spa.c revision 307127
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
156static void spa_event_post(sysevent_t *ev);
157static void spa_sync_version(void *arg, dmu_tx_t *tx);
158static void spa_sync_props(void *arg, dmu_tx_t *tx);
159static boolean_t spa_has_active_shared_spare(spa_t *spa);
160static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
161    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
162    char **ereport);
163static void spa_vdev_resilver_done(spa_t *spa);
164
165uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
166#ifdef PSRSET_BIND
167id_t		zio_taskq_psrset_bind = PS_NONE;
168#endif
169#ifdef SYSDC
170boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
171#endif
172uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
173
174boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
175extern int	zfs_sync_pass_deferred_free;
176
177#ifndef illumos
178extern void spa_deadman(void *arg);
179#endif
180
181/*
182 * This (illegal) pool name is used when temporarily importing a spa_t in order
183 * to get the vdev stats associated with the imported devices.
184 */
185#define	TRYIMPORT_NAME	"$import"
186
187/*
188 * ==========================================================================
189 * SPA properties routines
190 * ==========================================================================
191 */
192
193/*
194 * Add a (source=src, propname=propval) list to an nvlist.
195 */
196static void
197spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
198    uint64_t intval, zprop_source_t src)
199{
200	const char *propname = zpool_prop_to_name(prop);
201	nvlist_t *propval;
202
203	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
204	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
205
206	if (strval != NULL)
207		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
208	else
209		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
210
211	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
212	nvlist_free(propval);
213}
214
215/*
216 * Get property values from the spa configuration.
217 */
218static void
219spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
220{
221	vdev_t *rvd = spa->spa_root_vdev;
222	dsl_pool_t *pool = spa->spa_dsl_pool;
223	uint64_t size, alloc, cap, version;
224	zprop_source_t src = ZPROP_SRC_NONE;
225	spa_config_dirent_t *dp;
226	metaslab_class_t *mc = spa_normal_class(spa);
227
228	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
229
230	if (rvd != NULL) {
231		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
232		size = metaslab_class_get_space(spa_normal_class(spa));
233		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
237		    size - alloc, src);
238
239		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
240		    metaslab_class_fragmentation(mc), src);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
242		    metaslab_class_expandable_space(mc), src);
243		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
244		    (spa_mode(spa) == FREAD), src);
245
246		cap = (size == 0) ? 0 : (alloc * 100 / size);
247		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
250		    ddt_get_pool_dedup_ratio(spa), src);
251
252		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
253		    rvd->vdev_state, src);
254
255		version = spa_version(spa);
256		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
257			src = ZPROP_SRC_DEFAULT;
258		else
259			src = ZPROP_SRC_LOCAL;
260		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
261	}
262
263	if (pool != NULL) {
264		/*
265		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
266		 * when opening pools before this version freedir will be NULL.
267		 */
268		if (pool->dp_free_dir != NULL) {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
270			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
271			    src);
272		} else {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
274			    NULL, 0, src);
275		}
276
277		if (pool->dp_leak_dir != NULL) {
278			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
279			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
280			    src);
281		} else {
282			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
283			    NULL, 0, src);
284		}
285	}
286
287	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
288
289	if (spa->spa_comment != NULL) {
290		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
291		    0, ZPROP_SRC_LOCAL);
292	}
293
294	if (spa->spa_root != NULL)
295		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
296		    0, ZPROP_SRC_LOCAL);
297
298	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
299		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
300		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
301	} else {
302		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
303		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
304	}
305
306	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
307		if (dp->scd_path == NULL) {
308			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309			    "none", 0, ZPROP_SRC_LOCAL);
310		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
311			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
312			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
313		}
314	}
315}
316
317/*
318 * Get zpool property values.
319 */
320int
321spa_prop_get(spa_t *spa, nvlist_t **nvp)
322{
323	objset_t *mos = spa->spa_meta_objset;
324	zap_cursor_t zc;
325	zap_attribute_t za;
326	int err;
327
328	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
329
330	mutex_enter(&spa->spa_props_lock);
331
332	/*
333	 * Get properties from the spa config.
334	 */
335	spa_prop_get_config(spa, nvp);
336
337	/* If no pool property object, no more prop to get. */
338	if (mos == NULL || spa->spa_pool_props_object == 0) {
339		mutex_exit(&spa->spa_props_lock);
340		return (0);
341	}
342
343	/*
344	 * Get properties from the MOS pool property object.
345	 */
346	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
347	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
348	    zap_cursor_advance(&zc)) {
349		uint64_t intval = 0;
350		char *strval = NULL;
351		zprop_source_t src = ZPROP_SRC_DEFAULT;
352		zpool_prop_t prop;
353
354		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
355			continue;
356
357		switch (za.za_integer_length) {
358		case 8:
359			/* integer property */
360			if (za.za_first_integer !=
361			    zpool_prop_default_numeric(prop))
362				src = ZPROP_SRC_LOCAL;
363
364			if (prop == ZPOOL_PROP_BOOTFS) {
365				dsl_pool_t *dp;
366				dsl_dataset_t *ds = NULL;
367
368				dp = spa_get_dsl(spa);
369				dsl_pool_config_enter(dp, FTAG);
370				if (err = dsl_dataset_hold_obj(dp,
371				    za.za_first_integer, FTAG, &ds)) {
372					dsl_pool_config_exit(dp, FTAG);
373					break;
374				}
375
376				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
377				    KM_SLEEP);
378				dsl_dataset_name(ds, strval);
379				dsl_dataset_rele(ds, FTAG);
380				dsl_pool_config_exit(dp, FTAG);
381			} else {
382				strval = NULL;
383				intval = za.za_first_integer;
384			}
385
386			spa_prop_add_list(*nvp, prop, strval, intval, src);
387
388			if (strval != NULL)
389				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
390
391			break;
392
393		case 1:
394			/* string property */
395			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
396			err = zap_lookup(mos, spa->spa_pool_props_object,
397			    za.za_name, 1, za.za_num_integers, strval);
398			if (err) {
399				kmem_free(strval, za.za_num_integers);
400				break;
401			}
402			spa_prop_add_list(*nvp, prop, strval, 0, src);
403			kmem_free(strval, za.za_num_integers);
404			break;
405
406		default:
407			break;
408		}
409	}
410	zap_cursor_fini(&zc);
411	mutex_exit(&spa->spa_props_lock);
412out:
413	if (err && err != ENOENT) {
414		nvlist_free(*nvp);
415		*nvp = NULL;
416		return (err);
417	}
418
419	return (0);
420}
421
422/*
423 * Validate the given pool properties nvlist and modify the list
424 * for the property values to be set.
425 */
426static int
427spa_prop_validate(spa_t *spa, nvlist_t *props)
428{
429	nvpair_t *elem;
430	int error = 0, reset_bootfs = 0;
431	uint64_t objnum = 0;
432	boolean_t has_feature = B_FALSE;
433
434	elem = NULL;
435	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
436		uint64_t intval;
437		char *strval, *slash, *check, *fname;
438		const char *propname = nvpair_name(elem);
439		zpool_prop_t prop = zpool_name_to_prop(propname);
440
441		switch (prop) {
442		case ZPROP_INVAL:
443			if (!zpool_prop_feature(propname)) {
444				error = SET_ERROR(EINVAL);
445				break;
446			}
447
448			/*
449			 * Sanitize the input.
450			 */
451			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (nvpair_value_uint64(elem, &intval) != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			if (intval != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			fname = strchr(propname, '@') + 1;
467			if (zfeature_lookup_name(fname, NULL) != 0) {
468				error = SET_ERROR(EINVAL);
469				break;
470			}
471
472			has_feature = B_TRUE;
473			break;
474
475		case ZPOOL_PROP_VERSION:
476			error = nvpair_value_uint64(elem, &intval);
477			if (!error &&
478			    (intval < spa_version(spa) ||
479			    intval > SPA_VERSION_BEFORE_FEATURES ||
480			    has_feature))
481				error = SET_ERROR(EINVAL);
482			break;
483
484		case ZPOOL_PROP_DELEGATION:
485		case ZPOOL_PROP_AUTOREPLACE:
486		case ZPOOL_PROP_LISTSNAPS:
487		case ZPOOL_PROP_AUTOEXPAND:
488			error = nvpair_value_uint64(elem, &intval);
489			if (!error && intval > 1)
490				error = SET_ERROR(EINVAL);
491			break;
492
493		case ZPOOL_PROP_BOOTFS:
494			/*
495			 * If the pool version is less than SPA_VERSION_BOOTFS,
496			 * or the pool is still being created (version == 0),
497			 * the bootfs property cannot be set.
498			 */
499			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
500				error = SET_ERROR(ENOTSUP);
501				break;
502			}
503
504			/*
505			 * Make sure the vdev config is bootable
506			 */
507			if (!vdev_is_bootable(spa->spa_root_vdev)) {
508				error = SET_ERROR(ENOTSUP);
509				break;
510			}
511
512			reset_bootfs = 1;
513
514			error = nvpair_value_string(elem, &strval);
515
516			if (!error) {
517				objset_t *os;
518				uint64_t propval;
519
520				if (strval == NULL || strval[0] == '\0') {
521					objnum = zpool_prop_default_numeric(
522					    ZPOOL_PROP_BOOTFS);
523					break;
524				}
525
526				if (error = dmu_objset_hold(strval, FTAG, &os))
527					break;
528
529				/*
530				 * Must be ZPL, and its property settings
531				 * must be supported by GRUB (compression
532				 * is not gzip, and large blocks are not used).
533				 */
534
535				if (dmu_objset_type(os) != DMU_OST_ZFS) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
540				    &propval)) == 0 &&
541				    !BOOTFS_COMPRESS_VALID(propval)) {
542					error = SET_ERROR(ENOTSUP);
543				} else if ((error =
544				    dsl_prop_get_int_ds(dmu_objset_ds(os),
545				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
546				    &propval)) == 0 &&
547				    propval > SPA_OLD_MAXBLOCKSIZE) {
548					error = SET_ERROR(ENOTSUP);
549				} else {
550					objnum = dmu_objset_id(os);
551				}
552				dmu_objset_rele(os, FTAG);
553			}
554			break;
555
556		case ZPOOL_PROP_FAILUREMODE:
557			error = nvpair_value_uint64(elem, &intval);
558			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
559			    intval > ZIO_FAILURE_MODE_PANIC))
560				error = SET_ERROR(EINVAL);
561
562			/*
563			 * This is a special case which only occurs when
564			 * the pool has completely failed. This allows
565			 * the user to change the in-core failmode property
566			 * without syncing it out to disk (I/Os might
567			 * currently be blocked). We do this by returning
568			 * EIO to the caller (spa_prop_set) to trick it
569			 * into thinking we encountered a property validation
570			 * error.
571			 */
572			if (!error && spa_suspended(spa)) {
573				spa->spa_failmode = intval;
574				error = SET_ERROR(EIO);
575			}
576			break;
577
578		case ZPOOL_PROP_CACHEFILE:
579			if ((error = nvpair_value_string(elem, &strval)) != 0)
580				break;
581
582			if (strval[0] == '\0')
583				break;
584
585			if (strcmp(strval, "none") == 0)
586				break;
587
588			if (strval[0] != '/') {
589				error = SET_ERROR(EINVAL);
590				break;
591			}
592
593			slash = strrchr(strval, '/');
594			ASSERT(slash != NULL);
595
596			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
597			    strcmp(slash, "/..") == 0)
598				error = SET_ERROR(EINVAL);
599			break;
600
601		case ZPOOL_PROP_COMMENT:
602			if ((error = nvpair_value_string(elem, &strval)) != 0)
603				break;
604			for (check = strval; *check != '\0'; check++) {
605				/*
606				 * The kernel doesn't have an easy isprint()
607				 * check.  For this kernel check, we merely
608				 * check ASCII apart from DEL.  Fix this if
609				 * there is an easy-to-use kernel isprint().
610				 */
611				if (*check >= 0x7f) {
612					error = SET_ERROR(EINVAL);
613					break;
614				}
615			}
616			if (strlen(strval) > ZPROP_MAX_COMMENT)
617				error = E2BIG;
618			break;
619
620		case ZPOOL_PROP_DEDUPDITTO:
621			if (spa_version(spa) < SPA_VERSION_DEDUP)
622				error = SET_ERROR(ENOTSUP);
623			else
624				error = nvpair_value_uint64(elem, &intval);
625			if (error == 0 &&
626			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
627				error = SET_ERROR(EINVAL);
628			break;
629		}
630
631		if (error)
632			break;
633	}
634
635	if (!error && reset_bootfs) {
636		error = nvlist_remove(props,
637		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
638
639		if (!error) {
640			error = nvlist_add_uint64(props,
641			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
642		}
643	}
644
645	return (error);
646}
647
648void
649spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
650{
651	char *cachefile;
652	spa_config_dirent_t *dp;
653
654	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
655	    &cachefile) != 0)
656		return;
657
658	dp = kmem_alloc(sizeof (spa_config_dirent_t),
659	    KM_SLEEP);
660
661	if (cachefile[0] == '\0')
662		dp->scd_path = spa_strdup(spa_config_path);
663	else if (strcmp(cachefile, "none") == 0)
664		dp->scd_path = NULL;
665	else
666		dp->scd_path = spa_strdup(cachefile);
667
668	list_insert_head(&spa->spa_config_list, dp);
669	if (need_sync)
670		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
671}
672
673int
674spa_prop_set(spa_t *spa, nvlist_t *nvp)
675{
676	int error;
677	nvpair_t *elem = NULL;
678	boolean_t need_sync = B_FALSE;
679
680	if ((error = spa_prop_validate(spa, nvp)) != 0)
681		return (error);
682
683	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
684		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
685
686		if (prop == ZPOOL_PROP_CACHEFILE ||
687		    prop == ZPOOL_PROP_ALTROOT ||
688		    prop == ZPOOL_PROP_READONLY)
689			continue;
690
691		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
692			uint64_t ver;
693
694			if (prop == ZPOOL_PROP_VERSION) {
695				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
696			} else {
697				ASSERT(zpool_prop_feature(nvpair_name(elem)));
698				ver = SPA_VERSION_FEATURES;
699				need_sync = B_TRUE;
700			}
701
702			/* Save time if the version is already set. */
703			if (ver == spa_version(spa))
704				continue;
705
706			/*
707			 * In addition to the pool directory object, we might
708			 * create the pool properties object, the features for
709			 * read object, the features for write object, or the
710			 * feature descriptions object.
711			 */
712			error = dsl_sync_task(spa->spa_name, NULL,
713			    spa_sync_version, &ver,
714			    6, ZFS_SPACE_CHECK_RESERVED);
715			if (error)
716				return (error);
717			continue;
718		}
719
720		need_sync = B_TRUE;
721		break;
722	}
723
724	if (need_sync) {
725		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
726		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
727	}
728
729	return (0);
730}
731
732/*
733 * If the bootfs property value is dsobj, clear it.
734 */
735void
736spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
737{
738	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
739		VERIFY(zap_remove(spa->spa_meta_objset,
740		    spa->spa_pool_props_object,
741		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
742		spa->spa_bootfs = 0;
743	}
744}
745
746/*ARGSUSED*/
747static int
748spa_change_guid_check(void *arg, dmu_tx_t *tx)
749{
750	uint64_t *newguid = arg;
751	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752	vdev_t *rvd = spa->spa_root_vdev;
753	uint64_t vdev_state;
754
755	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756	vdev_state = rvd->vdev_state;
757	spa_config_exit(spa, SCL_STATE, FTAG);
758
759	if (vdev_state != VDEV_STATE_HEALTHY)
760		return (SET_ERROR(ENXIO));
761
762	ASSERT3U(spa_guid(spa), !=, *newguid);
763
764	return (0);
765}
766
767static void
768spa_change_guid_sync(void *arg, dmu_tx_t *tx)
769{
770	uint64_t *newguid = arg;
771	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
772	uint64_t oldguid;
773	vdev_t *rvd = spa->spa_root_vdev;
774
775	oldguid = spa_guid(spa);
776
777	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
778	rvd->vdev_guid = *newguid;
779	rvd->vdev_guid_sum += (*newguid - oldguid);
780	vdev_config_dirty(rvd);
781	spa_config_exit(spa, SCL_STATE, FTAG);
782
783	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
784	    oldguid, *newguid);
785}
786
787/*
788 * Change the GUID for the pool.  This is done so that we can later
789 * re-import a pool built from a clone of our own vdevs.  We will modify
790 * the root vdev's guid, our own pool guid, and then mark all of our
791 * vdevs dirty.  Note that we must make sure that all our vdevs are
792 * online when we do this, or else any vdevs that weren't present
793 * would be orphaned from our pool.  We are also going to issue a
794 * sysevent to update any watchers.
795 */
796int
797spa_change_guid(spa_t *spa)
798{
799	int error;
800	uint64_t guid;
801
802	mutex_enter(&spa->spa_vdev_top_lock);
803	mutex_enter(&spa_namespace_lock);
804	guid = spa_generate_guid(NULL);
805
806	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
807	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
808
809	if (error == 0) {
810		spa_config_sync(spa, B_FALSE, B_TRUE);
811		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
812	}
813
814	mutex_exit(&spa_namespace_lock);
815	mutex_exit(&spa->spa_vdev_top_lock);
816
817	return (error);
818}
819
820/*
821 * ==========================================================================
822 * SPA state manipulation (open/create/destroy/import/export)
823 * ==========================================================================
824 */
825
826static int
827spa_error_entry_compare(const void *a, const void *b)
828{
829	spa_error_entry_t *sa = (spa_error_entry_t *)a;
830	spa_error_entry_t *sb = (spa_error_entry_t *)b;
831	int ret;
832
833	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
834	    sizeof (zbookmark_phys_t));
835
836	if (ret < 0)
837		return (-1);
838	else if (ret > 0)
839		return (1);
840	else
841		return (0);
842}
843
844/*
845 * Utility function which retrieves copies of the current logs and
846 * re-initializes them in the process.
847 */
848void
849spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
850{
851	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
852
853	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
854	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
855
856	avl_create(&spa->spa_errlist_scrub,
857	    spa_error_entry_compare, sizeof (spa_error_entry_t),
858	    offsetof(spa_error_entry_t, se_avl));
859	avl_create(&spa->spa_errlist_last,
860	    spa_error_entry_compare, sizeof (spa_error_entry_t),
861	    offsetof(spa_error_entry_t, se_avl));
862}
863
864static void
865spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
866{
867	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
868	enum zti_modes mode = ztip->zti_mode;
869	uint_t value = ztip->zti_value;
870	uint_t count = ztip->zti_count;
871	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
872	char name[32];
873	uint_t flags = 0;
874	boolean_t batch = B_FALSE;
875
876	if (mode == ZTI_MODE_NULL) {
877		tqs->stqs_count = 0;
878		tqs->stqs_taskq = NULL;
879		return;
880	}
881
882	ASSERT3U(count, >, 0);
883
884	tqs->stqs_count = count;
885	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
886
887	switch (mode) {
888	case ZTI_MODE_FIXED:
889		ASSERT3U(value, >=, 1);
890		value = MAX(value, 1);
891		break;
892
893	case ZTI_MODE_BATCH:
894		batch = B_TRUE;
895		flags |= TASKQ_THREADS_CPU_PCT;
896		value = zio_taskq_batch_pct;
897		break;
898
899	default:
900		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
901		    "spa_activate()",
902		    zio_type_name[t], zio_taskq_types[q], mode, value);
903		break;
904	}
905
906	for (uint_t i = 0; i < count; i++) {
907		taskq_t *tq;
908
909		if (count > 1) {
910			(void) snprintf(name, sizeof (name), "%s_%s_%u",
911			    zio_type_name[t], zio_taskq_types[q], i);
912		} else {
913			(void) snprintf(name, sizeof (name), "%s_%s",
914			    zio_type_name[t], zio_taskq_types[q]);
915		}
916
917#ifdef SYSDC
918		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
919			if (batch)
920				flags |= TASKQ_DC_BATCH;
921
922			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
923			    spa->spa_proc, zio_taskq_basedc, flags);
924		} else {
925#endif
926			pri_t pri = maxclsyspri;
927			/*
928			 * The write issue taskq can be extremely CPU
929			 * intensive.  Run it at slightly lower priority
930			 * than the other taskqs.
931			 */
932			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
933				pri++;
934
935			tq = taskq_create_proc(name, value, pri, 50,
936			    INT_MAX, spa->spa_proc, flags);
937#ifdef SYSDC
938		}
939#endif
940
941		tqs->stqs_taskq[i] = tq;
942	}
943}
944
945static void
946spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947{
948	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949
950	if (tqs->stqs_taskq == NULL) {
951		ASSERT0(tqs->stqs_count);
952		return;
953	}
954
955	for (uint_t i = 0; i < tqs->stqs_count; i++) {
956		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
957		taskq_destroy(tqs->stqs_taskq[i]);
958	}
959
960	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
961	tqs->stqs_taskq = NULL;
962}
963
964/*
965 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
966 * Note that a type may have multiple discrete taskqs to avoid lock contention
967 * on the taskq itself. In that case we choose which taskq at random by using
968 * the low bits of gethrtime().
969 */
970void
971spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
972    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
973{
974	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
975	taskq_t *tq;
976
977	ASSERT3P(tqs->stqs_taskq, !=, NULL);
978	ASSERT3U(tqs->stqs_count, !=, 0);
979
980	if (tqs->stqs_count == 1) {
981		tq = tqs->stqs_taskq[0];
982	} else {
983#ifdef _KERNEL
984		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
985#else
986		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
987#endif
988	}
989
990	taskq_dispatch_ent(tq, func, arg, flags, ent);
991}
992
993static void
994spa_create_zio_taskqs(spa_t *spa)
995{
996	for (int t = 0; t < ZIO_TYPES; t++) {
997		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
998			spa_taskqs_init(spa, t, q);
999		}
1000	}
1001}
1002
1003#ifdef _KERNEL
1004#ifdef SPA_PROCESS
1005static void
1006spa_thread(void *arg)
1007{
1008	callb_cpr_t cprinfo;
1009
1010	spa_t *spa = arg;
1011	user_t *pu = PTOU(curproc);
1012
1013	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1014	    spa->spa_name);
1015
1016	ASSERT(curproc != &p0);
1017	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1018	    "zpool-%s", spa->spa_name);
1019	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1020
1021#ifdef PSRSET_BIND
1022	/* bind this thread to the requested psrset */
1023	if (zio_taskq_psrset_bind != PS_NONE) {
1024		pool_lock();
1025		mutex_enter(&cpu_lock);
1026		mutex_enter(&pidlock);
1027		mutex_enter(&curproc->p_lock);
1028
1029		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030		    0, NULL, NULL) == 0)  {
1031			curthread->t_bind_pset = zio_taskq_psrset_bind;
1032		} else {
1033			cmn_err(CE_WARN,
1034			    "Couldn't bind process for zfs pool \"%s\" to "
1035			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036		}
1037
1038		mutex_exit(&curproc->p_lock);
1039		mutex_exit(&pidlock);
1040		mutex_exit(&cpu_lock);
1041		pool_unlock();
1042	}
1043#endif
1044
1045#ifdef SYSDC
1046	if (zio_taskq_sysdc) {
1047		sysdc_thread_enter(curthread, 100, 0);
1048	}
1049#endif
1050
1051	spa->spa_proc = curproc;
1052	spa->spa_did = curthread->t_did;
1053
1054	spa_create_zio_taskqs(spa);
1055
1056	mutex_enter(&spa->spa_proc_lock);
1057	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1058
1059	spa->spa_proc_state = SPA_PROC_ACTIVE;
1060	cv_broadcast(&spa->spa_proc_cv);
1061
1062	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1063	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1064		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1065	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1066
1067	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1068	spa->spa_proc_state = SPA_PROC_GONE;
1069	spa->spa_proc = &p0;
1070	cv_broadcast(&spa->spa_proc_cv);
1071	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1072
1073	mutex_enter(&curproc->p_lock);
1074	lwp_exit();
1075}
1076#endif	/* SPA_PROCESS */
1077#endif
1078
1079/*
1080 * Activate an uninitialized pool.
1081 */
1082static void
1083spa_activate(spa_t *spa, int mode)
1084{
1085	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1086
1087	spa->spa_state = POOL_STATE_ACTIVE;
1088	spa->spa_mode = mode;
1089
1090	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1092
1093	/* Try to create a covering process */
1094	mutex_enter(&spa->spa_proc_lock);
1095	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1096	ASSERT(spa->spa_proc == &p0);
1097	spa->spa_did = 0;
1098
1099#ifdef SPA_PROCESS
1100	/* Only create a process if we're going to be around a while. */
1101	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1102		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1103		    NULL, 0) == 0) {
1104			spa->spa_proc_state = SPA_PROC_CREATED;
1105			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1106				cv_wait(&spa->spa_proc_cv,
1107				    &spa->spa_proc_lock);
1108			}
1109			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1110			ASSERT(spa->spa_proc != &p0);
1111			ASSERT(spa->spa_did != 0);
1112		} else {
1113#ifdef _KERNEL
1114			cmn_err(CE_WARN,
1115			    "Couldn't create process for zfs pool \"%s\"\n",
1116			    spa->spa_name);
1117#endif
1118		}
1119	}
1120#endif	/* SPA_PROCESS */
1121	mutex_exit(&spa->spa_proc_lock);
1122
1123	/* If we didn't create a process, we need to create our taskqs. */
1124	ASSERT(spa->spa_proc == &p0);
1125	if (spa->spa_proc == &p0) {
1126		spa_create_zio_taskqs(spa);
1127	}
1128
1129	/*
1130	 * Start TRIM thread.
