_guid(spa) == pool_guid);
2296	}
2297
2298	/*
2299	 * Try to open all vdevs, loading each label in the process.
2300	 */
2301	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2302	error = vdev_open(rvd);
2303	spa_config_exit(spa, SCL_ALL, FTAG);
2304	if (error != 0)
2305		return (error);
2306
2307	/*
2308	 * We need to validate the vdev labels against the configuration that
2309	 * we have in hand, which is dependent on the setting of mosconfig. If
2310	 * mosconfig is true then we're validating the vdev labels based on
2311	 * that config.  Otherwise, we're validating against the cached config
2312	 * (zpool.cache) that was read when we loaded the zfs module, and then
2313	 * later we will recursively call spa_load() and validate against
2314	 * the vdev config.
2315	 *
2316	 * If we're assembling a new pool that's been split off from an
2317	 * existing pool, the labels haven't yet been updated so we skip
2318	 * validation for now.
2319	 */
2320	if (type != SPA_IMPORT_ASSEMBLE) {
2321		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2322		error = vdev_validate(rvd, mosconfig);
2323		spa_config_exit(spa, SCL_ALL, FTAG);
2324
2325		if (error != 0)
2326			return (error);
2327
2328		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2329			return (SET_ERROR(ENXIO));
2330	}
2331
2332	/*
2333	 * Find the best uberblock.
2334	 */
2335	vdev_uberblock_load(rvd, ub, &label);
2336
2337	/*
2338	 * If we weren't able to find a single valid uberblock, return failure.
2339	 */
2340	if (ub->ub_txg == 0) {
2341		nvlist_free(label);
2342		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2343	}
2344
2345	/*
2346	 * If the pool has an unsupported version we can't open it.
2347	 */
2348	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2349		nvlist_free(label);
2350		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2351	}
2352
2353	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2354		nvlist_t *features;
2355
2356		/*
2357		 * If we weren't able to find what's necessary for reading the
2358		 * MOS in the label, return failure.
2359		 */
2360		if (label == NULL || nvlist_lookup_nvlist(label,
2361		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2362			nvlist_free(label);
2363			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2364			    ENXIO));
2365		}
2366
2367		/*
2368		 * Update our in-core representation with the definitive values
2369		 * from the label.
2370		 */
2371		nvlist_free(spa->spa_label_features);
2372		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2373	}
2374
2375	nvlist_free(label);
2376
2377	/*
2378	 * Look through entries in the label nvlist's features_for_read. If
2379	 * there is a feature listed there which we don't understand then we
2380	 * cannot open a pool.
2381	 */
2382	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2383		nvlist_t *unsup_feat;
2384
2385		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2386		    0);
2387
2388		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2389		    NULL); nvp != NULL;
2390		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2391			if (!zfeature_is_supported(nvpair_name(nvp))) {
2392				VERIFY(nvlist_add_string(unsup_feat,
2393				    nvpair_name(nvp), "") == 0);
2394			}
2395		}
2396
2397		if (!nvlist_empty(unsup_feat)) {
2398			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2399			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2400			nvlist_free(unsup_feat);
2401			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2402			    ENOTSUP));
2403		}
2404
2405		nvlist_free(unsup_feat);
2406	}
2407
2408	/*
2409	 * If the vdev guid sum doesn't match the uberblock, we have an
2410	 * incomplete configuration.  We first check to see if the pool
2411	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2412	 * If it is, defer the vdev_guid_sum check till later so we
2413	 * can handle missing vdevs.
2414	 */
2415	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2416	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2417	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2418		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2419
2420	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2421		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2422		spa_try_repair(spa, config);
2423		spa_config_exit(spa, SCL_ALL, FTAG);
2424		nvlist_free(spa->spa_config_splitting);
2425		spa->spa_config_splitting = NULL;
2426	}
2427
2428	/*
2429	 * Initialize internal SPA structures.
2430	 */
2431	spa->spa_state = POOL_STATE_ACTIVE;
2432	spa->spa_ubsync = spa->spa_uberblock;
2433	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2434	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2435	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2436	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2437	spa->spa_claim_max_txg = spa->spa_first_txg;
2438	spa->spa_prev_software_version = ub->ub_software_version;
2439
2440	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2441	if (error)
2442		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2444
2445	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2446		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447
2448	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2449		boolean_t missing_feat_read = B_FALSE;
2450		nvlist_t *unsup_feat, *enabled_feat;
2451
2452		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2453		    &spa->spa_feat_for_read_obj) != 0) {
2454			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455		}
2456
2457		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2458		    &spa->spa_feat_for_write_obj) != 0) {
2459			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2460		}
2461
2462		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2463		    &spa->spa_feat_desc_obj) != 0) {
2464			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465		}
2466
2467		enabled_feat = fnvlist_alloc();
2468		unsup_feat = fnvlist_alloc();
2469
2470		if (!spa_features_check(spa, B_FALSE,
2471		    unsup_feat, enabled_feat))
2472			missing_feat_read = B_TRUE;
2473
2474		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2475			if (!spa_features_check(spa, B_TRUE,
2476			    unsup_feat, enabled_feat)) {
2477				missing_feat_write = B_TRUE;
2478			}
2479		}
2480
2481		fnvlist_add_nvlist(spa->spa_load_info,
2482		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2483
2484		if (!nvlist_empty(unsup_feat)) {
2485			fnvlist_add_nvlist(spa->spa_load_info,
2486			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2487		}
2488
2489		fnvlist_free(enabled_feat);
2490		fnvlist_free(unsup_feat);
2491
2492		if (!missing_feat_read) {
2493			fnvlist_add_boolean(spa->spa_load_info,
2494			    ZPOOL_CONFIG_CAN_RDONLY);
2495		}
2496
2497		/*
2498		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2499		 * twofold: to determine whether the pool is available for
2500		 * import in read-write mode and (if it is not) whether the
2501		 * pool is available for import in read-only mode. If the pool
2502		 * is available for import in read-write mode, it is displayed
2503		 * as available in userland; if it is not available for import
2504		 * in read-only mode, it is displayed as unavailable in
2505		 * userland. If the pool is available for import in read-only
2506		 * mode but not read-write mode, it is displayed as unavailable
2507		 * in userland with a special note that the pool is actually
2508		 * available for open in read-only mode.
2509		 *
2510		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2511		 * missing a feature for write, we must first determine whether
2512		 * the pool can be opened read-only before returning to
2513		 * userland in order to know whether to display the
2514		 * abovementioned note.
2515		 */
2516		if (missing_feat_read || (missing_feat_write &&
2517		    spa_writeable(spa))) {
2518			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2519			    ENOTSUP));
2520		}
2521
2522		/*
2523		 * Load refcounts for ZFS features from disk into an in-memory
2524		 * cache during SPA initialization.
2525		 */
2526		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2527			uint64_t refcount;
2528
2529			error = feature_get_refcount_from_disk(spa,
2530			    &spa_feature_table[i], &refcount);
2531			if (error == 0) {
2532				spa->spa_feat_refcount_cache[i] = refcount;
2533			} else if (error == ENOTSUP) {
2534				spa->spa_feat_refcount_cache[i] =
2535				    SPA_FEATURE_DISABLED;
2536			} else {
2537				return (spa_vdev_err(rvd,
2538				    VDEV_AUX_CORRUPT_DATA, EIO));
2539			}
2540		}
2541	}
2542
2543	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2544		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2545		    &spa->spa_feat_enabled_txg_obj) != 0)
2546			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2547	}
2548
2549	spa->spa_is_initializing = B_TRUE;
2550	error = dsl_pool_open(spa->spa_dsl_pool);
2551	spa->spa_is_initializing = B_FALSE;
2552	if (error != 0)
2553		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2554
2555	if (!mosconfig) {
2556		uint64_t hostid;
2557		nvlist_t *policy = NULL, *nvconfig;
2558
2559		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2560			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2561
2562		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2563		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2564			char *hostname;
2565			unsigned long myhostid = 0;
2566
2567			VERIFY(nvlist_lookup_string(nvconfig,
2568			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2569
2570#ifdef	_KERNEL
2571			myhostid = zone_get_hostid(NULL);
2572#else	/* _KERNEL */
2573			/*
2574			 * We're emulating the system's hostid in userland, so
2575			 * we can't use zone_get_hostid().
2576			 */
2577			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2578#endif	/* _KERNEL */
2579			if (check_hostid && hostid != 0 && myhostid != 0 &&
2580			    hostid != myhostid) {
2581				nvlist_free(nvconfig);
2582				cmn_err(CE_WARN, "pool '%s' could not be "
2583				    "loaded as it was last accessed by "
2584				    "another system (host: %s hostid: 0x%lx). "
2585				    "See: http://illumos.org/msg/ZFS-8000-EY",
2586				    spa_name(spa), hostname,
2587				    (unsigned long)hostid);
2588				return (SET_ERROR(EBADF));
2589			}
2590		}
2591		if (nvlist_lookup_nvlist(spa->spa_config,
2592		    ZPOOL_REWIND_POLICY, &policy) == 0)
2593			VERIFY(nvlist_add_nvlist(nvconfig,
2594			    ZPOOL_REWIND_POLICY, policy) == 0);
2595
2596		spa_config_set(spa, nvconfig);
2597		spa_unload(spa);
2598		spa_deactivate(spa);
2599		spa_activate(spa, orig_mode);
2600
2601		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2602	}
2603
2604	/* Grab the secret checksum salt from the MOS. */
2605	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2606	    DMU_POOL_CHECKSUM_SALT, 1,
2607	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2608	    spa->spa_cksum_salt.zcs_bytes);
2609	if (error == ENOENT) {
2610		/* Generate a new salt for subsequent use */
2611		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2612		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2613	} else if (error != 0) {
2614		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2615	}
2616
2617	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2618		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2620	if (error != 0)
2621		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622
2623	/*
2624	 * Load the bit that tells us to use the new accounting function
2625	 * (raid-z deflation).  If we have an older pool, this will not
2626	 * be present.
2627	 */
2628	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2629	if (error != 0 && error != ENOENT)
2630		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631
2632	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2633	    &spa->spa_creation_version);
2634	if (error != 0 && error != ENOENT)
2635		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2636
2637	/*
2638	 * Load the persistent error log.  If we have an older pool, this will
2639	 * not be present.
2640	 */
2641	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2642	if (error != 0 && error != ENOENT)
2643		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2644
2645	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2646	    &spa->spa_errlog_scrub);
2647	if (error != 0 && error != ENOENT)
2648		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649
2650	/*
2651	 * Load the history object.  If we have an older pool, this
2652	 * will not be present.
2653	 */
2654	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2655	if (error != 0 && error != ENOENT)
2656		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657
2658	/*
2659	 * If we're assembling the pool from the split-off vdevs of
2660	 * an existing pool, we don't want to attach the spares & cache
2661	 * devices.
2662	 */
2663
2664	/*
2665	 * Load any hot spares for this pool.
2666	 */
2667	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2668	if (error != 0 && error != ENOENT)
2669		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2670	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2671		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2672		if (load_nvlist(spa, spa->spa_spares.sav_object,
2673		    &spa->spa_spares.sav_config) != 0)
2674			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2675
2676		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2677		spa_load_spares(spa);
2678		spa_config_exit(spa, SCL_ALL, FTAG);
2679	} else if (error == 0) {
2680		spa->spa_spares.sav_sync = B_TRUE;
2681	}
2682
2683	/*
2684	 * Load any level 2 ARC devices for this pool.
2685	 */
2686	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2687	    &spa->spa_l2cache.sav_object);
2688	if (error != 0 && error != ENOENT)
2689		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2691		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2692		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2693		    &spa->spa_l2cache.sav_config) != 0)
2694			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2695
2696		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2697		spa_load_l2cache(spa);
2698		spa_config_exit(spa, SCL_ALL, FTAG);
2699	} else if (error == 0) {
2700		spa->spa_l2cache.sav_sync = B_TRUE;
2701	}
2702
2703	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2704
2705	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2706	if (error && error != ENOENT)
2707		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2708
2709	if (error == 0) {
2710		uint64_t autoreplace;
2711
2712		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2713		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2714		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2715		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2716		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2717		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2718		    &spa->spa_dedup_ditto);
2719
2720		spa->spa_autoreplace = (autoreplace != 0);
2721	}
2722
2723	/*
2724	 * If the 'autoreplace' property is set, then post a resource notifying
2725	 * the ZFS DE that it should not issue any faults for unopenable
2726	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2727	 * unopenable vdevs so that the normal autoreplace handler can take
2728	 * over.
2729	 */
2730	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2731		spa_check_removed(spa->spa_root_vdev);
2732		/*
2733		 * For the import case, this is done in spa_import(), because
2734		 * at this point we're using the spare definitions from
2735		 * the MOS config, not necessarily from the userland config.
2736		 */
2737		if (state != SPA_LOAD_IMPORT) {
2738			spa_aux_check_removed(&spa->spa_spares);
2739			spa_aux_check_removed(&spa->spa_l2cache);
2740		}
2741	}
2742
2743	/*
2744	 * Load the vdev state for all toplevel vdevs.
2745	 */
2746	vdev_load(rvd);
2747
2748	/*
2749	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2750	 */
2751	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2752	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2753	spa_config_exit(spa, SCL_ALL, FTAG);
2754
2755	/*
2756	 * Load the DDTs (dedup tables).
2757	 */
2758	error = ddt_load(spa);
2759	if (error != 0)
2760		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2761
2762	spa_update_dspace(spa);
2763
2764	/*
2765	 * Validate the config, using the MOS config to fill in any
2766	 * information which might be missing.  If we fail to validate
2767	 * the config then declare the pool unfit for use. If we're
2768	 * assembling a pool from a split, the log is not transferred
2769	 * over.
2770	 */
2771	if (type != SPA_IMPORT_ASSEMBLE) {
2772		nvlist_t *nvconfig;
2773
2774		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2775			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2776
2777		if (!spa_config_valid(spa, nvconfig)) {
2778			nvlist_free(nvconfig);
2779			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2780			    ENXIO));
2781		}
2782		nvlist_free(nvconfig);
2783
2784		/*
2785		 * Now that we've validated the config, check the state of the
2786		 * root vdev.  If it can't be opened, it indicates one or
2787		 * more toplevel vdevs are faulted.
2788		 */
2789		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2790			return (SET_ERROR(ENXIO));
2791
2792		if (spa_writeable(spa) && spa_check_logs(spa)) {
2793			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2794			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2795		}
2796	}
2797
2798	if (missing_feat_write) {
2799		ASSERT(state == SPA_LOAD_TRYIMPORT);
2800
2801		/*
2802		 * At this point, we know that we can open the pool in
2803		 * read-only mode but not read-write mode. We now have enough
2804		 * information and can return to userland.
2805		 */
2806		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2807	}
2808
2809	/*
2810	 * We've successfully opened the pool, verify that we're ready
2811	 * to start pushing transactions.
2812	 */
2813	if (state != SPA_LOAD_TRYIMPORT) {
2814		if (error = spa_load_verify(spa))
2815			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2816			    error));
2817	}
2818
2819	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2820	    spa->spa_load_max_txg == UINT64_MAX)) {
2821		dmu_tx_t *tx;
2822		int need_update = B_FALSE;
2823		dsl_pool_t *dp = spa_get_dsl(spa);
2824
2825		ASSERT(state != SPA_LOAD_TRYIMPORT);
2826
2827		/*
2828		 * Claim log blocks that haven't been committed yet.
2829		 * This must all happen in a single txg.
2830		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2831		 * invoked from zil_claim_log_block()'s i/o done callback.
2832		 * Price of rollback is that we abandon the log.
2833		 */
2834		spa->spa_claiming = B_TRUE;
2835
2836		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2837		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2838		    zil_claim, tx, DS_FIND_CHILDREN);
2839		dmu_tx_commit(tx);
2840
2841		spa->spa_claiming = B_FALSE;
2842
2843		spa_set_log_state(spa, SPA_LOG_GOOD);
2844		spa->spa_sync_on = B_TRUE;
2845		txg_sync_start(spa->spa_dsl_pool);
2846
2847		/*
2848		 * Wait for all claims to sync.  We sync up to the highest
2849		 * claimed log block birth time so that claimed log blocks
2850		 * don't appear to be from the future.  spa_claim_max_txg
2851		 * will have been set for us by either zil_check_log_chain()
2852		 * (invoked from spa_check_logs()) or zil_claim() above.
2853		 */
2854		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2855
2856		/*
2857		 * If the config cache is stale, or we have uninitialized
2858		 * metaslabs (see spa_vdev_add()), then update the config.
2859		 *
2860		 * If this is a verbatim import, trust the current
2861		 * in-core spa_config and update the disk labels.
2862		 */
2863		if (config_cache_txg != spa->spa_config_txg ||
2864		    state == SPA_LOAD_IMPORT ||
2865		    state == SPA_LOAD_RECOVER ||
2866		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2867			need_update = B_TRUE;
2868
2869		for (int c = 0; c < rvd->vdev_children; c++)
2870			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2871				need_update = B_TRUE;
2872
2873		/*
2874		 * Update the config cache asychronously in case we're the
2875		 * root pool, in which case the config cache isn't writable yet.
2876		 */
2877		if (need_update)
2878			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2879
2880		/*
2881		 * Check all DTLs to see if anything needs resilvering.
2882		 */
2883		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2884		    vdev_resilver_needed(rvd, NULL, NULL))
2885			spa_async_request(spa, SPA_ASYNC_RESILVER);
2886
2887		/*
2888		 * Log the fact that we booted up (so that we can detect if
2889		 * we rebooted in the middle of an operation).
2890		 */
2891		spa_history_log_version(spa, "open");
2892
2893		/*
2894		 * Delete any inconsistent datasets.
