spa.c revision 307052
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static void spa_sync_version(void *arg, dmu_tx_t *tx);
156static void spa_sync_props(void *arg, dmu_tx_t *tx);
157static boolean_t spa_has_active_shared_spare(spa_t *spa);
158static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
159    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
160    char **ereport);
161static void spa_vdev_resilver_done(spa_t *spa);
162
163uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164#ifdef PSRSET_BIND
165id_t		zio_taskq_psrset_bind = PS_NONE;
166#endif
167#ifdef SYSDC
168boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
169#endif
170uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
171
172boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
173extern int	zfs_sync_pass_deferred_free;
174
175#ifndef illumos
176extern void spa_deadman(void *arg);
177#endif
178
179/*
180 * This (illegal) pool name is used when temporarily importing a spa_t in order
181 * to get the vdev stats associated with the imported devices.
182 */
183#define	TRYIMPORT_NAME	"$import"
184
185/*
186 * ==========================================================================
187 * SPA properties routines
188 * ==========================================================================
189 */
190
191/*
192 * Add a (source=src, propname=propval) list to an nvlist.
193 */
194static void
195spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
196    uint64_t intval, zprop_source_t src)
197{
198	const char *propname = zpool_prop_to_name(prop);
199	nvlist_t *propval;
200
201	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
202	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
203
204	if (strval != NULL)
205		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
206	else
207		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
208
209	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
210	nvlist_free(propval);
211}
212
213/*
214 * Get property values from the spa configuration.
215 */
216static void
217spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
218{
219	vdev_t *rvd = spa->spa_root_vdev;
220	dsl_pool_t *pool = spa->spa_dsl_pool;
221	uint64_t size, alloc, cap, version;
222	zprop_source_t src = ZPROP_SRC_NONE;
223	spa_config_dirent_t *dp;
224	metaslab_class_t *mc = spa_normal_class(spa);
225
226	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
227
228	if (rvd != NULL) {
229		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
230		size = metaslab_class_get_space(spa_normal_class(spa));
231		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
235		    size - alloc, src);
236
237		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
238		    metaslab_class_fragmentation(mc), src);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
240		    metaslab_class_expandable_space(mc), src);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
242		    (spa_mode(spa) == FREAD), src);
243
244		cap = (size == 0) ? 0 : (alloc * 100 / size);
245		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
246
247		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
248		    ddt_get_pool_dedup_ratio(spa), src);
249
250		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
251		    rvd->vdev_state, src);
252
253		version = spa_version(spa);
254		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
255			src = ZPROP_SRC_DEFAULT;
256		else
257			src = ZPROP_SRC_LOCAL;
258		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
259	}
260
261	if (pool != NULL) {
262		/*
263		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
264		 * when opening pools before this version freedir will be NULL.
265		 */
266		if (pool->dp_free_dir != NULL) {
267			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
268			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
269			    src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274
275		if (pool->dp_leak_dir != NULL) {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
277			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
278			    src);
279		} else {
280			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
281			    NULL, 0, src);
282		}
283	}
284
285	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
286
287	if (spa->spa_comment != NULL) {
288		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
289		    0, ZPROP_SRC_LOCAL);
290	}
291
292	if (spa->spa_root != NULL)
293		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
294		    0, ZPROP_SRC_LOCAL);
295
296	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
297		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
299	} else {
300		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
301		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
302	}
303
304	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
305		if (dp->scd_path == NULL) {
306			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307			    "none", 0, ZPROP_SRC_LOCAL);
308		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
309			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
310			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
311		}
312	}
313}
314
315/*
316 * Get zpool property values.
317 */
318int
319spa_prop_get(spa_t *spa, nvlist_t **nvp)
320{
321	objset_t *mos = spa->spa_meta_objset;
322	zap_cursor_t zc;
323	zap_attribute_t za;
324	int err;
325
326	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
327
328	mutex_enter(&spa->spa_props_lock);
329
330	/*
331	 * Get properties from the spa config.
332	 */
333	spa_prop_get_config(spa, nvp);
334
335	/* If no pool property object, no more prop to get. */
336	if (mos == NULL || spa->spa_pool_props_object == 0) {
337		mutex_exit(&spa->spa_props_lock);
338		return (0);
339	}
340
341	/*
342	 * Get properties from the MOS pool property object.
343	 */
344	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
345	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
346	    zap_cursor_advance(&zc)) {
347		uint64_t intval = 0;
348		char *strval = NULL;
349		zprop_source_t src = ZPROP_SRC_DEFAULT;
350		zpool_prop_t prop;
351
352		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
353			continue;
354
355		switch (za.za_integer_length) {
356		case 8:
357			/* integer property */
358			if (za.za_first_integer !=
359			    zpool_prop_default_numeric(prop))
360				src = ZPROP_SRC_LOCAL;
361
362			if (prop == ZPOOL_PROP_BOOTFS) {
363				dsl_pool_t *dp;
364				dsl_dataset_t *ds = NULL;
365
366				dp = spa_get_dsl(spa);
367				dsl_pool_config_enter(dp, FTAG);
368				if (err = dsl_dataset_hold_obj(dp,
369				    za.za_first_integer, FTAG, &ds)) {
370					dsl_pool_config_exit(dp, FTAG);
371					break;
372				}
373
374				strval = kmem_alloc(
375				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
376				    KM_SLEEP);
377				dsl_dataset_name(ds, strval);
378				dsl_dataset_rele(ds, FTAG);
379				dsl_pool_config_exit(dp, FTAG);
380			} else {
381				strval = NULL;
382				intval = za.za_first_integer;
383			}
384
385			spa_prop_add_list(*nvp, prop, strval, intval, src);
386
387			if (strval != NULL)
388				kmem_free(strval,
389				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
390
391			break;
392
393		case 1:
394			/* string property */
395			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
396			err = zap_lookup(mos, spa->spa_pool_props_object,
397			    za.za_name, 1, za.za_num_integers, strval);
398			if (err) {
399				kmem_free(strval, za.za_num_integers);
400				break;
401			}
402			spa_prop_add_list(*nvp, prop, strval, 0, src);
403			kmem_free(strval, za.za_num_integers);
404			break;
405
406		default:
407			break;
408		}
409	}
410	zap_cursor_fini(&zc);
411	mutex_exit(&spa->spa_props_lock);
412out:
413	if (err && err != ENOENT) {
414		nvlist_free(*nvp);
415		*nvp = NULL;
416		return (err);
417	}
418
419	return (0);
420}
421
422/*
423 * Validate the given pool properties nvlist and modify the list
424 * for the property values to be set.
425 */
426static int
427spa_prop_validate(spa_t *spa, nvlist_t *props)
428{
429	nvpair_t *elem;
430	int error = 0, reset_bootfs = 0;
431	uint64_t objnum = 0;
432	boolean_t has_feature = B_FALSE;
433
434	elem = NULL;
435	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
436		uint64_t intval;
437		char *strval, *slash, *check, *fname;
438		const char *propname = nvpair_name(elem);
439		zpool_prop_t prop = zpool_name_to_prop(propname);
440
441		switch (prop) {
442		case ZPROP_INVAL:
443			if (!zpool_prop_feature(propname)) {
444				error = SET_ERROR(EINVAL);
445				break;
446			}
447
448			/*
449			 * Sanitize the input.
450			 */
451			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (nvpair_value_uint64(elem, &intval) != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			if (intval != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			fname = strchr(propname, '@') + 1;
467			if (zfeature_lookup_name(fname, NULL) != 0) {
468				error = SET_ERROR(EINVAL);
469				break;
470			}
471
472			has_feature = B_TRUE;
473			break;
474
475		case ZPOOL_PROP_VERSION:
476			error = nvpair_value_uint64(elem, &intval);
477			if (!error &&
478			    (intval < spa_version(spa) ||
479			    intval > SPA_VERSION_BEFORE_FEATURES ||
480			    has_feature))
481				error = SET_ERROR(EINVAL);
482			break;
483
484		case ZPOOL_PROP_DELEGATION:
485		case ZPOOL_PROP_AUTOREPLACE:
486		case ZPOOL_PROP_LISTSNAPS:
487		case ZPOOL_PROP_AUTOEXPAND:
488			error = nvpair_value_uint64(elem, &intval);
489			if (!error && intval > 1)
490				error = SET_ERROR(EINVAL);
491			break;
492
493		case ZPOOL_PROP_BOOTFS:
494			/*
495			 * If the pool version is less than SPA_VERSION_BOOTFS,
496			 * or the pool is still being created (version == 0),
497			 * the bootfs property cannot be set.
498			 */
499			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
500				error = SET_ERROR(ENOTSUP);
501				break;
502			}
503
504			/*
505			 * Make sure the vdev config is bootable
506			 */
507			if (!vdev_is_bootable(spa->spa_root_vdev)) {
508				error = SET_ERROR(ENOTSUP);
509				break;
510			}
511
512			reset_bootfs = 1;
513
514			error = nvpair_value_string(elem, &strval);
515
516			if (!error) {
517				objset_t *os;
518				uint64_t propval;
519
520				if (strval == NULL || strval[0] == '\0') {
521					objnum = zpool_prop_default_numeric(
522					    ZPOOL_PROP_BOOTFS);
523					break;
524				}
525
526				if (error = dmu_objset_hold(strval, FTAG, &os))
527					break;
528
529				/*
530				 * Must be ZPL, and its property settings
531				 * must be supported by GRUB (compression
532				 * is not gzip, and large blocks are not used).
533				 */
534
535				if (dmu_objset_type(os) != DMU_OST_ZFS) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
540				    &propval)) == 0 &&
541				    !BOOTFS_COMPRESS_VALID(propval)) {
542					error = SET_ERROR(ENOTSUP);
543				} else if ((error =
544				    dsl_prop_get_int_ds(dmu_objset_ds(os),
545				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
546				    &propval)) == 0 &&
547				    propval > SPA_OLD_MAXBLOCKSIZE) {
548					error = SET_ERROR(ENOTSUP);
549				} else {
550					objnum = dmu_objset_id(os);
551				}
552				dmu_objset_rele(os, FTAG);
553			}
554			break;
555
556		case ZPOOL_PROP_FAILUREMODE:
557			error = nvpair_value_uint64(elem, &intval);
558			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
559			    intval > ZIO_FAILURE_MODE_PANIC))
560				error = SET_ERROR(EINVAL);
561
562			/*
563			 * This is a special case which only occurs when
564			 * the pool has completely failed. This allows
565			 * the user to change the in-core failmode property
566			 * without syncing it out to disk (I/Os might
567			 * currently be blocked). We do this by returning
568			 * EIO to the caller (spa_prop_set) to trick it
569			 * into thinking we encountered a property validation
570			 * error.
571			 */
572			if (!error && spa_suspended(spa)) {
573				spa->spa_failmode = intval;
574				error = SET_ERROR(EIO);
575			}
576			break;
577
578		case ZPOOL_PROP_CACHEFILE:
579			if ((error = nvpair_value_string(elem, &strval)) != 0)
580				break;
581
582			if (strval[0] == '\0')
583				break;
584
585			if (strcmp(strval, "none") == 0)
586				break;
587
588			if (strval[0] != '/') {
589				error = SET_ERROR(EINVAL);
590				break;
591			}
592
593			slash = strrchr(strval, '/');
594			ASSERT(slash != NULL);
595
596			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
597			    strcmp(slash, "/..") == 0)
598				error = SET_ERROR(EINVAL);
599			break;
600
601		case ZPOOL_PROP_COMMENT:
602			if ((error = nvpair_value_string(elem, &strval)) != 0)
603				break;
604			for (check = strval; *check != '\0'; check++) {
605				/*
606				 * The kernel doesn't have an easy isprint()
607				 * check.  For this kernel check, we merely
608				 * check ASCII apart from DEL.  Fix this if
609				 * there is an easy-to-use kernel isprint().
610				 */
611				if (*check >= 0x7f) {
612					error = SET_ERROR(EINVAL);
613					break;
614				}
615			}
616			if (strlen(strval) > ZPROP_MAX_COMMENT)
617				error = E2BIG;
618			break;
619
620		case ZPOOL_PROP_DEDUPDITTO:
621			if (spa_version(spa) < SPA_VERSION_DEDUP)
622				error = SET_ERROR(ENOTSUP);
623			else
624				error = nvpair_value_uint64(elem, &intval);
625			if (error == 0 &&
626			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
627				error = SET_ERROR(EINVAL);
628			break;
629		}
630
631		if (error)
632			break;
633	}
634
635	if (!error && reset_bootfs) {
636		error = nvlist_remove(props,
637		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
638
639		if (!error) {
640			error = nvlist_add_uint64(props,
641			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
642		}
643	}
644
645	return (error);
646}
647
648void
649spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
650{
651	char *cachefile;
652	spa_config_dirent_t *dp;
653
654	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
655	    &cachefile) != 0)
656		return;
657
658	dp = kmem_alloc(sizeof (spa_config_dirent_t),
659	    KM_SLEEP);
660
661	if (cachefile[0] == '\0')
662		dp->scd_path = spa_strdup(spa_config_path);
663	else if (strcmp(cachefile, "none") == 0)
664		dp->scd_path = NULL;
665	else
666		dp->scd_path = spa_strdup(cachefile);
667
668	list_insert_head(&spa->spa_config_list, dp);
669	if (need_sync)
670		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
671}
672
673int
674spa_prop_set(spa_t *spa, nvlist_t *nvp)
675{
676	int error;
677	nvpair_t *elem = NULL;
678	boolean_t need_sync = B_FALSE;
679
680	if ((error = spa_prop_validate(spa, nvp)) != 0)
681		return (error);
682
683	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
684		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
685
686		if (prop == ZPOOL_PROP_CACHEFILE ||
687		    prop == ZPOOL_PROP_ALTROOT ||
688		    prop == ZPOOL_PROP_READONLY)
689			continue;
690
691		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
692			uint64_t ver;
693
694			if (prop == ZPOOL_PROP_VERSION) {
695				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
696			} else {
697				ASSERT(zpool_prop_feature(nvpair_name(elem)));
698				ver = SPA_VERSION_FEATURES;
699				need_sync = B_TRUE;
700			}
701
702			/* Save time if the version is already set. */
703			if (ver == spa_version(spa))
704				continue;
705
706			/*
707			 * In addition to the pool directory object, we might
708			 * create the pool properties object, the features for
709			 * read object, the features for write object, or the
710			 * feature descriptions object.
711			 */
712			error = dsl_sync_task(spa->spa_name, NULL,
713			    spa_sync_version, &ver,
714			    6, ZFS_SPACE_CHECK_RESERVED);
715			if (error)
716				return (error);
717			continue;
718		}
719
720		need_sync = B_TRUE;
721		break;
722	}
723
724	if (need_sync) {
725		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
726		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
727	}
728
729	return (0);
730}
731
732/*
733 * If the bootfs property value is dsobj, clear it.
734 */
735void
736spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
737{
738	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
739		VERIFY(zap_remove(spa->spa_meta_objset,
740		    spa->spa_pool_props_object,
741		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
742		spa->spa_bootfs = 0;
743	}
744}
745
746/*ARGSUSED*/
747static int
748spa_change_guid_check(void *arg, dmu_tx_t *tx)
749{
750	uint64_t *newguid = arg;
751	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752	vdev_t *rvd = spa->spa_root_vdev;
753	uint64_t vdev_state;
754
755	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756	vdev_state = rvd->vdev_state;
757	spa_config_exit(spa, SCL_STATE, FTAG);
758
759	if (vdev_state != VDEV_STATE_HEALTHY)
760		return (SET_ERROR(ENXIO));
761
762	ASSERT3U(spa_guid(spa), !=, *newguid);
763
764	return (0);
765}
766
767static void
768spa_change_guid_sync(void *arg, dmu_tx_t *tx)
769{
770	uint64_t *newguid = arg;
771	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
772	uint64_t oldguid;
773	vdev_t *rvd = spa->spa_root_vdev;
774
775	oldguid = spa_guid(spa);
776
777	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
778	rvd->vdev_guid = *newguid;
779	rvd->vdev_guid_sum += (*newguid - oldguid);
780	vdev_config_dirty(rvd);
781	spa_config_exit(spa, SCL_STATE, FTAG);
782
783	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
784	    oldguid, *newguid);
785}
786
787/*
788 * Change the GUID for the pool.  This is done so that we can later
789 * re-import a pool built from a clone of our own vdevs.  We will modify
790 * the root vdev's guid, our own pool guid, and then mark all of our
791 * vdevs dirty.  Note that we must make sure that all our vdevs are
792 * online when we do this, or else any vdevs that weren't present
793 * would be orphaned from our pool.  We are also going to issue a
794 * sysevent to update any watchers.
795 */
796int
797spa_change_guid(spa_t *spa)
798{
799	int error;
800	uint64_t guid;
801
802	mutex_enter(&spa->spa_vdev_top_lock);
803	mutex_enter(&spa_namespace_lock);
804	guid = spa_generate_guid(NULL);
805
806	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
807	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
808
809	if (error == 0) {
810		spa_config_sync(spa, B_FALSE, B_TRUE);
811		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
812	}
813
814	mutex_exit(&spa_namespace_lock);
815	mutex_exit(&spa->spa_vdev_top_lock);
816
817	return (error);
818}
819
820/*
821 * ==========================================================================
822 * SPA state manipulation (open/create/destroy/import/export)
823 * ==========================================================================
824 */
825
826static int
827spa_error_entry_compare(const void *a, const void *b)
828{
829	spa_error_entry_t *sa = (spa_error_entry_t *)a;
830	spa_error_entry_t *sb = (spa_error_entry_t *)b;
831	int ret;
832
833	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
834	    sizeof (zbookmark_phys_t));
835
836	if (ret < 0)
837		return (-1);
838	else if (ret > 0)
839		return (1);
840	else
841		return (0);
842}
843
844/*
845 * Utility function which retrieves copies of the current logs and
846 * re-initializes them in the process.
847 */
848void
849spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
850{
851	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
852
853	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
854	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
855
856	avl_create(&spa->spa_errlist_scrub,
857	    spa_error_entry_compare, sizeof (spa_error_entry_t),
858	    offsetof(spa_error_entry_t, se_avl));
859	avl_create(&spa->spa_errlist_last,
860	    spa_error_entry_compare, sizeof (spa_error_entry_t),
861	    offsetof(spa_error_entry_t, se_avl));
862}
863
864static void
865spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
866{
867	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
868	enum zti_modes mode = ztip->zti_mode;
869	uint_t value = ztip->zti_value;
870	uint_t count = ztip->zti_count;
871	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
872	char name[32];
873	uint_t flags = 0;
874	boolean_t batch = B_FALSE;
875
876	if (mode == ZTI_MODE_NULL) {
877		tqs->stqs_count = 0;
878		tqs->stqs_taskq = NULL;
879		return;
880	}
881
882	ASSERT3U(count, >, 0);
883
884	tqs->stqs_count = count;
885	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
886
887	switch (mode) {
888	case ZTI_MODE_FIXED:
889		ASSERT3U(value, >=, 1);
890		value = MAX(value, 1);
891		break;
892
893	case ZTI_MODE_BATCH:
894		batch = B_TRUE;
895		flags |= TASKQ_THREADS_CPU_PCT;
896		value = zio_taskq_batch_pct;
897		break;
898
899	default:
900		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
901		    "spa_activate()",
902		    zio_type_name[t], zio_taskq_types[q], mode, value);
903		break;
904	}
905
906	for (uint_t i = 0; i < count; i++) {
907		taskq_t *tq;
908
909		if (count > 1) {
910			(void) snprintf(name, sizeof (name), "%s_%s_%u",
911			    zio_type_name[t], zio_taskq_types[q], i);
912		} else {
913			(void) snprintf(name, sizeof (name), "%s_%s",
914			    zio_type_name[t], zio_taskq_types[q]);
915		}
916
917#ifdef SYSDC
918		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
919			if (batch)
920				flags |= TASKQ_DC_BATCH;
921
922			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
923			    spa->spa_proc, zio_taskq_basedc, flags);
924		} else {
925#endif
926			pri_t pri = maxclsyspri;
927			/*
928			 * The write issue taskq can be extremely CPU
929			 * intensive.  Run it at slightly lower priority
930			 * than the other taskqs.
931			 */
932			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
933				pri++;
934
935			tq = taskq_create_proc(name, value, pri, 50,
936			    INT_MAX, spa->spa_proc, flags);
937#ifdef SYSDC
938		}
939#endif
940
941		tqs->stqs_taskq[i] = tq;
942	}
943}
944
945static void
946spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947{
948	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949
950	if (tqs->stqs_taskq == NULL) {
951		ASSERT0(tqs->stqs_count);
952		return;
953	}
954
955	for (uint_t i = 0; i < tqs->stqs_count; i++) {
956		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
957		taskq_destroy(tqs->stqs_taskq[i]);
958	}
959
960	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
961	tqs->stqs_taskq = NULL;
962}
963
964/*
965 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
966 * Note that a type may have multiple discrete taskqs to avoid lock contention
967 * on the taskq itself. In that case we choose which taskq at random by using
968 * the low bits of gethrtime().
969 */
970void
971spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
972    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
973{
974	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
975	taskq_t *tq;
976
977	ASSERT3P(tqs->stqs_taskq, !=, NULL);
978	ASSERT3U(tqs->stqs_count, !=, 0);
979
980	if (tqs->stqs_count == 1) {
981		tq = tqs->stqs_taskq[0];
982	} else {
983#ifdef _KERNEL
984		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
985#else
986		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
987#endif
988	}
989
990	taskq_dispatch_ent(tq, func, arg, flags, ent);
991}
992
993static void
994spa_create_zio_taskqs(spa_t *spa)
995{
996	for (int t = 0; t < ZIO_TYPES; t++) {
997		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
998			spa_taskqs_init(spa, t, q);
999		}
1000	}
1001}
1002
1003#ifdef _KERNEL
1004#ifdef SPA_PROCESS
1005static void
1006spa_thread(void *arg)
1007{
1008	callb_cpr_t cprinfo;
1009
1010	spa_t *spa = arg;
1011	user_t *pu = PTOU(curproc);
1012
1013	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1014	    spa->spa_name);
1015
1016	ASSERT(curproc != &p0);
1017	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1018	    "zpool-%s", spa->spa_name);
1019	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1020
1021#ifdef PSRSET_BIND
1022	/* bind this thread to the requested psrset */
1023	if (zio_taskq_psrset_bind != PS_NONE) {
1024		pool_lock();
1025		mutex_enter(&cpu_lock);
1026		mutex_enter(&pidlock);
1027		mutex_enter(&curproc->p_lock);
1028
1029		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030		    0, NULL, NULL) == 0)  {
1031			curthread->t_bind_pset = zio_taskq_psrset_bind;
1032		} else {
1033			cmn_err(CE_WARN,
1034			    "Couldn't bind process for zfs pool \"%s\" to "
1035			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036		}
1037
1038		mutex_exit(&curproc->p_lock);
1039		mutex_exit(&pidlock);
1040		mutex_exit(&cpu_lock);
1041		pool_unlock();
1042	}
1043#endif
1044
1045#ifdef SYSDC
1046	if (zio_taskq_sysdc) {
1047		sysdc_thread_enter(curthread, 100, 0);
1048	}
1049#endif
1050
1051	spa->spa_proc = curproc;
1052	spa->spa_did = curthread->t_did;
1053
1054	spa_create_zio_taskqs(spa);
1055
1056	mutex_enter(&spa->spa_proc_lock);
1057	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1058
1059	spa->spa_proc_state = SPA_PROC_ACTIVE;
1060	cv_broadcast(&spa->spa_proc_cv);
1061
1062	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1063	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1064		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1065	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1066
1067	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1068	spa->spa_proc_state = SPA_PROC_GONE;
1069	spa->spa_proc = &p0;
1070	cv_broadcast(&spa->spa_proc_cv);
1071	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1072
1073	mutex_enter(&curproc->p_lock);
1074	lwp_exit();
1075}
1076#endif	/* SPA_PROCESS */
1077#endif
1078
1079/*
1080 * Activate an uninitialized pool.
1081 */
1082static void
1083spa_activate(spa_t *spa, int mode)
1084{
1085	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1086
1087	spa->spa_state = POOL_STATE_ACTIVE;
1088	spa->spa_mode = mode;
1089
1090	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1092
1093	/* Try to create a covering process */
1094	mutex_enter(&spa->spa_proc_lock);
1095	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1096	ASSERT(spa->spa_proc == &p0);
1097	spa->spa_did = 0;
1098
1099#ifdef SPA_PROCESS
1100	/* Only create a process if we're going to be around a while. */
1101	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1102		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1103		    NULL, 0) == 0) {
1104			spa->spa_proc_state = SPA_PROC_CREATED;
1105			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1106				cv_wait(&spa->spa_proc_cv,
1107				    &spa->spa_proc_lock);
1108			}
1109			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1110			ASSERT(spa->spa_proc != &p0);
1111			ASSERT(spa->spa_did != 0);
1112		} else {
1113#ifdef _KERNEL
1114			cmn_err(CE_WARN,
1115			    "Couldn't create process for zfs pool \"%s\"\n",
1116			    spa->spa_name);
1117#endif
1118		}
1119	}
1120#endif	/* SPA_PROCESS */
1121	mutex_exit(&spa->spa_proc_lock);
1122
1123	/* If we didn't create a process, we need to create our taskqs. */
1124	ASSERT(spa->spa_proc == &p0);
1125	if (spa->spa_proc == &p0) {
1126		spa_create_zio_taskqs(spa);
1127	}
1128
1129	/*
1130	 * Start TRIM thread.