1131	 */
1132	trim_thread_create(spa);
1133
1134	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1135	    offsetof(vdev_t, vdev_config_dirty_node));
1136	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1137	    offsetof(objset_t, os_evicting_node));
1138	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1139	    offsetof(vdev_t, vdev_state_dirty_node));
1140
1141	txg_list_create(&spa->spa_vdev_txg_list,
1142	    offsetof(struct vdev, vdev_txg_node));
1143
1144	avl_create(&spa->spa_errlist_scrub,
1145	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1146	    offsetof(spa_error_entry_t, se_avl));
1147	avl_create(&spa->spa_errlist_last,
1148	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1149	    offsetof(spa_error_entry_t, se_avl));
1150}
1151
1152/*
1153 * Opposite of spa_activate().
1154 */
1155static void
1156spa_deactivate(spa_t *spa)
1157{
1158	ASSERT(spa->spa_sync_on == B_FALSE);
1159	ASSERT(spa->spa_dsl_pool == NULL);
1160	ASSERT(spa->spa_root_vdev == NULL);
1161	ASSERT(spa->spa_async_zio_root == NULL);
1162	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1163
1164	/*
1165	 * Stop TRIM thread in case spa_unload() wasn't called directly
1166	 * before spa_deactivate().
1167	 */
1168	trim_thread_destroy(spa);
1169
1170	spa_evicting_os_wait(spa);
1171
1172	txg_list_destroy(&spa->spa_vdev_txg_list);
1173
1174	list_destroy(&spa->spa_config_dirty_list);
1175	list_destroy(&spa->spa_evicting_os_list);
1176	list_destroy(&spa->spa_state_dirty_list);
1177
1178	for (int t = 0; t < ZIO_TYPES; t++) {
1179		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1180			spa_taskqs_fini(spa, t, q);
1181		}
1182	}
1183
1184	metaslab_class_destroy(spa->spa_normal_class);
1185	spa->spa_normal_class = NULL;
1186
1187	metaslab_class_destroy(spa->spa_log_class);
1188	spa->spa_log_class = NULL;
1189
1190	/*
1191	 * If this was part of an import or the open otherwise failed, we may
1192	 * still have errors left in the queues.  Empty them just in case.
1193	 */
1194	spa_errlog_drain(spa);
1195
1196	avl_destroy(&spa->spa_errlist_scrub);
1197	avl_destroy(&spa->spa_errlist_last);
1198
1199	spa->spa_state = POOL_STATE_UNINITIALIZED;
1200
1201	mutex_enter(&spa->spa_proc_lock);
1202	if (spa->spa_proc_state != SPA_PROC_NONE) {
1203		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1204		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1205		cv_broadcast(&spa->spa_proc_cv);
1206		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1207			ASSERT(spa->spa_proc != &p0);
1208			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1209		}
1210		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1211		spa->spa_proc_state = SPA_PROC_NONE;
1212	}
1213	ASSERT(spa->spa_proc == &p0);
1214	mutex_exit(&spa->spa_proc_lock);
1215
1216#ifdef SPA_PROCESS
1217	/*
1218	 * We want to make sure spa_thread() has actually exited the ZFS
1219	 * module, so that the module can't be unloaded out from underneath
1220	 * it.
1221	 */
1222	if (spa->spa_did != 0) {
1223		thread_join(spa->spa_did);
1224		spa->spa_did = 0;
1225	}
1226#endif	/* SPA_PROCESS */
1227}
1228
1229/*
1230 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1231 * will create all the necessary vdevs in the appropriate layout, with each vdev
1232 * in the CLOSED state.  This will prep the pool before open/creation/import.
1233 * All vdev validation is done by the vdev_alloc() routine.
1234 */
1235static int
1236spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1237    uint_t id, int atype)
1238{
1239	nvlist_t **child;
1240	uint_t children;
1241	int error;
1242
1243	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1244		return (error);
1245
1246	if ((*vdp)->vdev_ops->vdev_op_leaf)
1247		return (0);
1248
1249	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1250	    &child, &children);
1251
1252	if (error == ENOENT)
1253		return (0);
1254
1255	if (error) {
1256		vdev_free(*vdp);
1257		*vdp = NULL;
1258		return (SET_ERROR(EINVAL));
1259	}
1260
1261	for (int c = 0; c < children; c++) {
1262		vdev_t *vd;
1263		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1264		    atype)) != 0) {
1265			vdev_free(*vdp);
1266			*vdp = NULL;
1267			return (error);
1268		}
1269	}
1270
1271	ASSERT(*vdp != NULL);
1272
1273	return (0);
1274}
1275
1276/*
1277 * Opposite of spa_load().
1278 */
1279static void
1280spa_unload(spa_t *spa)
1281{
1282	int i;
1283
1284	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285
1286	/*
1287	 * Stop TRIM thread.
1288	 */
1289	trim_thread_destroy(spa);
1290
1291	/*
1292	 * Stop async tasks.
1293	 */
1294	spa_async_suspend(spa);
1295
1296	/*
1297	 * Stop syncing.
1298	 */
1299	if (spa->spa_sync_on) {
1300		txg_sync_stop(spa->spa_dsl_pool);
1301		spa->spa_sync_on = B_FALSE;
1302	}
1303
1304	/*
1305	 * Wait for any outstanding async I/O to complete.
1306	 */
1307	if (spa->spa_async_zio_root != NULL) {
1308		for (int i = 0; i < max_ncpus; i++)
1309			(void) zio_wait(spa->spa_async_zio_root[i]);
1310		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1311		spa->spa_async_zio_root = NULL;
1312	}
1313
1314	bpobj_close(&spa->spa_deferred_bpobj);
1315
1316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1317
1318	/*
1319	 * Close all vdevs.
1320	 */
1321	if (spa->spa_root_vdev)
1322		vdev_free(spa->spa_root_vdev);
1323	ASSERT(spa->spa_root_vdev == NULL);
1324
1325	/*
1326	 * Close the dsl pool.
1327	 */
1328	if (spa->spa_dsl_pool) {
1329		dsl_pool_close(spa->spa_dsl_pool);
1330		spa->spa_dsl_pool = NULL;
1331		spa->spa_meta_objset = NULL;
1332	}
1333
1334	ddt_unload(spa);
1335
1336
1337	/*
1338	 * Drop and purge level 2 cache
1339	 */
1340	spa_l2cache_drop(spa);
1341
1342	for (i = 0; i < spa->spa_spares.sav_count; i++)
1343		vdev_free(spa->spa_spares.sav_vdevs[i]);
1344	if (spa->spa_spares.sav_vdevs) {
1345		kmem_free(spa->spa_spares.sav_vdevs,
1346		    spa->spa_spares.sav_count * sizeof (void *));
1347		spa->spa_spares.sav_vdevs = NULL;
1348	}
1349	if (spa->spa_spares.sav_config) {
1350		nvlist_free(spa->spa_spares.sav_config);
1351		spa->spa_spares.sav_config = NULL;
1352	}
1353	spa->spa_spares.sav_count = 0;
1354
1355	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1356		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1357		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1358	}
1359	if (spa->spa_l2cache.sav_vdevs) {
1360		kmem_free(spa->spa_l2cache.sav_vdevs,
1361		    spa->spa_l2cache.sav_count * sizeof (void *));
1362		spa->spa_l2cache.sav_vdevs = NULL;
1363	}
1364	if (spa->spa_l2cache.sav_config) {
1365		nvlist_free(spa->spa_l2cache.sav_config);
1366		spa->spa_l2cache.sav_config = NULL;
1367	}
1368	spa->spa_l2cache.sav_count = 0;
1369
1370	spa->spa_async_suspended = 0;
1371
1372	if (spa->spa_comment != NULL) {
1373		spa_strfree(spa->spa_comment);
1374		spa->spa_comment = NULL;
1375	}
1376
1377	spa_config_exit(spa, SCL_ALL, FTAG);
1378}
1379
1380/*
1381 * Load (or re-load) the current list of vdevs describing the active spares for
1382 * this pool.  When this is called, we have some form of basic information in
1383 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1384 * then re-generate a more complete list including status information.
1385 */
1386static void
1387spa_load_spares(spa_t *spa)
1388{
1389	nvlist_t **spares;
1390	uint_t nspares;
1391	int i;
1392	vdev_t *vd, *tvd;
1393
1394	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1395
1396	/*
1397	 * First, close and free any existing spare vdevs.
1398	 */
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		vd = spa->spa_spares.sav_vdevs[i];
1401
1402		/* Undo the call to spa_activate() below */
1403		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1404		    B_FALSE)) != NULL && tvd->vdev_isspare)
1405			spa_spare_remove(tvd);
1406		vdev_close(vd);
1407		vdev_free(vd);
1408	}
1409
1410	if (spa->spa_spares.sav_vdevs)
1411		kmem_free(spa->spa_spares.sav_vdevs,
1412		    spa->spa_spares.sav_count * sizeof (void *));
1413
1414	if (spa->spa_spares.sav_config == NULL)
1415		nspares = 0;
1416	else
1417		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1418		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1419
1420	spa->spa_spares.sav_count = (int)nspares;
1421	spa->spa_spares.sav_vdevs = NULL;
1422
1423	if (nspares == 0)
1424		return;
1425
1426	/*
1427	 * Construct the array of vdevs, opening them to get status in the
1428	 * process.   For each spare, there is potentially two different vdev_t
1429	 * structures associated with it: one in the list of spares (used only
1430	 * for basic validation purposes) and one in the active vdev
1431	 * configuration (if it's spared in).  During this phase we open and
1432	 * validate each vdev on the spare list.  If the vdev also exists in the
1433	 * active configuration, then we also mark this vdev as an active spare.
1434	 */
1435	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1436	    KM_SLEEP);
1437	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1438		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1439		    VDEV_ALLOC_SPARE) == 0);
1440		ASSERT(vd != NULL);
1441
1442		spa->spa_spares.sav_vdevs[i] = vd;
1443
1444		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1445		    B_FALSE)) != NULL) {
1446			if (!tvd->vdev_isspare)
1447				spa_spare_add(tvd);
1448
1449			/*
1450			 * We only mark the spare active if we were successfully
1451			 * able to load the vdev.  Otherwise, importing a pool
1452			 * with a bad active spare would result in strange
1453			 * behavior, because multiple pool would think the spare
1454			 * is actively in use.
1455			 *
1456			 * There is a vulnerability here to an equally bizarre
1457			 * circumstance, where a dead active spare is later
1458			 * brought back to life (onlined or otherwise).  Given
1459			 * the rarity of this scenario, and the extra complexity
1460			 * it adds, we ignore the possibility.
1461			 */
1462			if (!vdev_is_dead(tvd))
1463				spa_spare_activate(tvd);
1464		}
1465
1466		vd->vdev_top = vd;
1467		vd->vdev_aux = &spa->spa_spares;
1468
1469		if (vdev_open(vd) != 0)
1470			continue;
1471
1472		if (vdev_validate_aux(vd) == 0)
1473			spa_spare_add(vd);
1474	}
1475
1476	/*
1477	 * Recompute the stashed list of spares, with status information
1478	 * this time.
1479	 */
1480	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1481	    DATA_TYPE_NVLIST_ARRAY) == 0);
1482
1483	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1484	    KM_SLEEP);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		spares[i] = vdev_config_generate(spa,
1487		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1488	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1489	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1490	for (i = 0; i < spa->spa_spares.sav_count; i++)
1491		nvlist_free(spares[i]);
1492	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1493}
1494
1495/*
1496 * Load (or re-load) the current list of vdevs describing the active l2cache for
1497 * this pool.  When this is called, we have some form of basic information in
1498 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1499 * then re-generate a more complete list including status information.
1500 * Devices which are already active have their details maintained, and are
1501 * not re-opened.
1502 */
1503static void
1504spa_load_l2cache(spa_t *spa)
1505{
1506	nvlist_t **l2cache;
1507	uint_t nl2cache;
1508	int i, j, oldnvdevs;
1509	uint64_t guid;
1510	vdev_t *vd, **oldvdevs, **newvdevs;
1511	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1512
1513	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1514
1515	if (sav->sav_config != NULL) {
1516		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1517		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1518		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1519	} else {
1520		nl2cache = 0;
1521		newvdevs = NULL;
1522	}
1523
1524	oldvdevs = sav->sav_vdevs;
1525	oldnvdevs = sav->sav_count;
1526	sav->sav_vdevs = NULL;
1527	sav->sav_count = 0;
1528
1529	/*
1530	 * Process new nvlist of vdevs.
1531	 */
1532	for (i = 0; i < nl2cache; i++) {
1533		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1534		    &guid) == 0);
1535
1536		newvdevs[i] = NULL;
1537		for (j = 0; j < oldnvdevs; j++) {
1538			vd = oldvdevs[j];
1539			if (vd != NULL && guid == vd->vdev_guid) {
1540				/*
1541				 * Retain previous vdev for add/remove ops.
1542				 */
1543				newvdevs[i] = vd;
1544				oldvdevs[j] = NULL;
1545				break;
1546			}
1547		}
1548
1549		if (newvdevs[i] == NULL) {
1550			/*
1551			 * Create new vdev
1552			 */
1553			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1554			    VDEV_ALLOC_L2CACHE) == 0);
1555			ASSERT(vd != NULL);
1556			newvdevs[i] = vd;
1557
1558			/*
1559			 * Commit this vdev as an l2cache device,
1560			 * even if it fails to open.
1561			 */
1562			spa_l2cache_add(vd);
1563
1564			vd->vdev_top = vd;
1565			vd->vdev_aux = sav;
1566
1567			spa_l2cache_activate(vd);
1568
1569			if (vdev_open(vd) != 0)
1570				continue;
1571
1572			(void) vdev_validate_aux(vd);
1573
1574			if (!vdev_is_dead(vd))
1575				l2arc_add_vdev(spa, vd);
1576		}
1577	}
1578
1579	/*
1580	 * Purge vdevs that were dropped
1581	 */
1582	for (i = 0; i < oldnvdevs; i++) {
1583		uint64_t pool;
1584
1585		vd = oldvdevs[i];
1586		if (vd != NULL) {
1587			ASSERT(vd->vdev_isl2cache);
1588
1589			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1590			    pool != 0ULL && l2arc_vdev_present(vd))
1591				l2arc_remove_vdev(vd);
1592			vdev_clear_stats(vd);
1593			vdev_free(vd);
1594		}
1595	}
1596
1597	if (oldvdevs)
1598		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1599
1600	if (sav->sav_config == NULL)
1601		goto out;
1602
1603	sav->sav_vdevs = newvdevs;
1604	sav->sav_count = (int)nl2cache;
1605
1606	/*
1607	 * Recompute the stashed list of l2cache devices, with status
1608	 * information this time.
1609	 */
1610	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1611	    DATA_TYPE_NVLIST_ARRAY) == 0);
1612
1613	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1614	for (i = 0; i < sav->sav_count; i++)
1615		l2cache[i] = vdev_config_generate(spa,
1616		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1617	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1618	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1619out:
1620	for (i = 0; i < sav->sav_count; i++)
1621		nvlist_free(l2cache[i]);
1622	if (sav->sav_count)
1623		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1624}
1625
1626static int
1627load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1628{
1629	dmu_buf_t *db;
1630	char *packed = NULL;
1631	size_t nvsize = 0;
1632	int error;
1633	*value = NULL;
1634
1635	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1636	if (error != 0)
1637		return (error);
1638
1639	nvsize = *(uint64_t *)db->db_data;
1640	dmu_buf_rele(db, FTAG);
1641
1642	packed = kmem_alloc(nvsize, KM_SLEEP);
1643	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1644	    DMU_READ_PREFETCH);
1645	if (error == 0)
1646		error = nvlist_unpack(packed, nvsize, value, 0);
1647	kmem_free(packed, nvsize);
1648
1649	return (error);
1650}
1651
1652/*
1653 * Checks to see if the given vdev could not be opened, in which case we post a
1654 * sysevent to notify the autoreplace code that the device has been removed.
1655 */
1656static void
1657spa_check_removed(vdev_t *vd)
1658{
1659	for (int c = 0; c < vd->vdev_children; c++)
1660		spa_check_removed(vd->vdev_child[c]);
1661
1662	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1663	    !vd->vdev_ishole) {
1664		zfs_post_autoreplace(vd->vdev_spa, vd);
1665		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1666	}
1667}
1668
1669/*
1670 * Validate the current config against the MOS config
1671 */
1672static boolean_t
1673spa_config_valid(spa_t *spa, nvlist_t *config)
1674{
1675	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1676	nvlist_t *nv;
1677
1678	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1679
1680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1682
1683	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1684
1685	/*
1686	 * If we're doing a normal import, then build up any additional
1687	 * diagnostic information about missing devices in this config.
1688	 * We'll pass this up to the user for further processing.
1689	 */
1690	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1691		nvlist_t **child, *nv;
1692		uint64_t idx = 0;
1693
1694		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1695		    KM_SLEEP);
1696		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1697
1698		for (int c = 0; c < rvd->vdev_children; c++) {
1699			vdev_t *tvd = rvd->vdev_child[c];
1700			vdev_t *mtvd  = mrvd->vdev_child[c];
1701
1702			if (tvd->vdev_ops == &vdev_missing_ops &&
1703			    mtvd->vdev_ops != &vdev_missing_ops &&
1704			    mtvd->vdev_islog)
1705				child[idx++] = vdev_config_generate(spa, mtvd,
1706				    B_FALSE, 0);
1707		}
1708
1709		if (idx) {
1710			VERIFY(nvlist_add_nvlist_array(nv,
1711			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1712			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1713			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1714
1715			for (int i = 0; i < idx; i++)
1716				nvlist_free(child[i]);
1717		}
1718		nvlist_free(nv);
1719		kmem_free(child, rvd->vdev_children * sizeof (char **));
1720	}
1721
1722	/*
1723	 * Compare the root vdev tree with the information we have
1724	 * from the MOS config (mrvd). Check each top-level vdev
1725	 * with the corresponding MOS config top-level (mtvd).
1726	 */
1727	for (int c = 0; c < rvd->vdev_children; c++) {
1728		vdev_t *tvd = rvd->vdev_child[c];
1729		vdev_t *mtvd  = mrvd->vdev_child[c];
1730
1731		/*
1732		 * Resolve any "missing" vdevs in the current configuration.
1733		 * If we find that the MOS config has more accurate information
1734		 * about the top-level vdev then use that vdev instead.
1735		 */
1736		if (tvd->vdev_ops == &vdev_missing_ops &&
1737		    mtvd->vdev_ops != &vdev_missing_ops) {
1738
1739			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1740				continue;
1741
1742			/*
1743			 * Device specific actions.
1744			 */
1745			if (mtvd->vdev_islog) {
1746				spa_set_log_state(spa, SPA_LOG_CLEAR);
1747			} else {
1748				/*
1749				 * XXX - once we have 'readonly' pool
1750				 * support we should be able to handle
1751				 * missing data devices by transitioning
1752				 * the pool to readonly.
1753				 */
1754				continue;
1755			}
1756
1757			/*
1758			 * Swap the missing vdev with the data we were
1759			 * able to obtain from the MOS config.
1760			 */
1761			vdev_remove_child(rvd, tvd);
1762			vdev_remove_child(mrvd, mtvd);
1763
1764			vdev_add_child(rvd, mtvd);
1765			vdev_add_child(mrvd, tvd);
1766
1767			spa_config_exit(spa, SCL_ALL, FTAG);
1768			vdev_load(mtvd);
1769			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1770
1771			vdev_reopen(rvd);
1772		} else if (mtvd->vdev_islog) {
1773			/*
1774			 * Load the slog device's state from the MOS config
1775			 * since it's possible that the label does not
1776			 * contain the most up-to-date information.
1777			 */
1778			vdev_load_log_state(tvd, mtvd);
1779			vdev_reopen(tvd);
1780		}
1781	}
1782	vdev_free(mrvd);
1783	spa_config_exit(spa, SCL_ALL, FTAG);
1784
1785	/*
1786	 * Ensure we were able to validate the config.
1787	 */
1788	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1789}
1790
1791/*
1792 * Check for missing log devices
1793 */
1794static boolean_t
1795spa_check_logs(spa_t *spa)
1796{
1797	boolean_t rv = B_FALSE;
1798	dsl_pool_t *dp = spa_get_dsl(spa);
1799
1800	switch (spa->spa_log_state) {
1801	case SPA_LOG_MISSING:
1802		/* need to recheck in case slog has been restored */
1803	case SPA_LOG_UNKNOWN:
1804		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1805		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1806		if (rv)
1807			spa_set_log_state(spa, SPA_LOG_MISSING);
1808		break;
1809	}
1810	return (rv);
1811}
1812
1813static boolean_t
1814spa_passivate_log(spa_t *spa)
1815{
1816	vdev_t *rvd = spa->spa_root_vdev;
1817	boolean_t slog_found = B_FALSE;
1818
1819	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1820
1821	if (!spa_has_slogs(spa))
1822		return (B_FALSE);
1823
1824	for (int c = 0; c < rvd->vdev_children; c++) {
1825		vdev_t *tvd = rvd->vdev_child[c];
1826		metaslab_group_t *mg = tvd->vdev_mg;
1827
1828		if (tvd->vdev_islog) {
1829			metaslab_group_passivate(mg);
1830			slog_found = B_TRUE;
1831		}
1832	}
1833
1834	return (slog_found);
1835}
1836
1837static void
1838spa_activate_log(spa_t *spa)
1839{
1840	vdev_t *rvd = spa->spa_root_vdev;
1841
1842	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1843
1844	for (int c = 0; c < rvd->vdev_children; c++) {
1845		vdev_t *tvd = rvd->vdev_child[c];
1846		metaslab_group_t *mg = tvd->vdev_mg;
1847
1848		if (tvd->vdev_islog)
1849			metaslab_group_activate(mg);
1850	}
1851}
1852
1853int
1854spa_offline_log(spa_t *spa)
1855{
1856	int error;
1857
1858	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1859	    NULL, DS_FIND_CHILDREN);
1860	if (error == 0) {
1861		/*
1862		 * We successfully offlined the log device, sync out the
1863		 * current txg so that the "stubby" block can be removed
1864		 * by zil_sync().
1865		 */
1866		txg_wait_synced(spa->spa_dsl_pool, 0);
1867	}
1868	return (error);
1869}
1870
1871static void
1872spa_aux_check_removed(spa_aux_vdev_t *sav)
1873{
1874	int i;
1875
1876	for (i = 0; i < sav->sav_count; i++)
1877		spa_check_removed(sav->sav_vdevs[i]);
1878}
1879
1880void
1881spa_claim_notify(zio_t *zio)
1882{
1883	spa_t *spa = zio->io_spa;
1884
1885	if (zio->io_error)
1886		return;
1887
1888	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1889	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1890		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1891	mutex_exit(&spa->spa_props_lock);
1892}
1893
1894typedef struct spa_load_error {
1895	uint64_t	sle_meta_count;
1896	uint64_t	sle_data_count;
1897} spa_load_error_t;
1898
1899static void
1900spa_load_verify_done(zio_t *zio)
1901{
1902	blkptr_t *bp = zio->io_bp;
1903	spa_load_error_t *sle = zio->io_private;
1904	dmu_object_type_t type = BP_GET_TYPE(bp);
1905	int error = zio->io_error;
1906	spa_t *spa = zio->io_spa;
1907
1908	if (error) {
1909		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1910		    type != DMU_OT_INTENT_LOG)
1911			atomic_inc_64(&sle->sle_meta_count);
1912		else
1913			atomic_inc_64(&sle->sle_data_count);
1914	}
1915	zio_data_buf_free(zio->io_data, zio->io_size);
1916
1917	mutex_enter(&spa->spa_scrub_lock);
1918	spa->spa_scrub_inflight--;
1919	cv_broadcast(&spa->spa_scrub_io_cv);
1920	mutex_exit(&spa->spa_scrub_lock);
1921}
1922
1923/*
1924 * Maximum number of concurrent scrub i/os to create while verifying
1925 * a pool while importing it.