2895		 */
2896		(void) dmu_objset_find(spa_name(spa),
2897		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2898
2899		/*
2900		 * Clean up any stale temporary dataset userrefs.
2901		 */
2902		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2903	}
2904
2905	return (0);
2906}
2907
2908static int
2909spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2910{
2911	int mode = spa->spa_mode;
2912
2913	spa_unload(spa);
2914	spa_deactivate(spa);
2915
2916	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2917
2918	spa_activate(spa, mode);
2919	spa_async_suspend(spa);
2920
2921	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2922}
2923
2924/*
2925 * If spa_load() fails this function will try loading prior txg's. If
2926 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2927 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2928 * function will not rewind the pool and will return the same error as
2929 * spa_load().
2930 */
2931static int
2932spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2933    uint64_t max_request, int rewind_flags)
2934{
2935	nvlist_t *loadinfo = NULL;
2936	nvlist_t *config = NULL;
2937	int load_error, rewind_error;
2938	uint64_t safe_rewind_txg;
2939	uint64_t min_txg;
2940
2941	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2942		spa->spa_load_max_txg = spa->spa_load_txg;
2943		spa_set_log_state(spa, SPA_LOG_CLEAR);
2944	} else {
2945		spa->spa_load_max_txg = max_request;
2946		if (max_request != UINT64_MAX)
2947			spa->spa_extreme_rewind = B_TRUE;
2948	}
2949
2950	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2951	    mosconfig);
2952	if (load_error == 0)
2953		return (0);
2954
2955	if (spa->spa_root_vdev != NULL)
2956		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2957
2958	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2959	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2960
2961	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2962		nvlist_free(config);
2963		return (load_error);
2964	}
2965
2966	if (state == SPA_LOAD_RECOVER) {
2967		/* Price of rolling back is discarding txgs, including log */
2968		spa_set_log_state(spa, SPA_LOG_CLEAR);
2969	} else {
2970		/*
2971		 * If we aren't rolling back save the load info from our first
2972		 * import attempt so that we can restore it after attempting
2973		 * to rewind.
2974		 */
2975		loadinfo = spa->spa_load_info;
2976		spa->spa_load_info = fnvlist_alloc();
2977	}
2978
2979	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2980	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2981	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2982	    TXG_INITIAL : safe_rewind_txg;
2983
2984	/*
2985	 * Continue as long as we're finding errors, we're still within
2986	 * the acceptable rewind range, and we're still finding uberblocks
2987	 */
2988	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2989	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2990		if (spa->spa_load_max_txg < safe_rewind_txg)
2991			spa->spa_extreme_rewind = B_TRUE;
2992		rewind_error = spa_load_retry(spa, state, mosconfig);
2993	}
2994
2995	spa->spa_extreme_rewind = B_FALSE;
2996	spa->spa_load_max_txg = UINT64_MAX;
2997
2998	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2999		spa_config_set(spa, config);
3000
3001	if (state == SPA_LOAD_RECOVER) {
3002		ASSERT3P(loadinfo, ==, NULL);
3003		return (rewind_error);
3004	} else {
3005		/* Store the rewind info as part of the initial load info */
3006		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3007		    spa->spa_load_info);
3008
3009		/* Restore the initial load info */
3010		fnvlist_free(spa->spa_load_info);
3011		spa->spa_load_info = loadinfo;
3012
3013		return (load_error);
3014	}
3015}
3016
3017/*
3018 * Pool Open/Import
3019 *
3020 * The import case is identical to an open except that the configuration is sent
3021 * down from userland, instead of grabbed from the configuration cache.  For the
3022 * case of an open, the pool configuration will exist in the
3023 * POOL_STATE_UNINITIALIZED state.
3024 *
3025 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3026 * the same time open the pool, without having to keep around the spa_t in some
3027 * ambiguous state.
3028 */
3029static int
3030spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3031    nvlist_t **config)
3032{
3033	spa_t *spa;
3034	spa_load_state_t state = SPA_LOAD_OPEN;
3035	int error;
3036	int locked = B_FALSE;
3037	int firstopen = B_FALSE;
3038
3039	*spapp = NULL;
3040
3041	/*
3042	 * As disgusting as this is, we need to support recursive calls to this
3043	 * function because dsl_dir_open() is called during spa_load(), and ends
3044	 * up calling spa_open() again.  The real fix is to figure out how to
3045	 * avoid dsl_dir_open() calling this in the first place.
3046	 */
3047	if (mutex_owner(&spa_namespace_lock) != curthread) {
3048		mutex_enter(&spa_namespace_lock);
3049		locked = B_TRUE;
3050	}
3051
3052	if ((spa = spa_lookup(pool)) == NULL) {
3053		if (locked)
3054			mutex_exit(&spa_namespace_lock);
3055		return (SET_ERROR(ENOENT));
3056	}
3057
3058	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3059		zpool_rewind_policy_t policy;
3060
3061		firstopen = B_TRUE;
3062
3063		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3064		    &policy);
3065		if (policy.zrp_request & ZPOOL_DO_REWIND)
3066			state = SPA_LOAD_RECOVER;
3067
3068		spa_activate(spa, spa_mode_global);
3069
3070		if (state != SPA_LOAD_RECOVER)
3071			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3072
3073		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3074		    policy.zrp_request);
3075
3076		if (error == EBADF) {
3077			/*
3078			 * If vdev_validate() returns failure (indicated by
3079			 * EBADF), it indicates that one of the vdevs indicates
3080			 * that the pool has been exported or destroyed.  If
3081			 * this is the case, the config cache is out of sync and
3082			 * we should remove the pool from the namespace.
3083			 */
3084			spa_unload(spa);
3085			spa_deactivate(spa);
3086			spa_config_sync(spa, B_TRUE, B_TRUE);
3087			spa_remove(spa);
3088			if (locked)
3089				mutex_exit(&spa_namespace_lock);
3090			return (SET_ERROR(ENOENT));
3091		}
3092
3093		if (error) {
3094			/*
3095			 * We can't open the pool, but we still have useful
3096			 * information: the state of each vdev after the
3097			 * attempted vdev_open().  Return this to the user.
3098			 */
3099			if (config != NULL && spa->spa_config) {
3100				VERIFY(nvlist_dup(spa->spa_config, config,
3101				    KM_SLEEP) == 0);
3102				VERIFY(nvlist_add_nvlist(*config,
3103				    ZPOOL_CONFIG_LOAD_INFO,
3104				    spa->spa_load_info) == 0);
3105			}
3106			spa_unload(spa);
3107			spa_deactivate(spa);
3108			spa->spa_last_open_failed = error;
3109			if (locked)
3110				mutex_exit(&spa_namespace_lock);
3111			*spapp = NULL;
3112			return (error);
3113		}
3114	}
3115
3116	spa_open_ref(spa, tag);
3117
3118	if (config != NULL)
3119		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3120
3121	/*
3122	 * If we've recovered the pool, pass back any information we
3123	 * gathered while doing the load.
3124	 */
3125	if (state == SPA_LOAD_RECOVER) {
3126		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3127		    spa->spa_load_info) == 0);
3128	}
3129
3130	if (locked) {
3131		spa->spa_last_open_failed = 0;
3132		spa->spa_last_ubsync_txg = 0;
3133		spa->spa_load_txg = 0;
3134		mutex_exit(&spa_namespace_lock);
3135#ifdef __FreeBSD__
3136#ifdef _KERNEL
3137		if (firstopen)
3138			zvol_create_minors(spa->spa_name);
3139#endif
3140#endif
3141	}
3142
3143	*spapp = spa;
3144
3145	return (0);
3146}
3147
3148int
3149spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3150    nvlist_t **config)
3151{
3152	return (spa_open_common(name, spapp, tag, policy, config));
3153}
3154
3155int
3156spa_open(const char *name, spa_t **spapp, void *tag)
3157{
3158	return (spa_open_common(name, spapp, tag, NULL, NULL));
3159}
3160
3161/*
3162 * Lookup the given spa_t, incrementing the inject count in the process,
3163 * preventing it from being exported or destroyed.
3164 */
3165spa_t *
3166spa_inject_addref(char *name)
3167{
3168	spa_t *spa;
3169
3170	mutex_enter(&spa_namespace_lock);
3171	if ((spa = spa_lookup(name)) == NULL) {
3172		mutex_exit(&spa_namespace_lock);
3173		return (NULL);
3174	}
3175	spa->spa_inject_ref++;
3176	mutex_exit(&spa_namespace_lock);
3177
3178	return (spa);
3179}
3180
3181void
3182spa_inject_delref(spa_t *spa)
3183{
3184	mutex_enter(&spa_namespace_lock);
3185	spa->spa_inject_ref--;
3186	mutex_exit(&spa_namespace_lock);
3187}
3188
3189/*
3190 * Add spares device information to the nvlist.
3191 */
3192static void
3193spa_add_spares(spa_t *spa, nvlist_t *config)
3194{
3195	nvlist_t **spares;
3196	uint_t i, nspares;
3197	nvlist_t *nvroot;
3198	uint64_t guid;
3199	vdev_stat_t *vs;
3200	uint_t vsc;
3201	uint64_t pool;
3202
3203	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3204
3205	if (spa->spa_spares.sav_count == 0)
3206		return;
3207
3208	VERIFY(nvlist_lookup_nvlist(config,
3209	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3210	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3211	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3212	if (nspares != 0) {
3213		VERIFY(nvlist_add_nvlist_array(nvroot,
3214		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3215		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3216		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3217
3218		/*
3219		 * Go through and find any spares which have since been
3220		 * repurposed as an active spare.  If this is the case, update
3221		 * their status appropriately.
3222		 */
3223		for (i = 0; i < nspares; i++) {
3224			VERIFY(nvlist_lookup_uint64(spares[i],
3225			    ZPOOL_CONFIG_GUID, &guid) == 0);
3226			if (spa_spare_exists(guid, &pool, NULL) &&
3227			    pool != 0ULL) {
3228				VERIFY(nvlist_lookup_uint64_array(
3229				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3230				    (uint64_t **)&vs, &vsc) == 0);
3231				vs->vs_state = VDEV_STATE_CANT_OPEN;
3232				vs->vs_aux = VDEV_AUX_SPARED;
3233			}
3234		}
3235	}
3236}
3237
3238/*
3239 * Add l2cache device information to the nvlist, including vdev stats.
3240 */
3241static void
3242spa_add_l2cache(spa_t *spa, nvlist_t *config)
3243{
3244	nvlist_t **l2cache;
3245	uint_t i, j, nl2cache;
3246	nvlist_t *nvroot;
3247	uint64_t guid;
3248	vdev_t *vd;
3249	vdev_stat_t *vs;
3250	uint_t vsc;
3251
3252	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3253
3254	if (spa->spa_l2cache.sav_count == 0)
3255		return;
3256
3257	VERIFY(nvlist_lookup_nvlist(config,
3258	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3259	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3260	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3261	if (nl2cache != 0) {
3262		VERIFY(nvlist_add_nvlist_array(nvroot,
3263		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3264		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3265		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3266
3267		/*
3268		 * Update level 2 cache device stats.
3269		 */
3270
3271		for (i = 0; i < nl2cache; i++) {
3272			VERIFY(nvlist_lookup_uint64(l2cache[i],
3273			    ZPOOL_CONFIG_GUID, &guid) == 0);
3274
3275			vd = NULL;
3276			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3277				if (guid ==
3278				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3279					vd = spa->spa_l2cache.sav_vdevs[j];
3280					break;
3281				}
3282			}
3283			ASSERT(vd != NULL);
3284
3285			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3286			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3287			    == 0);
3288			vdev_get_stats(vd, vs);
3289		}
3290	}
3291}
3292
3293static void
3294spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3295{
3296	nvlist_t *features;
3297	zap_cursor_t zc;
3298	zap_attribute_t za;
3299
3300	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3301	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3302
3303	/* We may be unable to read features if pool is suspended. */
3304	if (spa_suspended(spa))
3305		goto out;
3306
3307	if (spa->spa_feat_for_read_obj != 0) {
3308		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3309		    spa->spa_feat_for_read_obj);
3310		    zap_cursor_retrieve(&zc, &za) == 0;
3311		    zap_cursor_advance(&zc)) {
3312			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3313			    za.za_num_integers == 1);
3314			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3315			    za.za_first_integer));
3316		}
3317		zap_cursor_fini(&zc);
3318	}
3319
3320	if (spa->spa_feat_for_write_obj != 0) {
3321		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3322		    spa->spa_feat_for_write_obj);
3323		    zap_cursor_retrieve(&zc, &za) == 0;
3324		    zap_cursor_advance(&zc)) {
3325			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3326			    za.za_num_integers == 1);
3327			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3328			    za.za_first_integer));
3329		}
3330		zap_cursor_fini(&zc);
3331	}
3332
3333out:
3334	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3335	    features) == 0);
3336	nvlist_free(features);
3337}
3338
3339int
3340spa_get_stats(const char *name, nvlist_t **config,
3341    char *altroot, size_t buflen)
3342{
3343	int error;
3344	spa_t *spa;
3345
3346	*config = NULL;
3347	error = spa_open_common(name, &spa, FTAG, NULL, config);
3348
3349	if (spa != NULL) {
3350		/*
3351		 * This still leaves a window of inconsistency where the spares
3352		 * or l2cache devices could change and the config would be
3353		 * self-inconsistent.
3354		 */
3355		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3356
3357		if (*config != NULL) {
3358			uint64_t loadtimes[2];
3359
3360			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3361			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3362			VERIFY(nvlist_add_uint64_array(*config,
3363			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3364
3365			VERIFY(nvlist_add_uint64(*config,
3366			    ZPOOL_CONFIG_ERRCOUNT,
3367			    spa_get_errlog_size(spa)) == 0);
3368
3369			if (spa_suspended(spa))
3370				VERIFY(nvlist_add_uint64(*config,
3371				    ZPOOL_CONFIG_SUSPENDED,
3372				    spa->spa_failmode) == 0);
3373
3374			spa_add_spares(spa, *config);
3375			spa_add_l2cache(spa, *config);
3376			spa_add_feature_stats(spa, *config);
3377		}
3378	}
3379
3380	/*
3381	 * We want to get the alternate root even for faulted pools, so we cheat
3382	 * and call spa_lookup() directly.
3383	 */
3384	if (altroot) {
3385		if (spa == NULL) {
3386			mutex_enter(&spa_namespace_lock);
3387			spa = spa_lookup(name);
3388			if (spa)
3389				spa_altroot(spa, altroot, buflen);
3390			else
3391				altroot[0] = '\0';
3392			spa = NULL;
3393			mutex_exit(&spa_namespace_lock);
3394		} else {
3395			spa_altroot(spa, altroot, buflen);
3396		}
3397	}
3398
3399	if (spa != NULL) {
3400		spa_config_exit(spa, SCL_CONFIG, FTAG);
3401		spa_close(spa, FTAG);
3402	}
3403
3404	return (error);
3405}
3406
3407/*
3408 * Validate that the auxiliary device array is well formed.  We must have an
3409 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3410 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3411 * specified, as long as they are well-formed.
3412 */
3413static int
3414spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3415    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3416    vdev_labeltype_t label)
3417{
3418	nvlist_t **dev;
3419	uint_t i, ndev;
3420	vdev_t *vd;
3421	int error;
3422
3423	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3424
3425	/*
3426	 * It's acceptable to have no devs specified.
3427	 */
3428	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3429		return (0);
3430
3431	if (ndev == 0)
3432		return (SET_ERROR(EINVAL));
3433
3434	/*
3435	 * Make sure the pool is formatted with a version that supports this
3436	 * device type.
3437	 */
3438	if (spa_version(spa) < version)
3439		return (SET_ERROR(ENOTSUP));
3440
3441	/*
3442	 * Set the pending device list so we correctly handle device in-use
3443	 * checking.
3444	 */
3445	sav->sav_pending = dev;
3446	sav->sav_npending = ndev;
3447
3448	for (i = 0; i < ndev; i++) {
3449		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3450		    mode)) != 0)
3451			goto out;
3452
3453		if (!vd->vdev_ops->vdev_op_leaf) {
3454			vdev_free(vd);
3455			error = SET_ERROR(EINVAL);
3456			goto out;
3457		}
3458
3459		/*
3460		 * The L2ARC currently only supports disk devices in
3461		 * kernel context.  For user-level testing, we allow it.
3462		 */
3463#ifdef _KERNEL
3464		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3465		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3466			error = SET_ERROR(ENOTBLK);
3467			vdev_free(vd);
3468			goto out;
3469		}
3470#endif
3471		vd->vdev_top = vd;
3472
3473		if ((error = vdev_open(vd)) == 0 &&
3474		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3475			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3476			    vd->vdev_guid) == 0);
3477		}
3478
3479		vdev_free(vd);
3480
3481		if (error &&
3482		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3483			goto out;
3484		else
3485			error = 0;
3486	}
3487
3488out:
3489	sav->sav_pending = NULL;
3490	sav->sav_npending = 0;
3491	return (error);
3492}
3493
3494static int
3495spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3496{
3497	int error;
3498
3499	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3500
3501	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3502	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3503	    VDEV_LABEL_SPARE)) != 0) {
3504		return (error);
3505	}
3506
3507	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3508	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3509	    VDEV_LABEL_L2CACHE));
3510}
3511
3512static void
3513spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3514    const char *config)
3515{
3516	int i;
3517
3518	if (sav->sav_config != NULL) {
3519		nvlist_t **olddevs;
3520		uint_t oldndevs;
3521		nvlist_t **newdevs;
3522
3523		/*
3524		 * Generate new dev list by concatentating with the
3525		 * current dev list.
