spa.c revision 307122
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static void spa_sync_version(void *arg, dmu_tx_t *tx);
156static void spa_sync_props(void *arg, dmu_tx_t *tx);
157static boolean_t spa_has_active_shared_spare(spa_t *spa);
158static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
159    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
160    char **ereport);
161static void spa_vdev_resilver_done(spa_t *spa);
162
163uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164#ifdef PSRSET_BIND
165id_t		zio_taskq_psrset_bind = PS_NONE;
166#endif
167#ifdef SYSDC
168boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
169#endif
170uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
171
172boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
173extern int	zfs_sync_pass_deferred_free;
174
175#ifndef illumos
176extern void spa_deadman(void *arg);
177#endif
178
179/*
180 * This (illegal) pool name is used when temporarily importing a spa_t in order
181 * to get the vdev stats associated with the imported devices.
182 */
183#define	TRYIMPORT_NAME	"$import"
184
185/*
186 * ==========================================================================
187 * SPA properties routines
188 * ==========================================================================
189 */
190
191/*
192 * Add a (source=src, propname=propval) list to an nvlist.
193 */
194static void
195spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
196    uint64_t intval, zprop_source_t src)
197{
198	const char *propname = zpool_prop_to_name(prop);
199	nvlist_t *propval;
200
201	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
202	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
203
204	if (strval != NULL)
205		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
206	else
207		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
208
209	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
210	nvlist_free(propval);
211}
212
213/*
214 * Get property values from the spa configuration.
215 */
216static void
217spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
218{
219	vdev_t *rvd = spa->spa_root_vdev;
220	dsl_pool_t *pool = spa->spa_dsl_pool;
221	uint64_t size, alloc, cap, version;
222	zprop_source_t src = ZPROP_SRC_NONE;
223	spa_config_dirent_t *dp;
224	metaslab_class_t *mc = spa_normal_class(spa);
225
226	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
227
228	if (rvd != NULL) {
229		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
230		size = metaslab_class_get_space(spa_normal_class(spa));
231		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
235		    size - alloc, src);
236
237		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
238		    metaslab_class_fragmentation(mc), src);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
240		    metaslab_class_expandable_space(mc), src);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
242		    (spa_mode(spa) == FREAD), src);
243
244		cap = (size == 0) ? 0 : (alloc * 100 / size);
245		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
246
247		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
248		    ddt_get_pool_dedup_ratio(spa), src);
249
250		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
251		    rvd->vdev_state, src);
252
253		version = spa_version(spa);
254		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
255			src = ZPROP_SRC_DEFAULT;
256		else
257			src = ZPROP_SRC_LOCAL;
258		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
259	}
260
261	if (pool != NULL) {
262		/*
263		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
264		 * when opening pools before this version freedir will be NULL.
265		 */
266		if (pool->dp_free_dir != NULL) {
267			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
268			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
269			    src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274
275		if (pool->dp_leak_dir != NULL) {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
277			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
278			    src);
279		} else {
280			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
281			    NULL, 0, src);
282		}
283	}
284
285	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
286
287	if (spa->spa_comment != NULL) {
288		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
289		    0, ZPROP_SRC_LOCAL);
290	}
291
292	if (spa->spa_root != NULL)
293		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
294		    0, ZPROP_SRC_LOCAL);
295
296	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
297		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
299	} else {
300		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
301		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
302	}
303
304	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
305		if (dp->scd_path == NULL) {
306			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307			    "none", 0, ZPROP_SRC_LOCAL);
308		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
309			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
310			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
311		}
312	}
313}
314
315/*
316 * Get zpool property values.
317 */
318int
319spa_prop_get(spa_t *spa, nvlist_t **nvp)
320{
321	objset_t *mos = spa->spa_meta_objset;
322	zap_cursor_t zc;
323	zap_attribute_t za;
324	int err;
325
326	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
327
328	mutex_enter(&spa->spa_props_lock);
329
330	/*
331	 * Get properties from the spa config.
332	 */
333	spa_prop_get_config(spa, nvp);
334
335	/* If no pool property object, no more prop to get. */
336	if (mos == NULL || spa->spa_pool_props_object == 0) {
337		mutex_exit(&spa->spa_props_lock);
338		return (0);
339	}
340
341	/*
342	 * Get properties from the MOS pool property object.
343	 */
344	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
345	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
346	    zap_cursor_advance(&zc)) {
347		uint64_t intval = 0;
348		char *strval = NULL;
349		zprop_source_t src = ZPROP_SRC_DEFAULT;
350		zpool_prop_t prop;
351
352		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
353			continue;
354
355		switch (za.za_integer_length) {
356		case 8:
357			/* integer property */
358			if (za.za_first_integer !=
359			    zpool_prop_default_numeric(prop))
360				src = ZPROP_SRC_LOCAL;
361
362			if (prop == ZPOOL_PROP_BOOTFS) {
363				dsl_pool_t *dp;
364				dsl_dataset_t *ds = NULL;
365
366				dp = spa_get_dsl(spa);
367				dsl_pool_config_enter(dp, FTAG);
368				if (err = dsl_dataset_hold_obj(dp,
369				    za.za_first_integer, FTAG, &ds)) {
370					dsl_pool_config_exit(dp, FTAG);
371					break;
372				}
373
374				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
375				    KM_SLEEP);
376				dsl_dataset_name(ds, strval);
377				dsl_dataset_rele(ds, FTAG);
378				dsl_pool_config_exit(dp, FTAG);
379			} else {
380				strval = NULL;
381				intval = za.za_first_integer;
382			}
383
384			spa_prop_add_list(*nvp, prop, strval, intval, src);
385
386			if (strval != NULL)
387				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
388
389			break;
390
391		case 1:
392			/* string property */
393			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
394			err = zap_lookup(mos, spa->spa_pool_props_object,
395			    za.za_name, 1, za.za_num_integers, strval);
396			if (err) {
397				kmem_free(strval, za.za_num_integers);
398				break;
399			}
400			spa_prop_add_list(*nvp, prop, strval, 0, src);
401			kmem_free(strval, za.za_num_integers);
402			break;
403
404		default:
405			break;
406		}
407	}
408	zap_cursor_fini(&zc);
409	mutex_exit(&spa->spa_props_lock);
410out:
411	if (err && err != ENOENT) {
412		nvlist_free(*nvp);
413		*nvp = NULL;
414		return (err);
415	}
416
417	return (0);
418}
419
420/*
421 * Validate the given pool properties nvlist and modify the list
422 * for the property values to be set.
423 */
424static int
425spa_prop_validate(spa_t *spa, nvlist_t *props)
426{
427	nvpair_t *elem;
428	int error = 0, reset_bootfs = 0;
429	uint64_t objnum = 0;
430	boolean_t has_feature = B_FALSE;
431
432	elem = NULL;
433	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
434		uint64_t intval;
435		char *strval, *slash, *check, *fname;
436		const char *propname = nvpair_name(elem);
437		zpool_prop_t prop = zpool_name_to_prop(propname);
438
439		switch (prop) {
440		case ZPROP_INVAL:
441			if (!zpool_prop_feature(propname)) {
442				error = SET_ERROR(EINVAL);
443				break;
444			}
445
446			/*
447			 * Sanitize the input.
448			 */
449			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
450				error = SET_ERROR(EINVAL);
451				break;
452			}
453
454			if (nvpair_value_uint64(elem, &intval) != 0) {
455				error = SET_ERROR(EINVAL);
456				break;
457			}
458
459			if (intval != 0) {
460				error = SET_ERROR(EINVAL);
461				break;
462			}
463
464			fname = strchr(propname, '@') + 1;
465			if (zfeature_lookup_name(fname, NULL) != 0) {
466				error = SET_ERROR(EINVAL);
467				break;
468			}
469
470			has_feature = B_TRUE;
471			break;
472
473		case ZPOOL_PROP_VERSION:
474			error = nvpair_value_uint64(elem, &intval);
475			if (!error &&
476			    (intval < spa_version(spa) ||
477			    intval > SPA_VERSION_BEFORE_FEATURES ||
478			    has_feature))
479				error = SET_ERROR(EINVAL);
480			break;
481
482		case ZPOOL_PROP_DELEGATION:
483		case ZPOOL_PROP_AUTOREPLACE:
484		case ZPOOL_PROP_LISTSNAPS:
485		case ZPOOL_PROP_AUTOEXPAND:
486			error = nvpair_value_uint64(elem, &intval);
487			if (!error && intval > 1)
488				error = SET_ERROR(EINVAL);
489			break;
490
491		case ZPOOL_PROP_BOOTFS:
492			/*
493			 * If the pool version is less than SPA_VERSION_BOOTFS,
494			 * or the pool is still being created (version == 0),
495			 * the bootfs property cannot be set.
496			 */
497			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
498				error = SET_ERROR(ENOTSUP);
499				break;
500			}
501
502			/*
503			 * Make sure the vdev config is bootable
504			 */
505			if (!vdev_is_bootable(spa->spa_root_vdev)) {
506				error = SET_ERROR(ENOTSUP);
507				break;
508			}
509
510			reset_bootfs = 1;
511
512			error = nvpair_value_string(elem, &strval);
513
514			if (!error) {
515				objset_t *os;
516				uint64_t propval;
517
518				if (strval == NULL || strval[0] == '\0') {
519					objnum = zpool_prop_default_numeric(
520					    ZPOOL_PROP_BOOTFS);
521					break;
522				}
523
524				if (error = dmu_objset_hold(strval, FTAG, &os))
525					break;
526
527				/*
528				 * Must be ZPL, and its property settings
529				 * must be supported by GRUB (compression
530				 * is not gzip, and large blocks are not used).
531				 */
532
533				if (dmu_objset_type(os) != DMU_OST_ZFS) {
534					error = SET_ERROR(ENOTSUP);
535				} else if ((error =
536				    dsl_prop_get_int_ds(dmu_objset_ds(os),
537				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
538				    &propval)) == 0 &&
539				    !BOOTFS_COMPRESS_VALID(propval)) {
540					error = SET_ERROR(ENOTSUP);
541				} else if ((error =
542				    dsl_prop_get_int_ds(dmu_objset_ds(os),
543				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
544				    &propval)) == 0 &&
545				    propval > SPA_OLD_MAXBLOCKSIZE) {
546					error = SET_ERROR(ENOTSUP);
547				} else {
548					objnum = dmu_objset_id(os);
549				}
550				dmu_objset_rele(os, FTAG);
551			}
552			break;
553
554		case ZPOOL_PROP_FAILUREMODE:
555			error = nvpair_value_uint64(elem, &intval);
556			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
557			    intval > ZIO_FAILURE_MODE_PANIC))
558				error = SET_ERROR(EINVAL);
559
560			/*
561			 * This is a special case which only occurs when
562			 * the pool has completely failed. This allows
563			 * the user to change the in-core failmode property
564			 * without syncing it out to disk (I/Os might
565			 * currently be blocked). We do this by returning
566			 * EIO to the caller (spa_prop_set) to trick it
567			 * into thinking we encountered a property validation
568			 * error.
569			 */
570			if (!error && spa_suspended(spa)) {
571				spa->spa_failmode = intval;
572				error = SET_ERROR(EIO);
573			}
574			break;
575
576		case ZPOOL_PROP_CACHEFILE:
577			if ((error = nvpair_value_string(elem, &strval)) != 0)
578				break;
579
580			if (strval[0] == '\0')
581				break;
582
583			if (strcmp(strval, "none") == 0)
584				break;
585
586			if (strval[0] != '/') {
587				error = SET_ERROR(EINVAL);
588				break;
589			}
590
591			slash = strrchr(strval, '/');
592			ASSERT(slash != NULL);
593
594			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
595			    strcmp(slash, "/..") == 0)
596				error = SET_ERROR(EINVAL);
597			break;
598
599		case ZPOOL_PROP_COMMENT:
600			if ((error = nvpair_value_string(elem, &strval)) != 0)
601				break;
602			for (check = strval; *check != '\0'; check++) {
603				/*
604				 * The kernel doesn't have an easy isprint()
605				 * check.  For this kernel check, we merely
606				 * check ASCII apart from DEL.  Fix this if
607				 * there is an easy-to-use kernel isprint().
608				 */
609				if (*check >= 0x7f) {
610					error = SET_ERROR(EINVAL);
611					break;
612				}
613			}
614			if (strlen(strval) > ZPROP_MAX_COMMENT)
615				error = E2BIG;
616			break;
617
618		case ZPOOL_PROP_DEDUPDITTO:
619			if (spa_version(spa) < SPA_VERSION_DEDUP)
620				error = SET_ERROR(ENOTSUP);
621			else
622				error = nvpair_value_uint64(elem, &intval);
623			if (error == 0 &&
624			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
625				error = SET_ERROR(EINVAL);
626			break;
627		}
628
629		if (error)
630			break;
631	}
632
633	if (!error && reset_bootfs) {
634		error = nvlist_remove(props,
635		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
636
637		if (!error) {
638			error = nvlist_add_uint64(props,
639			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
640		}
641	}
642
643	return (error);
644}
645
646void
647spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
648{
649	char *cachefile;
650	spa_config_dirent_t *dp;
651
652	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
653	    &cachefile) != 0)
654		return;
655
656	dp = kmem_alloc(sizeof (spa_config_dirent_t),
657	    KM_SLEEP);
658
659	if (cachefile[0] == '\0')
660		dp->scd_path = spa_strdup(spa_config_path);
661	else if (strcmp(cachefile, "none") == 0)
662		dp->scd_path = NULL;
663	else
664		dp->scd_path = spa_strdup(cachefile);
665
666	list_insert_head(&spa->spa_config_list, dp);
667	if (need_sync)
668		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
669}
670
671int
672spa_prop_set(spa_t *spa, nvlist_t *nvp)
673{
674	int error;
675	nvpair_t *elem = NULL;
676	boolean_t need_sync = B_FALSE;
677
678	if ((error = spa_prop_validate(spa, nvp)) != 0)
679		return (error);
680
681	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
682		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
683
684		if (prop == ZPOOL_PROP_CACHEFILE ||
685		    prop == ZPOOL_PROP_ALTROOT ||
686		    prop == ZPOOL_PROP_READONLY)
687			continue;
688
689		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
690			uint64_t ver;
691
692			if (prop == ZPOOL_PROP_VERSION) {
693				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
694			} else {
695				ASSERT(zpool_prop_feature(nvpair_name(elem)));
696				ver = SPA_VERSION_FEATURES;
697				need_sync = B_TRUE;
698			}
699
700			/* Save time if the version is already set. */
701			if (ver == spa_version(spa))
702				continue;
703
704			/*
705			 * In addition to the pool directory object, we might
706			 * create the pool properties object, the features for
707			 * read object, the features for write object, or the
708			 * feature descriptions object.
709			 */
710			error = dsl_sync_task(spa->spa_name, NULL,
711			    spa_sync_version, &ver,
712			    6, ZFS_SPACE_CHECK_RESERVED);
713			if (error)
714				return (error);
715			continue;
716		}
717
718		need_sync = B_TRUE;
719		break;
720	}
721
722	if (need_sync) {
723		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
724		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
725	}
726
727	return (0);
728}
729
730/*
731 * If the bootfs property value is dsobj, clear it.
732 */
733void
734spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
735{
736	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
737		VERIFY(zap_remove(spa->spa_meta_objset,
738		    spa->spa_pool_props_object,
739		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
740		spa->spa_bootfs = 0;
741	}
742}
743
744/*ARGSUSED*/
745static int
746spa_change_guid_check(void *arg, dmu_tx_t *tx)
747{
748	uint64_t *newguid = arg;
749	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750	vdev_t *rvd = spa->spa_root_vdev;
751	uint64_t vdev_state;
752
753	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
754	vdev_state = rvd->vdev_state;
755	spa_config_exit(spa, SCL_STATE, FTAG);
756
757	if (vdev_state != VDEV_STATE_HEALTHY)
758		return (SET_ERROR(ENXIO));
759
760	ASSERT3U(spa_guid(spa), !=, *newguid);
761
762	return (0);
763}
764
765static void
766spa_change_guid_sync(void *arg, dmu_tx_t *tx)
767{
768	uint64_t *newguid = arg;
769	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
770	uint64_t oldguid;
771	vdev_t *rvd = spa->spa_root_vdev;
772
773	oldguid = spa_guid(spa);
774
775	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
776	rvd->vdev_guid = *newguid;
777	rvd->vdev_guid_sum += (*newguid - oldguid);
778	vdev_config_dirty(rvd);
779	spa_config_exit(spa, SCL_STATE, FTAG);
780
781	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
782	    oldguid, *newguid);
783}
784
785/*
786 * Change the GUID for the pool.  This is done so that we can later
787 * re-import a pool built from a clone of our own vdevs.  We will modify
788 * the root vdev's guid, our own pool guid, and then mark all of our
789 * vdevs dirty.  Note that we must make sure that all our vdevs are
790 * online when we do this, or else any vdevs that weren't present
791 * would be orphaned from our pool.  We are also going to issue a
792 * sysevent to update any watchers.
793 */
794int
795spa_change_guid(spa_t *spa)
796{
797	int error;
798	uint64_t guid;
799
800	mutex_enter(&spa->spa_vdev_top_lock);
801	mutex_enter(&spa_namespace_lock);
802	guid = spa_generate_guid(NULL);
803
804	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
805	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
806
807	if (error == 0) {
808		spa_config_sync(spa, B_FALSE, B_TRUE);
809		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
810	}
811
812	mutex_exit(&spa_namespace_lock);
813	mutex_exit(&spa->spa_vdev_top_lock);
814
815	return (error);
816}
817
818/*
819 * ==========================================================================
820 * SPA state manipulation (open/create/destroy/import/export)
821 * ==========================================================================
822 */
823
824static int
825spa_error_entry_compare(const void *a, const void *b)
826{
827	spa_error_entry_t *sa = (spa_error_entry_t *)a;
828	spa_error_entry_t *sb = (spa_error_entry_t *)b;
829	int ret;
830
831	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
832	    sizeof (zbookmark_phys_t));
833
834	if (ret < 0)
835		return (-1);
836	else if (ret > 0)
837		return (1);
838	else
839		return (0);
840}
841
842/*
843 * Utility function which retrieves copies of the current logs and
844 * re-initializes them in the process.
845 */
846void
847spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
848{
849	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
850
851	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
852	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
853
854	avl_create(&spa->spa_errlist_scrub,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857	avl_create(&spa->spa_errlist_last,
858	    spa_error_entry_compare, sizeof (spa_error_entry_t),
859	    offsetof(spa_error_entry_t, se_avl));
860}
861
862static void
863spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
864{
865	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
866	enum zti_modes mode = ztip->zti_mode;
867	uint_t value = ztip->zti_value;
868	uint_t count = ztip->zti_count;
869	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
870	char name[32];
871	uint_t flags = 0;
872	boolean_t batch = B_FALSE;
873
874	if (mode == ZTI_MODE_NULL) {
875		tqs->stqs_count = 0;
876		tqs->stqs_taskq = NULL;
877		return;
878	}
879
880	ASSERT3U(count, >, 0);
881
882	tqs->stqs_count = count;
883	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
884
885	switch (mode) {
886	case ZTI_MODE_FIXED:
887		ASSERT3U(value, >=, 1);
888		value = MAX(value, 1);
889		break;
890
891	case ZTI_MODE_BATCH:
892		batch = B_TRUE;
893		flags |= TASKQ_THREADS_CPU_PCT;
894		value = zio_taskq_batch_pct;
895		break;
896
897	default:
898		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
899		    "spa_activate()",
900		    zio_type_name[t], zio_taskq_types[q], mode, value);
901		break;
902	}
903
904	for (uint_t i = 0; i < count; i++) {
905		taskq_t *tq;
906
907		if (count > 1) {
908			(void) snprintf(name, sizeof (name), "%s_%s_%u",
909			    zio_type_name[t], zio_taskq_types[q], i);
910		} else {
911			(void) snprintf(name, sizeof (name), "%s_%s",
912			    zio_type_name[t], zio_taskq_types[q]);
913		}
914
915#ifdef SYSDC
916		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
917			if (batch)
918				flags |= TASKQ_DC_BATCH;
919
920			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
921			    spa->spa_proc, zio_taskq_basedc, flags);
922		} else {
923#endif
924			pri_t pri = maxclsyspri;
925			/*
926			 * The write issue taskq can be extremely CPU
927			 * intensive.  Run it at slightly lower priority
928			 * than the other taskqs.
929			 */
930			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
931				pri++;
932
933			tq = taskq_create_proc(name, value, pri, 50,
934			    INT_MAX, spa->spa_proc, flags);
935#ifdef SYSDC
936		}
937#endif
938
939		tqs->stqs_taskq[i] = tq;
940	}
941}
942
943static void
944spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945{
946	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947
948	if (tqs->stqs_taskq == NULL) {
949		ASSERT0(tqs->stqs_count);
950		return;
951	}
952
953	for (uint_t i = 0; i < tqs->stqs_count; i++) {
954		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
955		taskq_destroy(tqs->stqs_taskq[i]);
956	}
957
958	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
959	tqs->stqs_taskq = NULL;
960}
961
962/*
963 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
964 * Note that a type may have multiple discrete taskqs to avoid lock contention
965 * on the taskq itself. In that case we choose which taskq at random by using
966 * the low bits of gethrtime().
967 */
968void
969spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
970    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
971{
972	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973	taskq_t *tq;
974
975	ASSERT3P(tqs->stqs_taskq, !=, NULL);
976	ASSERT3U(tqs->stqs_count, !=, 0);
977
978	if (tqs->stqs_count == 1) {
979		tq = tqs->stqs_taskq[0];
980	} else {
981#ifdef _KERNEL
982		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
983#else
984		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
985#endif
986	}
987
988	taskq_dispatch_ent(tq, func, arg, flags, ent);
989}
990
991static void
992spa_create_zio_taskqs(spa_t *spa)
993{
994	for (int t = 0; t < ZIO_TYPES; t++) {
995		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
996			spa_taskqs_init(spa, t, q);
997		}
998	}
999}
1000
1001#ifdef _KERNEL
1002#ifdef SPA_PROCESS
1003static void
1004spa_thread(void *arg)
1005{
1006	callb_cpr_t cprinfo;
1007
1008	spa_t *spa = arg;
1009	user_t *pu = PTOU(curproc);
1010
1011	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1012	    spa->spa_name);
1013
1014	ASSERT(curproc != &p0);
1015	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1016	    "zpool-%s", spa->spa_name);
1017	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1018
1019#ifdef PSRSET_BIND
1020	/* bind this thread to the requested psrset */
1021	if (zio_taskq_psrset_bind != PS_NONE) {
1022		pool_lock();
1023		mutex_enter(&cpu_lock);
1024		mutex_enter(&pidlock);
1025		mutex_enter(&curproc->p_lock);
1026
1027		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1028		    0, NULL, NULL) == 0)  {
1029			curthread->t_bind_pset = zio_taskq_psrset_bind;
1030		} else {
1031			cmn_err(CE_WARN,
1032			    "Couldn't bind process for zfs pool \"%s\" to "
1033			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1034		}
1035
1036		mutex_exit(&curproc->p_lock);
1037		mutex_exit(&pidlock);
1038		mutex_exit(&cpu_lock);
1039		pool_unlock();
1040	}
1041#endif
1042
1043#ifdef SYSDC
1044	if (zio_taskq_sysdc) {
1045		sysdc_thread_enter(curthread, 100, 0);
1046	}
1047#endif
1048
1049	spa->spa_proc = curproc;
1050	spa->spa_did = curthread->t_did;
1051
1052	spa_create_zio_taskqs(spa);
1053
1054	mutex_enter(&spa->spa_proc_lock);
1055	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1056
1057	spa->spa_proc_state = SPA_PROC_ACTIVE;
1058	cv_broadcast(&spa->spa_proc_cv);
1059
1060	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1061	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1062		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1063	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1064
1065	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1066	spa->spa_proc_state = SPA_PROC_GONE;
1067	spa->spa_proc = &p0;
1068	cv_broadcast(&spa->spa_proc_cv);
1069	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1070
1071	mutex_enter(&curproc->p_lock);
1072	lwp_exit();
1073}
1074#endif	/* SPA_PROCESS */
1075#endif
1076
1077/*
1078 * Activate an uninitialized pool.