1131	 */
1132	trim_thread_create(spa);
1133
1134	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1135	    offsetof(vdev_t, vdev_config_dirty_node));
1136	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1137	    offsetof(objset_t, os_evicting_node));
1138	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1139	    offsetof(vdev_t, vdev_state_dirty_node));
1140
1141	txg_list_create(&spa->spa_vdev_txg_list,
1142	    offsetof(struct vdev, vdev_txg_node));
1143
1144	avl_create(&spa->spa_errlist_scrub,
1145	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1146	    offsetof(spa_error_entry_t, se_avl));
1147	avl_create(&spa->spa_errlist_last,
1148	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1149	    offsetof(spa_error_entry_t, se_avl));
1150}
1151
1152/*
1153 * Opposite of spa_activate().
1154 */
1155static void
1156spa_deactivate(spa_t *spa)
1157{
1158	ASSERT(spa->spa_sync_on == B_FALSE);
1159	ASSERT(spa->spa_dsl_pool == NULL);
1160	ASSERT(spa->spa_root_vdev == NULL);
1161	ASSERT(spa->spa_async_zio_root == NULL);
1162	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1163
1164	/*
1165	 * Stop TRIM thread in case spa_unload() wasn't called directly
1166	 * before spa_deactivate().
1167	 */
1168	trim_thread_destroy(spa);
1169
1170	spa_evicting_os_wait(spa);
1171
1172	txg_list_destroy(&spa->spa_vdev_txg_list);
1173
1174	list_destroy(&spa->spa_config_dirty_list);
1175	list_destroy(&spa->spa_evicting_os_list);
1176	list_destroy(&spa->spa_state_dirty_list);
1177
1178	for (int t = 0; t < ZIO_TYPES; t++) {
1179		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1180			spa_taskqs_fini(spa, t, q);
1181		}
1182	}
1183
1184	metaslab_class_destroy(spa->spa_normal_class);
1185	spa->spa_normal_class = NULL;
1186
1187	metaslab_class_destroy(spa->spa_log_class);
1188	spa->spa_log_class = NULL;
1189
1190	/*
1191	 * If this was part of an import or the open otherwise failed, we may
1192	 * still have errors left in the queues.  Empty them just in case.
1193	 */
1194	spa_errlog_drain(spa);
1195
1196	avl_destroy(&spa->spa_errlist_scrub);
1197	avl_destroy(&spa->spa_errlist_last);
1198
1199	spa->spa_state = POOL_STATE_UNINITIALIZED;
1200
1201	mutex_enter(&spa->spa_proc_lock);
1202	if (spa->spa_proc_state != SPA_PROC_NONE) {
1203		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1204		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1205		cv_broadcast(&spa->spa_proc_cv);
1206		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1207			ASSERT(spa->spa_proc != &p0);
1208			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1209		}
1210		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1211		spa->spa_proc_state = SPA_PROC_NONE;
1212	}
1213	ASSERT(spa->spa_proc == &p0);
1214	mutex_exit(&spa->spa_proc_lock);
1215
1216#ifdef SPA_PROCESS
1217	/*
1218	 * We want to make sure spa_thread() has actually exited the ZFS
1219	 * module, so that the module can't be unloaded out from underneath
1220	 * it.
1221	 */
1222	if (spa->spa_did != 0) {
1223		thread_join(spa->spa_did);
1224		spa->spa_did = 0;
1225	}
1226#endif	/* SPA_PROCESS */
1227}
1228
1229/*
1230 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1231 * will create all the necessary vdevs in the appropriate layout, with each vdev
1232 * in the CLOSED state.  This will prep the pool before open/creation/import.
1233 * All vdev validation is done by the vdev_alloc() routine.
1234 */
1235static int
1236spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1237    uint_t id, int atype)
1238{
1239	nvlist_t **child;
1240	uint_t children;
1241	int error;
1242
1243	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1244		return (error);
1245
1246	if ((*vdp)->vdev_ops->vdev_op_leaf)
1247		return (0);
1248
1249	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1250	    &child, &children);
1251
1252	if (error == ENOENT)
1253		return (0);
1254
1255	if (error) {
1256		vdev_free(*vdp);
1257		*vdp = NULL;
1258		return (SET_ERROR(EINVAL));
1259	}
1260
1261	for (int c = 0; c < children; c++) {
1262		vdev_t *vd;
1263		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1264		    atype)) != 0) {
1265			vdev_free(*vdp);
1266			*vdp = NULL;
1267			return (error);
1268		}
1269	}
1270
1271	ASSERT(*vdp != NULL);
1272
1273	return (0);
1274}
1275
1276/*
1277 * Opposite of spa_load().
1278 */
1279static void
1280spa_unload(spa_t *spa)
1281{
1282	int i;
1283
1284	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285
1286	/*
1287	 * Stop TRIM thread.
1288	 */
1289	trim_thread_destroy(spa);
1290
1291	/*
1292	 * Stop async tasks.
1293	 */
1294	spa_async_suspend(spa);
1295
1296	/*
1297	 * Stop syncing.
1298	 */
1299	if (spa->spa_sync_on) {
1300		txg_sync_stop(spa->spa_dsl_pool);
1301		spa->spa_sync_on = B_FALSE;
1302	}
1303
1304	/*
1305	 * Wait for any outstanding async I/O to complete.
1306	 */
1307	if (spa->spa_async_zio_root != NULL) {
1308		for (int i = 0; i < max_ncpus; i++)
1309			(void) zio_wait(spa->spa_async_zio_root[i]);
1310		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1311		spa->spa_async_zio_root = NULL;
1312	}
1313
1314	bpobj_close(&spa->spa_deferred_bpobj);
1315
1316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1317
1318	/*
1319	 * Close all vdevs.
1320	 */
1321	if (spa->spa_root_vdev)
1322		vdev_free(spa->spa_root_vdev);
1323	ASSERT(spa->spa_root_vdev == NULL);
1324
1325	/*
1326	 * Close the dsl pool.
1327	 */
1328	if (spa->spa_dsl_pool) {
1329		dsl_pool_close(spa->spa_dsl_pool);
1330		spa->spa_dsl_pool = NULL;
1331		spa->spa_meta_objset = NULL;
1332	}
1333
1334	ddt_unload(spa);
1335
1336
1337	/*
1338	 * Drop and purge level 2 cache
1339	 */
1340	spa_l2cache_drop(spa);
1341
1342	for (i = 0; i < spa->spa_spares.sav_count; i++)
1343		vdev_free(spa->spa_spares.sav_vdevs[i]);
1344	if (spa->spa_spares.sav_vdevs) {
1345		kmem_free(spa->spa_spares.sav_vdevs,
1346		    spa->spa_spares.sav_count * sizeof (void *));
1347		spa->spa_spares.sav_vdevs = NULL;
1348	}
1349	if (spa->spa_spares.sav_config) {
1350		nvlist_free(spa->spa_spares.sav_config);
1351		spa->spa_spares.sav_config = NULL;
1352	}
1353	spa->spa_spares.sav_count = 0;
1354
1355	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1356		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1357		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1358	}
1359	if (spa->spa_l2cache.sav_vdevs) {
1360		kmem_free(spa->spa_l2cache.sav_vdevs,
1361		    spa->spa_l2cache.sav_count * sizeof (void *));
1362		spa->spa_l2cache.sav_vdevs = NULL;
1363	}
1364	if (spa->spa_l2cache.sav_config) {
1365		nvlist_free(spa->spa_l2cache.sav_config);
1366		spa->spa_l2cache.sav_config = NULL;
1367	}
1368	spa->spa_l2cache.sav_count = 0;
1369
1370	spa->spa_async_suspended = 0;
1371
1372	if (spa->spa_comment != NULL) {
1373		spa_strfree(spa->spa_comment);
1374		spa->spa_comment = NULL;
1375	}
1376
1377	spa_config_exit(spa, SCL_ALL, FTAG);
1378}
1379
1380/*
1381 * Load (or re-load) the current list of vdevs describing the active spares for
1382 * this pool.  When this is called, we have some form of basic information in
1383 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1384 * then re-generate a more complete list including status information.
1385 */
1386static void
1387spa_load_spares(spa_t *spa)
1388{
1389	nvlist_t **spares;
1390	uint_t nspares;
1391	int i;
1392	vdev_t *vd, *tvd;
1393
1394	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1395
1396	/*
1397	 * First, close and free any existing spare vdevs.
1398	 */
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		vd = spa->spa_spares.sav_vdevs[i];
1401
1402		/* Undo the call to spa_activate() below */
1403		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1404		    B_FALSE)) != NULL && tvd->vdev_isspare)
1405			spa_spare_remove(tvd);
1406		vdev_close(vd);
1407		vdev_free(vd);
1408	}
1409
1410	if (spa->spa_spares.sav_vdevs)
1411		kmem_free(spa->spa_spares.sav_vdevs,
1412		    spa->spa_spares.sav_count * sizeof (void *));
1413
1414	if (spa->spa_spares.sav_config == NULL)
1415		nspares = 0;
1416	else
1417		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1418		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1419
1420	spa->spa_spares.sav_count = (int)nspares;
1421	spa->spa_spares.sav_vdevs = NULL;
1422
1423	if (nspares == 0)
1424		return;
1425
1426	/*
1427	 * Construct the array of vdevs, opening them to get status in the
1428	 * process.   For each spare, there is potentially two different vdev_t
1429	 * structures associated with it: one in the list of spares (used only
1430	 * for basic validation purposes) and one in the active vdev
1431	 * configuration (if it's spared in).  During this phase we open and
1432	 * validate each vdev on the spare list.  If the vdev also exists in the
1433	 * active configuration, then we also mark this vdev as an active spare.
1434	 */
1435	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1436	    KM_SLEEP);
1437	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1438		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1439		    VDEV_ALLOC_SPARE) == 0);
1440		ASSERT(vd != NULL);
1441
1442		spa->spa_spares.sav_vdevs[i] = vd;
1443
1444		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1445		    B_FALSE)) != NULL) {
1446			if (!tvd->vdev_isspare)
1447				spa_spare_add(tvd);
1448
1449			/*
1450			 * We only mark the spare active if we were successfully
1451			 * able to load the vdev.  Otherwise, importing a pool
1452			 * with a bad active spare would result in strange
1453			 * behavior, because multiple pool would think the spare
1454			 * is actively in use.
1455			 *
1456			 * There is a vulnerability here to an equally bizarre
1457			 * circumstance, where a dead active spare is later
1458			 * brought back to life (onlined or otherwise).  Given
1459			 * the rarity of this scenario, and the extra complexity
1460			 * it adds, we ignore the possibility.
1461			 */
1462			if (!vdev_is_dead(tvd))
1463				spa_spare_activate(tvd);
1464		}
1465
1466		vd->vdev_top = vd;
1467		vd->vdev_aux = &spa->spa_spares;
1468
1469		if (vdev_open(vd) != 0)
1470			continue;
1471
1472		if (vdev_validate_aux(vd) == 0)
1473			spa_spare_add(vd);
1474	}
1475
1476	/*
1477	 * Recompute the stashed list of spares, with status information
1478	 * this time.
1479	 */
1480	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1481	    DATA_TYPE_NVLIST_ARRAY) == 0);
1482
1483	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1484	    KM_SLEEP);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		spares[i] = vdev_config_generate(spa,
1487		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1488	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1489	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1490	for (i = 0; i < spa->spa_spares.sav_count; i++)
1491		nvlist_free(spares[i]);
1492	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1493}
1494
1495/*
1496 * Load (or re-load) the current list of vdevs describing the active l2cache for
1497 * this pool.  When this is called, we have some form of basic information in
1498 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1499 * then re-generate a more complete list including status information.
1500 * Devices which are already active have their details maintained, and are
1501 * not re-opened.
1502 */
1503static void
1504spa_load_l2cache(spa_t *spa)
1505{
1506	nvlist_t **l2cache;
1507	uint_t nl2cache;
1508	int i, j, oldnvdevs;
1509	uint64_t guid;
1510	vdev_t *vd, **oldvdevs, **newvdevs;
1511	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1512
1513	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1514
1515	if (sav->sav_config != NULL) {
1516		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1517		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1518		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1519	} else {
1520		nl2cache = 0;
1521		newvdevs = NULL;
1522	}
1523
1524	oldvdevs = sav->sav_vdevs;
1525	oldnvdevs = sav->sav_count;
1526	sav->sav_vdevs = NULL;
1527	sav->sav_count = 0;
1528
1529	/*
1530	 * Process new nvlist of vdevs.
1531	 */
1532	for (i = 0; i < nl2cache; i++) {
1533		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1534		    &guid) == 0);
1535
1536		newvdevs[i] = NULL;
1537		for (j = 0; j < oldnvdevs; j++) {
1538			vd = oldvdevs[j];
1539			if (vd != NULL && guid == vd->vdev_guid) {
1540				/*
1541				 * Retain previous vdev for add/remove ops.
1542				 */
1543				newvdevs[i] = vd;
1544				oldvdevs[j] = NULL;
1545				break;
1546			}
1547		}
1548
1549		if (newvdevs[i] == NULL) {
1550			/*
1551			 * Create new vdev
1552			 */
1553			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1554			    VDEV_ALLOC_L2CACHE) == 0);
1555			ASSERT(vd != NULL);
1556			newvdevs[i] = vd;
1557
1558			/*
1559			 * Commit this vdev as an l2cache device,
1560			 * even if it fails to open.
1561			 */
1562			spa_l2cache_add(vd);
1563
1564			vd->vdev_top = vd;
1565			vd->vdev_aux = sav;
1566
1567			spa_l2cache_activate(vd);
1568
1569			if (vdev_open(vd) != 0)
1570				continue;
1571
1572			(void) vdev_validate_aux(vd);
1573
1574			if (!vdev_is_dead(vd))
1575				l2arc_add_vdev(spa, vd);
1576		}
1577	}
1578
1579	/*
1580	 * Purge vdevs that were dropped
1581	 */
1582	for (i = 0; i < oldnvdevs; i++) {
1583		uint64_t pool;
1584
1585		vd = oldvdevs[i];
1586		if (vd != NULL) {
1587			ASSERT(vd->vdev_isl2cache);
1588
1589			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1590			    pool != 0ULL && l2arc_vdev_present(vd))
1591				l2arc_remove_vdev(vd);
1592			vdev_clear_stats(vd);
1593			vdev_free(vd);
1594		}
1595	}
1596
1597	if (oldvdevs)
1598		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1599
1600	if (sav->sav_config == NULL)
1601		goto out;
1602
1603	sav->sav_vdevs = newvdevs;
1604	sav->sav_count = (int)nl2cache;
1605
1606	/*
1607	 * Recompute the stashed list of l2cache devices, with status
1608	 * information this time.
1609	 */
1610	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1611	    DATA_TYPE_NVLIST_ARRAY) == 0);
1612
1613	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1614	for (i = 0; i < sav->sav_count; i++)
1615		l2cache[i] = vdev_config_generate(spa,
1616		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1617	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1618	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1619out:
1620	for (i = 0; i < sav->sav_count; i++)
1621		nvlist_free(l2cache[i]);
1622	if (sav->sav_count)
1623		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1624}
1625
1626static int
1627load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1628{
1629	dmu_buf_t *db;
1630	char *packed = NULL;
1631	size_t nvsize = 0;
1632	int error;
1633	*value = NULL;
1634
1635	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1636	if (error != 0)
1637		return (error);
1638
1639	nvsize = *(uint64_t *)db->db_data;
1640	dmu_buf_rele(db, FTAG);
1641
1642	packed = kmem_alloc(nvsize, KM_SLEEP);
1643	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1644	    DMU_READ_PREFETCH);
1645	if (error == 0)
1646		error = nvlist_unpack(packed, nvsize, value, 0);
1647	kmem_free(packed, nvsize);
1648
1649	return (error);
1650}
1651
1652/*
1653 * Checks to see if the given vdev could not be opened, in which case we post a
1654 * sysevent to notify the autoreplace code that the device has been removed.
1655 */
1656static void
1657spa_check_removed(vdev_t *vd)
1658{
1659	for (int c = 0; c < vd->vdev_children; c++)
1660		spa_check_removed(vd->vdev_child[c]);
1661
1662	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1663	    !vd->vdev_ishole) {
1664		zfs_post_autoreplace(vd->vdev_spa, vd);
1665		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1666	}
1667}
1668
1669/*
1670 * Validate the current config against the MOS config
1671 */
1672static boolean_t
1673spa_config_valid(spa_t *spa, nvlist_t *config)
1674{
1675	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1676	nvlist_t *nv;
1677
1678	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1679
1680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1682
1683	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1684
1685	/*
1686	 * If we're doing a normal import, then build up any additional
1687	 * diagnostic information about missing devices in this config.
1688	 * We'll pass this up to the user for further processing.
1689	 */
1690	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1691		nvlist_t **child, *nv;
1692		uint64_t idx = 0;
1693
1694		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1695		    KM_SLEEP);
1696		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1697
1698		for (int c = 0; c < rvd->vdev_children; c++) {
1699			vdev_t *tvd = rvd->vdev_child[c];
1700			vdev_t *mtvd  = mrvd->vdev_child[c];
1701
1702			if (tvd->vdev_ops == &vdev_missing_ops &&
1703			    mtvd->vdev_ops != &vdev_missing_ops &&
1704			    mtvd->vdev_islog)
1705				child[idx++] = vdev_config_generate(spa, mtvd,
1706				    B_FALSE, 0);
1707		}
1708
1709		if (idx) {
1710			VERIFY(nvlist_add_nvlist_array(nv,
1711			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1712			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1713			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1714
1715			for (int i = 0; i < idx; i++)
1716				nvlist_free(child[i]);
1717		}
1718		nvlist_free(nv);
1719		kmem_free(child, rvd->vdev_children * sizeof (char **));
1720	}
1721
1722	/*
1723	 * Compare the root vdev tree with the information we have
1724	 * from the MOS config (mrvd). Check each top-level vdev
1725	 * with the corresponding MOS config top-level (mtvd).
1726	 */
1727	for (int c = 0; c < rvd->vdev_children; c++) {
1728		vdev_t *tvd = rvd->vdev_child[c];
1729		vdev_t *mtvd  = mrvd->vdev_child[c];
1730
1731		/*
1732		 * Resolve any "missing" vdevs in the current configuration.
1733		 * If we find that the MOS config has more accurate information
1734		 * about the top-level vdev then use that vdev instead.
1735		 */
1736		if (tvd->vdev_ops == &vdev_missing_ops &&
1737		    mtvd->vdev_ops != &vdev_missing_ops) {
1738
1739			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1740				continue;
1741
1742			/*
1743			 * Device specific actions.
1744			 */
1745			if (mtvd->vdev_islog) {
1746				spa_set_log_state(spa, SPA_LOG_CLEAR);
1747			} else {
1748				/*
1749				 * XXX - once we have 'readonly' pool
1750				 * support we should be able to handle
1751				 * missing data devices by transitioning
1752				 * the pool to readonly.
1753				 */
1754				continue;
1755			}
1756
1757			/*
1758			 * Swap the missing vdev with the data we were
1759			 * able to obtain from the MOS config.
1760			 */
1761			vdev_remove_child(rvd, tvd);
1762			vdev_remove_child(mrvd, mtvd);
1763
1764			vdev_add_child(rvd, mtvd);
1765			vdev_add_child(mrvd, tvd);
1766
1767			spa_config_exit(spa, SCL_ALL, FTAG);
1768			vdev_load(mtvd);
1769			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1770
1771			vdev_reopen(rvd);
1772		} else if (mtvd->vdev_islog) {
1773			/*
1774			 * Load the slog device's state from the MOS config
1775			 * since it's possible that the label does not
1776			 * contain the most up-to-date information.
1777			 */
1778			vdev_load_log_state(tvd, mtvd);
1779			vdev_reopen(tvd);
1780		}
1781	}
1782	vdev_free(mrvd);
1783	spa_config_exit(spa, SCL_ALL, FTAG);
1784
1785	/*
1786	 * Ensure we were able to validate the config.
1787	 */
1788	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1789}
1790
1791/*
1792 * Check for missing log devices
1793 */
1794static boolean_t
1795spa_check_logs(spa_t *spa)
1796{
1797	boolean_t rv = B_FALSE;
1798	dsl_pool_t *dp = spa_get_dsl(spa);
1799
1800	switch (spa->spa_log_state) {
1801	case SPA_LOG_MISSING:
1802		/* need to recheck in case slog has been restored */
1803	case SPA_LOG_UNKNOWN:
1804		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1805		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1806		if (rv)
1807			spa_set_log_state(spa, SPA_LOG_MISSING);
1808		break;
1809	}
1810	return (rv);
1811}
1812
1813static boolean_t
1814spa_passivate_log(spa_t *spa)
1815{
1816	vdev_t *rvd = spa->spa_root_vdev;
1817	boolean_t slog_found = B_FALSE;
1818
1819	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1820
1821	if (!spa_has_slogs(spa))
1822		return (B_FALSE);
1823
1824	for (int c = 0; c < rvd->vdev_children; c++) {
1825		vdev_t *tvd = rvd->vdev_child[c];
1826		metaslab_group_t *mg = tvd->vdev_mg;
1827
1828		if (tvd->vdev_islog) {
1829			metaslab_group_passivate(mg);
1830			slog_found = B_TRUE;
1831		}
1832	}
1833
1834	return (slog_found);
1835}
1836
1837static void
1838spa_activate_log(spa_t *spa)
1839{
1840	vdev_t *rvd = spa->spa_root_vdev;
1841
1842	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1843
1844	for (int c = 0; c < rvd->vdev_children; c++) {
1845		vdev_t *tvd = rvd->vdev_child[c];
1846		metaslab_group_t *mg = tvd->vdev_mg;
1847
1848		if (tvd->vdev_islog)
1849			metaslab_group_activate(mg);
1850	}
1851}
1852
1853int
1854spa_offline_log(spa_t *spa)
1855{
1856	int error;
1857
1858	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1859	    NULL, DS_FIND_CHILDREN);
1860	if (error == 0) {
1861		/*
1862		 * We successfully offlined the log device, sync out the
1863		 * current txg so that the "stubby" block can be removed
1864		 * by zil_sync().
1865		 */
1866		txg_wait_synced(spa->spa_dsl_pool, 0);
1867	}
1868	return (error);
1869}
1870
1871static void
1872spa_aux_check_removed(spa_aux_vdev_t *sav)
1873{
1874	int i;
1875
1876	for (i = 0; i < sav->sav_count; i++)
1877		spa_check_removed(sav->sav_vdevs[i]);
1878}
1879
1880void
1881spa_claim_notify(zio_t *zio)
1882{
1883	spa_t *spa = zio->io_spa;
1884
1885	if (zio->io_error)
1886		return;
1887
1888	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1889	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1890		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1891	mutex_exit(&spa->spa_props_lock);
1892}
1893
1894typedef struct spa_load_error {
1895	uint64_t	sle_meta_count;
1896	uint64_t	sle_data_count;
1897} spa_load_error_t;
1898
1899static void
1900spa_load_verify_done(zio_t *zio)
1901{
1902	blkptr_t *bp = zio->io_bp;
1903	spa_load_error_t *sle = zio->io_private;
1904	dmu_object_type_t type = BP_GET_TYPE(bp);
1905	int error = zio->io_error;
1906	spa_t *spa = zio->io_spa;
1907
1908	if (error) {
1909		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1910		    type != DMU_OT_INTENT_LOG)
1911			atomic_inc_64(&sle->sle_meta_count);
1912		else
1913			atomic_inc_64(&sle->sle_data_count);
1914	}
1915	zio_data_buf_free(zio->io_data, zio->io_size);
1916
1917	mutex_enter(&spa->spa_scrub_lock);
1918	spa->spa_scrub_inflight--;
1919	cv_broadcast(&spa->spa_scrub_io_cv);
1920	mutex_exit(&spa->spa_scrub_lock);
1921}
1922
1923/*
1924 * Maximum number of concurrent scrub i/os to create while verifying
1925 * a pool while importing it.