3526		 */
3527		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3528		    &olddevs, &oldndevs) == 0);
3529
3530		newdevs = kmem_alloc(sizeof (void *) *
3531		    (ndevs + oldndevs), KM_SLEEP);
3532		for (i = 0; i < oldndevs; i++)
3533			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3534			    KM_SLEEP) == 0);
3535		for (i = 0; i < ndevs; i++)
3536			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3537			    KM_SLEEP) == 0);
3538
3539		VERIFY(nvlist_remove(sav->sav_config, config,
3540		    DATA_TYPE_NVLIST_ARRAY) == 0);
3541
3542		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3543		    config, newdevs, ndevs + oldndevs) == 0);
3544		for (i = 0; i < oldndevs + ndevs; i++)
3545			nvlist_free(newdevs[i]);
3546		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3547	} else {
3548		/*
3549		 * Generate a new dev list.
3550		 */
3551		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3552		    KM_SLEEP) == 0);
3553		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3554		    devs, ndevs) == 0);
3555	}
3556}
3557
3558/*
3559 * Stop and drop level 2 ARC devices
3560 */
3561void
3562spa_l2cache_drop(spa_t *spa)
3563{
3564	vdev_t *vd;
3565	int i;
3566	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3567
3568	for (i = 0; i < sav->sav_count; i++) {
3569		uint64_t pool;
3570
3571		vd = sav->sav_vdevs[i];
3572		ASSERT(vd != NULL);
3573
3574		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3575		    pool != 0ULL && l2arc_vdev_present(vd))
3576			l2arc_remove_vdev(vd);
3577	}
3578}
3579
3580/*
3581 * Pool Creation
3582 */
3583int
3584spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3585    nvlist_t *zplprops)
3586{
3587	spa_t *spa;
3588	char *altroot = NULL;
3589	vdev_t *rvd;
3590	dsl_pool_t *dp;
3591	dmu_tx_t *tx;
3592	int error = 0;
3593	uint64_t txg = TXG_INITIAL;
3594	nvlist_t **spares, **l2cache;
3595	uint_t nspares, nl2cache;
3596	uint64_t version, obj;
3597	boolean_t has_features;
3598
3599	/*
3600	 * If this pool already exists, return failure.
3601	 */
3602	mutex_enter(&spa_namespace_lock);
3603	if (spa_lookup(pool) != NULL) {
3604		mutex_exit(&spa_namespace_lock);
3605		return (SET_ERROR(EEXIST));
3606	}
3607
3608	/*
3609	 * Allocate a new spa_t structure.
3610	 */
3611	(void) nvlist_lookup_string(props,
3612	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3613	spa = spa_add(pool, NULL, altroot);
3614	spa_activate(spa, spa_mode_global);
3615
3616	if (props && (error = spa_prop_validate(spa, props))) {
3617		spa_deactivate(spa);
3618		spa_remove(spa);
3619		mutex_exit(&spa_namespace_lock);
3620		return (error);
3621	}
3622
3623	has_features = B_FALSE;
3624	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3625	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3626		if (zpool_prop_feature(nvpair_name(elem)))
3627			has_features = B_TRUE;
3628	}
3629
3630	if (has_features || nvlist_lookup_uint64(props,
3631	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3632		version = SPA_VERSION;
3633	}
3634	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3635
3636	spa->spa_first_txg = txg;
3637	spa->spa_uberblock.ub_txg = txg - 1;
3638	spa->spa_uberblock.ub_version = version;
3639	spa->spa_ubsync = spa->spa_uberblock;
3640	spa->spa_load_state = SPA_LOAD_CREATE;
3641
3642	/*
3643	 * Create "The Godfather" zio to hold all async IOs
3644	 */
3645	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3646	    KM_SLEEP);
3647	for (int i = 0; i < max_ncpus; i++) {
3648		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3649		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3650		    ZIO_FLAG_GODFATHER);
3651	}
3652
3653	/*
3654	 * Create the root vdev.
3655	 */
3656	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3657
3658	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3659
3660	ASSERT(error != 0 || rvd != NULL);
3661	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3662
3663	if (error == 0 && !zfs_allocatable_devs(nvroot))
3664		error = SET_ERROR(EINVAL);
3665
3666	if (error == 0 &&
3667	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3668	    (error = spa_validate_aux(spa, nvroot, txg,
3669	    VDEV_ALLOC_ADD)) == 0) {
3670		for (int c = 0; c < rvd->vdev_children; c++) {
3671			vdev_ashift_optimize(rvd->vdev_child[c]);
3672			vdev_metaslab_set_size(rvd->vdev_child[c]);
3673			vdev_expand(rvd->vdev_child[c], txg);
3674		}
3675	}
3676
3677	spa_config_exit(spa, SCL_ALL, FTAG);
3678
3679	if (error != 0) {
3680		spa_unload(spa);
3681		spa_deactivate(spa);
3682		spa_remove(spa);
3683		mutex_exit(&spa_namespace_lock);
3684		return (error);
3685	}
3686
3687	/*
3688	 * Get the list of spares, if specified.
3689	 */
3690	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3691	    &spares, &nspares) == 0) {
3692		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3693		    KM_SLEEP) == 0);
3694		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3695		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3696		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697		spa_load_spares(spa);
3698		spa_config_exit(spa, SCL_ALL, FTAG);
3699		spa->spa_spares.sav_sync = B_TRUE;
3700	}
3701
3702	/*
3703	 * Get the list of level 2 cache devices, if specified.
3704	 */
3705	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3706	    &l2cache, &nl2cache) == 0) {
3707		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3708		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3709		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3710		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3711		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712		spa_load_l2cache(spa);
3713		spa_config_exit(spa, SCL_ALL, FTAG);
3714		spa->spa_l2cache.sav_sync = B_TRUE;
3715	}
3716
3717	spa->spa_is_initializing = B_TRUE;
3718	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3719	spa->spa_meta_objset = dp->dp_meta_objset;
3720	spa->spa_is_initializing = B_FALSE;
3721
3722	/*
3723	 * Create DDTs (dedup tables).
3724	 */
3725	ddt_create(spa);
3726
3727	spa_update_dspace(spa);
3728
3729	tx = dmu_tx_create_assigned(dp, txg);
3730
3731	/*
3732	 * Create the pool config object.
3733	 */
3734	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3735	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3736	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3737
3738	if (zap_add(spa->spa_meta_objset,
3739	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3740	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3741		cmn_err(CE_PANIC, "failed to add pool config");
3742	}
3743
3744	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3745		spa_feature_create_zap_objects(spa, tx);
3746
3747	if (zap_add(spa->spa_meta_objset,
3748	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3749	    sizeof (uint64_t), 1, &version, tx) != 0) {
3750		cmn_err(CE_PANIC, "failed to add pool version");
3751	}
3752
3753	/* Newly created pools with the right version are always deflated. */
3754	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3755		spa->spa_deflate = TRUE;
3756		if (zap_add(spa->spa_meta_objset,
3757		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3758		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3759			cmn_err(CE_PANIC, "failed to add deflate");
3760		}
3761	}
3762
3763	/*
3764	 * Create the deferred-free bpobj.  Turn off compression
3765	 * because sync-to-convergence takes longer if the blocksize
3766	 * keeps changing.
3767	 */
3768	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3769	dmu_object_set_compress(spa->spa_meta_objset, obj,
3770	    ZIO_COMPRESS_OFF, tx);
3771	if (zap_add(spa->spa_meta_objset,
3772	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3773	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3774		cmn_err(CE_PANIC, "failed to add bpobj");
3775	}
3776	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3777	    spa->spa_meta_objset, obj));
3778
3779	/*
3780	 * Create the pool's history object.
3781	 */
3782	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3783		spa_history_create_obj(spa, tx);
3784
3785	/*
3786	 * Generate some random noise for salted checksums to operate on.
3787	 */
3788	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3789	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3790
3791	/*
3792	 * Set pool properties.
3793	 */
3794	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3795	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3796	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3797	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3798
3799	if (props != NULL) {
3800		spa_configfile_set(spa, props, B_FALSE);
3801		spa_sync_props(props, tx);
3802	}
3803
3804	dmu_tx_commit(tx);
3805
3806	spa->spa_sync_on = B_TRUE;
3807	txg_sync_start(spa->spa_dsl_pool);
3808
3809	/*
3810	 * We explicitly wait for the first transaction to complete so that our
3811	 * bean counters are appropriately updated.
3812	 */
3813	txg_wait_synced(spa->spa_dsl_pool, txg);
3814
3815	spa_config_sync(spa, B_FALSE, B_TRUE);
3816	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3817
3818	spa_history_log_version(spa, "create");
3819
3820	/*
3821	 * Don't count references from objsets that are already closed
3822	 * and are making their way through the eviction process.
3823	 */
3824	spa_evicting_os_wait(spa);
3825	spa->spa_minref = refcount_count(&spa->spa_refcount);
3826	spa->spa_load_state = SPA_LOAD_NONE;
3827
3828	mutex_exit(&spa_namespace_lock);
3829
3830	return (0);
3831}
3832
3833#ifdef _KERNEL
3834#ifdef illumos
3835/*
3836 * Get the root pool information from the root disk, then import the root pool
3837 * during the system boot up time.
3838 */
3839extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3840
3841static nvlist_t *
3842spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3843{
3844	nvlist_t *config;
3845	nvlist_t *nvtop, *nvroot;
3846	uint64_t pgid;
3847
3848	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3849		return (NULL);
3850
3851	/*
3852	 * Add this top-level vdev to the child array.
3853	 */
3854	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3855	    &nvtop) == 0);
3856	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3857	    &pgid) == 0);
3858	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3859
3860	/*
3861	 * Put this pool's top-level vdevs into a root vdev.
3862	 */
3863	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3864	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3865	    VDEV_TYPE_ROOT) == 0);
3866	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3867	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3868	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3869	    &nvtop, 1) == 0);
3870
3871	/*
3872	 * Replace the existing vdev_tree with the new root vdev in
3873	 * this pool's configuration (remove the old, add the new).
3874	 */
3875	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3876	nvlist_free(nvroot);
3877	return (config);
3878}
3879
3880/*
3881 * Walk the vdev tree and see if we can find a device with "better"
3882 * configuration. A configuration is "better" if the label on that
3883 * device has a more recent txg.
3884 */
3885static void
3886spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3887{
3888	for (int c = 0; c < vd->vdev_children; c++)
3889		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3890
3891	if (vd->vdev_ops->vdev_op_leaf) {
3892		nvlist_t *label;
3893		uint64_t label_txg;
3894
3895		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3896		    &label) != 0)
3897			return;
3898
3899		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3900		    &label_txg) == 0);
3901
3902		/*
3903		 * Do we have a better boot device?
3904		 */
3905		if (label_txg > *txg) {
3906			*txg = label_txg;
3907			*avd = vd;
3908		}
3909		nvlist_free(label);
3910	}
3911}
3912
3913/*
3914 * Import a root pool.
3915 *
3916 * For x86. devpath_list will consist of devid and/or physpath name of
3917 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3918 * The GRUB "findroot" command will return the vdev we should boot.
3919 *
3920 * For Sparc, devpath_list consists the physpath name of the booting device
3921 * no matter the rootpool is a single device pool or a mirrored pool.
3922 * e.g.
3923 *	"/pci@1f,0/ide@d/disk@0,0:a"
3924 */
3925int
3926spa_import_rootpool(char *devpath, char *devid)
3927{
3928	spa_t *spa;
3929	vdev_t *rvd, *bvd, *avd = NULL;
3930	nvlist_t *config, *nvtop;
3931	uint64_t guid, txg;
3932	char *pname;
3933	int error;
3934
3935	/*
3936	 * Read the label from the boot device and generate a configuration.
3937	 */
3938	config = spa_generate_rootconf(devpath, devid, &guid);
3939#if defined(_OBP) && defined(_KERNEL)
3940	if (config == NULL) {
3941		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3942			/* iscsi boot */
3943			get_iscsi_bootpath_phy(devpath);
3944			config = spa_generate_rootconf(devpath, devid, &guid);
3945		}
3946	}
3947#endif
3948	if (config == NULL) {
3949		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3950		    devpath);
3951		return (SET_ERROR(EIO));
3952	}
3953
3954	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3955	    &pname) == 0);
3956	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3957
3958	mutex_enter(&spa_namespace_lock);
3959	if ((spa = spa_lookup(pname)) != NULL) {
3960		/*
3961		 * Remove the existing root pool from the namespace so that we
3962		 * can replace it with the correct config we just read in.
3963		 */
3964		spa_remove(spa);
3965	}
3966
3967	spa = spa_add(pname, config, NULL);
3968	spa->spa_is_root = B_TRUE;
3969	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3970
3971	/*
3972	 * Build up a vdev tree based on the boot device's label config.
3973	 */
3974	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3975	    &nvtop) == 0);
3976	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3977	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3978	    VDEV_ALLOC_ROOTPOOL);
3979	spa_config_exit(spa, SCL_ALL, FTAG);
3980	if (error) {
3981		mutex_exit(&spa_namespace_lock);
3982		nvlist_free(config);
3983		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3984		    pname);
3985		return (error);
3986	}
3987
3988	/*
3989	 * Get the boot vdev.
3990	 */
3991	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3992		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3993		    (u_longlong_t)guid);
3994		error = SET_ERROR(ENOENT);
3995		goto out;
3996	}
3997
3998	/*
3999	 * Determine if there is a better boot device.
4000	 */
4001	avd = bvd;
4002	spa_alt_rootvdev(rvd, &avd, &txg);
4003	if (avd != bvd) {
4004		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4005		    "try booting from '%s'", avd->vdev_path);
4006		error = SET_ERROR(EINVAL);
4007		goto out;
4008	}
4009
4010	/*
4011	 * If the boot device is part of a spare vdev then ensure that
4012	 * we're booting off the active spare.
4013	 */
4014	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4015	    !bvd->vdev_isspare) {
4016		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4017		    "try booting from '%s'",
4018		    bvd->vdev_parent->
4019		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4020		error = SET_ERROR(EINVAL);
4021		goto out;
4022	}
4023
4024	error = 0;
4025out:
4026	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4027	vdev_free(rvd);
4028	spa_config_exit(spa, SCL_ALL, FTAG);
4029	mutex_exit(&spa_namespace_lock);
4030
4031	nvlist_free(config);
4032	return (error);
4033}
4034
4035#else	/* !illumos */
4036
4037extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4038    uint64_t *count);
4039
4040static nvlist_t *
4041spa_generate_rootconf(const char *name)
4042{
4043	nvlist_t **configs, **tops;
4044	nvlist_t *config;
4045	nvlist_t *best_cfg, *nvtop, *nvroot;
4046	uint64_t *holes;
4047	uint64_t best_txg;
4048	uint64_t nchildren;
4049	uint64_t pgid;
4050	uint64_t count;
4051	uint64_t i;
4052	uint_t   nholes;
4053
4054	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4055		return (NULL);
4056
4057	ASSERT3U(count, !=, 0);
4058	best_txg = 0;
4059	for (i = 0; i < count; i++) {
4060		uint64_t txg;
4061
4062		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4063		    &txg) == 0);
4064		if (txg > best_txg) {
4065			best_txg = txg;
4066			best_cfg = configs[i];
4067		}
4068	}
4069
4070	/*
4071	 * Multi-vdev root pool configuration discovery is not supported yet.
4072	 */
4073	nchildren = 1;
4074	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4075	holes = NULL;
4076	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4077	    &holes, &nholes);
4078
4079	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4080	for (i = 0; i < nchildren; i++) {
4081		if (i >= count)
4082			break;
4083		if (configs[i] == NULL)
4084			continue;
4085		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4086		    &nvtop) == 0);
4087		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4088	}
4089	for (i = 0; holes != NULL && i < nholes; i++) {
4090		if (i >= nchildren)
4091			continue;
4092		if (tops[holes[i]] != NULL)
4093			continue;
4094		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4095		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4096		    VDEV_TYPE_HOLE) == 0);
4097		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4098		    holes[i]) == 0);
4099		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4100		    0) == 0);
4101	}
4102	for (i = 0; i < nchildren; i++) {
4103		if (tops[i] != NULL)
4104			continue;
4105		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4106		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4107		    VDEV_TYPE_MISSING) == 0);
4108		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4109		    i) == 0);
4110		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4111		    0) == 0);
4112	}
4113
4114	/*
4115	 * Create pool config based on the best vdev config.
4116	 */
4117	nvlist_dup(best_cfg, &config, KM_SLEEP);
4118
4119	/*
4120	 * Put this pool's top-level vdevs into a root vdev.
4121	 */
4122	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4123	    &pgid) == 0);
4124	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4125	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4126	    VDEV_TYPE_ROOT) == 0);
4127	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4128	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4129	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4130	    tops, nchildren) == 0);
4131
4132	/*
4133	 * Replace the existing vdev_tree with the new root vdev in
4134	 * this pool's configuration (remove the old, add the new).
4135	 */
4136	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4137
4138	/*
4139	 * Drop vdev config elements that should not be present at pool level.
4140	 */
4141	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4142	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4143
4144	for (i = 0; i < count; i++)
4145		nvlist_free(configs[i]);
4146	kmem_free(configs, count * sizeof(void *));
4147	for (i = 0; i < nchildren; i++)
4148		nvlist_free(tops[i]);
4149	kmem_free(tops, nchildren * sizeof(void *));
4150	nvlist_free(nvroot);
4151	return (config);
4152}
4153
4154int
4155spa_import_rootpool(const char *name)
4156{
4157	spa_t *spa;
4158	vdev_t *rvd, *bvd, *avd = NULL;
4159	nvlist_t *config, *nvtop;
4160	uint64_t txg;
4161	char *pname;
4162	int error;
4163
4164	/*
4165	 * Read the label from the boot device and generate a configuration.