1079 */
1080static void
1081spa_activate(spa_t *spa, int mode)
1082{
1083	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1084
1085	spa->spa_state = POOL_STATE_ACTIVE;
1086	spa->spa_mode = mode;
1087
1088	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090
1091	/* Try to create a covering process */
1092	mutex_enter(&spa->spa_proc_lock);
1093	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1094	ASSERT(spa->spa_proc == &p0);
1095	spa->spa_did = 0;
1096
1097#ifdef SPA_PROCESS
1098	/* Only create a process if we're going to be around a while. */
1099	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1100		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1101		    NULL, 0) == 0) {
1102			spa->spa_proc_state = SPA_PROC_CREATED;
1103			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1104				cv_wait(&spa->spa_proc_cv,
1105				    &spa->spa_proc_lock);
1106			}
1107			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1108			ASSERT(spa->spa_proc != &p0);
1109			ASSERT(spa->spa_did != 0);
1110		} else {
1111#ifdef _KERNEL
1112			cmn_err(CE_WARN,
1113			    "Couldn't create process for zfs pool \"%s\"\n",
1114			    spa->spa_name);
1115#endif
1116		}
1117	}
1118#endif	/* SPA_PROCESS */
1119	mutex_exit(&spa->spa_proc_lock);
1120
1121	/* If we didn't create a process, we need to create our taskqs. */
1122	ASSERT(spa->spa_proc == &p0);
1123	if (spa->spa_proc == &p0) {
1124		spa_create_zio_taskqs(spa);
1125	}
1126
1127	/*
1128	 * Start TRIM thread.
1129	 */
1130	trim_thread_create(spa);
1131
1132	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1133	    offsetof(vdev_t, vdev_config_dirty_node));
1134	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1135	    offsetof(objset_t, os_evicting_node));
1136	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1137	    offsetof(vdev_t, vdev_state_dirty_node));
1138
1139	txg_list_create(&spa->spa_vdev_txg_list,
1140	    offsetof(struct vdev, vdev_txg_node));
1141
1142	avl_create(&spa->spa_errlist_scrub,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145	avl_create(&spa->spa_errlist_last,
1146	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1147	    offsetof(spa_error_entry_t, se_avl));
1148}
1149
1150/*
1151 * Opposite of spa_activate().
1152 */
1153static void
1154spa_deactivate(spa_t *spa)
1155{
1156	ASSERT(spa->spa_sync_on == B_FALSE);
1157	ASSERT(spa->spa_dsl_pool == NULL);
1158	ASSERT(spa->spa_root_vdev == NULL);
1159	ASSERT(spa->spa_async_zio_root == NULL);
1160	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1161
1162	/*
1163	 * Stop TRIM thread in case spa_unload() wasn't called directly
1164	 * before spa_deactivate().
1165	 */
1166	trim_thread_destroy(spa);
1167
1168	spa_evicting_os_wait(spa);
1169
1170	txg_list_destroy(&spa->spa_vdev_txg_list);
1171
1172	list_destroy(&spa->spa_config_dirty_list);
1173	list_destroy(&spa->spa_evicting_os_list);
1174	list_destroy(&spa->spa_state_dirty_list);
1175
1176	for (int t = 0; t < ZIO_TYPES; t++) {
1177		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1178			spa_taskqs_fini(spa, t, q);
1179		}
1180	}
1181
1182	metaslab_class_destroy(spa->spa_normal_class);
1183	spa->spa_normal_class = NULL;
1184
1185	metaslab_class_destroy(spa->spa_log_class);
1186	spa->spa_log_class = NULL;
1187
1188	/*
1189	 * If this was part of an import or the open otherwise failed, we may
1190	 * still have errors left in the queues.  Empty them just in case.
1191	 */
1192	spa_errlog_drain(spa);
1193
1194	avl_destroy(&spa->spa_errlist_scrub);
1195	avl_destroy(&spa->spa_errlist_last);
1196
1197	spa->spa_state = POOL_STATE_UNINITIALIZED;
1198
1199	mutex_enter(&spa->spa_proc_lock);
1200	if (spa->spa_proc_state != SPA_PROC_NONE) {
1201		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1202		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1203		cv_broadcast(&spa->spa_proc_cv);
1204		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1205			ASSERT(spa->spa_proc != &p0);
1206			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1207		}
1208		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1209		spa->spa_proc_state = SPA_PROC_NONE;
1210	}
1211	ASSERT(spa->spa_proc == &p0);
1212	mutex_exit(&spa->spa_proc_lock);
1213
1214#ifdef SPA_PROCESS
1215	/*
1216	 * We want to make sure spa_thread() has actually exited the ZFS
1217	 * module, so that the module can't be unloaded out from underneath
1218	 * it.
1219	 */
1220	if (spa->spa_did != 0) {
1221		thread_join(spa->spa_did);
1222		spa->spa_did = 0;
1223	}
1224#endif	/* SPA_PROCESS */
1225}
1226
1227/*
1228 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1229 * will create all the necessary vdevs in the appropriate layout, with each vdev
1230 * in the CLOSED state.  This will prep the pool before open/creation/import.
1231 * All vdev validation is done by the vdev_alloc() routine.
1232 */
1233static int
1234spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1235    uint_t id, int atype)
1236{
1237	nvlist_t **child;
1238	uint_t children;
1239	int error;
1240
1241	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1242		return (error);
1243
1244	if ((*vdp)->vdev_ops->vdev_op_leaf)
1245		return (0);
1246
1247	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1248	    &child, &children);
1249
1250	if (error == ENOENT)
1251		return (0);
1252
1253	if (error) {
1254		vdev_free(*vdp);
1255		*vdp = NULL;
1256		return (SET_ERROR(EINVAL));
1257	}
1258
1259	for (int c = 0; c < children; c++) {
1260		vdev_t *vd;
1261		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1262		    atype)) != 0) {
1263			vdev_free(*vdp);
1264			*vdp = NULL;
1265			return (error);
1266		}
1267	}
1268
1269	ASSERT(*vdp != NULL);
1270
1271	return (0);
1272}
1273
1274/*
1275 * Opposite of spa_load().
1276 */
1277static void
1278spa_unload(spa_t *spa)
1279{
1280	int i;
1281
1282	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1283
1284	/*
1285	 * Stop TRIM thread.
1286	 */
1287	trim_thread_destroy(spa);
1288
1289	/*
1290	 * Stop async tasks.
1291	 */
1292	spa_async_suspend(spa);
1293
1294	/*
1295	 * Stop syncing.
1296	 */
1297	if (spa->spa_sync_on) {
1298		txg_sync_stop(spa->spa_dsl_pool);
1299		spa->spa_sync_on = B_FALSE;
1300	}
1301
1302	/*
1303	 * Wait for any outstanding async I/O to complete.
1304	 */
1305	if (spa->spa_async_zio_root != NULL) {
1306		for (int i = 0; i < max_ncpus; i++)
1307			(void) zio_wait(spa->spa_async_zio_root[i]);
1308		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1309		spa->spa_async_zio_root = NULL;
1310	}
1311
1312	bpobj_close(&spa->spa_deferred_bpobj);
1313
1314	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1315
1316	/*
1317	 * Close all vdevs.
1318	 */
1319	if (spa->spa_root_vdev)
1320		vdev_free(spa->spa_root_vdev);
1321	ASSERT(spa->spa_root_vdev == NULL);
1322
1323	/*
1324	 * Close the dsl pool.
1325	 */
1326	if (spa->spa_dsl_pool) {
1327		dsl_pool_close(spa->spa_dsl_pool);
1328		spa->spa_dsl_pool = NULL;
1329		spa->spa_meta_objset = NULL;
1330	}
1331
1332	ddt_unload(spa);
1333
1334
1335	/*
1336	 * Drop and purge level 2 cache
1337	 */
1338	spa_l2cache_drop(spa);
1339
1340	for (i = 0; i < spa->spa_spares.sav_count; i++)
1341		vdev_free(spa->spa_spares.sav_vdevs[i]);
1342	if (spa->spa_spares.sav_vdevs) {
1343		kmem_free(spa->spa_spares.sav_vdevs,
1344		    spa->spa_spares.sav_count * sizeof (void *));
1345		spa->spa_spares.sav_vdevs = NULL;
1346	}
1347	if (spa->spa_spares.sav_config) {
1348		nvlist_free(spa->spa_spares.sav_config);
1349		spa->spa_spares.sav_config = NULL;
1350	}
1351	spa->spa_spares.sav_count = 0;
1352
1353	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1354		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1355		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1356	}
1357	if (spa->spa_l2cache.sav_vdevs) {
1358		kmem_free(spa->spa_l2cache.sav_vdevs,
1359		    spa->spa_l2cache.sav_count * sizeof (void *));
1360		spa->spa_l2cache.sav_vdevs = NULL;
1361	}
1362	if (spa->spa_l2cache.sav_config) {
1363		nvlist_free(spa->spa_l2cache.sav_config);
1364		spa->spa_l2cache.sav_config = NULL;
1365	}
1366	spa->spa_l2cache.sav_count = 0;
1367
1368	spa->spa_async_suspended = 0;
1369
1370	if (spa->spa_comment != NULL) {
1371		spa_strfree(spa->spa_comment);
1372		spa->spa_comment = NULL;
1373	}
1374
1375	spa_config_exit(spa, SCL_ALL, FTAG);
1376}
1377
1378/*
1379 * Load (or re-load) the current list of vdevs describing the active spares for
1380 * this pool.  When this is called, we have some form of basic information in
1381 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1382 * then re-generate a more complete list including status information.
1383 */
1384static void
1385spa_load_spares(spa_t *spa)
1386{
1387	nvlist_t **spares;
1388	uint_t nspares;
1389	int i;
1390	vdev_t *vd, *tvd;
1391
1392	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1393
1394	/*
1395	 * First, close and free any existing spare vdevs.
1396	 */
1397	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1398		vd = spa->spa_spares.sav_vdevs[i];
1399
1400		/* Undo the call to spa_activate() below */
1401		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1402		    B_FALSE)) != NULL && tvd->vdev_isspare)
1403			spa_spare_remove(tvd);
1404		vdev_close(vd);
1405		vdev_free(vd);
1406	}
1407
1408	if (spa->spa_spares.sav_vdevs)
1409		kmem_free(spa->spa_spares.sav_vdevs,
1410		    spa->spa_spares.sav_count * sizeof (void *));
1411
1412	if (spa->spa_spares.sav_config == NULL)
1413		nspares = 0;
1414	else
1415		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1416		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1417
1418	spa->spa_spares.sav_count = (int)nspares;
1419	spa->spa_spares.sav_vdevs = NULL;
1420
1421	if (nspares == 0)
1422		return;
1423
1424	/*
1425	 * Construct the array of vdevs, opening them to get status in the
1426	 * process.   For each spare, there is potentially two different vdev_t
1427	 * structures associated with it: one in the list of spares (used only
1428	 * for basic validation purposes) and one in the active vdev
1429	 * configuration (if it's spared in).  During this phase we open and
1430	 * validate each vdev on the spare list.  If the vdev also exists in the
1431	 * active configuration, then we also mark this vdev as an active spare.
1432	 */
1433	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1434	    KM_SLEEP);
1435	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1437		    VDEV_ALLOC_SPARE) == 0);
1438		ASSERT(vd != NULL);
1439
1440		spa->spa_spares.sav_vdevs[i] = vd;
1441
1442		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1443		    B_FALSE)) != NULL) {
1444			if (!tvd->vdev_isspare)
1445				spa_spare_add(tvd);
1446
1447			/*
1448			 * We only mark the spare active if we were successfully
1449			 * able to load the vdev.  Otherwise, importing a pool
1450			 * with a bad active spare would result in strange
1451			 * behavior, because multiple pool would think the spare
1452			 * is actively in use.
1453			 *
1454			 * There is a vulnerability here to an equally bizarre
1455			 * circumstance, where a dead active spare is later
1456			 * brought back to life (onlined or otherwise).  Given
1457			 * the rarity of this scenario, and the extra complexity
1458			 * it adds, we ignore the possibility.
1459			 */
1460			if (!vdev_is_dead(tvd))
1461				spa_spare_activate(tvd);
1462		}
1463
1464		vd->vdev_top = vd;
1465		vd->vdev_aux = &spa->spa_spares;
1466
1467		if (vdev_open(vd) != 0)
1468			continue;
1469
1470		if (vdev_validate_aux(vd) == 0)
1471			spa_spare_add(vd);
1472	}
1473
1474	/*
1475	 * Recompute the stashed list of spares, with status information
1476	 * this time.
1477	 */
1478	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1479	    DATA_TYPE_NVLIST_ARRAY) == 0);
1480
1481	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1482	    KM_SLEEP);
1483	for (i = 0; i < spa->spa_spares.sav_count; i++)
1484		spares[i] = vdev_config_generate(spa,
1485		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1486	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1487	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		nvlist_free(spares[i]);
1490	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1491}
1492
1493/*
1494 * Load (or re-load) the current list of vdevs describing the active l2cache for
1495 * this pool.  When this is called, we have some form of basic information in
1496 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1497 * then re-generate a more complete list including status information.
1498 * Devices which are already active have their details maintained, and are
1499 * not re-opened.
1500 */
1501static void
1502spa_load_l2cache(spa_t *spa)
1503{
1504	nvlist_t **l2cache;
1505	uint_t nl2cache;
1506	int i, j, oldnvdevs;
1507	uint64_t guid;
1508	vdev_t *vd, **oldvdevs, **newvdevs;
1509	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1510
1511	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1512
1513	if (sav->sav_config != NULL) {
1514		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1515		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1516		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1517	} else {
1518		nl2cache = 0;
1519		newvdevs = NULL;
1520	}
1521
1522	oldvdevs = sav->sav_vdevs;
1523	oldnvdevs = sav->sav_count;
1524	sav->sav_vdevs = NULL;
1525	sav->sav_count = 0;
1526
1527	/*
1528	 * Process new nvlist of vdevs.
1529	 */
1530	for (i = 0; i < nl2cache; i++) {
1531		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1532		    &guid) == 0);
1533
1534		newvdevs[i] = NULL;
1535		for (j = 0; j < oldnvdevs; j++) {
1536			vd = oldvdevs[j];
1537			if (vd != NULL && guid == vd->vdev_guid) {
1538				/*
1539				 * Retain previous vdev for add/remove ops.
1540				 */
1541				newvdevs[i] = vd;
1542				oldvdevs[j] = NULL;
1543				break;
1544			}
1545		}
1546
1547		if (newvdevs[i] == NULL) {
1548			/*
1549			 * Create new vdev
1550			 */
1551			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1552			    VDEV_ALLOC_L2CACHE) == 0);
1553			ASSERT(vd != NULL);
1554			newvdevs[i] = vd;
1555
1556			/*
1557			 * Commit this vdev as an l2cache device,
1558			 * even if it fails to open.
1559			 */
1560			spa_l2cache_add(vd);
1561
1562			vd->vdev_top = vd;
1563			vd->vdev_aux = sav;
1564
1565			spa_l2cache_activate(vd);
1566
1567			if (vdev_open(vd) != 0)
1568				continue;
1569
1570			(void) vdev_validate_aux(vd);
1571
1572			if (!vdev_is_dead(vd))
1573				l2arc_add_vdev(spa, vd);
1574		}
1575	}
1576
1577	/*
1578	 * Purge vdevs that were dropped
1579	 */
1580	for (i = 0; i < oldnvdevs; i++) {
1581		uint64_t pool;
1582
1583		vd = oldvdevs[i];
1584		if (vd != NULL) {
1585			ASSERT(vd->vdev_isl2cache);
1586
1587			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1588			    pool != 0ULL && l2arc_vdev_present(vd))
1589				l2arc_remove_vdev(vd);
1590			vdev_clear_stats(vd);
1591			vdev_free(vd);
1592		}
1593	}
1594
1595	if (oldvdevs)
1596		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1597
1598	if (sav->sav_config == NULL)
1599		goto out;
1600
1601	sav->sav_vdevs = newvdevs;
1602	sav->sav_count = (int)nl2cache;
1603
1604	/*
1605	 * Recompute the stashed list of l2cache devices, with status
1606	 * information this time.
1607	 */
1608	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1609	    DATA_TYPE_NVLIST_ARRAY) == 0);
1610
1611	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1612	for (i = 0; i < sav->sav_count; i++)
1613		l2cache[i] = vdev_config_generate(spa,
1614		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1615	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1616	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1617out:
1618	for (i = 0; i < sav->sav_count; i++)
1619		nvlist_free(l2cache[i]);
1620	if (sav->sav_count)
1621		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1622}
1623
1624static int
1625load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1626{
1627	dmu_buf_t *db;
1628	char *packed = NULL;
1629	size_t nvsize = 0;
1630	int error;
1631	*value = NULL;
1632
1633	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1634	if (error != 0)
1635		return (error);
1636
1637	nvsize = *(uint64_t *)db->db_data;
1638	dmu_buf_rele(db, FTAG);
1639
1640	packed = kmem_alloc(nvsize, KM_SLEEP);
1641	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1642	    DMU_READ_PREFETCH);
1643	if (error == 0)
1644		error = nvlist_unpack(packed, nvsize, value, 0);
1645	kmem_free(packed, nvsize);
1646
1647	return (error);
1648}
1649
1650/*
1651 * Checks to see if the given vdev could not be opened, in which case we post a
1652 * sysevent to notify the autoreplace code that the device has been removed.
1653 */
1654static void
1655spa_check_removed(vdev_t *vd)
1656{
1657	for (int c = 0; c < vd->vdev_children; c++)
1658		spa_check_removed(vd->vdev_child[c]);
1659
1660	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1661	    !vd->vdev_ishole) {
1662		zfs_post_autoreplace(vd->vdev_spa, vd);
1663		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1664	}
1665}
1666
1667/*
1668 * Validate the current config against the MOS config
1669 */
1670static boolean_t
1671spa_config_valid(spa_t *spa, nvlist_t *config)
1672{
1673	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1674	nvlist_t *nv;
1675
1676	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1677
1678	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1679	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1680
1681	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1682
1683	/*
1684	 * If we're doing a normal import, then build up any additional
1685	 * diagnostic information about missing devices in this config.
1686	 * We'll pass this up to the user for further processing.
1687	 */
1688	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1689		nvlist_t **child, *nv;
1690		uint64_t idx = 0;
1691
1692		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1693		    KM_SLEEP);
1694		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1695
1696		for (int c = 0; c < rvd->vdev_children; c++) {
1697			vdev_t *tvd = rvd->vdev_child[c];
1698			vdev_t *mtvd  = mrvd->vdev_child[c];
1699
1700			if (tvd->vdev_ops == &vdev_missing_ops &&
1701			    mtvd->vdev_ops != &vdev_missing_ops &&
1702			    mtvd->vdev_islog)
1703				child[idx++] = vdev_config_generate(spa, mtvd,
1704				    B_FALSE, 0);
1705		}
1706
1707		if (idx) {
1708			VERIFY(nvlist_add_nvlist_array(nv,
1709			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1710			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1711			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1712
1713			for (int i = 0; i < idx; i++)
1714				nvlist_free(child[i]);
1715		}
1716		nvlist_free(nv);
1717		kmem_free(child, rvd->vdev_children * sizeof (char **));
1718	}
1719
1720	/*
1721	 * Compare the root vdev tree with the information we have
1722	 * from the MOS config (mrvd). Check each top-level vdev
1723	 * with the corresponding MOS config top-level (mtvd).
1724	 */
1725	for (int c = 0; c < rvd->vdev_children; c++) {
1726		vdev_t *tvd = rvd->vdev_child[c];
1727		vdev_t *mtvd  = mrvd->vdev_child[c];
1728
1729		/*
1730		 * Resolve any "missing" vdevs in the current configuration.
1731		 * If we find that the MOS config has more accurate information
1732		 * about the top-level vdev then use that vdev instead.
1733		 */
1734		if (tvd->vdev_ops == &vdev_missing_ops &&
1735		    mtvd->vdev_ops != &vdev_missing_ops) {
1736
1737			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1738				continue;
1739
1740			/*
1741			 * Device specific actions.
1742			 */
1743			if (mtvd->vdev_islog) {
1744				spa_set_log_state(spa, SPA_LOG_CLEAR);
1745			} else {
1746				/*
1747				 * XXX - once we have 'readonly' pool
1748				 * support we should be able to handle
1749				 * missing data devices by transitioning
1750				 * the pool to readonly.
1751				 */
1752				continue;
1753			}
1754
1755			/*
1756			 * Swap the missing vdev with the data we were
1757			 * able to obtain from the MOS config.
1758			 */
1759			vdev_remove_child(rvd, tvd);
1760			vdev_remove_child(mrvd, mtvd);
1761
1762			vdev_add_child(rvd, mtvd);
1763			vdev_add_child(mrvd, tvd);
1764
1765			spa_config_exit(spa, SCL_ALL, FTAG);
1766			vdev_load(mtvd);
1767			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1768
1769			vdev_reopen(rvd);
1770		} else if (mtvd->vdev_islog) {
1771			/*
1772			 * Load the slog device's state from the MOS config
1773			 * since it's possible that the label does not
1774			 * contain the most up-to-date information.
1775			 */
1776			vdev_load_log_state(tvd, mtvd);
1777			vdev_reopen(tvd);
1778		}
1779	}
1780	vdev_free(mrvd);
1781	spa_config_exit(spa, SCL_ALL, FTAG);
1782
1783	/*
1784	 * Ensure we were able to validate the config.
1785	 */
1786	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1787}
1788
1789/*
1790 * Check for missing log devices
1791 */
1792static boolean_t
1793spa_check_logs(spa_t *spa)
1794{
1795	boolean_t rv = B_FALSE;
1796	dsl_pool_t *dp = spa_get_dsl(spa);
1797
1798	switch (spa->spa_log_state) {
1799	case SPA_LOG_MISSING:
1800		/* need to recheck in case slog has been restored */
1801	case SPA_LOG_UNKNOWN:
1802		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1803		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1804		if (rv)
1805			spa_set_log_state(spa, SPA_LOG_MISSING);
1806		break;
1807	}
1808	return (rv);
1809}
1810
1811static boolean_t
1812spa_passivate_log(spa_t *spa)
1813{
1814	vdev_t *rvd = spa->spa_root_vdev;
1815	boolean_t slog_found = B_FALSE;
1816
1817	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1818
1819	if (!spa_has_slogs(spa))
1820		return (B_FALSE);
1821
1822	for (int c = 0; c < rvd->vdev_children; c++) {
1823		vdev_t *tvd = rvd->vdev_child[c];
1824		metaslab_group_t *mg = tvd->vdev_mg;
1825
1826		if (tvd->vdev_islog) {
1827			metaslab_group_passivate(mg);
1828			slog_found = B_TRUE;
1829		}
1830	}
1831
1832	return (slog_found);
1833}
1834
1835static void
1836spa_activate_log(spa_t *spa)
1837{
1838	vdev_t *rvd = spa->spa_root_vdev;
1839
1840	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1841
1842	for (int c = 0; c < rvd->vdev_children; c++) {
1843		vdev_t *tvd = rvd->vdev_child[c];
1844		metaslab_group_t *mg = tvd->vdev_mg;
1845
1846		if (tvd->vdev_islog)
1847			metaslab_group_activate(mg);
1848	}
1849}
1850
1851int
1852spa_offline_log(spa_t *spa)
1853{
1854	int error;
1855
1856	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1857	    NULL, DS_FIND_CHILDREN);
1858	if (error == 0) {
1859		/*
1860		 * We successfully offlined the log device, sync out the
1861		 * current txg so that the "stubby" block can be removed
1862		 * by zil_sync().
1863		 */
1864		txg_wait_synced(spa->spa_dsl_pool, 0);
1865	}
1866	return (error);
1867}
1868
1869static void
1870spa_aux_check_removed(spa_aux_vdev_t *sav)
1871{
1872	int i;
1873
1874	for (i = 0; i < sav->sav_count; i++)
1875		spa_check_removed(sav->sav_vdevs[i]);
1876}
1877
1878void
1879spa_claim_notify(zio_t *zio)
1880{
1881	spa_t *spa = zio->io_spa;
1882
1883	if (zio->io_error)
1884		return;
1885
1886	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1887	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1888		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1889	mutex_exit(&spa->spa_props_lock);
1890}
1891
1892typedef struct spa_load_error {
1893	uint64_t	sle_meta_count;
1894	uint64_t	sle_data_count;
1895} spa_load_error_t;
1896
1897static void
1898spa_load_verify_done(zio_t *zio)
1899{
1900	blkptr_t *bp = zio->io_bp;
1901	spa_load_error_t *sle = zio->io_private;
1902	dmu_object_type_t type = BP_GET_TYPE(bp);
1903	int error = zio->io_error;
1904	spa_t *spa = zio->io_spa;
1905
1906	if (error) {
1907		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1908		    type != DMU_OT_INTENT_LOG)
1909			atomic_inc_64(&sle->sle_meta_count);
1910		else
1911			atomic_inc_64(&sle->sle_data_count);
1912	}
1913	zio_data_buf_free(zio->io_data, zio->io_size);
1914
1915	mutex_enter(&spa->spa_scrub_lock);
1916	spa->spa_scrub_inflight--;
1917	cv_broadcast(&spa->spa_scrub_io_cv);
1918	mutex_exit(&spa->spa_scrub_lock);
1919}
1920
1921/*
1922 * Maximum number of concurrent scrub i/os to create while verifying
1923 * a pool while importing it.