1926 */
1927int spa_load_verify_maxinflight = 10000;
1928boolean_t spa_load_verify_metadata = B_TRUE;
1929boolean_t spa_load_verify_data = B_TRUE;
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1932    &spa_load_verify_maxinflight, 0,
1933    "Maximum number of concurrent scrub I/Os to create while verifying a "
1934    "pool while importing it");
1935
1936SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1937    &spa_load_verify_metadata, 0,
1938    "Check metadata on import?");
1939
1940SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1941    &spa_load_verify_data, 0,
1942    "Check user data on import?");
1943
1944/*ARGSUSED*/
1945static int
1946spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1947    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1948{
1949	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1950		return (0);
1951	/*
1952	 * Note: normally this routine will not be called if
1953	 * spa_load_verify_metadata is not set.  However, it may be useful
1954	 * to manually set the flag after the traversal has begun.
1955	 */
1956	if (!spa_load_verify_metadata)
1957		return (0);
1958	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1959		return (0);
1960
1961	zio_t *rio = arg;
1962	size_t size = BP_GET_PSIZE(bp);
1963	void *data = zio_data_buf_alloc(size);
1964
1965	mutex_enter(&spa->spa_scrub_lock);
1966	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1967		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1968	spa->spa_scrub_inflight++;
1969	mutex_exit(&spa->spa_scrub_lock);
1970
1971	zio_nowait(zio_read(rio, spa, bp, data, size,
1972	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1973	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1974	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1975	return (0);
1976}
1977
1978/* ARGSUSED */
1979int
1980verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1981{
1982	char namebuf[MAXPATHLEN];
1983	dsl_dataset_name(ds, namebuf);
1984	if (strlen(namebuf) > MAXNAMELEN) {
1985		return (SET_ERROR(ENAMETOOLONG));
1986	}
1987
1988	return (0);
1989}
1990
1991static int
1992spa_load_verify(spa_t *spa)
1993{
1994	zio_t *rio;
1995	spa_load_error_t sle = { 0 };
1996	zpool_rewind_policy_t policy;
1997	boolean_t verify_ok = B_FALSE;
1998	int error = 0;
1999
2000	zpool_get_rewind_policy(spa->spa_config, &policy);
2001
2002	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2003		return (0);
2004
2005	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2006	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2007	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2008	    DS_FIND_CHILDREN);
2009	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2010	if (error != 0)
2011		return (error);
2012
2013	rio = zio_root(spa, NULL, &sle,
2014	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2015
2016	if (spa_load_verify_metadata) {
2017		error = traverse_pool(spa, spa->spa_verify_min_txg,
2018		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2019		    spa_load_verify_cb, rio);
2020	}
2021
2022	(void) zio_wait(rio);
2023
2024	spa->spa_load_meta_errors = sle.sle_meta_count;
2025	spa->spa_load_data_errors = sle.sle_data_count;
2026
2027	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2028	    sle.sle_data_count <= policy.zrp_maxdata) {
2029		int64_t loss = 0;
2030
2031		verify_ok = B_TRUE;
2032		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2033		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2034
2035		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2036		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2037		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2038		VERIFY(nvlist_add_int64(spa->spa_load_info,
2039		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2040		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2041		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2042	} else {
2043		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2044	}
2045
2046	if (error) {
2047		if (error != ENXIO && error != EIO)
2048			error = SET_ERROR(EIO);
2049		return (error);
2050	}
2051
2052	return (verify_ok ? 0 : EIO);
2053}
2054
2055/*
2056 * Find a value in the pool props object.
2057 */
2058static void
2059spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2060{
2061	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2062	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2063}
2064
2065/*
2066 * Find a value in the pool directory object.
2067 */
2068static int
2069spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2070{
2071	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2072	    name, sizeof (uint64_t), 1, val));
2073}
2074
2075static int
2076spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2077{
2078	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2079	return (err);
2080}
2081
2082/*
2083 * Fix up config after a partly-completed split.  This is done with the
2084 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2085 * pool have that entry in their config, but only the splitting one contains
2086 * a list of all the guids of the vdevs that are being split off.
2087 *
2088 * This function determines what to do with that list: either rejoin
2089 * all the disks to the pool, or complete the splitting process.  To attempt
2090 * the rejoin, each disk that is offlined is marked online again, and
2091 * we do a reopen() call.  If the vdev label for every disk that was
2092 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2093 * then we call vdev_split() on each disk, and complete the split.
2094 *
2095 * Otherwise we leave the config alone, with all the vdevs in place in
2096 * the original pool.
2097 */
2098static void
2099spa_try_repair(spa_t *spa, nvlist_t *config)
2100{
2101	uint_t extracted;
2102	uint64_t *glist;
2103	uint_t i, gcount;
2104	nvlist_t *nvl;
2105	vdev_t **vd;
2106	boolean_t attempt_reopen;
2107
2108	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2109		return;
2110
2111	/* check that the config is complete */
2112	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2113	    &glist, &gcount) != 0)
2114		return;
2115
2116	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2117
2118	/* attempt to online all the vdevs & validate */
2119	attempt_reopen = B_TRUE;
2120	for (i = 0; i < gcount; i++) {
2121		if (glist[i] == 0)	/* vdev is hole */
2122			continue;
2123
2124		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2125		if (vd[i] == NULL) {
2126			/*
2127			 * Don't bother attempting to reopen the disks;
2128			 * just do the split.
2129			 */
2130			attempt_reopen = B_FALSE;
2131		} else {
2132			/* attempt to re-online it */
2133			vd[i]->vdev_offline = B_FALSE;
2134		}
2135	}
2136
2137	if (attempt_reopen) {
2138		vdev_reopen(spa->spa_root_vdev);
2139
2140		/* check each device to see what state it's in */
2141		for (extracted = 0, i = 0; i < gcount; i++) {
2142			if (vd[i] != NULL &&
2143			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2144				break;
2145			++extracted;
2146		}
2147	}
2148
2149	/*
2150	 * If every disk has been moved to the new pool, or if we never
2151	 * even attempted to look at them, then we split them off for
2152	 * good.
2153	 */
2154	if (!attempt_reopen || gcount == extracted) {
2155		for (i = 0; i < gcount; i++)
2156			if (vd[i] != NULL)
2157				vdev_split(vd[i]);
2158		vdev_reopen(spa->spa_root_vdev);
2159	}
2160
2161	kmem_free(vd, gcount * sizeof (vdev_t *));
2162}
2163
2164static int
2165spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2166    boolean_t mosconfig)
2167{
2168	nvlist_t *config = spa->spa_config;
2169	char *ereport = FM_EREPORT_ZFS_POOL;
2170	char *comment;
2171	int error;
2172	uint64_t pool_guid;
2173	nvlist_t *nvl;
2174
2175	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2176		return (SET_ERROR(EINVAL));
2177
2178	ASSERT(spa->spa_comment == NULL);
2179	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2180		spa->spa_comment = spa_strdup(comment);
2181
2182	/*
2183	 * Versioning wasn't explicitly added to the label until later, so if
2184	 * it's not present treat it as the initial version.
2185	 */
2186	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2187	    &spa->spa_ubsync.ub_version) != 0)
2188		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2189
2190	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2191	    &spa->spa_config_txg);
2192
2193	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2194	    spa_guid_exists(pool_guid, 0)) {
2195		error = SET_ERROR(EEXIST);
2196	} else {
2197		spa->spa_config_guid = pool_guid;
2198
2199		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2200		    &nvl) == 0) {
2201			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2202			    KM_SLEEP) == 0);
2203		}
2204
2205		nvlist_free(spa->spa_load_info);
2206		spa->spa_load_info = fnvlist_alloc();
2207
2208		gethrestime(&spa->spa_loaded_ts);
2209		error = spa_load_impl(spa, pool_guid, config, state, type,
2210		    mosconfig, &ereport);
2211	}
2212
2213	/*
2214	 * Don't count references from objsets that are already closed
2215	 * and are making their way through the eviction process.
2216	 */
2217	spa_evicting_os_wait(spa);
2218	spa->spa_minref = refcount_count(&spa->spa_refcount);
2219	if (error) {
2220		if (error != EEXIST) {
2221			spa->spa_loaded_ts.tv_sec = 0;
2222			spa->spa_loaded_ts.tv_nsec = 0;
2223		}
2224		if (error != EBADF) {
2225			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2226		}
2227	}
2228	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2229	spa->spa_ena = 0;
2230
2231	return (error);
2232}
2233
2234/*
2235 * Load an existing storage pool, using the pool's builtin spa_config as a
2236 * source of configuration information.
2237 */
2238static int
2239spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2240    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2241    char **ereport)
2242{
2243	int error = 0;
2244	nvlist_t *nvroot = NULL;
2245	nvlist_t *label;
2246	vdev_t *rvd;
2247	uberblock_t *ub = &spa->spa_uberblock;
2248	uint64_t children, config_cache_txg = spa->spa_config_txg;
2249	int orig_mode = spa->spa_mode;
2250	int parse;
2251	uint64_t obj;
2252	boolean_t missing_feat_write = B_FALSE;
2253
2254	/*
2255	 * If this is an untrusted config, access the pool in read-only mode.
2256	 * This prevents things like resilvering recently removed devices.
2257	 */
2258	if (!mosconfig)
2259		spa->spa_mode = FREAD;
2260
2261	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2262
2263	spa->spa_load_state = state;
2264
2265	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2266		return (SET_ERROR(EINVAL));
2267
2268	parse = (type == SPA_IMPORT_EXISTING ?
2269	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2270
2271	/*
2272	 * Create "The Godfather" zio to hold all async IOs
2273	 */
2274	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2275	    KM_SLEEP);
2276	for (int i = 0; i < max_ncpus; i++) {
2277		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2278		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2279		    ZIO_FLAG_GODFATHER);
2280	}
2281
2282	/*
2283	 * Parse the configuration into a vdev tree.  We explicitly set the
2284	 * value that will be returned by spa_version() since parsing the
2285	 * configuration requires knowing the version number.
2286	 */
2287	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2288	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2289	spa_config_exit(spa, SCL_ALL, FTAG);
2290
2291	if (error != 0)
2292		return (error);
2293
2294	ASSERT(spa->spa_root_vdev == rvd);
2295	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2296	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2297
2298	if (type != SPA_IMPORT_ASSEMBLE) {
2299		ASSERT(spa_guid(spa) == pool_guid);
2300	}
2301
2302	/*
2303	 * Try to open all vdevs, loading each label in the process.
2304	 */
2305	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2306	error = vdev_open(rvd);
2307	spa_config_exit(spa, SCL_ALL, FTAG);
2308	if (error != 0)
2309		return (error);
2310
2311	/*
2312	 * We need to validate the vdev labels against the configuration that
2313	 * we have in hand, which is dependent on the setting of mosconfig. If
2314	 * mosconfig is true then we're validating the vdev labels based on
2315	 * that config.  Otherwise, we're validating against the cached config
2316	 * (zpool.cache) that was read when we loaded the zfs module, and then
2317	 * later we will recursively call spa_load() and validate against
2318	 * the vdev config.
2319	 *
2320	 * If we're assembling a new pool that's been split off from an
2321	 * existing pool, the labels haven't yet been updated so we skip
2322	 * validation for now.
2323	 */
2324	if (type != SPA_IMPORT_ASSEMBLE) {
2325		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2326		error = vdev_validate(rvd, mosconfig);
2327		spa_config_exit(spa, SCL_ALL, FTAG);
2328
2329		if (error != 0)
2330			return (error);
2331
2332		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2333			return (SET_ERROR(ENXIO));
2334	}
2335
2336	/*
2337	 * Find the best uberblock.
2338	 */
2339	vdev_uberblock_load(rvd, ub, &label);
2340
2341	/*
2342	 * If we weren't able to find a single valid uberblock, return failure.
2343	 */
2344	if (ub->ub_txg == 0) {
2345		nvlist_free(label);
2346		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2347	}
2348
2349	/*
2350	 * If the pool has an unsupported version we can't open it.
2351	 */
2352	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2353		nvlist_free(label);
2354		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2355	}
2356
2357	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2358		nvlist_t *features;
2359
2360		/*
2361		 * If we weren't able to find what's necessary for reading the
2362		 * MOS in the label, return failure.
2363		 */
2364		if (label == NULL || nvlist_lookup_nvlist(label,
2365		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2366			nvlist_free(label);
2367			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2368			    ENXIO));
2369		}
2370
2371		/*
2372		 * Update our in-core representation with the definitive values
2373		 * from the label.
2374		 */
2375		nvlist_free(spa->spa_label_features);
2376		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2377	}
2378
2379	nvlist_free(label);
2380
2381	/*
2382	 * Look through entries in the label nvlist's features_for_read. If
2383	 * there is a feature listed there which we don't understand then we
2384	 * cannot open a pool.
2385	 */
2386	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2387		nvlist_t *unsup_feat;
2388
2389		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2390		    0);
2391
2392		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2393		    NULL); nvp != NULL;
2394		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2395			if (!zfeature_is_supported(nvpair_name(nvp))) {
2396				VERIFY(nvlist_add_string(unsup_feat,
2397				    nvpair_name(nvp), "") == 0);
2398			}
2399		}
2400
2401		if (!nvlist_empty(unsup_feat)) {
2402			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2403			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2404			nvlist_free(unsup_feat);
2405			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2406			    ENOTSUP));
2407		}
2408
2409		nvlist_free(unsup_feat);
2410	}
2411
2412	/*
2413	 * If the vdev guid sum doesn't match the uberblock, we have an
2414	 * incomplete configuration.  We first check to see if the pool
2415	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2416	 * If it is, defer the vdev_guid_sum check till later so we
2417	 * can handle missing vdevs.
2418	 */
2419	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2420	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2421	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2422		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2423
2424	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2425		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2426		spa_try_repair(spa, config);
2427		spa_config_exit(spa, SCL_ALL, FTAG);
2428		nvlist_free(spa->spa_config_splitting);
2429		spa->spa_config_splitting = NULL;
2430	}
2431
2432	/*
2433	 * Initialize internal SPA structures.
2434	 */
2435	spa->spa_state = POOL_STATE_ACTIVE;
2436	spa->spa_ubsync = spa->spa_uberblock;
2437	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2438	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2439	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2440	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2441	spa->spa_claim_max_txg = spa->spa_first_txg;
2442	spa->spa_prev_software_version = ub->ub_software_version;
2443
2444	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2445	if (error)
2446		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2448
2449	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2450		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2451
2452	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2453		boolean_t missing_feat_read = B_FALSE;
2454		nvlist_t *unsup_feat, *enabled_feat;
2455
2456		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2457		    &spa->spa_feat_for_read_obj) != 0) {
2458			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459		}
2460
2461		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2462		    &spa->spa_feat_for_write_obj) != 0) {
2463			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464		}
2465
2466		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2467		    &spa->spa_feat_desc_obj) != 0) {
2468			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469		}
2470
2471		enabled_feat = fnvlist_alloc();
2472		unsup_feat = fnvlist_alloc();
2473
2474		if (!spa_features_check(spa, B_FALSE,
2475		    unsup_feat, enabled_feat))
2476			missing_feat_read = B_TRUE;
2477
2478		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2479			if (!spa_features_check(spa, B_TRUE,
2480			    unsup_feat, enabled_feat)) {
2481				missing_feat_write = B_TRUE;
2482			}
2483		}
2484
2485		fnvlist_add_nvlist(spa->spa_load_info,
2486		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2487
2488		if (!nvlist_empty(unsup_feat)) {
2489			fnvlist_add_nvlist(spa->spa_load_info,
2490			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2491		}
2492
2493		fnvlist_free(enabled_feat);
2494		fnvlist_free(unsup_feat);
2495
2496		if (!missing_feat_read) {
2497			fnvlist_add_boolean(spa->spa_load_info,
2498			    ZPOOL_CONFIG_CAN_RDONLY);
2499		}
2500
2501		/*
2502		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2503		 * twofold: to determine whether the pool is available for
2504		 * import in read-write mode and (if it is not) whether the
2505		 * pool is available for import in read-only mode. If the pool
2506		 * is available for import in read-write mode, it is displayed
2507		 * as available in userland; if it is not available for import
2508		 * in read-only mode, it is displayed as unavailable in
2509		 * userland. If the pool is available for import in read-only
2510		 * mode but not read-write mode, it is displayed as unavailable
2511		 * in userland with a special note that the pool is actually
2512		 * available for open in read-only mode.
2513		 *
2514		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2515		 * missing a feature for write, we must first determine whether
2516		 * the pool can be opened read-only before returning to
2517		 * userland in order to know whether to display the
2518		 * abovementioned note.
2519		 */
2520		if (missing_feat_read || (missing_feat_write &&
2521		    spa_writeable(spa))) {
2522			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2523			    ENOTSUP));
2524		}
2525
2526		/*
2527		 * Load refcounts for ZFS features from disk into an in-memory
2528		 * cache during SPA initialization.
2529		 */
2530		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2531			uint64_t refcount;
2532
2533			error = feature_get_refcount_from_disk(spa,
2534			    &spa_feature_table[i], &refcount);
2535			if (error == 0) {
2536				spa->spa_feat_refcount_cache[i] = refcount;
2537			} else if (error == ENOTSUP) {
2538				spa->spa_feat_refcount_cache[i] =
2539				    SPA_FEATURE_DISABLED;
2540			} else {
2541				return (spa_vdev_err(rvd,
2542				    VDEV_AUX_CORRUPT_DATA, EIO));
2543			}
2544		}
2545	}
2546
2547	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2548		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2549		    &spa->spa_feat_enabled_txg_obj) != 0)
2550			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551	}
2552
2553	spa->spa_is_initializing = B_TRUE;
2554	error = dsl_pool_open(spa->spa_dsl_pool);
2555	spa->spa_is_initializing = B_FALSE;
2556	if (error != 0)
2557		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2558
2559	if (!mosconfig) {
2560		uint64_t hostid;
2561		nvlist_t *policy = NULL, *nvconfig;
2562
2563		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2564			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565
2566		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2567		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2568			char *hostname;
2569			unsigned long myhostid = 0;
2570
2571			VERIFY(nvlist_lookup_string(nvconfig,
2572			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2573
2574#ifdef	_KERNEL
2575			myhostid = zone_get_hostid(NULL);
2576#else	/* _KERNEL */
2577			/*
2578			 * We're emulating the system's hostid in userland, so
2579			 * we can't use zone_get_hostid().
2580			 */
2581			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2582#endif	/* _KERNEL */
2583			if (check_hostid && hostid != 0 && myhostid != 0 &&
2584			    hostid != myhostid) {
2585				nvlist_free(nvconfig);
2586				cmn_err(CE_WARN, "pool '%s' could not be "
2587				    "loaded as it was last accessed by "
2588				    "another system (host: %s hostid: 0x%lx). "
2589				    "See: http://illumos.org/msg/ZFS-8000-EY",
2590				    spa_name(spa), hostname,
2591				    (unsigned long)hostid);
2592				return (SET_ERROR(EBADF));
2593			}
2594		}
2595		if (nvlist_lookup_nvlist(spa->spa_config,
2596		    ZPOOL_REWIND_POLICY, &policy) == 0)
2597			VERIFY(nvlist_add_nvlist(nvconfig,
2598			    ZPOOL_REWIND_POLICY, policy) == 0);
2599
2600		spa_config_set(spa, nvconfig);
2601		spa_unload(spa);
2602		spa_deactivate(spa);
2603		spa_activate(spa, orig_mode);
2604
2605		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2606	}
2607
2608	/* Grab the secret checksum salt from the MOS. */
2609	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2610	    DMU_POOL_CHECKSUM_SALT, 1,
2611	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2612	    spa->spa_cksum_salt.zcs_bytes);
2613	if (error == ENOENT) {
2614		/* Generate a new salt for subsequent use */
2615		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2616		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2617	} else if (error != 0) {
2618		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619	}
2620
2621	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2622		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2624	if (error != 0)
2625		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626
2627	/*
2628	 * Load the bit that tells us to use the new accounting function
2629	 * (raid-z deflation).  If we have an older pool, this will not
2630	 * be present.
2631	 */
2632	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635
2636	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2637	    &spa->spa_creation_version);
2638	if (error != 0 && error != ENOENT)
2639		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640
2641	/*
2642	 * Load the persistent error log.  If we have an older pool, this will
2643	 * not be present.
2644	 */
2645	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2646	if (error != 0 && error != ENOENT)
2647		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2648
2649	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2650	    &spa->spa_errlog_scrub);
2651	if (error != 0 && error != ENOENT)
2652		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653
2654	/*
2655	 * Load the history object.  If we have an older pool, this
2656	 * will not be present.
2657	 */
2658	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2659	if (error != 0 && error != ENOENT)
2660		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2661
2662	/*
2663	 * If we're assembling the pool from the split-off vdevs of
2664	 * an existing pool, we don't want to attach the spares & cache
2665	 * devices.
2666	 */
2667
2668	/*
2669	 * Load any hot spares for this pool.
2670	 */
2671	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2672	if (error != 0 && error != ENOENT)
2673		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2675		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2676		if (load_nvlist(spa, spa->spa_spares.sav_object,
2677		    &spa->spa_spares.sav_config) != 0)
2678			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2679
2680		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2681		spa_load_spares(spa);
2682		spa_config_exit(spa, SCL_ALL, FTAG);
2683	} else if (error == 0) {
2684		spa->spa_spares.sav_sync = B_TRUE;
2685	}
2686
2687	/*
2688	 * Load any level 2 ARC devices for this pool.
2689	 */
2690	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2691	    &spa->spa_l2cache.sav_object);
2692	if (error != 0 && error != ENOENT)
2693		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2694	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2695		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2696		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2697		    &spa->spa_l2cache.sav_config) != 0)
2698			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2699
2700		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2701		spa_load_l2cache(spa);
2702		spa_config_exit(spa, SCL_ALL, FTAG);
2703	} else if (error == 0) {
2704		spa->spa_l2cache.sav_sync = B_TRUE;
2705	}
2706
2707	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2708
2709	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2710	if (error && error != ENOENT)
2711		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712
2713	if (error == 0) {
2714		uint64_t autoreplace;
2715
2716		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2717		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2718		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2719		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2720		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2721		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2722		    &spa->spa_dedup_ditto);
2723
2724		spa->spa_autoreplace = (autoreplace != 0);
2725	}
2726
2727	/*
2728	 * If the 'autoreplace' property is set, then post a resource notifying
2729	 * the ZFS DE that it should not issue any faults for unopenable
2730	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2731	 * unopenable vdevs so that the normal autoreplace handler can take
2732	 * over.
2733	 */
2734	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2735		spa_check_removed(spa->spa_root_vdev);
2736		/*
2737		 * For the import case, this is done in spa_import(), because
2738		 * at this point we're using the spare definitions from
2739		 * the MOS config, not necessarily from the userland config.
2740		 */
2741		if (state != SPA_LOAD_IMPORT) {
2742			spa_aux_check_removed(&spa->spa_spares);
2743			spa_aux_check_removed(&spa->spa_l2cache);
2744		}
2745	}
2746
2747	/*
2748	 * Load the vdev state for all toplevel vdevs.
2749	 */
2750	vdev_load(rvd);
2751
2752	/*
2753	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2754	 */
2755	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2756	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2757	spa_config_exit(spa, SCL_ALL, FTAG);
2758
2759	/*
2760	 * Load the DDTs (dedup tables).
2761	 */
2762	error = ddt_load(spa);
2763	if (error != 0)
2764		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2765
2766	spa_update_dspace(spa);
2767
2768	/*
2769	 * Validate the config, using the MOS config to fill in any
2770	 * information which might be missing.  If we fail to validate
2771	 * the config then declare the pool unfit for use. If we're
2772	 * assembling a pool from a split, the log is not transferred
2773	 * over.
2774	 */
2775	if (type != SPA_IMPORT_ASSEMBLE) {
2776		nvlist_t *nvconfig;
2777
2778		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2779			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2780
2781		if (!spa_config_valid(spa, nvconfig)) {
2782			nvlist_free(nvconfig);
2783			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2784			    ENXIO));
2785		}
2786		nvlist_free(nvconfig);
2787
2788		/*
2789		 * Now that we've validated the config, check the state of the
2790		 * root vdev.  If it can't be opened, it indicates one or
2791		 * more toplevel vdevs are faulted.
2792		 */
2793		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2794			return (SET_ERROR(ENXIO));
2795
2796		if (spa_writeable(spa) && spa_check_logs(spa)) {
2797			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2798			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2799		}
2800	}
2801
2802	if (missing_feat_write) {
2803		ASSERT(state == SPA_LOAD_TRYIMPORT);
2804
2805		/*
2806		 * At this point, we know that we can open the pool in
2807		 * read-only mode but not read-write mode. We now have enough
2808		 * information and can return to userland.
2809		 */
2810		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2811	}
2812
2813	/*
2814	 * We've successfully opened the pool, verify that we're ready
2815	 * to start pushing transactions.