4166	 */
4167	config = spa_generate_rootconf(name);
4168
4169	mutex_enter(&spa_namespace_lock);
4170	if (config != NULL) {
4171		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4172		    &pname) == 0 && strcmp(name, pname) == 0);
4173		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4174		    == 0);
4175
4176		if ((spa = spa_lookup(pname)) != NULL) {
4177			/*
4178			 * Remove the existing root pool from the namespace so
4179			 * that we can replace it with the correct config
4180			 * we just read in.
4181			 */
4182			spa_remove(spa);
4183		}
4184		spa = spa_add(pname, config, NULL);
4185
4186		/*
4187		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4188		 * via spa_version().
4189		 */
4190		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4191		    &spa->spa_ubsync.ub_version) != 0)
4192			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4193	} else if ((spa = spa_lookup(name)) == NULL) {
4194		mutex_exit(&spa_namespace_lock);
4195		nvlist_free(config);
4196		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4197		    name);
4198		return (EIO);
4199	} else {
4200		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4201	}
4202	spa->spa_is_root = B_TRUE;
4203	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4204
4205	/*
4206	 * Build up a vdev tree based on the boot device's label config.
4207	 */
4208	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4209	    &nvtop) == 0);
4210	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4211	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4212	    VDEV_ALLOC_ROOTPOOL);
4213	spa_config_exit(spa, SCL_ALL, FTAG);
4214	if (error) {
4215		mutex_exit(&spa_namespace_lock);
4216		nvlist_free(config);
4217		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4218		    pname);
4219		return (error);
4220	}
4221
4222	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4223	vdev_free(rvd);
4224	spa_config_exit(spa, SCL_ALL, FTAG);
4225	mutex_exit(&spa_namespace_lock);
4226
4227	nvlist_free(config);
4228	return (0);
4229}
4230
4231#endif	/* illumos */
4232#endif	/* _KERNEL */
4233
4234/*
4235 * Import a non-root pool into the system.
4236 */
4237int
4238spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4239{
4240	spa_t *spa;
4241	char *altroot = NULL;
4242	spa_load_state_t state = SPA_LOAD_IMPORT;
4243	zpool_rewind_policy_t policy;
4244	uint64_t mode = spa_mode_global;
4245	uint64_t readonly = B_FALSE;
4246	int error;
4247	nvlist_t *nvroot;
4248	nvlist_t **spares, **l2cache;
4249	uint_t nspares, nl2cache;
4250
4251	/*
4252	 * If a pool with this name exists, return failure.
4253	 */
4254	mutex_enter(&spa_namespace_lock);
4255	if (spa_lookup(pool) != NULL) {
4256		mutex_exit(&spa_namespace_lock);
4257		return (SET_ERROR(EEXIST));
4258	}
4259
4260	/*
4261	 * Create and initialize the spa structure.
4262	 */
4263	(void) nvlist_lookup_string(props,
4264	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4265	(void) nvlist_lookup_uint64(props,
4266	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4267	if (readonly)
4268		mode = FREAD;
4269	spa = spa_add(pool, config, altroot);
4270	spa->spa_import_flags = flags;
4271
4272	/*
4273	 * Verbatim import - Take a pool and insert it into the namespace
4274	 * as if it had been loaded at boot.
4275	 */
4276	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4277		if (props != NULL)
4278			spa_configfile_set(spa, props, B_FALSE);
4279
4280		spa_config_sync(spa, B_FALSE, B_TRUE);
4281		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4282
4283		mutex_exit(&spa_namespace_lock);
4284		return (0);
4285	}
4286
4287	spa_activate(spa, mode);
4288
4289	/*
4290	 * Don't start async tasks until we know everything is healthy.
4291	 */
4292	spa_async_suspend(spa);
4293
4294	zpool_get_rewind_policy(config, &policy);
4295	if (policy.zrp_request & ZPOOL_DO_REWIND)
4296		state = SPA_LOAD_RECOVER;
4297
4298	/*
4299	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4300	 * because the user-supplied config is actually the one to trust when
4301	 * doing an import.
4302	 */
4303	if (state != SPA_LOAD_RECOVER)
4304		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4305
4306	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4307	    policy.zrp_request);
4308
4309	/*
4310	 * Propagate anything learned while loading the pool and pass it
4311	 * back to caller (i.e. rewind info, missing devices, etc).
4312	 */
4313	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4314	    spa->spa_load_info) == 0);
4315
4316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4317	/*
4318	 * Toss any existing sparelist, as it doesn't have any validity
4319	 * anymore, and conflicts with spa_has_spare().
4320	 */
4321	if (spa->spa_spares.sav_config) {
4322		nvlist_free(spa->spa_spares.sav_config);
4323		spa->spa_spares.sav_config = NULL;
4324		spa_load_spares(spa);
4325	}
4326	if (spa->spa_l2cache.sav_config) {
4327		nvlist_free(spa->spa_l2cache.sav_config);
4328		spa->spa_l2cache.sav_config = NULL;
4329		spa_load_l2cache(spa);
4330	}
4331
4332	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4333	    &nvroot) == 0);
4334	if (error == 0)
4335		error = spa_validate_aux(spa, nvroot, -1ULL,
4336		    VDEV_ALLOC_SPARE);
4337	if (error == 0)
4338		error = spa_validate_aux(spa, nvroot, -1ULL,
4339		    VDEV_ALLOC_L2CACHE);
4340	spa_config_exit(spa, SCL_ALL, FTAG);
4341
4342	if (props != NULL)
4343		spa_configfile_set(spa, props, B_FALSE);
4344
4345	if (error != 0 || (props && spa_writeable(spa) &&
4346	    (error = spa_prop_set(spa, props)))) {
4347		spa_unload(spa);
4348		spa_deactivate(spa);
4349		spa_remove(spa);
4350		mutex_exit(&spa_namespace_lock);
4351		return (error);
4352	}
4353
4354	spa_async_resume(spa);
4355
4356	/*
4357	 * Override any spares and level 2 cache devices as specified by
4358	 * the user, as these may have correct device names/devids, etc.
4359	 */
4360	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4361	    &spares, &nspares) == 0) {
4362		if (spa->spa_spares.sav_config)
4363			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4364			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4365		else
4366			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4367			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4368		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4369		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4370		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4371		spa_load_spares(spa);
4372		spa_config_exit(spa, SCL_ALL, FTAG);
4373		spa->spa_spares.sav_sync = B_TRUE;
4374	}
4375	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4376	    &l2cache, &nl2cache) == 0) {
4377		if (spa->spa_l2cache.sav_config)
4378			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4379			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4380		else
4381			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4382			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4383		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4384		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4385		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4386		spa_load_l2cache(spa);
4387		spa_config_exit(spa, SCL_ALL, FTAG);
4388		spa->spa_l2cache.sav_sync = B_TRUE;
4389	}
4390
4391	/*
4392	 * Check for any removed devices.
4393	 */
4394	if (spa->spa_autoreplace) {
4395		spa_aux_check_removed(&spa->spa_spares);
4396		spa_aux_check_removed(&spa->spa_l2cache);
4397	}
4398
4399	if (spa_writeable(spa)) {
4400		/*
4401		 * Update the config cache to include the newly-imported pool.
4402		 */
4403		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4404	}
4405
4406	/*
4407	 * It's possible that the pool was expanded while it was exported.
4408	 * We kick off an async task to handle this for us.
4409	 */
4410	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4411
4412	spa_history_log_version(spa, "import");
4413
4414	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4415
4416	mutex_exit(&spa_namespace_lock);
4417
4418#ifdef __FreeBSD__
4419#ifdef _KERNEL
4420	zvol_create_minors(pool);
4421#endif
4422#endif
4423	return (0);
4424}
4425
4426nvlist_t *
4427spa_tryimport(nvlist_t *tryconfig)
4428{
4429	nvlist_t *config = NULL;
4430	char *poolname;
4431	spa_t *spa;
4432	uint64_t state;
4433	int error;
4434
4435	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4436		return (NULL);
4437
4438	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4439		return (NULL);
4440
4441	/*
4442	 * Create and initialize the spa structure.
4443	 */
4444	mutex_enter(&spa_namespace_lock);
4445	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4446	spa_activate(spa, FREAD);
4447
4448	/*
4449	 * Pass off the heavy lifting to spa_load().
4450	 * Pass TRUE for mosconfig because the user-supplied config
4451	 * is actually the one to trust when doing an import.
4452	 */
4453	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4454
4455	/*
4456	 * If 'tryconfig' was at least parsable, return the current config.
4457	 */
4458	if (spa->spa_root_vdev != NULL) {
4459		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4460		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4461		    poolname) == 0);
4462		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4463		    state) == 0);
4464		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4465		    spa->spa_uberblock.ub_timestamp) == 0);
4466		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4467		    spa->spa_load_info) == 0);
4468
4469		/*
4470		 * If the bootfs property exists on this pool then we
4471		 * copy it out so that external consumers can tell which
4472		 * pools are bootable.
4473		 */
4474		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4475			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4476
4477			/*
4478			 * We have to play games with the name since the
4479			 * pool was opened as TRYIMPORT_NAME.
4480			 */
4481			if (dsl_dsobj_to_dsname(spa_name(spa),
4482			    spa->spa_bootfs, tmpname) == 0) {
4483				char *cp;
4484				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4485
4486				cp = strchr(tmpname, '/');
4487				if (cp == NULL) {
4488					(void) strlcpy(dsname, tmpname,
4489					    MAXPATHLEN);
4490				} else {
4491					(void) snprintf(dsname, MAXPATHLEN,
4492					    "%s/%s", poolname, ++cp);
4493				}
4494				VERIFY(nvlist_add_string(config,
4495				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4496				kmem_free(dsname, MAXPATHLEN);
4497			}
4498			kmem_free(tmpname, MAXPATHLEN);
4499		}
4500
4501		/*
4502		 * Add the list of hot spares and level 2 cache devices.
4503		 */
4504		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4505		spa_add_spares(spa, config);
4506		spa_add_l2cache(spa, config);
4507		spa_config_exit(spa, SCL_CONFIG, FTAG);
4508	}
4509
4510	spa_unload(spa);
4511	spa_deactivate(spa);
4512	spa_remove(spa);
4513	mutex_exit(&spa_namespace_lock);
4514
4515	return (config);
4516}
4517
4518/*
4519 * Pool export/destroy
4520 *
4521 * The act of destroying or exporting a pool is very simple.  We make sure there
4522 * is no more pending I/O and any references to the pool are gone.  Then, we
4523 * update the pool state and sync all the labels to disk, removing the
4524 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4525 * we don't sync the labels or remove the configuration cache.
4526 */
4527static int
4528spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4529    boolean_t force, boolean_t hardforce)
4530{
4531	spa_t *spa;
4532
4533	if (oldconfig)
4534		*oldconfig = NULL;
4535
4536	if (!(spa_mode_global & FWRITE))
4537		return (SET_ERROR(EROFS));
4538
4539	mutex_enter(&spa_namespace_lock);
4540	if ((spa = spa_lookup(pool)) == NULL) {
4541		mutex_exit(&spa_namespace_lock);
4542		return (SET_ERROR(ENOENT));
4543	}
4544
4545	/*
4546	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4547	 * reacquire the namespace lock, and see if we can export.
4548	 */
4549	spa_open_ref(spa, FTAG);
4550	mutex_exit(&spa_namespace_lock);
4551	spa_async_suspend(spa);
4552	mutex_enter(&spa_namespace_lock);
4553	spa_close(spa, FTAG);
4554
4555	/*
4556	 * The pool will be in core if it's openable,
4557	 * in which case we can modify its state.
4558	 */
4559	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4560		/*
4561		 * Objsets may be open only because they're dirty, so we
4562		 * have to force it to sync before checking spa_refcnt.
4563		 */
4564		txg_wait_synced(spa->spa_dsl_pool, 0);
4565		spa_evicting_os_wait(spa);
4566
4567		/*
4568		 * A pool cannot be exported or destroyed if there are active
4569		 * references.  If we are resetting a pool, allow references by
4570		 * fault injection handlers.
4571		 */
4572		if (!spa_refcount_zero(spa) ||
4573		    (spa->spa_inject_ref != 0 &&
4574		    new_state != POOL_STATE_UNINITIALIZED)) {
4575			spa_async_resume(spa);
4576			mutex_exit(&spa_namespace_lock);
4577			return (SET_ERROR(EBUSY));
4578		}
4579
4580		/*
4581		 * A pool cannot be exported if it has an active shared spare.
4582		 * This is to prevent other pools stealing the active spare
4583		 * from an exported pool. At user's own will, such pool can
4584		 * be forcedly exported.
4585		 */
4586		if (!force && new_state == POOL_STATE_EXPORTED &&
4587		    spa_has_active_shared_spare(spa)) {
4588			spa_async_resume(spa);
4589			mutex_exit(&spa_namespace_lock);
4590			return (SET_ERROR(EXDEV));
4591		}
4592
4593		/*
4594		 * We want this to be reflected on every label,
4595		 * so mark them all dirty.  spa_unload() will do the
4596		 * final sync that pushes these changes out.
4597		 */
4598		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4599			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4600			spa->spa_state = new_state;
4601			spa->spa_final_txg = spa_last_synced_txg(spa) +
4602			    TXG_DEFER_SIZE + 1;
4603			vdev_config_dirty(spa->spa_root_vdev);
4604			spa_config_exit(spa, SCL_ALL, FTAG);
4605		}
4606	}
4607
4608	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4609
4610	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4611		spa_unload(spa);
4612		spa_deactivate(spa);
4613	}
4614
4615	if (oldconfig && spa->spa_config)
4616		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4617
4618	if (new_state != POOL_STATE_UNINITIALIZED) {
4619		if (!hardforce)
4620			spa_config_sync(spa, B_TRUE, B_TRUE);
4621		spa_remove(spa);
4622	}
4623	mutex_exit(&spa_namespace_lock);
4624
4625	return (0);
4626}
4627
4628/*
4629 * Destroy a storage pool.
4630 */
4631int
4632spa_destroy(char *pool)
4633{
4634	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4635	    B_FALSE, B_FALSE));
4636}
4637
4638/*
4639 * Export a storage pool.
4640 */
4641int
4642spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4643    boolean_t hardforce)
4644{
4645	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4646	    force, hardforce));
4647}
4648
4649/*
4650 * Similar to spa_export(), this unloads the spa_t without actually removing it
4651 * from the namespace in any way.
4652 */
4653int
4654spa_reset(char *pool)
4655{
4656	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4657	    B_FALSE, B_FALSE));
4658}
4659
4660/*
4661 * ==========================================================================
4662 * Device manipulation
4663 * ==========================================================================
4664 */
4665
4666/*
4667 * Add a device to a storage pool.
4668 */
4669int
4670spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4671{
4672	uint64_t txg, id;
4673	int error;
4674	vdev_t *rvd = spa->spa_root_vdev;
4675	vdev_t *vd, *tvd;
4676	nvlist_t **spares, **l2cache;
4677	uint_t nspares, nl2cache;
4678
4679	ASSERT(spa_writeable(spa));
4680
4681	txg = spa_vdev_enter(spa);
4682
4683	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4684	    VDEV_ALLOC_ADD)) != 0)
4685		return (spa_vdev_exit(spa, NULL, txg, error));
4686
4687	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4688
4689	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4690	    &nspares) != 0)
4691		nspares = 0;
4692
4693	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4694	    &nl2cache) != 0)
4695		nl2cache = 0;
4696
4697	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4698		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4699
4700	if (vd->vdev_children != 0 &&
4701	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4702		return (spa_vdev_exit(spa, vd, txg, error));
4703
4704	/*
4705	 * We must validate the spares and l2cache devices after checking the
4706	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4707	 */
4708	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4709		return (spa_vdev_exit(spa, vd, txg, error));
4710
4711	/*
4712	 * Transfer each new top-level vdev from vd to rvd.
4713	 */
4714	for (int c = 0; c < vd->vdev_children; c++) {
4715
4716		/*
4717		 * Set the vdev id to the first hole, if one exists.
4718		 */
4719		for (id = 0; id < rvd->vdev_children; id++) {
4720			if (rvd->vdev_child[id]->vdev_ishole) {
4721				vdev_free(rvd->vdev_child[id]);
4722				break;
4723			}
4724		}
4725		tvd = vd->vdev_child[c];
4726		vdev_remove_child(vd, tvd);
4727		tvd->vdev_id = id;
4728		vdev_add_child(rvd, tvd);
4729		vdev_config_dirty(tvd);
4730	}
4731
4732	if (nspares != 0) {
4733		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4734		    ZPOOL_CONFIG_SPARES);
4735		spa_load_spares(spa);
4736		spa->spa_spares.sav_sync = B_TRUE;
4737	}
4738
4739	if (nl2cache != 0) {
4740		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4741		    ZPOOL_CONFIG_L2CACHE);
4742		spa_load_l2cache(spa);
4743		spa->spa_l2cache.sav_sync = B_TRUE;
4744	}
4745
4746	/*
4747	 * We have to be careful when adding new vdevs to an existing pool.
4748	 * If other threads start allocating from these vdevs before we
4749	 * sync the config cache, and we lose power, then upon reboot we may
4750	 * fail to open the pool because there are DVAs that the config cache
4751	 * can't translate.  Therefore, we first add the vdevs without
4752	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4753	 * and then let spa_config_update() initialize the new metaslabs.
4754	 *
4755	 * spa_load() checks for added-but-not-initialized vdevs, so that
4756	 * if we lose power at any point in this sequence, the remaining
4757	 * steps will be completed the next time we load the pool.
4758	 */
4759	(void) spa_vdev_exit(spa, vd, txg, 0);
4760
4761	mutex_enter(&spa_namespace_lock);
4762	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4763	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4764	mutex_exit(&spa_namespace_lock);
4765
4766	return (0);
4767}
4768
4769/*
4770 * Attach a device to a mirror.  The arguments are the path to any device
4771 * in the mirror, and the nvroot for the new device.  If the path specifies
4772 * a device that is not mirrored, we automatically insert the mirror vdev.