1926 */
1927int spa_load_verify_maxinflight = 10000;
1928boolean_t spa_load_verify_metadata = B_TRUE;
1929boolean_t spa_load_verify_data = B_TRUE;
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1932    &spa_load_verify_maxinflight, 0,
1933    "Maximum number of concurrent scrub I/Os to create while verifying a "
1934    "pool while importing it");
1935
1936SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1937    &spa_load_verify_metadata, 0,
1938    "Check metadata on import?");
1939
1940SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1941    &spa_load_verify_data, 0,
1942    "Check user data on import?");
1943
1944/*ARGSUSED*/
1945static int
1946spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1947    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1948{
1949	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1950		return (0);
1951	/*
1952	 * Note: normally this routine will not be called if
1953	 * spa_load_verify_metadata is not set.  However, it may be useful
1954	 * to manually set the flag after the traversal has begun.
1955	 */
1956	if (!spa_load_verify_metadata)
1957		return (0);
1958	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1959		return (0);
1960
1961	zio_t *rio = arg;
1962	size_t size = BP_GET_PSIZE(bp);
1963	void *data = zio_data_buf_alloc(size);
1964
1965	mutex_enter(&spa->spa_scrub_lock);
1966	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1967		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1968	spa->spa_scrub_inflight++;
1969	mutex_exit(&spa->spa_scrub_lock);
1970
1971	zio_nowait(zio_read(rio, spa, bp, data, size,
1972	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1973	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1974	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1975	return (0);
1976}
1977
1978/* ARGSUSED */
1979int
1980verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1981{
1982	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1983		return (SET_ERROR(ENAMETOOLONG));
1984
1985	return (0);
1986}
1987
1988static int
1989spa_load_verify(spa_t *spa)
1990{
1991	zio_t *rio;
1992	spa_load_error_t sle = { 0 };
1993	zpool_rewind_policy_t policy;
1994	boolean_t verify_ok = B_FALSE;
1995	int error = 0;
1996
1997	zpool_get_rewind_policy(spa->spa_config, &policy);
1998
1999	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2000		return (0);
2001
2002	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2003	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2004	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2005	    DS_FIND_CHILDREN);
2006	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2007	if (error != 0)
2008		return (error);
2009
2010	rio = zio_root(spa, NULL, &sle,
2011	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2012
2013	if (spa_load_verify_metadata) {
2014		error = traverse_pool(spa, spa->spa_verify_min_txg,
2015		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2016		    spa_load_verify_cb, rio);
2017	}
2018
2019	(void) zio_wait(rio);
2020
2021	spa->spa_load_meta_errors = sle.sle_meta_count;
2022	spa->spa_load_data_errors = sle.sle_data_count;
2023
2024	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2025	    sle.sle_data_count <= policy.zrp_maxdata) {
2026		int64_t loss = 0;
2027
2028		verify_ok = B_TRUE;
2029		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2030		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2031
2032		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2033		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2034		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2035		VERIFY(nvlist_add_int64(spa->spa_load_info,
2036		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2037		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2038		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2039	} else {
2040		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2041	}
2042
2043	if (error) {
2044		if (error != ENXIO && error != EIO)
2045			error = SET_ERROR(EIO);
2046		return (error);
2047	}
2048
2049	return (verify_ok ? 0 : EIO);
2050}
2051
2052/*
2053 * Find a value in the pool props object.
2054 */
2055static void
2056spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2057{
2058	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2059	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2060}
2061
2062/*
2063 * Find a value in the pool directory object.
2064 */
2065static int
2066spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2067{
2068	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2069	    name, sizeof (uint64_t), 1, val));
2070}
2071
2072static int
2073spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2074{
2075	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2076	return (err);
2077}
2078
2079/*
2080 * Fix up config after a partly-completed split.  This is done with the
2081 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2082 * pool have that entry in their config, but only the splitting one contains
2083 * a list of all the guids of the vdevs that are being split off.
2084 *
2085 * This function determines what to do with that list: either rejoin
2086 * all the disks to the pool, or complete the splitting process.  To attempt
2087 * the rejoin, each disk that is offlined is marked online again, and
2088 * we do a reopen() call.  If the vdev label for every disk that was
2089 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2090 * then we call vdev_split() on each disk, and complete the split.
2091 *
2092 * Otherwise we leave the config alone, with all the vdevs in place in
2093 * the original pool.
2094 */
2095static void
2096spa_try_repair(spa_t *spa, nvlist_t *config)
2097{
2098	uint_t extracted;
2099	uint64_t *glist;
2100	uint_t i, gcount;
2101	nvlist_t *nvl;
2102	vdev_t **vd;
2103	boolean_t attempt_reopen;
2104
2105	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2106		return;
2107
2108	/* check that the config is complete */
2109	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2110	    &glist, &gcount) != 0)
2111		return;
2112
2113	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2114
2115	/* attempt to online all the vdevs & validate */
2116	attempt_reopen = B_TRUE;
2117	for (i = 0; i < gcount; i++) {
2118		if (glist[i] == 0)	/* vdev is hole */
2119			continue;
2120
2121		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2122		if (vd[i] == NULL) {
2123			/*
2124			 * Don't bother attempting to reopen the disks;
2125			 * just do the split.
2126			 */
2127			attempt_reopen = B_FALSE;
2128		} else {
2129			/* attempt to re-online it */
2130			vd[i]->vdev_offline = B_FALSE;
2131		}
2132	}
2133
2134	if (attempt_reopen) {
2135		vdev_reopen(spa->spa_root_vdev);
2136
2137		/* check each device to see what state it's in */
2138		for (extracted = 0, i = 0; i < gcount; i++) {
2139			if (vd[i] != NULL &&
2140			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2141				break;
2142			++extracted;
2143		}
2144	}
2145
2146	/*
2147	 * If every disk has been moved to the new pool, or if we never
2148	 * even attempted to look at them, then we split them off for
2149	 * good.
2150	 */
2151	if (!attempt_reopen || gcount == extracted) {
2152		for (i = 0; i < gcount; i++)
2153			if (vd[i] != NULL)
2154				vdev_split(vd[i]);
2155		vdev_reopen(spa->spa_root_vdev);
2156	}
2157
2158	kmem_free(vd, gcount * sizeof (vdev_t *));
2159}
2160
2161static int
2162spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2163    boolean_t mosconfig)
2164{
2165	nvlist_t *config = spa->spa_config;
2166	char *ereport = FM_EREPORT_ZFS_POOL;
2167	char *comment;
2168	int error;
2169	uint64_t pool_guid;
2170	nvlist_t *nvl;
2171
2172	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2173		return (SET_ERROR(EINVAL));
2174
2175	ASSERT(spa->spa_comment == NULL);
2176	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2177		spa->spa_comment = spa_strdup(comment);
2178
2179	/*
2180	 * Versioning wasn't explicitly added to the label until later, so if
2181	 * it's not present treat it as the initial version.
2182	 */
2183	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2184	    &spa->spa_ubsync.ub_version) != 0)
2185		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2186
2187	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2188	    &spa->spa_config_txg);
2189
2190	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2191	    spa_guid_exists(pool_guid, 0)) {
2192		error = SET_ERROR(EEXIST);
2193	} else {
2194		spa->spa_config_guid = pool_guid;
2195
2196		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2197		    &nvl) == 0) {
2198			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2199			    KM_SLEEP) == 0);
2200		}
2201
2202		nvlist_free(spa->spa_load_info);
2203		spa->spa_load_info = fnvlist_alloc();
2204
2205		gethrestime(&spa->spa_loaded_ts);
2206		error = spa_load_impl(spa, pool_guid, config, state, type,
2207		    mosconfig, &ereport);
2208	}
2209
2210	/*
2211	 * Don't count references from objsets that are already closed
2212	 * and are making their way through the eviction process.
2213	 */
2214	spa_evicting_os_wait(spa);
2215	spa->spa_minref = refcount_count(&spa->spa_refcount);
2216	if (error) {
2217		if (error != EEXIST) {
2218			spa->spa_loaded_ts.tv_sec = 0;
2219			spa->spa_loaded_ts.tv_nsec = 0;
2220		}
2221		if (error != EBADF) {
2222			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2223		}
2224	}
2225	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2226	spa->spa_ena = 0;
2227
2228	return (error);
2229}
2230
2231/*
2232 * Load an existing storage pool, using the pool's builtin spa_config as a
2233 * source of configuration information.
2234 */
2235static int
2236spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2237    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2238    char **ereport)
2239{
2240	int error = 0;
2241	nvlist_t *nvroot = NULL;
2242	nvlist_t *label;
2243	vdev_t *rvd;
2244	uberblock_t *ub = &spa->spa_uberblock;
2245	uint64_t children, config_cache_txg = spa->spa_config_txg;
2246	int orig_mode = spa->spa_mode;
2247	int parse;
2248	uint64_t obj;
2249	boolean_t missing_feat_write = B_FALSE;
2250
2251	/*
2252	 * If this is an untrusted config, access the pool in read-only mode.
2253	 * This prevents things like resilvering recently removed devices.
2254	 */
2255	if (!mosconfig)
2256		spa->spa_mode = FREAD;
2257
2258	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2259
2260	spa->spa_load_state = state;
2261
2262	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2263		return (SET_ERROR(EINVAL));
2264
2265	parse = (type == SPA_IMPORT_EXISTING ?
2266	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2267
2268	/*
2269	 * Create "The Godfather" zio to hold all async IOs
2270	 */
2271	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2272	    KM_SLEEP);
2273	for (int i = 0; i < max_ncpus; i++) {
2274		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2275		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2276		    ZIO_FLAG_GODFATHER);
2277	}
2278
2279	/*
2280	 * Parse the configuration into a vdev tree.  We explicitly set the
2281	 * value that will be returned by spa_version() since parsing the
2282	 * configuration requires knowing the version number.
2283	 */
2284	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2285	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2286	spa_config_exit(spa, SCL_ALL, FTAG);
2287
2288	if (error != 0)
2289		return (error);
2290
2291	ASSERT(spa->spa_root_vdev == rvd);
2292	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2293	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2294
2295	if (type != SPA_IMPORT_ASSEMBLE) {
2296		ASSERT(spa_guid(spa) == pool_guid);
2297	}
2298
2299	/*
2300	 * Try to open all vdevs, loading each label in the process.
2301	 */
2302	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2303	error = vdev_open(rvd);
2304	spa_config_exit(spa, SCL_ALL, FTAG);
2305	if (error != 0)
2306		return (error);
2307
2308	/*
2309	 * We need to validate the vdev labels against the configuration that
2310	 * we have in hand, which is dependent on the setting of mosconfig. If
2311	 * mosconfig is true then we're validating the vdev labels based on
2312	 * that config.  Otherwise, we're validating against the cached config
2313	 * (zpool.cache) that was read when we loaded the zfs module, and then
2314	 * later we will recursively call spa_load() and validate against
2315	 * the vdev config.
2316	 *
2317	 * If we're assembling a new pool that's been split off from an
2318	 * existing pool, the labels haven't yet been updated so we skip
2319	 * validation for now.
2320	 */
2321	if (type != SPA_IMPORT_ASSEMBLE) {
2322		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2323		error = vdev_validate(rvd, mosconfig);
2324		spa_config_exit(spa, SCL_ALL, FTAG);
2325
2326		if (error != 0)
2327			return (error);
2328
2329		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2330			return (SET_ERROR(ENXIO));
2331	}
2332
2333	/*
2334	 * Find the best uberblock.
2335	 */
2336	vdev_uberblock_load(rvd, ub, &label);
2337
2338	/*
2339	 * If we weren't able to find a single valid uberblock, return failure.
2340	 */
2341	if (ub->ub_txg == 0) {
2342		nvlist_free(label);
2343		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2344	}
2345
2346	/*
2347	 * If the pool has an unsupported version we can't open it.
2348	 */
2349	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2350		nvlist_free(label);
2351		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2352	}
2353
2354	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2355		nvlist_t *features;
2356
2357		/*
2358		 * If we weren't able to find what's necessary for reading the
2359		 * MOS in the label, return failure.
2360		 */
2361		if (label == NULL || nvlist_lookup_nvlist(label,
2362		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2363			nvlist_free(label);
2364			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2365			    ENXIO));
2366		}
2367
2368		/*
2369		 * Update our in-core representation with the definitive values
2370		 * from the label.
2371		 */
2372		nvlist_free(spa->spa_label_features);
2373		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2374	}
2375
2376	nvlist_free(label);
2377
2378	/*
2379	 * Look through entries in the label nvlist's features_for_read. If
2380	 * there is a feature listed there which we don't understand then we
2381	 * cannot open a pool.
2382	 */
2383	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2384		nvlist_t *unsup_feat;
2385
2386		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2387		    0);
2388
2389		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2390		    NULL); nvp != NULL;
2391		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2392			if (!zfeature_is_supported(nvpair_name(nvp))) {
2393				VERIFY(nvlist_add_string(unsup_feat,
2394				    nvpair_name(nvp), "") == 0);
2395			}
2396		}
2397
2398		if (!nvlist_empty(unsup_feat)) {
2399			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2400			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2401			nvlist_free(unsup_feat);
2402			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2403			    ENOTSUP));
2404		}
2405
2406		nvlist_free(unsup_feat);
2407	}
2408
2409	/*
2410	 * If the vdev guid sum doesn't match the uberblock, we have an
2411	 * incomplete configuration.  We first check to see if the pool
2412	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2413	 * If it is, defer the vdev_guid_sum check till later so we
2414	 * can handle missing vdevs.
2415	 */
2416	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2417	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2418	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2419		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2420
2421	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2422		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2423		spa_try_repair(spa, config);
2424		spa_config_exit(spa, SCL_ALL, FTAG);
2425		nvlist_free(spa->spa_config_splitting);
2426		spa->spa_config_splitting = NULL;
2427	}
2428
2429	/*
2430	 * Initialize internal SPA structures.
2431	 */
2432	spa->spa_state = POOL_STATE_ACTIVE;
2433	spa->spa_ubsync = spa->spa_uberblock;
2434	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2435	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2436	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2437	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2438	spa->spa_claim_max_txg = spa->spa_first_txg;
2439	spa->spa_prev_software_version = ub->ub_software_version;
2440
2441	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2442	if (error)
2443		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2445
2446	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2447		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448
2449	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2450		boolean_t missing_feat_read = B_FALSE;
2451		nvlist_t *unsup_feat, *enabled_feat;
2452
2453		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2454		    &spa->spa_feat_for_read_obj) != 0) {
2455			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2456		}
2457
2458		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2459		    &spa->spa_feat_for_write_obj) != 0) {
2460			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2461		}
2462
2463		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2464		    &spa->spa_feat_desc_obj) != 0) {
2465			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466		}
2467
2468		enabled_feat = fnvlist_alloc();
2469		unsup_feat = fnvlist_alloc();
2470
2471		if (!spa_features_check(spa, B_FALSE,
2472		    unsup_feat, enabled_feat))
2473			missing_feat_read = B_TRUE;
2474
2475		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2476			if (!spa_features_check(spa, B_TRUE,
2477			    unsup_feat, enabled_feat)) {
2478				missing_feat_write = B_TRUE;
2479			}
2480		}
2481
2482		fnvlist_add_nvlist(spa->spa_load_info,
2483		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2484
2485		if (!nvlist_empty(unsup_feat)) {
2486			fnvlist_add_nvlist(spa->spa_load_info,
2487			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2488		}
2489
2490		fnvlist_free(enabled_feat);
2491		fnvlist_free(unsup_feat);
2492
2493		if (!missing_feat_read) {
2494			fnvlist_add_boolean(spa->spa_load_info,
2495			    ZPOOL_CONFIG_CAN_RDONLY);
2496		}
2497
2498		/*
2499		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2500		 * twofold: to determine whether the pool is available for
2501		 * import in read-write mode and (if it is not) whether the
2502		 * pool is available for import in read-only mode. If the pool
2503		 * is available for import in read-write mode, it is displayed
2504		 * as available in userland; if it is not available for import
2505		 * in read-only mode, it is displayed as unavailable in
2506		 * userland. If the pool is available for import in read-only
2507		 * mode but not read-write mode, it is displayed as unavailable
2508		 * in userland with a special note that the pool is actually
2509		 * available for open in read-only mode.
2510		 *
2511		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2512		 * missing a feature for write, we must first determine whether
2513		 * the pool can be opened read-only before returning to
2514		 * userland in order to know whether to display the
2515		 * abovementioned note.
2516		 */
2517		if (missing_feat_read || (missing_feat_write &&
2518		    spa_writeable(spa))) {
2519			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2520			    ENOTSUP));
2521		}
2522
2523		/*
2524		 * Load refcounts for ZFS features from disk into an in-memory
2525		 * cache during SPA initialization.
2526		 */
2527		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2528			uint64_t refcount;
2529
2530			error = feature_get_refcount_from_disk(spa,
2531			    &spa_feature_table[i], &refcount);
2532			if (error == 0) {
2533				spa->spa_feat_refcount_cache[i] = refcount;
2534			} else if (error == ENOTSUP) {
2535				spa->spa_feat_refcount_cache[i] =
2536				    SPA_FEATURE_DISABLED;
2537			} else {
2538				return (spa_vdev_err(rvd,
2539				    VDEV_AUX_CORRUPT_DATA, EIO));
2540			}
2541		}
2542	}
2543
2544	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2545		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2546		    &spa->spa_feat_enabled_txg_obj) != 0)
2547			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548	}
2549
2550	spa->spa_is_initializing = B_TRUE;
2551	error = dsl_pool_open(spa->spa_dsl_pool);
2552	spa->spa_is_initializing = B_FALSE;
2553	if (error != 0)
2554		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2555
2556	if (!mosconfig) {
2557		uint64_t hostid;
2558		nvlist_t *policy = NULL, *nvconfig;
2559
2560		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2561			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562
2563		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2564		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2565			char *hostname;
2566			unsigned long myhostid = 0;
2567
2568			VERIFY(nvlist_lookup_string(nvconfig,
2569			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2570
2571#ifdef	_KERNEL
2572			myhostid = zone_get_hostid(NULL);
2573#else	/* _KERNEL */
2574			/*
2575			 * We're emulating the system's hostid in userland, so
2576			 * we can't use zone_get_hostid().
2577			 */
2578			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2579#endif	/* _KERNEL */
2580			if (check_hostid && hostid != 0 && myhostid != 0 &&
2581			    hostid != myhostid) {
2582				nvlist_free(nvconfig);
2583				cmn_err(CE_WARN, "pool '%s' could not be "
2584				    "loaded as it was last accessed by "
2585				    "another system (host: %s hostid: 0x%lx). "
2586				    "See: http://illumos.org/msg/ZFS-8000-EY",
2587				    spa_name(spa), hostname,
2588				    (unsigned long)hostid);
2589				return (SET_ERROR(EBADF));
2590			}
2591		}
2592		if (nvlist_lookup_nvlist(spa->spa_config,
2593		    ZPOOL_REWIND_POLICY, &policy) == 0)
2594			VERIFY(nvlist_add_nvlist(nvconfig,
2595			    ZPOOL_REWIND_POLICY, policy) == 0);
2596
2597		spa_config_set(spa, nvconfig);
2598		spa_unload(spa);
2599		spa_deactivate(spa);
2600		spa_activate(spa, orig_mode);
2601
2602		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2603	}
2604
2605	/* Grab the secret checksum salt from the MOS. */
2606	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2607	    DMU_POOL_CHECKSUM_SALT, 1,
2608	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2609	    spa->spa_cksum_salt.zcs_bytes);
2610	if (error == ENOENT) {
2611		/* Generate a new salt for subsequent use */
2612		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2613		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2614	} else if (error != 0) {
2615		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2616	}
2617
2618	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2619		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2620	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2621	if (error != 0)
2622		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623
2624	/*
2625	 * Load the bit that tells us to use the new accounting function
2626	 * (raid-z deflation).  If we have an older pool, this will not
2627	 * be present.
2628	 */
2629	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2630	if (error != 0 && error != ENOENT)
2631		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2632
2633	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2634	    &spa->spa_creation_version);
2635	if (error != 0 && error != ENOENT)
2636		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2637
2638	/*
2639	 * Load the persistent error log.  If we have an older pool, this will
2640	 * not be present.
2641	 */
2642	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2643	if (error != 0 && error != ENOENT)
2644		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2645
2646	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2647	    &spa->spa_errlog_scrub);
2648	if (error != 0 && error != ENOENT)
2649		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2650
2651	/*
2652	 * Load the history object.  If we have an older pool, this
2653	 * will not be present.
2654	 */
2655	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2656	if (error != 0 && error != ENOENT)
2657		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2658
2659	/*
2660	 * If we're assembling the pool from the split-off vdevs of
2661	 * an existing pool, we don't want to attach the spares & cache
2662	 * devices.
2663	 */
2664
2665	/*
2666	 * Load any hot spares for this pool.
2667	 */
2668	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2669	if (error != 0 && error != ENOENT)
2670		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2671	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2672		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2673		if (load_nvlist(spa, spa->spa_spares.sav_object,
2674		    &spa->spa_spares.sav_config) != 0)
2675			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2676
2677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2678		spa_load_spares(spa);
2679		spa_config_exit(spa, SCL_ALL, FTAG);
2680	} else if (error == 0) {
2681		spa->spa_spares.sav_sync = B_TRUE;
2682	}
2683
2684	/*
2685	 * Load any level 2 ARC devices for this pool.
2686	 */
2687	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2688	    &spa->spa_l2cache.sav_object);
2689	if (error != 0 && error != ENOENT)
2690		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2691	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2692		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2693		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2694		    &spa->spa_l2cache.sav_config) != 0)
2695			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2696
2697		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2698		spa_load_l2cache(spa);
2699		spa_config_exit(spa, SCL_ALL, FTAG);
2700	} else if (error == 0) {
2701		spa->spa_l2cache.sav_sync = B_TRUE;
2702	}
2703
2704	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2705
2706	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2707	if (error && error != ENOENT)
2708		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2709
2710	if (error == 0) {
2711		uint64_t autoreplace;
2712
2713		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2714		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2715		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2716		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2717		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2718		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2719		    &spa->spa_dedup_ditto);
2720
2721		spa->spa_autoreplace = (autoreplace != 0);
2722	}
2723
2724	/*
2725	 * If the 'autoreplace' property is set, then post a resource notifying
2726	 * the ZFS DE that it should not issue any faults for unopenable
2727	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2728	 * unopenable vdevs so that the normal autoreplace handler can take
2729	 * over.
2730	 */
2731	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2732		spa_check_removed(spa->spa_root_vdev);
2733		/*
2734		 * For the import case, this is done in spa_import(), because
2735		 * at this point we're using the spare definitions from
2736		 * the MOS config, not necessarily from the userland config.
2737		 */
2738		if (state != SPA_LOAD_IMPORT) {
2739			spa_aux_check_removed(&spa->spa_spares);
2740			spa_aux_check_removed(&spa->spa_l2cache);
2741		}
2742	}
2743
2744	/*
2745	 * Load the vdev state for all toplevel vdevs.
2746	 */
2747	vdev_load(rvd);
2748
2749	/*
2750	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2751	 */
2752	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2753	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2754	spa_config_exit(spa, SCL_ALL, FTAG);
2755
2756	/*
2757	 * Load the DDTs (dedup tables).
2758	 */
2759	error = ddt_load(spa);
2760	if (error != 0)
2761		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2762
2763	spa_update_dspace(spa);
2764
2765	/*
2766	 * Validate the config, using the MOS config to fill in any
2767	 * information which might be missing.  If we fail to validate
2768	 * the config then declare the pool unfit for use. If we're
2769	 * assembling a pool from a split, the log is not transferred
2770	 * over.
2771	 */
2772	if (type != SPA_IMPORT_ASSEMBLE) {
2773		nvlist_t *nvconfig;
2774
2775		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2776			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2777
2778		if (!spa_config_valid(spa, nvconfig)) {
2779			nvlist_free(nvconfig);
2780			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2781			    ENXIO));
2782		}
2783		nvlist_free(nvconfig);
2784
2785		/*
2786		 * Now that we've validated the config, check the state of the
2787		 * root vdev.  If it can't be opened, it indicates one or
2788		 * more toplevel vdevs are faulted.
2789		 */
2790		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2791			return (SET_ERROR(ENXIO));
2792
2793		if (spa_writeable(spa) && spa_check_logs(spa)) {
2794			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2795			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2796		}
2797	}
2798
2799	if (missing_feat_write) {
2800		ASSERT(state == SPA_LOAD_TRYIMPORT);
2801
2802		/*
2803		 * At this point, we know that we can open the pool in
2804		 * read-only mode but not read-write mode. We now have enough
2805		 * information and can return to userland.
2806		 */
2807		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2808	}
2809
2810	/*
2811	 * We've successfully opened the pool, verify that we're ready
2812	 * to start pushing transactions.