2816	 */
2817	if (state != SPA_LOAD_TRYIMPORT) {
2818		if (error = spa_load_verify(spa))
2819			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2820			    error));
2821	}
2822
2823	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2824	    spa->spa_load_max_txg == UINT64_MAX)) {
2825		dmu_tx_t *tx;
2826		int need_update = B_FALSE;
2827		dsl_pool_t *dp = spa_get_dsl(spa);
2828
2829		ASSERT(state != SPA_LOAD_TRYIMPORT);
2830
2831		/*
2832		 * Claim log blocks that haven't been committed yet.
2833		 * This must all happen in a single txg.
2834		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2835		 * invoked from zil_claim_log_block()'s i/o done callback.
2836		 * Price of rollback is that we abandon the log.
2837		 */
2838		spa->spa_claiming = B_TRUE;
2839
2840		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2841		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2842		    zil_claim, tx, DS_FIND_CHILDREN);
2843		dmu_tx_commit(tx);
2844
2845		spa->spa_claiming = B_FALSE;
2846
2847		spa_set_log_state(spa, SPA_LOG_GOOD);
2848		spa->spa_sync_on = B_TRUE;
2849		txg_sync_start(spa->spa_dsl_pool);
2850
2851		/*
2852		 * Wait for all claims to sync.  We sync up to the highest
2853		 * claimed log block birth time so that claimed log blocks
2854		 * don't appear to be from the future.  spa_claim_max_txg
2855		 * will have been set for us by either zil_check_log_chain()
2856		 * (invoked from spa_check_logs()) or zil_claim() above.
2857		 */
2858		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2859
2860		/*
2861		 * If the config cache is stale, or we have uninitialized
2862		 * metaslabs (see spa_vdev_add()), then update the config.
2863		 *
2864		 * If this is a verbatim import, trust the current
2865		 * in-core spa_config and update the disk labels.
2866		 */
2867		if (config_cache_txg != spa->spa_config_txg ||
2868		    state == SPA_LOAD_IMPORT ||
2869		    state == SPA_LOAD_RECOVER ||
2870		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2871			need_update = B_TRUE;
2872
2873		for (int c = 0; c < rvd->vdev_children; c++)
2874			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2875				need_update = B_TRUE;
2876
2877		/*
2878		 * Update the config cache asychronously in case we're the
2879		 * root pool, in which case the config cache isn't writable yet.
2880		 */
2881		if (need_update)
2882			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2883
2884		/*
2885		 * Check all DTLs to see if anything needs resilvering.
2886		 */
2887		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2888		    vdev_resilver_needed(rvd, NULL, NULL))
2889			spa_async_request(spa, SPA_ASYNC_RESILVER);
2890
2891		/*
2892		 * Log the fact that we booted up (so that we can detect if
2893		 * we rebooted in the middle of an operation).
2894		 */
2895		spa_history_log_version(spa, "open");
2896
2897		/*
2898		 * Delete any inconsistent datasets.
2899		 */
2900		(void) dmu_objset_find(spa_name(spa),
2901		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2902
2903		/*
2904		 * Clean up any stale temporary dataset userrefs.
2905		 */
2906		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2907	}
2908
2909	return (0);
2910}
2911
2912static int
2913spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2914{
2915	int mode = spa->spa_mode;
2916
2917	spa_unload(spa);
2918	spa_deactivate(spa);
2919
2920	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2921
2922	spa_activate(spa, mode);
2923	spa_async_suspend(spa);
2924
2925	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2926}
2927
2928/*
2929 * If spa_load() fails this function will try loading prior txg's. If
2930 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2931 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2932 * function will not rewind the pool and will return the same error as
2933 * spa_load().
2934 */
2935static int
2936spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2937    uint64_t max_request, int rewind_flags)
2938{
2939	nvlist_t *loadinfo = NULL;
2940	nvlist_t *config = NULL;
2941	int load_error, rewind_error;
2942	uint64_t safe_rewind_txg;
2943	uint64_t min_txg;
2944
2945	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2946		spa->spa_load_max_txg = spa->spa_load_txg;
2947		spa_set_log_state(spa, SPA_LOG_CLEAR);
2948	} else {
2949		spa->spa_load_max_txg = max_request;
2950		if (max_request != UINT64_MAX)
2951			spa->spa_extreme_rewind = B_TRUE;
2952	}
2953
2954	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2955	    mosconfig);
2956	if (load_error == 0)
2957		return (0);
2958
2959	if (spa->spa_root_vdev != NULL)
2960		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2961
2962	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2963	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2964
2965	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2966		nvlist_free(config);
2967		return (load_error);
2968	}
2969
2970	if (state == SPA_LOAD_RECOVER) {
2971		/* Price of rolling back is discarding txgs, including log */
2972		spa_set_log_state(spa, SPA_LOG_CLEAR);
2973	} else {
2974		/*
2975		 * If we aren't rolling back save the load info from our first
2976		 * import attempt so that we can restore it after attempting
2977		 * to rewind.
2978		 */
2979		loadinfo = spa->spa_load_info;
2980		spa->spa_load_info = fnvlist_alloc();
2981	}
2982
2983	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2984	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2985	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2986	    TXG_INITIAL : safe_rewind_txg;
2987
2988	/*
2989	 * Continue as long as we're finding errors, we're still within
2990	 * the acceptable rewind range, and we're still finding uberblocks
2991	 */
2992	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2993	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2994		if (spa->spa_load_max_txg < safe_rewind_txg)
2995			spa->spa_extreme_rewind = B_TRUE;
2996		rewind_error = spa_load_retry(spa, state, mosconfig);
2997	}
2998
2999	spa->spa_extreme_rewind = B_FALSE;
3000	spa->spa_load_max_txg = UINT64_MAX;
3001
3002	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3003		spa_config_set(spa, config);
3004
3005	if (state == SPA_LOAD_RECOVER) {
3006		ASSERT3P(loadinfo, ==, NULL);
3007		return (rewind_error);
3008	} else {
3009		/* Store the rewind info as part of the initial load info */
3010		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3011		    spa->spa_load_info);
3012
3013		/* Restore the initial load info */
3014		fnvlist_free(spa->spa_load_info);
3015		spa->spa_load_info = loadinfo;
3016
3017		return (load_error);
3018	}
3019}
3020
3021/*
3022 * Pool Open/Import
3023 *
3024 * The import case is identical to an open except that the configuration is sent
3025 * down from userland, instead of grabbed from the configuration cache.  For the
3026 * case of an open, the pool configuration will exist in the
3027 * POOL_STATE_UNINITIALIZED state.
3028 *
3029 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3030 * the same time open the pool, without having to keep around the spa_t in some
3031 * ambiguous state.
3032 */
3033static int
3034spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3035    nvlist_t **config)
3036{
3037	spa_t *spa;
3038	spa_load_state_t state = SPA_LOAD_OPEN;
3039	int error;
3040	int locked = B_FALSE;
3041	int firstopen = B_FALSE;
3042
3043	*spapp = NULL;
3044
3045	/*
3046	 * As disgusting as this is, we need to support recursive calls to this
3047	 * function because dsl_dir_open() is called during spa_load(), and ends
3048	 * up calling spa_open() again.  The real fix is to figure out how to
3049	 * avoid dsl_dir_open() calling this in the first place.
3050	 */
3051	if (mutex_owner(&spa_namespace_lock) != curthread) {
3052		mutex_enter(&spa_namespace_lock);
3053		locked = B_TRUE;
3054	}
3055
3056	if ((spa = spa_lookup(pool)) == NULL) {
3057		if (locked)
3058			mutex_exit(&spa_namespace_lock);
3059		return (SET_ERROR(ENOENT));
3060	}
3061
3062	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3063		zpool_rewind_policy_t policy;
3064
3065		firstopen = B_TRUE;
3066
3067		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3068		    &policy);
3069		if (policy.zrp_request & ZPOOL_DO_REWIND)
3070			state = SPA_LOAD_RECOVER;
3071
3072		spa_activate(spa, spa_mode_global);
3073
3074		if (state != SPA_LOAD_RECOVER)
3075			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3076
3077		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3078		    policy.zrp_request);
3079
3080		if (error == EBADF) {
3081			/*
3082			 * If vdev_validate() returns failure (indicated by
3083			 * EBADF), it indicates that one of the vdevs indicates
3084			 * that the pool has been exported or destroyed.  If
3085			 * this is the case, the config cache is out of sync and
3086			 * we should remove the pool from the namespace.
3087			 */
3088			spa_unload(spa);
3089			spa_deactivate(spa);
3090			spa_config_sync(spa, B_TRUE, B_TRUE);
3091			spa_remove(spa);
3092			if (locked)
3093				mutex_exit(&spa_namespace_lock);
3094			return (SET_ERROR(ENOENT));
3095		}
3096
3097		if (error) {
3098			/*
3099			 * We can't open the pool, but we still have useful
3100			 * information: the state of each vdev after the
3101			 * attempted vdev_open().  Return this to the user.
3102			 */
3103			if (config != NULL && spa->spa_config) {
3104				VERIFY(nvlist_dup(spa->spa_config, config,
3105				    KM_SLEEP) == 0);
3106				VERIFY(nvlist_add_nvlist(*config,
3107				    ZPOOL_CONFIG_LOAD_INFO,
3108				    spa->spa_load_info) == 0);
3109			}
3110			spa_unload(spa);
3111			spa_deactivate(spa);
3112			spa->spa_last_open_failed = error;
3113			if (locked)
3114				mutex_exit(&spa_namespace_lock);
3115			*spapp = NULL;
3116			return (error);
3117		}
3118	}
3119
3120	spa_open_ref(spa, tag);
3121
3122	if (config != NULL)
3123		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3124
3125	/*
3126	 * If we've recovered the pool, pass back any information we
3127	 * gathered while doing the load.
3128	 */
3129	if (state == SPA_LOAD_RECOVER) {
3130		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3131		    spa->spa_load_info) == 0);
3132	}
3133
3134	if (locked) {
3135		spa->spa_last_open_failed = 0;
3136		spa->spa_last_ubsync_txg = 0;
3137		spa->spa_load_txg = 0;
3138		mutex_exit(&spa_namespace_lock);
3139#ifdef __FreeBSD__
3140#ifdef _KERNEL
3141		if (firstopen)
3142			zvol_create_minors(spa->spa_name);
3143#endif
3144#endif
3145	}
3146
3147	*spapp = spa;
3148
3149	return (0);
3150}
3151
3152int
3153spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3154    nvlist_t **config)
3155{
3156	return (spa_open_common(name, spapp, tag, policy, config));
3157}
3158
3159int
3160spa_open(const char *name, spa_t **spapp, void *tag)
3161{
3162	return (spa_open_common(name, spapp, tag, NULL, NULL));
3163}
3164
3165/*
3166 * Lookup the given spa_t, incrementing the inject count in the process,
3167 * preventing it from being exported or destroyed.
3168 */
3169spa_t *
3170spa_inject_addref(char *name)
3171{
3172	spa_t *spa;
3173
3174	mutex_enter(&spa_namespace_lock);
3175	if ((spa = spa_lookup(name)) == NULL) {
3176		mutex_exit(&spa_namespace_lock);
3177		return (NULL);
3178	}
3179	spa->spa_inject_ref++;
3180	mutex_exit(&spa_namespace_lock);
3181
3182	return (spa);
3183}
3184
3185void
3186spa_inject_delref(spa_t *spa)
3187{
3188	mutex_enter(&spa_namespace_lock);
3189	spa->spa_inject_ref--;
3190	mutex_exit(&spa_namespace_lock);
3191}
3192
3193/*
3194 * Add spares device information to the nvlist.
3195 */
3196static void
3197spa_add_spares(spa_t *spa, nvlist_t *config)
3198{
3199	nvlist_t **spares;
3200	uint_t i, nspares;
3201	nvlist_t *nvroot;
3202	uint64_t guid;
3203	vdev_stat_t *vs;
3204	uint_t vsc;
3205	uint64_t pool;
3206
3207	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3208
3209	if (spa->spa_spares.sav_count == 0)
3210		return;
3211
3212	VERIFY(nvlist_lookup_nvlist(config,
3213	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3214	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3215	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3216	if (nspares != 0) {
3217		VERIFY(nvlist_add_nvlist_array(nvroot,
3218		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3219		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3220		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3221
3222		/*
3223		 * Go through and find any spares which have since been
3224		 * repurposed as an active spare.  If this is the case, update
3225		 * their status appropriately.
3226		 */
3227		for (i = 0; i < nspares; i++) {
3228			VERIFY(nvlist_lookup_uint64(spares[i],
3229			    ZPOOL_CONFIG_GUID, &guid) == 0);
3230			if (spa_spare_exists(guid, &pool, NULL) &&
3231			    pool != 0ULL) {
3232				VERIFY(nvlist_lookup_uint64_array(
3233				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3234				    (uint64_t **)&vs, &vsc) == 0);
3235				vs->vs_state = VDEV_STATE_CANT_OPEN;
3236				vs->vs_aux = VDEV_AUX_SPARED;
3237			}
3238		}
3239	}
3240}
3241
3242/*
3243 * Add l2cache device information to the nvlist, including vdev stats.
3244 */
3245static void
3246spa_add_l2cache(spa_t *spa, nvlist_t *config)
3247{
3248	nvlist_t **l2cache;
3249	uint_t i, j, nl2cache;
3250	nvlist_t *nvroot;
3251	uint64_t guid;
3252	vdev_t *vd;
3253	vdev_stat_t *vs;
3254	uint_t vsc;
3255
3256	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3257
3258	if (spa->spa_l2cache.sav_count == 0)
3259		return;
3260
3261	VERIFY(nvlist_lookup_nvlist(config,
3262	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3263	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3264	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3265	if (nl2cache != 0) {
3266		VERIFY(nvlist_add_nvlist_array(nvroot,
3267		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3268		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3269		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3270
3271		/*
3272		 * Update level 2 cache device stats.
3273		 */
3274
3275		for (i = 0; i < nl2cache; i++) {
3276			VERIFY(nvlist_lookup_uint64(l2cache[i],
3277			    ZPOOL_CONFIG_GUID, &guid) == 0);
3278
3279			vd = NULL;
3280			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3281				if (guid ==
3282				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3283					vd = spa->spa_l2cache.sav_vdevs[j];
3284					break;
3285				}
3286			}
3287			ASSERT(vd != NULL);
3288
3289			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3290			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3291			    == 0);
3292			vdev_get_stats(vd, vs);
3293		}
3294	}
3295}
3296
3297static void
3298spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3299{
3300	nvlist_t *features;
3301	zap_cursor_t zc;
3302	zap_attribute_t za;
3303
3304	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3305	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3306
3307	/* We may be unable to read features if pool is suspended. */
3308	if (spa_suspended(spa))
3309		goto out;
3310
3311	if (spa->spa_feat_for_read_obj != 0) {
3312		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3313		    spa->spa_feat_for_read_obj);
3314		    zap_cursor_retrieve(&zc, &za) == 0;
3315		    zap_cursor_advance(&zc)) {
3316			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3317			    za.za_num_integers == 1);
3318			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3319			    za.za_first_integer));
3320		}
3321		zap_cursor_fini(&zc);
3322	}
3323
3324	if (spa->spa_feat_for_write_obj != 0) {
3325		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3326		    spa->spa_feat_for_write_obj);
3327		    zap_cursor_retrieve(&zc, &za) == 0;
3328		    zap_cursor_advance(&zc)) {
3329			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3330			    za.za_num_integers == 1);
3331			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3332			    za.za_first_integer));
3333		}
3334		zap_cursor_fini(&zc);
3335	}
3336
3337out:
3338	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3339	    features) == 0);
3340	nvlist_free(features);
3341}
3342
3343int
3344spa_get_stats(const char *name, nvlist_t **config,
3345    char *altroot, size_t buflen)
3346{
3347	int error;
3348	spa_t *spa;
3349
3350	*config = NULL;
3351	error = spa_open_common(name, &spa, FTAG, NULL, config);
3352
3353	if (spa != NULL) {
3354		/*
3355		 * This still leaves a window of inconsistency where the spares
3356		 * or l2cache devices could change and the config would be
3357		 * self-inconsistent.
3358		 */
3359		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3360
3361		if (*config != NULL) {
3362			uint64_t loadtimes[2];
3363
3364			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3365			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3366			VERIFY(nvlist_add_uint64_array(*config,
3367			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3368
3369			VERIFY(nvlist_add_uint64(*config,
3370			    ZPOOL_CONFIG_ERRCOUNT,
3371			    spa_get_errlog_size(spa)) == 0);
3372
3373			if (spa_suspended(spa))
3374				VERIFY(nvlist_add_uint64(*config,
3375				    ZPOOL_CONFIG_SUSPENDED,
3376				    spa->spa_failmode) == 0);
3377
3378			spa_add_spares(spa, *config);
3379			spa_add_l2cache(spa, *config);
3380			spa_add_feature_stats(spa, *config);
3381		}
3382	}
3383
3384	/*
3385	 * We want to get the alternate root even for faulted pools, so we cheat
3386	 * and call spa_lookup() directly.
3387	 */
3388	if (altroot) {
3389		if (spa == NULL) {
3390			mutex_enter(&spa_namespace_lock);
3391			spa = spa_lookup(name);
3392			if (spa)
3393				spa_altroot(spa, altroot, buflen);
3394			else
3395				altroot[0] = '\0';
3396			spa = NULL;
3397			mutex_exit(&spa_namespace_lock);
3398		} else {
3399			spa_altroot(spa, altroot, buflen);
3400		}
3401	}
3402
3403	if (spa != NULL) {
3404		spa_config_exit(spa, SCL_CONFIG, FTAG);
3405		spa_close(spa, FTAG);
3406	}
3407
3408	return (error);
3409}
3410
3411/*
3412 * Validate that the auxiliary device array is well formed.  We must have an
3413 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3414 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3415 * specified, as long as they are well-formed.
3416 */
3417static int
3418spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3419    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3420    vdev_labeltype_t label)
3421{
3422	nvlist_t **dev;
3423	uint_t i, ndev;
3424	vdev_t *vd;
3425	int error;
3426
3427	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3428
3429	/*
3430	 * It's acceptable to have no devs specified.
3431	 */
3432	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3433		return (0);
3434
3435	if (ndev == 0)
3436		return (SET_ERROR(EINVAL));
3437
3438	/*
3439	 * Make sure the pool is formatted with a version that supports this
3440	 * device type.
3441	 */
3442	if (spa_version(spa) < version)
3443		return (SET_ERROR(ENOTSUP));
3444
3445	/*
3446	 * Set the pending device list so we correctly handle device in-use
3447	 * checking.
3448	 */
3449	sav->sav_pending = dev;
3450	sav->sav_npending = ndev;
3451
3452	for (i = 0; i < ndev; i++) {
3453		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3454		    mode)) != 0)
3455			goto out;
3456
3457		if (!vd->vdev_ops->vdev_op_leaf) {
3458			vdev_free(vd);
3459			error = SET_ERROR(EINVAL);
3460			goto out;
3461		}
3462
3463		/*
3464		 * The L2ARC currently only supports disk devices in
3465		 * kernel context.  For user-level testing, we allow it.
3466		 */
3467#ifdef _KERNEL
3468		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3469		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3470			error = SET_ERROR(ENOTBLK);
3471			vdev_free(vd);
3472			goto out;
3473		}
3474#endif
3475		vd->vdev_top = vd;
3476
3477		if ((error = vdev_open(vd)) == 0 &&
3478		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3479			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3480			    vd->vdev_guid) == 0);
3481		}
3482
3483		vdev_free(vd);
3484
3485		if (error &&
3486		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3487			goto out;
3488		else
3489			error = 0;
3490	}
3491
3492out:
3493	sav->sav_pending = NULL;
3494	sav->sav_npending = 0;
3495	return (error);
3496}
3497
3498static int
3499spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3500{
3501	int error;
3502
3503	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3504
3505	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3506	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3507	    VDEV_LABEL_SPARE)) != 0) {
3508		return (error);
3509	}
3510
3511	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3512	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3513	    VDEV_LABEL_L2CACHE));
3514}
3515
3516static void
3517spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3518    const char *config)
3519{
3520	int i;
3521
3522	if (sav->sav_config != NULL) {
3523		nvlist_t **olddevs;
3524		uint_t oldndevs;
3525		nvlist_t **newdevs;
3526
3527		/*
3528		 * Generate new dev list by concatentating with the
3529		 * current dev list.
3530		 */
3531		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3532		    &olddevs, &oldndevs) == 0);
3533
3534		newdevs = kmem_alloc(sizeof (void *) *
3535		    (ndevs + oldndevs), KM_SLEEP);
3536		for (i = 0; i < oldndevs; i++)
3537			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3538			    KM_SLEEP) == 0);
3539		for (i = 0; i < ndevs; i++)
3540			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3541			    KM_SLEEP) == 0);
3542
3543		VERIFY(nvlist_remove(sav->sav_config, config,
3544		    DATA_TYPE_NVLIST_ARRAY) == 0);
3545
3546		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3547		    config, newdevs, ndevs + oldndevs) == 0);
3548		for (i = 0; i < oldndevs + ndevs; i++)
3549			nvlist_free(newdevs[i]);
3550		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3551	} else {
3552		/*
3553		 * Generate a new dev list.
3554		 */
3555		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3556		    KM_SLEEP) == 0);
3557		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3558		    devs, ndevs) == 0);
3559	}
3560}
3561
3562/*
3563 * Stop and drop level 2 ARC devices
3564 */
3565void
3566spa_l2cache_drop(spa_t *spa)
3567{
3568	vdev_t *vd;
3569	int i;
3570	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3571
3572	for (i = 0; i < sav->sav_count; i++) {
3573		uint64_t pool;
3574
3575		vd = sav->sav_vdevs[i];
3576		ASSERT(vd != NULL);
3577
3578		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3579		    pool != 0ULL && l2arc_vdev_present(vd))
3580			l2arc_remove_vdev(vd);
3581	}
3582}
3583
3584/*
3585 * Pool Creation
3586 */
3587int
3588spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3589    nvlist_t *zplprops)
3590{
3591	spa_t *spa;
3592	char *altroot = NULL;
3593	vdev_t *rvd;
3594	dsl_pool_t *dp;
3595	dmu_tx_t *tx;
3596	int error = 0;
3597	uint64_t txg = TXG_INITIAL;
3598	nvlist_t **spares, **l2cache;
3599	uint_t nspares, nl2cache;
3600	uint64_t version, obj;
3601	boolean_t has_features;
3602
3603	/*
3604	 * If this pool already exists, return failure.
3605	 */
3606	mutex_enter(&spa_namespace_lock);
3607	if (spa_lookup(pool) != NULL) {
3608		mutex_exit(&spa_namespace_lock);
3609		return (SET_ERROR(EEXIST));
3610	}
3611
3612	/*
3613	 * Allocate a new spa_t structure.
3614	 */
3615	(void) nvlist_lookup_string(props,
3616	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3617	spa = spa_add(pool, NULL, altroot);
3618	spa_activate(spa, spa_mode_global);
3619
3620	if (props && (error = spa_prop_validate(spa, props))) {
3621		spa_deactivate(spa);
3622		spa_remove(spa);
3623		mutex_exit(&spa_namespace_lock);
3624		return (error);
3625	}
3626
3627	has_features = B_FALSE;
3628	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3629	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3630		if (zpool_prop_feature(nvpair_name(elem)))
3631			has_features = B_TRUE;
3632	}
3633
3634	if (has_features || nvlist_lookup_uint64(props,
3635	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3636		version = SPA_VERSION;
3637	}
3638	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3639
3640	spa->spa_first_txg = txg;
3641	spa->spa_uberblock.ub_txg = txg - 1;
3642	spa->spa_uberblock.ub_version = version;
3643	spa->spa_ubsync = spa->spa_uberblock;
3644
3645	/*
3646	 * Create "The Godfather" zio to hold all async IOs
3647	 */
3648	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3649	    KM_SLEEP);
3650	for (int i = 0; i < max_ncpus; i++) {
3651		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3652		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3653		    ZIO_FLAG_GODFATHER);
3654	}
3655
3656	/*
3657	 * Create the root vdev.
3658	 */
3659	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3660
3661	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3662
3663	ASSERT(error != 0 || rvd != NULL);
3664	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3665
3666	if (error == 0 && !zfs_allocatable_devs(nvroot))
3667		error = SET_ERROR(EINVAL);
3668
3669	if (error == 0 &&
3670	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3671	    (error = spa_validate_aux(spa, nvroot, txg,
3672	    VDEV_ALLOC_ADD)) == 0) {
3673		for (int c = 0; c < rvd->vdev_children; c++) {
3674			vdev_ashift_optimize(rvd->vdev_child[c]);
3675			vdev_metaslab_set_size(rvd->vdev_child[c]);
3676			vdev_expand(rvd->vdev_child[c], txg);
3677		}
3678	}
3679
3680	spa_config_exit(spa, SCL_ALL, FTAG);
3681
3682	if (error != 0) {
3683		spa_unload(spa);
3684		spa_deactivate(spa);
3685		spa_remove(spa);
3686		mutex_exit(&spa_namespace_lock);
3687		return (error);
3688	}
3689
3690	/*
3691	 * Get the list of spares, if specified.