1924 */
1925int spa_load_verify_maxinflight = 10000;
1926boolean_t spa_load_verify_metadata = B_TRUE;
1927boolean_t spa_load_verify_data = B_TRUE;
1928
1929SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1930    &spa_load_verify_maxinflight, 0,
1931    "Maximum number of concurrent scrub I/Os to create while verifying a "
1932    "pool while importing it");
1933
1934SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1935    &spa_load_verify_metadata, 0,
1936    "Check metadata on import?");
1937
1938SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1939    &spa_load_verify_data, 0,
1940    "Check user data on import?");
1941
1942/*ARGSUSED*/
1943static int
1944spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1945    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1946{
1947	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1948		return (0);
1949	/*
1950	 * Note: normally this routine will not be called if
1951	 * spa_load_verify_metadata is not set.  However, it may be useful
1952	 * to manually set the flag after the traversal has begun.
1953	 */
1954	if (!spa_load_verify_metadata)
1955		return (0);
1956	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1957		return (0);
1958
1959	zio_t *rio = arg;
1960	size_t size = BP_GET_PSIZE(bp);
1961	void *data = zio_data_buf_alloc(size);
1962
1963	mutex_enter(&spa->spa_scrub_lock);
1964	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1965		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1966	spa->spa_scrub_inflight++;
1967	mutex_exit(&spa->spa_scrub_lock);
1968
1969	zio_nowait(zio_read(rio, spa, bp, data, size,
1970	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1971	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1972	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1973	return (0);
1974}
1975
1976/* ARGSUSED */
1977int
1978verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1979{
1980	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1981		return (SET_ERROR(ENAMETOOLONG));
1982
1983	return (0);
1984}
1985
1986static int
1987spa_load_verify(spa_t *spa)
1988{
1989	zio_t *rio;
1990	spa_load_error_t sle = { 0 };
1991	zpool_rewind_policy_t policy;
1992	boolean_t verify_ok = B_FALSE;
1993	int error = 0;
1994
1995	zpool_get_rewind_policy(spa->spa_config, &policy);
1996
1997	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1998		return (0);
1999
2000	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2001	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2002	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2003	    DS_FIND_CHILDREN);
2004	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2005	if (error != 0)
2006		return (error);
2007
2008	rio = zio_root(spa, NULL, &sle,
2009	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2010
2011	if (spa_load_verify_metadata) {
2012		error = traverse_pool(spa, spa->spa_verify_min_txg,
2013		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2014		    spa_load_verify_cb, rio);
2015	}
2016
2017	(void) zio_wait(rio);
2018
2019	spa->spa_load_meta_errors = sle.sle_meta_count;
2020	spa->spa_load_data_errors = sle.sle_data_count;
2021
2022	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2023	    sle.sle_data_count <= policy.zrp_maxdata) {
2024		int64_t loss = 0;
2025
2026		verify_ok = B_TRUE;
2027		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2028		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2029
2030		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2031		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2032		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2033		VERIFY(nvlist_add_int64(spa->spa_load_info,
2034		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2035		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2036		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2037	} else {
2038		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2039	}
2040
2041	if (error) {
2042		if (error != ENXIO && error != EIO)
2043			error = SET_ERROR(EIO);
2044		return (error);
2045	}
2046
2047	return (verify_ok ? 0 : EIO);
2048}
2049
2050/*
2051 * Find a value in the pool props object.
2052 */
2053static void
2054spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2055{
2056	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2057	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2058}
2059
2060/*
2061 * Find a value in the pool directory object.
2062 */
2063static int
2064spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2065{
2066	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2067	    name, sizeof (uint64_t), 1, val));
2068}
2069
2070static int
2071spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2072{
2073	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2074	return (err);
2075}
2076
2077/*
2078 * Fix up config after a partly-completed split.  This is done with the
2079 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2080 * pool have that entry in their config, but only the splitting one contains
2081 * a list of all the guids of the vdevs that are being split off.
2082 *
2083 * This function determines what to do with that list: either rejoin
2084 * all the disks to the pool, or complete the splitting process.  To attempt
2085 * the rejoin, each disk that is offlined is marked online again, and
2086 * we do a reopen() call.  If the vdev label for every disk that was
2087 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2088 * then we call vdev_split() on each disk, and complete the split.
2089 *
2090 * Otherwise we leave the config alone, with all the vdevs in place in
2091 * the original pool.
2092 */
2093static void
2094spa_try_repair(spa_t *spa, nvlist_t *config)
2095{
2096	uint_t extracted;
2097	uint64_t *glist;
2098	uint_t i, gcount;
2099	nvlist_t *nvl;
2100	vdev_t **vd;
2101	boolean_t attempt_reopen;
2102
2103	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2104		return;
2105
2106	/* check that the config is complete */
2107	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2108	    &glist, &gcount) != 0)
2109		return;
2110
2111	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2112
2113	/* attempt to online all the vdevs & validate */
2114	attempt_reopen = B_TRUE;
2115	for (i = 0; i < gcount; i++) {
2116		if (glist[i] == 0)	/* vdev is hole */
2117			continue;
2118
2119		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2120		if (vd[i] == NULL) {
2121			/*
2122			 * Don't bother attempting to reopen the disks;
2123			 * just do the split.
2124			 */
2125			attempt_reopen = B_FALSE;
2126		} else {
2127			/* attempt to re-online it */
2128			vd[i]->vdev_offline = B_FALSE;
2129		}
2130	}
2131
2132	if (attempt_reopen) {
2133		vdev_reopen(spa->spa_root_vdev);
2134
2135		/* check each device to see what state it's in */
2136		for (extracted = 0, i = 0; i < gcount; i++) {
2137			if (vd[i] != NULL &&
2138			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2139				break;
2140			++extracted;
2141		}
2142	}
2143
2144	/*
2145	 * If every disk has been moved to the new pool, or if we never
2146	 * even attempted to look at them, then we split them off for
2147	 * good.
2148	 */
2149	if (!attempt_reopen || gcount == extracted) {
2150		for (i = 0; i < gcount; i++)
2151			if (vd[i] != NULL)
2152				vdev_split(vd[i]);
2153		vdev_reopen(spa->spa_root_vdev);
2154	}
2155
2156	kmem_free(vd, gcount * sizeof (vdev_t *));
2157}
2158
2159static int
2160spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2161    boolean_t mosconfig)
2162{
2163	nvlist_t *config = spa->spa_config;
2164	char *ereport = FM_EREPORT_ZFS_POOL;
2165	char *comment;
2166	int error;
2167	uint64_t pool_guid;
2168	nvlist_t *nvl;
2169
2170	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2171		return (SET_ERROR(EINVAL));
2172
2173	ASSERT(spa->spa_comment == NULL);
2174	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2175		spa->spa_comment = spa_strdup(comment);
2176
2177	/*
2178	 * Versioning wasn't explicitly added to the label until later, so if
2179	 * it's not present treat it as the initial version.
2180	 */
2181	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2182	    &spa->spa_ubsync.ub_version) != 0)
2183		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2184
2185	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2186	    &spa->spa_config_txg);
2187
2188	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2189	    spa_guid_exists(pool_guid, 0)) {
2190		error = SET_ERROR(EEXIST);
2191	} else {
2192		spa->spa_config_guid = pool_guid;
2193
2194		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2195		    &nvl) == 0) {
2196			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2197			    KM_SLEEP) == 0);
2198		}
2199
2200		nvlist_free(spa->spa_load_info);
2201		spa->spa_load_info = fnvlist_alloc();
2202
2203		gethrestime(&spa->spa_loaded_ts);
2204		error = spa_load_impl(spa, pool_guid, config, state, type,
2205		    mosconfig, &ereport);
2206	}
2207
2208	/*
2209	 * Don't count references from objsets that are already closed
2210	 * and are making their way through the eviction process.
2211	 */
2212	spa_evicting_os_wait(spa);
2213	spa->spa_minref = refcount_count(&spa->spa_refcount);
2214	if (error) {
2215		if (error != EEXIST) {
2216			spa->spa_loaded_ts.tv_sec = 0;
2217			spa->spa_loaded_ts.tv_nsec = 0;
2218		}
2219		if (error != EBADF) {
2220			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2221		}
2222	}
2223	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2224	spa->spa_ena = 0;
2225
2226	return (error);
2227}
2228
2229/*
2230 * Load an existing storage pool, using the pool's builtin spa_config as a
2231 * source of configuration information.
2232 */
2233static int
2234spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2235    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2236    char **ereport)
2237{
2238	int error = 0;
2239	nvlist_t *nvroot = NULL;
2240	nvlist_t *label;
2241	vdev_t *rvd;
2242	uberblock_t *ub = &spa->spa_uberblock;
2243	uint64_t children, config_cache_txg = spa->spa_config_txg;
2244	int orig_mode = spa->spa_mode;
2245	int parse;
2246	uint64_t obj;
2247	boolean_t missing_feat_write = B_FALSE;
2248
2249	/*
2250	 * If this is an untrusted config, access the pool in read-only mode.
2251	 * This prevents things like resilvering recently removed devices.
2252	 */
2253	if (!mosconfig)
2254		spa->spa_mode = FREAD;
2255
2256	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2257
2258	spa->spa_load_state = state;
2259
2260	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2261		return (SET_ERROR(EINVAL));
2262
2263	parse = (type == SPA_IMPORT_EXISTING ?
2264	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2265
2266	/*
2267	 * Create "The Godfather" zio to hold all async IOs
2268	 */
2269	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2270	    KM_SLEEP);
2271	for (int i = 0; i < max_ncpus; i++) {
2272		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2273		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2274		    ZIO_FLAG_GODFATHER);
2275	}
2276
2277	/*
2278	 * Parse the configuration into a vdev tree.  We explicitly set the
2279	 * value that will be returned by spa_version() since parsing the
2280	 * configuration requires knowing the version number.
2281	 */
2282	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2283	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2284	spa_config_exit(spa, SCL_ALL, FTAG);
2285
2286	if (error != 0)
2287		return (error);
2288
2289	ASSERT(spa->spa_root_vdev == rvd);
2290	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2291	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2292
2293	if (type != SPA_IMPORT_ASSEMBLE) {
2294		ASSERT(spa_guid(spa) == pool_guid);
2295	}
2296
2297	/*
2298	 * Try to open all vdevs, loading each label in the process.
2299	 */
2300	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2301	error = vdev_open(rvd);
2302	spa_config_exit(spa, SCL_ALL, FTAG);
2303	if (error != 0)
2304		return (error);
2305
2306	/*
2307	 * We need to validate the vdev labels against the configuration that
2308	 * we have in hand, which is dependent on the setting of mosconfig. If
2309	 * mosconfig is true then we're validating the vdev labels based on
2310	 * that config.  Otherwise, we're validating against the cached config
2311	 * (zpool.cache) that was read when we loaded the zfs module, and then
2312	 * later we will recursively call spa_load() and validate against
2313	 * the vdev config.
2314	 *
2315	 * If we're assembling a new pool that's been split off from an
2316	 * existing pool, the labels haven't yet been updated so we skip
2317	 * validation for now.
2318	 */
2319	if (type != SPA_IMPORT_ASSEMBLE) {
2320		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2321		error = vdev_validate(rvd, mosconfig);
2322		spa_config_exit(spa, SCL_ALL, FTAG);
2323
2324		if (error != 0)
2325			return (error);
2326
2327		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2328			return (SET_ERROR(ENXIO));
2329	}
2330
2331	/*
2332	 * Find the best uberblock.
2333	 */
2334	vdev_uberblock_load(rvd, ub, &label);
2335
2336	/*
2337	 * If we weren't able to find a single valid uberblock, return failure.
2338	 */
2339	if (ub->ub_txg == 0) {
2340		nvlist_free(label);
2341		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2342	}
2343
2344	/*
2345	 * If the pool has an unsupported version we can't open it.
2346	 */
2347	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2348		nvlist_free(label);
2349		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2350	}
2351
2352	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2353		nvlist_t *features;
2354
2355		/*
2356		 * If we weren't able to find what's necessary for reading the
2357		 * MOS in the label, return failure.
2358		 */
2359		if (label == NULL || nvlist_lookup_nvlist(label,
2360		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2361			nvlist_free(label);
2362			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2363			    ENXIO));
2364		}
2365
2366		/*
2367		 * Update our in-core representation with the definitive values
2368		 * from the label.
2369		 */
2370		nvlist_free(spa->spa_label_features);
2371		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2372	}
2373
2374	nvlist_free(label);
2375
2376	/*
2377	 * Look through entries in the label nvlist's features_for_read. If
2378	 * there is a feature listed there which we don't understand then we
2379	 * cannot open a pool.
2380	 */
2381	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2382		nvlist_t *unsup_feat;
2383
2384		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2385		    0);
2386
2387		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2388		    NULL); nvp != NULL;
2389		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2390			if (!zfeature_is_supported(nvpair_name(nvp))) {
2391				VERIFY(nvlist_add_string(unsup_feat,
2392				    nvpair_name(nvp), "") == 0);
2393			}
2394		}
2395
2396		if (!nvlist_empty(unsup_feat)) {
2397			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2398			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2399			nvlist_free(unsup_feat);
2400			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2401			    ENOTSUP));
2402		}
2403
2404		nvlist_free(unsup_feat);
2405	}
2406
2407	/*
2408	 * If the vdev guid sum doesn't match the uberblock, we have an
2409	 * incomplete configuration.  We first check to see if the pool
2410	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2411	 * If it is, defer the vdev_guid_sum check till later so we
2412	 * can handle missing vdevs.
2413	 */
2414	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2415	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2416	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2417		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2418
2419	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2420		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2421		spa_try_repair(spa, config);
2422		spa_config_exit(spa, SCL_ALL, FTAG);
2423		nvlist_free(spa->spa_config_splitting);
2424		spa->spa_config_splitting = NULL;
2425	}
2426
2427	/*
2428	 * Initialize internal SPA structures.
2429	 */
2430	spa->spa_state = POOL_STATE_ACTIVE;
2431	spa->spa_ubsync = spa->spa_uberblock;
2432	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2433	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2434	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2435	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2436	spa->spa_claim_max_txg = spa->spa_first_txg;
2437	spa->spa_prev_software_version = ub->ub_software_version;
2438
2439	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2440	if (error)
2441		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2443
2444	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2445		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2446
2447	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2448		boolean_t missing_feat_read = B_FALSE;
2449		nvlist_t *unsup_feat, *enabled_feat;
2450
2451		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2452		    &spa->spa_feat_for_read_obj) != 0) {
2453			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2454		}
2455
2456		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2457		    &spa->spa_feat_for_write_obj) != 0) {
2458			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459		}
2460
2461		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2462		    &spa->spa_feat_desc_obj) != 0) {
2463			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464		}
2465
2466		enabled_feat = fnvlist_alloc();
2467		unsup_feat = fnvlist_alloc();
2468
2469		if (!spa_features_check(spa, B_FALSE,
2470		    unsup_feat, enabled_feat))
2471			missing_feat_read = B_TRUE;
2472
2473		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2474			if (!spa_features_check(spa, B_TRUE,
2475			    unsup_feat, enabled_feat)) {
2476				missing_feat_write = B_TRUE;
2477			}
2478		}
2479
2480		fnvlist_add_nvlist(spa->spa_load_info,
2481		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2482
2483		if (!nvlist_empty(unsup_feat)) {
2484			fnvlist_add_nvlist(spa->spa_load_info,
2485			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2486		}
2487
2488		fnvlist_free(enabled_feat);
2489		fnvlist_free(unsup_feat);
2490
2491		if (!missing_feat_read) {
2492			fnvlist_add_boolean(spa->spa_load_info,
2493			    ZPOOL_CONFIG_CAN_RDONLY);
2494		}
2495
2496		/*
2497		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2498		 * twofold: to determine whether the pool is available for
2499		 * import in read-write mode and (if it is not) whether the
2500		 * pool is available for import in read-only mode. If the pool
2501		 * is available for import in read-write mode, it is displayed
2502		 * as available in userland; if it is not available for import
2503		 * in read-only mode, it is displayed as unavailable in
2504		 * userland. If the pool is available for import in read-only
2505		 * mode but not read-write mode, it is displayed as unavailable
2506		 * in userland with a special note that the pool is actually
2507		 * available for open in read-only mode.
2508		 *
2509		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2510		 * missing a feature for write, we must first determine whether
2511		 * the pool can be opened read-only before returning to
2512		 * userland in order to know whether to display the
2513		 * abovementioned note.
2514		 */
2515		if (missing_feat_read || (missing_feat_write &&
2516		    spa_writeable(spa))) {
2517			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2518			    ENOTSUP));
2519		}
2520
2521		/*
2522		 * Load refcounts for ZFS features from disk into an in-memory
2523		 * cache during SPA initialization.
2524		 */
2525		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2526			uint64_t refcount;
2527
2528			error = feature_get_refcount_from_disk(spa,
2529			    &spa_feature_table[i], &refcount);
2530			if (error == 0) {
2531				spa->spa_feat_refcount_cache[i] = refcount;
2532			} else if (error == ENOTSUP) {
2533				spa->spa_feat_refcount_cache[i] =
2534				    SPA_FEATURE_DISABLED;
2535			} else {
2536				return (spa_vdev_err(rvd,
2537				    VDEV_AUX_CORRUPT_DATA, EIO));
2538			}
2539		}
2540	}
2541
2542	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2543		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2544		    &spa->spa_feat_enabled_txg_obj) != 0)
2545			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2546	}
2547
2548	spa->spa_is_initializing = B_TRUE;
2549	error = dsl_pool_open(spa->spa_dsl_pool);
2550	spa->spa_is_initializing = B_FALSE;
2551	if (error != 0)
2552		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553
2554	if (!mosconfig) {
2555		uint64_t hostid;
2556		nvlist_t *policy = NULL, *nvconfig;
2557
2558		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2559			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2560
2561		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2562		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2563			char *hostname;
2564			unsigned long myhostid = 0;
2565
2566			VERIFY(nvlist_lookup_string(nvconfig,
2567			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2568
2569#ifdef	_KERNEL
2570			myhostid = zone_get_hostid(NULL);
2571#else	/* _KERNEL */
2572			/*
2573			 * We're emulating the system's hostid in userland, so
2574			 * we can't use zone_get_hostid().
2575			 */
2576			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2577#endif	/* _KERNEL */
2578			if (check_hostid && hostid != 0 && myhostid != 0 &&
2579			    hostid != myhostid) {
2580				nvlist_free(nvconfig);
2581				cmn_err(CE_WARN, "pool '%s' could not be "
2582				    "loaded as it was last accessed by "
2583				    "another system (host: %s hostid: 0x%lx). "
2584				    "See: http://illumos.org/msg/ZFS-8000-EY",
2585				    spa_name(spa), hostname,
2586				    (unsigned long)hostid);
2587				return (SET_ERROR(EBADF));
2588			}
2589		}
2590		if (nvlist_lookup_nvlist(spa->spa_config,
2591		    ZPOOL_REWIND_POLICY, &policy) == 0)
2592			VERIFY(nvlist_add_nvlist(nvconfig,
2593			    ZPOOL_REWIND_POLICY, policy) == 0);
2594
2595		spa_config_set(spa, nvconfig);
2596		spa_unload(spa);
2597		spa_deactivate(spa);
2598		spa_activate(spa, orig_mode);
2599
2600		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2601	}
2602
2603	/* Grab the secret checksum salt from the MOS. */
2604	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2605	    DMU_POOL_CHECKSUM_SALT, 1,
2606	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2607	    spa->spa_cksum_salt.zcs_bytes);
2608	if (error == ENOENT) {
2609		/* Generate a new salt for subsequent use */
2610		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2611		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2612	} else if (error != 0) {
2613		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614	}
2615
2616	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2617		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2619	if (error != 0)
2620		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621
2622	/*
2623	 * Load the bit that tells us to use the new accounting function
2624	 * (raid-z deflation).  If we have an older pool, this will not
2625	 * be present.
2626	 */
2627	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2628	if (error != 0 && error != ENOENT)
2629		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2630
2631	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2632	    &spa->spa_creation_version);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635
2636	/*
2637	 * Load the persistent error log.  If we have an older pool, this will
2638	 * not be present.
2639	 */
2640	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2641	if (error != 0 && error != ENOENT)
2642		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643
2644	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2645	    &spa->spa_errlog_scrub);
2646	if (error != 0 && error != ENOENT)
2647		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2648
2649	/*
2650	 * Load the history object.  If we have an older pool, this
2651	 * will not be present.
2652	 */
2653	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2654	if (error != 0 && error != ENOENT)
2655		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656
2657	/*
2658	 * If we're assembling the pool from the split-off vdevs of
2659	 * an existing pool, we don't want to attach the spares & cache
2660	 * devices.
2661	 */
2662
2663	/*
2664	 * Load any hot spares for this pool.
2665	 */
2666	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2667	if (error != 0 && error != ENOENT)
2668		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2669	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2670		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2671		if (load_nvlist(spa, spa->spa_spares.sav_object,
2672		    &spa->spa_spares.sav_config) != 0)
2673			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674
2675		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2676		spa_load_spares(spa);
2677		spa_config_exit(spa, SCL_ALL, FTAG);
2678	} else if (error == 0) {
2679		spa->spa_spares.sav_sync = B_TRUE;
2680	}
2681
2682	/*
2683	 * Load any level 2 ARC devices for this pool.
2684	 */
2685	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2686	    &spa->spa_l2cache.sav_object);
2687	if (error != 0 && error != ENOENT)
2688		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2689	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2690		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2691		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2692		    &spa->spa_l2cache.sav_config) != 0)
2693			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694
2695		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2696		spa_load_l2cache(spa);
2697		spa_config_exit(spa, SCL_ALL, FTAG);
2698	} else if (error == 0) {
2699		spa->spa_l2cache.sav_sync = B_TRUE;
2700	}
2701
2702	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2703
2704	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2705	if (error && error != ENOENT)
2706		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2707
2708	if (error == 0) {
2709		uint64_t autoreplace;
2710
2711		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2712		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2713		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2714		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2715		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2716		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2717		    &spa->spa_dedup_ditto);
2718
2719		spa->spa_autoreplace = (autoreplace != 0);
2720	}
2721
2722	/*
2723	 * If the 'autoreplace' property is set, then post a resource notifying
2724	 * the ZFS DE that it should not issue any faults for unopenable
2725	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2726	 * unopenable vdevs so that the normal autoreplace handler can take
2727	 * over.
2728	 */
2729	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2730		spa_check_removed(spa->spa_root_vdev);
2731		/*
2732		 * For the import case, this is done in spa_import(), because
2733		 * at this point we're using the spare definitions from
2734		 * the MOS config, not necessarily from the userland config.
2735		 */
2736		if (state != SPA_LOAD_IMPORT) {
2737			spa_aux_check_removed(&spa->spa_spares);
2738			spa_aux_check_removed(&spa->spa_l2cache);
2739		}
2740	}
2741
2742	/*
2743	 * Load the vdev state for all toplevel vdevs.
2744	 */
2745	vdev_load(rvd);
2746
2747	/*
2748	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2749	 */
2750	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2751	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2752	spa_config_exit(spa, SCL_ALL, FTAG);
2753
2754	/*
2755	 * Load the DDTs (dedup tables).
2756	 */
2757	error = ddt_load(spa);
2758	if (error != 0)
2759		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2760
2761	spa_update_dspace(spa);
2762
2763	/*
2764	 * Validate the config, using the MOS config to fill in any
2765	 * information which might be missing.  If we fail to validate
2766	 * the config then declare the pool unfit for use. If we're
2767	 * assembling a pool from a split, the log is not transferred
2768	 * over.
2769	 */
2770	if (type != SPA_IMPORT_ASSEMBLE) {
2771		nvlist_t *nvconfig;
2772
2773		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2774			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2775
2776		if (!spa_config_valid(spa, nvconfig)) {
2777			nvlist_free(nvconfig);
2778			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2779			    ENXIO));
2780		}
2781		nvlist_free(nvconfig);
2782
2783		/*
2784		 * Now that we've validated the config, check the state of the
2785		 * root vdev.  If it can't be opened, it indicates one or
2786		 * more toplevel vdevs are faulted.
2787		 */
2788		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2789			return (SET_ERROR(ENXIO));
2790
2791		if (spa_writeable(spa) && spa_check_logs(spa)) {
2792			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2793			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2794		}
2795	}
2796
2797	if (missing_feat_write) {
2798		ASSERT(state == SPA_LOAD_TRYIMPORT);
2799
2800		/*
2801		 * At this point, we know that we can open the pool in
2802		 * read-only mode but not read-write mode. We now have enough
2803		 * information and can return to userland.
2804		 */
2805		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2806	}
2807
2808	/*
2809	 * We've successfully opened the pool, verify that we're ready
2810	 * to start pushing transactions.