2813	 */
2814	if (state != SPA_LOAD_TRYIMPORT) {
2815		if (error = spa_load_verify(spa))
2816			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2817			    error));
2818	}
2819
2820	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2821	    spa->spa_load_max_txg == UINT64_MAX)) {
2822		dmu_tx_t *tx;
2823		int need_update = B_FALSE;
2824		dsl_pool_t *dp = spa_get_dsl(spa);
2825
2826		ASSERT(state != SPA_LOAD_TRYIMPORT);
2827
2828		/*
2829		 * Claim log blocks that haven't been committed yet.
2830		 * This must all happen in a single txg.
2831		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2832		 * invoked from zil_claim_log_block()'s i/o done callback.
2833		 * Price of rollback is that we abandon the log.
2834		 */
2835		spa->spa_claiming = B_TRUE;
2836
2837		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2838		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2839		    zil_claim, tx, DS_FIND_CHILDREN);
2840		dmu_tx_commit(tx);
2841
2842		spa->spa_claiming = B_FALSE;
2843
2844		spa_set_log_state(spa, SPA_LOG_GOOD);
2845		spa->spa_sync_on = B_TRUE;
2846		txg_sync_start(spa->spa_dsl_pool);
2847
2848		/*
2849		 * Wait for all claims to sync.  We sync up to the highest
2850		 * claimed log block birth time so that claimed log blocks
2851		 * don't appear to be from the future.  spa_claim_max_txg
2852		 * will have been set for us by either zil_check_log_chain()
2853		 * (invoked from spa_check_logs()) or zil_claim() above.
2854		 */
2855		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2856
2857		/*
2858		 * If the config cache is stale, or we have uninitialized
2859		 * metaslabs (see spa_vdev_add()), then update the config.
2860		 *
2861		 * If this is a verbatim import, trust the current
2862		 * in-core spa_config and update the disk labels.
2863		 */
2864		if (config_cache_txg != spa->spa_config_txg ||
2865		    state == SPA_LOAD_IMPORT ||
2866		    state == SPA_LOAD_RECOVER ||
2867		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2868			need_update = B_TRUE;
2869
2870		for (int c = 0; c < rvd->vdev_children; c++)
2871			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2872				need_update = B_TRUE;
2873
2874		/*
2875		 * Update the config cache asychronously in case we're the
2876		 * root pool, in which case the config cache isn't writable yet.
2877		 */
2878		if (need_update)
2879			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2880
2881		/*
2882		 * Check all DTLs to see if anything needs resilvering.
2883		 */
2884		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2885		    vdev_resilver_needed(rvd, NULL, NULL))
2886			spa_async_request(spa, SPA_ASYNC_RESILVER);
2887
2888		/*
2889		 * Log the fact that we booted up (so that we can detect if
2890		 * we rebooted in the middle of an operation).
2891		 */
2892		spa_history_log_version(spa, "open");
2893
2894		/*
2895		 * Delete any inconsistent datasets.
2896		 */
2897		(void) dmu_objset_find(spa_name(spa),
2898		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2899
2900		/*
2901		 * Clean up any stale temporary dataset userrefs.
2902		 */
2903		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2904	}
2905
2906	return (0);
2907}
2908
2909static int
2910spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2911{
2912	int mode = spa->spa_mode;
2913
2914	spa_unload(spa);
2915	spa_deactivate(spa);
2916
2917	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2918
2919	spa_activate(spa, mode);
2920	spa_async_suspend(spa);
2921
2922	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2923}
2924
2925/*
2926 * If spa_load() fails this function will try loading prior txg's. If
2927 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2928 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2929 * function will not rewind the pool and will return the same error as
2930 * spa_load().
2931 */
2932static int
2933spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2934    uint64_t max_request, int rewind_flags)
2935{
2936	nvlist_t *loadinfo = NULL;
2937	nvlist_t *config = NULL;
2938	int load_error, rewind_error;
2939	uint64_t safe_rewind_txg;
2940	uint64_t min_txg;
2941
2942	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2943		spa->spa_load_max_txg = spa->spa_load_txg;
2944		spa_set_log_state(spa, SPA_LOG_CLEAR);
2945	} else {
2946		spa->spa_load_max_txg = max_request;
2947		if (max_request != UINT64_MAX)
2948			spa->spa_extreme_rewind = B_TRUE;
2949	}
2950
2951	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2952	    mosconfig);
2953	if (load_error == 0)
2954		return (0);
2955
2956	if (spa->spa_root_vdev != NULL)
2957		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2958
2959	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2960	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2961
2962	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2963		nvlist_free(config);
2964		return (load_error);
2965	}
2966
2967	if (state == SPA_LOAD_RECOVER) {
2968		/* Price of rolling back is discarding txgs, including log */
2969		spa_set_log_state(spa, SPA_LOG_CLEAR);
2970	} else {
2971		/*
2972		 * If we aren't rolling back save the load info from our first
2973		 * import attempt so that we can restore it after attempting
2974		 * to rewind.
2975		 */
2976		loadinfo = spa->spa_load_info;
2977		spa->spa_load_info = fnvlist_alloc();
2978	}
2979
2980	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2981	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2982	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2983	    TXG_INITIAL : safe_rewind_txg;
2984
2985	/*
2986	 * Continue as long as we're finding errors, we're still within
2987	 * the acceptable rewind range, and we're still finding uberblocks
2988	 */
2989	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2990	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2991		if (spa->spa_load_max_txg < safe_rewind_txg)
2992			spa->spa_extreme_rewind = B_TRUE;
2993		rewind_error = spa_load_retry(spa, state, mosconfig);
2994	}
2995
2996	spa->spa_extreme_rewind = B_FALSE;
2997	spa->spa_load_max_txg = UINT64_MAX;
2998
2999	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3000		spa_config_set(spa, config);
3001
3002	if (state == SPA_LOAD_RECOVER) {
3003		ASSERT3P(loadinfo, ==, NULL);
3004		return (rewind_error);
3005	} else {
3006		/* Store the rewind info as part of the initial load info */
3007		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3008		    spa->spa_load_info);
3009
3010		/* Restore the initial load info */
3011		fnvlist_free(spa->spa_load_info);
3012		spa->spa_load_info = loadinfo;
3013
3014		return (load_error);
3015	}
3016}
3017
3018/*
3019 * Pool Open/Import
3020 *
3021 * The import case is identical to an open except that the configuration is sent
3022 * down from userland, instead of grabbed from the configuration cache.  For the
3023 * case of an open, the pool configuration will exist in the
3024 * POOL_STATE_UNINITIALIZED state.
3025 *
3026 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3027 * the same time open the pool, without having to keep around the spa_t in some
3028 * ambiguous state.
3029 */
3030static int
3031spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3032    nvlist_t **config)
3033{
3034	spa_t *spa;
3035	spa_load_state_t state = SPA_LOAD_OPEN;
3036	int error;
3037	int locked = B_FALSE;
3038	int firstopen = B_FALSE;
3039
3040	*spapp = NULL;
3041
3042	/*
3043	 * As disgusting as this is, we need to support recursive calls to this
3044	 * function because dsl_dir_open() is called during spa_load(), and ends
3045	 * up calling spa_open() again.  The real fix is to figure out how to
3046	 * avoid dsl_dir_open() calling this in the first place.
3047	 */
3048	if (mutex_owner(&spa_namespace_lock) != curthread) {
3049		mutex_enter(&spa_namespace_lock);
3050		locked = B_TRUE;
3051	}
3052
3053	if ((spa = spa_lookup(pool)) == NULL) {
3054		if (locked)
3055			mutex_exit(&spa_namespace_lock);
3056		return (SET_ERROR(ENOENT));
3057	}
3058
3059	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3060		zpool_rewind_policy_t policy;
3061
3062		firstopen = B_TRUE;
3063
3064		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3065		    &policy);
3066		if (policy.zrp_request & ZPOOL_DO_REWIND)
3067			state = SPA_LOAD_RECOVER;
3068
3069		spa_activate(spa, spa_mode_global);
3070
3071		if (state != SPA_LOAD_RECOVER)
3072			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3073
3074		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3075		    policy.zrp_request);
3076
3077		if (error == EBADF) {
3078			/*
3079			 * If vdev_validate() returns failure (indicated by
3080			 * EBADF), it indicates that one of the vdevs indicates
3081			 * that the pool has been exported or destroyed.  If
3082			 * this is the case, the config cache is out of sync and
3083			 * we should remove the pool from the namespace.
3084			 */
3085			spa_unload(spa);
3086			spa_deactivate(spa);
3087			spa_config_sync(spa, B_TRUE, B_TRUE);
3088			spa_remove(spa);
3089			if (locked)
3090				mutex_exit(&spa_namespace_lock);
3091			return (SET_ERROR(ENOENT));
3092		}
3093
3094		if (error) {
3095			/*
3096			 * We can't open the pool, but we still have useful
3097			 * information: the state of each vdev after the
3098			 * attempted vdev_open().  Return this to the user.
3099			 */
3100			if (config != NULL && spa->spa_config) {
3101				VERIFY(nvlist_dup(spa->spa_config, config,
3102				    KM_SLEEP) == 0);
3103				VERIFY(nvlist_add_nvlist(*config,
3104				    ZPOOL_CONFIG_LOAD_INFO,
3105				    spa->spa_load_info) == 0);
3106			}
3107			spa_unload(spa);
3108			spa_deactivate(spa);
3109			spa->spa_last_open_failed = error;
3110			if (locked)
3111				mutex_exit(&spa_namespace_lock);
3112			*spapp = NULL;
3113			return (error);
3114		}
3115	}
3116
3117	spa_open_ref(spa, tag);
3118
3119	if (config != NULL)
3120		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3121
3122	/*
3123	 * If we've recovered the pool, pass back any information we
3124	 * gathered while doing the load.
3125	 */
3126	if (state == SPA_LOAD_RECOVER) {
3127		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3128		    spa->spa_load_info) == 0);
3129	}
3130
3131	if (locked) {
3132		spa->spa_last_open_failed = 0;
3133		spa->spa_last_ubsync_txg = 0;
3134		spa->spa_load_txg = 0;
3135		mutex_exit(&spa_namespace_lock);
3136#ifdef __FreeBSD__
3137#ifdef _KERNEL
3138		if (firstopen)
3139			zvol_create_minors(spa->spa_name);
3140#endif
3141#endif
3142	}
3143
3144	*spapp = spa;
3145
3146	return (0);
3147}
3148
3149int
3150spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3151    nvlist_t **config)
3152{
3153	return (spa_open_common(name, spapp, tag, policy, config));
3154}
3155
3156int
3157spa_open(const char *name, spa_t **spapp, void *tag)
3158{
3159	return (spa_open_common(name, spapp, tag, NULL, NULL));
3160}
3161
3162/*
3163 * Lookup the given spa_t, incrementing the inject count in the process,
3164 * preventing it from being exported or destroyed.
3165 */
3166spa_t *
3167spa_inject_addref(char *name)
3168{
3169	spa_t *spa;
3170
3171	mutex_enter(&spa_namespace_lock);
3172	if ((spa = spa_lookup(name)) == NULL) {
3173		mutex_exit(&spa_namespace_lock);
3174		return (NULL);
3175	}
3176	spa->spa_inject_ref++;
3177	mutex_exit(&spa_namespace_lock);
3178
3179	return (spa);
3180}
3181
3182void
3183spa_inject_delref(spa_t *spa)
3184{
3185	mutex_enter(&spa_namespace_lock);
3186	spa->spa_inject_ref--;
3187	mutex_exit(&spa_namespace_lock);
3188}
3189
3190/*
3191 * Add spares device information to the nvlist.
3192 */
3193static void
3194spa_add_spares(spa_t *spa, nvlist_t *config)
3195{
3196	nvlist_t **spares;
3197	uint_t i, nspares;
3198	nvlist_t *nvroot;
3199	uint64_t guid;
3200	vdev_stat_t *vs;
3201	uint_t vsc;
3202	uint64_t pool;
3203
3204	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3205
3206	if (spa->spa_spares.sav_count == 0)
3207		return;
3208
3209	VERIFY(nvlist_lookup_nvlist(config,
3210	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3211	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3212	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3213	if (nspares != 0) {
3214		VERIFY(nvlist_add_nvlist_array(nvroot,
3215		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3216		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3217		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3218
3219		/*
3220		 * Go through and find any spares which have since been
3221		 * repurposed as an active spare.  If this is the case, update
3222		 * their status appropriately.
3223		 */
3224		for (i = 0; i < nspares; i++) {
3225			VERIFY(nvlist_lookup_uint64(spares[i],
3226			    ZPOOL_CONFIG_GUID, &guid) == 0);
3227			if (spa_spare_exists(guid, &pool, NULL) &&
3228			    pool != 0ULL) {
3229				VERIFY(nvlist_lookup_uint64_array(
3230				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3231				    (uint64_t **)&vs, &vsc) == 0);
3232				vs->vs_state = VDEV_STATE_CANT_OPEN;
3233				vs->vs_aux = VDEV_AUX_SPARED;
3234			}
3235		}
3236	}
3237}
3238
3239/*
3240 * Add l2cache device information to the nvlist, including vdev stats.
3241 */
3242static void
3243spa_add_l2cache(spa_t *spa, nvlist_t *config)
3244{
3245	nvlist_t **l2cache;
3246	uint_t i, j, nl2cache;
3247	nvlist_t *nvroot;
3248	uint64_t guid;
3249	vdev_t *vd;
3250	vdev_stat_t *vs;
3251	uint_t vsc;
3252
3253	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3254
3255	if (spa->spa_l2cache.sav_count == 0)
3256		return;
3257
3258	VERIFY(nvlist_lookup_nvlist(config,
3259	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3260	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3261	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3262	if (nl2cache != 0) {
3263		VERIFY(nvlist_add_nvlist_array(nvroot,
3264		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3265		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3266		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3267
3268		/*
3269		 * Update level 2 cache device stats.
3270		 */
3271
3272		for (i = 0; i < nl2cache; i++) {
3273			VERIFY(nvlist_lookup_uint64(l2cache[i],
3274			    ZPOOL_CONFIG_GUID, &guid) == 0);
3275
3276			vd = NULL;
3277			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3278				if (guid ==
3279				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3280					vd = spa->spa_l2cache.sav_vdevs[j];
3281					break;
3282				}
3283			}
3284			ASSERT(vd != NULL);
3285
3286			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3287			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3288			    == 0);
3289			vdev_get_stats(vd, vs);
3290		}
3291	}
3292}
3293
3294static void
3295spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3296{
3297	nvlist_t *features;
3298	zap_cursor_t zc;
3299	zap_attribute_t za;
3300
3301	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3302	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3303
3304	/* We may be unable to read features if pool is suspended. */
3305	if (spa_suspended(spa))
3306		goto out;
3307
3308	if (spa->spa_feat_for_read_obj != 0) {
3309		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3310		    spa->spa_feat_for_read_obj);
3311		    zap_cursor_retrieve(&zc, &za) == 0;
3312		    zap_cursor_advance(&zc)) {
3313			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3314			    za.za_num_integers == 1);
3315			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3316			    za.za_first_integer));
3317		}
3318		zap_cursor_fini(&zc);
3319	}
3320
3321	if (spa->spa_feat_for_write_obj != 0) {
3322		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3323		    spa->spa_feat_for_write_obj);
3324		    zap_cursor_retrieve(&zc, &za) == 0;
3325		    zap_cursor_advance(&zc)) {
3326			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3327			    za.za_num_integers == 1);
3328			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3329			    za.za_first_integer));
3330		}
3331		zap_cursor_fini(&zc);
3332	}
3333
3334out:
3335	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3336	    features) == 0);
3337	nvlist_free(features);
3338}
3339
3340int
3341spa_get_stats(const char *name, nvlist_t **config,
3342    char *altroot, size_t buflen)
3343{
3344	int error;
3345	spa_t *spa;
3346
3347	*config = NULL;
3348	error = spa_open_common(name, &spa, FTAG, NULL, config);
3349
3350	if (spa != NULL) {
3351		/*
3352		 * This still leaves a window of inconsistency where the spares
3353		 * or l2cache devices could change and the config would be
3354		 * self-inconsistent.
3355		 */
3356		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3357
3358		if (*config != NULL) {
3359			uint64_t loadtimes[2];
3360
3361			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3362			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3363			VERIFY(nvlist_add_uint64_array(*config,
3364			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3365
3366			VERIFY(nvlist_add_uint64(*config,
3367			    ZPOOL_CONFIG_ERRCOUNT,
3368			    spa_get_errlog_size(spa)) == 0);
3369
3370			if (spa_suspended(spa))
3371				VERIFY(nvlist_add_uint64(*config,
3372				    ZPOOL_CONFIG_SUSPENDED,
3373				    spa->spa_failmode) == 0);
3374
3375			spa_add_spares(spa, *config);
3376			spa_add_l2cache(spa, *config);
3377			spa_add_feature_stats(spa, *config);
3378		}
3379	}
3380
3381	/*
3382	 * We want to get the alternate root even for faulted pools, so we cheat
3383	 * and call spa_lookup() directly.
3384	 */
3385	if (altroot) {
3386		if (spa == NULL) {
3387			mutex_enter(&spa_namespace_lock);
3388			spa = spa_lookup(name);
3389			if (spa)
3390				spa_altroot(spa, altroot, buflen);
3391			else
3392				altroot[0] = '\0';
3393			spa = NULL;
3394			mutex_exit(&spa_namespace_lock);
3395		} else {
3396			spa_altroot(spa, altroot, buflen);
3397		}
3398	}
3399
3400	if (spa != NULL) {
3401		spa_config_exit(spa, SCL_CONFIG, FTAG);
3402		spa_close(spa, FTAG);
3403	}
3404
3405	return (error);
3406}
3407
3408/*
3409 * Validate that the auxiliary device array is well formed.  We must have an
3410 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3411 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3412 * specified, as long as they are well-formed.
3413 */
3414static int
3415spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3416    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3417    vdev_labeltype_t label)
3418{
3419	nvlist_t **dev;
3420	uint_t i, ndev;
3421	vdev_t *vd;
3422	int error;
3423
3424	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3425
3426	/*
3427	 * It's acceptable to have no devs specified.
3428	 */
3429	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3430		return (0);
3431
3432	if (ndev == 0)
3433		return (SET_ERROR(EINVAL));
3434
3435	/*
3436	 * Make sure the pool is formatted with a version that supports this
3437	 * device type.
3438	 */
3439	if (spa_version(spa) < version)
3440		return (SET_ERROR(ENOTSUP));
3441
3442	/*
3443	 * Set the pending device list so we correctly handle device in-use
3444	 * checking.
3445	 */
3446	sav->sav_pending = dev;
3447	sav->sav_npending = ndev;
3448
3449	for (i = 0; i < ndev; i++) {
3450		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3451		    mode)) != 0)
3452			goto out;
3453
3454		if (!vd->vdev_ops->vdev_op_leaf) {
3455			vdev_free(vd);
3456			error = SET_ERROR(EINVAL);
3457			goto out;
3458		}
3459
3460		/*
3461		 * The L2ARC currently only supports disk devices in
3462		 * kernel context.  For user-level testing, we allow it.
3463		 */
3464#ifdef _KERNEL
3465		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3466		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3467			error = SET_ERROR(ENOTBLK);
3468			vdev_free(vd);
3469			goto out;
3470		}
3471#endif
3472		vd->vdev_top = vd;
3473
3474		if ((error = vdev_open(vd)) == 0 &&
3475		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3476			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3477			    vd->vdev_guid) == 0);
3478		}
3479
3480		vdev_free(vd);
3481
3482		if (error &&
3483		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3484			goto out;
3485		else
3486			error = 0;
3487	}
3488
3489out:
3490	sav->sav_pending = NULL;
3491	sav->sav_npending = 0;
3492	return (error);
3493}
3494
3495static int
3496spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3497{
3498	int error;
3499
3500	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3501
3502	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3503	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3504	    VDEV_LABEL_SPARE)) != 0) {
3505		return (error);
3506	}
3507
3508	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3509	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3510	    VDEV_LABEL_L2CACHE));
3511}
3512
3513static void
3514spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3515    const char *config)
3516{
3517	int i;
3518
3519	if (sav->sav_config != NULL) {
3520		nvlist_t **olddevs;
3521		uint_t oldndevs;
3522		nvlist_t **newdevs;
3523
3524		/*
3525		 * Generate new dev list by concatentating with the
3526		 * current dev list.
3527		 */
3528		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3529		    &olddevs, &oldndevs) == 0);
3530
3531		newdevs = kmem_alloc(sizeof (void *) *
3532		    (ndevs + oldndevs), KM_SLEEP);
3533		for (i = 0; i < oldndevs; i++)
3534			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3535			    KM_SLEEP) == 0);
3536		for (i = 0; i < ndevs; i++)
3537			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3538			    KM_SLEEP) == 0);
3539
3540		VERIFY(nvlist_remove(sav->sav_config, config,
3541		    DATA_TYPE_NVLIST_ARRAY) == 0);
3542
3543		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3544		    config, newdevs, ndevs + oldndevs) == 0);
3545		for (i = 0; i < oldndevs + ndevs; i++)
3546			nvlist_free(newdevs[i]);
3547		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3548	} else {
3549		/*
3550		 * Generate a new dev list.
3551		 */
3552		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3553		    KM_SLEEP) == 0);
3554		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3555		    devs, ndevs) == 0);
3556	}
3557}
3558
3559/*
3560 * Stop and drop level 2 ARC devices
3561 */
3562void
3563spa_l2cache_drop(spa_t *spa)
3564{
3565	vdev_t *vd;
3566	int i;
3567	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3568
3569	for (i = 0; i < sav->sav_count; i++) {
3570		uint64_t pool;
3571
3572		vd = sav->sav_vdevs[i];
3573		ASSERT(vd != NULL);
3574
3575		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3576		    pool != 0ULL && l2arc_vdev_present(vd))
3577			l2arc_remove_vdev(vd);
3578	}
3579}
3580
3581/*
3582 * Pool Creation
3583 */
3584int
3585spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3586    nvlist_t *zplprops)
3587{
3588	spa_t *spa;
3589	char *altroot = NULL;
3590	vdev_t *rvd;
3591	dsl_pool_t *dp;
3592	dmu_tx_t *tx;
3593	int error = 0;
3594	uint64_t txg = TXG_INITIAL;
3595	nvlist_t **spares, **l2cache;
3596	uint_t nspares, nl2cache;
3597	uint64_t version, obj;
3598	boolean_t has_features;
3599
3600	/*
3601	 * If this pool already exists, return failure.
3602	 */
3603	mutex_enter(&spa_namespace_lock);
3604	if (spa_lookup(pool) != NULL) {
3605		mutex_exit(&spa_namespace_lock);
3606		return (SET_ERROR(EEXIST));
3607	}
3608
3609	/*
3610	 * Allocate a new spa_t structure.
3611	 */
3612	(void) nvlist_lookup_string(props,
3613	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3614	spa = spa_add(pool, NULL, altroot);
3615	spa_activate(spa, spa_mode_global);
3616
3617	if (props && (error = spa_prop_validate(spa, props))) {
3618		spa_deactivate(spa);
3619		spa_remove(spa);
3620		mutex_exit(&spa_namespace_lock);
3621		return (error);
3622	}
3623
3624	has_features = B_FALSE;
3625	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3626	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3627		if (zpool_prop_feature(nvpair_name(elem)))
3628			has_features = B_TRUE;
3629	}
3630
3631	if (has_features || nvlist_lookup_uint64(props,
3632	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3633		version = SPA_VERSION;
3634	}
3635	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3636
3637	spa->spa_first_txg = txg;
3638	spa->spa_uberblock.ub_txg = txg - 1;
3639	spa->spa_uberblock.ub_version = version;
3640	spa->spa_ubsync = spa->spa_uberblock;
3641
3642	/*
3643	 * Create "The Godfather" zio to hold all async IOs
3644	 */
3645	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3646	    KM_SLEEP);
3647	for (int i = 0; i < max_ncpus; i++) {
3648		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3649		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3650		    ZIO_FLAG_GODFATHER);
3651	}
3652
3653	/*
3654	 * Create the root vdev.
3655	 */
3656	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3657
3658	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3659
3660	ASSERT(error != 0 || rvd != NULL);
3661	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3662
3663	if (error == 0 && !zfs_allocatable_devs(nvroot))
3664		error = SET_ERROR(EINVAL);
3665
3666	if (error == 0 &&
3667	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3668	    (error = spa_validate_aux(spa, nvroot, txg,
3669	    VDEV_ALLOC_ADD)) == 0) {
3670		for (int c = 0; c < rvd->vdev_children; c++) {
3671			vdev_ashift_optimize(rvd->vdev_child[c]);
3672			vdev_metaslab_set_size(rvd->vdev_child[c]);
3673			vdev_expand(rvd->vdev_child[c], txg);
3674		}
3675	}
3676
3677	spa_config_exit(spa, SCL_ALL, FTAG);
3678
3679	if (error != 0) {
3680		spa_unload(spa);
3681		spa_deactivate(spa);
3682		spa_remove(spa);
3683		mutex_exit(&spa_namespace_lock);
3684		return (error);
3685	}
3686
3687	/*
3688	 * Get the list of spares, if specified.