3692	 */
3693	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3694	    &spares, &nspares) == 0) {
3695		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3696		    KM_SLEEP) == 0);
3697		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3698		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3699		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3700		spa_load_spares(spa);
3701		spa_config_exit(spa, SCL_ALL, FTAG);
3702		spa->spa_spares.sav_sync = B_TRUE;
3703	}
3704
3705	/*
3706	 * Get the list of level 2 cache devices, if specified.
3707	 */
3708	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3709	    &l2cache, &nl2cache) == 0) {
3710		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3711		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3712		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3713		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3714		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3715		spa_load_l2cache(spa);
3716		spa_config_exit(spa, SCL_ALL, FTAG);
3717		spa->spa_l2cache.sav_sync = B_TRUE;
3718	}
3719
3720	spa->spa_is_initializing = B_TRUE;
3721	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3722	spa->spa_meta_objset = dp->dp_meta_objset;
3723	spa->spa_is_initializing = B_FALSE;
3724
3725	/*
3726	 * Create DDTs (dedup tables).
3727	 */
3728	ddt_create(spa);
3729
3730	spa_update_dspace(spa);
3731
3732	tx = dmu_tx_create_assigned(dp, txg);
3733
3734	/*
3735	 * Create the pool config object.
3736	 */
3737	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3738	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3739	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3740
3741	if (zap_add(spa->spa_meta_objset,
3742	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3743	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3744		cmn_err(CE_PANIC, "failed to add pool config");
3745	}
3746
3747	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3748		spa_feature_create_zap_objects(spa, tx);
3749
3750	if (zap_add(spa->spa_meta_objset,
3751	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3752	    sizeof (uint64_t), 1, &version, tx) != 0) {
3753		cmn_err(CE_PANIC, "failed to add pool version");
3754	}
3755
3756	/* Newly created pools with the right version are always deflated. */
3757	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3758		spa->spa_deflate = TRUE;
3759		if (zap_add(spa->spa_meta_objset,
3760		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3761		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3762			cmn_err(CE_PANIC, "failed to add deflate");
3763		}
3764	}
3765
3766	/*
3767	 * Create the deferred-free bpobj.  Turn off compression
3768	 * because sync-to-convergence takes longer if the blocksize
3769	 * keeps changing.
3770	 */
3771	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3772	dmu_object_set_compress(spa->spa_meta_objset, obj,
3773	    ZIO_COMPRESS_OFF, tx);
3774	if (zap_add(spa->spa_meta_objset,
3775	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3776	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3777		cmn_err(CE_PANIC, "failed to add bpobj");
3778	}
3779	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3780	    spa->spa_meta_objset, obj));
3781
3782	/*
3783	 * Create the pool's history object.
3784	 */
3785	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3786		spa_history_create_obj(spa, tx);
3787
3788	/*
3789	 * Generate some random noise for salted checksums to operate on.
3790	 */
3791	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3792	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3793
3794	/*
3795	 * Set pool properties.
3796	 */
3797	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3798	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3799	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3800	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3801
3802	if (props != NULL) {
3803		spa_configfile_set(spa, props, B_FALSE);
3804		spa_sync_props(props, tx);
3805	}
3806
3807	dmu_tx_commit(tx);
3808
3809	spa->spa_sync_on = B_TRUE;
3810	txg_sync_start(spa->spa_dsl_pool);
3811
3812	/*
3813	 * We explicitly wait for the first transaction to complete so that our
3814	 * bean counters are appropriately updated.
3815	 */
3816	txg_wait_synced(spa->spa_dsl_pool, txg);
3817
3818	spa_config_sync(spa, B_FALSE, B_TRUE);
3819	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3820
3821	spa_history_log_version(spa, "create");
3822
3823	/*
3824	 * Don't count references from objsets that are already closed
3825	 * and are making their way through the eviction process.
3826	 */
3827	spa_evicting_os_wait(spa);
3828	spa->spa_minref = refcount_count(&spa->spa_refcount);
3829
3830	mutex_exit(&spa_namespace_lock);
3831
3832	return (0);
3833}
3834
3835#ifdef _KERNEL
3836#ifdef illumos
3837/*
3838 * Get the root pool information from the root disk, then import the root pool
3839 * during the system boot up time.
3840 */
3841extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3842
3843static nvlist_t *
3844spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3845{
3846	nvlist_t *config;
3847	nvlist_t *nvtop, *nvroot;
3848	uint64_t pgid;
3849
3850	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3851		return (NULL);
3852
3853	/*
3854	 * Add this top-level vdev to the child array.
3855	 */
3856	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3857	    &nvtop) == 0);
3858	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3859	    &pgid) == 0);
3860	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3861
3862	/*
3863	 * Put this pool's top-level vdevs into a root vdev.
3864	 */
3865	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3866	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3867	    VDEV_TYPE_ROOT) == 0);
3868	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3869	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3870	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3871	    &nvtop, 1) == 0);
3872
3873	/*
3874	 * Replace the existing vdev_tree with the new root vdev in
3875	 * this pool's configuration (remove the old, add the new).
3876	 */
3877	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3878	nvlist_free(nvroot);
3879	return (config);
3880}
3881
3882/*
3883 * Walk the vdev tree and see if we can find a device with "better"
3884 * configuration. A configuration is "better" if the label on that
3885 * device has a more recent txg.
3886 */
3887static void
3888spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3889{
3890	for (int c = 0; c < vd->vdev_children; c++)
3891		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3892
3893	if (vd->vdev_ops->vdev_op_leaf) {
3894		nvlist_t *label;
3895		uint64_t label_txg;
3896
3897		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3898		    &label) != 0)
3899			return;
3900
3901		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3902		    &label_txg) == 0);
3903
3904		/*
3905		 * Do we have a better boot device?
3906		 */
3907		if (label_txg > *txg) {
3908			*txg = label_txg;
3909			*avd = vd;
3910		}
3911		nvlist_free(label);
3912	}
3913}
3914
3915/*
3916 * Import a root pool.
3917 *
3918 * For x86. devpath_list will consist of devid and/or physpath name of
3919 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3920 * The GRUB "findroot" command will return the vdev we should boot.
3921 *
3922 * For Sparc, devpath_list consists the physpath name of the booting device
3923 * no matter the rootpool is a single device pool or a mirrored pool.
3924 * e.g.
3925 *	"/pci@1f,0/ide@d/disk@0,0:a"
3926 */
3927int
3928spa_import_rootpool(char *devpath, char *devid)
3929{
3930	spa_t *spa;
3931	vdev_t *rvd, *bvd, *avd = NULL;
3932	nvlist_t *config, *nvtop;
3933	uint64_t guid, txg;
3934	char *pname;
3935	int error;
3936
3937	/*
3938	 * Read the label from the boot device and generate a configuration.
3939	 */
3940	config = spa_generate_rootconf(devpath, devid, &guid);
3941#if defined(_OBP) && defined(_KERNEL)
3942	if (config == NULL) {
3943		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3944			/* iscsi boot */
3945			get_iscsi_bootpath_phy(devpath);
3946			config = spa_generate_rootconf(devpath, devid, &guid);
3947		}
3948	}
3949#endif
3950	if (config == NULL) {
3951		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3952		    devpath);
3953		return (SET_ERROR(EIO));
3954	}
3955
3956	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3957	    &pname) == 0);
3958	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3959
3960	mutex_enter(&spa_namespace_lock);
3961	if ((spa = spa_lookup(pname)) != NULL) {
3962		/*
3963		 * Remove the existing root pool from the namespace so that we
3964		 * can replace it with the correct config we just read in.
3965		 */
3966		spa_remove(spa);
3967	}
3968
3969	spa = spa_add(pname, config, NULL);
3970	spa->spa_is_root = B_TRUE;
3971	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3972
3973	/*
3974	 * Build up a vdev tree based on the boot device's label config.
3975	 */
3976	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3977	    &nvtop) == 0);
3978	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3979	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3980	    VDEV_ALLOC_ROOTPOOL);
3981	spa_config_exit(spa, SCL_ALL, FTAG);
3982	if (error) {
3983		mutex_exit(&spa_namespace_lock);
3984		nvlist_free(config);
3985		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3986		    pname);
3987		return (error);
3988	}
3989
3990	/*
3991	 * Get the boot vdev.
3992	 */
3993	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3994		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3995		    (u_longlong_t)guid);
3996		error = SET_ERROR(ENOENT);
3997		goto out;
3998	}
3999
4000	/*
4001	 * Determine if there is a better boot device.
4002	 */
4003	avd = bvd;
4004	spa_alt_rootvdev(rvd, &avd, &txg);
4005	if (avd != bvd) {
4006		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4007		    "try booting from '%s'", avd->vdev_path);
4008		error = SET_ERROR(EINVAL);
4009		goto out;
4010	}
4011
4012	/*
4013	 * If the boot device is part of a spare vdev then ensure that
4014	 * we're booting off the active spare.
4015	 */
4016	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4017	    !bvd->vdev_isspare) {
4018		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4019		    "try booting from '%s'",
4020		    bvd->vdev_parent->
4021		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4022		error = SET_ERROR(EINVAL);
4023		goto out;
4024	}
4025
4026	error = 0;
4027out:
4028	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4029	vdev_free(rvd);
4030	spa_config_exit(spa, SCL_ALL, FTAG);
4031	mutex_exit(&spa_namespace_lock);
4032
4033	nvlist_free(config);
4034	return (error);
4035}
4036
4037#else	/* !illumos */
4038
4039extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4040    uint64_t *count);
4041
4042static nvlist_t *
4043spa_generate_rootconf(const char *name)
4044{
4045	nvlist_t **configs, **tops;
4046	nvlist_t *config;
4047	nvlist_t *best_cfg, *nvtop, *nvroot;
4048	uint64_t *holes;
4049	uint64_t best_txg;
4050	uint64_t nchildren;
4051	uint64_t pgid;
4052	uint64_t count;
4053	uint64_t i;
4054	uint_t   nholes;
4055
4056	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4057		return (NULL);
4058
4059	ASSERT3U(count, !=, 0);
4060	best_txg = 0;
4061	for (i = 0; i < count; i++) {
4062		uint64_t txg;
4063
4064		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4065		    &txg) == 0);
4066		if (txg > best_txg) {
4067			best_txg = txg;
4068			best_cfg = configs[i];
4069		}
4070	}
4071
4072	/*
4073	 * Multi-vdev root pool configuration discovery is not supported yet.
4074	 */
4075	nchildren = 1;
4076	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4077	holes = NULL;
4078	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4079	    &holes, &nholes);
4080
4081	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4082	for (i = 0; i < nchildren; i++) {
4083		if (i >= count)
4084			break;
4085		if (configs[i] == NULL)
4086			continue;
4087		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4088		    &nvtop) == 0);
4089		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4090	}
4091	for (i = 0; holes != NULL && i < nholes; i++) {
4092		if (i >= nchildren)
4093			continue;
4094		if (tops[holes[i]] != NULL)
4095			continue;
4096		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4097		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4098		    VDEV_TYPE_HOLE) == 0);
4099		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4100		    holes[i]) == 0);
4101		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4102		    0) == 0);
4103	}
4104	for (i = 0; i < nchildren; i++) {
4105		if (tops[i] != NULL)
4106			continue;
4107		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4108		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4109		    VDEV_TYPE_MISSING) == 0);
4110		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4111		    i) == 0);
4112		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4113		    0) == 0);
4114	}
4115
4116	/*
4117	 * Create pool config based on the best vdev config.
4118	 */
4119	nvlist_dup(best_cfg, &config, KM_SLEEP);
4120
4121	/*
4122	 * Put this pool's top-level vdevs into a root vdev.
4123	 */
4124	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4125	    &pgid) == 0);
4126	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4127	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4128	    VDEV_TYPE_ROOT) == 0);
4129	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4130	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4131	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4132	    tops, nchildren) == 0);
4133
4134	/*
4135	 * Replace the existing vdev_tree with the new root vdev in
4136	 * this pool's configuration (remove the old, add the new).
4137	 */
4138	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4139
4140	/*
4141	 * Drop vdev config elements that should not be present at pool level.
4142	 */
4143	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4144	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4145
4146	for (i = 0; i < count; i++)
4147		nvlist_free(configs[i]);
4148	kmem_free(configs, count * sizeof(void *));
4149	for (i = 0; i < nchildren; i++)
4150		nvlist_free(tops[i]);
4151	kmem_free(tops, nchildren * sizeof(void *));
4152	nvlist_free(nvroot);
4153	return (config);
4154}
4155
4156int
4157spa_import_rootpool(const char *name)
4158{
4159	spa_t *spa;
4160	vdev_t *rvd, *bvd, *avd = NULL;
4161	nvlist_t *config, *nvtop;
4162	uint64_t txg;
4163	char *pname;
4164	int error;
4165
4166	/*
4167	 * Read the label from the boot device and generate a configuration.
4168	 */
4169	config = spa_generate_rootconf(name);
4170
4171	mutex_enter(&spa_namespace_lock);
4172	if (config != NULL) {
4173		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4174		    &pname) == 0 && strcmp(name, pname) == 0);
4175		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4176		    == 0);
4177
4178		if ((spa = spa_lookup(pname)) != NULL) {
4179			/*
4180			 * Remove the existing root pool from the namespace so
4181			 * that we can replace it with the correct config
4182			 * we just read in.
4183			 */
4184			spa_remove(spa);
4185		}
4186		spa = spa_add(pname, config, NULL);
4187
4188		/*
4189		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4190		 * via spa_version().
4191		 */
4192		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4193		    &spa->spa_ubsync.ub_version) != 0)
4194			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4195	} else if ((spa = spa_lookup(name)) == NULL) {
4196		mutex_exit(&spa_namespace_lock);
4197		nvlist_free(config);
4198		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4199		    name);
4200		return (EIO);
4201	} else {
4202		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4203	}
4204	spa->spa_is_root = B_TRUE;
4205	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4206
4207	/*
4208	 * Build up a vdev tree based on the boot device's label config.
4209	 */
4210	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4211	    &nvtop) == 0);
4212	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4213	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4214	    VDEV_ALLOC_ROOTPOOL);
4215	spa_config_exit(spa, SCL_ALL, FTAG);
4216	if (error) {
4217		mutex_exit(&spa_namespace_lock);
4218		nvlist_free(config);
4219		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4220		    pname);
4221		return (error);
4222	}
4223
4224	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4225	vdev_free(rvd);
4226	spa_config_exit(spa, SCL_ALL, FTAG);
4227	mutex_exit(&spa_namespace_lock);
4228
4229	nvlist_free(config);
4230	return (0);
4231}
4232
4233#endif	/* illumos */
4234#endif	/* _KERNEL */
4235
4236/*
4237 * Import a non-root pool into the system.
4238 */
4239int
4240spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4241{
4242	spa_t *spa;
4243	char *altroot = NULL;
4244	spa_load_state_t state = SPA_LOAD_IMPORT;
4245	zpool_rewind_policy_t policy;
4246	uint64_t mode = spa_mode_global;
4247	uint64_t readonly = B_FALSE;
4248	int error;
4249	nvlist_t *nvroot;
4250	nvlist_t **spares, **l2cache;
4251	uint_t nspares, nl2cache;
4252
4253	/*
4254	 * If a pool with this name exists, return failure.
4255	 */
4256	mutex_enter(&spa_namespace_lock);
4257	if (spa_lookup(pool) != NULL) {
4258		mutex_exit(&spa_namespace_lock);
4259		return (SET_ERROR(EEXIST));
4260	}
4261
4262	/*
4263	 * Create and initialize the spa structure.
4264	 */
4265	(void) nvlist_lookup_string(props,
4266	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4267	(void) nvlist_lookup_uint64(props,
4268	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4269	if (readonly)
4270		mode = FREAD;
4271	spa = spa_add(pool, config, altroot);
4272	spa->spa_import_flags = flags;
4273
4274	/*
4275	 * Verbatim import - Take a pool and insert it into the namespace
4276	 * as if it had been loaded at boot.
4277	 */
4278	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4279		if (props != NULL)
4280			spa_configfile_set(spa, props, B_FALSE);
4281
4282		spa_config_sync(spa, B_FALSE, B_TRUE);
4283		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4284
4285		mutex_exit(&spa_namespace_lock);
4286		return (0);
4287	}
4288
4289	spa_activate(spa, mode);
4290
4291	/*
4292	 * Don't start async tasks until we know everything is healthy.
4293	 */
4294	spa_async_suspend(spa);
4295
4296	zpool_get_rewind_policy(config, &policy);
4297	if (policy.zrp_request & ZPOOL_DO_REWIND)
4298		state = SPA_LOAD_RECOVER;
4299
4300	/*
4301	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4302	 * because the user-supplied config is actually the one to trust when
4303	 * doing an import.
4304	 */
4305	if (state != SPA_LOAD_RECOVER)
4306		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4307
4308	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4309	    policy.zrp_request);
4310
4311	/*
4312	 * Propagate anything learned while loading the pool and pass it
4313	 * back to caller (i.e. rewind info, missing devices, etc).
4314	 */
4315	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4316	    spa->spa_load_info) == 0);
4317
4318	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4319	/*
4320	 * Toss any existing sparelist, as it doesn't have any validity
4321	 * anymore, and conflicts with spa_has_spare().
4322	 */
4323	if (spa->spa_spares.sav_config) {
4324		nvlist_free(spa->spa_spares.sav_config);
4325		spa->spa_spares.sav_config = NULL;
4326		spa_load_spares(spa);
4327	}
4328	if (spa->spa_l2cache.sav_config) {
4329		nvlist_free(spa->spa_l2cache.sav_config);
4330		spa->spa_l2cache.sav_config = NULL;
4331		spa_load_l2cache(spa);
4332	}
4333
4334	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4335	    &nvroot) == 0);
4336	if (error == 0)
4337		error = spa_validate_aux(spa, nvroot, -1ULL,
4338		    VDEV_ALLOC_SPARE);
4339	if (error == 0)
4340		error = spa_validate_aux(spa, nvroot, -1ULL,
4341		    VDEV_ALLOC_L2CACHE);
4342	spa_config_exit(spa, SCL_ALL, FTAG);
4343
4344	if (props != NULL)
4345		spa_configfile_set(spa, props, B_FALSE);
4346
4347	if (error != 0 || (props && spa_writeable(spa) &&
4348	    (error = spa_prop_set(spa, props)))) {
4349		spa_unload(spa);
4350		spa_deactivate(spa);
4351		spa_remove(spa);
4352		mutex_exit(&spa_namespace_lock);
4353		return (error);
4354	}
4355
4356	spa_async_resume(spa);
4357
4358	/*
4359	 * Override any spares and level 2 cache devices as specified by
4360	 * the user, as these may have correct device names/devids, etc.
4361	 */
4362	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4363	    &spares, &nspares) == 0) {
4364		if (spa->spa_spares.sav_config)
4365			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4366			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4367		else
4368			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4369			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4370		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4371		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4372		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4373		spa_load_spares(spa);
4374		spa_config_exit(spa, SCL_ALL, FTAG);
4375		spa->spa_spares.sav_sync = B_TRUE;
4376	}
4377	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4378	    &l2cache, &nl2cache) == 0) {
4379		if (spa->spa_l2cache.sav_config)
4380			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4381			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4382		else
4383			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4384			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4385		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4386		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4387		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4388		spa_load_l2cache(spa);
4389		spa_config_exit(spa, SCL_ALL, FTAG);
4390		spa->spa_l2cache.sav_sync = B_TRUE;
4391	}
4392
4393	/*
4394	 * Check for any removed devices.
4395	 */
4396	if (spa->spa_autoreplace) {
4397		spa_aux_check_removed(&spa->spa_spares);
4398		spa_aux_check_removed(&spa->spa_l2cache);
4399	}
4400
4401	if (spa_writeable(spa)) {
4402		/*
4403		 * Update the config cache to include the newly-imported pool.
4404		 */
4405		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4406	}
4407
4408	/*
4409	 * It's possible that the pool was expanded while it was exported.
4410	 * We kick off an async task to handle this for us.
4411	 */
4412	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4413
4414	spa_history_log_version(spa, "import");
4415
4416	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4417
4418	mutex_exit(&spa_namespace_lock);
4419
4420#ifdef __FreeBSD__
4421#ifdef _KERNEL
4422	zvol_create_minors(pool);
4423#endif
4424#endif
4425	return (0);
4426}
4427
4428nvlist_t *
4429spa_tryimport(nvlist_t *tryconfig)
4430{
4431	nvlist_t *config = NULL;
4432	char *poolname;
4433	spa_t *spa;
4434	uint64_t state;
4435	int error;
4436
4437	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4438		return (NULL);
4439
4440	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4441		return (NULL);
4442
4443	/*
4444	 * Create and initialize the spa structure.
4445	 */
4446	mutex_enter(&spa_namespace_lock);
4447	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4448	spa_activate(spa, FREAD);
4449
4450	/*
4451	 * Pass off the heavy lifting to spa_load().
4452	 * Pass TRUE for mosconfig because the user-supplied config
4453	 * is actually the one to trust when doing an import.
4454	 */
4455	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4456
4457	/*
4458	 * If 'tryconfig' was at least parsable, return the current config.
4459	 */
4460	if (spa->spa_root_vdev != NULL) {
4461		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4462		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4463		    poolname) == 0);
4464		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4465		    state) == 0);
4466		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4467		    spa->spa_uberblock.ub_timestamp) == 0);
4468		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4469		    spa->spa_load_info) == 0);
4470
4471		/*
4472		 * If the bootfs property exists on this pool then we
4473		 * copy it out so that external consumers can tell which
4474		 * pools are bootable.
4475		 */
4476		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4477			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4478
4479			/*
4480			 * We have to play games with the name since the
4481			 * pool was opened as TRYIMPORT_NAME.
4482			 */
4483			if (dsl_dsobj_to_dsname(spa_name(spa),
4484			    spa->spa_bootfs, tmpname) == 0) {
4485				char *cp;
4486				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4487
4488				cp = strchr(tmpname, '/');
4489				if (cp == NULL) {
4490					(void) strlcpy(dsname, tmpname,
4491					    MAXPATHLEN);
4492				} else {
4493					(void) snprintf(dsname, MAXPATHLEN,
4494					    "%s/%s", poolname, ++cp);
4495				}
4496				VERIFY(nvlist_add_string(config,
4497				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4498				kmem_free(dsname, MAXPATHLEN);
4499			}
4500			kmem_free(tmpname, MAXPATHLEN);
4501		}
4502
4503		/*
4504		 * Add the list of hot spares and level 2 cache devices.
4505		 */
4506		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4507		spa_add_spares(spa, config);
4508		spa_add_l2cache(spa, config);
4509		spa_config_exit(spa, SCL_CONFIG, FTAG);
4510	}
4511
4512	spa_unload(spa);
4513	spa_deactivate(spa);
4514	spa_remove(spa);
4515	mutex_exit(&spa_namespace_lock);
4516
4517	return (config);
4518}
4519
4520/*
4521 * Pool export/destroy
4522 *
4523 * The act of destroying or exporting a pool is very simple.  We make sure there
4524 * is no more pending I/O and any references to the pool are gone.  Then, we
4525 * update the pool state and sync all the labels to disk, removing the
4526 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4527 * we don't sync the labels or remove the configuration cache.
4528 */
4529static int
4530spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4531    boolean_t force, boolean_t hardforce)
4532{
4533	spa_t *spa;
4534
4535	if (oldconfig)
4536		*oldconfig = NULL;
4537
4538	if (!(spa_mode_global & FWRITE))
4539		return (SET_ERROR(EROFS));
4540
4541	mutex_enter(&spa_namespace_lock);
4542	if ((spa = spa_lookup(pool)) == NULL) {
4543		mutex_exit(&spa_namespace_lock);
4544		return (SET_ERROR(ENOENT));
4545	}
4546
4547	/*
4548	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4549	 * reacquire the namespace lock, and see if we can export.
4550	 */
4551	spa_open_ref(spa, FTAG);
4552	mutex_exit(&spa_namespace_lock);
4553	spa_async_suspend(spa);
4554	mutex_enter(&spa_namespace_lock);
4555	spa_close(spa, FTAG);
4556
4557	/*
4558	 * The pool will be in core if it's openable,
4559	 * in which case we can modify its state.
4560	 */
4561	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4562		/*
4563		 * Objsets may be open only because they're dirty, so we
4564		 * have to force it to sync before checking spa_refcnt.