2811	 */
2812	if (state != SPA_LOAD_TRYIMPORT) {
2813		if (error = spa_load_verify(spa))
2814			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2815			    error));
2816	}
2817
2818	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2819	    spa->spa_load_max_txg == UINT64_MAX)) {
2820		dmu_tx_t *tx;
2821		int need_update = B_FALSE;
2822		dsl_pool_t *dp = spa_get_dsl(spa);
2823
2824		ASSERT(state != SPA_LOAD_TRYIMPORT);
2825
2826		/*
2827		 * Claim log blocks that haven't been committed yet.
2828		 * This must all happen in a single txg.
2829		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2830		 * invoked from zil_claim_log_block()'s i/o done callback.
2831		 * Price of rollback is that we abandon the log.
2832		 */
2833		spa->spa_claiming = B_TRUE;
2834
2835		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2836		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2837		    zil_claim, tx, DS_FIND_CHILDREN);
2838		dmu_tx_commit(tx);
2839
2840		spa->spa_claiming = B_FALSE;
2841
2842		spa_set_log_state(spa, SPA_LOG_GOOD);
2843		spa->spa_sync_on = B_TRUE;
2844		txg_sync_start(spa->spa_dsl_pool);
2845
2846		/*
2847		 * Wait for all claims to sync.  We sync up to the highest
2848		 * claimed log block birth time so that claimed log blocks
2849		 * don't appear to be from the future.  spa_claim_max_txg
2850		 * will have been set for us by either zil_check_log_chain()
2851		 * (invoked from spa_check_logs()) or zil_claim() above.
2852		 */
2853		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2854
2855		/*
2856		 * If the config cache is stale, or we have uninitialized
2857		 * metaslabs (see spa_vdev_add()), then update the config.
2858		 *
2859		 * If this is a verbatim import, trust the current
2860		 * in-core spa_config and update the disk labels.
2861		 */
2862		if (config_cache_txg != spa->spa_config_txg ||
2863		    state == SPA_LOAD_IMPORT ||
2864		    state == SPA_LOAD_RECOVER ||
2865		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2866			need_update = B_TRUE;
2867
2868		for (int c = 0; c < rvd->vdev_children; c++)
2869			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2870				need_update = B_TRUE;
2871
2872		/*
2873		 * Update the config cache asychronously in case we're the
2874		 * root pool, in which case the config cache isn't writable yet.
2875		 */
2876		if (need_update)
2877			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2878
2879		/*
2880		 * Check all DTLs to see if anything needs resilvering.
2881		 */
2882		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2883		    vdev_resilver_needed(rvd, NULL, NULL))
2884			spa_async_request(spa, SPA_ASYNC_RESILVER);
2885
2886		/*
2887		 * Log the fact that we booted up (so that we can detect if
2888		 * we rebooted in the middle of an operation).
2889		 */
2890		spa_history_log_version(spa, "open");
2891
2892		/*
2893		 * Delete any inconsistent datasets.
2894		 */
2895		(void) dmu_objset_find(spa_name(spa),
2896		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2897
2898		/*
2899		 * Clean up any stale temporary dataset userrefs.
2900		 */
2901		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2902	}
2903
2904	return (0);
2905}
2906
2907static int
2908spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2909{
2910	int mode = spa->spa_mode;
2911
2912	spa_unload(spa);
2913	spa_deactivate(spa);
2914
2915	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2916
2917	spa_activate(spa, mode);
2918	spa_async_suspend(spa);
2919
2920	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2921}
2922
2923/*
2924 * If spa_load() fails this function will try loading prior txg's. If
2925 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2926 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2927 * function will not rewind the pool and will return the same error as
2928 * spa_load().
2929 */
2930static int
2931spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2932    uint64_t max_request, int rewind_flags)
2933{
2934	nvlist_t *loadinfo = NULL;
2935	nvlist_t *config = NULL;
2936	int load_error, rewind_error;
2937	uint64_t safe_rewind_txg;
2938	uint64_t min_txg;
2939
2940	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2941		spa->spa_load_max_txg = spa->spa_load_txg;
2942		spa_set_log_state(spa, SPA_LOG_CLEAR);
2943	} else {
2944		spa->spa_load_max_txg = max_request;
2945		if (max_request != UINT64_MAX)
2946			spa->spa_extreme_rewind = B_TRUE;
2947	}
2948
2949	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2950	    mosconfig);
2951	if (load_error == 0)
2952		return (0);
2953
2954	if (spa->spa_root_vdev != NULL)
2955		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2956
2957	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2958	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2959
2960	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2961		nvlist_free(config);
2962		return (load_error);
2963	}
2964
2965	if (state == SPA_LOAD_RECOVER) {
2966		/* Price of rolling back is discarding txgs, including log */
2967		spa_set_log_state(spa, SPA_LOG_CLEAR);
2968	} else {
2969		/*
2970		 * If we aren't rolling back save the load info from our first
2971		 * import attempt so that we can restore it after attempting
2972		 * to rewind.
2973		 */
2974		loadinfo = spa->spa_load_info;
2975		spa->spa_load_info = fnvlist_alloc();
2976	}
2977
2978	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2979	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2980	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2981	    TXG_INITIAL : safe_rewind_txg;
2982
2983	/*
2984	 * Continue as long as we're finding errors, we're still within
2985	 * the acceptable rewind range, and we're still finding uberblocks
2986	 */
2987	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2988	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2989		if (spa->spa_load_max_txg < safe_rewind_txg)
2990			spa->spa_extreme_rewind = B_TRUE;
2991		rewind_error = spa_load_retry(spa, state, mosconfig);
2992	}
2993
2994	spa->spa_extreme_rewind = B_FALSE;
2995	spa->spa_load_max_txg = UINT64_MAX;
2996
2997	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2998		spa_config_set(spa, config);
2999
3000	if (state == SPA_LOAD_RECOVER) {
3001		ASSERT3P(loadinfo, ==, NULL);
3002		return (rewind_error);
3003	} else {
3004		/* Store the rewind info as part of the initial load info */
3005		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3006		    spa->spa_load_info);
3007
3008		/* Restore the initial load info */
3009		fnvlist_free(spa->spa_load_info);
3010		spa->spa_load_info = loadinfo;
3011
3012		return (load_error);
3013	}
3014}
3015
3016/*
3017 * Pool Open/Import
3018 *
3019 * The import case is identical to an open except that the configuration is sent
3020 * down from userland, instead of grabbed from the configuration cache.  For the
3021 * case of an open, the pool configuration will exist in the
3022 * POOL_STATE_UNINITIALIZED state.
3023 *
3024 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3025 * the same time open the pool, without having to keep around the spa_t in some
3026 * ambiguous state.
3027 */
3028static int
3029spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3030    nvlist_t **config)
3031{
3032	spa_t *spa;
3033	spa_load_state_t state = SPA_LOAD_OPEN;
3034	int error;
3035	int locked = B_FALSE;
3036	int firstopen = B_FALSE;
3037
3038	*spapp = NULL;
3039
3040	/*
3041	 * As disgusting as this is, we need to support recursive calls to this
3042	 * function because dsl_dir_open() is called during spa_load(), and ends
3043	 * up calling spa_open() again.  The real fix is to figure out how to
3044	 * avoid dsl_dir_open() calling this in the first place.
3045	 */
3046	if (mutex_owner(&spa_namespace_lock) != curthread) {
3047		mutex_enter(&spa_namespace_lock);
3048		locked = B_TRUE;
3049	}
3050
3051	if ((spa = spa_lookup(pool)) == NULL) {
3052		if (locked)
3053			mutex_exit(&spa_namespace_lock);
3054		return (SET_ERROR(ENOENT));
3055	}
3056
3057	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3058		zpool_rewind_policy_t policy;
3059
3060		firstopen = B_TRUE;
3061
3062		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3063		    &policy);
3064		if (policy.zrp_request & ZPOOL_DO_REWIND)
3065			state = SPA_LOAD_RECOVER;
3066
3067		spa_activate(spa, spa_mode_global);
3068
3069		if (state != SPA_LOAD_RECOVER)
3070			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3071
3072		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3073		    policy.zrp_request);
3074
3075		if (error == EBADF) {
3076			/*
3077			 * If vdev_validate() returns failure (indicated by
3078			 * EBADF), it indicates that one of the vdevs indicates
3079			 * that the pool has been exported or destroyed.  If
3080			 * this is the case, the config cache is out of sync and
3081			 * we should remove the pool from the namespace.
3082			 */
3083			spa_unload(spa);
3084			spa_deactivate(spa);
3085			spa_config_sync(spa, B_TRUE, B_TRUE);
3086			spa_remove(spa);
3087			if (locked)
3088				mutex_exit(&spa_namespace_lock);
3089			return (SET_ERROR(ENOENT));
3090		}
3091
3092		if (error) {
3093			/*
3094			 * We can't open the pool, but we still have useful
3095			 * information: the state of each vdev after the
3096			 * attempted vdev_open().  Return this to the user.
3097			 */
3098			if (config != NULL && spa->spa_config) {
3099				VERIFY(nvlist_dup(spa->spa_config, config,
3100				    KM_SLEEP) == 0);
3101				VERIFY(nvlist_add_nvlist(*config,
3102				    ZPOOL_CONFIG_LOAD_INFO,
3103				    spa->spa_load_info) == 0);
3104			}
3105			spa_unload(spa);
3106			spa_deactivate(spa);
3107			spa->spa_last_open_failed = error;
3108			if (locked)
3109				mutex_exit(&spa_namespace_lock);
3110			*spapp = NULL;
3111			return (error);
3112		}
3113	}
3114
3115	spa_open_ref(spa, tag);
3116
3117	if (config != NULL)
3118		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3119
3120	/*
3121	 * If we've recovered the pool, pass back any information we
3122	 * gathered while doing the load.
3123	 */
3124	if (state == SPA_LOAD_RECOVER) {
3125		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3126		    spa->spa_load_info) == 0);
3127	}
3128
3129	if (locked) {
3130		spa->spa_last_open_failed = 0;
3131		spa->spa_last_ubsync_txg = 0;
3132		spa->spa_load_txg = 0;
3133		mutex_exit(&spa_namespace_lock);
3134#ifdef __FreeBSD__
3135#ifdef _KERNEL
3136		if (firstopen)
3137			zvol_create_minors(spa->spa_name);
3138#endif
3139#endif
3140	}
3141
3142	*spapp = spa;
3143
3144	return (0);
3145}
3146
3147int
3148spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3149    nvlist_t **config)
3150{
3151	return (spa_open_common(name, spapp, tag, policy, config));
3152}
3153
3154int
3155spa_open(const char *name, spa_t **spapp, void *tag)
3156{
3157	return (spa_open_common(name, spapp, tag, NULL, NULL));
3158}
3159
3160/*
3161 * Lookup the given spa_t, incrementing the inject count in the process,
3162 * preventing it from being exported or destroyed.
3163 */
3164spa_t *
3165spa_inject_addref(char *name)
3166{
3167	spa_t *spa;
3168
3169	mutex_enter(&spa_namespace_lock);
3170	if ((spa = spa_lookup(name)) == NULL) {
3171		mutex_exit(&spa_namespace_lock);
3172		return (NULL);
3173	}
3174	spa->spa_inject_ref++;
3175	mutex_exit(&spa_namespace_lock);
3176
3177	return (spa);
3178}
3179
3180void
3181spa_inject_delref(spa_t *spa)
3182{
3183	mutex_enter(&spa_namespace_lock);
3184	spa->spa_inject_ref--;
3185	mutex_exit(&spa_namespace_lock);
3186}
3187
3188/*
3189 * Add spares device information to the nvlist.
3190 */
3191static void
3192spa_add_spares(spa_t *spa, nvlist_t *config)
3193{
3194	nvlist_t **spares;
3195	uint_t i, nspares;
3196	nvlist_t *nvroot;
3197	uint64_t guid;
3198	vdev_stat_t *vs;
3199	uint_t vsc;
3200	uint64_t pool;
3201
3202	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3203
3204	if (spa->spa_spares.sav_count == 0)
3205		return;
3206
3207	VERIFY(nvlist_lookup_nvlist(config,
3208	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3209	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3210	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3211	if (nspares != 0) {
3212		VERIFY(nvlist_add_nvlist_array(nvroot,
3213		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3214		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3215		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3216
3217		/*
3218		 * Go through and find any spares which have since been
3219		 * repurposed as an active spare.  If this is the case, update
3220		 * their status appropriately.
3221		 */
3222		for (i = 0; i < nspares; i++) {
3223			VERIFY(nvlist_lookup_uint64(spares[i],
3224			    ZPOOL_CONFIG_GUID, &guid) == 0);
3225			if (spa_spare_exists(guid, &pool, NULL) &&
3226			    pool != 0ULL) {
3227				VERIFY(nvlist_lookup_uint64_array(
3228				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3229				    (uint64_t **)&vs, &vsc) == 0);
3230				vs->vs_state = VDEV_STATE_CANT_OPEN;
3231				vs->vs_aux = VDEV_AUX_SPARED;
3232			}
3233		}
3234	}
3235}
3236
3237/*
3238 * Add l2cache device information to the nvlist, including vdev stats.
3239 */
3240static void
3241spa_add_l2cache(spa_t *spa, nvlist_t *config)
3242{
3243	nvlist_t **l2cache;
3244	uint_t i, j, nl2cache;
3245	nvlist_t *nvroot;
3246	uint64_t guid;
3247	vdev_t *vd;
3248	vdev_stat_t *vs;
3249	uint_t vsc;
3250
3251	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3252
3253	if (spa->spa_l2cache.sav_count == 0)
3254		return;
3255
3256	VERIFY(nvlist_lookup_nvlist(config,
3257	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3258	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3259	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3260	if (nl2cache != 0) {
3261		VERIFY(nvlist_add_nvlist_array(nvroot,
3262		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3263		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3264		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3265
3266		/*
3267		 * Update level 2 cache device stats.
3268		 */
3269
3270		for (i = 0; i < nl2cache; i++) {
3271			VERIFY(nvlist_lookup_uint64(l2cache[i],
3272			    ZPOOL_CONFIG_GUID, &guid) == 0);
3273
3274			vd = NULL;
3275			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3276				if (guid ==
3277				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3278					vd = spa->spa_l2cache.sav_vdevs[j];
3279					break;
3280				}
3281			}
3282			ASSERT(vd != NULL);
3283
3284			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3285			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3286			    == 0);
3287			vdev_get_stats(vd, vs);
3288		}
3289	}
3290}
3291
3292static void
3293spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3294{
3295	nvlist_t *features;
3296	zap_cursor_t zc;
3297	zap_attribute_t za;
3298
3299	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3300	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3301
3302	/* We may be unable to read features if pool is suspended. */
3303	if (spa_suspended(spa))
3304		goto out;
3305
3306	if (spa->spa_feat_for_read_obj != 0) {
3307		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3308		    spa->spa_feat_for_read_obj);
3309		    zap_cursor_retrieve(&zc, &za) == 0;
3310		    zap_cursor_advance(&zc)) {
3311			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3312			    za.za_num_integers == 1);
3313			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3314			    za.za_first_integer));
3315		}
3316		zap_cursor_fini(&zc);
3317	}
3318
3319	if (spa->spa_feat_for_write_obj != 0) {
3320		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3321		    spa->spa_feat_for_write_obj);
3322		    zap_cursor_retrieve(&zc, &za) == 0;
3323		    zap_cursor_advance(&zc)) {
3324			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3325			    za.za_num_integers == 1);
3326			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3327			    za.za_first_integer));
3328		}
3329		zap_cursor_fini(&zc);
3330	}
3331
3332out:
3333	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3334	    features) == 0);
3335	nvlist_free(features);
3336}
3337
3338int
3339spa_get_stats(const char *name, nvlist_t **config,
3340    char *altroot, size_t buflen)
3341{
3342	int error;
3343	spa_t *spa;
3344
3345	*config = NULL;
3346	error = spa_open_common(name, &spa, FTAG, NULL, config);
3347
3348	if (spa != NULL) {
3349		/*
3350		 * This still leaves a window of inconsistency where the spares
3351		 * or l2cache devices could change and the config would be
3352		 * self-inconsistent.
3353		 */
3354		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3355
3356		if (*config != NULL) {
3357			uint64_t loadtimes[2];
3358
3359			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3360			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3361			VERIFY(nvlist_add_uint64_array(*config,
3362			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3363
3364			VERIFY(nvlist_add_uint64(*config,
3365			    ZPOOL_CONFIG_ERRCOUNT,
3366			    spa_get_errlog_size(spa)) == 0);
3367
3368			if (spa_suspended(spa))
3369				VERIFY(nvlist_add_uint64(*config,
3370				    ZPOOL_CONFIG_SUSPENDED,
3371				    spa->spa_failmode) == 0);
3372
3373			spa_add_spares(spa, *config);
3374			spa_add_l2cache(spa, *config);
3375			spa_add_feature_stats(spa, *config);
3376		}
3377	}
3378
3379	/*
3380	 * We want to get the alternate root even for faulted pools, so we cheat
3381	 * and call spa_lookup() directly.
3382	 */
3383	if (altroot) {
3384		if (spa == NULL) {
3385			mutex_enter(&spa_namespace_lock);
3386			spa = spa_lookup(name);
3387			if (spa)
3388				spa_altroot(spa, altroot, buflen);
3389			else
3390				altroot[0] = '\0';
3391			spa = NULL;
3392			mutex_exit(&spa_namespace_lock);
3393		} else {
3394			spa_altroot(spa, altroot, buflen);
3395		}
3396	}
3397
3398	if (spa != NULL) {
3399		spa_config_exit(spa, SCL_CONFIG, FTAG);
3400		spa_close(spa, FTAG);
3401	}
3402
3403	return (error);
3404}
3405
3406/*
3407 * Validate that the auxiliary device array is well formed.  We must have an
3408 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3409 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3410 * specified, as long as they are well-formed.
3411 */
3412static int
3413spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3414    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3415    vdev_labeltype_t label)
3416{
3417	nvlist_t **dev;
3418	uint_t i, ndev;
3419	vdev_t *vd;
3420	int error;
3421
3422	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3423
3424	/*
3425	 * It's acceptable to have no devs specified.
3426	 */
3427	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3428		return (0);
3429
3430	if (ndev == 0)
3431		return (SET_ERROR(EINVAL));
3432
3433	/*
3434	 * Make sure the pool is formatted with a version that supports this
3435	 * device type.
3436	 */
3437	if (spa_version(spa) < version)
3438		return (SET_ERROR(ENOTSUP));
3439
3440	/*
3441	 * Set the pending device list so we correctly handle device in-use
3442	 * checking.
3443	 */
3444	sav->sav_pending = dev;
3445	sav->sav_npending = ndev;
3446
3447	for (i = 0; i < ndev; i++) {
3448		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3449		    mode)) != 0)
3450			goto out;
3451
3452		if (!vd->vdev_ops->vdev_op_leaf) {
3453			vdev_free(vd);
3454			error = SET_ERROR(EINVAL);
3455			goto out;
3456		}
3457
3458		/*
3459		 * The L2ARC currently only supports disk devices in
3460		 * kernel context.  For user-level testing, we allow it.
3461		 */
3462#ifdef _KERNEL
3463		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3464		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3465			error = SET_ERROR(ENOTBLK);
3466			vdev_free(vd);
3467			goto out;
3468		}
3469#endif
3470		vd->vdev_top = vd;
3471
3472		if ((error = vdev_open(vd)) == 0 &&
3473		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3474			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3475			    vd->vdev_guid) == 0);
3476		}
3477
3478		vdev_free(vd);
3479
3480		if (error &&
3481		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3482			goto out;
3483		else
3484			error = 0;
3485	}
3486
3487out:
3488	sav->sav_pending = NULL;
3489	sav->sav_npending = 0;
3490	return (error);
3491}
3492
3493static int
3494spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3495{
3496	int error;
3497
3498	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3499
3500	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3501	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3502	    VDEV_LABEL_SPARE)) != 0) {
3503		return (error);
3504	}
3505
3506	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3507	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3508	    VDEV_LABEL_L2CACHE));
3509}
3510
3511static void
3512spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3513    const char *config)
3514{
3515	int i;
3516
3517	if (sav->sav_config != NULL) {
3518		nvlist_t **olddevs;
3519		uint_t oldndevs;
3520		nvlist_t **newdevs;
3521
3522		/*
3523		 * Generate new dev list by concatentating with the
3524		 * current dev list.
3525		 */
3526		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3527		    &olddevs, &oldndevs) == 0);
3528
3529		newdevs = kmem_alloc(sizeof (void *) *
3530		    (ndevs + oldndevs), KM_SLEEP);
3531		for (i = 0; i < oldndevs; i++)
3532			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3533			    KM_SLEEP) == 0);
3534		for (i = 0; i < ndevs; i++)
3535			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3536			    KM_SLEEP) == 0);
3537
3538		VERIFY(nvlist_remove(sav->sav_config, config,
3539		    DATA_TYPE_NVLIST_ARRAY) == 0);
3540
3541		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3542		    config, newdevs, ndevs + oldndevs) == 0);
3543		for (i = 0; i < oldndevs + ndevs; i++)
3544			nvlist_free(newdevs[i]);
3545		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3546	} else {
3547		/*
3548		 * Generate a new dev list.
3549		 */
3550		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3551		    KM_SLEEP) == 0);
3552		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3553		    devs, ndevs) == 0);
3554	}
3555}
3556
3557/*
3558 * Stop and drop level 2 ARC devices
3559 */
3560void
3561spa_l2cache_drop(spa_t *spa)
3562{
3563	vdev_t *vd;
3564	int i;
3565	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3566
3567	for (i = 0; i < sav->sav_count; i++) {
3568		uint64_t pool;
3569
3570		vd = sav->sav_vdevs[i];
3571		ASSERT(vd != NULL);
3572
3573		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3574		    pool != 0ULL && l2arc_vdev_present(vd))
3575			l2arc_remove_vdev(vd);
3576	}
3577}
3578
3579/*
3580 * Pool Creation
3581 */
3582int
3583spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3584    nvlist_t *zplprops)
3585{
3586	spa_t *spa;
3587	char *altroot = NULL;
3588	vdev_t *rvd;
3589	dsl_pool_t *dp;
3590	dmu_tx_t *tx;
3591	int error = 0;
3592	uint64_t txg = TXG_INITIAL;
3593	nvlist_t **spares, **l2cache;
3594	uint_t nspares, nl2cache;
3595	uint64_t version, obj;
3596	boolean_t has_features;
3597
3598	/*
3599	 * If this pool already exists, return failure.
3600	 */
3601	mutex_enter(&spa_namespace_lock);
3602	if (spa_lookup(pool) != NULL) {
3603		mutex_exit(&spa_namespace_lock);
3604		return (SET_ERROR(EEXIST));
3605	}
3606
3607	/*
3608	 * Allocate a new spa_t structure.
3609	 */
3610	(void) nvlist_lookup_string(props,
3611	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3612	spa = spa_add(pool, NULL, altroot);
3613	spa_activate(spa, spa_mode_global);
3614
3615	if (props && (error = spa_prop_validate(spa, props))) {
3616		spa_deactivate(spa);
3617		spa_remove(spa);
3618		mutex_exit(&spa_namespace_lock);
3619		return (error);
3620	}
3621
3622	has_features = B_FALSE;
3623	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3624	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3625		if (zpool_prop_feature(nvpair_name(elem)))
3626			has_features = B_TRUE;
3627	}
3628
3629	if (has_features || nvlist_lookup_uint64(props,
3630	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3631		version = SPA_VERSION;
3632	}
3633	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3634
3635	spa->spa_first_txg = txg;
3636	spa->spa_uberblock.ub_txg = txg - 1;
3637	spa->spa_uberblock.ub_version = version;
3638	spa->spa_ubsync = spa->spa_uberblock;
3639
3640	/*
3641	 * Create "The Godfather" zio to hold all async IOs
3642	 */
3643	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3644	    KM_SLEEP);
3645	for (int i = 0; i < max_ncpus; i++) {
3646		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3647		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3648		    ZIO_FLAG_GODFATHER);
3649	}
3650
3651	/*
3652	 * Create the root vdev.
3653	 */
3654	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3655
3656	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3657
3658	ASSERT(error != 0 || rvd != NULL);
3659	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3660
3661	if (error == 0 && !zfs_allocatable_devs(nvroot))
3662		error = SET_ERROR(EINVAL);
3663
3664	if (error == 0 &&
3665	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3666	    (error = spa_validate_aux(spa, nvroot, txg,
3667	    VDEV_ALLOC_ADD)) == 0) {
3668		for (int c = 0; c < rvd->vdev_children; c++) {
3669			vdev_ashift_optimize(rvd->vdev_child[c]);
3670			vdev_metaslab_set_size(rvd->vdev_child[c]);
3671			vdev_expand(rvd->vdev_child[c], txg);
3672		}
3673	}
3674
3675	spa_config_exit(spa, SCL_ALL, FTAG);
3676
3677	if (error != 0) {
3678		spa_unload(spa);
3679		spa_deactivate(spa);
3680		spa_remove(spa);
3681		mutex_exit(&spa_namespace_lock);
3682		return (error);
3683	}
3684
3685	/*
3686	 * Get the list of spares, if specified.