3689	 */
3690	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3691	    &spares, &nspares) == 0) {
3692		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3693		    KM_SLEEP) == 0);
3694		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3695		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3696		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697		spa_load_spares(spa);
3698		spa_config_exit(spa, SCL_ALL, FTAG);
3699		spa->spa_spares.sav_sync = B_TRUE;
3700	}
3701
3702	/*
3703	 * Get the list of level 2 cache devices, if specified.
3704	 */
3705	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3706	    &l2cache, &nl2cache) == 0) {
3707		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3708		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3709		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3710		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3711		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712		spa_load_l2cache(spa);
3713		spa_config_exit(spa, SCL_ALL, FTAG);
3714		spa->spa_l2cache.sav_sync = B_TRUE;
3715	}
3716
3717	spa->spa_is_initializing = B_TRUE;
3718	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3719	spa->spa_meta_objset = dp->dp_meta_objset;
3720	spa->spa_is_initializing = B_FALSE;
3721
3722	/*
3723	 * Create DDTs (dedup tables).
3724	 */
3725	ddt_create(spa);
3726
3727	spa_update_dspace(spa);
3728
3729	tx = dmu_tx_create_assigned(dp, txg);
3730
3731	/*
3732	 * Create the pool config object.
3733	 */
3734	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3735	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3736	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3737
3738	if (zap_add(spa->spa_meta_objset,
3739	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3740	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3741		cmn_err(CE_PANIC, "failed to add pool config");
3742	}
3743
3744	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3745		spa_feature_create_zap_objects(spa, tx);
3746
3747	if (zap_add(spa->spa_meta_objset,
3748	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3749	    sizeof (uint64_t), 1, &version, tx) != 0) {
3750		cmn_err(CE_PANIC, "failed to add pool version");
3751	}
3752
3753	/* Newly created pools with the right version are always deflated. */
3754	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3755		spa->spa_deflate = TRUE;
3756		if (zap_add(spa->spa_meta_objset,
3757		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3758		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3759			cmn_err(CE_PANIC, "failed to add deflate");
3760		}
3761	}
3762
3763	/*
3764	 * Create the deferred-free bpobj.  Turn off compression
3765	 * because sync-to-convergence takes longer if the blocksize
3766	 * keeps changing.
3767	 */
3768	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3769	dmu_object_set_compress(spa->spa_meta_objset, obj,
3770	    ZIO_COMPRESS_OFF, tx);
3771	if (zap_add(spa->spa_meta_objset,
3772	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3773	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3774		cmn_err(CE_PANIC, "failed to add bpobj");
3775	}
3776	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3777	    spa->spa_meta_objset, obj));
3778
3779	/*
3780	 * Create the pool's history object.
3781	 */
3782	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3783		spa_history_create_obj(spa, tx);
3784
3785	/*
3786	 * Generate some random noise for salted checksums to operate on.
3787	 */
3788	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3789	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3790
3791	/*
3792	 * Set pool properties.
3793	 */
3794	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3795	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3796	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3797	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3798
3799	if (props != NULL) {
3800		spa_configfile_set(spa, props, B_FALSE);
3801		spa_sync_props(props, tx);
3802	}
3803
3804	dmu_tx_commit(tx);
3805
3806	spa->spa_sync_on = B_TRUE;
3807	txg_sync_start(spa->spa_dsl_pool);
3808
3809	/*
3810	 * We explicitly wait for the first transaction to complete so that our
3811	 * bean counters are appropriately updated.
3812	 */
3813	txg_wait_synced(spa->spa_dsl_pool, txg);
3814
3815	spa_config_sync(spa, B_FALSE, B_TRUE);
3816	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3817
3818	spa_history_log_version(spa, "create");
3819
3820	/*
3821	 * Don't count references from objsets that are already closed
3822	 * and are making their way through the eviction process.
3823	 */
3824	spa_evicting_os_wait(spa);
3825	spa->spa_minref = refcount_count(&spa->spa_refcount);
3826
3827	mutex_exit(&spa_namespace_lock);
3828
3829	return (0);
3830}
3831
3832#ifdef _KERNEL
3833#ifdef illumos
3834/*
3835 * Get the root pool information from the root disk, then import the root pool
3836 * during the system boot up time.
3837 */
3838extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3839
3840static nvlist_t *
3841spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3842{
3843	nvlist_t *config;
3844	nvlist_t *nvtop, *nvroot;
3845	uint64_t pgid;
3846
3847	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3848		return (NULL);
3849
3850	/*
3851	 * Add this top-level vdev to the child array.
3852	 */
3853	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3854	    &nvtop) == 0);
3855	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3856	    &pgid) == 0);
3857	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3858
3859	/*
3860	 * Put this pool's top-level vdevs into a root vdev.
3861	 */
3862	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3863	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3864	    VDEV_TYPE_ROOT) == 0);
3865	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3866	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3867	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3868	    &nvtop, 1) == 0);
3869
3870	/*
3871	 * Replace the existing vdev_tree with the new root vdev in
3872	 * this pool's configuration (remove the old, add the new).
3873	 */
3874	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3875	nvlist_free(nvroot);
3876	return (config);
3877}
3878
3879/*
3880 * Walk the vdev tree and see if we can find a device with "better"
3881 * configuration. A configuration is "better" if the label on that
3882 * device has a more recent txg.
3883 */
3884static void
3885spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3886{
3887	for (int c = 0; c < vd->vdev_children; c++)
3888		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3889
3890	if (vd->vdev_ops->vdev_op_leaf) {
3891		nvlist_t *label;
3892		uint64_t label_txg;
3893
3894		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3895		    &label) != 0)
3896			return;
3897
3898		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3899		    &label_txg) == 0);
3900
3901		/*
3902		 * Do we have a better boot device?
3903		 */
3904		if (label_txg > *txg) {
3905			*txg = label_txg;
3906			*avd = vd;
3907		}
3908		nvlist_free(label);
3909	}
3910}
3911
3912/*
3913 * Import a root pool.
3914 *
3915 * For x86. devpath_list will consist of devid and/or physpath name of
3916 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3917 * The GRUB "findroot" command will return the vdev we should boot.
3918 *
3919 * For Sparc, devpath_list consists the physpath name of the booting device
3920 * no matter the rootpool is a single device pool or a mirrored pool.
3921 * e.g.
3922 *	"/pci@1f,0/ide@d/disk@0,0:a"
3923 */
3924int
3925spa_import_rootpool(char *devpath, char *devid)
3926{
3927	spa_t *spa;
3928	vdev_t *rvd, *bvd, *avd = NULL;
3929	nvlist_t *config, *nvtop;
3930	uint64_t guid, txg;
3931	char *pname;
3932	int error;
3933
3934	/*
3935	 * Read the label from the boot device and generate a configuration.
3936	 */
3937	config = spa_generate_rootconf(devpath, devid, &guid);
3938#if defined(_OBP) && defined(_KERNEL)
3939	if (config == NULL) {
3940		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3941			/* iscsi boot */
3942			get_iscsi_bootpath_phy(devpath);
3943			config = spa_generate_rootconf(devpath, devid, &guid);
3944		}
3945	}
3946#endif
3947	if (config == NULL) {
3948		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3949		    devpath);
3950		return (SET_ERROR(EIO));
3951	}
3952
3953	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3954	    &pname) == 0);
3955	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3956
3957	mutex_enter(&spa_namespace_lock);
3958	if ((spa = spa_lookup(pname)) != NULL) {
3959		/*
3960		 * Remove the existing root pool from the namespace so that we
3961		 * can replace it with the correct config we just read in.
3962		 */
3963		spa_remove(spa);
3964	}
3965
3966	spa = spa_add(pname, config, NULL);
3967	spa->spa_is_root = B_TRUE;
3968	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3969
3970	/*
3971	 * Build up a vdev tree based on the boot device's label config.
3972	 */
3973	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3974	    &nvtop) == 0);
3975	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3976	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3977	    VDEV_ALLOC_ROOTPOOL);
3978	spa_config_exit(spa, SCL_ALL, FTAG);
3979	if (error) {
3980		mutex_exit(&spa_namespace_lock);
3981		nvlist_free(config);
3982		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3983		    pname);
3984		return (error);
3985	}
3986
3987	/*
3988	 * Get the boot vdev.
3989	 */
3990	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3991		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3992		    (u_longlong_t)guid);
3993		error = SET_ERROR(ENOENT);
3994		goto out;
3995	}
3996
3997	/*
3998	 * Determine if there is a better boot device.
3999	 */
4000	avd = bvd;
4001	spa_alt_rootvdev(rvd, &avd, &txg);
4002	if (avd != bvd) {
4003		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4004		    "try booting from '%s'", avd->vdev_path);
4005		error = SET_ERROR(EINVAL);
4006		goto out;
4007	}
4008
4009	/*
4010	 * If the boot device is part of a spare vdev then ensure that
4011	 * we're booting off the active spare.
4012	 */
4013	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4014	    !bvd->vdev_isspare) {
4015		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4016		    "try booting from '%s'",
4017		    bvd->vdev_parent->
4018		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4019		error = SET_ERROR(EINVAL);
4020		goto out;
4021	}
4022
4023	error = 0;
4024out:
4025	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4026	vdev_free(rvd);
4027	spa_config_exit(spa, SCL_ALL, FTAG);
4028	mutex_exit(&spa_namespace_lock);
4029
4030	nvlist_free(config);
4031	return (error);
4032}
4033
4034#else	/* !illumos */
4035
4036extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4037    uint64_t *count);
4038
4039static nvlist_t *
4040spa_generate_rootconf(const char *name)
4041{
4042	nvlist_t **configs, **tops;
4043	nvlist_t *config;
4044	nvlist_t *best_cfg, *nvtop, *nvroot;
4045	uint64_t *holes;
4046	uint64_t best_txg;
4047	uint64_t nchildren;
4048	uint64_t pgid;
4049	uint64_t count;
4050	uint64_t i;
4051	uint_t   nholes;
4052
4053	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4054		return (NULL);
4055
4056	ASSERT3U(count, !=, 0);
4057	best_txg = 0;
4058	for (i = 0; i < count; i++) {
4059		uint64_t txg;
4060
4061		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4062		    &txg) == 0);
4063		if (txg > best_txg) {
4064			best_txg = txg;
4065			best_cfg = configs[i];
4066		}
4067	}
4068
4069	/*
4070	 * Multi-vdev root pool configuration discovery is not supported yet.
4071	 */
4072	nchildren = 1;
4073	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4074	holes = NULL;
4075	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4076	    &holes, &nholes);
4077
4078	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4079	for (i = 0; i < nchildren; i++) {
4080		if (i >= count)
4081			break;
4082		if (configs[i] == NULL)
4083			continue;
4084		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4085		    &nvtop) == 0);
4086		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4087	}
4088	for (i = 0; holes != NULL && i < nholes; i++) {
4089		if (i >= nchildren)
4090			continue;
4091		if (tops[holes[i]] != NULL)
4092			continue;
4093		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4094		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4095		    VDEV_TYPE_HOLE) == 0);
4096		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4097		    holes[i]) == 0);
4098		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4099		    0) == 0);
4100	}
4101	for (i = 0; i < nchildren; i++) {
4102		if (tops[i] != NULL)
4103			continue;
4104		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4105		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4106		    VDEV_TYPE_MISSING) == 0);
4107		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4108		    i) == 0);
4109		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4110		    0) == 0);
4111	}
4112
4113	/*
4114	 * Create pool config based on the best vdev config.
4115	 */
4116	nvlist_dup(best_cfg, &config, KM_SLEEP);
4117
4118	/*
4119	 * Put this pool's top-level vdevs into a root vdev.
4120	 */
4121	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4122	    &pgid) == 0);
4123	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4124	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4125	    VDEV_TYPE_ROOT) == 0);
4126	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4127	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4128	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4129	    tops, nchildren) == 0);
4130
4131	/*
4132	 * Replace the existing vdev_tree with the new root vdev in
4133	 * this pool's configuration (remove the old, add the new).
4134	 */
4135	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4136
4137	/*
4138	 * Drop vdev config elements that should not be present at pool level.
4139	 */
4140	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4141	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4142
4143	for (i = 0; i < count; i++)
4144		nvlist_free(configs[i]);
4145	kmem_free(configs, count * sizeof(void *));
4146	for (i = 0; i < nchildren; i++)
4147		nvlist_free(tops[i]);
4148	kmem_free(tops, nchildren * sizeof(void *));
4149	nvlist_free(nvroot);
4150	return (config);
4151}
4152
4153int
4154spa_import_rootpool(const char *name)
4155{
4156	spa_t *spa;
4157	vdev_t *rvd, *bvd, *avd = NULL;
4158	nvlist_t *config, *nvtop;
4159	uint64_t txg;
4160	char *pname;
4161	int error;
4162
4163	/*
4164	 * Read the label from the boot device and generate a configuration.
4165	 */
4166	config = spa_generate_rootconf(name);
4167
4168	mutex_enter(&spa_namespace_lock);
4169	if (config != NULL) {
4170		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4171		    &pname) == 0 && strcmp(name, pname) == 0);
4172		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4173		    == 0);
4174
4175		if ((spa = spa_lookup(pname)) != NULL) {
4176			/*
4177			 * Remove the existing root pool from the namespace so
4178			 * that we can replace it with the correct config
4179			 * we just read in.
4180			 */
4181			spa_remove(spa);
4182		}
4183		spa = spa_add(pname, config, NULL);
4184
4185		/*
4186		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4187		 * via spa_version().
4188		 */
4189		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4190		    &spa->spa_ubsync.ub_version) != 0)
4191			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4192	} else if ((spa = spa_lookup(name)) == NULL) {
4193		mutex_exit(&spa_namespace_lock);
4194		nvlist_free(config);
4195		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4196		    name);
4197		return (EIO);
4198	} else {
4199		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4200	}
4201	spa->spa_is_root = B_TRUE;
4202	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4203
4204	/*
4205	 * Build up a vdev tree based on the boot device's label config.
4206	 */
4207	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4208	    &nvtop) == 0);
4209	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4210	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4211	    VDEV_ALLOC_ROOTPOOL);
4212	spa_config_exit(spa, SCL_ALL, FTAG);
4213	if (error) {
4214		mutex_exit(&spa_namespace_lock);
4215		nvlist_free(config);
4216		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4217		    pname);
4218		return (error);
4219	}
4220
4221	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4222	vdev_free(rvd);
4223	spa_config_exit(spa, SCL_ALL, FTAG);
4224	mutex_exit(&spa_namespace_lock);
4225
4226	nvlist_free(config);
4227	return (0);
4228}
4229
4230#endif	/* illumos */
4231#endif	/* _KERNEL */
4232
4233/*
4234 * Import a non-root pool into the system.
4235 */
4236int
4237spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4238{
4239	spa_t *spa;
4240	char *altroot = NULL;
4241	spa_load_state_t state = SPA_LOAD_IMPORT;
4242	zpool_rewind_policy_t policy;
4243	uint64_t mode = spa_mode_global;
4244	uint64_t readonly = B_FALSE;
4245	int error;
4246	nvlist_t *nvroot;
4247	nvlist_t **spares, **l2cache;
4248	uint_t nspares, nl2cache;
4249
4250	/*
4251	 * If a pool with this name exists, return failure.
4252	 */
4253	mutex_enter(&spa_namespace_lock);
4254	if (spa_lookup(pool) != NULL) {
4255		mutex_exit(&spa_namespace_lock);
4256		return (SET_ERROR(EEXIST));
4257	}
4258
4259	/*
4260	 * Create and initialize the spa structure.
4261	 */
4262	(void) nvlist_lookup_string(props,
4263	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4264	(void) nvlist_lookup_uint64(props,
4265	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4266	if (readonly)
4267		mode = FREAD;
4268	spa = spa_add(pool, config, altroot);
4269	spa->spa_import_flags = flags;
4270
4271	/*
4272	 * Verbatim import - Take a pool and insert it into the namespace
4273	 * as if it had been loaded at boot.
4274	 */
4275	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4276		if (props != NULL)
4277			spa_configfile_set(spa, props, B_FALSE);
4278
4279		spa_config_sync(spa, B_FALSE, B_TRUE);
4280		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4281
4282		mutex_exit(&spa_namespace_lock);
4283		return (0);
4284	}
4285
4286	spa_activate(spa, mode);
4287
4288	/*
4289	 * Don't start async tasks until we know everything is healthy.
4290	 */
4291	spa_async_suspend(spa);
4292
4293	zpool_get_rewind_policy(config, &policy);
4294	if (policy.zrp_request & ZPOOL_DO_REWIND)
4295		state = SPA_LOAD_RECOVER;
4296
4297	/*
4298	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4299	 * because the user-supplied config is actually the one to trust when
4300	 * doing an import.
4301	 */
4302	if (state != SPA_LOAD_RECOVER)
4303		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4304
4305	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4306	    policy.zrp_request);
4307
4308	/*
4309	 * Propagate anything learned while loading the pool and pass it
4310	 * back to caller (i.e. rewind info, missing devices, etc).
4311	 */
4312	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4313	    spa->spa_load_info) == 0);
4314
4315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4316	/*
4317	 * Toss any existing sparelist, as it doesn't have any validity
4318	 * anymore, and conflicts with spa_has_spare().
4319	 */
4320	if (spa->spa_spares.sav_config) {
4321		nvlist_free(spa->spa_spares.sav_config);
4322		spa->spa_spares.sav_config = NULL;
4323		spa_load_spares(spa);
4324	}
4325	if (spa->spa_l2cache.sav_config) {
4326		nvlist_free(spa->spa_l2cache.sav_config);
4327		spa->spa_l2cache.sav_config = NULL;
4328		spa_load_l2cache(spa);
4329	}
4330
4331	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4332	    &nvroot) == 0);
4333	if (error == 0)
4334		error = spa_validate_aux(spa, nvroot, -1ULL,
4335		    VDEV_ALLOC_SPARE);
4336	if (error == 0)
4337		error = spa_validate_aux(spa, nvroot, -1ULL,
4338		    VDEV_ALLOC_L2CACHE);
4339	spa_config_exit(spa, SCL_ALL, FTAG);
4340
4341	if (props != NULL)
4342		spa_configfile_set(spa, props, B_FALSE);
4343
4344	if (error != 0 || (props && spa_writeable(spa) &&
4345	    (error = spa_prop_set(spa, props)))) {
4346		spa_unload(spa);
4347		spa_deactivate(spa);
4348		spa_remove(spa);
4349		mutex_exit(&spa_namespace_lock);
4350		return (error);
4351	}
4352
4353	spa_async_resume(spa);
4354
4355	/*
4356	 * Override any spares and level 2 cache devices as specified by
4357	 * the user, as these may have correct device names/devids, etc.
4358	 */
4359	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4360	    &spares, &nspares) == 0) {
4361		if (spa->spa_spares.sav_config)
4362			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4363			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4364		else
4365			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4366			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4367		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4368		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4369		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4370		spa_load_spares(spa);
4371		spa_config_exit(spa, SCL_ALL, FTAG);
4372		spa->spa_spares.sav_sync = B_TRUE;
4373	}
4374	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4375	    &l2cache, &nl2cache) == 0) {
4376		if (spa->spa_l2cache.sav_config)
4377			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4378			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4379		else
4380			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4381			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4382		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4383		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4384		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4385		spa_load_l2cache(spa);
4386		spa_config_exit(spa, SCL_ALL, FTAG);
4387		spa->spa_l2cache.sav_sync = B_TRUE;
4388	}
4389
4390	/*
4391	 * Check for any removed devices.
4392	 */
4393	if (spa->spa_autoreplace) {
4394		spa_aux_check_removed(&spa->spa_spares);
4395		spa_aux_check_removed(&spa->spa_l2cache);
4396	}
4397
4398	if (spa_writeable(spa)) {
4399		/*
4400		 * Update the config cache to include the newly-imported pool.
4401		 */
4402		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4403	}
4404
4405	/*
4406	 * It's possible that the pool was expanded while it was exported.
4407	 * We kick off an async task to handle this for us.
4408	 */
4409	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4410
4411	spa_history_log_version(spa, "import");
4412
4413	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4414
4415	mutex_exit(&spa_namespace_lock);
4416
4417#ifdef __FreeBSD__
4418#ifdef _KERNEL
4419	zvol_create_minors(pool);
4420#endif
4421#endif
4422	return (0);
4423}
4424
4425nvlist_t *
4426spa_tryimport(nvlist_t *tryconfig)
4427{
4428	nvlist_t *config = NULL;
4429	char *poolname;
4430	spa_t *spa;
4431	uint64_t state;
4432	int error;
4433
4434	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4435		return (NULL);
4436
4437	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4438		return (NULL);
4439
4440	/*
4441	 * Create and initialize the spa structure.
4442	 */
4443	mutex_enter(&spa_namespace_lock);
4444	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4445	spa_activate(spa, FREAD);
4446
4447	/*
4448	 * Pass off the heavy lifting to spa_load().
4449	 * Pass TRUE for mosconfig because the user-supplied config
4450	 * is actually the one to trust when doing an import.
4451	 */
4452	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4453
4454	/*
4455	 * If 'tryconfig' was at least parsable, return the current config.
4456	 */
4457	if (spa->spa_root_vdev != NULL) {
4458		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4459		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4460		    poolname) == 0);
4461		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4462		    state) == 0);
4463		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4464		    spa->spa_uberblock.ub_timestamp) == 0);
4465		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4466		    spa->spa_load_info) == 0);
4467
4468		/*
4469		 * If the bootfs property exists on this pool then we
4470		 * copy it out so that external consumers can tell which
4471		 * pools are bootable.
4472		 */
4473		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4474			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4475
4476			/*
4477			 * We have to play games with the name since the
4478			 * pool was opened as TRYIMPORT_NAME.
4479			 */
4480			if (dsl_dsobj_to_dsname(spa_name(spa),
4481			    spa->spa_bootfs, tmpname) == 0) {
4482				char *cp;
4483				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4484
4485				cp = strchr(tmpname, '/');
4486				if (cp == NULL) {
4487					(void) strlcpy(dsname, tmpname,
4488					    MAXPATHLEN);
4489				} else {
4490					(void) snprintf(dsname, MAXPATHLEN,
4491					    "%s/%s", poolname, ++cp);
4492				}
4493				VERIFY(nvlist_add_string(config,
4494				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4495				kmem_free(dsname, MAXPATHLEN);
4496			}
4497			kmem_free(tmpname, MAXPATHLEN);
4498		}
4499
4500		/*
4501		 * Add the list of hot spares and level 2 cache devices.
4502		 */
4503		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4504		spa_add_spares(spa, config);
4505		spa_add_l2cache(spa, config);
4506		spa_config_exit(spa, SCL_CONFIG, FTAG);
4507	}
4508
4509	spa_unload(spa);
4510	spa_deactivate(spa);
4511	spa_remove(spa);
4512	mutex_exit(&spa_namespace_lock);
4513
4514	return (config);
4515}
4516
4517/*
4518 * Pool export/destroy
4519 *
4520 * The act of destroying or exporting a pool is very simple.  We make sure there
4521 * is no more pending I/O and any references to the pool are gone.  Then, we
4522 * update the pool state and sync all the labels to disk, removing the
4523 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4524 * we don't sync the labels or remove the configuration cache.
4525 */
4526static int
4527spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4528    boolean_t force, boolean_t hardforce)
4529{
4530	spa_t *spa;
4531
4532	if (oldconfig)
4533		*oldconfig = NULL;
4534
4535	if (!(spa_mode_global & FWRITE))
4536		return (SET_ERROR(EROFS));
4537
4538	mutex_enter(&spa_namespace_lock);
4539	if ((spa = spa_lookup(pool)) == NULL) {
4540		mutex_exit(&spa_namespace_lock);
4541		return (SET_ERROR(ENOENT));
4542	}
4543
4544	/*
4545	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4546	 * reacquire the namespace lock, and see if we can export.
4547	 */
4548	spa_open_ref(spa, FTAG);
4549	mutex_exit(&spa_namespace_lock);
4550	spa_async_suspend(spa);
4551	mutex_enter(&spa_namespace_lock);
4552	spa_close(spa, FTAG);
4553
4554	/*
4555	 * The pool will be in core if it's openable,
4556	 * in which case we can modify its state.
4557	 */
4558	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4559		/*
4560		 * Objsets may be open only because they're dirty, so we
4561		 * have to force it to sync before checking spa_refcnt.
4562		 */
4563		txg_wait_synced(spa->spa_dsl_pool, 0);
4564		spa_evicting_os_wait(spa);
4565
4566		/*
4567		 * A pool cannot be exported or destroyed if there are active
4568		 * references.  If we are resetting a pool, allow references by
4569		 * fault injection handlers.