4565		 */
4566		txg_wait_synced(spa->spa_dsl_pool, 0);
4567		spa_evicting_os_wait(spa);
4568
4569		/*
4570		 * A pool cannot be exported or destroyed if there are active
4571		 * references.  If we are resetting a pool, allow references by
4572		 * fault injection handlers.
4573		 */
4574		if (!spa_refcount_zero(spa) ||
4575		    (spa->spa_inject_ref != 0 &&
4576		    new_state != POOL_STATE_UNINITIALIZED)) {
4577			spa_async_resume(spa);
4578			mutex_exit(&spa_namespace_lock);
4579			return (SET_ERROR(EBUSY));
4580		}
4581
4582		/*
4583		 * A pool cannot be exported if it has an active shared spare.
4584		 * This is to prevent other pools stealing the active spare
4585		 * from an exported pool. At user's own will, such pool can
4586		 * be forcedly exported.
4587		 */
4588		if (!force && new_state == POOL_STATE_EXPORTED &&
4589		    spa_has_active_shared_spare(spa)) {
4590			spa_async_resume(spa);
4591			mutex_exit(&spa_namespace_lock);
4592			return (SET_ERROR(EXDEV));
4593		}
4594
4595		/*
4596		 * We want this to be reflected on every label,
4597		 * so mark them all dirty.  spa_unload() will do the
4598		 * final sync that pushes these changes out.
4599		 */
4600		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4601			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4602			spa->spa_state = new_state;
4603			spa->spa_final_txg = spa_last_synced_txg(spa) +
4604			    TXG_DEFER_SIZE + 1;
4605			vdev_config_dirty(spa->spa_root_vdev);
4606			spa_config_exit(spa, SCL_ALL, FTAG);
4607		}
4608	}
4609
4610	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4611
4612	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4613		spa_unload(spa);
4614		spa_deactivate(spa);
4615	}
4616
4617	if (oldconfig && spa->spa_config)
4618		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4619
4620	if (new_state != POOL_STATE_UNINITIALIZED) {
4621		if (!hardforce)
4622			spa_config_sync(spa, B_TRUE, B_TRUE);
4623		spa_remove(spa);
4624	}
4625	mutex_exit(&spa_namespace_lock);
4626
4627	return (0);
4628}
4629
4630/*
4631 * Destroy a storage pool.
4632 */
4633int
4634spa_destroy(char *pool)
4635{
4636	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4637	    B_FALSE, B_FALSE));
4638}
4639
4640/*
4641 * Export a storage pool.
4642 */
4643int
4644spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4645    boolean_t hardforce)
4646{
4647	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4648	    force, hardforce));
4649}
4650
4651/*
4652 * Similar to spa_export(), this unloads the spa_t without actually removing it
4653 * from the namespace in any way.
4654 */
4655int
4656spa_reset(char *pool)
4657{
4658	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4659	    B_FALSE, B_FALSE));
4660}
4661
4662/*
4663 * ==========================================================================
4664 * Device manipulation
4665 * ==========================================================================
4666 */
4667
4668/*
4669 * Add a device to a storage pool.
4670 */
4671int
4672spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4673{
4674	uint64_t txg, id;
4675	int error;
4676	vdev_t *rvd = spa->spa_root_vdev;
4677	vdev_t *vd, *tvd;
4678	nvlist_t **spares, **l2cache;
4679	uint_t nspares, nl2cache;
4680
4681	ASSERT(spa_writeable(spa));
4682
4683	txg = spa_vdev_enter(spa);
4684
4685	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4686	    VDEV_ALLOC_ADD)) != 0)
4687		return (spa_vdev_exit(spa, NULL, txg, error));
4688
4689	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4690
4691	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4692	    &nspares) != 0)
4693		nspares = 0;
4694
4695	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4696	    &nl2cache) != 0)
4697		nl2cache = 0;
4698
4699	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4700		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4701
4702	if (vd->vdev_children != 0 &&
4703	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4704		return (spa_vdev_exit(spa, vd, txg, error));
4705
4706	/*
4707	 * We must validate the spares and l2cache devices after checking the
4708	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4709	 */
4710	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4711		return (spa_vdev_exit(spa, vd, txg, error));
4712
4713	/*
4714	 * Transfer each new top-level vdev from vd to rvd.
4715	 */
4716	for (int c = 0; c < vd->vdev_children; c++) {
4717
4718		/*
4719		 * Set the vdev id to the first hole, if one exists.
4720		 */
4721		for (id = 0; id < rvd->vdev_children; id++) {
4722			if (rvd->vdev_child[id]->vdev_ishole) {
4723				vdev_free(rvd->vdev_child[id]);
4724				break;
4725			}
4726		}
4727		tvd = vd->vdev_child[c];
4728		vdev_remove_child(vd, tvd);
4729		tvd->vdev_id = id;
4730		vdev_add_child(rvd, tvd);
4731		vdev_config_dirty(tvd);
4732	}
4733
4734	if (nspares != 0) {
4735		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4736		    ZPOOL_CONFIG_SPARES);
4737		spa_load_spares(spa);
4738		spa->spa_spares.sav_sync = B_TRUE;
4739	}
4740
4741	if (nl2cache != 0) {
4742		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4743		    ZPOOL_CONFIG_L2CACHE);
4744		spa_load_l2cache(spa);
4745		spa->spa_l2cache.sav_sync = B_TRUE;
4746	}
4747
4748	/*
4749	 * We have to be careful when adding new vdevs to an existing pool.
4750	 * If other threads start allocating from these vdevs before we
4751	 * sync the config cache, and we lose power, then upon reboot we may
4752	 * fail to open the pool because there are DVAs that the config cache
4753	 * can't translate.  Therefore, we first add the vdevs without
4754	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4755	 * and then let spa_config_update() initialize the new metaslabs.
4756	 *
4757	 * spa_load() checks for added-but-not-initialized vdevs, so that
4758	 * if we lose power at any point in this sequence, the remaining
4759	 * steps will be completed the next time we load the pool.
4760	 */
4761	(void) spa_vdev_exit(spa, vd, txg, 0);
4762
4763	mutex_enter(&spa_namespace_lock);
4764	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4765	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4766	mutex_exit(&spa_namespace_lock);
4767
4768	return (0);
4769}
4770
4771/*
4772 * Attach a device to a mirror.  The arguments are the path to any device
4773 * in the mirror, and the nvroot for the new device.  If the path specifies
4774 * a device that is not mirrored, we automatically insert the mirror vdev.
4775 *
4776 * If 'replacing' is specified, the new device is intended to replace the
4777 * existing device; in this case the two devices are made into their own
4778 * mirror using the 'replacing' vdev, which is functionally identical to
4779 * the mirror vdev (it actually reuses all the same ops) but has a few
4780 * extra rules: you can't attach to it after it's been created, and upon
4781 * completion of resilvering, the first disk (the one being replaced)
4782 * is automatically detached.
4783 */
4784int
4785spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4786{
4787	uint64_t txg, dtl_max_txg;
4788	vdev_t *rvd = spa->spa_root_vdev;
4789	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4790	vdev_ops_t *pvops;
4791	char *oldvdpath, *newvdpath;
4792	int newvd_isspare;
4793	int error;
4794
4795	ASSERT(spa_writeable(spa));
4796
4797	txg = spa_vdev_enter(spa);
4798
4799	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4800
4801	if (oldvd == NULL)
4802		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4803
4804	if (!oldvd->vdev_ops->vdev_op_leaf)
4805		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4806
4807	pvd = oldvd->vdev_parent;
4808
4809	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4810	    VDEV_ALLOC_ATTACH)) != 0)
4811		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4812
4813	if (newrootvd->vdev_children != 1)
4814		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4815
4816	newvd = newrootvd->vdev_child[0];
4817
4818	if (!newvd->vdev_ops->vdev_op_leaf)
4819		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4820
4821	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4822		return (spa_vdev_exit(spa, newrootvd, txg, error));
4823
4824	/*
4825	 * Spares can't replace logs
4826	 */
4827	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4828		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4829
4830	if (!replacing) {
4831		/*
4832		 * For attach, the only allowable parent is a mirror or the root
4833		 * vdev.
4834		 */
4835		if (pvd->vdev_ops != &vdev_mirror_ops &&
4836		    pvd->vdev_ops != &vdev_root_ops)
4837			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4838
4839		pvops = &vdev_mirror_ops;
4840	} else {
4841		/*
4842		 * Active hot spares can only be replaced by inactive hot
4843		 * spares.
4844		 */
4845		if (pvd->vdev_ops == &vdev_spare_ops &&
4846		    oldvd->vdev_isspare &&
4847		    !spa_has_spare(spa, newvd->vdev_guid))
4848			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4849
4850		/*
4851		 * If the source is a hot spare, and the parent isn't already a
4852		 * spare, then we want to create a new hot spare.  Otherwise, we
4853		 * want to create a replacing vdev.  The user is not allowed to
4854		 * attach to a spared vdev child unless the 'isspare' state is
4855		 * the same (spare replaces spare, non-spare replaces
4856		 * non-spare).
4857		 */
4858		if (pvd->vdev_ops == &vdev_replacing_ops &&
4859		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4860			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4861		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4862		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4863			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4864		}
4865
4866		if (newvd->vdev_isspare)
4867			pvops = &vdev_spare_ops;
4868		else
4869			pvops = &vdev_replacing_ops;
4870	}
4871
4872	/*
4873	 * Make sure the new device is big enough.
4874	 */
4875	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4876		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4877
4878	/*
4879	 * The new device cannot have a higher alignment requirement
4880	 * than the top-level vdev.
4881	 */
4882	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4883		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4884
4885	/*
4886	 * If this is an in-place replacement, update oldvd's path and devid
4887	 * to make it distinguishable from newvd, and unopenable from now on.
4888	 */
4889	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4890		spa_strfree(oldvd->vdev_path);
4891		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4892		    KM_SLEEP);
4893		(void) sprintf(oldvd->vdev_path, "%s/%s",
4894		    newvd->vdev_path, "old");
4895		if (oldvd->vdev_devid != NULL) {
4896			spa_strfree(oldvd->vdev_devid);
4897			oldvd->vdev_devid = NULL;
4898		}
4899	}
4900
4901	/* mark the device being resilvered */
4902	newvd->vdev_resilver_txg = txg;
4903
4904	/*
4905	 * If the parent is not a mirror, or if we're replacing, insert the new
4906	 * mirror/replacing/spare vdev above oldvd.
4907	 */
4908	if (pvd->vdev_ops != pvops)
4909		pvd = vdev_add_parent(oldvd, pvops);
4910
4911	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4912	ASSERT(pvd->vdev_ops == pvops);
4913	ASSERT(oldvd->vdev_parent == pvd);
4914
4915	/*
4916	 * Extract the new device from its root and add it to pvd.
4917	 */
4918	vdev_remove_child(newrootvd, newvd);
4919	newvd->vdev_id = pvd->vdev_children;
4920	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4921	vdev_add_child(pvd, newvd);
4922
4923	tvd = newvd->vdev_top;
4924	ASSERT(pvd->vdev_top == tvd);
4925	ASSERT(tvd->vdev_parent == rvd);
4926
4927	vdev_config_dirty(tvd);
4928
4929	/*
4930	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4931	 * for any dmu_sync-ed blocks.  It will propagate upward when
4932	 * spa_vdev_exit() calls vdev_dtl_reassess().
4933	 */
4934	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4935
4936	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4937	    dtl_max_txg - TXG_INITIAL);
4938
4939	if (newvd->vdev_isspare) {
4940		spa_spare_activate(newvd);
4941		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4942	}
4943
4944	oldvdpath = spa_strdup(oldvd->vdev_path);
4945	newvdpath = spa_strdup(newvd->vdev_path);
4946	newvd_isspare = newvd->vdev_isspare;
4947
4948	/*
4949	 * Mark newvd's DTL dirty in this txg.
4950	 */
4951	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4952
4953	/*
4954	 * Schedule the resilver to restart in the future. We do this to
4955	 * ensure that dmu_sync-ed blocks have been stitched into the
4956	 * respective datasets.
4957	 */
4958	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4959
4960	if (spa->spa_bootfs)
4961		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4962
4963	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4964
4965	/*
4966	 * Commit the config
4967	 */
4968	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4969
4970	spa_history_log_internal(spa, "vdev attach", NULL,
4971	    "%s vdev=%s %s vdev=%s",
4972	    replacing && newvd_isspare ? "spare in" :
4973	    replacing ? "replace" : "attach", newvdpath,
4974	    replacing ? "for" : "to", oldvdpath);
4975
4976	spa_strfree(oldvdpath);
4977	spa_strfree(newvdpath);
4978
4979	return (0);
4980}
4981
4982/*
4983 * Detach a device from a mirror or replacing vdev.
4984 *
4985 * If 'replace_done' is specified, only detach if the parent
4986 * is a replacing vdev.
4987 */
4988int
4989spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4990{
4991	uint64_t txg;
4992	int error;
4993	vdev_t *rvd = spa->spa_root_vdev;
4994	vdev_t *vd, *pvd, *cvd, *tvd;
4995	boolean_t unspare = B_FALSE;
4996	uint64_t unspare_guid = 0;
4997	char *vdpath;
4998
4999	ASSERT(spa_writeable(spa));
5000
5001	txg = spa_vdev_enter(spa);
5002
5003	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5004
5005	if (vd == NULL)
5006		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5007
5008	if (!vd->vdev_ops->vdev_op_leaf)
5009		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5010
5011	pvd = vd->vdev_parent;
5012
5013	/*
5014	 * If the parent/child relationship is not as expected, don't do it.
5015	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5016	 * vdev that's replacing B with C.  The user's intent in replacing
5017	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5018	 * the replace by detaching C, the expected behavior is to end up
5019	 * M(A,B).  But suppose that right after deciding to detach C,
5020	 * the replacement of B completes.  We would have M(A,C), and then
5021	 * ask to detach C, which would leave us with just A -- not what
5022	 * the user wanted.  To prevent this, we make sure that the
5023	 * parent/child relationship hasn't changed -- in this example,
5024	 * that C's parent is still the replacing vdev R.
5025	 */
5026	if (pvd->vdev_guid != pguid && pguid != 0)
5027		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5028
5029	/*
5030	 * Only 'replacing' or 'spare' vdevs can be replaced.
5031	 */
5032	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5033	    pvd->vdev_ops != &vdev_spare_ops)
5034		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5035
5036	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5037	    spa_version(spa) >= SPA_VERSION_SPARES);
5038
5039	/*
5040	 * Only mirror, replacing, and spare vdevs support detach.
5041	 */
5042	if (pvd->vdev_ops != &vdev_replacing_ops &&
5043	    pvd->vdev_ops != &vdev_mirror_ops &&
5044	    pvd->vdev_ops != &vdev_spare_ops)
5045		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5046
5047	/*
5048	 * If this device has the only valid copy of some data,
5049	 * we cannot safely detach it.
5050	 */
5051	if (vdev_dtl_required(vd))
5052		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5053
5054	ASSERT(pvd->vdev_children >= 2);
5055
5056	/*
5057	 * If we are detaching the second disk from a replacing vdev, then
5058	 * check to see if we changed the original vdev's path to have "/old"
5059	 * at the end in spa_vdev_attach().  If so, undo that change now.
5060	 */
5061	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5062	    vd->vdev_path != NULL) {
5063		size_t len = strlen(vd->vdev_path);
5064
5065		for (int c = 0; c < pvd->vdev_children; c++) {
5066			cvd = pvd->vdev_child[c];
5067
5068			if (cvd == vd || cvd->vdev_path == NULL)
5069				continue;
5070
5071			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5072			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5073				spa_strfree(cvd->vdev_path);
5074				cvd->vdev_path = spa_strdup(vd->vdev_path);
5075				break;
5076			}
5077		}
5078	}
5079
5080	/*
5081	 * If we are detaching the original disk from a spare, then it implies
5082	 * that the spare should become a real disk, and be removed from the
5083	 * active spare list for the pool.
5084	 */
5085	if (pvd->vdev_ops == &vdev_spare_ops &&
5086	    vd->vdev_id == 0 &&
5087	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5088		unspare = B_TRUE;
5089
5090	/*
5091	 * Erase the disk labels so the disk can be used for other things.
5092	 * This must be done after all other error cases are handled,
5093	 * but before we disembowel vd (so we can still do I/O to it).
5094	 * But if we can't do it, don't treat the error as fatal --
5095	 * it may be that the unwritability of the disk is the reason
5096	 * it's being detached!
5097	 */
5098	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5099
5100	/*
5101	 * Remove vd from its parent and compact the parent's children.
5102	 */
5103	vdev_remove_child(pvd, vd);
5104	vdev_compact_children(pvd);
5105
5106	/*
5107	 * Remember one of the remaining children so we can get tvd below.
5108	 */
5109	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5110
5111	/*
5112	 * If we need to remove the remaining child from the list of hot spares,
5113	 * do it now, marking the vdev as no longer a spare in the process.
5114	 * We must do this before vdev_remove_parent(), because that can
5115	 * change the GUID if it creates a new toplevel GUID.  For a similar
5116	 * reason, we must remove the spare now, in the same txg as the detach;
5117	 * otherwise someone could attach a new sibling, change the GUID, and
5118	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5119	 */
5120	if (unspare) {
5121		ASSERT(cvd->vdev_isspare);
5122		spa_spare_remove(cvd);
5123		unspare_guid = cvd->vdev_guid;
5124		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5125		cvd->vdev_unspare = B_TRUE;
5126	}
5127
5128	/*
5129	 * If the parent mirror/replacing vdev only has one child,
5130	 * the parent is no longer needed.  Remove it from the tree.
5131	 */
5132	if (pvd->vdev_children == 1) {
5133		if (pvd->vdev_ops == &vdev_spare_ops)
5134			cvd->vdev_unspare = B_FALSE;
5135		vdev_remove_parent(cvd);
5136	}
5137
5138
5139	/*
5140	 * We don't set tvd until now because the parent we just removed
5141	 * may have been the previous top-level vdev.
5142	 */
5143	tvd = cvd->vdev_top;
5144	ASSERT(tvd->vdev_parent == rvd);
5145
5146	/*
5147	 * Reevaluate the parent vdev state.
5148	 */
5149	vdev_propagate_state(cvd);
5150
5151	/*
5152	 * If the 'autoexpand' property is set on the pool then automatically
5153	 * try to expand the size of the pool. For example if the device we
5154	 * just detached was smaller than the others, it may be possible to
5155	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5156	 * first so that we can obtain the updated sizes of the leaf vdevs.
5157	 */
5158	if (spa->spa_autoexpand) {
5159		vdev_reopen(tvd);
5160		vdev_expand(tvd, txg);
5161	}
5162
5163	vdev_config_dirty(tvd);
5164
5165	/*
5166	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5167	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5168	 * But first make sure we're not on any *other* txg's DTL list, to
5169	 * prevent vd from being accessed after it's freed.
5170	 */
5171	vdpath = spa_strdup(vd->vdev_path);
5172	for (int t = 0; t < TXG_SIZE; t++)
5173		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5174	vd->vdev_detached = B_TRUE;
5175	vdev_dirty(tvd, VDD_DTL, vd, txg);
5176
5177	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5178
5179	/* hang on to the spa before we release the lock */
5180	spa_open_ref(spa, FTAG);
5181
5182	error = spa_vdev_exit(spa, vd, txg, 0);
5183
5184	spa_history_log_internal(spa, "detach", NULL,
5185	    "vdev=%s", vdpath);
5186	spa_strfree(vdpath);
5187
5188	/*
5189	 * If this was the removal of the original device in a hot spare vdev,
5190	 * then we want to go through and remove the device from the hot spare
5191	 * list of every other pool.
5192	 */
5193	if (unspare) {
5194		spa_t *altspa = NULL;
5195
5196		mutex_enter(&spa_namespace_lock);
5197		while ((altspa = spa_next(altspa)) != NULL) {
5198			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5199			    altspa == spa)
5200				continue;
5201
5202			spa_open_ref(altspa, FTAG);
5203			mutex_exit(&spa_namespace_lock);
5204			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5205			mutex_enter(&spa_namespace_lock);
5206			spa_close(altspa, FTAG);
5207		}
5208		mutex_exit(&spa_namespace_lock);
5209
5210		/* search the rest of the vdevs for spares to remove */
5211		spa_vdev_resilver_done(spa);
5212	}
5213
5214	/* all done with the spa; OK to release */
5215	mutex_enter(&spa_namespace_lock);
5216	spa_close(spa, FTAG);
5217	mutex_exit(&spa_namespace_lock);
5218
5219	return (error);
5220}
5221
5222/*
5223 * Split a set of devices from their mirrors, and create a new pool from them.
5224 */
5225int
5226spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5227    nvlist_t *props, boolean_t exp)
5228{
5229	int error = 0;
5230	uint64_t txg, *glist;
5231	spa_t *newspa;
5232	uint_t c, children, lastlog;
5233	nvlist_t **child, *nvl, *tmp;
5234	dmu_tx_t *tx;
5235	char *altroot = NULL;
5236	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5237	boolean_t activate_slog;
5238
5239	ASSERT(spa_writeable(spa));
5240
5241	txg = spa_vdev_enter(spa);
5242
5243	/* clear the log and flush everything up to now */
5244	activate_slog = spa_passivate_log(spa);
5245	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5246	error = spa_offline_log(spa);
5247	txg = spa_vdev_config_enter(spa);
5248
5249	if (activate_slog)
5250		spa_activate_log(spa);
5251
5252	if (error != 0)
5253		return (spa_vdev_exit(spa, NULL, txg, error));
5254
5255	/* check new spa name before going any further */
5256	if (spa_lookup(newname) != NULL)
5257		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5258
5259	/*
5260	 * scan through all the children to ensure they're all mirrors
5261	 */
5262	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5263	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5264	    &children) != 0)
5265		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5266
5267	/* first, check to ensure we've got the right child count */
5268	rvd = spa->spa_root_vdev;
5269	lastlog = 0;
5270	for (c = 0; c < rvd->vdev_children; c++) {
5271		vdev_t *vd = rvd->vdev_child[c];
5272
5273		/* don't count the holes & logs as children */
5274		if (vd->vdev_islog || vd->vdev_ishole) {
5275			if (lastlog == 0)
5276				lastlog = c;
5277			continue;
5278		}
5279
5280		lastlog = 0;
5281	}
5282	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5283		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5284
5285	/* next, ensure no spare or cache devices are part of the split */
5286	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5287	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5288		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5289
5290	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5291	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5292
5293	/* then, loop over each vdev and validate it */
5294	for (c = 0; c < children; c++) {
5295		uint64_t is_hole = 0;
5296
5297		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5298		    &is_hole);
5299
5300		if (is_hole != 0) {
5301			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5302			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5303				continue;
5304			} else {
5305				error = SET_ERROR(EINVAL);
5306				break;
5307			}
5308		}
5309
5310		/* which disk is going to be split? */
5311		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5312		    &glist[c]) != 0) {
5313			error = SET_ERROR(EINVAL);
5314			break;
5315		}
5316
5317		/* look it up in the spa */
5318		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5319		if (vml[c] == NULL) {
5320			error = SET_ERROR(ENODEV);
5321			break;
5322		}
5323
5324		/* make sure there's nothing stopping the split */
5325		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5326		    vml[c]->vdev_islog ||
5327		    vml[c]->vdev_ishole ||
5328		    vml[c]->vdev_isspare ||
5329		    vml[c]->vdev_isl2cache ||
5330		    !vdev_writeable(vml[c]) ||
5331		    vml[c]->vdev_children != 0 ||
5332		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5333		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5334			error = SET_ERROR(EINVAL);
5335			break;
5336		}
5337
5338		if (vdev_dtl_required(vml[c])) {
5339			error = SET_ERROR(EBUSY);
5340			break;
5341		}
5342
5343		/* we need certain info from the top level */
5344		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5345		    vml[c]->vdev_top->vdev_ms_array) == 0);
5346		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5347		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5348		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5349		    vml[c]->vdev_top->vdev_asize) == 0);
5350		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5351		    vml[c]->vdev_top->vdev_ashift) == 0);
5352	}
5353
5354	if (error != 0) {
5355		kmem_free(vml, children * sizeof (vdev_t *));
5356		kmem_free(glist, children * sizeof (uint64_t));
5357		return (spa_vdev_exit(spa, NULL, txg, error));
5358	}
5359
5360	/* stop writers from using the disks */
5361	for (c = 0; c < children; c++) {
5362		if (vml[c] != NULL)
5363			vml[c]->vdev_offline = B_TRUE;
5364	}
5365	vdev_reopen(spa->spa_root_vdev);
5366
5367	/*
5368	 * Temporarily record the splitting vdevs in the spa config.  This
5369	 * will disappear once the config is regenerated.