4773 *
4774 * If 'replacing' is specified, the new device is intended to replace the
4775 * existing device; in this case the two devices are made into their own
4776 * mirror using the 'replacing' vdev, which is functionally identical to
4777 * the mirror vdev (it actually reuses all the same ops) but has a few
4778 * extra rules: you can't attach to it after it's been created, and upon
4779 * completion of resilvering, the first disk (the one being replaced)
4780 * is automatically detached.
4781 */
4782int
4783spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4784{
4785	uint64_t txg, dtl_max_txg;
4786	vdev_t *rvd = spa->spa_root_vdev;
4787	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4788	vdev_ops_t *pvops;
4789	char *oldvdpath, *newvdpath;
4790	int newvd_isspare;
4791	int error;
4792
4793	ASSERT(spa_writeable(spa));
4794
4795	txg = spa_vdev_enter(spa);
4796
4797	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4798
4799	if (oldvd == NULL)
4800		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4801
4802	if (!oldvd->vdev_ops->vdev_op_leaf)
4803		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4804
4805	pvd = oldvd->vdev_parent;
4806
4807	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4808	    VDEV_ALLOC_ATTACH)) != 0)
4809		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4810
4811	if (newrootvd->vdev_children != 1)
4812		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4813
4814	newvd = newrootvd->vdev_child[0];
4815
4816	if (!newvd->vdev_ops->vdev_op_leaf)
4817		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4818
4819	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4820		return (spa_vdev_exit(spa, newrootvd, txg, error));
4821
4822	/*
4823	 * Spares can't replace logs
4824	 */
4825	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4826		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4827
4828	if (!replacing) {
4829		/*
4830		 * For attach, the only allowable parent is a mirror or the root
4831		 * vdev.
4832		 */
4833		if (pvd->vdev_ops != &vdev_mirror_ops &&
4834		    pvd->vdev_ops != &vdev_root_ops)
4835			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4836
4837		pvops = &vdev_mirror_ops;
4838	} else {
4839		/*
4840		 * Active hot spares can only be replaced by inactive hot
4841		 * spares.
4842		 */
4843		if (pvd->vdev_ops == &vdev_spare_ops &&
4844		    oldvd->vdev_isspare &&
4845		    !spa_has_spare(spa, newvd->vdev_guid))
4846			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4847
4848		/*
4849		 * If the source is a hot spare, and the parent isn't already a
4850		 * spare, then we want to create a new hot spare.  Otherwise, we
4851		 * want to create a replacing vdev.  The user is not allowed to
4852		 * attach to a spared vdev child unless the 'isspare' state is
4853		 * the same (spare replaces spare, non-spare replaces
4854		 * non-spare).
4855		 */
4856		if (pvd->vdev_ops == &vdev_replacing_ops &&
4857		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4858			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4859		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4860		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4861			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4862		}
4863
4864		if (newvd->vdev_isspare)
4865			pvops = &vdev_spare_ops;
4866		else
4867			pvops = &vdev_replacing_ops;
4868	}
4869
4870	/*
4871	 * Make sure the new device is big enough.
4872	 */
4873	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4874		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4875
4876	/*
4877	 * The new device cannot have a higher alignment requirement
4878	 * than the top-level vdev.
4879	 */
4880	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4881		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4882
4883	/*
4884	 * If this is an in-place replacement, update oldvd's path and devid
4885	 * to make it distinguishable from newvd, and unopenable from now on.
4886	 */
4887	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4888		spa_strfree(oldvd->vdev_path);
4889		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4890		    KM_SLEEP);
4891		(void) sprintf(oldvd->vdev_path, "%s/%s",
4892		    newvd->vdev_path, "old");
4893		if (oldvd->vdev_devid != NULL) {
4894			spa_strfree(oldvd->vdev_devid);
4895			oldvd->vdev_devid = NULL;
4896		}
4897	}
4898
4899	/* mark the device being resilvered */
4900	newvd->vdev_resilver_txg = txg;
4901
4902	/*
4903	 * If the parent is not a mirror, or if we're replacing, insert the new
4904	 * mirror/replacing/spare vdev above oldvd.
4905	 */
4906	if (pvd->vdev_ops != pvops)
4907		pvd = vdev_add_parent(oldvd, pvops);
4908
4909	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4910	ASSERT(pvd->vdev_ops == pvops);
4911	ASSERT(oldvd->vdev_parent == pvd);
4912
4913	/*
4914	 * Extract the new device from its root and add it to pvd.
4915	 */
4916	vdev_remove_child(newrootvd, newvd);
4917	newvd->vdev_id = pvd->vdev_children;
4918	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4919	vdev_add_child(pvd, newvd);
4920
4921	tvd = newvd->vdev_top;
4922	ASSERT(pvd->vdev_top == tvd);
4923	ASSERT(tvd->vdev_parent == rvd);
4924
4925	vdev_config_dirty(tvd);
4926
4927	/*
4928	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4929	 * for any dmu_sync-ed blocks.  It will propagate upward when
4930	 * spa_vdev_exit() calls vdev_dtl_reassess().
4931	 */
4932	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4933
4934	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4935	    dtl_max_txg - TXG_INITIAL);
4936
4937	if (newvd->vdev_isspare) {
4938		spa_spare_activate(newvd);
4939		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4940	}
4941
4942	oldvdpath = spa_strdup(oldvd->vdev_path);
4943	newvdpath = spa_strdup(newvd->vdev_path);
4944	newvd_isspare = newvd->vdev_isspare;
4945
4946	/*
4947	 * Mark newvd's DTL dirty in this txg.
4948	 */
4949	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4950
4951	/*
4952	 * Schedule the resilver to restart in the future. We do this to
4953	 * ensure that dmu_sync-ed blocks have been stitched into the
4954	 * respective datasets.
4955	 */
4956	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4957
4958	if (spa->spa_bootfs)
4959		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4960
4961	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4962
4963	/*
4964	 * Commit the config
4965	 */
4966	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4967
4968	spa_history_log_internal(spa, "vdev attach", NULL,
4969	    "%s vdev=%s %s vdev=%s",
4970	    replacing && newvd_isspare ? "spare in" :
4971	    replacing ? "replace" : "attach", newvdpath,
4972	    replacing ? "for" : "to", oldvdpath);
4973
4974	spa_strfree(oldvdpath);
4975	spa_strfree(newvdpath);
4976
4977	return (0);
4978}
4979
4980/*
4981 * Detach a device from a mirror or replacing vdev.
4982 *
4983 * If 'replace_done' is specified, only detach if the parent
4984 * is a replacing vdev.
4985 */
4986int
4987spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4988{
4989	uint64_t txg;
4990	int error;
4991	vdev_t *rvd = spa->spa_root_vdev;
4992	vdev_t *vd, *pvd, *cvd, *tvd;
4993	boolean_t unspare = B_FALSE;
4994	uint64_t unspare_guid = 0;
4995	char *vdpath;
4996
4997	ASSERT(spa_writeable(spa));
4998
4999	txg = spa_vdev_enter(spa);
5000
5001	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5002
5003	if (vd == NULL)
5004		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5005
5006	if (!vd->vdev_ops->vdev_op_leaf)
5007		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5008
5009	pvd = vd->vdev_parent;
5010
5011	/*
5012	 * If the parent/child relationship is not as expected, don't do it.
5013	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5014	 * vdev that's replacing B with C.  The user's intent in replacing
5015	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5016	 * the replace by detaching C, the expected behavior is to end up
5017	 * M(A,B).  But suppose that right after deciding to detach C,
5018	 * the replacement of B completes.  We would have M(A,C), and then
5019	 * ask to detach C, which would leave us with just A -- not what
5020	 * the user wanted.  To prevent this, we make sure that the
5021	 * parent/child relationship hasn't changed -- in this example,
5022	 * that C's parent is still the replacing vdev R.
5023	 */
5024	if (pvd->vdev_guid != pguid && pguid != 0)
5025		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5026
5027	/*
5028	 * Only 'replacing' or 'spare' vdevs can be replaced.
5029	 */
5030	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5031	    pvd->vdev_ops != &vdev_spare_ops)
5032		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5033
5034	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5035	    spa_version(spa) >= SPA_VERSION_SPARES);
5036
5037	/*
5038	 * Only mirror, replacing, and spare vdevs support detach.
5039	 */
5040	if (pvd->vdev_ops != &vdev_replacing_ops &&
5041	    pvd->vdev_ops != &vdev_mirror_ops &&
5042	    pvd->vdev_ops != &vdev_spare_ops)
5043		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5044
5045	/*
5046	 * If this device has the only valid copy of some data,
5047	 * we cannot safely detach it.
5048	 */
5049	if (vdev_dtl_required(vd))
5050		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5051
5052	ASSERT(pvd->vdev_children >= 2);
5053
5054	/*
5055	 * If we are detaching the second disk from a replacing vdev, then
5056	 * check to see if we changed the original vdev's path to have "/old"
5057	 * at the end in spa_vdev_attach().  If so, undo that change now.
5058	 */
5059	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5060	    vd->vdev_path != NULL) {
5061		size_t len = strlen(vd->vdev_path);
5062
5063		for (int c = 0; c < pvd->vdev_children; c++) {
5064			cvd = pvd->vdev_child[c];
5065
5066			if (cvd == vd || cvd->vdev_path == NULL)
5067				continue;
5068
5069			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5070			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5071				spa_strfree(cvd->vdev_path);
5072				cvd->vdev_path = spa_strdup(vd->vdev_path);
5073				break;
5074			}
5075		}
5076	}
5077
5078	/*
5079	 * If we are detaching the original disk from a spare, then it implies
5080	 * that the spare should become a real disk, and be removed from the
5081	 * active spare list for the pool.
5082	 */
5083	if (pvd->vdev_ops == &vdev_spare_ops &&
5084	    vd->vdev_id == 0 &&
5085	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5086		unspare = B_TRUE;
5087
5088	/*
5089	 * Erase the disk labels so the disk can be used for other things.
5090	 * This must be done after all other error cases are handled,
5091	 * but before we disembowel vd (so we can still do I/O to it).
5092	 * But if we can't do it, don't treat the error as fatal --
5093	 * it may be that the unwritability of the disk is the reason
5094	 * it's being detached!
5095	 */
5096	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5097
5098	/*
5099	 * Remove vd from its parent and compact the parent's children.
5100	 */
5101	vdev_remove_child(pvd, vd);
5102	vdev_compact_children(pvd);
5103
5104	/*
5105	 * Remember one of the remaining children so we can get tvd below.
5106	 */
5107	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5108
5109	/*
5110	 * If we need to remove the remaining child from the list of hot spares,
5111	 * do it now, marking the vdev as no longer a spare in the process.
5112	 * We must do this before vdev_remove_parent(), because that can
5113	 * change the GUID if it creates a new toplevel GUID.  For a similar
5114	 * reason, we must remove the spare now, in the same txg as the detach;
5115	 * otherwise someone could attach a new sibling, change the GUID, and
5116	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5117	 */
5118	if (unspare) {
5119		ASSERT(cvd->vdev_isspare);
5120		spa_spare_remove(cvd);
5121		unspare_guid = cvd->vdev_guid;
5122		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5123		cvd->vdev_unspare = B_TRUE;
5124	}
5125
5126	/*
5127	 * If the parent mirror/replacing vdev only has one child,
5128	 * the parent is no longer needed.  Remove it from the tree.
5129	 */
5130	if (pvd->vdev_children == 1) {
5131		if (pvd->vdev_ops == &vdev_spare_ops)
5132			cvd->vdev_unspare = B_FALSE;
5133		vdev_remove_parent(cvd);
5134	}
5135
5136
5137	/*
5138	 * We don't set tvd until now because the parent we just removed
5139	 * may have been the previous top-level vdev.
5140	 */
5141	tvd = cvd->vdev_top;
5142	ASSERT(tvd->vdev_parent == rvd);
5143
5144	/*
5145	 * Reevaluate the parent vdev state.
5146	 */
5147	vdev_propagate_state(cvd);
5148
5149	/*
5150	 * If the 'autoexpand' property is set on the pool then automatically
5151	 * try to expand the size of the pool. For example if the device we
5152	 * just detached was smaller than the others, it may be possible to
5153	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5154	 * first so that we can obtain the updated sizes of the leaf vdevs.
5155	 */
5156	if (spa->spa_autoexpand) {
5157		vdev_reopen(tvd);
5158		vdev_expand(tvd, txg);
5159	}
5160
5161	vdev_config_dirty(tvd);
5162
5163	/*
5164	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5165	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5166	 * But first make sure we're not on any *other* txg's DTL list, to
5167	 * prevent vd from being accessed after it's freed.
5168	 */
5169	vdpath = spa_strdup(vd->vdev_path);
5170	for (int t = 0; t < TXG_SIZE; t++)
5171		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5172	vd->vdev_detached = B_TRUE;
5173	vdev_dirty(tvd, VDD_DTL, vd, txg);
5174
5175	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5176
5177	/* hang on to the spa before we release the lock */
5178	spa_open_ref(spa, FTAG);
5179
5180	error = spa_vdev_exit(spa, vd, txg, 0);
5181
5182	spa_history_log_internal(spa, "detach", NULL,
5183	    "vdev=%s", vdpath);
5184	spa_strfree(vdpath);
5185
5186	/*
5187	 * If this was the removal of the original device in a hot spare vdev,
5188	 * then we want to go through and remove the device from the hot spare
5189	 * list of every other pool.
5190	 */
5191	if (unspare) {
5192		spa_t *altspa = NULL;
5193
5194		mutex_enter(&spa_namespace_lock);
5195		while ((altspa = spa_next(altspa)) != NULL) {
5196			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5197			    altspa == spa)
5198				continue;
5199
5200			spa_open_ref(altspa, FTAG);
5201			mutex_exit(&spa_namespace_lock);
5202			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5203			mutex_enter(&spa_namespace_lock);
5204			spa_close(altspa, FTAG);
5205		}
5206		mutex_exit(&spa_namespace_lock);
5207
5208		/* search the rest of the vdevs for spares to remove */
5209		spa_vdev_resilver_done(spa);
5210	}
5211
5212	/* all done with the spa; OK to release */
5213	mutex_enter(&spa_namespace_lock);
5214	spa_close(spa, FTAG);
5215	mutex_exit(&spa_namespace_lock);
5216
5217	return (error);
5218}
5219
5220/*
5221 * Split a set of devices from their mirrors, and create a new pool from them.
5222 */
5223int
5224spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5225    nvlist_t *props, boolean_t exp)
5226{
5227	int error = 0;
5228	uint64_t txg, *glist;
5229	spa_t *newspa;
5230	uint_t c, children, lastlog;
5231	nvlist_t **child, *nvl, *tmp;
5232	dmu_tx_t *tx;
5233	char *altroot = NULL;
5234	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5235	boolean_t activate_slog;
5236
5237	ASSERT(spa_writeable(spa));
5238
5239	txg = spa_vdev_enter(spa);
5240
5241	/* clear the log and flush everything up to now */
5242	activate_slog = spa_passivate_log(spa);
5243	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5244	error = spa_offline_log(spa);
5245	txg = spa_vdev_config_enter(spa);
5246
5247	if (activate_slog)
5248		spa_activate_log(spa);
5249
5250	if (error != 0)
5251		return (spa_vdev_exit(spa, NULL, txg, error));
5252
5253	/* check new spa name before going any further */
5254	if (spa_lookup(newname) != NULL)
5255		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5256
5257	/*
5258	 * scan through all the children to ensure they're all mirrors
5259	 */
5260	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5261	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5262	    &children) != 0)
5263		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5264
5265	/* first, check to ensure we've got the right child count */
5266	rvd = spa->spa_root_vdev;
5267	lastlog = 0;
5268	for (c = 0; c < rvd->vdev_children; c++) {
5269		vdev_t *vd = rvd->vdev_child[c];
5270
5271		/* don't count the holes & logs as children */
5272		if (vd->vdev_islog || vd->vdev_ishole) {
5273			if (lastlog == 0)
5274				lastlog = c;
5275			continue;
5276		}
5277
5278		lastlog = 0;
5279	}
5280	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5281		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5282
5283	/* next, ensure no spare or cache devices are part of the split */
5284	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5285	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5286		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5287
5288	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5289	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5290
5291	/* then, loop over each vdev and validate it */
5292	for (c = 0; c < children; c++) {
5293		uint64_t is_hole = 0;
5294
5295		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5296		    &is_hole);
5297
5298		if (is_hole != 0) {
5299			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5300			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5301				continue;
5302			} else {
5303				error = SET_ERROR(EINVAL);
5304				break;
5305			}
5306		}
5307
5308		/* which disk is going to be split? */
5309		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5310		    &glist[c]) != 0) {
5311			error = SET_ERROR(EINVAL);
5312			break;
5313		}
5314
5315		/* look it up in the spa */
5316		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5317		if (vml[c] == NULL) {
5318			error = SET_ERROR(ENODEV);
5319			break;
5320		}
5321
5322		/* make sure there's nothing stopping the split */
5323		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5324		    vml[c]->vdev_islog ||
5325		    vml[c]->vdev_ishole ||
5326		    vml[c]->vdev_isspare ||
5327		    vml[c]->vdev_isl2cache ||
5328		    !vdev_writeable(vml[c]) ||
5329		    vml[c]->vdev_children != 0 ||
5330		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5331		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5332			error = SET_ERROR(EINVAL);
5333			break;
5334		}
5335
5336		if (vdev_dtl_required(vml[c])) {
5337			error = SET_ERROR(EBUSY);
5338			break;
5339		}
5340
5341		/* we need certain info from the top level */
5342		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5343		    vml[c]->vdev_top->vdev_ms_array) == 0);
5344		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5345		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5346		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5347		    vml[c]->vdev_top->vdev_asize) == 0);
5348		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5349		    vml[c]->vdev_top->vdev_ashift) == 0);
5350	}
5351
5352	if (error != 0) {
5353		kmem_free(vml, children * sizeof (vdev_t *));
5354		kmem_free(glist, children * sizeof (uint64_t));
5355		return (spa_vdev_exit(spa, NULL, txg, error));
5356	}
5357
5358	/* stop writers from using the disks */
5359	for (c = 0; c < children; c++) {
5360		if (vml[c] != NULL)
5361			vml[c]->vdev_offline = B_TRUE;
5362	}
5363	vdev_reopen(spa->spa_root_vdev);
5364
5365	/*
5366	 * Temporarily record the splitting vdevs in the spa config.  This
5367	 * will disappear once the config is regenerated.