4570		 */
4571		if (!spa_refcount_zero(spa) ||
4572		    (spa->spa_inject_ref != 0 &&
4573		    new_state != POOL_STATE_UNINITIALIZED)) {
4574			spa_async_resume(spa);
4575			mutex_exit(&spa_namespace_lock);
4576			return (SET_ERROR(EBUSY));
4577		}
4578
4579		/*
4580		 * A pool cannot be exported if it has an active shared spare.
4581		 * This is to prevent other pools stealing the active spare
4582		 * from an exported pool. At user's own will, such pool can
4583		 * be forcedly exported.
4584		 */
4585		if (!force && new_state == POOL_STATE_EXPORTED &&
4586		    spa_has_active_shared_spare(spa)) {
4587			spa_async_resume(spa);
4588			mutex_exit(&spa_namespace_lock);
4589			return (SET_ERROR(EXDEV));
4590		}
4591
4592		/*
4593		 * We want this to be reflected on every label,
4594		 * so mark them all dirty.  spa_unload() will do the
4595		 * final sync that pushes these changes out.
4596		 */
4597		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4598			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4599			spa->spa_state = new_state;
4600			spa->spa_final_txg = spa_last_synced_txg(spa) +
4601			    TXG_DEFER_SIZE + 1;
4602			vdev_config_dirty(spa->spa_root_vdev);
4603			spa_config_exit(spa, SCL_ALL, FTAG);
4604		}
4605	}
4606
4607	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4608
4609	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4610		spa_unload(spa);
4611		spa_deactivate(spa);
4612	}
4613
4614	if (oldconfig && spa->spa_config)
4615		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4616
4617	if (new_state != POOL_STATE_UNINITIALIZED) {
4618		if (!hardforce)
4619			spa_config_sync(spa, B_TRUE, B_TRUE);
4620		spa_remove(spa);
4621	}
4622	mutex_exit(&spa_namespace_lock);
4623
4624	return (0);
4625}
4626
4627/*
4628 * Destroy a storage pool.
4629 */
4630int
4631spa_destroy(char *pool)
4632{
4633	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4634	    B_FALSE, B_FALSE));
4635}
4636
4637/*
4638 * Export a storage pool.
4639 */
4640int
4641spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4642    boolean_t hardforce)
4643{
4644	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4645	    force, hardforce));
4646}
4647
4648/*
4649 * Similar to spa_export(), this unloads the spa_t without actually removing it
4650 * from the namespace in any way.
4651 */
4652int
4653spa_reset(char *pool)
4654{
4655	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4656	    B_FALSE, B_FALSE));
4657}
4658
4659/*
4660 * ==========================================================================
4661 * Device manipulation
4662 * ==========================================================================
4663 */
4664
4665/*
4666 * Add a device to a storage pool.
4667 */
4668int
4669spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4670{
4671	uint64_t txg, id;
4672	int error;
4673	vdev_t *rvd = spa->spa_root_vdev;
4674	vdev_t *vd, *tvd;
4675	nvlist_t **spares, **l2cache;
4676	uint_t nspares, nl2cache;
4677
4678	ASSERT(spa_writeable(spa));
4679
4680	txg = spa_vdev_enter(spa);
4681
4682	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4683	    VDEV_ALLOC_ADD)) != 0)
4684		return (spa_vdev_exit(spa, NULL, txg, error));
4685
4686	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4687
4688	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4689	    &nspares) != 0)
4690		nspares = 0;
4691
4692	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4693	    &nl2cache) != 0)
4694		nl2cache = 0;
4695
4696	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4697		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4698
4699	if (vd->vdev_children != 0 &&
4700	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4701		return (spa_vdev_exit(spa, vd, txg, error));
4702
4703	/*
4704	 * We must validate the spares and l2cache devices after checking the
4705	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4706	 */
4707	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4708		return (spa_vdev_exit(spa, vd, txg, error));
4709
4710	/*
4711	 * Transfer each new top-level vdev from vd to rvd.
4712	 */
4713	for (int c = 0; c < vd->vdev_children; c++) {
4714
4715		/*
4716		 * Set the vdev id to the first hole, if one exists.
4717		 */
4718		for (id = 0; id < rvd->vdev_children; id++) {
4719			if (rvd->vdev_child[id]->vdev_ishole) {
4720				vdev_free(rvd->vdev_child[id]);
4721				break;
4722			}
4723		}
4724		tvd = vd->vdev_child[c];
4725		vdev_remove_child(vd, tvd);
4726		tvd->vdev_id = id;
4727		vdev_add_child(rvd, tvd);
4728		vdev_config_dirty(tvd);
4729	}
4730
4731	if (nspares != 0) {
4732		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4733		    ZPOOL_CONFIG_SPARES);
4734		spa_load_spares(spa);
4735		spa->spa_spares.sav_sync = B_TRUE;
4736	}
4737
4738	if (nl2cache != 0) {
4739		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4740		    ZPOOL_CONFIG_L2CACHE);
4741		spa_load_l2cache(spa);
4742		spa->spa_l2cache.sav_sync = B_TRUE;
4743	}
4744
4745	/*
4746	 * We have to be careful when adding new vdevs to an existing pool.
4747	 * If other threads start allocating from these vdevs before we
4748	 * sync the config cache, and we lose power, then upon reboot we may
4749	 * fail to open the pool because there are DVAs that the config cache
4750	 * can't translate.  Therefore, we first add the vdevs without
4751	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4752	 * and then let spa_config_update() initialize the new metaslabs.
4753	 *
4754	 * spa_load() checks for added-but-not-initialized vdevs, so that
4755	 * if we lose power at any point in this sequence, the remaining
4756	 * steps will be completed the next time we load the pool.
4757	 */
4758	(void) spa_vdev_exit(spa, vd, txg, 0);
4759
4760	mutex_enter(&spa_namespace_lock);
4761	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4762	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4763	mutex_exit(&spa_namespace_lock);
4764
4765	return (0);
4766}
4767
4768/*
4769 * Attach a device to a mirror.  The arguments are the path to any device
4770 * in the mirror, and the nvroot for the new device.  If the path specifies
4771 * a device that is not mirrored, we automatically insert the mirror vdev.
4772 *
4773 * If 'replacing' is specified, the new device is intended to replace the
4774 * existing device; in this case the two devices are made into their own
4775 * mirror using the 'replacing' vdev, which is functionally identical to
4776 * the mirror vdev (it actually reuses all the same ops) but has a few
4777 * extra rules: you can't attach to it after it's been created, and upon
4778 * completion of resilvering, the first disk (the one being replaced)
4779 * is automatically detached.
4780 */
4781int
4782spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4783{
4784	uint64_t txg, dtl_max_txg;
4785	vdev_t *rvd = spa->spa_root_vdev;
4786	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4787	vdev_ops_t *pvops;
4788	char *oldvdpath, *newvdpath;
4789	int newvd_isspare;
4790	int error;
4791
4792	ASSERT(spa_writeable(spa));
4793
4794	txg = spa_vdev_enter(spa);
4795
4796	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4797
4798	if (oldvd == NULL)
4799		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4800
4801	if (!oldvd->vdev_ops->vdev_op_leaf)
4802		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4803
4804	pvd = oldvd->vdev_parent;
4805
4806	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4807	    VDEV_ALLOC_ATTACH)) != 0)
4808		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4809
4810	if (newrootvd->vdev_children != 1)
4811		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4812
4813	newvd = newrootvd->vdev_child[0];
4814
4815	if (!newvd->vdev_ops->vdev_op_leaf)
4816		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4817
4818	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4819		return (spa_vdev_exit(spa, newrootvd, txg, error));
4820
4821	/*
4822	 * Spares can't replace logs
4823	 */
4824	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4825		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4826
4827	if (!replacing) {
4828		/*
4829		 * For attach, the only allowable parent is a mirror or the root
4830		 * vdev.
4831		 */
4832		if (pvd->vdev_ops != &vdev_mirror_ops &&
4833		    pvd->vdev_ops != &vdev_root_ops)
4834			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4835
4836		pvops = &vdev_mirror_ops;
4837	} else {
4838		/*
4839		 * Active hot spares can only be replaced by inactive hot
4840		 * spares.
4841		 */
4842		if (pvd->vdev_ops == &vdev_spare_ops &&
4843		    oldvd->vdev_isspare &&
4844		    !spa_has_spare(spa, newvd->vdev_guid))
4845			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4846
4847		/*
4848		 * If the source is a hot spare, and the parent isn't already a
4849		 * spare, then we want to create a new hot spare.  Otherwise, we
4850		 * want to create a replacing vdev.  The user is not allowed to
4851		 * attach to a spared vdev child unless the 'isspare' state is
4852		 * the same (spare replaces spare, non-spare replaces
4853		 * non-spare).
4854		 */
4855		if (pvd->vdev_ops == &vdev_replacing_ops &&
4856		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4857			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4858		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4859		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4860			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4861		}
4862
4863		if (newvd->vdev_isspare)
4864			pvops = &vdev_spare_ops;
4865		else
4866			pvops = &vdev_replacing_ops;
4867	}
4868
4869	/*
4870	 * Make sure the new device is big enough.
4871	 */
4872	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4873		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4874
4875	/*
4876	 * The new device cannot have a higher alignment requirement
4877	 * than the top-level vdev.
4878	 */
4879	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4880		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4881
4882	/*
4883	 * If this is an in-place replacement, update oldvd's path and devid
4884	 * to make it distinguishable from newvd, and unopenable from now on.
4885	 */
4886	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4887		spa_strfree(oldvd->vdev_path);
4888		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4889		    KM_SLEEP);
4890		(void) sprintf(oldvd->vdev_path, "%s/%s",
4891		    newvd->vdev_path, "old");
4892		if (oldvd->vdev_devid != NULL) {
4893			spa_strfree(oldvd->vdev_devid);
4894			oldvd->vdev_devid = NULL;
4895		}
4896	}
4897
4898	/* mark the device being resilvered */
4899	newvd->vdev_resilver_txg = txg;
4900
4901	/*
4902	 * If the parent is not a mirror, or if we're replacing, insert the new
4903	 * mirror/replacing/spare vdev above oldvd.
4904	 */
4905	if (pvd->vdev_ops != pvops)
4906		pvd = vdev_add_parent(oldvd, pvops);
4907
4908	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4909	ASSERT(pvd->vdev_ops == pvops);
4910	ASSERT(oldvd->vdev_parent == pvd);
4911
4912	/*
4913	 * Extract the new device from its root and add it to pvd.
4914	 */
4915	vdev_remove_child(newrootvd, newvd);
4916	newvd->vdev_id = pvd->vdev_children;
4917	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4918	vdev_add_child(pvd, newvd);
4919
4920	tvd = newvd->vdev_top;
4921	ASSERT(pvd->vdev_top == tvd);
4922	ASSERT(tvd->vdev_parent == rvd);
4923
4924	vdev_config_dirty(tvd);
4925
4926	/*
4927	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4928	 * for any dmu_sync-ed blocks.  It will propagate upward when
4929	 * spa_vdev_exit() calls vdev_dtl_reassess().
4930	 */
4931	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4932
4933	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4934	    dtl_max_txg - TXG_INITIAL);
4935
4936	if (newvd->vdev_isspare) {
4937		spa_spare_activate(newvd);
4938		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4939	}
4940
4941	oldvdpath = spa_strdup(oldvd->vdev_path);
4942	newvdpath = spa_strdup(newvd->vdev_path);
4943	newvd_isspare = newvd->vdev_isspare;
4944
4945	/*
4946	 * Mark newvd's DTL dirty in this txg.
4947	 */
4948	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4949
4950	/*
4951	 * Schedule the resilver to restart in the future. We do this to
4952	 * ensure that dmu_sync-ed blocks have been stitched into the
4953	 * respective datasets.
4954	 */
4955	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4956
4957	if (spa->spa_bootfs)
4958		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4959
4960	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4961
4962	/*
4963	 * Commit the config
4964	 */
4965	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4966
4967	spa_history_log_internal(spa, "vdev attach", NULL,
4968	    "%s vdev=%s %s vdev=%s",
4969	    replacing && newvd_isspare ? "spare in" :
4970	    replacing ? "replace" : "attach", newvdpath,
4971	    replacing ? "for" : "to", oldvdpath);
4972
4973	spa_strfree(oldvdpath);
4974	spa_strfree(newvdpath);
4975
4976	return (0);
4977}
4978
4979/*
4980 * Detach a device from a mirror or replacing vdev.
4981 *
4982 * If 'replace_done' is specified, only detach if the parent
4983 * is a replacing vdev.
4984 */
4985int
4986spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4987{
4988	uint64_t txg;
4989	int error;
4990	vdev_t *rvd = spa->spa_root_vdev;
4991	vdev_t *vd, *pvd, *cvd, *tvd;
4992	boolean_t unspare = B_FALSE;
4993	uint64_t unspare_guid = 0;
4994	char *vdpath;
4995
4996	ASSERT(spa_writeable(spa));
4997
4998	txg = spa_vdev_enter(spa);
4999
5000	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5001
5002	if (vd == NULL)
5003		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5004
5005	if (!vd->vdev_ops->vdev_op_leaf)
5006		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5007
5008	pvd = vd->vdev_parent;
5009
5010	/*
5011	 * If the parent/child relationship is not as expected, don't do it.
5012	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5013	 * vdev that's replacing B with C.  The user's intent in replacing
5014	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5015	 * the replace by detaching C, the expected behavior is to end up
5016	 * M(A,B).  But suppose that right after deciding to detach C,
5017	 * the replacement of B completes.  We would have M(A,C), and then
5018	 * ask to detach C, which would leave us with just A -- not what
5019	 * the user wanted.  To prevent this, we make sure that the
5020	 * parent/child relationship hasn't changed -- in this example,
5021	 * that C's parent is still the replacing vdev R.
5022	 */
5023	if (pvd->vdev_guid != pguid && pguid != 0)
5024		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5025
5026	/*
5027	 * Only 'replacing' or 'spare' vdevs can be replaced.
5028	 */
5029	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5030	    pvd->vdev_ops != &vdev_spare_ops)
5031		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5032
5033	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5034	    spa_version(spa) >= SPA_VERSION_SPARES);
5035
5036	/*
5037	 * Only mirror, replacing, and spare vdevs support detach.
5038	 */
5039	if (pvd->vdev_ops != &vdev_replacing_ops &&
5040	    pvd->vdev_ops != &vdev_mirror_ops &&
5041	    pvd->vdev_ops != &vdev_spare_ops)
5042		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5043
5044	/*
5045	 * If this device has the only valid copy of some data,
5046	 * we cannot safely detach it.
5047	 */
5048	if (vdev_dtl_required(vd))
5049		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5050
5051	ASSERT(pvd->vdev_children >= 2);
5052
5053	/*
5054	 * If we are detaching the second disk from a replacing vdev, then
5055	 * check to see if we changed the original vdev's path to have "/old"
5056	 * at the end in spa_vdev_attach().  If so, undo that change now.
5057	 */
5058	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5059	    vd->vdev_path != NULL) {
5060		size_t len = strlen(vd->vdev_path);
5061
5062		for (int c = 0; c < pvd->vdev_children; c++) {
5063			cvd = pvd->vdev_child[c];
5064
5065			if (cvd == vd || cvd->vdev_path == NULL)
5066				continue;
5067
5068			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5069			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5070				spa_strfree(cvd->vdev_path);
5071				cvd->vdev_path = spa_strdup(vd->vdev_path);
5072				break;
5073			}
5074		}
5075	}
5076
5077	/*
5078	 * If we are detaching the original disk from a spare, then it implies
5079	 * that the spare should become a real disk, and be removed from the
5080	 * active spare list for the pool.
5081	 */
5082	if (pvd->vdev_ops == &vdev_spare_ops &&
5083	    vd->vdev_id == 0 &&
5084	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5085		unspare = B_TRUE;
5086
5087	/*
5088	 * Erase the disk labels so the disk can be used for other things.
5089	 * This must be done after all other error cases are handled,
5090	 * but before we disembowel vd (so we can still do I/O to it).
5091	 * But if we can't do it, don't treat the error as fatal --
5092	 * it may be that the unwritability of the disk is the reason
5093	 * it's being detached!
5094	 */
5095	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5096
5097	/*
5098	 * Remove vd from its parent and compact the parent's children.
5099	 */
5100	vdev_remove_child(pvd, vd);
5101	vdev_compact_children(pvd);
5102
5103	/*
5104	 * Remember one of the remaining children so we can get tvd below.
5105	 */
5106	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5107
5108	/*
5109	 * If we need to remove the remaining child from the list of hot spares,
5110	 * do it now, marking the vdev as no longer a spare in the process.
5111	 * We must do this before vdev_remove_parent(), because that can
5112	 * change the GUID if it creates a new toplevel GUID.  For a similar
5113	 * reason, we must remove the spare now, in the same txg as the detach;
5114	 * otherwise someone could attach a new sibling, change the GUID, and
5115	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5116	 */
5117	if (unspare) {
5118		ASSERT(cvd->vdev_isspare);
5119		spa_spare_remove(cvd);
5120		unspare_guid = cvd->vdev_guid;
5121		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5122		cvd->vdev_unspare = B_TRUE;
5123	}
5124
5125	/*
5126	 * If the parent mirror/replacing vdev only has one child,
5127	 * the parent is no longer needed.  Remove it from the tree.
5128	 */
5129	if (pvd->vdev_children == 1) {
5130		if (pvd->vdev_ops == &vdev_spare_ops)
5131			cvd->vdev_unspare = B_FALSE;
5132		vdev_remove_parent(cvd);
5133	}
5134
5135
5136	/*
5137	 * We don't set tvd until now because the parent we just removed
5138	 * may have been the previous top-level vdev.
5139	 */
5140	tvd = cvd->vdev_top;
5141	ASSERT(tvd->vdev_parent == rvd);
5142
5143	/*
5144	 * Reevaluate the parent vdev state.
5145	 */
5146	vdev_propagate_state(cvd);
5147
5148	/*
5149	 * If the 'autoexpand' property is set on the pool then automatically
5150	 * try to expand the size of the pool. For example if the device we
5151	 * just detached was smaller than the others, it may be possible to
5152	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5153	 * first so that we can obtain the updated sizes of the leaf vdevs.
5154	 */
5155	if (spa->spa_autoexpand) {
5156		vdev_reopen(tvd);
5157		vdev_expand(tvd, txg);
5158	}
5159
5160	vdev_config_dirty(tvd);
5161
5162	/*
5163	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5164	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5165	 * But first make sure we're not on any *other* txg's DTL list, to
5166	 * prevent vd from being accessed after it's freed.
5167	 */
5168	vdpath = spa_strdup(vd->vdev_path);
5169	for (int t = 0; t < TXG_SIZE; t++)
5170		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5171	vd->vdev_detached = B_TRUE;
5172	vdev_dirty(tvd, VDD_DTL, vd, txg);
5173
5174	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5175
5176	/* hang on to the spa before we release the lock */
5177	spa_open_ref(spa, FTAG);
5178
5179	error = spa_vdev_exit(spa, vd, txg, 0);
5180
5181	spa_history_log_internal(spa, "detach", NULL,
5182	    "vdev=%s", vdpath);
5183	spa_strfree(vdpath);
5184
5185	/*
5186	 * If this was the removal of the original device in a hot spare vdev,
5187	 * then we want to go through and remove the device from the hot spare
5188	 * list of every other pool.
5189	 */
5190	if (unspare) {
5191		spa_t *altspa = NULL;
5192
5193		mutex_enter(&spa_namespace_lock);
5194		while ((altspa = spa_next(altspa)) != NULL) {
5195			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5196			    altspa == spa)
5197				continue;
5198
5199			spa_open_ref(altspa, FTAG);
5200			mutex_exit(&spa_namespace_lock);
5201			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5202			mutex_enter(&spa_namespace_lock);
5203			spa_close(altspa, FTAG);
5204		}
5205		mutex_exit(&spa_namespace_lock);
5206
5207		/* search the rest of the vdevs for spares to remove */
5208		spa_vdev_resilver_done(spa);
5209	}
5210
5211	/* all done with the spa; OK to release */
5212	mutex_enter(&spa_namespace_lock);
5213	spa_close(spa, FTAG);
5214	mutex_exit(&spa_namespace_lock);
5215
5216	return (error);
5217}
5218
5219/*
5220 * Split a set of devices from their mirrors, and create a new pool from them.
5221 */
5222int
5223spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5224    nvlist_t *props, boolean_t exp)
5225{
5226	int error = 0;
5227	uint64_t txg, *glist;
5228	spa_t *newspa;
5229	uint_t c, children, lastlog;
5230	nvlist_t **child, *nvl, *tmp;
5231	dmu_tx_t *tx;
5232	char *altroot = NULL;
5233	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5234	boolean_t activate_slog;
5235
5236	ASSERT(spa_writeable(spa));
5237
5238	txg = spa_vdev_enter(spa);
5239
5240	/* clear the log and flush everything up to now */
5241	activate_slog = spa_passivate_log(spa);
5242	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5243	error = spa_offline_log(spa);
5244	txg = spa_vdev_config_enter(spa);
5245
5246	if (activate_slog)
5247		spa_activate_log(spa);
5248
5249	if (error != 0)
5250		return (spa_vdev_exit(spa, NULL, txg, error));
5251
5252	/* check new spa name before going any further */
5253	if (spa_lookup(newname) != NULL)
5254		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5255
5256	/*
5257	 * scan through all the children to ensure they're all mirrors
5258	 */
5259	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5260	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5261	    &children) != 0)
5262		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5263
5264	/* first, check to ensure we've got the right child count */
5265	rvd = spa->spa_root_vdev;
5266	lastlog = 0;
5267	for (c = 0; c < rvd->vdev_children; c++) {
5268		vdev_t *vd = rvd->vdev_child[c];
5269
5270		/* don't count the holes & logs as children */
5271		if (vd->vdev_islog || vd->vdev_ishole) {
5272			if (lastlog == 0)
5273				lastlog = c;
5274			continue;
5275		}
5276
5277		lastlog = 0;
5278	}
5279	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5280		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5281
5282	/* next, ensure no spare or cache devices are part of the split */
5283	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5284	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5285		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5286
5287	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5288	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5289
5290	/* then, loop over each vdev and validate it */
5291	for (c = 0; c < children; c++) {
5292		uint64_t is_hole = 0;
5293
5294		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5295		    &is_hole);
5296
5297		if (is_hole != 0) {
5298			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5299			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5300				continue;
5301			} else {
5302				error = SET_ERROR(EINVAL);
5303				break;
5304			}
5305		}
5306
5307		/* which disk is going to be split? */
5308		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5309		    &glist[c]) != 0) {
5310			error = SET_ERROR(EINVAL);
5311			break;
5312		}
5313
5314		/* look it up in the spa */
5315		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5316		if (vml[c] == NULL) {
5317			error = SET_ERROR(ENODEV);
5318			break;
5319		}
5320
5321		/* make sure there's nothing stopping the split */
5322		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5323		    vml[c]->vdev_islog ||
5324		    vml[c]->vdev_ishole ||
5325		    vml[c]->vdev_isspare ||
5326		    vml[c]->vdev_isl2cache ||
5327		    !vdev_writeable(vml[c]) ||
5328		    vml[c]->vdev_children != 0 ||
5329		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5330		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5331			error = SET_ERROR(EINVAL);
5332			break;
5333		}
5334
5335		if (vdev_dtl_required(vml[c])) {
5336			error = SET_ERROR(EBUSY);
5337			break;
5338		}
5339
5340		/* we need certain info from the top level */
5341		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5342		    vml[c]->vdev_top->vdev_ms_array) == 0);
5343		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5344		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5345		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5346		    vml[c]->vdev_top->vdev_asize) == 0);
5347		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5348		    vml[c]->vdev_top->vdev_ashift) == 0);
5349	}
5350
5351	if (error != 0) {
5352		kmem_free(vml, children * sizeof (vdev_t *));
5353		kmem_free(glist, children * sizeof (uint64_t));
5354		return (spa_vdev_exit(spa, NULL, txg, error));
5355	}
5356
5357	/* stop writers from using the disks */
5358	for (c = 0; c < children; c++) {
5359		if (vml[c] != NULL)
5360			vml[c]->vdev_offline = B_TRUE;
5361	}
5362	vdev_reopen(spa->spa_root_vdev);
5363
5364	/*
5365	 * Temporarily record the splitting vdevs in the spa config.  This
5366	 * will disappear once the config is regenerated.