5370	 */
5371	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5372	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5373	    glist, children) == 0);
5374	kmem_free(glist, children * sizeof (uint64_t));
5375
5376	mutex_enter(&spa->spa_props_lock);
5377	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5378	    nvl) == 0);
5379	mutex_exit(&spa->spa_props_lock);
5380	spa->spa_config_splitting = nvl;
5381	vdev_config_dirty(spa->spa_root_vdev);
5382
5383	/* configure and create the new pool */
5384	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5385	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5386	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5387	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5388	    spa_version(spa)) == 0);
5389	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5390	    spa->spa_config_txg) == 0);
5391	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5392	    spa_generate_guid(NULL)) == 0);
5393	(void) nvlist_lookup_string(props,
5394	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5395
5396	/* add the new pool to the namespace */
5397	newspa = spa_add(newname, config, altroot);
5398	newspa->spa_config_txg = spa->spa_config_txg;
5399	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5400
5401	/* release the spa config lock, retaining the namespace lock */
5402	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5403
5404	if (zio_injection_enabled)
5405		zio_handle_panic_injection(spa, FTAG, 1);
5406
5407	spa_activate(newspa, spa_mode_global);
5408	spa_async_suspend(newspa);
5409
5410#ifndef illumos
5411	/* mark that we are creating new spa by splitting */
5412	newspa->spa_splitting_newspa = B_TRUE;
5413#endif
5414	/* create the new pool from the disks of the original pool */
5415	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5416#ifndef illumos
5417	newspa->spa_splitting_newspa = B_FALSE;
5418#endif
5419	if (error)
5420		goto out;
5421
5422	/* if that worked, generate a real config for the new pool */
5423	if (newspa->spa_root_vdev != NULL) {
5424		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5425		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5426		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5427		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5428		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5429		    B_TRUE));
5430	}
5431
5432	/* set the props */
5433	if (props != NULL) {
5434		spa_configfile_set(newspa, props, B_FALSE);
5435		error = spa_prop_set(newspa, props);
5436		if (error)
5437			goto out;
5438	}
5439
5440	/* flush everything */
5441	txg = spa_vdev_config_enter(newspa);
5442	vdev_config_dirty(newspa->spa_root_vdev);
5443	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5444
5445	if (zio_injection_enabled)
5446		zio_handle_panic_injection(spa, FTAG, 2);
5447
5448	spa_async_resume(newspa);
5449
5450	/* finally, update the original pool's config */
5451	txg = spa_vdev_config_enter(spa);
5452	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5453	error = dmu_tx_assign(tx, TXG_WAIT);
5454	if (error != 0)
5455		dmu_tx_abort(tx);
5456	for (c = 0; c < children; c++) {
5457		if (vml[c] != NULL) {
5458			vdev_split(vml[c]);
5459			if (error == 0)
5460				spa_history_log_internal(spa, "detach", tx,
5461				    "vdev=%s", vml[c]->vdev_path);
5462			vdev_free(vml[c]);
5463		}
5464	}
5465	vdev_config_dirty(spa->spa_root_vdev);
5466	spa->spa_config_splitting = NULL;
5467	nvlist_free(nvl);
5468	if (error == 0)
5469		dmu_tx_commit(tx);
5470	(void) spa_vdev_exit(spa, NULL, txg, 0);
5471
5472	if (zio_injection_enabled)
5473		zio_handle_panic_injection(spa, FTAG, 3);
5474
5475	/* split is complete; log a history record */
5476	spa_history_log_internal(newspa, "split", NULL,
5477	    "from pool %s", spa_name(spa));
5478
5479	kmem_free(vml, children * sizeof (vdev_t *));
5480
5481	/* if we're not going to mount the filesystems in userland, export */
5482	if (exp)
5483		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5484		    B_FALSE, B_FALSE);
5485
5486	return (error);
5487
5488out:
5489	spa_unload(newspa);
5490	spa_deactivate(newspa);
5491	spa_remove(newspa);
5492
5493	txg = spa_vdev_config_enter(spa);
5494
5495	/* re-online all offlined disks */
5496	for (c = 0; c < children; c++) {
5497		if (vml[c] != NULL)
5498			vml[c]->vdev_offline = B_FALSE;
5499	}
5500	vdev_reopen(spa->spa_root_vdev);
5501
5502	nvlist_free(spa->spa_config_splitting);
5503	spa->spa_config_splitting = NULL;
5504	(void) spa_vdev_exit(spa, NULL, txg, error);
5505
5506	kmem_free(vml, children * sizeof (vdev_t *));
5507	return (error);
5508}
5509
5510static nvlist_t *
5511spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5512{
5513	for (int i = 0; i < count; i++) {
5514		uint64_t guid;
5515
5516		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5517		    &guid) == 0);
5518
5519		if (guid == target_guid)
5520			return (nvpp[i]);
5521	}
5522
5523	return (NULL);
5524}
5525
5526static void
5527spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5528	nvlist_t *dev_to_remove)
5529{
5530	nvlist_t **newdev = NULL;
5531
5532	if (count > 1)
5533		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5534
5535	for (int i = 0, j = 0; i < count; i++) {
5536		if (dev[i] == dev_to_remove)
5537			continue;
5538		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5539	}
5540
5541	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5542	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5543
5544	for (int i = 0; i < count - 1; i++)
5545		nvlist_free(newdev[i]);
5546
5547	if (count > 1)
5548		kmem_free(newdev, (count - 1) * sizeof (void *));
5549}
5550
5551/*
5552 * Evacuate the device.
5553 */
5554static int
5555spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5556{
5557	uint64_t txg;
5558	int error = 0;
5559
5560	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5561	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5562	ASSERT(vd == vd->vdev_top);
5563
5564	/*
5565	 * Evacuate the device.  We don't hold the config lock as writer
5566	 * since we need to do I/O but we do keep the
5567	 * spa_namespace_lock held.  Once this completes the device
5568	 * should no longer have any blocks allocated on it.
5569	 */
5570	if (vd->vdev_islog) {
5571		if (vd->vdev_stat.vs_alloc != 0)
5572			error = spa_offline_log(spa);
5573	} else {
5574		error = SET_ERROR(ENOTSUP);
5575	}
5576
5577	if (error)
5578		return (error);
5579
5580	/*
5581	 * The evacuation succeeded.  Remove any remaining MOS metadata
5582	 * associated with this vdev, and wait for these changes to sync.
5583	 */
5584	ASSERT0(vd->vdev_stat.vs_alloc);
5585	txg = spa_vdev_config_enter(spa);
5586	vd->vdev_removing = B_TRUE;
5587	vdev_dirty_leaves(vd, VDD_DTL, txg);
5588	vdev_config_dirty(vd);
5589	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5590
5591	return (0);
5592}
5593
5594/*
5595 * Complete the removal by cleaning up the namespace.
5596 */
5597static void
5598spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5599{
5600	vdev_t *rvd = spa->spa_root_vdev;
5601	uint64_t id = vd->vdev_id;
5602	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5603
5604	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5605	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5606	ASSERT(vd == vd->vdev_top);
5607
5608	/*
5609	 * Only remove any devices which are empty.
5610	 */
5611	if (vd->vdev_stat.vs_alloc != 0)
5612		return;
5613
5614	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5615
5616	if (list_link_active(&vd->vdev_state_dirty_node))
5617		vdev_state_clean(vd);
5618	if (list_link_active(&vd->vdev_config_dirty_node))
5619		vdev_config_clean(vd);
5620
5621	vdev_free(vd);
5622
5623	if (last_vdev) {
5624		vdev_compact_children(rvd);
5625	} else {
5626		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5627		vdev_add_child(rvd, vd);
5628	}
5629	vdev_config_dirty(rvd);
5630
5631	/*
5632	 * Reassess the health of our root vdev.
5633	 */
5634	vdev_reopen(rvd);
5635}
5636
5637/*
5638 * Remove a device from the pool -
5639 *
5640 * Removing a device from the vdev namespace requires several steps
5641 * and can take a significant amount of time.  As a result we use
5642 * the spa_vdev_config_[enter/exit] functions which allow us to
5643 * grab and release the spa_config_lock while still holding the namespace
5644 * lock.  During each step the configuration is synced out.
5645 *
5646 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5647 * devices.
5648 */
5649int
5650spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5651{
5652	vdev_t *vd;
5653	metaslab_group_t *mg;
5654	nvlist_t **spares, **l2cache, *nv;
5655	uint64_t txg = 0;
5656	uint_t nspares, nl2cache;
5657	int error = 0;
5658	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5659
5660	ASSERT(spa_writeable(spa));
5661
5662	if (!locked)
5663		txg = spa_vdev_enter(spa);
5664
5665	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5666
5667	if (spa->spa_spares.sav_vdevs != NULL &&
5668	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5669	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5670	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5671		/*
5672		 * Only remove the hot spare if it's not currently in use
5673		 * in this pool.
5674		 */
5675		if (vd == NULL || unspare) {
5676			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5677			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5678			spa_load_spares(spa);
5679			spa->spa_spares.sav_sync = B_TRUE;
5680		} else {
5681			error = SET_ERROR(EBUSY);
5682		}
5683	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5684	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5685	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5686	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5687		/*
5688		 * Cache devices can always be removed.
5689		 */
5690		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5691		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5692		spa_load_l2cache(spa);
5693		spa->spa_l2cache.sav_sync = B_TRUE;
5694	} else if (vd != NULL && vd->vdev_islog) {
5695		ASSERT(!locked);
5696		ASSERT(vd == vd->vdev_top);
5697
5698		mg = vd->vdev_mg;
5699
5700		/*
5701		 * Stop allocating from this vdev.
5702		 */
5703		metaslab_group_passivate(mg);
5704
5705		/*
5706		 * Wait for the youngest allocations and frees to sync,
5707		 * and then wait for the deferral of those frees to finish.
5708		 */
5709		spa_vdev_config_exit(spa, NULL,
5710		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5711
5712		/*
5713		 * Attempt to evacuate the vdev.
5714		 */
5715		error = spa_vdev_remove_evacuate(spa, vd);
5716
5717		txg = spa_vdev_config_enter(spa);
5718
5719		/*
5720		 * If we couldn't evacuate the vdev, unwind.
5721		 */
5722		if (error) {
5723			metaslab_group_activate(mg);
5724			return (spa_vdev_exit(spa, NULL, txg, error));
5725		}
5726
5727		/*
5728		 * Clean up the vdev namespace.
5729		 */
5730		spa_vdev_remove_from_namespace(spa, vd);
5731
5732	} else if (vd != NULL) {
5733		/*
5734		 * Normal vdevs cannot be removed (yet).
5735		 */
5736		error = SET_ERROR(ENOTSUP);
5737	} else {
5738		/*
5739		 * There is no vdev of any kind with the specified guid.
5740		 */
5741		error = SET_ERROR(ENOENT);
5742	}
5743
5744	if (!locked)
5745		return (spa_vdev_exit(spa, NULL, txg, error));
5746
5747	return (error);
5748}
5749
5750/*
5751 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5752 * currently spared, so we can detach it.
5753 */
5754static vdev_t *
5755spa_vdev_resilver_done_hunt(vdev_t *vd)
5756{
5757	vdev_t *newvd, *oldvd;
5758
5759	for (int c = 0; c < vd->vdev_children; c++) {
5760		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5761		if (oldvd != NULL)
5762			return (oldvd);
5763	}
5764
5765	/*
5766	 * Check for a completed replacement.  We always consider the first
5767	 * vdev in the list to be the oldest vdev, and the last one to be
5768	 * the newest (see spa_vdev_attach() for how that works).  In
5769	 * the case where the newest vdev is faulted, we will not automatically
5770	 * remove it after a resilver completes.  This is OK as it will require
5771	 * user intervention to determine which disk the admin wishes to keep.
5772	 */
5773	if (vd->vdev_ops == &vdev_replacing_ops) {
5774		ASSERT(vd->vdev_children > 1);
5775
5776		newvd = vd->vdev_child[vd->vdev_children - 1];
5777		oldvd = vd->vdev_child[0];
5778
5779		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5780		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5781		    !vdev_dtl_required(oldvd))
5782			return (oldvd);
5783	}
5784
5785	/*
5786	 * Check for a completed resilver with the 'unspare' flag set.
5787	 */
5788	if (vd->vdev_ops == &vdev_spare_ops) {
5789		vdev_t *first = vd->vdev_child[0];
5790		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5791
5792		if (last->vdev_unspare) {
5793			oldvd = first;
5794			newvd = last;
5795		} else if (first->vdev_unspare) {
5796			oldvd = last;
5797			newvd = first;
5798		} else {
5799			oldvd = NULL;
5800		}
5801
5802		if (oldvd != NULL &&
5803		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5804		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5805		    !vdev_dtl_required(oldvd))
5806			return (oldvd);
5807
5808		/*
5809		 * If there are more than two spares attached to a disk,
5810		 * and those spares are not required, then we want to
5811		 * attempt to free them up now so that they can be used
5812		 * by other pools.  Once we're back down to a single
5813		 * disk+spare, we stop removing them.
5814		 */
5815		if (vd->vdev_children > 2) {
5816			newvd = vd->vdev_child[1];
5817
5818			if (newvd->vdev_isspare && last->vdev_isspare &&
5819			    vdev_dtl_empty(last, DTL_MISSING) &&
5820			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5821			    !vdev_dtl_required(newvd))
5822				return (newvd);
5823		}
5824	}
5825
5826	return (NULL);
5827}
5828
5829static void
5830spa_vdev_resilver_done(spa_t *spa)
5831{
5832	vdev_t *vd, *pvd, *ppvd;
5833	uint64_t guid, sguid, pguid, ppguid;
5834
5835	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5836
5837	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5838		pvd = vd->vdev_parent;
5839		ppvd = pvd->vdev_parent;
5840		guid = vd->vdev_guid;
5841		pguid = pvd->vdev_guid;
5842		ppguid = ppvd->vdev_guid;
5843		sguid = 0;
5844		/*
5845		 * If we have just finished replacing a hot spared device, then
5846		 * we need to detach the parent's first child (the original hot
5847		 * spare) as well.
5848		 */
5849		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5850		    ppvd->vdev_children == 2) {
5851			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5852			sguid = ppvd->vdev_child[1]->vdev_guid;
5853		}
5854		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5855
5856		spa_config_exit(spa, SCL_ALL, FTAG);
5857		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5858			return;
5859		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5860			return;
5861		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5862	}
5863
5864	spa_config_exit(spa, SCL_ALL, FTAG);
5865}
5866
5867/*
5868 * Update the stored path or FRU for this vdev.
5869 */
5870int
5871spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5872    boolean_t ispath)
5873{
5874	vdev_t *vd;
5875	boolean_t sync = B_FALSE;
5876
5877	ASSERT(spa_writeable(spa));
5878
5879	spa_vdev_state_enter(spa, SCL_ALL);
5880
5881	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5882		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5883
5884	if (!vd->vdev_ops->vdev_op_leaf)
5885		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5886
5887	if (ispath) {
5888		if (strcmp(value, vd->vdev_path) != 0) {
5889			spa_strfree(vd->vdev_path);
5890			vd->vdev_path = spa_strdup(value);
5891			sync = B_TRUE;
5892		}
5893	} else {
5894		if (vd->vdev_fru == NULL) {
5895			vd->vdev_fru = spa_strdup(value);
5896			sync = B_TRUE;
5897		} else if (strcmp(value, vd->vdev_fru) != 0) {
5898			spa_strfree(vd->vdev_fru);
5899			vd->vdev_fru = spa_strdup(value);
5900			sync = B_TRUE;
5901		}
5902	}
5903
5904	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5905}
5906
5907int
5908spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5909{
5910	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5911}
5912
5913int
5914spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5915{
5916	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5917}
5918
5919/*
5920 * ==========================================================================
5921 * SPA Scanning
5922 * ==========================================================================
5923 */
5924
5925int
5926spa_scan_stop(spa_t *spa)
5927{
5928	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5929	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5930		return (SET_ERROR(EBUSY));
5931	return (dsl_scan_cancel(spa->spa_dsl_pool));
5932}
5933
5934int
5935spa_scan(spa_t *spa, pool_scan_func_t func)
5936{
5937	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5938
5939	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5940		return (SET_ERROR(ENOTSUP));
5941
5942	/*
5943	 * If a resilver was requested, but there is no DTL on a
5944	 * writeable leaf device, we have nothing to do.
5945	 */
5946	if (func == POOL_SCAN_RESILVER &&
5947	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5948		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5949		return (0);
5950	}
5951
5952	return (dsl_scan(spa->spa_dsl_pool, func));
5953}
5954
5955/*
5956 * ==========================================================================
5957 * SPA async task processing
5958 * ==========================================================================
5959 */
5960
5961static void
5962spa_async_remove(spa_t *spa, vdev_t *vd)
5963{
5964	if (vd->vdev_remove_wanted) {
5965		vd->vdev_remove_wanted = B_FALSE;
5966		vd->vdev_delayed_close = B_FALSE;
5967		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5968
5969		/*
5970		 * We want to clear the stats, but we don't want to do a full
5971		 * vdev_clear() as that will cause us to throw away
5972		 * degraded/faulted state as well as attempt to reopen the
5973		 * device, all of which is a waste.
5974		 */
5975		vd->vdev_stat.vs_read_errors = 0;
5976		vd->vdev_stat.vs_write_errors = 0;
5977		vd->vdev_stat.vs_checksum_errors = 0;
5978
5979		vdev_state_dirty(vd->vdev_top);
5980		/* Tell userspace that the vdev is gone. */
5981		zfs_post_remove(spa, vd);
5982	}
5983
5984	for (int c = 0; c < vd->vdev_children; c++)
5985		spa_async_remove(spa, vd->vdev_child[c]);
5986}
5987
5988static void
5989spa_async_probe(spa_t *spa, vdev_t *vd)
5990{
5991	if (vd->vdev_probe_wanted) {
5992		vd->vdev_probe_wanted = B_FALSE;
5993		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5994	}
5995
5996	for (int c = 0; c < vd->vdev_children; c++)
5997		spa_async_probe(spa, vd->vdev_child[c]);
5998}
5999
6000static void
6001spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6002{
6003	sysevent_id_t eid;
6004	nvlist_t *attr;
6005	char *physpath;
6006
6007	if (!spa->spa_autoexpand)
6008		return;
6009
6010	for (int c = 0; c < vd->vdev_children; c++) {
6011		vdev_t *cvd = vd->vdev_child[c];
6012		spa_async_autoexpand(spa, cvd);
6013	}
6014
6015	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6016		return;
6017
6018	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6019	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6020
6021	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6022	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6023
6024	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6025	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6026
6027	nvlist_free(attr);
6028	kmem_free(physpath, MAXPATHLEN);
6029}
6030
6031static void
6032spa_async_thread(void *arg)
6033{
6034	spa_t *spa = arg;
6035	int tasks;
6036
6037	ASSERT(spa->spa_sync_on);
6038
6039	mutex_enter(&spa->spa_async_lock);
6040	tasks = spa->spa_async_tasks;
6041	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6042	mutex_exit(&spa->spa_async_lock);
6043
6044	/*
6045	 * See if the config needs to be updated.
6046	 */
6047	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6048		uint64_t old_space, new_space;
6049
6050		mutex_enter(&spa_namespace_lock);
6051		old_space = metaslab_class_get_space(spa_normal_class(spa));
6052		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6053		new_space = metaslab_class_get_space(spa_normal_class(spa));
6054		mutex_exit(&spa_namespace_lock);
6055
6056		/*
6057		 * If the pool grew as a result of the config update,
6058		 * then log an internal history event.
6059		 */
6060		if (new_space != old_space) {
6061			spa_history_log_internal(spa, "vdev online", NULL,
6062			    "pool '%s' size: %llu(+%llu)",
6063			    spa_name(spa), new_space, new_space - old_space);
6064		}
6065	}
6066
6067	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6068		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6069		spa_async_autoexpand(spa, spa->spa_root_vdev);
6070		spa_config_exit(spa, SCL_CONFIG, FTAG);
6071	}
6072
6073	/*
6074	 * See if any devices need to be probed.
6075	 */
6076	if (tasks & SPA_ASYNC_PROBE) {
6077		spa_vdev_state_enter(spa, SCL_NONE);
6078		spa_async_probe(spa, spa->spa_root_vdev);
6079		(void) spa_vdev_state_exit(spa, NULL, 0);
6080	}
6081
6082	/*
6083	 * If any devices are done replacing, detach them.
6084	 */
6085	if (tasks & SPA_ASYNC_RESILVER_DONE)
6086		spa_vdev_resilver_done(spa);
6087
6088	/*
6089	 * Kick off a resilver.
6090	 */
6091	if (tasks & SPA_ASYNC_RESILVER)
6092		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6093
6094	/*
6095	 * Let the world know that we're done.
6096	 */
6097	mutex_enter(&spa->spa_async_lock);
6098	spa->spa_async_thread = NULL;
6099	cv_broadcast(&spa->spa_async_cv);
6100	mutex_exit(&spa->spa_async_lock);
6101	thread_exit();
6102}
6103
6104static void
6105spa_async_thread_vd(void *arg)
6106{
6107	spa_t *spa = arg;
6108	int tasks;
6109
6110	ASSERT(spa->spa_sync_on);
6111
6112	mutex_enter(&spa->spa_async_lock);
6113	tasks = spa->spa_async_tasks;
6114retry:
6115	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6116	mutex_exit(&spa->spa_async_lock);
6117
6118	/*
6119	 * See if any devices need to be marked REMOVED.
6120	 */
6121	if (tasks & SPA_ASYNC_REMOVE) {
6122		spa_vdev_state_enter(spa, SCL_NONE);
6123		spa_async_remove(spa, spa->spa_root_vdev);
6124		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6125			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6126		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6127			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6128		(void) spa_vdev_state_exit(spa, NULL, 0);
6129	}
6130
6131	/*
6132	 * Let the world know that we're done.
6133	 */
6134	mutex_enter(&spa->spa_async_lock);
6135	tasks = spa->spa_async_tasks;
6136	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6137		goto retry;
6138	spa->spa_async_thread_vd = NULL;
6139	cv_broadcast(&spa->spa_async_cv);
6140	mutex_exit(&spa->spa_async_lock);
6141	thread_exit();
6142}
6143
6144void
6145spa_async_suspend(spa_t *spa)
6146{
6147	mutex_enter(&spa->spa_async_lock);
6148	spa->spa_async_suspended++;
6149	while (spa->spa_async_thread != NULL &&
6150	    spa->spa_async_thread_vd != NULL)
6151		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6152	mutex_exit(&spa->spa_async_lock);
6153}
6154
6155void
6156spa_async_resume(spa_t *spa)
6157{
6158	mutex_enter(&spa->spa_async_lock);
6159	ASSERT(spa->spa_async_suspended != 0);
6160	spa->spa_async_suspended--;
6161	mutex_exit(&spa->spa_async_lock);
6162}
6163
6164static boolean_t
6165spa_async_tasks_pending(spa_t *spa)
6166{
6167	uint_t non_config_tasks;
6168	uint_t config_task;
6169	boolean_t config_task_suspended;
6170
6171	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6172	    SPA_ASYNC_REMOVE);
6173	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6174	if (spa->spa_ccw_fail_time == 0) {
6175		config_task_suspended = B_FALSE;
6176	} else {
6177		config_task_suspended =
6178		    (gethrtime() - spa->spa_ccw_fail_time) <
6179		    (zfs_ccw_retry_interval * NANOSEC);
6180	}
6181
6182	return (non_config_tasks || (config_task && !config_task_suspended));
6183}
6184
6185static void
6186spa_async_dispatch(spa_t *spa)
6187{
6188	mutex_enter(&spa->spa_async_lock);
6189	if (spa_async_tasks_pending(spa) &&
6190	    !spa->spa_async_suspended &&
6191	    spa->spa_async_thread == NULL &&
6192	    rootdir != NULL)
6193		spa->spa_async_thread = thread_create(NULL, 0,
6194		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6195	mutex_exit(&spa->spa_async_lock);
6196}
6197
6198static void
6199spa_async_dispatch_vd(spa_t *spa)
6200{
6201	mutex_enter(&spa->spa_async_lock);
6202	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6203	    !spa->spa_async_suspended &&
6204	    spa->spa_async_thread_vd == NULL &&
6205	    rootdir != NULL)
6206		spa->spa_async_thread_vd = thread_create(NULL, 0,
6207		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6208	mutex_exit(&spa->spa_async_lock);
6209}
6210
6211void
6212spa_async_request(spa_t *spa, int task)
6213{
6214	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6215	mutex_enter(&spa->spa_async_lock);
6216	spa->spa_async_tasks |= task;
6217	mutex_exit(&spa->spa_async_lock);
6218	spa_async_dispatch_vd(spa);
6219}
6220
6221/*
6222 * ==========================================================================
6223 * SPA syncing routines
6224 * ==========================================================================
6225 */
6226
6227static int
6228bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6229{
6230	bpobj_t *bpo = arg;
6231	bpobj_enqueue(bpo, bp, tx);
6232	return (0);
6233}
6234
6235static int
6236spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6237{
6238	zio_t *zio = arg;
6239
6240	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6241	    BP_GET_PSIZE(bp), zio->io_flags));
6242	return (0);
6243}
6244
6245/*
6246 * Note: this simple function is not inlined to make it easier to dtrace the
6247 * amount of time spent syncing frees.