3687	 */
3688	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3689	    &spares, &nspares) == 0) {
3690		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3691		    KM_SLEEP) == 0);
3692		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3693		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3694		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3695		spa_load_spares(spa);
3696		spa_config_exit(spa, SCL_ALL, FTAG);
3697		spa->spa_spares.sav_sync = B_TRUE;
3698	}
3699
3700	/*
3701	 * Get the list of level 2 cache devices, if specified.
3702	 */
3703	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3704	    &l2cache, &nl2cache) == 0) {
3705		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3706		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3707		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3708		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3709		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3710		spa_load_l2cache(spa);
3711		spa_config_exit(spa, SCL_ALL, FTAG);
3712		spa->spa_l2cache.sav_sync = B_TRUE;
3713	}
3714
3715	spa->spa_is_initializing = B_TRUE;
3716	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3717	spa->spa_meta_objset = dp->dp_meta_objset;
3718	spa->spa_is_initializing = B_FALSE;
3719
3720	/*
3721	 * Create DDTs (dedup tables).
3722	 */
3723	ddt_create(spa);
3724
3725	spa_update_dspace(spa);
3726
3727	tx = dmu_tx_create_assigned(dp, txg);
3728
3729	/*
3730	 * Create the pool config object.
3731	 */
3732	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3733	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3734	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3735
3736	if (zap_add(spa->spa_meta_objset,
3737	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3738	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3739		cmn_err(CE_PANIC, "failed to add pool config");
3740	}
3741
3742	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3743		spa_feature_create_zap_objects(spa, tx);
3744
3745	if (zap_add(spa->spa_meta_objset,
3746	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3747	    sizeof (uint64_t), 1, &version, tx) != 0) {
3748		cmn_err(CE_PANIC, "failed to add pool version");
3749	}
3750
3751	/* Newly created pools with the right version are always deflated. */
3752	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3753		spa->spa_deflate = TRUE;
3754		if (zap_add(spa->spa_meta_objset,
3755		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3756		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3757			cmn_err(CE_PANIC, "failed to add deflate");
3758		}
3759	}
3760
3761	/*
3762	 * Create the deferred-free bpobj.  Turn off compression
3763	 * because sync-to-convergence takes longer if the blocksize
3764	 * keeps changing.
3765	 */
3766	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3767	dmu_object_set_compress(spa->spa_meta_objset, obj,
3768	    ZIO_COMPRESS_OFF, tx);
3769	if (zap_add(spa->spa_meta_objset,
3770	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3771	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3772		cmn_err(CE_PANIC, "failed to add bpobj");
3773	}
3774	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3775	    spa->spa_meta_objset, obj));
3776
3777	/*
3778	 * Create the pool's history object.
3779	 */
3780	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3781		spa_history_create_obj(spa, tx);
3782
3783	/*
3784	 * Generate some random noise for salted checksums to operate on.
3785	 */
3786	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3787	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3788
3789	/*
3790	 * Set pool properties.
3791	 */
3792	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3793	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3794	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3795	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3796
3797	if (props != NULL) {
3798		spa_configfile_set(spa, props, B_FALSE);
3799		spa_sync_props(props, tx);
3800	}
3801
3802	dmu_tx_commit(tx);
3803
3804	spa->spa_sync_on = B_TRUE;
3805	txg_sync_start(spa->spa_dsl_pool);
3806
3807	/*
3808	 * We explicitly wait for the first transaction to complete so that our
3809	 * bean counters are appropriately updated.
3810	 */
3811	txg_wait_synced(spa->spa_dsl_pool, txg);
3812
3813	spa_config_sync(spa, B_FALSE, B_TRUE);
3814	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3815
3816	spa_history_log_version(spa, "create");
3817
3818	/*
3819	 * Don't count references from objsets that are already closed
3820	 * and are making their way through the eviction process.
3821	 */
3822	spa_evicting_os_wait(spa);
3823	spa->spa_minref = refcount_count(&spa->spa_refcount);
3824
3825	mutex_exit(&spa_namespace_lock);
3826
3827	return (0);
3828}
3829
3830#ifdef _KERNEL
3831#ifdef illumos
3832/*
3833 * Get the root pool information from the root disk, then import the root pool
3834 * during the system boot up time.
3835 */
3836extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3837
3838static nvlist_t *
3839spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3840{
3841	nvlist_t *config;
3842	nvlist_t *nvtop, *nvroot;
3843	uint64_t pgid;
3844
3845	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3846		return (NULL);
3847
3848	/*
3849	 * Add this top-level vdev to the child array.
3850	 */
3851	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3852	    &nvtop) == 0);
3853	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3854	    &pgid) == 0);
3855	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3856
3857	/*
3858	 * Put this pool's top-level vdevs into a root vdev.
3859	 */
3860	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3861	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3862	    VDEV_TYPE_ROOT) == 0);
3863	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3864	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3865	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3866	    &nvtop, 1) == 0);
3867
3868	/*
3869	 * Replace the existing vdev_tree with the new root vdev in
3870	 * this pool's configuration (remove the old, add the new).
3871	 */
3872	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3873	nvlist_free(nvroot);
3874	return (config);
3875}
3876
3877/*
3878 * Walk the vdev tree and see if we can find a device with "better"
3879 * configuration. A configuration is "better" if the label on that
3880 * device has a more recent txg.
3881 */
3882static void
3883spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3884{
3885	for (int c = 0; c < vd->vdev_children; c++)
3886		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3887
3888	if (vd->vdev_ops->vdev_op_leaf) {
3889		nvlist_t *label;
3890		uint64_t label_txg;
3891
3892		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3893		    &label) != 0)
3894			return;
3895
3896		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3897		    &label_txg) == 0);
3898
3899		/*
3900		 * Do we have a better boot device?
3901		 */
3902		if (label_txg > *txg) {
3903			*txg = label_txg;
3904			*avd = vd;
3905		}
3906		nvlist_free(label);
3907	}
3908}
3909
3910/*
3911 * Import a root pool.
3912 *
3913 * For x86. devpath_list will consist of devid and/or physpath name of
3914 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3915 * The GRUB "findroot" command will return the vdev we should boot.
3916 *
3917 * For Sparc, devpath_list consists the physpath name of the booting device
3918 * no matter the rootpool is a single device pool or a mirrored pool.
3919 * e.g.
3920 *	"/pci@1f,0/ide@d/disk@0,0:a"
3921 */
3922int
3923spa_import_rootpool(char *devpath, char *devid)
3924{
3925	spa_t *spa;
3926	vdev_t *rvd, *bvd, *avd = NULL;
3927	nvlist_t *config, *nvtop;
3928	uint64_t guid, txg;
3929	char *pname;
3930	int error;
3931
3932	/*
3933	 * Read the label from the boot device and generate a configuration.
3934	 */
3935	config = spa_generate_rootconf(devpath, devid, &guid);
3936#if defined(_OBP) && defined(_KERNEL)
3937	if (config == NULL) {
3938		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3939			/* iscsi boot */
3940			get_iscsi_bootpath_phy(devpath);
3941			config = spa_generate_rootconf(devpath, devid, &guid);
3942		}
3943	}
3944#endif
3945	if (config == NULL) {
3946		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3947		    devpath);
3948		return (SET_ERROR(EIO));
3949	}
3950
3951	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3952	    &pname) == 0);
3953	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3954
3955	mutex_enter(&spa_namespace_lock);
3956	if ((spa = spa_lookup(pname)) != NULL) {
3957		/*
3958		 * Remove the existing root pool from the namespace so that we
3959		 * can replace it with the correct config we just read in.
3960		 */
3961		spa_remove(spa);
3962	}
3963
3964	spa = spa_add(pname, config, NULL);
3965	spa->spa_is_root = B_TRUE;
3966	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3967
3968	/*
3969	 * Build up a vdev tree based on the boot device's label config.
3970	 */
3971	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3972	    &nvtop) == 0);
3973	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3974	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3975	    VDEV_ALLOC_ROOTPOOL);
3976	spa_config_exit(spa, SCL_ALL, FTAG);
3977	if (error) {
3978		mutex_exit(&spa_namespace_lock);
3979		nvlist_free(config);
3980		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3981		    pname);
3982		return (error);
3983	}
3984
3985	/*
3986	 * Get the boot vdev.
3987	 */
3988	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3989		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3990		    (u_longlong_t)guid);
3991		error = SET_ERROR(ENOENT);
3992		goto out;
3993	}
3994
3995	/*
3996	 * Determine if there is a better boot device.
3997	 */
3998	avd = bvd;
3999	spa_alt_rootvdev(rvd, &avd, &txg);
4000	if (avd != bvd) {
4001		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4002		    "try booting from '%s'", avd->vdev_path);
4003		error = SET_ERROR(EINVAL);
4004		goto out;
4005	}
4006
4007	/*
4008	 * If the boot device is part of a spare vdev then ensure that
4009	 * we're booting off the active spare.
4010	 */
4011	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4012	    !bvd->vdev_isspare) {
4013		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4014		    "try booting from '%s'",
4015		    bvd->vdev_parent->
4016		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4017		error = SET_ERROR(EINVAL);
4018		goto out;
4019	}
4020
4021	error = 0;
4022out:
4023	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4024	vdev_free(rvd);
4025	spa_config_exit(spa, SCL_ALL, FTAG);
4026	mutex_exit(&spa_namespace_lock);
4027
4028	nvlist_free(config);
4029	return (error);
4030}
4031
4032#else	/* !illumos */
4033
4034extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4035    uint64_t *count);
4036
4037static nvlist_t *
4038spa_generate_rootconf(const char *name)
4039{
4040	nvlist_t **configs, **tops;
4041	nvlist_t *config;
4042	nvlist_t *best_cfg, *nvtop, *nvroot;
4043	uint64_t *holes;
4044	uint64_t best_txg;
4045	uint64_t nchildren;
4046	uint64_t pgid;
4047	uint64_t count;
4048	uint64_t i;
4049	uint_t   nholes;
4050
4051	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4052		return (NULL);
4053
4054	ASSERT3U(count, !=, 0);
4055	best_txg = 0;
4056	for (i = 0; i < count; i++) {
4057		uint64_t txg;
4058
4059		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4060		    &txg) == 0);
4061		if (txg > best_txg) {
4062			best_txg = txg;
4063			best_cfg = configs[i];
4064		}
4065	}
4066
4067	/*
4068	 * Multi-vdev root pool configuration discovery is not supported yet.
4069	 */
4070	nchildren = 1;
4071	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4072	holes = NULL;
4073	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4074	    &holes, &nholes);
4075
4076	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4077	for (i = 0; i < nchildren; i++) {
4078		if (i >= count)
4079			break;
4080		if (configs[i] == NULL)
4081			continue;
4082		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4083		    &nvtop) == 0);
4084		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4085	}
4086	for (i = 0; holes != NULL && i < nholes; i++) {
4087		if (i >= nchildren)
4088			continue;
4089		if (tops[holes[i]] != NULL)
4090			continue;
4091		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4092		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4093		    VDEV_TYPE_HOLE) == 0);
4094		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4095		    holes[i]) == 0);
4096		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4097		    0) == 0);
4098	}
4099	for (i = 0; i < nchildren; i++) {
4100		if (tops[i] != NULL)
4101			continue;
4102		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4103		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4104		    VDEV_TYPE_MISSING) == 0);
4105		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4106		    i) == 0);
4107		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4108		    0) == 0);
4109	}
4110
4111	/*
4112	 * Create pool config based on the best vdev config.
4113	 */
4114	nvlist_dup(best_cfg, &config, KM_SLEEP);
4115
4116	/*
4117	 * Put this pool's top-level vdevs into a root vdev.
4118	 */
4119	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4120	    &pgid) == 0);
4121	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4122	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4123	    VDEV_TYPE_ROOT) == 0);
4124	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4125	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4126	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4127	    tops, nchildren) == 0);
4128
4129	/*
4130	 * Replace the existing vdev_tree with the new root vdev in
4131	 * this pool's configuration (remove the old, add the new).
4132	 */
4133	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4134
4135	/*
4136	 * Drop vdev config elements that should not be present at pool level.
4137	 */
4138	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4139	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4140
4141	for (i = 0; i < count; i++)
4142		nvlist_free(configs[i]);
4143	kmem_free(configs, count * sizeof(void *));
4144	for (i = 0; i < nchildren; i++)
4145		nvlist_free(tops[i]);
4146	kmem_free(tops, nchildren * sizeof(void *));
4147	nvlist_free(nvroot);
4148	return (config);
4149}
4150
4151int
4152spa_import_rootpool(const char *name)
4153{
4154	spa_t *spa;
4155	vdev_t *rvd, *bvd, *avd = NULL;
4156	nvlist_t *config, *nvtop;
4157	uint64_t txg;
4158	char *pname;
4159	int error;
4160
4161	/*
4162	 * Read the label from the boot device and generate a configuration.
4163	 */
4164	config = spa_generate_rootconf(name);
4165
4166	mutex_enter(&spa_namespace_lock);
4167	if (config != NULL) {
4168		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4169		    &pname) == 0 && strcmp(name, pname) == 0);
4170		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4171		    == 0);
4172
4173		if ((spa = spa_lookup(pname)) != NULL) {
4174			/*
4175			 * Remove the existing root pool from the namespace so
4176			 * that we can replace it with the correct config
4177			 * we just read in.
4178			 */
4179			spa_remove(spa);
4180		}
4181		spa = spa_add(pname, config, NULL);
4182
4183		/*
4184		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4185		 * via spa_version().
4186		 */
4187		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4188		    &spa->spa_ubsync.ub_version) != 0)
4189			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4190	} else if ((spa = spa_lookup(name)) == NULL) {
4191		mutex_exit(&spa_namespace_lock);
4192		nvlist_free(config);
4193		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4194		    name);
4195		return (EIO);
4196	} else {
4197		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4198	}
4199	spa->spa_is_root = B_TRUE;
4200	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4201
4202	/*
4203	 * Build up a vdev tree based on the boot device's label config.
4204	 */
4205	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4206	    &nvtop) == 0);
4207	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4208	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4209	    VDEV_ALLOC_ROOTPOOL);
4210	spa_config_exit(spa, SCL_ALL, FTAG);
4211	if (error) {
4212		mutex_exit(&spa_namespace_lock);
4213		nvlist_free(config);
4214		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4215		    pname);
4216		return (error);
4217	}
4218
4219	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4220	vdev_free(rvd);
4221	spa_config_exit(spa, SCL_ALL, FTAG);
4222	mutex_exit(&spa_namespace_lock);
4223
4224	nvlist_free(config);
4225	return (0);
4226}
4227
4228#endif	/* illumos */
4229#endif	/* _KERNEL */
4230
4231/*
4232 * Import a non-root pool into the system.
4233 */
4234int
4235spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4236{
4237	spa_t *spa;
4238	char *altroot = NULL;
4239	spa_load_state_t state = SPA_LOAD_IMPORT;
4240	zpool_rewind_policy_t policy;
4241	uint64_t mode = spa_mode_global;
4242	uint64_t readonly = B_FALSE;
4243	int error;
4244	nvlist_t *nvroot;
4245	nvlist_t **spares, **l2cache;
4246	uint_t nspares, nl2cache;
4247
4248	/*
4249	 * If a pool with this name exists, return failure.
4250	 */
4251	mutex_enter(&spa_namespace_lock);
4252	if (spa_lookup(pool) != NULL) {
4253		mutex_exit(&spa_namespace_lock);
4254		return (SET_ERROR(EEXIST));
4255	}
4256
4257	/*
4258	 * Create and initialize the spa structure.
4259	 */
4260	(void) nvlist_lookup_string(props,
4261	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4262	(void) nvlist_lookup_uint64(props,
4263	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4264	if (readonly)
4265		mode = FREAD;
4266	spa = spa_add(pool, config, altroot);
4267	spa->spa_import_flags = flags;
4268
4269	/*
4270	 * Verbatim import - Take a pool and insert it into the namespace
4271	 * as if it had been loaded at boot.
4272	 */
4273	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4274		if (props != NULL)
4275			spa_configfile_set(spa, props, B_FALSE);
4276
4277		spa_config_sync(spa, B_FALSE, B_TRUE);
4278		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4279
4280		mutex_exit(&spa_namespace_lock);
4281		return (0);
4282	}
4283
4284	spa_activate(spa, mode);
4285
4286	/*
4287	 * Don't start async tasks until we know everything is healthy.
4288	 */
4289	spa_async_suspend(spa);
4290
4291	zpool_get_rewind_policy(config, &policy);
4292	if (policy.zrp_request & ZPOOL_DO_REWIND)
4293		state = SPA_LOAD_RECOVER;
4294
4295	/*
4296	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4297	 * because the user-supplied config is actually the one to trust when
4298	 * doing an import.
4299	 */
4300	if (state != SPA_LOAD_RECOVER)
4301		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4302
4303	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4304	    policy.zrp_request);
4305
4306	/*
4307	 * Propagate anything learned while loading the pool and pass it
4308	 * back to caller (i.e. rewind info, missing devices, etc).
4309	 */
4310	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4311	    spa->spa_load_info) == 0);
4312
4313	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4314	/*
4315	 * Toss any existing sparelist, as it doesn't have any validity
4316	 * anymore, and conflicts with spa_has_spare().
4317	 */
4318	if (spa->spa_spares.sav_config) {
4319		nvlist_free(spa->spa_spares.sav_config);
4320		spa->spa_spares.sav_config = NULL;
4321		spa_load_spares(spa);
4322	}
4323	if (spa->spa_l2cache.sav_config) {
4324		nvlist_free(spa->spa_l2cache.sav_config);
4325		spa->spa_l2cache.sav_config = NULL;
4326		spa_load_l2cache(spa);
4327	}
4328
4329	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4330	    &nvroot) == 0);
4331	if (error == 0)
4332		error = spa_validate_aux(spa, nvroot, -1ULL,
4333		    VDEV_ALLOC_SPARE);
4334	if (error == 0)
4335		error = spa_validate_aux(spa, nvroot, -1ULL,
4336		    VDEV_ALLOC_L2CACHE);
4337	spa_config_exit(spa, SCL_ALL, FTAG);
4338
4339	if (props != NULL)
4340		spa_configfile_set(spa, props, B_FALSE);
4341
4342	if (error != 0 || (props && spa_writeable(spa) &&
4343	    (error = spa_prop_set(spa, props)))) {
4344		spa_unload(spa);
4345		spa_deactivate(spa);
4346		spa_remove(spa);
4347		mutex_exit(&spa_namespace_lock);
4348		return (error);
4349	}
4350
4351	spa_async_resume(spa);
4352
4353	/*
4354	 * Override any spares and level 2 cache devices as specified by
4355	 * the user, as these may have correct device names/devids, etc.
4356	 */
4357	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4358	    &spares, &nspares) == 0) {
4359		if (spa->spa_spares.sav_config)
4360			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4361			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4362		else
4363			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4364			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4365		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4366		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4367		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4368		spa_load_spares(spa);
4369		spa_config_exit(spa, SCL_ALL, FTAG);
4370		spa->spa_spares.sav_sync = B_TRUE;
4371	}
4372	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4373	    &l2cache, &nl2cache) == 0) {
4374		if (spa->spa_l2cache.sav_config)
4375			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4376			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4377		else
4378			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4379			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4380		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4381		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4382		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4383		spa_load_l2cache(spa);
4384		spa_config_exit(spa, SCL_ALL, FTAG);
4385		spa->spa_l2cache.sav_sync = B_TRUE;
4386	}
4387
4388	/*
4389	 * Check for any removed devices.
4390	 */
4391	if (spa->spa_autoreplace) {
4392		spa_aux_check_removed(&spa->spa_spares);
4393		spa_aux_check_removed(&spa->spa_l2cache);
4394	}
4395
4396	if (spa_writeable(spa)) {
4397		/*
4398		 * Update the config cache to include the newly-imported pool.
4399		 */
4400		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4401	}
4402
4403	/*
4404	 * It's possible that the pool was expanded while it was exported.
4405	 * We kick off an async task to handle this for us.
4406	 */
4407	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4408
4409	spa_history_log_version(spa, "import");
4410
4411	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4412
4413	mutex_exit(&spa_namespace_lock);
4414
4415#ifdef __FreeBSD__
4416#ifdef _KERNEL
4417	zvol_create_minors(pool);
4418#endif
4419#endif
4420	return (0);
4421}
4422
4423nvlist_t *
4424spa_tryimport(nvlist_t *tryconfig)
4425{
4426	nvlist_t *config = NULL;
4427	char *poolname;
4428	spa_t *spa;
4429	uint64_t state;
4430	int error;
4431
4432	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4433		return (NULL);
4434
4435	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4436		return (NULL);
4437
4438	/*
4439	 * Create and initialize the spa structure.
4440	 */
4441	mutex_enter(&spa_namespace_lock);
4442	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4443	spa_activate(spa, FREAD);
4444
4445	/*
4446	 * Pass off the heavy lifting to spa_load().
4447	 * Pass TRUE for mosconfig because the user-supplied config
4448	 * is actually the one to trust when doing an import.
4449	 */
4450	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4451
4452	/*
4453	 * If 'tryconfig' was at least parsable, return the current config.
4454	 */
4455	if (spa->spa_root_vdev != NULL) {
4456		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4457		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4458		    poolname) == 0);
4459		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4460		    state) == 0);
4461		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4462		    spa->spa_uberblock.ub_timestamp) == 0);
4463		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4464		    spa->spa_load_info) == 0);
4465
4466		/*
4467		 * If the bootfs property exists on this pool then we
4468		 * copy it out so that external consumers can tell which
4469		 * pools are bootable.
4470		 */
4471		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4472			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4473
4474			/*
4475			 * We have to play games with the name since the
4476			 * pool was opened as TRYIMPORT_NAME.
4477			 */
4478			if (dsl_dsobj_to_dsname(spa_name(spa),
4479			    spa->spa_bootfs, tmpname) == 0) {
4480				char *cp;
4481				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4482
4483				cp = strchr(tmpname, '/');
4484				if (cp == NULL) {
4485					(void) strlcpy(dsname, tmpname,
4486					    MAXPATHLEN);
4487				} else {
4488					(void) snprintf(dsname, MAXPATHLEN,
4489					    "%s/%s", poolname, ++cp);
4490				}
4491				VERIFY(nvlist_add_string(config,
4492				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4493				kmem_free(dsname, MAXPATHLEN);
4494			}
4495			kmem_free(tmpname, MAXPATHLEN);
4496		}
4497
4498		/*
4499		 * Add the list of hot spares and level 2 cache devices.
4500		 */
4501		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4502		spa_add_spares(spa, config);
4503		spa_add_l2cache(spa, config);
4504		spa_config_exit(spa, SCL_CONFIG, FTAG);
4505	}
4506
4507	spa_unload(spa);
4508	spa_deactivate(spa);
4509	spa_remove(spa);
4510	mutex_exit(&spa_namespace_lock);
4511
4512	return (config);
4513}
4514
4515/*
4516 * Pool export/destroy
4517 *
4518 * The act of destroying or exporting a pool is very simple.  We make sure there
4519 * is no more pending I/O and any references to the pool are gone.  Then, we
4520 * update the pool state and sync all the labels to disk, removing the
4521 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4522 * we don't sync the labels or remove the configuration cache.
4523 */
4524static int
4525spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4526    boolean_t force, boolean_t hardforce)
4527{
4528	spa_t *spa;
4529
4530	if (oldconfig)
4531		*oldconfig = NULL;
4532
4533	if (!(spa_mode_global & FWRITE))
4534		return (SET_ERROR(EROFS));
4535
4536	mutex_enter(&spa_namespace_lock);
4537	if ((spa = spa_lookup(pool)) == NULL) {
4538		mutex_exit(&spa_namespace_lock);
4539		return (SET_ERROR(ENOENT));
4540	}
4541
4542	/*
4543	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4544	 * reacquire the namespace lock, and see if we can export.
4545	 */
4546	spa_open_ref(spa, FTAG);
4547	mutex_exit(&spa_namespace_lock);
4548	spa_async_suspend(spa);
4549	mutex_enter(&spa_namespace_lock);
4550	spa_close(spa, FTAG);
4551
4552	/*
4553	 * The pool will be in core if it's openable,
4554	 * in which case we can modify its state.
4555	 */
4556	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4557		/*
4558		 * Objsets may be open only because they're dirty, so we
4559		 * have to force it to sync before checking spa_refcnt.