5368	 */
5369	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5370	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5371	    glist, children) == 0);
5372	kmem_free(glist, children * sizeof (uint64_t));
5373
5374	mutex_enter(&spa->spa_props_lock);
5375	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5376	    nvl) == 0);
5377	mutex_exit(&spa->spa_props_lock);
5378	spa->spa_config_splitting = nvl;
5379	vdev_config_dirty(spa->spa_root_vdev);
5380
5381	/* configure and create the new pool */
5382	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5383	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5384	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5385	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5386	    spa_version(spa)) == 0);
5387	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5388	    spa->spa_config_txg) == 0);
5389	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5390	    spa_generate_guid(NULL)) == 0);
5391	(void) nvlist_lookup_string(props,
5392	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5393
5394	/* add the new pool to the namespace */
5395	newspa = spa_add(newname, config, altroot);
5396	newspa->spa_config_txg = spa->spa_config_txg;
5397	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5398
5399	/* release the spa config lock, retaining the namespace lock */
5400	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5401
5402	if (zio_injection_enabled)
5403		zio_handle_panic_injection(spa, FTAG, 1);
5404
5405	spa_activate(newspa, spa_mode_global);
5406	spa_async_suspend(newspa);
5407
5408#ifndef illumos
5409	/* mark that we are creating new spa by splitting */
5410	newspa->spa_splitting_newspa = B_TRUE;
5411#endif
5412	/* create the new pool from the disks of the original pool */
5413	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5414#ifndef illumos
5415	newspa->spa_splitting_newspa = B_FALSE;
5416#endif
5417	if (error)
5418		goto out;
5419
5420	/* if that worked, generate a real config for the new pool */
5421	if (newspa->spa_root_vdev != NULL) {
5422		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5423		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5424		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5425		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5426		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5427		    B_TRUE));
5428	}
5429
5430	/* set the props */
5431	if (props != NULL) {
5432		spa_configfile_set(newspa, props, B_FALSE);
5433		error = spa_prop_set(newspa, props);
5434		if (error)
5435			goto out;
5436	}
5437
5438	/* flush everything */
5439	txg = spa_vdev_config_enter(newspa);
5440	vdev_config_dirty(newspa->spa_root_vdev);
5441	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5442
5443	if (zio_injection_enabled)
5444		zio_handle_panic_injection(spa, FTAG, 2);
5445
5446	spa_async_resume(newspa);
5447
5448	/* finally, update the original pool's config */
5449	txg = spa_vdev_config_enter(spa);
5450	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5451	error = dmu_tx_assign(tx, TXG_WAIT);
5452	if (error != 0)
5453		dmu_tx_abort(tx);
5454	for (c = 0; c < children; c++) {
5455		if (vml[c] != NULL) {
5456			vdev_split(vml[c]);
5457			if (error == 0)
5458				spa_history_log_internal(spa, "detach", tx,
5459				    "vdev=%s", vml[c]->vdev_path);
5460			vdev_free(vml[c]);
5461		}
5462	}
5463	vdev_config_dirty(spa->spa_root_vdev);
5464	spa->spa_config_splitting = NULL;
5465	nvlist_free(nvl);
5466	if (error == 0)
5467		dmu_tx_commit(tx);
5468	(void) spa_vdev_exit(spa, NULL, txg, 0);
5469
5470	if (zio_injection_enabled)
5471		zio_handle_panic_injection(spa, FTAG, 3);
5472
5473	/* split is complete; log a history record */
5474	spa_history_log_internal(newspa, "split", NULL,
5475	    "from pool %s", spa_name(spa));
5476
5477	kmem_free(vml, children * sizeof (vdev_t *));
5478
5479	/* if we're not going to mount the filesystems in userland, export */
5480	if (exp)
5481		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5482		    B_FALSE, B_FALSE);
5483
5484	return (error);
5485
5486out:
5487	spa_unload(newspa);
5488	spa_deactivate(newspa);
5489	spa_remove(newspa);
5490
5491	txg = spa_vdev_config_enter(spa);
5492
5493	/* re-online all offlined disks */
5494	for (c = 0; c < children; c++) {
5495		if (vml[c] != NULL)
5496			vml[c]->vdev_offline = B_FALSE;
5497	}
5498	vdev_reopen(spa->spa_root_vdev);
5499
5500	nvlist_free(spa->spa_config_splitting);
5501	spa->spa_config_splitting = NULL;
5502	(void) spa_vdev_exit(spa, NULL, txg, error);
5503
5504	kmem_free(vml, children * sizeof (vdev_t *));
5505	return (error);
5506}
5507
5508static nvlist_t *
5509spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5510{
5511	for (int i = 0; i < count; i++) {
5512		uint64_t guid;
5513
5514		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5515		    &guid) == 0);
5516
5517		if (guid == target_guid)
5518			return (nvpp[i]);
5519	}
5520
5521	return (NULL);
5522}
5523
5524static void
5525spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5526    nvlist_t *dev_to_remove)
5527{
5528	nvlist_t **newdev = NULL;
5529
5530	if (count > 1)
5531		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5532
5533	for (int i = 0, j = 0; i < count; i++) {
5534		if (dev[i] == dev_to_remove)
5535			continue;
5536		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5537	}
5538
5539	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5540	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5541
5542	for (int i = 0; i < count - 1; i++)
5543		nvlist_free(newdev[i]);
5544
5545	if (count > 1)
5546		kmem_free(newdev, (count - 1) * sizeof (void *));
5547}
5548
5549/*
5550 * Evacuate the device.
5551 */
5552static int
5553spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5554{
5555	uint64_t txg;
5556	int error = 0;
5557
5558	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5559	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5560	ASSERT(vd == vd->vdev_top);
5561
5562	/*
5563	 * Evacuate the device.  We don't hold the config lock as writer
5564	 * since we need to do I/O but we do keep the
5565	 * spa_namespace_lock held.  Once this completes the device
5566	 * should no longer have any blocks allocated on it.
5567	 */
5568	if (vd->vdev_islog) {
5569		if (vd->vdev_stat.vs_alloc != 0)
5570			error = spa_offline_log(spa);
5571	} else {
5572		error = SET_ERROR(ENOTSUP);
5573	}
5574
5575	if (error)
5576		return (error);
5577
5578	/*
5579	 * The evacuation succeeded.  Remove any remaining MOS metadata
5580	 * associated with this vdev, and wait for these changes to sync.
5581	 */
5582	ASSERT0(vd->vdev_stat.vs_alloc);
5583	txg = spa_vdev_config_enter(spa);
5584	vd->vdev_removing = B_TRUE;
5585	vdev_dirty_leaves(vd, VDD_DTL, txg);
5586	vdev_config_dirty(vd);
5587	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5588
5589	return (0);
5590}
5591
5592/*
5593 * Complete the removal by cleaning up the namespace.
5594 */
5595static void
5596spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5597{
5598	vdev_t *rvd = spa->spa_root_vdev;
5599	uint64_t id = vd->vdev_id;
5600	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5601
5602	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5603	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5604	ASSERT(vd == vd->vdev_top);
5605
5606	/*
5607	 * Only remove any devices which are empty.
5608	 */
5609	if (vd->vdev_stat.vs_alloc != 0)
5610		return;
5611
5612	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5613
5614	if (list_link_active(&vd->vdev_state_dirty_node))
5615		vdev_state_clean(vd);
5616	if (list_link_active(&vd->vdev_config_dirty_node))
5617		vdev_config_clean(vd);
5618
5619	vdev_free(vd);
5620
5621	if (last_vdev) {
5622		vdev_compact_children(rvd);
5623	} else {
5624		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5625		vdev_add_child(rvd, vd);
5626	}
5627	vdev_config_dirty(rvd);
5628
5629	/*
5630	 * Reassess the health of our root vdev.
5631	 */
5632	vdev_reopen(rvd);
5633}
5634
5635/*
5636 * Remove a device from the pool -
5637 *
5638 * Removing a device from the vdev namespace requires several steps
5639 * and can take a significant amount of time.  As a result we use
5640 * the spa_vdev_config_[enter/exit] functions which allow us to
5641 * grab and release the spa_config_lock while still holding the namespace
5642 * lock.  During each step the configuration is synced out.
5643 *
5644 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5645 * devices.
5646 */
5647int
5648spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5649{
5650	vdev_t *vd;
5651	sysevent_t *ev = NULL;
5652	metaslab_group_t *mg;
5653	nvlist_t **spares, **l2cache, *nv;
5654	uint64_t txg = 0;
5655	uint_t nspares, nl2cache;
5656	int error = 0;
5657	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5658
5659	ASSERT(spa_writeable(spa));
5660
5661	if (!locked)
5662		txg = spa_vdev_enter(spa);
5663
5664	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5665
5666	if (spa->spa_spares.sav_vdevs != NULL &&
5667	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5668	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5669	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5670		/*
5671		 * Only remove the hot spare if it's not currently in use
5672		 * in this pool.
5673		 */
5674		if (vd == NULL || unspare) {
5675			if (vd == NULL)
5676				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5677			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5678			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5679			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5680			spa_load_spares(spa);
5681			spa->spa_spares.sav_sync = B_TRUE;
5682		} else {
5683			error = SET_ERROR(EBUSY);
5684		}
5685	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5686	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5687	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5688	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5689		/*
5690		 * Cache devices can always be removed.
5691		 */
5692		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5693		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5694		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5695		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5696		spa_load_l2cache(spa);
5697		spa->spa_l2cache.sav_sync = B_TRUE;
5698	} else if (vd != NULL && vd->vdev_islog) {
5699		ASSERT(!locked);
5700		ASSERT(vd == vd->vdev_top);
5701
5702		mg = vd->vdev_mg;
5703
5704		/*
5705		 * Stop allocating from this vdev.
5706		 */
5707		metaslab_group_passivate(mg);
5708
5709		/*
5710		 * Wait for the youngest allocations and frees to sync,
5711		 * and then wait for the deferral of those frees to finish.
5712		 */
5713		spa_vdev_config_exit(spa, NULL,
5714		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5715
5716		/*
5717		 * Attempt to evacuate the vdev.
5718		 */
5719		error = spa_vdev_remove_evacuate(spa, vd);
5720
5721		txg = spa_vdev_config_enter(spa);
5722
5723		/*
5724		 * If we couldn't evacuate the vdev, unwind.
5725		 */
5726		if (error) {
5727			metaslab_group_activate(mg);
5728			return (spa_vdev_exit(spa, NULL, txg, error));
5729		}
5730
5731		/*
5732		 * Clean up the vdev namespace.
5733		 */
5734		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5735		spa_vdev_remove_from_namespace(spa, vd);
5736
5737	} else if (vd != NULL) {
5738		/*
5739		 * Normal vdevs cannot be removed (yet).
5740		 */
5741		error = SET_ERROR(ENOTSUP);
5742	} else {
5743		/*
5744		 * There is no vdev of any kind with the specified guid.
5745		 */
5746		error = SET_ERROR(ENOENT);
5747	}
5748
5749	if (!locked)
5750		error = spa_vdev_exit(spa, NULL, txg, error);
5751
5752	if (ev)
5753		spa_event_post(ev);
5754
5755	return (error);
5756}
5757
5758/*
5759 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5760 * currently spared, so we can detach it.
5761 */
5762static vdev_t *
5763spa_vdev_resilver_done_hunt(vdev_t *vd)
5764{
5765	vdev_t *newvd, *oldvd;
5766
5767	for (int c = 0; c < vd->vdev_children; c++) {
5768		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5769		if (oldvd != NULL)
5770			return (oldvd);
5771	}
5772
5773	/*
5774	 * Check for a completed replacement.  We always consider the first
5775	 * vdev in the list to be the oldest vdev, and the last one to be
5776	 * the newest (see spa_vdev_attach() for how that works).  In
5777	 * the case where the newest vdev is faulted, we will not automatically
5778	 * remove it after a resilver completes.  This is OK as it will require
5779	 * user intervention to determine which disk the admin wishes to keep.
5780	 */
5781	if (vd->vdev_ops == &vdev_replacing_ops) {
5782		ASSERT(vd->vdev_children > 1);
5783
5784		newvd = vd->vdev_child[vd->vdev_children - 1];
5785		oldvd = vd->vdev_child[0];
5786
5787		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5788		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5789		    !vdev_dtl_required(oldvd))
5790			return (oldvd);
5791	}
5792
5793	/*
5794	 * Check for a completed resilver with the 'unspare' flag set.
5795	 */
5796	if (vd->vdev_ops == &vdev_spare_ops) {
5797		vdev_t *first = vd->vdev_child[0];
5798		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5799
5800		if (last->vdev_unspare) {
5801			oldvd = first;
5802			newvd = last;
5803		} else if (first->vdev_unspare) {
5804			oldvd = last;
5805			newvd = first;
5806		} else {
5807			oldvd = NULL;
5808		}
5809
5810		if (oldvd != NULL &&
5811		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5812		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5813		    !vdev_dtl_required(oldvd))
5814			return (oldvd);
5815
5816		/*
5817		 * If there are more than two spares attached to a disk,
5818		 * and those spares are not required, then we want to
5819		 * attempt to free them up now so that they can be used
5820		 * by other pools.  Once we're back down to a single
5821		 * disk+spare, we stop removing them.
5822		 */
5823		if (vd->vdev_children > 2) {
5824			newvd = vd->vdev_child[1];
5825
5826			if (newvd->vdev_isspare && last->vdev_isspare &&
5827			    vdev_dtl_empty(last, DTL_MISSING) &&
5828			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5829			    !vdev_dtl_required(newvd))
5830				return (newvd);
5831		}
5832	}
5833
5834	return (NULL);
5835}
5836
5837static void
5838spa_vdev_resilver_done(spa_t *spa)
5839{
5840	vdev_t *vd, *pvd, *ppvd;
5841	uint64_t guid, sguid, pguid, ppguid;
5842
5843	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5844
5845	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5846		pvd = vd->vdev_parent;
5847		ppvd = pvd->vdev_parent;
5848		guid = vd->vdev_guid;
5849		pguid = pvd->vdev_guid;
5850		ppguid = ppvd->vdev_guid;
5851		sguid = 0;
5852		/*
5853		 * If we have just finished replacing a hot spared device, then
5854		 * we need to detach the parent's first child (the original hot
5855		 * spare) as well.
5856		 */
5857		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5858		    ppvd->vdev_children == 2) {
5859			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5860			sguid = ppvd->vdev_child[1]->vdev_guid;
5861		}
5862		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5863
5864		spa_config_exit(spa, SCL_ALL, FTAG);
5865		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5866			return;
5867		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5868			return;
5869		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5870	}
5871
5872	spa_config_exit(spa, SCL_ALL, FTAG);
5873}
5874
5875/*
5876 * Update the stored path or FRU for this vdev.
5877 */
5878int
5879spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5880    boolean_t ispath)
5881{
5882	vdev_t *vd;
5883	boolean_t sync = B_FALSE;
5884
5885	ASSERT(spa_writeable(spa));
5886
5887	spa_vdev_state_enter(spa, SCL_ALL);
5888
5889	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5890		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5891
5892	if (!vd->vdev_ops->vdev_op_leaf)
5893		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5894
5895	if (ispath) {
5896		if (strcmp(value, vd->vdev_path) != 0) {
5897			spa_strfree(vd->vdev_path);
5898			vd->vdev_path = spa_strdup(value);
5899			sync = B_TRUE;
5900		}
5901	} else {
5902		if (vd->vdev_fru == NULL) {
5903			vd->vdev_fru = spa_strdup(value);
5904			sync = B_TRUE;
5905		} else if (strcmp(value, vd->vdev_fru) != 0) {
5906			spa_strfree(vd->vdev_fru);
5907			vd->vdev_fru = spa_strdup(value);
5908			sync = B_TRUE;
5909		}
5910	}
5911
5912	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5913}
5914
5915int
5916spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5917{
5918	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5919}
5920
5921int
5922spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5923{
5924	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5925}
5926
5927/*
5928 * ==========================================================================
5929 * SPA Scanning
5930 * ==========================================================================
5931 */
5932
5933int
5934spa_scan_stop(spa_t *spa)
5935{
5936	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5937	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5938		return (SET_ERROR(EBUSY));
5939	return (dsl_scan_cancel(spa->spa_dsl_pool));
5940}
5941
5942int
5943spa_scan(spa_t *spa, pool_scan_func_t func)
5944{
5945	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5946
5947	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5948		return (SET_ERROR(ENOTSUP));
5949
5950	/*
5951	 * If a resilver was requested, but there is no DTL on a
5952	 * writeable leaf device, we have nothing to do.