6248 */
6249static void
6250spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6251{
6252	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6253	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6254	VERIFY(zio_wait(zio) == 0);
6255}
6256
6257/*
6258 * Note: this simple function is not inlined to make it easier to dtrace the
6259 * amount of time spent syncing deferred frees.
6260 */
6261static void
6262spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6263{
6264	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6265	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6266	    spa_free_sync_cb, zio, tx), ==, 0);
6267	VERIFY0(zio_wait(zio));
6268}
6269
6270
6271static void
6272spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6273{
6274	char *packed = NULL;
6275	size_t bufsize;
6276	size_t nvsize = 0;
6277	dmu_buf_t *db;
6278
6279	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6280
6281	/*
6282	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6283	 * information.  This avoids the dmu_buf_will_dirty() path and
6284	 * saves us a pre-read to get data we don't actually care about.
6285	 */
6286	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6287	packed = kmem_alloc(bufsize, KM_SLEEP);
6288
6289	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6290	    KM_SLEEP) == 0);
6291	bzero(packed + nvsize, bufsize - nvsize);
6292
6293	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6294
6295	kmem_free(packed, bufsize);
6296
6297	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6298	dmu_buf_will_dirty(db, tx);
6299	*(uint64_t *)db->db_data = nvsize;
6300	dmu_buf_rele(db, FTAG);
6301}
6302
6303static void
6304spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6305    const char *config, const char *entry)
6306{
6307	nvlist_t *nvroot;
6308	nvlist_t **list;
6309	int i;
6310
6311	if (!sav->sav_sync)
6312		return;
6313
6314	/*
6315	 * Update the MOS nvlist describing the list of available devices.
6316	 * spa_validate_aux() will have already made sure this nvlist is
6317	 * valid and the vdevs are labeled appropriately.
6318	 */
6319	if (sav->sav_object == 0) {
6320		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6321		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6322		    sizeof (uint64_t), tx);
6323		VERIFY(zap_update(spa->spa_meta_objset,
6324		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6325		    &sav->sav_object, tx) == 0);
6326	}
6327
6328	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6329	if (sav->sav_count == 0) {
6330		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6331	} else {
6332		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6333		for (i = 0; i < sav->sav_count; i++)
6334			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6335			    B_FALSE, VDEV_CONFIG_L2CACHE);
6336		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6337		    sav->sav_count) == 0);
6338		for (i = 0; i < sav->sav_count; i++)
6339			nvlist_free(list[i]);
6340		kmem_free(list, sav->sav_count * sizeof (void *));
6341	}
6342
6343	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6344	nvlist_free(nvroot);
6345
6346	sav->sav_sync = B_FALSE;
6347}
6348
6349static void
6350spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6351{
6352	nvlist_t *config;
6353
6354	if (list_is_empty(&spa->spa_config_dirty_list))
6355		return;
6356
6357	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6358
6359	config = spa_config_generate(spa, spa->spa_root_vdev,
6360	    dmu_tx_get_txg(tx), B_FALSE);
6361
6362	/*
6363	 * If we're upgrading the spa version then make sure that
6364	 * the config object gets updated with the correct version.
6365	 */
6366	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6367		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6368		    spa->spa_uberblock.ub_version);
6369
6370	spa_config_exit(spa, SCL_STATE, FTAG);
6371
6372	nvlist_free(spa->spa_config_syncing);
6373	spa->spa_config_syncing = config;
6374
6375	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6376}
6377
6378static void
6379spa_sync_version(void *arg, dmu_tx_t *tx)
6380{
6381	uint64_t *versionp = arg;
6382	uint64_t version = *versionp;
6383	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6384
6385	/*
6386	 * Setting the version is special cased when first creating the pool.
6387	 */
6388	ASSERT(tx->tx_txg != TXG_INITIAL);
6389
6390	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6391	ASSERT(version >= spa_version(spa));
6392
6393	spa->spa_uberblock.ub_version = version;
6394	vdev_config_dirty(spa->spa_root_vdev);
6395	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6396}
6397
6398/*
6399 * Set zpool properties.
6400 */
6401static void
6402spa_sync_props(void *arg, dmu_tx_t *tx)
6403{
6404	nvlist_t *nvp = arg;
6405	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6406	objset_t *mos = spa->spa_meta_objset;
6407	nvpair_t *elem = NULL;
6408
6409	mutex_enter(&spa->spa_props_lock);
6410
6411	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6412		uint64_t intval;
6413		char *strval, *fname;
6414		zpool_prop_t prop;
6415		const char *propname;
6416		zprop_type_t proptype;
6417		spa_feature_t fid;
6418
6419		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6420		case ZPROP_INVAL:
6421			/*
6422			 * We checked this earlier in spa_prop_validate().
6423			 */
6424			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6425
6426			fname = strchr(nvpair_name(elem), '@') + 1;
6427			VERIFY0(zfeature_lookup_name(fname, &fid));
6428
6429			spa_feature_enable(spa, fid, tx);
6430			spa_history_log_internal(spa, "set", tx,
6431			    "%s=enabled", nvpair_name(elem));
6432			break;
6433
6434		case ZPOOL_PROP_VERSION:
6435			intval = fnvpair_value_uint64(elem);
6436			/*
6437			 * The version is synced seperatly before other
6438			 * properties and should be correct by now.
6439			 */
6440			ASSERT3U(spa_version(spa), >=, intval);
6441			break;
6442
6443		case ZPOOL_PROP_ALTROOT:
6444			/*
6445			 * 'altroot' is a non-persistent property. It should
6446			 * have been set temporarily at creation or import time.
6447			 */
6448			ASSERT(spa->spa_root != NULL);
6449			break;
6450
6451		case ZPOOL_PROP_READONLY:
6452		case ZPOOL_PROP_CACHEFILE:
6453			/*
6454			 * 'readonly' and 'cachefile' are also non-persisitent
6455			 * properties.
6456			 */
6457			break;
6458		case ZPOOL_PROP_COMMENT:
6459			strval = fnvpair_value_string(elem);
6460			if (spa->spa_comment != NULL)
6461				spa_strfree(spa->spa_comment);
6462			spa->spa_comment = spa_strdup(strval);
6463			/*
6464			 * We need to dirty the configuration on all the vdevs
6465			 * so that their labels get updated.  It's unnecessary
6466			 * to do this for pool creation since the vdev's
6467			 * configuratoin has already been dirtied.
6468			 */
6469			if (tx->tx_txg != TXG_INITIAL)
6470				vdev_config_dirty(spa->spa_root_vdev);
6471			spa_history_log_internal(spa, "set", tx,
6472			    "%s=%s", nvpair_name(elem), strval);
6473			break;
6474		default:
6475			/*
6476			 * Set pool property values in the poolprops mos object.
6477			 */
6478			if (spa->spa_pool_props_object == 0) {
6479				spa->spa_pool_props_object =
6480				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6481				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6482				    tx);
6483			}
6484
6485			/* normalize the property name */
6486			propname = zpool_prop_to_name(prop);
6487			proptype = zpool_prop_get_type(prop);
6488
6489			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6490				ASSERT(proptype == PROP_TYPE_STRING);
6491				strval = fnvpair_value_string(elem);
6492				VERIFY0(zap_update(mos,
6493				    spa->spa_pool_props_object, propname,
6494				    1, strlen(strval) + 1, strval, tx));
6495				spa_history_log_internal(spa, "set", tx,
6496				    "%s=%s", nvpair_name(elem), strval);
6497			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6498				intval = fnvpair_value_uint64(elem);
6499
6500				if (proptype == PROP_TYPE_INDEX) {
6501					const char *unused;
6502					VERIFY0(zpool_prop_index_to_string(
6503					    prop, intval, &unused));
6504				}
6505				VERIFY0(zap_update(mos,
6506				    spa->spa_pool_props_object, propname,
6507				    8, 1, &intval, tx));
6508				spa_history_log_internal(spa, "set", tx,
6509				    "%s=%lld", nvpair_name(elem), intval);
6510			} else {
6511				ASSERT(0); /* not allowed */
6512			}
6513
6514			switch (prop) {
6515			case ZPOOL_PROP_DELEGATION:
6516				spa->spa_delegation = intval;
6517				break;
6518			case ZPOOL_PROP_BOOTFS:
6519				spa->spa_bootfs = intval;
6520				break;
6521			case ZPOOL_PROP_FAILUREMODE:
6522				spa->spa_failmode = intval;
6523				break;
6524			case ZPOOL_PROP_AUTOEXPAND:
6525				spa->spa_autoexpand = intval;
6526				if (tx->tx_txg != TXG_INITIAL)
6527					spa_async_request(spa,
6528					    SPA_ASYNC_AUTOEXPAND);
6529				break;
6530			case ZPOOL_PROP_DEDUPDITTO:
6531				spa->spa_dedup_ditto = intval;
6532				break;
6533			default:
6534				break;
6535			}
6536		}
6537
6538	}
6539
6540	mutex_exit(&spa->spa_props_lock);
6541}
6542
6543/*
6544 * Perform one-time upgrade on-disk changes.  spa_version() does not
6545 * reflect the new version this txg, so there must be no changes this
6546 * txg to anything that the upgrade code depends on after it executes.
6547 * Therefore this must be called after dsl_pool_sync() does the sync
6548 * tasks.
6549 */
6550static void
6551spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6552{
6553	dsl_pool_t *dp = spa->spa_dsl_pool;
6554
6555	ASSERT(spa->spa_sync_pass == 1);
6556
6557	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6558
6559	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6560	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6561		dsl_pool_create_origin(dp, tx);
6562
6563		/* Keeping the origin open increases spa_minref */
6564		spa->spa_minref += 3;
6565	}
6566
6567	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6568	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6569		dsl_pool_upgrade_clones(dp, tx);
6570	}
6571
6572	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6573	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6574		dsl_pool_upgrade_dir_clones(dp, tx);
6575
6576		/* Keeping the freedir open increases spa_minref */
6577		spa->spa_minref += 3;
6578	}
6579
6580	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6581	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6582		spa_feature_create_zap_objects(spa, tx);
6583	}
6584
6585	/*
6586	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6587	 * when possibility to use lz4 compression for metadata was added
6588	 * Old pools that have this feature enabled must be upgraded to have
6589	 * this feature active
6590	 */
6591	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6592		boolean_t lz4_en = spa_feature_is_enabled(spa,
6593		    SPA_FEATURE_LZ4_COMPRESS);
6594		boolean_t lz4_ac = spa_feature_is_active(spa,
6595		    SPA_FEATURE_LZ4_COMPRESS);
6596
6597		if (lz4_en && !lz4_ac)
6598			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6599	}
6600
6601	/*
6602	 * If we haven't written the salt, do so now.  Note that the
6603	 * feature may not be activated yet, but that's fine since
6604	 * the presence of this ZAP entry is backwards compatible.
6605	 */
6606	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6607	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6608		VERIFY0(zap_add(spa->spa_meta_objset,
6609		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6610		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6611		    spa->spa_cksum_salt.zcs_bytes, tx));
6612	}
6613
6614	rrw_exit(&dp->dp_config_rwlock, FTAG);
6615}
6616
6617/*
6618 * Sync the specified transaction group.  New blocks may be dirtied as
6619 * part of the process, so we iterate until it converges.
6620 */
6621void
6622spa_sync(spa_t *spa, uint64_t txg)
6623{
6624	dsl_pool_t *dp = spa->spa_dsl_pool;
6625	objset_t *mos = spa->spa_meta_objset;
6626	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6627	vdev_t *rvd = spa->spa_root_vdev;
6628	vdev_t *vd;
6629	dmu_tx_t *tx;
6630	int error;
6631
6632	VERIFY(spa_writeable(spa));
6633
6634	/*
6635	 * Lock out configuration changes.
6636	 */
6637	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6638
6639	spa->spa_syncing_txg = txg;
6640	spa->spa_sync_pass = 0;
6641
6642	/*
6643	 * If there are any pending vdev state changes, convert them
6644	 * into config changes that go out with this transaction group.
6645	 */
6646	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6647	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6648		/*
6649		 * We need the write lock here because, for aux vdevs,
6650		 * calling vdev_config_dirty() modifies sav_config.
6651		 * This is ugly and will become unnecessary when we
6652		 * eliminate the aux vdev wart by integrating all vdevs
6653		 * into the root vdev tree.
6654		 */
6655		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6656		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6657		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6658			vdev_state_clean(vd);
6659			vdev_config_dirty(vd);
6660		}
6661		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6662		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6663	}
6664	spa_config_exit(spa, SCL_STATE, FTAG);
6665
6666	tx = dmu_tx_create_assigned(dp, txg);
6667
6668	spa->spa_sync_starttime = gethrtime();
6669#ifdef illumos
6670	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6671	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6672#else	/* !illumos */
6673#ifdef _KERNEL
6674	callout_reset(&spa->spa_deadman_cycid,
6675	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6676#endif
6677#endif	/* illumos */
6678
6679	/*
6680	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6681	 * set spa_deflate if we have no raid-z vdevs.
6682	 */
6683	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6684	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6685		int i;
6686
6687		for (i = 0; i < rvd->vdev_children; i++) {
6688			vd = rvd->vdev_child[i];
6689			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6690				break;
6691		}
6692		if (i == rvd->vdev_children) {
6693			spa->spa_deflate = TRUE;
6694			VERIFY(0 == zap_add(spa->spa_meta_objset,
6695			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6696			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6697		}
6698	}
6699
6700	/*
6701	 * Iterate to convergence.
6702	 */
6703	do {
6704		int pass = ++spa->spa_sync_pass;
6705
6706		spa_sync_config_object(spa, tx);
6707		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6708		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6709		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6710		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6711		spa_errlog_sync(spa, txg);
6712		dsl_pool_sync(dp, txg);
6713
6714		if (pass < zfs_sync_pass_deferred_free) {
6715			spa_sync_frees(spa, free_bpl, tx);
6716		} else {
6717			/*
6718			 * We can not defer frees in pass 1, because
6719			 * we sync the deferred frees later in pass 1.
6720			 */
6721			ASSERT3U(pass, >, 1);
6722			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6723			    &spa->spa_deferred_bpobj, tx);
6724		}
6725
6726		ddt_sync(spa, txg);
6727		dsl_scan_sync(dp, tx);
6728
6729		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6730			vdev_sync(vd, txg);
6731
6732		if (pass == 1) {
6733			spa_sync_upgrades(spa, tx);
6734			ASSERT3U(txg, >=,
6735			    spa->spa_uberblock.ub_rootbp.blk_birth);
6736			/*
6737			 * Note: We need to check if the MOS is dirty
6738			 * because we could have marked the MOS dirty
6739			 * without updating the uberblock (e.g. if we
6740			 * have sync tasks but no dirty user data).  We
6741			 * need to check the uberblock's rootbp because
6742			 * it is updated if we have synced out dirty
6743			 * data (though in this case the MOS will most
6744			 * likely also be dirty due to second order
6745			 * effects, we don't want to rely on that here).
6746			 */
6747			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6748			    !dmu_objset_is_dirty(mos, txg)) {
6749				/*
6750				 * Nothing changed on the first pass,
6751				 * therefore this TXG is a no-op.  Avoid
6752				 * syncing deferred frees, so that we
6753				 * can keep this TXG as a no-op.
6754				 */
6755				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6756				    txg));
6757				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6758				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6759				break;
6760			}
6761			spa_sync_deferred_frees(spa, tx);
6762		}
6763
6764	} while (dmu_objset_is_dirty(mos, txg));
6765
6766	/*
6767	 * Rewrite the vdev configuration (which includes the uberblock)
6768	 * to commit the transaction group.
6769	 *
6770	 * If there are no dirty vdevs, we sync the uberblock to a few
6771	 * random top-level vdevs that are known to be visible in the
6772	 * config cache (see spa_vdev_add() for a complete description).
6773	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6774	 */
6775	for (;;) {
6776		/*
6777		 * We hold SCL_STATE to prevent vdev open/close/etc.
6778		 * while we're attempting to write the vdev labels.
6779		 */
6780		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6781
6782		if (list_is_empty(&spa->spa_config_dirty_list)) {
6783			vdev_t *svd[SPA_DVAS_PER_BP];
6784			int svdcount = 0;
6785			int children = rvd->vdev_children;
6786			int c0 = spa_get_random(children);
6787
6788			for (int c = 0; c < children; c++) {
6789				vd = rvd->vdev_child[(c0 + c) % children];
6790				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6791					continue;
6792				svd[svdcount++] = vd;
6793				if (svdcount == SPA_DVAS_PER_BP)
6794					break;
6795			}
6796			error = vdev_config_sync(svd, svdcount, txg);
6797		} else {
6798			error = vdev_config_sync(rvd->vdev_child,
6799			    rvd->vdev_children, txg);
6800		}
6801
6802		if (error == 0)
6803			spa->spa_last_synced_guid = rvd->vdev_guid;
6804
6805		spa_config_exit(spa, SCL_STATE, FTAG);
6806
6807		if (error == 0)
6808			break;
6809		zio_suspend(spa, NULL);
6810		zio_resume_wait(spa);
6811	}
6812	dmu_tx_commit(tx);
6813
6814#ifdef illumos
6815	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6816#else	/* !illumos */
6817#ifdef _KERNEL
6818	callout_drain(&spa->spa_deadman_cycid);
6819#endif
6820#endif	/* illumos */
6821
6822	/*
6823	 * Clear the dirty config list.
6824	 */
6825	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6826		vdev_config_clean(vd);
6827
6828	/*
6829	 * Now that the new config has synced transactionally,
6830	 * let it become visible to the config cache.
6831	 */
6832	if (spa->spa_config_syncing != NULL) {
6833		spa_config_set(spa, spa->spa_config_syncing);
6834		spa->spa_config_txg = txg;
6835		spa->spa_config_syncing = NULL;
6836	}
6837
6838	spa->spa_ubsync = spa->spa_uberblock;
6839
6840	dsl_pool_sync_done(dp, txg);
6841
6842	/*
6843	 * Update usable space statistics.
6844	 */
6845	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6846		vdev_sync_done(vd, txg);
6847
6848	spa_update_dspace(spa);
6849
6850	/*
6851	 * It had better be the case that we didn't dirty anything
6852	 * since vdev_config_sync().
6853	 */
6854	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6855	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6856	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6857
6858	spa->spa_sync_pass = 0;
6859
6860	spa_config_exit(spa, SCL_CONFIG, FTAG);
6861
6862	spa_handle_ignored_writes(spa);
6863
6864	/*
6865	 * If any async tasks have been requested, kick them off.
6866	 */
6867	spa_async_dispatch(spa);
6868	spa_async_dispatch_vd(spa);
6869}
6870
6871/*
6872 * Sync all pools.  We don't want to hold the namespace lock across these
6873 * operations, so we take a reference on the spa_t and drop the lock during the
6874 * sync.
6875 */
6876void
6877spa_sync_allpools(void)
6878{
6879	spa_t *spa = NULL;
6880	mutex_enter(&spa_namespace_lock);
6881	while ((spa = spa_next(spa)) != NULL) {
6882		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6883		    !spa_writeable(spa) || spa_suspended(spa))
6884			continue;
6885		spa_open_ref(spa, FTAG);
6886		mutex_exit(&spa_namespace_lock);
6887		txg_wait_synced(spa_get_dsl(spa), 0);
6888		mutex_enter(&spa_namespace_lock);
6889		spa_close(spa, FTAG);
6890	}
6891	mutex_exit(&spa_namespace_lock);
6892}
6893
6894/*
6895 * ==========================================================================
6896 * Miscellaneous routines
6897 * ==========================================================================
6898 */
6899
6900/*
6901 * Remove all pools in the system.
6902 */
6903void
6904spa_evict_all(void)
6905{
6906	spa_t *spa;
6907
6908	/*
6909	 * Remove all cached state.  All pools should be closed now,
6910	 * so every spa in the AVL tree should be unreferenced.
6911	 */
6912	mutex_enter(&spa_namespace_lock);
6913	while ((spa = spa_next(NULL)) != NULL) {
6914		/*
6915		 * Stop async tasks.  The async thread may need to detach
6916		 * a device that's been replaced, which requires grabbing
6917		 * spa_namespace_lock, so we must drop it here.
6918		 */
6919		spa_open_ref(spa, FTAG);
6920		mutex_exit(&spa_namespace_lock);
6921		spa_async_suspend(spa);
6922		mutex_enter(&spa_namespace_lock);
6923		spa_close(spa, FTAG);
6924
6925		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6926			spa_unload(spa);
6927			spa_deactivate(spa);
6928		}
6929		spa_remove(spa);
6930	}
6931	mutex_exit(&spa_namespace_lock);
6932}
6933
6934vdev_t *
6935spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6936{
6937	vdev_t *vd;
6938	int i;
6939
6940	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6941		return (vd);
6942
6943	if (aux) {
6944		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6945			vd = spa->spa_l2cache.sav_vdevs[i];
6946			if (vd->vdev_guid == guid)
6947				return (vd);
6948		}
6949
6950		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6951			vd = spa->spa_spares.sav_vdevs[i];
6952			if (vd->vdev_guid == guid)
6953				return (vd);
6954		}
6955	}
6956
6957	return (NULL);
6958}
6959
6960void
6961spa_upgrade(spa_t *spa, uint64_t version)
6962{
6963	ASSERT(spa_writeable(spa));
6964
6965	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6966
6967	/*
6968	 * This should only be called for a non-faulted pool, and since a
6969	 * future version would result in an unopenable pool, this shouldn't be
6970	 * possible.
6971	 */
6972	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6973	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6974
6975	spa->spa_uberblock.ub_version = version;
6976	vdev_config_dirty(spa->spa_root_vdev);
6977
6978	spa_config_exit(spa, SCL_ALL, FTAG);
6979
6980	txg_wait_synced(spa_get_dsl(spa), 0);
6981}
6982
6983boolean_t
6984spa_has_spare(spa_t *spa, uint64_t guid)
6985{
6986	int i;
6987	uint64_t spareguid;
6988	spa_aux_vdev_t *sav = &spa->spa_spares;
6989
6990	for (i = 0; i < sav->sav_count; i++)
6991		if (sav->sav_vdevs[i]->vdev_guid == guid)
6992			return (B_TRUE);
6993
6994	for (i = 0; i < sav->sav_npending; i++) {
6995		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6996		    &spareguid) == 0 && spareguid == guid)
6997			return (B_TRUE);
6998	}
6999
7000	return (B_FALSE);
7001}
7002
7003/*
7004 * Check if a pool has an active shared spare device.
7005 * Note: reference count of an active spare is 2, as a spare and as a replace
7006 */
7007static boolean_t
7008spa_has_active_shared_spare(spa_t *spa)
7009{
7010	int i, refcnt;
7011	uint64_t pool;
7012	spa_aux_vdev_t *sav = &spa->spa_spares;
7013
7014	for (i = 0; i < sav->sav_count; i++) {
7015		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7016		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7017		    refcnt > 2)
7018			return (B_TRUE);
7019	}
7020
7021	return (B_FALSE);
7022}
7023
7024/*
7025 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7026 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7027 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7028 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7029 * or zdb as real changes.
7030 */
7031void
7032spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7033{
7034#ifdef _KERNEL
7035	sysevent_t		*ev;
7036	sysevent_attr_list_t	*attr = NULL;
7037	sysevent_value_t	value;
7038	sysevent_id_t		eid;
7039
7040	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7041	    SE_SLEEP);
7042
7043	value.value_type = SE_DATA_TYPE_STRING;
7044	value.value.sv_string = spa_name(spa);
7045	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7046		goto done;
7047
7048	value.value_type = SE_DATA_TYPE_UINT64;
7049	value.value.sv_uint64 = spa_guid(spa);
7050	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7051		goto done;
7052
7053	if (vd) {
7054		value.value_type = SE_DATA_TYPE_UINT64;
7055		value.value.sv_uint64 = vd->vdev_guid;
7056		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7057		    SE_SLEEP) != 0)
7058			goto done;
7059
7060		if (vd->vdev_path) {
7061			value.value_type = SE_DATA_TYPE_STRING;
7062			value.value.sv_string = vd->vdev_path;
7063			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7064			    &value, SE_SLEEP) != 0)
7065				goto done;
7066		}
7067	}
7068
7069	if (sysevent_attach_attributes(ev, attr) != 0)
7070		goto done;
7071	attr = NULL;
7072
7073	(void) log_sysevent(ev, SE_SLEEP, &eid);
7074
7075done:
7076	if (attr)
7077		sysevent_free_attr(attr);
7078	sysevent_free(ev);
7079#endif
7080}
7081