4560		 */
4561		txg_wait_synced(spa->spa_dsl_pool, 0);
4562		spa_evicting_os_wait(spa);
4563
4564		/*
4565		 * A pool cannot be exported or destroyed if there are active
4566		 * references.  If we are resetting a pool, allow references by
4567		 * fault injection handlers.
4568		 */
4569		if (!spa_refcount_zero(spa) ||
4570		    (spa->spa_inject_ref != 0 &&
4571		    new_state != POOL_STATE_UNINITIALIZED)) {
4572			spa_async_resume(spa);
4573			mutex_exit(&spa_namespace_lock);
4574			return (SET_ERROR(EBUSY));
4575		}
4576
4577		/*
4578		 * A pool cannot be exported if it has an active shared spare.
4579		 * This is to prevent other pools stealing the active spare
4580		 * from an exported pool. At user's own will, such pool can
4581		 * be forcedly exported.
4582		 */
4583		if (!force && new_state == POOL_STATE_EXPORTED &&
4584		    spa_has_active_shared_spare(spa)) {
4585			spa_async_resume(spa);
4586			mutex_exit(&spa_namespace_lock);
4587			return (SET_ERROR(EXDEV));
4588		}
4589
4590		/*
4591		 * We want this to be reflected on every label,
4592		 * so mark them all dirty.  spa_unload() will do the
4593		 * final sync that pushes these changes out.
4594		 */
4595		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4596			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4597			spa->spa_state = new_state;
4598			spa->spa_final_txg = spa_last_synced_txg(spa) +
4599			    TXG_DEFER_SIZE + 1;
4600			vdev_config_dirty(spa->spa_root_vdev);
4601			spa_config_exit(spa, SCL_ALL, FTAG);
4602		}
4603	}
4604
4605	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4606
4607	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4608		spa_unload(spa);
4609		spa_deactivate(spa);
4610	}
4611
4612	if (oldconfig && spa->spa_config)
4613		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4614
4615	if (new_state != POOL_STATE_UNINITIALIZED) {
4616		if (!hardforce)
4617			spa_config_sync(spa, B_TRUE, B_TRUE);
4618		spa_remove(spa);
4619	}
4620	mutex_exit(&spa_namespace_lock);
4621
4622	return (0);
4623}
4624
4625/*
4626 * Destroy a storage pool.
4627 */
4628int
4629spa_destroy(char *pool)
4630{
4631	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4632	    B_FALSE, B_FALSE));
4633}
4634
4635/*
4636 * Export a storage pool.
4637 */
4638int
4639spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4640    boolean_t hardforce)
4641{
4642	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4643	    force, hardforce));
4644}
4645
4646/*
4647 * Similar to spa_export(), this unloads the spa_t without actually removing it
4648 * from the namespace in any way.
4649 */
4650int
4651spa_reset(char *pool)
4652{
4653	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4654	    B_FALSE, B_FALSE));
4655}
4656
4657/*
4658 * ==========================================================================
4659 * Device manipulation
4660 * ==========================================================================
4661 */
4662
4663/*
4664 * Add a device to a storage pool.
4665 */
4666int
4667spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4668{
4669	uint64_t txg, id;
4670	int error;
4671	vdev_t *rvd = spa->spa_root_vdev;
4672	vdev_t *vd, *tvd;
4673	nvlist_t **spares, **l2cache;
4674	uint_t nspares, nl2cache;
4675
4676	ASSERT(spa_writeable(spa));
4677
4678	txg = spa_vdev_enter(spa);
4679
4680	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4681	    VDEV_ALLOC_ADD)) != 0)
4682		return (spa_vdev_exit(spa, NULL, txg, error));
4683
4684	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4685
4686	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4687	    &nspares) != 0)
4688		nspares = 0;
4689
4690	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4691	    &nl2cache) != 0)
4692		nl2cache = 0;
4693
4694	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4695		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4696
4697	if (vd->vdev_children != 0 &&
4698	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4699		return (spa_vdev_exit(spa, vd, txg, error));
4700
4701	/*
4702	 * We must validate the spares and l2cache devices after checking the
4703	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4704	 */
4705	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4706		return (spa_vdev_exit(spa, vd, txg, error));
4707
4708	/*
4709	 * Transfer each new top-level vdev from vd to rvd.
4710	 */
4711	for (int c = 0; c < vd->vdev_children; c++) {
4712
4713		/*
4714		 * Set the vdev id to the first hole, if one exists.
4715		 */
4716		for (id = 0; id < rvd->vdev_children; id++) {
4717			if (rvd->vdev_child[id]->vdev_ishole) {
4718				vdev_free(rvd->vdev_child[id]);
4719				break;
4720			}
4721		}
4722		tvd = vd->vdev_child[c];
4723		vdev_remove_child(vd, tvd);
4724		tvd->vdev_id = id;
4725		vdev_add_child(rvd, tvd);
4726		vdev_config_dirty(tvd);
4727	}
4728
4729	if (nspares != 0) {
4730		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4731		    ZPOOL_CONFIG_SPARES);
4732		spa_load_spares(spa);
4733		spa->spa_spares.sav_sync = B_TRUE;
4734	}
4735
4736	if (nl2cache != 0) {
4737		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4738		    ZPOOL_CONFIG_L2CACHE);
4739		spa_load_l2cache(spa);
4740		spa->spa_l2cache.sav_sync = B_TRUE;
4741	}
4742
4743	/*
4744	 * We have to be careful when adding new vdevs to an existing pool.
4745	 * If other threads start allocating from these vdevs before we
4746	 * sync the config cache, and we lose power, then upon reboot we may
4747	 * fail to open the pool because there are DVAs that the config cache
4748	 * can't translate.  Therefore, we first add the vdevs without
4749	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4750	 * and then let spa_config_update() initialize the new metaslabs.
4751	 *
4752	 * spa_load() checks for added-but-not-initialized vdevs, so that
4753	 * if we lose power at any point in this sequence, the remaining
4754	 * steps will be completed the next time we load the pool.
4755	 */
4756	(void) spa_vdev_exit(spa, vd, txg, 0);
4757
4758	mutex_enter(&spa_namespace_lock);
4759	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4760	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4761	mutex_exit(&spa_namespace_lock);
4762
4763	return (0);
4764}
4765
4766/*
4767 * Attach a device to a mirror.  The arguments are the path to any device
4768 * in the mirror, and the nvroot for the new device.  If the path specifies
4769 * a device that is not mirrored, we automatically insert the mirror vdev.
4770 *
4771 * If 'replacing' is specified, the new device is intended to replace the
4772 * existing device; in this case the two devices are made into their own
4773 * mirror using the 'replacing' vdev, which is functionally identical to
4774 * the mirror vdev (it actually reuses all the same ops) but has a few
4775 * extra rules: you can't attach to it after it's been created, and upon
4776 * completion of resilvering, the first disk (the one being replaced)
4777 * is automatically detached.
4778 */
4779int
4780spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4781{
4782	uint64_t txg, dtl_max_txg;
4783	vdev_t *rvd = spa->spa_root_vdev;
4784	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4785	vdev_ops_t *pvops;
4786	char *oldvdpath, *newvdpath;
4787	int newvd_isspare;
4788	int error;
4789
4790	ASSERT(spa_writeable(spa));
4791
4792	txg = spa_vdev_enter(spa);
4793
4794	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4795
4796	if (oldvd == NULL)
4797		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4798
4799	if (!oldvd->vdev_ops->vdev_op_leaf)
4800		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4801
4802	pvd = oldvd->vdev_parent;
4803
4804	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4805	    VDEV_ALLOC_ATTACH)) != 0)
4806		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4807
4808	if (newrootvd->vdev_children != 1)
4809		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4810
4811	newvd = newrootvd->vdev_child[0];
4812
4813	if (!newvd->vdev_ops->vdev_op_leaf)
4814		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4815
4816	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4817		return (spa_vdev_exit(spa, newrootvd, txg, error));
4818
4819	/*
4820	 * Spares can't replace logs
4821	 */
4822	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4823		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4824
4825	if (!replacing) {
4826		/*
4827		 * For attach, the only allowable parent is a mirror or the root
4828		 * vdev.
4829		 */
4830		if (pvd->vdev_ops != &vdev_mirror_ops &&
4831		    pvd->vdev_ops != &vdev_root_ops)
4832			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4833
4834		pvops = &vdev_mirror_ops;
4835	} else {
4836		/*
4837		 * Active hot spares can only be replaced by inactive hot
4838		 * spares.
4839		 */
4840		if (pvd->vdev_ops == &vdev_spare_ops &&
4841		    oldvd->vdev_isspare &&
4842		    !spa_has_spare(spa, newvd->vdev_guid))
4843			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4844
4845		/*
4846		 * If the source is a hot spare, and the parent isn't already a
4847		 * spare, then we want to create a new hot spare.  Otherwise, we
4848		 * want to create a replacing vdev.  The user is not allowed to
4849		 * attach to a spared vdev child unless the 'isspare' state is
4850		 * the same (spare replaces spare, non-spare replaces
4851		 * non-spare).
4852		 */
4853		if (pvd->vdev_ops == &vdev_replacing_ops &&
4854		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4855			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4856		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4857		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4858			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4859		}
4860
4861		if (newvd->vdev_isspare)
4862			pvops = &vdev_spare_ops;
4863		else
4864			pvops = &vdev_replacing_ops;
4865	}
4866
4867	/*
4868	 * Make sure the new device is big enough.
4869	 */
4870	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4871		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4872
4873	/*
4874	 * The new device cannot have a higher alignment requirement
4875	 * than the top-level vdev.
4876	 */
4877	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4878		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4879
4880	/*
4881	 * If this is an in-place replacement, update oldvd's path and devid
4882	 * to make it distinguishable from newvd, and unopenable from now on.
4883	 */
4884	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4885		spa_strfree(oldvd->vdev_path);
4886		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4887		    KM_SLEEP);
4888		(void) sprintf(oldvd->vdev_path, "%s/%s",
4889		    newvd->vdev_path, "old");
4890		if (oldvd->vdev_devid != NULL) {
4891			spa_strfree(oldvd->vdev_devid);
4892			oldvd->vdev_devid = NULL;
4893		}
4894	}
4895
4896	/* mark the device being resilvered */
4897	newvd->vdev_resilver_txg = txg;
4898
4899	/*
4900	 * If the parent is not a mirror, or if we're replacing, insert the new
4901	 * mirror/replacing/spare vdev above oldvd.
4902	 */
4903	if (pvd->vdev_ops != pvops)
4904		pvd = vdev_add_parent(oldvd, pvops);
4905
4906	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4907	ASSERT(pvd->vdev_ops == pvops);
4908	ASSERT(oldvd->vdev_parent == pvd);
4909
4910	/*
4911	 * Extract the new device from its root and add it to pvd.
4912	 */
4913	vdev_remove_child(newrootvd, newvd);
4914	newvd->vdev_id = pvd->vdev_children;
4915	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4916	vdev_add_child(pvd, newvd);
4917
4918	tvd = newvd->vdev_top;
4919	ASSERT(pvd->vdev_top == tvd);
4920	ASSERT(tvd->vdev_parent == rvd);
4921
4922	vdev_config_dirty(tvd);
4923
4924	/*
4925	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4926	 * for any dmu_sync-ed blocks.  It will propagate upward when
4927	 * spa_vdev_exit() calls vdev_dtl_reassess().
4928	 */
4929	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4930
4931	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4932	    dtl_max_txg - TXG_INITIAL);
4933
4934	if (newvd->vdev_isspare) {
4935		spa_spare_activate(newvd);
4936		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4937	}
4938
4939	oldvdpath = spa_strdup(oldvd->vdev_path);
4940	newvdpath = spa_strdup(newvd->vdev_path);
4941	newvd_isspare = newvd->vdev_isspare;
4942
4943	/*
4944	 * Mark newvd's DTL dirty in this txg.
4945	 */
4946	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4947
4948	/*
4949	 * Schedule the resilver to restart in the future. We do this to
4950	 * ensure that dmu_sync-ed blocks have been stitched into the
4951	 * respective datasets.
4952	 */
4953	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4954
4955	if (spa->spa_bootfs)
4956		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4957
4958	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4959
4960	/*
4961	 * Commit the config
4962	 */
4963	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4964
4965	spa_history_log_internal(spa, "vdev attach", NULL,
4966	    "%s vdev=%s %s vdev=%s",
4967	    replacing && newvd_isspare ? "spare in" :
4968	    replacing ? "replace" : "attach", newvdpath,
4969	    replacing ? "for" : "to", oldvdpath);
4970
4971	spa_strfree(oldvdpath);
4972	spa_strfree(newvdpath);
4973
4974	return (0);
4975}
4976
4977/*
4978 * Detach a device from a mirror or replacing vdev.
4979 *
4980 * If 'replace_done' is specified, only detach if the parent
4981 * is a replacing vdev.
4982 */
4983int
4984spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4985{
4986	uint64_t txg;
4987	int error;
4988	vdev_t *rvd = spa->spa_root_vdev;
4989	vdev_t *vd, *pvd, *cvd, *tvd;
4990	boolean_t unspare = B_FALSE;
4991	uint64_t unspare_guid = 0;
4992	char *vdpath;
4993
4994	ASSERT(spa_writeable(spa));
4995
4996	txg = spa_vdev_enter(spa);
4997
4998	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4999
5000	if (vd == NULL)
5001		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5002
5003	if (!vd->vdev_ops->vdev_op_leaf)
5004		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5005
5006	pvd = vd->vdev_parent;
5007
5008	/*
5009	 * If the parent/child relationship is not as expected, don't do it.
5010	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5011	 * vdev that's replacing B with C.  The user's intent in replacing
5012	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5013	 * the replace by detaching C, the expected behavior is to end up
5014	 * M(A,B).  But suppose that right after deciding to detach C,
5015	 * the replacement of B completes.  We would have M(A,C), and then
5016	 * ask to detach C, which would leave us with just A -- not what
5017	 * the user wanted.  To prevent this, we make sure that the
5018	 * parent/child relationship hasn't changed -- in this example,
5019	 * that C's parent is still the replacing vdev R.
5020	 */
5021	if (pvd->vdev_guid != pguid && pguid != 0)
5022		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5023
5024	/*
5025	 * Only 'replacing' or 'spare' vdevs can be replaced.
5026	 */
5027	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5028	    pvd->vdev_ops != &vdev_spare_ops)
5029		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5030
5031	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5032	    spa_version(spa) >= SPA_VERSION_SPARES);
5033
5034	/*
5035	 * Only mirror, replacing, and spare vdevs support detach.
5036	 */
5037	if (pvd->vdev_ops != &vdev_replacing_ops &&
5038	    pvd->vdev_ops != &vdev_mirror_ops &&
5039	    pvd->vdev_ops != &vdev_spare_ops)
5040		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5041
5042	/*
5043	 * If this device has the only valid copy of some data,
5044	 * we cannot safely detach it.
5045	 */
5046	if (vdev_dtl_required(vd))
5047		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5048
5049	ASSERT(pvd->vdev_children >= 2);
5050
5051	/*
5052	 * If we are detaching the second disk from a replacing vdev, then
5053	 * check to see if we changed the original vdev's path to have "/old"
5054	 * at the end in spa_vdev_attach().  If so, undo that change now.
5055	 */
5056	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5057	    vd->vdev_path != NULL) {
5058		size_t len = strlen(vd->vdev_path);
5059
5060		for (int c = 0; c < pvd->vdev_children; c++) {
5061			cvd = pvd->vdev_child[c];
5062
5063			if (cvd == vd || cvd->vdev_path == NULL)
5064				continue;
5065
5066			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5067			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5068				spa_strfree(cvd->vdev_path);
5069				cvd->vdev_path = spa_strdup(vd->vdev_path);
5070				break;
5071			}
5072		}
5073	}
5074
5075	/*
5076	 * If we are detaching the original disk from a spare, then it implies
5077	 * that the spare should become a real disk, and be removed from the
5078	 * active spare list for the pool.
5079	 */
5080	if (pvd->vdev_ops == &vdev_spare_ops &&
5081	    vd->vdev_id == 0 &&
5082	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5083		unspare = B_TRUE;
5084
5085	/*
5086	 * Erase the disk labels so the disk can be used for other things.
5087	 * This must be done after all other error cases are handled,
5088	 * but before we disembowel vd (so we can still do I/O to it).
5089	 * But if we can't do it, don't treat the error as fatal --
5090	 * it may be that the unwritability of the disk is the reason
5091	 * it's being detached!
5092	 */
5093	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5094
5095	/*
5096	 * Remove vd from its parent and compact the parent's children.
5097	 */
5098	vdev_remove_child(pvd, vd);
5099	vdev_compact_children(pvd);
5100
5101	/*
5102	 * Remember one of the remaining children so we can get tvd below.
5103	 */
5104	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5105
5106	/*
5107	 * If we need to remove the remaining child from the list of hot spares,
5108	 * do it now, marking the vdev as no longer a spare in the process.
5109	 * We must do this before vdev_remove_parent(), because that can
5110	 * change the GUID if it creates a new toplevel GUID.  For a similar
5111	 * reason, we must remove the spare now, in the same txg as the detach;
5112	 * otherwise someone could attach a new sibling, change the GUID, and
5113	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5114	 */
5115	if (unspare) {
5116		ASSERT(cvd->vdev_isspare);
5117		spa_spare_remove(cvd);
5118		unspare_guid = cvd->vdev_guid;
5119		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5120		cvd->vdev_unspare = B_TRUE;
5121	}
5122
5123	/*
5124	 * If the parent mirror/replacing vdev only has one child,
5125	 * the parent is no longer needed.  Remove it from the tree.
5126	 */
5127	if (pvd->vdev_children == 1) {
5128		if (pvd->vdev_ops == &vdev_spare_ops)
5129			cvd->vdev_unspare = B_FALSE;
5130		vdev_remove_parent(cvd);
5131	}
5132
5133
5134	/*
5135	 * We don't set tvd until now because the parent we just removed
5136	 * may have been the previous top-level vdev.
5137	 */
5138	tvd = cvd->vdev_top;
5139	ASSERT(tvd->vdev_parent == rvd);
5140
5141	/*
5142	 * Reevaluate the parent vdev state.
5143	 */
5144	vdev_propagate_state(cvd);
5145
5146	/*
5147	 * If the 'autoexpand' property is set on the pool then automatically
5148	 * try to expand the size of the pool. For example if the device we
5149	 * just detached was smaller than the others, it may be possible to
5150	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5151	 * first so that we can obtain the updated sizes of the leaf vdevs.
5152	 */
5153	if (spa->spa_autoexpand) {
5154		vdev_reopen(tvd);
5155		vdev_expand(tvd, txg);
5156	}
5157
5158	vdev_config_dirty(tvd);
5159
5160	/*
5161	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5162	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5163	 * But first make sure we're not on any *other* txg's DTL list, to
5164	 * prevent vd from being accessed after it's freed.
5165	 */
5166	vdpath = spa_strdup(vd->vdev_path);
5167	for (int t = 0; t < TXG_SIZE; t++)
5168		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5169	vd->vdev_detached = B_TRUE;
5170	vdev_dirty(tvd, VDD_DTL, vd, txg);
5171
5172	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5173
5174	/* hang on to the spa before we release the lock */
5175	spa_open_ref(spa, FTAG);
5176
5177	error = spa_vdev_exit(spa, vd, txg, 0);
5178
5179	spa_history_log_internal(spa, "detach", NULL,
5180	    "vdev=%s", vdpath);
5181	spa_strfree(vdpath);
5182
5183	/*
5184	 * If this was the removal of the original device in a hot spare vdev,
5185	 * then we want to go through and remove the device from the hot spare
5186	 * list of every other pool.
5187	 */
5188	if (unspare) {
5189		spa_t *altspa = NULL;
5190
5191		mutex_enter(&spa_namespace_lock);
5192		while ((altspa = spa_next(altspa)) != NULL) {
5193			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5194			    altspa == spa)
5195				continue;
5196
5197			spa_open_ref(altspa, FTAG);
5198			mutex_exit(&spa_namespace_lock);
5199			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5200			mutex_enter(&spa_namespace_lock);
5201			spa_close(altspa, FTAG);
5202		}
5203		mutex_exit(&spa_namespace_lock);
5204
5205		/* search the rest of the vdevs for spares to remove */
5206		spa_vdev_resilver_done(spa);
5207	}
5208
5209	/* all done with the spa; OK to release */
5210	mutex_enter(&spa_namespace_lock);
5211	spa_close(spa, FTAG);
5212	mutex_exit(&spa_namespace_lock);
5213
5214	return (error);
5215}
5216
5217/*
5218 * Split a set of devices from their mirrors, and create a new pool from them.
5219 */
5220int
5221spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5222    nvlist_t *props, boolean_t exp)
5223{
5224	int error = 0;
5225	uint64_t txg, *glist;
5226	spa_t *newspa;
5227	uint_t c, children, lastlog;
5228	nvlist_t **child, *nvl, *tmp;
5229	dmu_tx_t *tx;
5230	char *altroot = NULL;
5231	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5232	boolean_t activate_slog;
5233
5234	ASSERT(spa_writeable(spa));
5235
5236	txg = spa_vdev_enter(spa);
5237
5238	/* clear the log and flush everything up to now */
5239	activate_slog = spa_passivate_log(spa);
5240	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5241	error = spa_offline_log(spa);
5242	txg = spa_vdev_config_enter(spa);
5243
5244	if (activate_slog)
5245		spa_activate_log(spa);
5246
5247	if (error != 0)
5248		return (spa_vdev_exit(spa, NULL, txg, error));
5249
5250	/* check new spa name before going any further */
5251	if (spa_lookup(newname) != NULL)
5252		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5253
5254	/*
5255	 * scan through all the children to ensure they're all mirrors
5256	 */
5257	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5258	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5259	    &children) != 0)
5260		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5261
5262	/* first, check to ensure we've got the right child count */
5263	rvd = spa->spa_root_vdev;
5264	lastlog = 0;
5265	for (c = 0; c < rvd->vdev_children; c++) {
5266		vdev_t *vd = rvd->vdev_child[c];
5267
5268		/* don't count the holes & logs as children */
5269		if (vd->vdev_islog || vd->vdev_ishole) {
5270			if (lastlog == 0)
5271				lastlog = c;
5272			continue;
5273		}
5274
5275		lastlog = 0;
5276	}
5277	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5278		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5279
5280	/* next, ensure no spare or cache devices are part of the split */
5281	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5282	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5283		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5284
5285	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5286	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5287
5288	/* then, loop over each vdev and validate it */
5289	for (c = 0; c < children; c++) {
5290		uint64_t is_hole = 0;
5291
5292		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5293		    &is_hole);
5294
5295		if (is_hole != 0) {
5296			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5297			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5298				continue;
5299			} else {
5300				error = SET_ERROR(EINVAL);
5301				break;
5302			}
5303		}
5304
5305		/* which disk is going to be split? */
5306		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5307		    &glist[c]) != 0) {
5308			error = SET_ERROR(EINVAL);
5309			break;
5310		}
5311
5312		/* look it up in the spa */
5313		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5314		if (vml[c] == NULL) {
5315			error = SET_ERROR(ENODEV);
5316			break;
5317		}
5318
5319		/* make sure there's nothing stopping the split */
5320		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5321		    vml[c]->vdev_islog ||
5322		    vml[c]->vdev_ishole ||
5323		    vml[c]->vdev_isspare ||
5324		    vml[c]->vdev_isl2cache ||
5325		    !vdev_writeable(vml[c]) ||
5326		    vml[c]->vdev_children != 0 ||
5327		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5328		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5329			error = SET_ERROR(EINVAL);
5330			break;
5331		}
5332
5333		if (vdev_dtl_required(vml[c])) {
5334			error = SET_ERROR(EBUSY);
5335			break;
5336		}
5337
5338		/* we need certain info from the top level */
5339		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5340		    vml[c]->vdev_top->vdev_ms_array) == 0);
5341		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5342		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5343		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5344		    vml[c]->vdev_top->vdev_asize) == 0);
5345		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5346		    vml[c]->vdev_top->vdev_ashift) == 0);
5347	}
5348
5349	if (error != 0) {
5350		kmem_free(vml, children * sizeof (vdev_t *));
5351		kmem_free(glist, children * sizeof (uint64_t));
5352		return (spa_vdev_exit(spa, NULL, txg, error));
5353	}
5354
5355	/* stop writers from using the disks */
5356	for (c = 0; c < children; c++) {
5357		if (vml[c] != NULL)
5358			vml[c]->vdev_offline = B_TRUE;
5359	}
5360	vdev_reopen(spa->spa_root_vdev);
5361
5362	/*
5363	 * Temporarily record the splitting vdevs in the spa config.  This
5364	 * will disappear once the config is regenerated.