5953	 */
5954	if (func == POOL_SCAN_RESILVER &&
5955	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5956		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5957		return (0);
5958	}
5959
5960	return (dsl_scan(spa->spa_dsl_pool, func));
5961}
5962
5963/*
5964 * ==========================================================================
5965 * SPA async task processing
5966 * ==========================================================================
5967 */
5968
5969static void
5970spa_async_remove(spa_t *spa, vdev_t *vd)
5971{
5972	if (vd->vdev_remove_wanted) {
5973		vd->vdev_remove_wanted = B_FALSE;
5974		vd->vdev_delayed_close = B_FALSE;
5975		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5976
5977		/*
5978		 * We want to clear the stats, but we don't want to do a full
5979		 * vdev_clear() as that will cause us to throw away
5980		 * degraded/faulted state as well as attempt to reopen the
5981		 * device, all of which is a waste.
5982		 */
5983		vd->vdev_stat.vs_read_errors = 0;
5984		vd->vdev_stat.vs_write_errors = 0;
5985		vd->vdev_stat.vs_checksum_errors = 0;
5986
5987		vdev_state_dirty(vd->vdev_top);
5988		/* Tell userspace that the vdev is gone. */
5989		zfs_post_remove(spa, vd);
5990	}
5991
5992	for (int c = 0; c < vd->vdev_children; c++)
5993		spa_async_remove(spa, vd->vdev_child[c]);
5994}
5995
5996static void
5997spa_async_probe(spa_t *spa, vdev_t *vd)
5998{
5999	if (vd->vdev_probe_wanted) {
6000		vd->vdev_probe_wanted = B_FALSE;
6001		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6002	}
6003
6004	for (int c = 0; c < vd->vdev_children; c++)
6005		spa_async_probe(spa, vd->vdev_child[c]);
6006}
6007
6008static void
6009spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6010{
6011	sysevent_id_t eid;
6012	nvlist_t *attr;
6013	char *physpath;
6014
6015	if (!spa->spa_autoexpand)
6016		return;
6017
6018	for (int c = 0; c < vd->vdev_children; c++) {
6019		vdev_t *cvd = vd->vdev_child[c];
6020		spa_async_autoexpand(spa, cvd);
6021	}
6022
6023	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6024		return;
6025
6026	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6027	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6028
6029	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6030	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6031
6032	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6033	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6034
6035	nvlist_free(attr);
6036	kmem_free(physpath, MAXPATHLEN);
6037}
6038
6039static void
6040spa_async_thread(void *arg)
6041{
6042	spa_t *spa = arg;
6043	int tasks;
6044
6045	ASSERT(spa->spa_sync_on);
6046
6047	mutex_enter(&spa->spa_async_lock);
6048	tasks = spa->spa_async_tasks;
6049	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6050	mutex_exit(&spa->spa_async_lock);
6051
6052	/*
6053	 * See if the config needs to be updated.
6054	 */
6055	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6056		uint64_t old_space, new_space;
6057
6058		mutex_enter(&spa_namespace_lock);
6059		old_space = metaslab_class_get_space(spa_normal_class(spa));
6060		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6061		new_space = metaslab_class_get_space(spa_normal_class(spa));
6062		mutex_exit(&spa_namespace_lock);
6063
6064		/*
6065		 * If the pool grew as a result of the config update,
6066		 * then log an internal history event.
6067		 */
6068		if (new_space != old_space) {
6069			spa_history_log_internal(spa, "vdev online", NULL,
6070			    "pool '%s' size: %llu(+%llu)",
6071			    spa_name(spa), new_space, new_space - old_space);
6072		}
6073	}
6074
6075	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6076		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6077		spa_async_autoexpand(spa, spa->spa_root_vdev);
6078		spa_config_exit(spa, SCL_CONFIG, FTAG);
6079	}
6080
6081	/*
6082	 * See if any devices need to be probed.
6083	 */
6084	if (tasks & SPA_ASYNC_PROBE) {
6085		spa_vdev_state_enter(spa, SCL_NONE);
6086		spa_async_probe(spa, spa->spa_root_vdev);
6087		(void) spa_vdev_state_exit(spa, NULL, 0);
6088	}
6089
6090	/*
6091	 * If any devices are done replacing, detach them.
6092	 */
6093	if (tasks & SPA_ASYNC_RESILVER_DONE)
6094		spa_vdev_resilver_done(spa);
6095
6096	/*
6097	 * Kick off a resilver.
6098	 */
6099	if (tasks & SPA_ASYNC_RESILVER)
6100		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6101
6102	/*
6103	 * Let the world know that we're done.
6104	 */
6105	mutex_enter(&spa->spa_async_lock);
6106	spa->spa_async_thread = NULL;
6107	cv_broadcast(&spa->spa_async_cv);
6108	mutex_exit(&spa->spa_async_lock);
6109	thread_exit();
6110}
6111
6112static void
6113spa_async_thread_vd(void *arg)
6114{
6115	spa_t *spa = arg;
6116	int tasks;
6117
6118	ASSERT(spa->spa_sync_on);
6119
6120	mutex_enter(&spa->spa_async_lock);
6121	tasks = spa->spa_async_tasks;
6122retry:
6123	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6124	mutex_exit(&spa->spa_async_lock);
6125
6126	/*
6127	 * See if any devices need to be marked REMOVED.
6128	 */
6129	if (tasks & SPA_ASYNC_REMOVE) {
6130		spa_vdev_state_enter(spa, SCL_NONE);
6131		spa_async_remove(spa, spa->spa_root_vdev);
6132		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6133			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6134		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6135			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6136		(void) spa_vdev_state_exit(spa, NULL, 0);
6137	}
6138
6139	/*
6140	 * Let the world know that we're done.
6141	 */
6142	mutex_enter(&spa->spa_async_lock);
6143	tasks = spa->spa_async_tasks;
6144	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6145		goto retry;
6146	spa->spa_async_thread_vd = NULL;
6147	cv_broadcast(&spa->spa_async_cv);
6148	mutex_exit(&spa->spa_async_lock);
6149	thread_exit();
6150}
6151
6152void
6153spa_async_suspend(spa_t *spa)
6154{
6155	mutex_enter(&spa->spa_async_lock);
6156	spa->spa_async_suspended++;
6157	while (spa->spa_async_thread != NULL &&
6158	    spa->spa_async_thread_vd != NULL)
6159		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6160	mutex_exit(&spa->spa_async_lock);
6161}
6162
6163void
6164spa_async_resume(spa_t *spa)
6165{
6166	mutex_enter(&spa->spa_async_lock);
6167	ASSERT(spa->spa_async_suspended != 0);
6168	spa->spa_async_suspended--;
6169	mutex_exit(&spa->spa_async_lock);
6170}
6171
6172static boolean_t
6173spa_async_tasks_pending(spa_t *spa)
6174{
6175	uint_t non_config_tasks;
6176	uint_t config_task;
6177	boolean_t config_task_suspended;
6178
6179	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6180	    SPA_ASYNC_REMOVE);
6181	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6182	if (spa->spa_ccw_fail_time == 0) {
6183		config_task_suspended = B_FALSE;
6184	} else {
6185		config_task_suspended =
6186		    (gethrtime() - spa->spa_ccw_fail_time) <
6187		    (zfs_ccw_retry_interval * NANOSEC);
6188	}
6189
6190	return (non_config_tasks || (config_task && !config_task_suspended));
6191}
6192
6193static void
6194spa_async_dispatch(spa_t *spa)
6195{
6196	mutex_enter(&spa->spa_async_lock);
6197	if (spa_async_tasks_pending(spa) &&
6198	    !spa->spa_async_suspended &&
6199	    spa->spa_async_thread == NULL &&
6200	    rootdir != NULL)
6201		spa->spa_async_thread = thread_create(NULL, 0,
6202		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6203	mutex_exit(&spa->spa_async_lock);
6204}
6205
6206static void
6207spa_async_dispatch_vd(spa_t *spa)
6208{
6209	mutex_enter(&spa->spa_async_lock);
6210	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6211	    !spa->spa_async_suspended &&
6212	    spa->spa_async_thread_vd == NULL &&
6213	    rootdir != NULL)
6214		spa->spa_async_thread_vd = thread_create(NULL, 0,
6215		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6216	mutex_exit(&spa->spa_async_lock);
6217}
6218
6219void
6220spa_async_request(spa_t *spa, int task)
6221{
6222	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6223	mutex_enter(&spa->spa_async_lock);
6224	spa->spa_async_tasks |= task;
6225	mutex_exit(&spa->spa_async_lock);
6226	spa_async_dispatch_vd(spa);
6227}
6228
6229/*
6230 * ==========================================================================
6231 * SPA syncing routines
6232 * ==========================================================================
6233 */
6234
6235static int
6236bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6237{
6238	bpobj_t *bpo = arg;
6239	bpobj_enqueue(bpo, bp, tx);
6240	return (0);
6241}
6242
6243static int
6244spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6245{
6246	zio_t *zio = arg;
6247
6248	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6249	    BP_GET_PSIZE(bp), zio->io_flags));
6250	return (0);
6251}
6252
6253/*
6254 * Note: this simple function is not inlined to make it easier to dtrace the
6255 * amount of time spent syncing frees.
6256 */
6257static void
6258spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6259{
6260	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6261	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6262	VERIFY(zio_wait(zio) == 0);
6263}
6264
6265/*
6266 * Note: this simple function is not inlined to make it easier to dtrace the
6267 * amount of time spent syncing deferred frees.
6268 */
6269static void
6270spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6271{
6272	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6273	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6274	    spa_free_sync_cb, zio, tx), ==, 0);
6275	VERIFY0(zio_wait(zio));
6276}
6277
6278
6279static void
6280spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6281{
6282	char *packed = NULL;
6283	size_t bufsize;
6284	size_t nvsize = 0;
6285	dmu_buf_t *db;
6286
6287	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6288
6289	/*
6290	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6291	 * information.  This avoids the dmu_buf_will_dirty() path and
6292	 * saves us a pre-read to get data we don't actually care about.
6293	 */
6294	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6295	packed = kmem_alloc(bufsize, KM_SLEEP);
6296
6297	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6298	    KM_SLEEP) == 0);
6299	bzero(packed + nvsize, bufsize - nvsize);
6300
6301	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6302
6303	kmem_free(packed, bufsize);
6304
6305	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6306	dmu_buf_will_dirty(db, tx);
6307	*(uint64_t *)db->db_data = nvsize;
6308	dmu_buf_rele(db, FTAG);
6309}
6310
6311static void
6312spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6313    const char *config, const char *entry)
6314{
6315	nvlist_t *nvroot;
6316	nvlist_t **list;
6317	int i;
6318
6319	if (!sav->sav_sync)
6320		return;
6321
6322	/*
6323	 * Update the MOS nvlist describing the list of available devices.
6324	 * spa_validate_aux() will have already made sure this nvlist is
6325	 * valid and the vdevs are labeled appropriately.
6326	 */
6327	if (sav->sav_object == 0) {
6328		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6329		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6330		    sizeof (uint64_t), tx);
6331		VERIFY(zap_update(spa->spa_meta_objset,
6332		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6333		    &sav->sav_object, tx) == 0);
6334	}
6335
6336	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6337	if (sav->sav_count == 0) {
6338		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6339	} else {
6340		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6341		for (i = 0; i < sav->sav_count; i++)
6342			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6343			    B_FALSE, VDEV_CONFIG_L2CACHE);
6344		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6345		    sav->sav_count) == 0);
6346		for (i = 0; i < sav->sav_count; i++)
6347			nvlist_free(list[i]);
6348		kmem_free(list, sav->sav_count * sizeof (void *));
6349	}
6350
6351	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6352	nvlist_free(nvroot);
6353
6354	sav->sav_sync = B_FALSE;
6355}
6356
6357static void
6358spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6359{
6360	nvlist_t *config;
6361
6362	if (list_is_empty(&spa->spa_config_dirty_list))
6363		return;
6364
6365	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6366
6367	config = spa_config_generate(spa, spa->spa_root_vdev,
6368	    dmu_tx_get_txg(tx), B_FALSE);
6369
6370	/*
6371	 * If we're upgrading the spa version then make sure that
6372	 * the config object gets updated with the correct version.
6373	 */
6374	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6375		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6376		    spa->spa_uberblock.ub_version);
6377
6378	spa_config_exit(spa, SCL_STATE, FTAG);
6379
6380	nvlist_free(spa->spa_config_syncing);
6381	spa->spa_config_syncing = config;
6382
6383	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6384}
6385
6386static void
6387spa_sync_version(void *arg, dmu_tx_t *tx)
6388{
6389	uint64_t *versionp = arg;
6390	uint64_t version = *versionp;
6391	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6392
6393	/*
6394	 * Setting the version is special cased when first creating the pool.
6395	 */
6396	ASSERT(tx->tx_txg != TXG_INITIAL);
6397
6398	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6399	ASSERT(version >= spa_version(spa));
6400
6401	spa->spa_uberblock.ub_version = version;
6402	vdev_config_dirty(spa->spa_root_vdev);
6403	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6404}
6405
6406/*
6407 * Set zpool properties.
6408 */
6409static void
6410spa_sync_props(void *arg, dmu_tx_t *tx)
6411{
6412	nvlist_t *nvp = arg;
6413	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6414	objset_t *mos = spa->spa_meta_objset;
6415	nvpair_t *elem = NULL;
6416
6417	mutex_enter(&spa->spa_props_lock);
6418
6419	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6420		uint64_t intval;
6421		char *strval, *fname;
6422		zpool_prop_t prop;
6423		const char *propname;
6424		zprop_type_t proptype;
6425		spa_feature_t fid;
6426
6427		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6428		case ZPROP_INVAL:
6429			/*
6430			 * We checked this earlier in spa_prop_validate().
6431			 */
6432			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6433
6434			fname = strchr(nvpair_name(elem), '@') + 1;
6435			VERIFY0(zfeature_lookup_name(fname, &fid));
6436
6437			spa_feature_enable(spa, fid, tx);
6438			spa_history_log_internal(spa, "set", tx,
6439			    "%s=enabled", nvpair_name(elem));
6440			break;
6441
6442		case ZPOOL_PROP_VERSION:
6443			intval = fnvpair_value_uint64(elem);
6444			/*
6445			 * The version is synced seperatly before other
6446			 * properties and should be correct by now.
6447			 */
6448			ASSERT3U(spa_version(spa), >=, intval);
6449			break;
6450
6451		case ZPOOL_PROP_ALTROOT:
6452			/*
6453			 * 'altroot' is a non-persistent property. It should
6454			 * have been set temporarily at creation or import time.
6455			 */
6456			ASSERT(spa->spa_root != NULL);
6457			break;
6458
6459		case ZPOOL_PROP_READONLY:
6460		case ZPOOL_PROP_CACHEFILE:
6461			/*
6462			 * 'readonly' and 'cachefile' are also non-persisitent
6463			 * properties.
6464			 */
6465			break;
6466		case ZPOOL_PROP_COMMENT:
6467			strval = fnvpair_value_string(elem);
6468			if (spa->spa_comment != NULL)
6469				spa_strfree(spa->spa_comment);
6470			spa->spa_comment = spa_strdup(strval);
6471			/*
6472			 * We need to dirty the configuration on all the vdevs
6473			 * so that their labels get updated.  It's unnecessary
6474			 * to do this for pool creation since the vdev's
6475			 * configuratoin has already been dirtied.
6476			 */
6477			if (tx->tx_txg != TXG_INITIAL)
6478				vdev_config_dirty(spa->spa_root_vdev);
6479			spa_history_log_internal(spa, "set", tx,
6480			    "%s=%s", nvpair_name(elem), strval);
6481			break;
6482		default:
6483			/*
6484			 * Set pool property values in the poolprops mos object.
6485			 */
6486			if (spa->spa_pool_props_object == 0) {
6487				spa->spa_pool_props_object =
6488				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6489				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6490				    tx);
6491			}
6492
6493			/* normalize the property name */
6494			propname = zpool_prop_to_name(prop);
6495			proptype = zpool_prop_get_type(prop);
6496
6497			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6498				ASSERT(proptype == PROP_TYPE_STRING);
6499				strval = fnvpair_value_string(elem);
6500				VERIFY0(zap_update(mos,
6501				    spa->spa_pool_props_object, propname,
6502				    1, strlen(strval) + 1, strval, tx));
6503				spa_history_log_internal(spa, "set", tx,
6504				    "%s=%s", nvpair_name(elem), strval);
6505			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6506				intval = fnvpair_value_uint64(elem);
6507
6508				if (proptype == PROP_TYPE_INDEX) {
6509					const char *unused;
6510					VERIFY0(zpool_prop_index_to_string(
6511					    prop, intval, &unused));
6512				}
6513				VERIFY0(zap_update(mos,
6514				    spa->spa_pool_props_object, propname,
6515				    8, 1, &intval, tx));
6516				spa_history_log_internal(spa, "set", tx,
6517				    "%s=%lld", nvpair_name(elem), intval);
6518			} else {
6519				ASSERT(0); /* not allowed */
6520			}
6521
6522			switch (prop) {
6523			case ZPOOL_PROP_DELEGATION:
6524				spa->spa_delegation = intval;
6525				break;
6526			case ZPOOL_PROP_BOOTFS:
6527				spa->spa_bootfs = intval;
6528				break;
6529			case ZPOOL_PROP_FAILUREMODE:
6530				spa->spa_failmode = intval;
6531				break;
6532			case ZPOOL_PROP_AUTOEXPAND:
6533				spa->spa_autoexpand = intval;
6534				if (tx->tx_txg != TXG_INITIAL)
6535					spa_async_request(spa,
6536					    SPA_ASYNC_AUTOEXPAND);
6537				break;
6538			case ZPOOL_PROP_DEDUPDITTO:
6539				spa->spa_dedup_ditto = intval;
6540				break;
6541			default:
6542				break;
6543			}
6544		}
6545
6546	}
6547
6548	mutex_exit(&spa->spa_props_lock);
6549}
6550
6551/*
6552 * Perform one-time upgrade on-disk changes.  spa_version() does not
6553 * reflect the new version this txg, so there must be no changes this
6554 * txg to anything that the upgrade code depends on after it executes.