5367	 */
5368	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5369	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5370	    glist, children) == 0);
5371	kmem_free(glist, children * sizeof (uint64_t));
5372
5373	mutex_enter(&spa->spa_props_lock);
5374	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5375	    nvl) == 0);
5376	mutex_exit(&spa->spa_props_lock);
5377	spa->spa_config_splitting = nvl;
5378	vdev_config_dirty(spa->spa_root_vdev);
5379
5380	/* configure and create the new pool */
5381	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5382	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5383	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5384	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5385	    spa_version(spa)) == 0);
5386	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5387	    spa->spa_config_txg) == 0);
5388	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5389	    spa_generate_guid(NULL)) == 0);
5390	(void) nvlist_lookup_string(props,
5391	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5392
5393	/* add the new pool to the namespace */
5394	newspa = spa_add(newname, config, altroot);
5395	newspa->spa_config_txg = spa->spa_config_txg;
5396	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5397
5398	/* release the spa config lock, retaining the namespace lock */
5399	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5400
5401	if (zio_injection_enabled)
5402		zio_handle_panic_injection(spa, FTAG, 1);
5403
5404	spa_activate(newspa, spa_mode_global);
5405	spa_async_suspend(newspa);
5406
5407#ifndef illumos
5408	/* mark that we are creating new spa by splitting */
5409	newspa->spa_splitting_newspa = B_TRUE;
5410#endif
5411	/* create the new pool from the disks of the original pool */
5412	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5413#ifndef illumos
5414	newspa->spa_splitting_newspa = B_FALSE;
5415#endif
5416	if (error)
5417		goto out;
5418
5419	/* if that worked, generate a real config for the new pool */
5420	if (newspa->spa_root_vdev != NULL) {
5421		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5422		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5423		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5424		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5425		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5426		    B_TRUE));
5427	}
5428
5429	/* set the props */
5430	if (props != NULL) {
5431		spa_configfile_set(newspa, props, B_FALSE);
5432		error = spa_prop_set(newspa, props);
5433		if (error)
5434			goto out;
5435	}
5436
5437	/* flush everything */
5438	txg = spa_vdev_config_enter(newspa);
5439	vdev_config_dirty(newspa->spa_root_vdev);
5440	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5441
5442	if (zio_injection_enabled)
5443		zio_handle_panic_injection(spa, FTAG, 2);
5444
5445	spa_async_resume(newspa);
5446
5447	/* finally, update the original pool's config */
5448	txg = spa_vdev_config_enter(spa);
5449	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5450	error = dmu_tx_assign(tx, TXG_WAIT);
5451	if (error != 0)
5452		dmu_tx_abort(tx);
5453	for (c = 0; c < children; c++) {
5454		if (vml[c] != NULL) {
5455			vdev_split(vml[c]);
5456			if (error == 0)
5457				spa_history_log_internal(spa, "detach", tx,
5458				    "vdev=%s", vml[c]->vdev_path);
5459			vdev_free(vml[c]);
5460		}
5461	}
5462	vdev_config_dirty(spa->spa_root_vdev);
5463	spa->spa_config_splitting = NULL;
5464	nvlist_free(nvl);
5465	if (error == 0)
5466		dmu_tx_commit(tx);
5467	(void) spa_vdev_exit(spa, NULL, txg, 0);
5468
5469	if (zio_injection_enabled)
5470		zio_handle_panic_injection(spa, FTAG, 3);
5471
5472	/* split is complete; log a history record */
5473	spa_history_log_internal(newspa, "split", NULL,
5474	    "from pool %s", spa_name(spa));
5475
5476	kmem_free(vml, children * sizeof (vdev_t *));
5477
5478	/* if we're not going to mount the filesystems in userland, export */
5479	if (exp)
5480		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5481		    B_FALSE, B_FALSE);
5482
5483	return (error);
5484
5485out:
5486	spa_unload(newspa);
5487	spa_deactivate(newspa);
5488	spa_remove(newspa);
5489
5490	txg = spa_vdev_config_enter(spa);
5491
5492	/* re-online all offlined disks */
5493	for (c = 0; c < children; c++) {
5494		if (vml[c] != NULL)
5495			vml[c]->vdev_offline = B_FALSE;
5496	}
5497	vdev_reopen(spa->spa_root_vdev);
5498
5499	nvlist_free(spa->spa_config_splitting);
5500	spa->spa_config_splitting = NULL;
5501	(void) spa_vdev_exit(spa, NULL, txg, error);
5502
5503	kmem_free(vml, children * sizeof (vdev_t *));
5504	return (error);
5505}
5506
5507static nvlist_t *
5508spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5509{
5510	for (int i = 0; i < count; i++) {
5511		uint64_t guid;
5512
5513		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5514		    &guid) == 0);
5515
5516		if (guid == target_guid)
5517			return (nvpp[i]);
5518	}
5519
5520	return (NULL);
5521}
5522
5523static void
5524spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5525	nvlist_t *dev_to_remove)
5526{
5527	nvlist_t **newdev = NULL;
5528
5529	if (count > 1)
5530		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5531
5532	for (int i = 0, j = 0; i < count; i++) {
5533		if (dev[i] == dev_to_remove)
5534			continue;
5535		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5536	}
5537
5538	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5539	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5540
5541	for (int i = 0; i < count - 1; i++)
5542		nvlist_free(newdev[i]);
5543
5544	if (count > 1)
5545		kmem_free(newdev, (count - 1) * sizeof (void *));
5546}
5547
5548/*
5549 * Evacuate the device.
5550 */
5551static int
5552spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5553{
5554	uint64_t txg;
5555	int error = 0;
5556
5557	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5558	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5559	ASSERT(vd == vd->vdev_top);
5560
5561	/*
5562	 * Evacuate the device.  We don't hold the config lock as writer
5563	 * since we need to do I/O but we do keep the
5564	 * spa_namespace_lock held.  Once this completes the device
5565	 * should no longer have any blocks allocated on it.
5566	 */
5567	if (vd->vdev_islog) {
5568		if (vd->vdev_stat.vs_alloc != 0)
5569			error = spa_offline_log(spa);
5570	} else {
5571		error = SET_ERROR(ENOTSUP);
5572	}
5573
5574	if (error)
5575		return (error);
5576
5577	/*
5578	 * The evacuation succeeded.  Remove any remaining MOS metadata
5579	 * associated with this vdev, and wait for these changes to sync.
5580	 */
5581	ASSERT0(vd->vdev_stat.vs_alloc);
5582	txg = spa_vdev_config_enter(spa);
5583	vd->vdev_removing = B_TRUE;
5584	vdev_dirty_leaves(vd, VDD_DTL, txg);
5585	vdev_config_dirty(vd);
5586	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5587
5588	return (0);
5589}
5590
5591/*
5592 * Complete the removal by cleaning up the namespace.
5593 */
5594static void
5595spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5596{
5597	vdev_t *rvd = spa->spa_root_vdev;
5598	uint64_t id = vd->vdev_id;
5599	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5600
5601	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5602	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5603	ASSERT(vd == vd->vdev_top);
5604
5605	/*
5606	 * Only remove any devices which are empty.
5607	 */
5608	if (vd->vdev_stat.vs_alloc != 0)
5609		return;
5610
5611	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5612
5613	if (list_link_active(&vd->vdev_state_dirty_node))
5614		vdev_state_clean(vd);
5615	if (list_link_active(&vd->vdev_config_dirty_node))
5616		vdev_config_clean(vd);
5617
5618	vdev_free(vd);
5619
5620	if (last_vdev) {
5621		vdev_compact_children(rvd);
5622	} else {
5623		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5624		vdev_add_child(rvd, vd);
5625	}
5626	vdev_config_dirty(rvd);
5627
5628	/*
5629	 * Reassess the health of our root vdev.
5630	 */
5631	vdev_reopen(rvd);
5632}
5633
5634/*
5635 * Remove a device from the pool -
5636 *
5637 * Removing a device from the vdev namespace requires several steps
5638 * and can take a significant amount of time.  As a result we use
5639 * the spa_vdev_config_[enter/exit] functions which allow us to
5640 * grab and release the spa_config_lock while still holding the namespace
5641 * lock.  During each step the configuration is synced out.
5642 *
5643 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5644 * devices.
5645 */
5646int
5647spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5648{
5649	vdev_t *vd;
5650	sysevent_t *ev = NULL;
5651	metaslab_group_t *mg;
5652	nvlist_t **spares, **l2cache, *nv;
5653	uint64_t txg = 0;
5654	uint_t nspares, nl2cache;
5655	int error = 0;
5656	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5657
5658	ASSERT(spa_writeable(spa));
5659
5660	if (!locked)
5661		txg = spa_vdev_enter(spa);
5662
5663	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5664
5665	if (spa->spa_spares.sav_vdevs != NULL &&
5666	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5667	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5668	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5669		/*
5670		 * Only remove the hot spare if it's not currently in use
5671		 * in this pool.
5672		 */
5673		if (vd == NULL || unspare) {
5674			if (vd == NULL)
5675				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5676			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5677			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5678			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5679			spa_load_spares(spa);
5680			spa->spa_spares.sav_sync = B_TRUE;
5681		} else {
5682			error = SET_ERROR(EBUSY);
5683		}
5684	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5685	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5686	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5687	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5688		/*
5689		 * Cache devices can always be removed.
5690		 */
5691		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5692		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5693		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5694		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5695		spa_load_l2cache(spa);
5696		spa->spa_l2cache.sav_sync = B_TRUE;
5697	} else if (vd != NULL && vd->vdev_islog) {
5698		ASSERT(!locked);
5699		ASSERT(vd == vd->vdev_top);
5700
5701		mg = vd->vdev_mg;
5702
5703		/*
5704		 * Stop allocating from this vdev.
5705		 */
5706		metaslab_group_passivate(mg);
5707
5708		/*
5709		 * Wait for the youngest allocations and frees to sync,
5710		 * and then wait for the deferral of those frees to finish.
5711		 */
5712		spa_vdev_config_exit(spa, NULL,
5713		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5714
5715		/*
5716		 * Attempt to evacuate the vdev.
5717		 */
5718		error = spa_vdev_remove_evacuate(spa, vd);
5719
5720		txg = spa_vdev_config_enter(spa);
5721
5722		/*
5723		 * If we couldn't evacuate the vdev, unwind.
5724		 */
5725		if (error) {
5726			metaslab_group_activate(mg);
5727			return (spa_vdev_exit(spa, NULL, txg, error));
5728		}
5729
5730		/*
5731		 * Clean up the vdev namespace.
5732		 */
5733		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5734		spa_vdev_remove_from_namespace(spa, vd);
5735
5736	} else if (vd != NULL) {
5737		/*
5738		 * Normal vdevs cannot be removed (yet).
5739		 */
5740		error = SET_ERROR(ENOTSUP);
5741	} else {
5742		/*
5743		 * There is no vdev of any kind with the specified guid.
5744		 */
5745		error = SET_ERROR(ENOENT);
5746	}
5747
5748	if (!locked)
5749		error = spa_vdev_exit(spa, NULL, txg, error);
5750
5751	if (ev)
5752		spa_event_post(ev);
5753
5754	return (error);
5755}
5756
5757/*
5758 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5759 * currently spared, so we can detach it.
5760 */
5761static vdev_t *
5762spa_vdev_resilver_done_hunt(vdev_t *vd)
5763{
5764	vdev_t *newvd, *oldvd;
5765
5766	for (int c = 0; c < vd->vdev_children; c++) {
5767		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5768		if (oldvd != NULL)
5769			return (oldvd);
5770	}
5771
5772	/*
5773	 * Check for a completed replacement.  We always consider the first
5774	 * vdev in the list to be the oldest vdev, and the last one to be
5775	 * the newest (see spa_vdev_attach() for how that works).  In
5776	 * the case where the newest vdev is faulted, we will not automatically
5777	 * remove it after a resilver completes.  This is OK as it will require
5778	 * user intervention to determine which disk the admin wishes to keep.
5779	 */
5780	if (vd->vdev_ops == &vdev_replacing_ops) {
5781		ASSERT(vd->vdev_children > 1);
5782
5783		newvd = vd->vdev_child[vd->vdev_children - 1];
5784		oldvd = vd->vdev_child[0];
5785
5786		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5787		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5788		    !vdev_dtl_required(oldvd))
5789			return (oldvd);
5790	}
5791
5792	/*
5793	 * Check for a completed resilver with the 'unspare' flag set.
5794	 */
5795	if (vd->vdev_ops == &vdev_spare_ops) {
5796		vdev_t *first = vd->vdev_child[0];
5797		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5798
5799		if (last->vdev_unspare) {
5800			oldvd = first;
5801			newvd = last;
5802		} else if (first->vdev_unspare) {
5803			oldvd = last;
5804			newvd = first;
5805		} else {
5806			oldvd = NULL;
5807		}
5808
5809		if (oldvd != NULL &&
5810		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5811		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5812		    !vdev_dtl_required(oldvd))
5813			return (oldvd);
5814
5815		/*
5816		 * If there are more than two spares attached to a disk,
5817		 * and those spares are not required, then we want to
5818		 * attempt to free them up now so that they can be used
5819		 * by other pools.  Once we're back down to a single
5820		 * disk+spare, we stop removing them.
5821		 */
5822		if (vd->vdev_children > 2) {
5823			newvd = vd->vdev_child[1];
5824
5825			if (newvd->vdev_isspare && last->vdev_isspare &&
5826			    vdev_dtl_empty(last, DTL_MISSING) &&
5827			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5828			    !vdev_dtl_required(newvd))
5829				return (newvd);
5830		}
5831	}
5832
5833	return (NULL);
5834}
5835
5836static void
5837spa_vdev_resilver_done(spa_t *spa)
5838{
5839	vdev_t *vd, *pvd, *ppvd;
5840	uint64_t guid, sguid, pguid, ppguid;
5841
5842	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5843
5844	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5845		pvd = vd->vdev_parent;
5846		ppvd = pvd->vdev_parent;
5847		guid = vd->vdev_guid;
5848		pguid = pvd->vdev_guid;
5849		ppguid = ppvd->vdev_guid;
5850		sguid = 0;
5851		/*
5852		 * If we have just finished replacing a hot spared device, then
5853		 * we need to detach the parent's first child (the original hot
5854		 * spare) as well.
5855		 */
5856		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5857		    ppvd->vdev_children == 2) {
5858			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5859			sguid = ppvd->vdev_child[1]->vdev_guid;
5860		}
5861		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5862
5863		spa_config_exit(spa, SCL_ALL, FTAG);
5864		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5865			return;
5866		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5867			return;
5868		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5869	}
5870
5871	spa_config_exit(spa, SCL_ALL, FTAG);
5872}
5873
5874/*
5875 * Update the stored path or FRU for this vdev.
5876 */
5877int
5878spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5879    boolean_t ispath)
5880{
5881	vdev_t *vd;
5882	boolean_t sync = B_FALSE;
5883
5884	ASSERT(spa_writeable(spa));
5885
5886	spa_vdev_state_enter(spa, SCL_ALL);
5887
5888	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5889		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5890
5891	if (!vd->vdev_ops->vdev_op_leaf)
5892		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5893
5894	if (ispath) {
5895		if (strcmp(value, vd->vdev_path) != 0) {
5896			spa_strfree(vd->vdev_path);
5897			vd->vdev_path = spa_strdup(value);
5898			sync = B_TRUE;
5899		}
5900	} else {
5901		if (vd->vdev_fru == NULL) {
5902			vd->vdev_fru = spa_strdup(value);
5903			sync = B_TRUE;
5904		} else if (strcmp(value, vd->vdev_fru) != 0) {
5905			spa_strfree(vd->vdev_fru);
5906			vd->vdev_fru = spa_strdup(value);
5907			sync = B_TRUE;
5908		}
5909	}
5910
5911	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5912}
5913
5914int
5915spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5916{
5917	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5918}
5919
5920int
5921spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5922{
5923	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5924}
5925
5926/*
5927 * ==========================================================================
5928 * SPA Scanning
5929 * ==========================================================================
5930 */
5931
5932int
5933spa_scan_stop(spa_t *spa)
5934{
5935	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5936	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5937		return (SET_ERROR(EBUSY));
5938	return (dsl_scan_cancel(spa->spa_dsl_pool));
5939}
5940
5941int
5942spa_scan(spa_t *spa, pool_scan_func_t func)
5943{
5944	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5945
5946	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5947		return (SET_ERROR(ENOTSUP));
5948
5949	/*
5950	 * If a resilver was requested, but there is no DTL on a
5951	 * writeable leaf device, we have nothing to do.
5952	 */
5953	if (func == POOL_SCAN_RESILVER &&
5954	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5955		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5956		return (0);
5957	}
5958
5959	return (dsl_scan(spa->spa_dsl_pool, func));
5960}
5961
5962/*
5963 * ==========================================================================
5964 * SPA async task processing
5965 * ==========================================================================
5966 */
5967
5968static void
5969spa_async_remove(spa_t *spa, vdev_t *vd)
5970{
5971	if (vd->vdev_remove_wanted) {
5972		vd->vdev_remove_wanted = B_FALSE;
5973		vd->vdev_delayed_close = B_FALSE;
5974		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5975
5976		/*
5977		 * We want to clear the stats, but we don't want to do a full
5978		 * vdev_clear() as that will cause us to throw away
5979		 * degraded/faulted state as well as attempt to reopen the
5980		 * device, all of which is a waste.
5981		 */
5982		vd->vdev_stat.vs_read_errors = 0;
5983		vd->vdev_stat.vs_write_errors = 0;
5984		vd->vdev_stat.vs_checksum_errors = 0;
5985
5986		vdev_state_dirty(vd->vdev_top);
5987		/* Tell userspace that the vdev is gone. */
5988		zfs_post_remove(spa, vd);
5989	}
5990
5991	for (int c = 0; c < vd->vdev_children; c++)
5992		spa_async_remove(spa, vd->vdev_child[c]);
5993}
5994
5995static void
5996spa_async_probe(spa_t *spa, vdev_t *vd)
5997{
5998	if (vd->vdev_probe_wanted) {
5999		vd->vdev_probe_wanted = B_FALSE;
6000		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6001	}
6002
6003	for (int c = 0; c < vd->vdev_children; c++)
6004		spa_async_probe(spa, vd->vdev_child[c]);
6005}
6006
6007static void
6008spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6009{
6010	sysevent_id_t eid;
6011	nvlist_t *attr;
6012	char *physpath;
6013
6014	if (!spa->spa_autoexpand)
6015		return;
6016
6017	for (int c = 0; c < vd->vdev_children; c++) {
6018		vdev_t *cvd = vd->vdev_child[c];
6019		spa_async_autoexpand(spa, cvd);
6020	}
6021
6022	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6023		return;
6024
6025	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6026	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6027
6028	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6029	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6030
6031	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6032	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6033
6034	nvlist_free(attr);
6035	kmem_free(physpath, MAXPATHLEN);
6036}
6037
6038static void
6039spa_async_thread(void *arg)
6040{
6041	spa_t *spa = arg;
6042	int tasks;
6043
6044	ASSERT(spa->spa_sync_on);
6045
6046	mutex_enter(&spa->spa_async_lock);
6047	tasks = spa->spa_async_tasks;
6048	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6049	mutex_exit(&spa->spa_async_lock);
6050
6051	/*
6052	 * See if the config needs to be updated.
6053	 */
6054	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6055		uint64_t old_space, new_space;
6056
6057		mutex_enter(&spa_namespace_lock);
6058		old_space = metaslab_class_get_space(spa_normal_class(spa));
6059		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6060		new_space = metaslab_class_get_space(spa_normal_class(spa));
6061		mutex_exit(&spa_namespace_lock);
6062
6063		/*
6064		 * If the pool grew as a result of the config update,
6065		 * then log an internal history event.
6066		 */
6067		if (new_space != old_space) {
6068			spa_history_log_internal(spa, "vdev online", NULL,
6069			    "pool '%s' size: %llu(+%llu)",
6070			    spa_name(spa), new_space, new_space - old_space);
6071		}
6072	}
6073
6074	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6075		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6076		spa_async_autoexpand(spa, spa->spa_root_vdev);
6077		spa_config_exit(spa, SCL_CONFIG, FTAG);
6078	}
6079
6080	/*
6081	 * See if any devices need to be probed.
6082	 */
6083	if (tasks & SPA_ASYNC_PROBE) {
6084		spa_vdev_state_enter(spa, SCL_NONE);
6085		spa_async_probe(spa, spa->spa_root_vdev);
6086		(void) spa_vdev_state_exit(spa, NULL, 0);
6087	}
6088
6089	/*
6090	 * If any devices are done replacing, detach them.
6091	 */
6092	if (tasks & SPA_ASYNC_RESILVER_DONE)
6093		spa_vdev_resilver_done(spa);
6094
6095	/*
6096	 * Kick off a resilver.
6097	 */
6098	if (tasks & SPA_ASYNC_RESILVER)
6099		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6100
6101	/*
6102	 * Let the world know that we're done.
6103	 */
6104	mutex_enter(&spa->spa_async_lock);
6105	spa->spa_async_thread = NULL;
6106	cv_broadcast(&spa->spa_async_cv);
6107	mutex_exit(&spa->spa_async_lock);
6108	thread_exit();
6109}
6110
6111static void
6112spa_async_thread_vd(void *arg)
6113{
6114	spa_t *spa = arg;
6115	int tasks;
6116
6117	ASSERT(spa->spa_sync_on);
6118
6119	mutex_enter(&spa->spa_async_lock);
6120	tasks = spa->spa_async_tasks;
6121retry:
6122	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6123	mutex_exit(&spa->spa_async_lock);
6124
6125	/*
6126	 * See if any devices need to be marked REMOVED.
6127	 */
6128	if (tasks & SPA_ASYNC_REMOVE) {
6129		spa_vdev_state_enter(spa, SCL_NONE);
6130		spa_async_remove(spa, spa->spa_root_vdev);
6131		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6132			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6133		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6134			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6135		(void) spa_vdev_state_exit(spa, NULL, 0);
6136	}
6137
6138	/*
6139	 * Let the world know that we're done.
6140	 */
6141	mutex_enter(&spa->spa_async_lock);
6142	tasks = spa->spa_async_tasks;
6143	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6144		goto retry;
6145	spa->spa_async_thread_vd = NULL;
6146	cv_broadcast(&spa->spa_async_cv);
6147	mutex_exit(&spa->spa_async_lock);
6148	thread_exit();
6149}
6150
6151void
6152spa_async_suspend(spa_t *spa)
6153{
6154	mutex_enter(&spa->spa_async_lock);
6155	spa->spa_async_suspended++;
6156	while (spa->spa_async_thread != NULL &&
6157	    spa->spa_async_thread_vd != NULL)
6158		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6159	mutex_exit(&spa->spa_async_lock);
6160}
6161
6162void
6163spa_async_resume(spa_t *spa)
6164{
6165	mutex_enter(&spa->spa_async_lock);
6166	ASSERT(spa->spa_async_suspended != 0);
6167	spa->spa_async_suspended--;
6168	mutex_exit(&spa->spa_async_lock);
6169}
6170
6171static boolean_t
6172spa_async_tasks_pending(spa_t *spa)
6173{
6174	uint_t non_config_tasks;
6175	uint_t config_task;
6176	boolean_t config_task_suspended;
6177
6178	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6179	    SPA_ASYNC_REMOVE);
6180	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6181	if (spa->spa_ccw_fail_time == 0) {
6182		config_task_suspended = B_FALSE;
6183	} else {
6184		config_task_suspended =
6185		    (gethrtime() - spa->spa_ccw_fail_time) <
6186		    (zfs_ccw_retry_interval * NANOSEC);
6187	}
6188
6189	return (non_config_tasks || (config_task && !config_task_suspended));
6190}
6191
6192static void
6193spa_async_dispatch(spa_t *spa)
6194{
6195	mutex_enter(&spa->spa_async_lock);
6196	if (spa_async_tasks_pending(spa) &&
6197	    !spa->spa_async_suspended &&
6198	    spa->spa_async_thread == NULL &&
6199	    rootdir != NULL)
6200		spa->spa_async_thread = thread_create(NULL, 0,
6201		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6202	mutex_exit(&spa->spa_async_lock);
6203}
6204
6205static void
6206spa_async_dispatch_vd(spa_t *spa)
6207{
6208	mutex_enter(&spa->spa_async_lock);
6209	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6210	    !spa->spa_async_suspended &&
6211	    spa->spa_async_thread_vd == NULL &&
6212	    rootdir != NULL)
6213		spa->spa_async_thread_vd = thread_create(NULL, 0,
6214		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6215	mutex_exit(&spa->spa_async_lock);
6216}
6217
6218void
6219spa_async_request(spa_t *spa, int task)
6220{
6221	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6222	mutex_enter(&spa->spa_async_lock);
6223	spa->spa_async_tasks |= task;
6224	mutex_exit(&spa->spa_async_lock);
6225	spa_async_dispatch_vd(spa);
6226}
6227
6228/*
6229 * ==========================================================================
6230 * SPA syncing routines
6231 * ==========================================================================
6232 */
6233
6234static int
6235bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6236{
6237	bpobj_t *bpo = arg;
6238	bpobj_enqueue(bpo, bp, tx);
6239	return (0);
6240}
6241
6242static int
6243spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6244{
6245	zio_t *zio = arg;
6246
6247	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6248	    BP_GET_PSIZE(bp), zio->io_flags));
6249	return (0);
6250}
6251
6252/*
6253 * Note: this simple function is not inlined to make it easier to dtrace the
6254 * amount of time spent syncing frees.