5365	 */
5366	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5367	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5368	    glist, children) == 0);
5369	kmem_free(glist, children * sizeof (uint64_t));
5370
5371	mutex_enter(&spa->spa_props_lock);
5372	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5373	    nvl) == 0);
5374	mutex_exit(&spa->spa_props_lock);
5375	spa->spa_config_splitting = nvl;
5376	vdev_config_dirty(spa->spa_root_vdev);
5377
5378	/* configure and create the new pool */
5379	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5380	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5381	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5382	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5383	    spa_version(spa)) == 0);
5384	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5385	    spa->spa_config_txg) == 0);
5386	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5387	    spa_generate_guid(NULL)) == 0);
5388	(void) nvlist_lookup_string(props,
5389	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5390
5391	/* add the new pool to the namespace */
5392	newspa = spa_add(newname, config, altroot);
5393	newspa->spa_config_txg = spa->spa_config_txg;
5394	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5395
5396	/* release the spa config lock, retaining the namespace lock */
5397	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5398
5399	if (zio_injection_enabled)
5400		zio_handle_panic_injection(spa, FTAG, 1);
5401
5402	spa_activate(newspa, spa_mode_global);
5403	spa_async_suspend(newspa);
5404
5405#ifndef illumos
5406	/* mark that we are creating new spa by splitting */
5407	newspa->spa_splitting_newspa = B_TRUE;
5408#endif
5409	/* create the new pool from the disks of the original pool */
5410	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5411#ifndef illumos
5412	newspa->spa_splitting_newspa = B_FALSE;
5413#endif
5414	if (error)
5415		goto out;
5416
5417	/* if that worked, generate a real config for the new pool */
5418	if (newspa->spa_root_vdev != NULL) {
5419		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5420		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5421		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5422		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5423		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5424		    B_TRUE));
5425	}
5426
5427	/* set the props */
5428	if (props != NULL) {
5429		spa_configfile_set(newspa, props, B_FALSE);
5430		error = spa_prop_set(newspa, props);
5431		if (error)
5432			goto out;
5433	}
5434
5435	/* flush everything */
5436	txg = spa_vdev_config_enter(newspa);
5437	vdev_config_dirty(newspa->spa_root_vdev);
5438	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5439
5440	if (zio_injection_enabled)
5441		zio_handle_panic_injection(spa, FTAG, 2);
5442
5443	spa_async_resume(newspa);
5444
5445	/* finally, update the original pool's config */
5446	txg = spa_vdev_config_enter(spa);
5447	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5448	error = dmu_tx_assign(tx, TXG_WAIT);
5449	if (error != 0)
5450		dmu_tx_abort(tx);
5451	for (c = 0; c < children; c++) {
5452		if (vml[c] != NULL) {
5453			vdev_split(vml[c]);
5454			if (error == 0)
5455				spa_history_log_internal(spa, "detach", tx,
5456				    "vdev=%s", vml[c]->vdev_path);
5457			vdev_free(vml[c]);
5458		}
5459	}
5460	vdev_config_dirty(spa->spa_root_vdev);
5461	spa->spa_config_splitting = NULL;
5462	nvlist_free(nvl);
5463	if (error == 0)
5464		dmu_tx_commit(tx);
5465	(void) spa_vdev_exit(spa, NULL, txg, 0);
5466
5467	if (zio_injection_enabled)
5468		zio_handle_panic_injection(spa, FTAG, 3);
5469
5470	/* split is complete; log a history record */
5471	spa_history_log_internal(newspa, "split", NULL,
5472	    "from pool %s", spa_name(spa));
5473
5474	kmem_free(vml, children * sizeof (vdev_t *));
5475
5476	/* if we're not going to mount the filesystems in userland, export */
5477	if (exp)
5478		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5479		    B_FALSE, B_FALSE);
5480
5481	return (error);
5482
5483out:
5484	spa_unload(newspa);
5485	spa_deactivate(newspa);
5486	spa_remove(newspa);
5487
5488	txg = spa_vdev_config_enter(spa);
5489
5490	/* re-online all offlined disks */
5491	for (c = 0; c < children; c++) {
5492		if (vml[c] != NULL)
5493			vml[c]->vdev_offline = B_FALSE;
5494	}
5495	vdev_reopen(spa->spa_root_vdev);
5496
5497	nvlist_free(spa->spa_config_splitting);
5498	spa->spa_config_splitting = NULL;
5499	(void) spa_vdev_exit(spa, NULL, txg, error);
5500
5501	kmem_free(vml, children * sizeof (vdev_t *));
5502	return (error);
5503}
5504
5505static nvlist_t *
5506spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5507{
5508	for (int i = 0; i < count; i++) {
5509		uint64_t guid;
5510
5511		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5512		    &guid) == 0);
5513
5514		if (guid == target_guid)
5515			return (nvpp[i]);
5516	}
5517
5518	return (NULL);
5519}
5520
5521static void
5522spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5523	nvlist_t *dev_to_remove)
5524{
5525	nvlist_t **newdev = NULL;
5526
5527	if (count > 1)
5528		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5529
5530	for (int i = 0, j = 0; i < count; i++) {
5531		if (dev[i] == dev_to_remove)
5532			continue;
5533		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5534	}
5535
5536	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5537	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5538
5539	for (int i = 0; i < count - 1; i++)
5540		nvlist_free(newdev[i]);
5541
5542	if (count > 1)
5543		kmem_free(newdev, (count - 1) * sizeof (void *));
5544}
5545
5546/*
5547 * Evacuate the device.
5548 */
5549static int
5550spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5551{
5552	uint64_t txg;
5553	int error = 0;
5554
5555	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5556	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5557	ASSERT(vd == vd->vdev_top);
5558
5559	/*
5560	 * Evacuate the device.  We don't hold the config lock as writer
5561	 * since we need to do I/O but we do keep the
5562	 * spa_namespace_lock held.  Once this completes the device
5563	 * should no longer have any blocks allocated on it.
5564	 */
5565	if (vd->vdev_islog) {
5566		if (vd->vdev_stat.vs_alloc != 0)
5567			error = spa_offline_log(spa);
5568	} else {
5569		error = SET_ERROR(ENOTSUP);
5570	}
5571
5572	if (error)
5573		return (error);
5574
5575	/*
5576	 * The evacuation succeeded.  Remove any remaining MOS metadata
5577	 * associated with this vdev, and wait for these changes to sync.
5578	 */
5579	ASSERT0(vd->vdev_stat.vs_alloc);
5580	txg = spa_vdev_config_enter(spa);
5581	vd->vdev_removing = B_TRUE;
5582	vdev_dirty_leaves(vd, VDD_DTL, txg);
5583	vdev_config_dirty(vd);
5584	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5585
5586	return (0);
5587}
5588
5589/*
5590 * Complete the removal by cleaning up the namespace.
5591 */
5592static void
5593spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5594{
5595	vdev_t *rvd = spa->spa_root_vdev;
5596	uint64_t id = vd->vdev_id;
5597	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5598
5599	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5600	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5601	ASSERT(vd == vd->vdev_top);
5602
5603	/*
5604	 * Only remove any devices which are empty.
5605	 */
5606	if (vd->vdev_stat.vs_alloc != 0)
5607		return;
5608
5609	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5610
5611	if (list_link_active(&vd->vdev_state_dirty_node))
5612		vdev_state_clean(vd);
5613	if (list_link_active(&vd->vdev_config_dirty_node))
5614		vdev_config_clean(vd);
5615
5616	vdev_free(vd);
5617
5618	if (last_vdev) {
5619		vdev_compact_children(rvd);
5620	} else {
5621		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5622		vdev_add_child(rvd, vd);
5623	}
5624	vdev_config_dirty(rvd);
5625
5626	/*
5627	 * Reassess the health of our root vdev.
5628	 */
5629	vdev_reopen(rvd);
5630}
5631
5632/*
5633 * Remove a device from the pool -
5634 *
5635 * Removing a device from the vdev namespace requires several steps
5636 * and can take a significant amount of time.  As a result we use
5637 * the spa_vdev_config_[enter/exit] functions which allow us to
5638 * grab and release the spa_config_lock while still holding the namespace
5639 * lock.  During each step the configuration is synced out.
5640 *
5641 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5642 * devices.
5643 */
5644int
5645spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5646{
5647	vdev_t *vd;
5648	metaslab_group_t *mg;
5649	nvlist_t **spares, **l2cache, *nv;
5650	uint64_t txg = 0;
5651	uint_t nspares, nl2cache;
5652	int error = 0;
5653	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5654
5655	ASSERT(spa_writeable(spa));
5656
5657	if (!locked)
5658		txg = spa_vdev_enter(spa);
5659
5660	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5661
5662	if (spa->spa_spares.sav_vdevs != NULL &&
5663	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5664	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5665	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5666		/*
5667		 * Only remove the hot spare if it's not currently in use
5668		 * in this pool.
5669		 */
5670		if (vd == NULL || unspare) {
5671			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5672			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5673			spa_load_spares(spa);
5674			spa->spa_spares.sav_sync = B_TRUE;
5675		} else {
5676			error = SET_ERROR(EBUSY);
5677		}
5678		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5679	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5680	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5681	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5682	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5683		/*
5684		 * Cache devices can always be removed.
5685		 */
5686		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5687		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5688		spa_load_l2cache(spa);
5689		spa->spa_l2cache.sav_sync = B_TRUE;
5690		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5691	} else if (vd != NULL && vd->vdev_islog) {
5692		ASSERT(!locked);
5693		ASSERT(vd == vd->vdev_top);
5694
5695		mg = vd->vdev_mg;
5696
5697		/*
5698		 * Stop allocating from this vdev.
5699		 */
5700		metaslab_group_passivate(mg);
5701
5702		/*
5703		 * Wait for the youngest allocations and frees to sync,
5704		 * and then wait for the deferral of those frees to finish.
5705		 */
5706		spa_vdev_config_exit(spa, NULL,
5707		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5708
5709		/*
5710		 * Attempt to evacuate the vdev.
5711		 */
5712		error = spa_vdev_remove_evacuate(spa, vd);
5713
5714		txg = spa_vdev_config_enter(spa);
5715
5716		/*
5717		 * If we couldn't evacuate the vdev, unwind.
5718		 */
5719		if (error) {
5720			metaslab_group_activate(mg);
5721			return (spa_vdev_exit(spa, NULL, txg, error));
5722		}
5723
5724		/*
5725		 * Clean up the vdev namespace.
5726		 */
5727		spa_vdev_remove_from_namespace(spa, vd);
5728
5729		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5730	} else if (vd != NULL) {
5731		/*
5732		 * Normal vdevs cannot be removed (yet).
5733		 */
5734		error = SET_ERROR(ENOTSUP);
5735	} else {
5736		/*
5737		 * There is no vdev of any kind with the specified guid.
5738		 */
5739		error = SET_ERROR(ENOENT);
5740	}
5741
5742	if (!locked)
5743		error = spa_vdev_exit(spa, NULL, txg, error);
5744
5745	return (error);
5746}
5747
5748/*
5749 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5750 * currently spared, so we can detach it.
5751 */
5752static vdev_t *
5753spa_vdev_resilver_done_hunt(vdev_t *vd)
5754{
5755	vdev_t *newvd, *oldvd;
5756
5757	for (int c = 0; c < vd->vdev_children; c++) {
5758		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5759		if (oldvd != NULL)
5760			return (oldvd);
5761	}
5762
5763	/*
5764	 * Check for a completed replacement.  We always consider the first
5765	 * vdev in the list to be the oldest vdev, and the last one to be
5766	 * the newest (see spa_vdev_attach() for how that works).  In
5767	 * the case where the newest vdev is faulted, we will not automatically
5768	 * remove it after a resilver completes.  This is OK as it will require
5769	 * user intervention to determine which disk the admin wishes to keep.
5770	 */
5771	if (vd->vdev_ops == &vdev_replacing_ops) {
5772		ASSERT(vd->vdev_children > 1);
5773
5774		newvd = vd->vdev_child[vd->vdev_children - 1];
5775		oldvd = vd->vdev_child[0];
5776
5777		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5778		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5779		    !vdev_dtl_required(oldvd))
5780			return (oldvd);
5781	}
5782
5783	/*
5784	 * Check for a completed resilver with the 'unspare' flag set.
5785	 */
5786	if (vd->vdev_ops == &vdev_spare_ops) {
5787		vdev_t *first = vd->vdev_child[0];
5788		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5789
5790		if (last->vdev_unspare) {
5791			oldvd = first;
5792			newvd = last;
5793		} else if (first->vdev_unspare) {
5794			oldvd = last;
5795			newvd = first;
5796		} else {
5797			oldvd = NULL;
5798		}
5799
5800		if (oldvd != NULL &&
5801		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5802		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5803		    !vdev_dtl_required(oldvd))
5804			return (oldvd);
5805
5806		/*
5807		 * If there are more than two spares attached to a disk,
5808		 * and those spares are not required, then we want to
5809		 * attempt to free them up now so that they can be used
5810		 * by other pools.  Once we're back down to a single
5811		 * disk+spare, we stop removing them.
5812		 */
5813		if (vd->vdev_children > 2) {
5814			newvd = vd->vdev_child[1];
5815
5816			if (newvd->vdev_isspare && last->vdev_isspare &&
5817			    vdev_dtl_empty(last, DTL_MISSING) &&
5818			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5819			    !vdev_dtl_required(newvd))
5820				return (newvd);
5821		}
5822	}
5823
5824	return (NULL);
5825}
5826
5827static void
5828spa_vdev_resilver_done(spa_t *spa)
5829{
5830	vdev_t *vd, *pvd, *ppvd;
5831	uint64_t guid, sguid, pguid, ppguid;
5832
5833	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5834
5835	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5836		pvd = vd->vdev_parent;
5837		ppvd = pvd->vdev_parent;
5838		guid = vd->vdev_guid;
5839		pguid = pvd->vdev_guid;
5840		ppguid = ppvd->vdev_guid;
5841		sguid = 0;
5842		/*
5843		 * If we have just finished replacing a hot spared device, then
5844		 * we need to detach the parent's first child (the original hot
5845		 * spare) as well.
5846		 */
5847		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5848		    ppvd->vdev_children == 2) {
5849			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5850			sguid = ppvd->vdev_child[1]->vdev_guid;
5851		}
5852		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5853
5854		spa_config_exit(spa, SCL_ALL, FTAG);
5855		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5856			return;
5857		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5858			return;
5859		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5860	}
5861
5862	spa_config_exit(spa, SCL_ALL, FTAG);
5863}
5864
5865/*
5866 * Update the stored path or FRU for this vdev.
5867 */
5868int
5869spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5870    boolean_t ispath)
5871{
5872	vdev_t *vd;
5873	boolean_t sync = B_FALSE;
5874
5875	ASSERT(spa_writeable(spa));
5876
5877	spa_vdev_state_enter(spa, SCL_ALL);
5878
5879	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5880		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5881
5882	if (!vd->vdev_ops->vdev_op_leaf)
5883		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5884
5885	if (ispath) {
5886		if (strcmp(value, vd->vdev_path) != 0) {
5887			spa_strfree(vd->vdev_path);
5888			vd->vdev_path = spa_strdup(value);
5889			sync = B_TRUE;
5890		}
5891	} else {
5892		if (vd->vdev_fru == NULL) {
5893			vd->vdev_fru = spa_strdup(value);
5894			sync = B_TRUE;
5895		} else if (strcmp(value, vd->vdev_fru) != 0) {
5896			spa_strfree(vd->vdev_fru);
5897			vd->vdev_fru = spa_strdup(value);
5898			sync = B_TRUE;
5899		}
5900	}
5901
5902	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5903}
5904
5905int
5906spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5907{
5908	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5909}
5910
5911int
5912spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5913{
5914	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5915}
5916
5917/*
5918 * ==========================================================================
5919 * SPA Scanning
5920 * ==========================================================================
5921 */
5922
5923int
5924spa_scan_stop(spa_t *spa)
5925{
5926	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5927	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5928		return (SET_ERROR(EBUSY));
5929	return (dsl_scan_cancel(spa->spa_dsl_pool));
5930}
5931
5932int
5933spa_scan(spa_t *spa, pool_scan_func_t func)
5934{
5935	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5936
5937	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5938		return (SET_ERROR(ENOTSUP));
5939
5940	/*
5941	 * If a resilver was requested, but there is no DTL on a
5942	 * writeable leaf device, we have nothing to do.
5943	 */
5944	if (func == POOL_SCAN_RESILVER &&
5945	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5946		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5947		return (0);
5948	}
5949
5950	return (dsl_scan(spa->spa_dsl_pool, func));
5951}
5952
5953/*
5954 * ==========================================================================
5955 * SPA async task processing
5956 * ==========================================================================
5957 */
5958
5959static void
5960spa_async_remove(spa_t *spa, vdev_t *vd)
5961{
5962	if (vd->vdev_remove_wanted) {
5963		vd->vdev_remove_wanted = B_FALSE;
5964		vd->vdev_delayed_close = B_FALSE;
5965		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5966
5967		/*
5968		 * We want to clear the stats, but we don't want to do a full
5969		 * vdev_clear() as that will cause us to throw away
5970		 * degraded/faulted state as well as attempt to reopen the
5971		 * device, all of which is a waste.
5972		 */
5973		vd->vdev_stat.vs_read_errors = 0;
5974		vd->vdev_stat.vs_write_errors = 0;
5975		vd->vdev_stat.vs_checksum_errors = 0;
5976
5977		vdev_state_dirty(vd->vdev_top);
5978		/* Tell userspace that the vdev is gone. */
5979		zfs_post_remove(spa, vd);
5980	}
5981
5982	for (int c = 0; c < vd->vdev_children; c++)
5983		spa_async_remove(spa, vd->vdev_child[c]);
5984}
5985
5986static void
5987spa_async_probe(spa_t *spa, vdev_t *vd)
5988{
5989	if (vd->vdev_probe_wanted) {
5990		vd->vdev_probe_wanted = B_FALSE;
5991		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5992	}
5993
5994	for (int c = 0; c < vd->vdev_children; c++)
5995		spa_async_probe(spa, vd->vdev_child[c]);
5996}
5997
5998static void
5999spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6000{
6001	sysevent_id_t eid;
6002	nvlist_t *attr;
6003	char *physpath;
6004
6005	if (!spa->spa_autoexpand)
6006		return;
6007
6008	for (int c = 0; c < vd->vdev_children; c++) {
6009		vdev_t *cvd = vd->vdev_child[c];
6010		spa_async_autoexpand(spa, cvd);
6011	}
6012
6013	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6014		return;
6015
6016	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6017	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6018
6019	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6020	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6021
6022	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6023	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6024
6025	nvlist_free(attr);
6026	kmem_free(physpath, MAXPATHLEN);
6027}
6028
6029static void
6030spa_async_thread(void *arg)
6031{
6032	spa_t *spa = arg;
6033	int tasks;
6034
6035	ASSERT(spa->spa_sync_on);
6036
6037	mutex_enter(&spa->spa_async_lock);
6038	tasks = spa->spa_async_tasks;
6039	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6040	mutex_exit(&spa->spa_async_lock);
6041
6042	/*
6043	 * See if the config needs to be updated.
6044	 */
6045	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6046		uint64_t old_space, new_space;
6047
6048		mutex_enter(&spa_namespace_lock);
6049		old_space = metaslab_class_get_space(spa_normal_class(spa));
6050		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6051		new_space = metaslab_class_get_space(spa_normal_class(spa));
6052		mutex_exit(&spa_namespace_lock);
6053
6054		/*
6055		 * If the pool grew as a result of the config update,
6056		 * then log an internal history event.
6057		 */
6058		if (new_space != old_space) {
6059			spa_history_log_internal(spa, "vdev online", NULL,
6060			    "pool '%s' size: %llu(+%llu)",
6061			    spa_name(spa), new_space, new_space - old_space);
6062		}
6063	}
6064
6065	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6066		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6067		spa_async_autoexpand(spa, spa->spa_root_vdev);
6068		spa_config_exit(spa, SCL_CONFIG, FTAG);
6069	}
6070
6071	/*
6072	 * See if any devices need to be probed.
6073	 */
6074	if (tasks & SPA_ASYNC_PROBE) {
6075		spa_vdev_state_enter(spa, SCL_NONE);
6076		spa_async_probe(spa, spa->spa_root_vdev);
6077		(void) spa_vdev_state_exit(spa, NULL, 0);
6078	}
6079
6080	/*
6081	 * If any devices are done replacing, detach them.
6082	 */
6083	if (tasks & SPA_ASYNC_RESILVER_DONE)
6084		spa_vdev_resilver_done(spa);
6085
6086	/*
6087	 * Kick off a resilver.
6088	 */
6089	if (tasks & SPA_ASYNC_RESILVER)
6090		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6091
6092	/*
6093	 * Let the world know that we're done.
6094	 */
6095	mutex_enter(&spa->spa_async_lock);
6096	spa->spa_async_thread = NULL;
6097	cv_broadcast(&spa->spa_async_cv);
6098	mutex_exit(&spa->spa_async_lock);
6099	thread_exit();
6100}
6101
6102static void
6103spa_async_thread_vd(void *arg)
6104{
6105	spa_t *spa = arg;
6106	int tasks;
6107
6108	ASSERT(spa->spa_sync_on);
6109
6110	mutex_enter(&spa->spa_async_lock);
6111	tasks = spa->spa_async_tasks;
6112retry:
6113	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6114	mutex_exit(&spa->spa_async_lock);
6115
6116	/*
6117	 * See if any devices need to be marked REMOVED.
6118	 */
6119	if (tasks & SPA_ASYNC_REMOVE) {
6120		spa_vdev_state_enter(spa, SCL_NONE);
6121		spa_async_remove(spa, spa->spa_root_vdev);
6122		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6123			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6124		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6125			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6126		(void) spa_vdev_state_exit(spa, NULL, 0);
6127	}
6128
6129	/*
6130	 * Let the world know that we're done.
6131	 */
6132	mutex_enter(&spa->spa_async_lock);
6133	tasks = spa->spa_async_tasks;
6134	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6135		goto retry;
6136	spa->spa_async_thread_vd = NULL;
6137	cv_broadcast(&spa->spa_async_cv);
6138	mutex_exit(&spa->spa_async_lock);
6139	thread_exit();
6140}
6141
6142void
6143spa_async_suspend(spa_t *spa)
6144{
6145	mutex_enter(&spa->spa_async_lock);
6146	spa->spa_async_suspended++;
6147	while (spa->spa_async_thread != NULL &&
6148	    spa->spa_async_thread_vd != NULL)
6149		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6150	mutex_exit(&spa->spa_async_lock);
6151}
6152
6153void
6154spa_async_resume(spa_t *spa)
6155{
6156	mutex_enter(&spa->spa_async_lock);
6157	ASSERT(spa->spa_async_suspended != 0);
6158	spa->spa_async_suspended--;
6159	mutex_exit(&spa->spa_async_lock);
6160}
6161
6162static boolean_t
6163spa_async_tasks_pending(spa_t *spa)
6164{
6165	uint_t non_config_tasks;
6166	uint_t config_task;
6167	boolean_t config_task_suspended;
6168
6169	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6170	    SPA_ASYNC_REMOVE);
6171	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6172	if (spa->spa_ccw_fail_time == 0) {
6173		config_task_suspended = B_FALSE;
6174	} else {
6175		config_task_suspended =
6176		    (gethrtime() - spa->spa_ccw_fail_time) <
6177		    (zfs_ccw_retry_interval * NANOSEC);
6178	}
6179
6180	return (non_config_tasks || (config_task && !config_task_suspended));
6181}
6182
6183static void
6184spa_async_dispatch(spa_t *spa)
6185{
6186	mutex_enter(&spa->spa_async_lock);
6187	if (spa_async_tasks_pending(spa) &&
6188	    !spa->spa_async_suspended &&
6189	    spa->spa_async_thread == NULL &&
6190	    rootdir != NULL)
6191		spa->spa_async_thread = thread_create(NULL, 0,
6192		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6193	mutex_exit(&spa->spa_async_lock);
6194}
6195
6196static void
6197spa_async_dispatch_vd(spa_t *spa)
6198{
6199	mutex_enter(&spa->spa_async_lock);
6200	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6201	    !spa->spa_async_suspended &&
6202	    spa->spa_async_thread_vd == NULL &&
6203	    rootdir != NULL)
6204		spa->spa_async_thread_vd = thread_create(NULL, 0,
6205		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6206	mutex_exit(&spa->spa_async_lock);
6207}
6208
6209void
6210spa_async_request(spa_t *spa, int task)
6211{
6212	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6213	mutex_enter(&spa->spa_async_lock);
6214	spa->spa_async_tasks |= task;
6215	mutex_exit(&spa->spa_async_lock);
6216	spa_async_dispatch_vd(spa);
6217}
6218
6219/*
6220 * ==========================================================================
6221 * SPA syncing routines
6222 * ==========================================================================
6223 */
6224
6225static int
6226bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6227{
6228	bpobj_t *bpo = arg;
6229	bpobj_enqueue(bpo, bp, tx);
6230	return (0);
6231}
6232
6233static int
6234spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6235{
6236	zio_t *zio = arg;
6237
6238	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6239	    BP_GET_PSIZE(bp), zio->io_flags));
6240	return (0);
6241}
6242
6243/*
6244 * Note: this simple function is not inlined to make it easier to dtrace the
6245 * amount of time spent syncing frees.