6555 * Therefore this must be called after dsl_pool_sync() does the sync
6556 * tasks.
6557 */
6558static void
6559spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6560{
6561	dsl_pool_t *dp = spa->spa_dsl_pool;
6562
6563	ASSERT(spa->spa_sync_pass == 1);
6564
6565	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6566
6567	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6568	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6569		dsl_pool_create_origin(dp, tx);
6570
6571		/* Keeping the origin open increases spa_minref */
6572		spa->spa_minref += 3;
6573	}
6574
6575	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6576	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6577		dsl_pool_upgrade_clones(dp, tx);
6578	}
6579
6580	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6581	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6582		dsl_pool_upgrade_dir_clones(dp, tx);
6583
6584		/* Keeping the freedir open increases spa_minref */
6585		spa->spa_minref += 3;
6586	}
6587
6588	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6589	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6590		spa_feature_create_zap_objects(spa, tx);
6591	}
6592
6593	/*
6594	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6595	 * when possibility to use lz4 compression for metadata was added
6596	 * Old pools that have this feature enabled must be upgraded to have
6597	 * this feature active
6598	 */
6599	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6600		boolean_t lz4_en = spa_feature_is_enabled(spa,
6601		    SPA_FEATURE_LZ4_COMPRESS);
6602		boolean_t lz4_ac = spa_feature_is_active(spa,
6603		    SPA_FEATURE_LZ4_COMPRESS);
6604
6605		if (lz4_en && !lz4_ac)
6606			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6607	}
6608
6609	/*
6610	 * If we haven't written the salt, do so now.  Note that the
6611	 * feature may not be activated yet, but that's fine since
6612	 * the presence of this ZAP entry is backwards compatible.
6613	 */
6614	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6615	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6616		VERIFY0(zap_add(spa->spa_meta_objset,
6617		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6618		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6619		    spa->spa_cksum_salt.zcs_bytes, tx));
6620	}
6621
6622	rrw_exit(&dp->dp_config_rwlock, FTAG);
6623}
6624
6625/*
6626 * Sync the specified transaction group.  New blocks may be dirtied as
6627 * part of the process, so we iterate until it converges.
6628 */
6629void
6630spa_sync(spa_t *spa, uint64_t txg)
6631{
6632	dsl_pool_t *dp = spa->spa_dsl_pool;
6633	objset_t *mos = spa->spa_meta_objset;
6634	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6635	vdev_t *rvd = spa->spa_root_vdev;
6636	vdev_t *vd;
6637	dmu_tx_t *tx;
6638	int error;
6639	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6640	    zfs_vdev_queue_depth_pct / 100;
6641
6642	VERIFY(spa_writeable(spa));
6643
6644	/*
6645	 * Lock out configuration changes.
6646	 */
6647	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6648
6649	spa->spa_syncing_txg = txg;
6650	spa->spa_sync_pass = 0;
6651
6652	mutex_enter(&spa->spa_alloc_lock);
6653	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6654	mutex_exit(&spa->spa_alloc_lock);
6655
6656	/*
6657	 * If there are any pending vdev state changes, convert them
6658	 * into config changes that go out with this transaction group.
6659	 */
6660	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6661	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6662		/*
6663		 * We need the write lock here because, for aux vdevs,
6664		 * calling vdev_config_dirty() modifies sav_config.
6665		 * This is ugly and will become unnecessary when we
6666		 * eliminate the aux vdev wart by integrating all vdevs
6667		 * into the root vdev tree.
6668		 */
6669		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6670		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6671		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6672			vdev_state_clean(vd);
6673			vdev_config_dirty(vd);
6674		}
6675		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6676		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6677	}
6678	spa_config_exit(spa, SCL_STATE, FTAG);
6679
6680	tx = dmu_tx_create_assigned(dp, txg);
6681
6682	spa->spa_sync_starttime = gethrtime();
6683#ifdef illumos
6684	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6685	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6686#else	/* !illumos */
6687#ifdef _KERNEL
6688	callout_reset(&spa->spa_deadman_cycid,
6689	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6690#endif
6691#endif	/* illumos */
6692
6693	/*
6694	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6695	 * set spa_deflate if we have no raid-z vdevs.
6696	 */
6697	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6698	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6699		int i;
6700
6701		for (i = 0; i < rvd->vdev_children; i++) {
6702			vd = rvd->vdev_child[i];
6703			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6704				break;
6705		}
6706		if (i == rvd->vdev_children) {
6707			spa->spa_deflate = TRUE;
6708			VERIFY(0 == zap_add(spa->spa_meta_objset,
6709			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6710			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6711		}
6712	}
6713
6714	/*
6715	 * Set the top-level vdev's max queue depth. Evaluate each
6716	 * top-level's async write queue depth in case it changed.
6717	 * The max queue depth will not change in the middle of syncing
6718	 * out this txg.
6719	 */
6720	uint64_t queue_depth_total = 0;
6721	for (int c = 0; c < rvd->vdev_children; c++) {
6722		vdev_t *tvd = rvd->vdev_child[c];
6723		metaslab_group_t *mg = tvd->vdev_mg;
6724
6725		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6726		    !metaslab_group_initialized(mg))
6727			continue;
6728
6729		/*
6730		 * It is safe to do a lock-free check here because only async
6731		 * allocations look at mg_max_alloc_queue_depth, and async
6732		 * allocations all happen from spa_sync().
6733		 */
6734		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6735		mg->mg_max_alloc_queue_depth = max_queue_depth;
6736		queue_depth_total += mg->mg_max_alloc_queue_depth;
6737	}
6738	metaslab_class_t *mc = spa_normal_class(spa);
6739	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6740	mc->mc_alloc_max_slots = queue_depth_total;
6741	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6742
6743	ASSERT3U(mc->mc_alloc_max_slots, <=,
6744	    max_queue_depth * rvd->vdev_children);
6745
6746	/*
6747	 * Iterate to convergence.
6748	 */
6749	do {
6750		int pass = ++spa->spa_sync_pass;
6751
6752		spa_sync_config_object(spa, tx);
6753		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6754		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6755		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6756		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6757		spa_errlog_sync(spa, txg);
6758		dsl_pool_sync(dp, txg);
6759
6760		if (pass < zfs_sync_pass_deferred_free) {
6761			spa_sync_frees(spa, free_bpl, tx);
6762		} else {
6763			/*
6764			 * We can not defer frees in pass 1, because
6765			 * we sync the deferred frees later in pass 1.
6766			 */
6767			ASSERT3U(pass, >, 1);
6768			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6769			    &spa->spa_deferred_bpobj, tx);
6770		}
6771
6772		ddt_sync(spa, txg);
6773		dsl_scan_sync(dp, tx);
6774
6775		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6776			vdev_sync(vd, txg);
6777
6778		if (pass == 1) {
6779			spa_sync_upgrades(spa, tx);
6780			ASSERT3U(txg, >=,
6781			    spa->spa_uberblock.ub_rootbp.blk_birth);
6782			/*
6783			 * Note: We need to check if the MOS is dirty
6784			 * because we could have marked the MOS dirty
6785			 * without updating the uberblock (e.g. if we
6786			 * have sync tasks but no dirty user data).  We
6787			 * need to check the uberblock's rootbp because
6788			 * it is updated if we have synced out dirty
6789			 * data (though in this case the MOS will most
6790			 * likely also be dirty due to second order
6791			 * effects, we don't want to rely on that here).
6792			 */
6793			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6794			    !dmu_objset_is_dirty(mos, txg)) {
6795				/*
6796				 * Nothing changed on the first pass,
6797				 * therefore this TXG is a no-op.  Avoid
6798				 * syncing deferred frees, so that we
6799				 * can keep this TXG as a no-op.
6800				 */
6801				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6802				    txg));
6803				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6804				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6805				break;
6806			}
6807			spa_sync_deferred_frees(spa, tx);
6808		}
6809
6810	} while (dmu_objset_is_dirty(mos, txg));
6811
6812	/*
6813	 * Rewrite the vdev configuration (which includes the uberblock)
6814	 * to commit the transaction group.
6815	 *
6816	 * If there are no dirty vdevs, we sync the uberblock to a few
6817	 * random top-level vdevs that are known to be visible in the
6818	 * config cache (see spa_vdev_add() for a complete description).
6819	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6820	 */
6821	for (;;) {
6822		/*
6823		 * We hold SCL_STATE to prevent vdev open/close/etc.
6824		 * while we're attempting to write the vdev labels.
6825		 */
6826		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6827
6828		if (list_is_empty(&spa->spa_config_dirty_list)) {
6829			vdev_t *svd[SPA_DVAS_PER_BP];
6830			int svdcount = 0;
6831			int children = rvd->vdev_children;
6832			int c0 = spa_get_random(children);
6833
6834			for (int c = 0; c < children; c++) {
6835				vd = rvd->vdev_child[(c0 + c) % children];
6836				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6837					continue;
6838				svd[svdcount++] = vd;
6839				if (svdcount == SPA_DVAS_PER_BP)
6840					break;
6841			}
6842			error = vdev_config_sync(svd, svdcount, txg);
6843		} else {
6844			error = vdev_config_sync(rvd->vdev_child,
6845			    rvd->vdev_children, txg);
6846		}
6847
6848		if (error == 0)
6849			spa->spa_last_synced_guid = rvd->vdev_guid;
6850
6851		spa_config_exit(spa, SCL_STATE, FTAG);
6852
6853		if (error == 0)
6854			break;
6855		zio_suspend(spa, NULL);
6856		zio_resume_wait(spa);
6857	}
6858	dmu_tx_commit(tx);
6859
6860#ifdef illumos
6861	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6862#else	/* !illumos */
6863#ifdef _KERNEL
6864	callout_drain(&spa->spa_deadman_cycid);
6865#endif
6866#endif	/* illumos */
6867
6868	/*
6869	 * Clear the dirty config list.
6870	 */
6871	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6872		vdev_config_clean(vd);
6873
6874	/*
6875	 * Now that the new config has synced transactionally,
6876	 * let it become visible to the config cache.
6877	 */
6878	if (spa->spa_config_syncing != NULL) {
6879		spa_config_set(spa, spa->spa_config_syncing);
6880		spa->spa_config_txg = txg;
6881		spa->spa_config_syncing = NULL;
6882	}
6883
6884	dsl_pool_sync_done(dp, txg);
6885
6886	mutex_enter(&spa->spa_alloc_lock);
6887	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6888	mutex_exit(&spa->spa_alloc_lock);
6889
6890	/*
6891	 * Update usable space statistics.
6892	 */
6893	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6894		vdev_sync_done(vd, txg);
6895
6896	spa_update_dspace(spa);
6897
6898	/*
6899	 * It had better be the case that we didn't dirty anything
6900	 * since vdev_config_sync().
6901	 */
6902	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6903	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6904	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6905
6906	spa->spa_sync_pass = 0;
6907
6908	/*
6909	 * Update the last synced uberblock here. We want to do this at
6910	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6911	 * will be guaranteed that all the processing associated with
6912	 * that txg has been completed.
6913	 */
6914	spa->spa_ubsync = spa->spa_uberblock;
6915	spa_config_exit(spa, SCL_CONFIG, FTAG);
6916
6917	spa_handle_ignored_writes(spa);
6918
6919	/*
6920	 * If any async tasks have been requested, kick them off.
6921	 */
6922	spa_async_dispatch(spa);
6923	spa_async_dispatch_vd(spa);
6924}
6925
6926/*
6927 * Sync all pools.  We don't want to hold the namespace lock across these
6928 * operations, so we take a reference on the spa_t and drop the lock during the
6929 * sync.
6930 */
6931void
6932spa_sync_allpools(void)
6933{
6934	spa_t *spa = NULL;
6935	mutex_enter(&spa_namespace_lock);
6936	while ((spa = spa_next(spa)) != NULL) {
6937		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6938		    !spa_writeable(spa) || spa_suspended(spa))
6939			continue;
6940		spa_open_ref(spa, FTAG);
6941		mutex_exit(&spa_namespace_lock);
6942		txg_wait_synced(spa_get_dsl(spa), 0);
6943		mutex_enter(&spa_namespace_lock);
6944		spa_close(spa, FTAG);
6945	}
6946	mutex_exit(&spa_namespace_lock);
6947}
6948
6949/*
6950 * ==========================================================================
6951 * Miscellaneous routines
6952 * ==========================================================================
6953 */
6954
6955/*
6956 * Remove all pools in the system.
6957 */
6958void
6959spa_evict_all(void)
6960{
6961	spa_t *spa;
6962
6963	/*
6964	 * Remove all cached state.  All pools should be closed now,
6965	 * so every spa in the AVL tree should be unreferenced.
6966	 */
6967	mutex_enter(&spa_namespace_lock);
6968	while ((spa = spa_next(NULL)) != NULL) {
6969		/*
6970		 * Stop async tasks.  The async thread may need to detach
6971		 * a device that's been replaced, which requires grabbing
6972		 * spa_namespace_lock, so we must drop it here.
6973		 */
6974		spa_open_ref(spa, FTAG);
6975		mutex_exit(&spa_namespace_lock);
6976		spa_async_suspend(spa);
6977		mutex_enter(&spa_namespace_lock);
6978		spa_close(spa, FTAG);
6979
6980		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6981			spa_unload(spa);
6982			spa_deactivate(spa);
6983		}
6984		spa_remove(spa);
6985	}
6986	mutex_exit(&spa_namespace_lock);
6987}
6988
6989vdev_t *
6990spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6991{
6992	vdev_t *vd;
6993	int i;
6994
6995	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6996		return (vd);
6997
6998	if (aux) {
6999		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7000			vd = spa->spa_l2cache.sav_vdevs[i];
7001			if (vd->vdev_guid == guid)
7002				return (vd);
7003		}
7004
7005		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7006			vd = spa->spa_spares.sav_vdevs[i];
7007			if (vd->vdev_guid == guid)
7008				return (vd);
7009		}
7010	}
7011
7012	return (NULL);
7013}
7014
7015void
7016spa_upgrade(spa_t *spa, uint64_t version)
7017{
7018	ASSERT(spa_writeable(spa));
7019
7020	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7021
7022	/*
7023	 * This should only be called for a non-faulted pool, and since a
7024	 * future version would result in an unopenable pool, this shouldn't be
7025	 * possible.
7026	 */
7027	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7028	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7029
7030	spa->spa_uberblock.ub_version = version;
7031	vdev_config_dirty(spa->spa_root_vdev);
7032
7033	spa_config_exit(spa, SCL_ALL, FTAG);
7034
7035	txg_wait_synced(spa_get_dsl(spa), 0);
7036}
7037
7038boolean_t
7039spa_has_spare(spa_t *spa, uint64_t guid)
7040{
7041	int i;
7042	uint64_t spareguid;
7043	spa_aux_vdev_t *sav = &spa->spa_spares;
7044
7045	for (i = 0; i < sav->sav_count; i++)
7046		if (sav->sav_vdevs[i]->vdev_guid == guid)
7047			return (B_TRUE);
7048
7049	for (i = 0; i < sav->sav_npending; i++) {
7050		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7051		    &spareguid) == 0 && spareguid == guid)
7052			return (B_TRUE);
7053	}
7054
7055	return (B_FALSE);
7056}
7057
7058/*
7059 * Check if a pool has an active shared spare device.
7060 * Note: reference count of an active spare is 2, as a spare and as a replace
7061 */
7062static boolean_t
7063spa_has_active_shared_spare(spa_t *spa)
7064{
7065	int i, refcnt;
7066	uint64_t pool;
7067	spa_aux_vdev_t *sav = &spa->spa_spares;
7068
7069	for (i = 0; i < sav->sav_count; i++) {
7070		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7071		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7072		    refcnt > 2)
7073			return (B_TRUE);
7074	}
7075
7076	return (B_FALSE);
7077}
7078
7079static sysevent_t *
7080spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7081{
7082	sysevent_t		*ev = NULL;
7083#ifdef _KERNEL
7084	sysevent_attr_list_t	*attr = NULL;
7085	sysevent_value_t	value;
7086
7087	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7088	    SE_SLEEP);
7089	ASSERT(ev != NULL);
7090
7091	value.value_type = SE_DATA_TYPE_STRING;
7092	value.value.sv_string = spa_name(spa);
7093	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7094		goto done;
7095
7096	value.value_type = SE_DATA_TYPE_UINT64;
7097	value.value.sv_uint64 = spa_guid(spa);
7098	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7099		goto done;
7100
7101	if (vd) {
7102		value.value_type = SE_DATA_TYPE_UINT64;
7103		value.value.sv_uint64 = vd->vdev_guid;
7104		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7105		    SE_SLEEP) != 0)
7106			goto done;
7107
7108		if (vd->vdev_path) {
7109			value.value_type = SE_DATA_TYPE_STRING;
7110			value.value.sv_string = vd->vdev_path;
7111			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7112			    &value, SE_SLEEP) != 0)
7113				goto done;
7114		}
7115	}
7116
7117	if (sysevent_attach_attributes(ev, attr) != 0)
7118		goto done;
7119	attr = NULL;
7120
7121done:
7122	if (attr)
7123		sysevent_free_attr(attr);
7124
7125#endif
7126	return (ev);
7127}
7128
7129static void
7130spa_event_post(sysevent_t *ev)
7131{
7132#ifdef _KERNEL
7133	sysevent_id_t		eid;
7134
7135	(void) log_sysevent(ev, SE_SLEEP, &eid);
7136	sysevent_free(ev);
7137#endif
7138}
7139
7140/*
7141 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7142 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7143 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7144 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7145 * or zdb as real changes.
7146 */
7147void
7148spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7149{
7150	spa_event_post(spa_event_create(spa, vd, name));
7151}
7152