6255 */
6256static void
6257spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6258{
6259	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6260	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6261	VERIFY(zio_wait(zio) == 0);
6262}
6263
6264/*
6265 * Note: this simple function is not inlined to make it easier to dtrace the
6266 * amount of time spent syncing deferred frees.
6267 */
6268static void
6269spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6270{
6271	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6272	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6273	    spa_free_sync_cb, zio, tx), ==, 0);
6274	VERIFY0(zio_wait(zio));
6275}
6276
6277
6278static void
6279spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6280{
6281	char *packed = NULL;
6282	size_t bufsize;
6283	size_t nvsize = 0;
6284	dmu_buf_t *db;
6285
6286	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6287
6288	/*
6289	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6290	 * information.  This avoids the dmu_buf_will_dirty() path and
6291	 * saves us a pre-read to get data we don't actually care about.
6292	 */
6293	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6294	packed = kmem_alloc(bufsize, KM_SLEEP);
6295
6296	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6297	    KM_SLEEP) == 0);
6298	bzero(packed + nvsize, bufsize - nvsize);
6299
6300	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6301
6302	kmem_free(packed, bufsize);
6303
6304	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6305	dmu_buf_will_dirty(db, tx);
6306	*(uint64_t *)db->db_data = nvsize;
6307	dmu_buf_rele(db, FTAG);
6308}
6309
6310static void
6311spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6312    const char *config, const char *entry)
6313{
6314	nvlist_t *nvroot;
6315	nvlist_t **list;
6316	int i;
6317
6318	if (!sav->sav_sync)
6319		return;
6320
6321	/*
6322	 * Update the MOS nvlist describing the list of available devices.
6323	 * spa_validate_aux() will have already made sure this nvlist is
6324	 * valid and the vdevs are labeled appropriately.
6325	 */
6326	if (sav->sav_object == 0) {
6327		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6328		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6329		    sizeof (uint64_t), tx);
6330		VERIFY(zap_update(spa->spa_meta_objset,
6331		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6332		    &sav->sav_object, tx) == 0);
6333	}
6334
6335	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6336	if (sav->sav_count == 0) {
6337		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6338	} else {
6339		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6340		for (i = 0; i < sav->sav_count; i++)
6341			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6342			    B_FALSE, VDEV_CONFIG_L2CACHE);
6343		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6344		    sav->sav_count) == 0);
6345		for (i = 0; i < sav->sav_count; i++)
6346			nvlist_free(list[i]);
6347		kmem_free(list, sav->sav_count * sizeof (void *));
6348	}
6349
6350	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6351	nvlist_free(nvroot);
6352
6353	sav->sav_sync = B_FALSE;
6354}
6355
6356static void
6357spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6358{
6359	nvlist_t *config;
6360
6361	if (list_is_empty(&spa->spa_config_dirty_list))
6362		return;
6363
6364	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6365
6366	config = spa_config_generate(spa, spa->spa_root_vdev,
6367	    dmu_tx_get_txg(tx), B_FALSE);
6368
6369	/*
6370	 * If we're upgrading the spa version then make sure that
6371	 * the config object gets updated with the correct version.
6372	 */
6373	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6374		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6375		    spa->spa_uberblock.ub_version);
6376
6377	spa_config_exit(spa, SCL_STATE, FTAG);
6378
6379	nvlist_free(spa->spa_config_syncing);
6380	spa->spa_config_syncing = config;
6381
6382	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6383}
6384
6385static void
6386spa_sync_version(void *arg, dmu_tx_t *tx)
6387{
6388	uint64_t *versionp = arg;
6389	uint64_t version = *versionp;
6390	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6391
6392	/*
6393	 * Setting the version is special cased when first creating the pool.
6394	 */
6395	ASSERT(tx->tx_txg != TXG_INITIAL);
6396
6397	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6398	ASSERT(version >= spa_version(spa));
6399
6400	spa->spa_uberblock.ub_version = version;
6401	vdev_config_dirty(spa->spa_root_vdev);
6402	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6403}
6404
6405/*
6406 * Set zpool properties.
6407 */
6408static void
6409spa_sync_props(void *arg, dmu_tx_t *tx)
6410{
6411	nvlist_t *nvp = arg;
6412	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6413	objset_t *mos = spa->spa_meta_objset;
6414	nvpair_t *elem = NULL;
6415
6416	mutex_enter(&spa->spa_props_lock);
6417
6418	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6419		uint64_t intval;
6420		char *strval, *fname;
6421		zpool_prop_t prop;
6422		const char *propname;
6423		zprop_type_t proptype;
6424		spa_feature_t fid;
6425
6426		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6427		case ZPROP_INVAL:
6428			/*
6429			 * We checked this earlier in spa_prop_validate().
6430			 */
6431			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6432
6433			fname = strchr(nvpair_name(elem), '@') + 1;
6434			VERIFY0(zfeature_lookup_name(fname, &fid));
6435
6436			spa_feature_enable(spa, fid, tx);
6437			spa_history_log_internal(spa, "set", tx,
6438			    "%s=enabled", nvpair_name(elem));
6439			break;
6440
6441		case ZPOOL_PROP_VERSION:
6442			intval = fnvpair_value_uint64(elem);
6443			/*
6444			 * The version is synced seperatly before other
6445			 * properties and should be correct by now.
6446			 */
6447			ASSERT3U(spa_version(spa), >=, intval);
6448			break;
6449
6450		case ZPOOL_PROP_ALTROOT:
6451			/*
6452			 * 'altroot' is a non-persistent property. It should
6453			 * have been set temporarily at creation or import time.
6454			 */
6455			ASSERT(spa->spa_root != NULL);
6456			break;
6457
6458		case ZPOOL_PROP_READONLY:
6459		case ZPOOL_PROP_CACHEFILE:
6460			/*
6461			 * 'readonly' and 'cachefile' are also non-persisitent
6462			 * properties.
6463			 */
6464			break;
6465		case ZPOOL_PROP_COMMENT:
6466			strval = fnvpair_value_string(elem);
6467			if (spa->spa_comment != NULL)
6468				spa_strfree(spa->spa_comment);
6469			spa->spa_comment = spa_strdup(strval);
6470			/*
6471			 * We need to dirty the configuration on all the vdevs
6472			 * so that their labels get updated.  It's unnecessary
6473			 * to do this for pool creation since the vdev's
6474			 * configuratoin has already been dirtied.
6475			 */
6476			if (tx->tx_txg != TXG_INITIAL)
6477				vdev_config_dirty(spa->spa_root_vdev);
6478			spa_history_log_internal(spa, "set", tx,
6479			    "%s=%s", nvpair_name(elem), strval);
6480			break;
6481		default:
6482			/*
6483			 * Set pool property values in the poolprops mos object.
6484			 */
6485			if (spa->spa_pool_props_object == 0) {
6486				spa->spa_pool_props_object =
6487				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6488				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6489				    tx);
6490			}
6491
6492			/* normalize the property name */
6493			propname = zpool_prop_to_name(prop);
6494			proptype = zpool_prop_get_type(prop);
6495
6496			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6497				ASSERT(proptype == PROP_TYPE_STRING);
6498				strval = fnvpair_value_string(elem);
6499				VERIFY0(zap_update(mos,
6500				    spa->spa_pool_props_object, propname,
6501				    1, strlen(strval) + 1, strval, tx));
6502				spa_history_log_internal(spa, "set", tx,
6503				    "%s=%s", nvpair_name(elem), strval);
6504			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6505				intval = fnvpair_value_uint64(elem);
6506
6507				if (proptype == PROP_TYPE_INDEX) {
6508					const char *unused;
6509					VERIFY0(zpool_prop_index_to_string(
6510					    prop, intval, &unused));
6511				}
6512				VERIFY0(zap_update(mos,
6513				    spa->spa_pool_props_object, propname,
6514				    8, 1, &intval, tx));
6515				spa_history_log_internal(spa, "set", tx,
6516				    "%s=%lld", nvpair_name(elem), intval);
6517			} else {
6518				ASSERT(0); /* not allowed */
6519			}
6520
6521			switch (prop) {
6522			case ZPOOL_PROP_DELEGATION:
6523				spa->spa_delegation = intval;
6524				break;
6525			case ZPOOL_PROP_BOOTFS:
6526				spa->spa_bootfs = intval;
6527				break;
6528			case ZPOOL_PROP_FAILUREMODE:
6529				spa->spa_failmode = intval;
6530				break;
6531			case ZPOOL_PROP_AUTOEXPAND:
6532				spa->spa_autoexpand = intval;
6533				if (tx->tx_txg != TXG_INITIAL)
6534					spa_async_request(spa,
6535					    SPA_ASYNC_AUTOEXPAND);
6536				break;
6537			case ZPOOL_PROP_DEDUPDITTO:
6538				spa->spa_dedup_ditto = intval;
6539				break;
6540			default:
6541				break;
6542			}
6543		}
6544
6545	}
6546
6547	mutex_exit(&spa->spa_props_lock);
6548}
6549
6550/*
6551 * Perform one-time upgrade on-disk changes.  spa_version() does not
6552 * reflect the new version this txg, so there must be no changes this
6553 * txg to anything that the upgrade code depends on after it executes.
6554 * Therefore this must be called after dsl_pool_sync() does the sync
6555 * tasks.
6556 */
6557static void
6558spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6559{
6560	dsl_pool_t *dp = spa->spa_dsl_pool;
6561
6562	ASSERT(spa->spa_sync_pass == 1);
6563
6564	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6565
6566	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6567	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6568		dsl_pool_create_origin(dp, tx);
6569
6570		/* Keeping the origin open increases spa_minref */
6571		spa->spa_minref += 3;
6572	}
6573
6574	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6575	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6576		dsl_pool_upgrade_clones(dp, tx);
6577	}
6578
6579	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6580	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6581		dsl_pool_upgrade_dir_clones(dp, tx);
6582
6583		/* Keeping the freedir open increases spa_minref */
6584		spa->spa_minref += 3;
6585	}
6586
6587	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6588	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6589		spa_feature_create_zap_objects(spa, tx);
6590	}
6591
6592	/*
6593	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6594	 * when possibility to use lz4 compression for metadata was added
6595	 * Old pools that have this feature enabled must be upgraded to have
6596	 * this feature active
6597	 */
6598	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6599		boolean_t lz4_en = spa_feature_is_enabled(spa,
6600		    SPA_FEATURE_LZ4_COMPRESS);
6601		boolean_t lz4_ac = spa_feature_is_active(spa,
6602		    SPA_FEATURE_LZ4_COMPRESS);
6603
6604		if (lz4_en && !lz4_ac)
6605			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6606	}
6607
6608	/*
6609	 * If we haven't written the salt, do so now.  Note that the
6610	 * feature may not be activated yet, but that's fine since
6611	 * the presence of this ZAP entry is backwards compatible.
6612	 */
6613	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6614	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6615		VERIFY0(zap_add(spa->spa_meta_objset,
6616		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6617		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6618		    spa->spa_cksum_salt.zcs_bytes, tx));
6619	}
6620
6621	rrw_exit(&dp->dp_config_rwlock, FTAG);
6622}
6623
6624/*
6625 * Sync the specified transaction group.  New blocks may be dirtied as
6626 * part of the process, so we iterate until it converges.
6627 */
6628void
6629spa_sync(spa_t *spa, uint64_t txg)
6630{
6631	dsl_pool_t *dp = spa->spa_dsl_pool;
6632	objset_t *mos = spa->spa_meta_objset;
6633	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6634	vdev_t *rvd = spa->spa_root_vdev;
6635	vdev_t *vd;
6636	dmu_tx_t *tx;
6637	int error;
6638
6639	VERIFY(spa_writeable(spa));
6640
6641	/*
6642	 * Lock out configuration changes.
6643	 */
6644	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6645
6646	spa->spa_syncing_txg = txg;
6647	spa->spa_sync_pass = 0;
6648
6649	/*
6650	 * If there are any pending vdev state changes, convert them
6651	 * into config changes that go out with this transaction group.
6652	 */
6653	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6654	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6655		/*
6656		 * We need the write lock here because, for aux vdevs,
6657		 * calling vdev_config_dirty() modifies sav_config.
6658		 * This is ugly and will become unnecessary when we
6659		 * eliminate the aux vdev wart by integrating all vdevs
6660		 * into the root vdev tree.
6661		 */
6662		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6663		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6664		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6665			vdev_state_clean(vd);
6666			vdev_config_dirty(vd);
6667		}
6668		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6669		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6670	}
6671	spa_config_exit(spa, SCL_STATE, FTAG);
6672
6673	tx = dmu_tx_create_assigned(dp, txg);
6674
6675	spa->spa_sync_starttime = gethrtime();
6676#ifdef illumos
6677	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6678	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6679#else	/* !illumos */
6680#ifdef _KERNEL
6681	callout_reset(&spa->spa_deadman_cycid,
6682	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6683#endif
6684#endif	/* illumos */
6685
6686	/*
6687	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6688	 * set spa_deflate if we have no raid-z vdevs.
6689	 */
6690	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6691	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6692		int i;
6693
6694		for (i = 0; i < rvd->vdev_children; i++) {
6695			vd = rvd->vdev_child[i];
6696			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6697				break;
6698		}
6699		if (i == rvd->vdev_children) {
6700			spa->spa_deflate = TRUE;
6701			VERIFY(0 == zap_add(spa->spa_meta_objset,
6702			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6703			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6704		}
6705	}
6706
6707	/*
6708	 * Iterate to convergence.
6709	 */
6710	do {
6711		int pass = ++spa->spa_sync_pass;
6712
6713		spa_sync_config_object(spa, tx);
6714		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6715		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6716		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6717		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6718		spa_errlog_sync(spa, txg);
6719		dsl_pool_sync(dp, txg);
6720
6721		if (pass < zfs_sync_pass_deferred_free) {
6722			spa_sync_frees(spa, free_bpl, tx);
6723		} else {
6724			/*
6725			 * We can not defer frees in pass 1, because
6726			 * we sync the deferred frees later in pass 1.
6727			 */
6728			ASSERT3U(pass, >, 1);
6729			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6730			    &spa->spa_deferred_bpobj, tx);
6731		}
6732
6733		ddt_sync(spa, txg);
6734		dsl_scan_sync(dp, tx);
6735
6736		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6737			vdev_sync(vd, txg);
6738
6739		if (pass == 1) {
6740			spa_sync_upgrades(spa, tx);
6741			ASSERT3U(txg, >=,
6742			    spa->spa_uberblock.ub_rootbp.blk_birth);
6743			/*
6744			 * Note: We need to check if the MOS is dirty
6745			 * because we could have marked the MOS dirty
6746			 * without updating the uberblock (e.g. if we
6747			 * have sync tasks but no dirty user data).  We
6748			 * need to check the uberblock's rootbp because
6749			 * it is updated if we have synced out dirty
6750			 * data (though in this case the MOS will most
6751			 * likely also be dirty due to second order
6752			 * effects, we don't want to rely on that here).
6753			 */
6754			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6755			    !dmu_objset_is_dirty(mos, txg)) {
6756				/*
6757				 * Nothing changed on the first pass,
6758				 * therefore this TXG is a no-op.  Avoid
6759				 * syncing deferred frees, so that we
6760				 * can keep this TXG as a no-op.
6761				 */
6762				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6763				    txg));
6764				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6765				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6766				break;
6767			}
6768			spa_sync_deferred_frees(spa, tx);
6769		}
6770
6771	} while (dmu_objset_is_dirty(mos, txg));
6772
6773	/*
6774	 * Rewrite the vdev configuration (which includes the uberblock)
6775	 * to commit the transaction group.
6776	 *
6777	 * If there are no dirty vdevs, we sync the uberblock to a few
6778	 * random top-level vdevs that are known to be visible in the
6779	 * config cache (see spa_vdev_add() for a complete description).
6780	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6781	 */
6782	for (;;) {
6783		/*
6784		 * We hold SCL_STATE to prevent vdev open/close/etc.
6785		 * while we're attempting to write the vdev labels.
6786		 */
6787		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6788
6789		if (list_is_empty(&spa->spa_config_dirty_list)) {
6790			vdev_t *svd[SPA_DVAS_PER_BP];
6791			int svdcount = 0;
6792			int children = rvd->vdev_children;
6793			int c0 = spa_get_random(children);
6794
6795			for (int c = 0; c < children; c++) {
6796				vd = rvd->vdev_child[(c0 + c) % children];
6797				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6798					continue;
6799				svd[svdcount++] = vd;
6800				if (svdcount == SPA_DVAS_PER_BP)
6801					break;
6802			}
6803			error = vdev_config_sync(svd, svdcount, txg);
6804		} else {
6805			error = vdev_config_sync(rvd->vdev_child,
6806			    rvd->vdev_children, txg);
6807		}
6808
6809		if (error == 0)
6810			spa->spa_last_synced_guid = rvd->vdev_guid;
6811
6812		spa_config_exit(spa, SCL_STATE, FTAG);
6813
6814		if (error == 0)
6815			break;
6816		zio_suspend(spa, NULL);
6817		zio_resume_wait(spa);
6818	}
6819	dmu_tx_commit(tx);
6820
6821#ifdef illumos
6822	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6823#else	/* !illumos */
6824#ifdef _KERNEL
6825	callout_drain(&spa->spa_deadman_cycid);
6826#endif
6827#endif	/* illumos */
6828
6829	/*
6830	 * Clear the dirty config list.
6831	 */
6832	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6833		vdev_config_clean(vd);
6834
6835	/*
6836	 * Now that the new config has synced transactionally,
6837	 * let it become visible to the config cache.
6838	 */
6839	if (spa->spa_config_syncing != NULL) {
6840		spa_config_set(spa, spa->spa_config_syncing);
6841		spa->spa_config_txg = txg;
6842		spa->spa_config_syncing = NULL;
6843	}
6844
6845	spa->spa_ubsync = spa->spa_uberblock;
6846
6847	dsl_pool_sync_done(dp, txg);
6848
6849	/*
6850	 * Update usable space statistics.
6851	 */
6852	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6853		vdev_sync_done(vd, txg);
6854
6855	spa_update_dspace(spa);
6856
6857	/*
6858	 * It had better be the case that we didn't dirty anything
6859	 * since vdev_config_sync().
6860	 */
6861	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6862	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6863	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6864
6865	spa->spa_sync_pass = 0;
6866
6867	spa_config_exit(spa, SCL_CONFIG, FTAG);
6868
6869	spa_handle_ignored_writes(spa);
6870
6871	/*
6872	 * If any async tasks have been requested, kick them off.
6873	 */
6874	spa_async_dispatch(spa);
6875	spa_async_dispatch_vd(spa);
6876}
6877
6878/*
6879 * Sync all pools.  We don't want to hold the namespace lock across these
6880 * operations, so we take a reference on the spa_t and drop the lock during the
6881 * sync.
6882 */
6883void
6884spa_sync_allpools(void)
6885{
6886	spa_t *spa = NULL;
6887	mutex_enter(&spa_namespace_lock);
6888	while ((spa = spa_next(spa)) != NULL) {
6889		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6890		    !spa_writeable(spa) || spa_suspended(spa))
6891			continue;
6892		spa_open_ref(spa, FTAG);
6893		mutex_exit(&spa_namespace_lock);
6894		txg_wait_synced(spa_get_dsl(spa), 0);
6895		mutex_enter(&spa_namespace_lock);
6896		spa_close(spa, FTAG);
6897	}
6898	mutex_exit(&spa_namespace_lock);
6899}
6900
6901/*
6902 * ==========================================================================
6903 * Miscellaneous routines
6904 * ==========================================================================
6905 */
6906
6907/*
6908 * Remove all pools in the system.
6909 */
6910void
6911spa_evict_all(void)
6912{
6913	spa_t *spa;
6914
6915	/*
6916	 * Remove all cached state.  All pools should be closed now,
6917	 * so every spa in the AVL tree should be unreferenced.
6918	 */
6919	mutex_enter(&spa_namespace_lock);
6920	while ((spa = spa_next(NULL)) != NULL) {
6921		/*
6922		 * Stop async tasks.  The async thread may need to detach
6923		 * a device that's been replaced, which requires grabbing
6924		 * spa_namespace_lock, so we must drop it here.
6925		 */
6926		spa_open_ref(spa, FTAG);
6927		mutex_exit(&spa_namespace_lock);
6928		spa_async_suspend(spa);
6929		mutex_enter(&spa_namespace_lock);
6930		spa_close(spa, FTAG);
6931
6932		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6933			spa_unload(spa);
6934			spa_deactivate(spa);
6935		}
6936		spa_remove(spa);
6937	}
6938	mutex_exit(&spa_namespace_lock);
6939}
6940
6941vdev_t *
6942spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6943{
6944	vdev_t *vd;
6945	int i;
6946
6947	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6948		return (vd);
6949
6950	if (aux) {
6951		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6952			vd = spa->spa_l2cache.sav_vdevs[i];
6953			if (vd->vdev_guid == guid)
6954				return (vd);
6955		}
6956
6957		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6958			vd = spa->spa_spares.sav_vdevs[i];
6959			if (vd->vdev_guid == guid)
6960				return (vd);
6961		}
6962	}
6963
6964	return (NULL);
6965}
6966
6967void
6968spa_upgrade(spa_t *spa, uint64_t version)
6969{
6970	ASSERT(spa_writeable(spa));
6971
6972	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6973
6974	/*
6975	 * This should only be called for a non-faulted pool, and since a
6976	 * future version would result in an unopenable pool, this shouldn't be
6977	 * possible.
6978	 */
6979	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6980	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6981
6982	spa->spa_uberblock.ub_version = version;
6983	vdev_config_dirty(spa->spa_root_vdev);
6984
6985	spa_config_exit(spa, SCL_ALL, FTAG);
6986
6987	txg_wait_synced(spa_get_dsl(spa), 0);
6988}
6989
6990boolean_t
6991spa_has_spare(spa_t *spa, uint64_t guid)
6992{
6993	int i;
6994	uint64_t spareguid;
6995	spa_aux_vdev_t *sav = &spa->spa_spares;
6996
6997	for (i = 0; i < sav->sav_count; i++)
6998		if (sav->sav_vdevs[i]->vdev_guid == guid)
6999			return (B_TRUE);
7000
7001	for (i = 0; i < sav->sav_npending; i++) {
7002		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7003		    &spareguid) == 0 && spareguid == guid)
7004			return (B_TRUE);
7005	}
7006
7007	return (B_FALSE);
7008}
7009
7010/*
7011 * Check if a pool has an active shared spare device.
7012 * Note: reference count of an active spare is 2, as a spare and as a replace
7013 */
7014static boolean_t
7015spa_has_active_shared_spare(spa_t *spa)
7016{
7017	int i, refcnt;
7018	uint64_t pool;
7019	spa_aux_vdev_t *sav = &spa->spa_spares;
7020
7021	for (i = 0; i < sav->sav_count; i++) {
7022		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7023		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7024		    refcnt > 2)
7025			return (B_TRUE);
7026	}
7027
7028	return (B_FALSE);
7029}
7030
7031static sysevent_t *
7032spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7033{
7034	sysevent_t		*ev = NULL;
7035#ifdef _KERNEL
7036	sysevent_attr_list_t	*attr = NULL;
7037	sysevent_value_t	value;
7038
7039	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7040	    SE_SLEEP);
7041	ASSERT(ev != NULL);
7042
7043	value.value_type = SE_DATA_TYPE_STRING;
7044	value.value.sv_string = spa_name(spa);
7045	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7046		goto done;
7047
7048	value.value_type = SE_DATA_TYPE_UINT64;
7049	value.value.sv_uint64 = spa_guid(spa);
7050	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7051		goto done;
7052
7053	if (vd) {
7054		value.value_type = SE_DATA_TYPE_UINT64;
7055		value.value.sv_uint64 = vd->vdev_guid;
7056		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7057		    SE_SLEEP) != 0)
7058			goto done;
7059
7060		if (vd->vdev_path) {
7061			value.value_type = SE_DATA_TYPE_STRING;
7062			value.value.sv_string = vd->vdev_path;
7063			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7064			    &value, SE_SLEEP) != 0)
7065				goto done;
7066		}
7067	}
7068
7069	if (sysevent_attach_attributes(ev, attr) != 0)
7070		goto done;
7071	attr = NULL;
7072
7073done:
7074	if (attr)
7075		sysevent_free_attr(attr);
7076
7077#endif
7078	return (ev);
7079}
7080
7081static void
7082spa_event_post(sysevent_t *ev)
7083{
7084#ifdef _KERNEL
7085	sysevent_id_t		eid;
7086
7087	(void) log_sysevent(ev, SE_SLEEP, &eid);
7088	sysevent_free(ev);
7089#endif
7090}
7091
7092/*
7093 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7094 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7095 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7096 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7097 * or zdb as real changes.
7098 */
7099void
7100spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7101{
7102	spa_event_post(spa_event_create(spa, vd, name));
7103}
7104