6246 */
6247static void
6248spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6249{
6250	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6251	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6252	VERIFY(zio_wait(zio) == 0);
6253}
6254
6255/*
6256 * Note: this simple function is not inlined to make it easier to dtrace the
6257 * amount of time spent syncing deferred frees.
6258 */
6259static void
6260spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6261{
6262	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6263	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6264	    spa_free_sync_cb, zio, tx), ==, 0);
6265	VERIFY0(zio_wait(zio));
6266}
6267
6268
6269static void
6270spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6271{
6272	char *packed = NULL;
6273	size_t bufsize;
6274	size_t nvsize = 0;
6275	dmu_buf_t *db;
6276
6277	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6278
6279	/*
6280	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6281	 * information.  This avoids the dmu_buf_will_dirty() path and
6282	 * saves us a pre-read to get data we don't actually care about.
6283	 */
6284	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6285	packed = kmem_alloc(bufsize, KM_SLEEP);
6286
6287	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6288	    KM_SLEEP) == 0);
6289	bzero(packed + nvsize, bufsize - nvsize);
6290
6291	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6292
6293	kmem_free(packed, bufsize);
6294
6295	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6296	dmu_buf_will_dirty(db, tx);
6297	*(uint64_t *)db->db_data = nvsize;
6298	dmu_buf_rele(db, FTAG);
6299}
6300
6301static void
6302spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6303    const char *config, const char *entry)
6304{
6305	nvlist_t *nvroot;
6306	nvlist_t **list;
6307	int i;
6308
6309	if (!sav->sav_sync)
6310		return;
6311
6312	/*
6313	 * Update the MOS nvlist describing the list of available devices.
6314	 * spa_validate_aux() will have already made sure this nvlist is
6315	 * valid and the vdevs are labeled appropriately.
6316	 */
6317	if (sav->sav_object == 0) {
6318		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6319		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6320		    sizeof (uint64_t), tx);
6321		VERIFY(zap_update(spa->spa_meta_objset,
6322		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6323		    &sav->sav_object, tx) == 0);
6324	}
6325
6326	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6327	if (sav->sav_count == 0) {
6328		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6329	} else {
6330		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6331		for (i = 0; i < sav->sav_count; i++)
6332			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6333			    B_FALSE, VDEV_CONFIG_L2CACHE);
6334		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6335		    sav->sav_count) == 0);
6336		for (i = 0; i < sav->sav_count; i++)
6337			nvlist_free(list[i]);
6338		kmem_free(list, sav->sav_count * sizeof (void *));
6339	}
6340
6341	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6342	nvlist_free(nvroot);
6343
6344	sav->sav_sync = B_FALSE;
6345}
6346
6347static void
6348spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6349{
6350	nvlist_t *config;
6351
6352	if (list_is_empty(&spa->spa_config_dirty_list))
6353		return;
6354
6355	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6356
6357	config = spa_config_generate(spa, spa->spa_root_vdev,
6358	    dmu_tx_get_txg(tx), B_FALSE);
6359
6360	/*
6361	 * If we're upgrading the spa version then make sure that
6362	 * the config object gets updated with the correct version.
6363	 */
6364	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6365		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6366		    spa->spa_uberblock.ub_version);
6367
6368	spa_config_exit(spa, SCL_STATE, FTAG);
6369
6370	nvlist_free(spa->spa_config_syncing);
6371	spa->spa_config_syncing = config;
6372
6373	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6374}
6375
6376static void
6377spa_sync_version(void *arg, dmu_tx_t *tx)
6378{
6379	uint64_t *versionp = arg;
6380	uint64_t version = *versionp;
6381	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6382
6383	/*
6384	 * Setting the version is special cased when first creating the pool.
6385	 */
6386	ASSERT(tx->tx_txg != TXG_INITIAL);
6387
6388	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6389	ASSERT(version >= spa_version(spa));
6390
6391	spa->spa_uberblock.ub_version = version;
6392	vdev_config_dirty(spa->spa_root_vdev);
6393	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6394}
6395
6396/*
6397 * Set zpool properties.
6398 */
6399static void
6400spa_sync_props(void *arg, dmu_tx_t *tx)
6401{
6402	nvlist_t *nvp = arg;
6403	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6404	objset_t *mos = spa->spa_meta_objset;
6405	nvpair_t *elem = NULL;
6406
6407	mutex_enter(&spa->spa_props_lock);
6408
6409	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6410		uint64_t intval;
6411		char *strval, *fname;
6412		zpool_prop_t prop;
6413		const char *propname;
6414		zprop_type_t proptype;
6415		spa_feature_t fid;
6416
6417		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6418		case ZPROP_INVAL:
6419			/*
6420			 * We checked this earlier in spa_prop_validate().
6421			 */
6422			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6423
6424			fname = strchr(nvpair_name(elem), '@') + 1;
6425			VERIFY0(zfeature_lookup_name(fname, &fid));
6426
6427			spa_feature_enable(spa, fid, tx);
6428			spa_history_log_internal(spa, "set", tx,
6429			    "%s=enabled", nvpair_name(elem));
6430			break;
6431
6432		case ZPOOL_PROP_VERSION:
6433			intval = fnvpair_value_uint64(elem);
6434			/*
6435			 * The version is synced seperatly before other
6436			 * properties and should be correct by now.
6437			 */
6438			ASSERT3U(spa_version(spa), >=, intval);
6439			break;
6440
6441		case ZPOOL_PROP_ALTROOT:
6442			/*
6443			 * 'altroot' is a non-persistent property. It should
6444			 * have been set temporarily at creation or import time.
6445			 */
6446			ASSERT(spa->spa_root != NULL);
6447			break;
6448
6449		case ZPOOL_PROP_READONLY:
6450		case ZPOOL_PROP_CACHEFILE:
6451			/*
6452			 * 'readonly' and 'cachefile' are also non-persisitent
6453			 * properties.
6454			 */
6455			break;
6456		case ZPOOL_PROP_COMMENT:
6457			strval = fnvpair_value_string(elem);
6458			if (spa->spa_comment != NULL)
6459				spa_strfree(spa->spa_comment);
6460			spa->spa_comment = spa_strdup(strval);
6461			/*
6462			 * We need to dirty the configuration on all the vdevs
6463			 * so that their labels get updated.  It's unnecessary
6464			 * to do this for pool creation since the vdev's
6465			 * configuratoin has already been dirtied.
6466			 */
6467			if (tx->tx_txg != TXG_INITIAL)
6468				vdev_config_dirty(spa->spa_root_vdev);
6469			spa_history_log_internal(spa, "set", tx,
6470			    "%s=%s", nvpair_name(elem), strval);
6471			break;
6472		default:
6473			/*
6474			 * Set pool property values in the poolprops mos object.
6475			 */
6476			if (spa->spa_pool_props_object == 0) {
6477				spa->spa_pool_props_object =
6478				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6479				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6480				    tx);
6481			}
6482
6483			/* normalize the property name */
6484			propname = zpool_prop_to_name(prop);
6485			proptype = zpool_prop_get_type(prop);
6486
6487			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6488				ASSERT(proptype == PROP_TYPE_STRING);
6489				strval = fnvpair_value_string(elem);
6490				VERIFY0(zap_update(mos,
6491				    spa->spa_pool_props_object, propname,
6492				    1, strlen(strval) + 1, strval, tx));
6493				spa_history_log_internal(spa, "set", tx,
6494				    "%s=%s", nvpair_name(elem), strval);
6495			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6496				intval = fnvpair_value_uint64(elem);
6497
6498				if (proptype == PROP_TYPE_INDEX) {
6499					const char *unused;
6500					VERIFY0(zpool_prop_index_to_string(
6501					    prop, intval, &unused));
6502				}
6503				VERIFY0(zap_update(mos,
6504				    spa->spa_pool_props_object, propname,
6505				    8, 1, &intval, tx));
6506				spa_history_log_internal(spa, "set", tx,
6507				    "%s=%lld", nvpair_name(elem), intval);
6508			} else {
6509				ASSERT(0); /* not allowed */
6510			}
6511
6512			switch (prop) {
6513			case ZPOOL_PROP_DELEGATION:
6514				spa->spa_delegation = intval;
6515				break;
6516			case ZPOOL_PROP_BOOTFS:
6517				spa->spa_bootfs = intval;
6518				break;
6519			case ZPOOL_PROP_FAILUREMODE:
6520				spa->spa_failmode = intval;
6521				break;
6522			case ZPOOL_PROP_AUTOEXPAND:
6523				spa->spa_autoexpand = intval;
6524				if (tx->tx_txg != TXG_INITIAL)
6525					spa_async_request(spa,
6526					    SPA_ASYNC_AUTOEXPAND);
6527				break;
6528			case ZPOOL_PROP_DEDUPDITTO:
6529				spa->spa_dedup_ditto = intval;
6530				break;
6531			default:
6532				break;
6533			}
6534		}
6535
6536	}
6537
6538	mutex_exit(&spa->spa_props_lock);
6539}
6540
6541/*
6542 * Perform one-time upgrade on-disk changes.  spa_version() does not
6543 * reflect the new version this txg, so there must be no changes this
6544 * txg to anything that the upgrade code depends on after it executes.
6545 * Therefore this must be called after dsl_pool_sync() does the sync
6546 * tasks.
6547 */
6548static void
6549spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6550{
6551	dsl_pool_t *dp = spa->spa_dsl_pool;
6552
6553	ASSERT(spa->spa_sync_pass == 1);
6554
6555	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6556
6557	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6558	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6559		dsl_pool_create_origin(dp, tx);
6560
6561		/* Keeping the origin open increases spa_minref */
6562		spa->spa_minref += 3;
6563	}
6564
6565	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6566	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6567		dsl_pool_upgrade_clones(dp, tx);
6568	}
6569
6570	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6571	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6572		dsl_pool_upgrade_dir_clones(dp, tx);
6573
6574		/* Keeping the freedir open increases spa_minref */
6575		spa->spa_minref += 3;
6576	}
6577
6578	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6579	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6580		spa_feature_create_zap_objects(spa, tx);
6581	}
6582
6583	/*
6584	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6585	 * when possibility to use lz4 compression for metadata was added
6586	 * Old pools that have this feature enabled must be upgraded to have
6587	 * this feature active
6588	 */
6589	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6590		boolean_t lz4_en = spa_feature_is_enabled(spa,
6591		    SPA_FEATURE_LZ4_COMPRESS);
6592		boolean_t lz4_ac = spa_feature_is_active(spa,
6593		    SPA_FEATURE_LZ4_COMPRESS);
6594
6595		if (lz4_en && !lz4_ac)
6596			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6597	}
6598
6599	/*
6600	 * If we haven't written the salt, do so now.  Note that the
6601	 * feature may not be activated yet, but that's fine since
6602	 * the presence of this ZAP entry is backwards compatible.
6603	 */
6604	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6605	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6606		VERIFY0(zap_add(spa->spa_meta_objset,
6607		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6608		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6609		    spa->spa_cksum_salt.zcs_bytes, tx));
6610	}
6611
6612	rrw_exit(&dp->dp_config_rwlock, FTAG);
6613}
6614
6615/*
6616 * Sync the specified transaction group.  New blocks may be dirtied as
6617 * part of the process, so we iterate until it converges.
6618 */
6619void
6620spa_sync(spa_t *spa, uint64_t txg)
6621{
6622	dsl_pool_t *dp = spa->spa_dsl_pool;
6623	objset_t *mos = spa->spa_meta_objset;
6624	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6625	vdev_t *rvd = spa->spa_root_vdev;
6626	vdev_t *vd;
6627	dmu_tx_t *tx;
6628	int error;
6629
6630	VERIFY(spa_writeable(spa));
6631
6632	/*
6633	 * Lock out configuration changes.
6634	 */
6635	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6636
6637	spa->spa_syncing_txg = txg;
6638	spa->spa_sync_pass = 0;
6639
6640	/*
6641	 * If there are any pending vdev state changes, convert them
6642	 * into config changes that go out with this transaction group.
6643	 */
6644	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6645	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6646		/*
6647		 * We need the write lock here because, for aux vdevs,
6648		 * calling vdev_config_dirty() modifies sav_config.
6649		 * This is ugly and will become unnecessary when we
6650		 * eliminate the aux vdev wart by integrating all vdevs
6651		 * into the root vdev tree.
6652		 */
6653		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6654		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6655		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6656			vdev_state_clean(vd);
6657			vdev_config_dirty(vd);
6658		}
6659		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6660		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6661	}
6662	spa_config_exit(spa, SCL_STATE, FTAG);
6663
6664	tx = dmu_tx_create_assigned(dp, txg);
6665
6666	spa->spa_sync_starttime = gethrtime();
6667#ifdef illumos
6668	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6669	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6670#else	/* !illumos */
6671#ifdef _KERNEL
6672	callout_reset(&spa->spa_deadman_cycid,
6673	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6674#endif
6675#endif	/* illumos */
6676
6677	/*
6678	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6679	 * set spa_deflate if we have no raid-z vdevs.
6680	 */
6681	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6682	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6683		int i;
6684
6685		for (i = 0; i < rvd->vdev_children; i++) {
6686			vd = rvd->vdev_child[i];
6687			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6688				break;
6689		}
6690		if (i == rvd->vdev_children) {
6691			spa->spa_deflate = TRUE;
6692			VERIFY(0 == zap_add(spa->spa_meta_objset,
6693			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6694			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6695		}
6696	}
6697
6698	/*
6699	 * Iterate to convergence.
6700	 */
6701	do {
6702		int pass = ++spa->spa_sync_pass;
6703
6704		spa_sync_config_object(spa, tx);
6705		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6706		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6707		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6708		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6709		spa_errlog_sync(spa, txg);
6710		dsl_pool_sync(dp, txg);
6711
6712		if (pass < zfs_sync_pass_deferred_free) {
6713			spa_sync_frees(spa, free_bpl, tx);
6714		} else {
6715			/*
6716			 * We can not defer frees in pass 1, because
6717			 * we sync the deferred frees later in pass 1.
6718			 */
6719			ASSERT3U(pass, >, 1);
6720			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6721			    &spa->spa_deferred_bpobj, tx);
6722		}
6723
6724		ddt_sync(spa, txg);
6725		dsl_scan_sync(dp, tx);
6726
6727		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6728			vdev_sync(vd, txg);
6729
6730		if (pass == 1) {
6731			spa_sync_upgrades(spa, tx);
6732			ASSERT3U(txg, >=,
6733			    spa->spa_uberblock.ub_rootbp.blk_birth);
6734			/*
6735			 * Note: We need to check if the MOS is dirty
6736			 * because we could have marked the MOS dirty
6737			 * without updating the uberblock (e.g. if we
6738			 * have sync tasks but no dirty user data).  We
6739			 * need to check the uberblock's rootbp because
6740			 * it is updated if we have synced out dirty
6741			 * data (though in this case the MOS will most
6742			 * likely also be dirty due to second order
6743			 * effects, we don't want to rely on that here).
6744			 */
6745			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6746			    !dmu_objset_is_dirty(mos, txg)) {
6747				/*
6748				 * Nothing changed on the first pass,
6749				 * therefore this TXG is a no-op.  Avoid
6750				 * syncing deferred frees, so that we
6751				 * can keep this TXG as a no-op.
6752				 */
6753				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6754				    txg));
6755				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6756				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6757				break;
6758			}
6759			spa_sync_deferred_frees(spa, tx);
6760		}
6761
6762	} while (dmu_objset_is_dirty(mos, txg));
6763
6764	/*
6765	 * Rewrite the vdev configuration (which includes the uberblock)
6766	 * to commit the transaction group.
6767	 *
6768	 * If there are no dirty vdevs, we sync the uberblock to a few
6769	 * random top-level vdevs that are known to be visible in the
6770	 * config cache (see spa_vdev_add() for a complete description).
6771	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6772	 */
6773	for (;;) {
6774		/*
6775		 * We hold SCL_STATE to prevent vdev open/close/etc.
6776		 * while we're attempting to write the vdev labels.
6777		 */
6778		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6779
6780		if (list_is_empty(&spa->spa_config_dirty_list)) {
6781			vdev_t *svd[SPA_DVAS_PER_BP];
6782			int svdcount = 0;
6783			int children = rvd->vdev_children;
6784			int c0 = spa_get_random(children);
6785
6786			for (int c = 0; c < children; c++) {
6787				vd = rvd->vdev_child[(c0 + c) % children];
6788				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6789					continue;
6790				svd[svdcount++] = vd;
6791				if (svdcount == SPA_DVAS_PER_BP)
6792					break;
6793			}
6794			error = vdev_config_sync(svd, svdcount, txg);
6795		} else {
6796			error = vdev_config_sync(rvd->vdev_child,
6797			    rvd->vdev_children, txg);
6798		}
6799
6800		if (error == 0)
6801			spa->spa_last_synced_guid = rvd->vdev_guid;
6802
6803		spa_config_exit(spa, SCL_STATE, FTAG);
6804
6805		if (error == 0)
6806			break;
6807		zio_suspend(spa, NULL);
6808		zio_resume_wait(spa);
6809	}
6810	dmu_tx_commit(tx);
6811
6812#ifdef illumos
6813	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6814#else	/* !illumos */
6815#ifdef _KERNEL
6816	callout_drain(&spa->spa_deadman_cycid);
6817#endif
6818#endif	/* illumos */
6819
6820	/*
6821	 * Clear the dirty config list.
6822	 */
6823	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6824		vdev_config_clean(vd);
6825
6826	/*
6827	 * Now that the new config has synced transactionally,
6828	 * let it become visible to the config cache.
6829	 */
6830	if (spa->spa_config_syncing != NULL) {
6831		spa_config_set(spa, spa->spa_config_syncing);
6832		spa->spa_config_txg = txg;
6833		spa->spa_config_syncing = NULL;
6834	}
6835
6836	spa->spa_ubsync = spa->spa_uberblock;
6837
6838	dsl_pool_sync_done(dp, txg);
6839
6840	/*
6841	 * Update usable space statistics.
6842	 */
6843	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6844		vdev_sync_done(vd, txg);
6845
6846	spa_update_dspace(spa);
6847
6848	/*
6849	 * It had better be the case that we didn't dirty anything
6850	 * since vdev_config_sync().
6851	 */
6852	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6853	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6854	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6855
6856	spa->spa_sync_pass = 0;
6857
6858	spa_config_exit(spa, SCL_CONFIG, FTAG);
6859
6860	spa_handle_ignored_writes(spa);
6861
6862	/*
6863	 * If any async tasks have been requested, kick them off.
6864	 */
6865	spa_async_dispatch(spa);
6866	spa_async_dispatch_vd(spa);
6867}
6868
6869/*
6870 * Sync all pools.  We don't want to hold the namespace lock across these
6871 * operations, so we take a reference on the spa_t and drop the lock during the
6872 * sync.
6873 */
6874void
6875spa_sync_allpools(void)
6876{
6877	spa_t *spa = NULL;
6878	mutex_enter(&spa_namespace_lock);
6879	while ((spa = spa_next(spa)) != NULL) {
6880		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6881		    !spa_writeable(spa) || spa_suspended(spa))
6882			continue;
6883		spa_open_ref(spa, FTAG);
6884		mutex_exit(&spa_namespace_lock);
6885		txg_wait_synced(spa_get_dsl(spa), 0);
6886		mutex_enter(&spa_namespace_lock);
6887		spa_close(spa, FTAG);
6888	}
6889	mutex_exit(&spa_namespace_lock);
6890}
6891
6892/*
6893 * ==========================================================================
6894 * Miscellaneous routines
6895 * ==========================================================================
6896 */
6897
6898/*
6899 * Remove all pools in the system.
6900 */
6901void
6902spa_evict_all(void)
6903{
6904	spa_t *spa;
6905
6906	/*
6907	 * Remove all cached state.  All pools should be closed now,
6908	 * so every spa in the AVL tree should be unreferenced.
6909	 */
6910	mutex_enter(&spa_namespace_lock);
6911	while ((spa = spa_next(NULL)) != NULL) {
6912		/*
6913		 * Stop async tasks.  The async thread may need to detach
6914		 * a device that's been replaced, which requires grabbing
6915		 * spa_namespace_lock, so we must drop it here.
6916		 */
6917		spa_open_ref(spa, FTAG);
6918		mutex_exit(&spa_namespace_lock);
6919		spa_async_suspend(spa);
6920		mutex_enter(&spa_namespace_lock);
6921		spa_close(spa, FTAG);
6922
6923		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6924			spa_unload(spa);
6925			spa_deactivate(spa);
6926		}
6927		spa_remove(spa);
6928	}
6929	mutex_exit(&spa_namespace_lock);
6930}
6931
6932vdev_t *
6933spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6934{
6935	vdev_t *vd;
6936	int i;
6937
6938	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6939		return (vd);
6940
6941	if (aux) {
6942		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6943			vd = spa->spa_l2cache.sav_vdevs[i];
6944			if (vd->vdev_guid == guid)
6945				return (vd);
6946		}
6947
6948		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6949			vd = spa->spa_spares.sav_vdevs[i];
6950			if (vd->vdev_guid == guid)
6951				return (vd);
6952		}
6953	}
6954
6955	return (NULL);
6956}
6957
6958void
6959spa_upgrade(spa_t *spa, uint64_t version)
6960{
6961	ASSERT(spa_writeable(spa));
6962
6963	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6964
6965	/*
6966	 * This should only be called for a non-faulted pool, and since a
6967	 * future version would result in an unopenable pool, this shouldn't be
6968	 * possible.
6969	 */
6970	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6971	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6972
6973	spa->spa_uberblock.ub_version = version;
6974	vdev_config_dirty(spa->spa_root_vdev);
6975
6976	spa_config_exit(spa, SCL_ALL, FTAG);
6977
6978	txg_wait_synced(spa_get_dsl(spa), 0);
6979}
6980
6981boolean_t
6982spa_has_spare(spa_t *spa, uint64_t guid)
6983{
6984	int i;
6985	uint64_t spareguid;
6986	spa_aux_vdev_t *sav = &spa->spa_spares;
6987
6988	for (i = 0; i < sav->sav_count; i++)
6989		if (sav->sav_vdevs[i]->vdev_guid == guid)
6990			return (B_TRUE);
6991
6992	for (i = 0; i < sav->sav_npending; i++) {
6993		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6994		    &spareguid) == 0 && spareguid == guid)
6995			return (B_TRUE);
6996	}
6997
6998	return (B_FALSE);
6999}
7000
7001/*
7002 * Check if a pool has an active shared spare device.
7003 * Note: reference count of an active spare is 2, as a spare and as a replace
7004 */
7005static boolean_t
7006spa_has_active_shared_spare(spa_t *spa)
7007{
7008	int i, refcnt;
7009	uint64_t pool;
7010	spa_aux_vdev_t *sav = &spa->spa_spares;
7011
7012	for (i = 0; i < sav->sav_count; i++) {
7013		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7014		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7015		    refcnt > 2)
7016			return (B_TRUE);
7017	}
7018
7019	return (B_FALSE);
7020}
7021
7022/*
7023 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7024 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7025 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7026 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7027 * or zdb as real changes.
7028 */
7029void
7030spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7031{
7032#ifdef _KERNEL
7033	sysevent_t		*ev;
7034	sysevent_attr_list_t	*attr = NULL;
7035	sysevent_value_t	value;
7036	sysevent_id_t		eid;
7037
7038	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7039	    SE_SLEEP);
7040
7041	value.value_type = SE_DATA_TYPE_STRING;
7042	value.value.sv_string = spa_name(spa);
7043	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7044		goto done;
7045
7046	value.value_type = SE_DATA_TYPE_UINT64;
7047	value.value.sv_uint64 = spa_guid(spa);
7048	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7049		goto done;
7050
7051	if (vd) {
7052		value.value_type = SE_DATA_TYPE_UINT64;
7053		value.value.sv_uint64 = vd->vdev_guid;
7054		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7055		    SE_SLEEP) != 0)
7056			goto done;
7057
7058		if (vd->vdev_path) {
7059			value.value_type = SE_DATA_TYPE_STRING;
7060			value.value.sv_string = vd->vdev_path;
7061			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7062			    &value, SE_SLEEP) != 0)
7063				goto done;
7064		}
7065	}
7066
7067	if (sysevent_attach_attributes(ev, attr) != 0)
7068		goto done;
7069	attr = NULL;
7070
7071	(void) log_sysevent(ev, SE_SLEEP, &eid);
7072
7073done:
7074	if (attr)
7075		sysevent_free_attr(attr);
7076	sysevent_free(ev);
7077#endif
7078}
7079