spa.c revision 297115
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
98    "Check hostid on import?");
99TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
100SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
101    &zfs_ccw_retry_interval, 0,
102    "Configuration cache file write, retry after failure, interval (seconds)");
103
104typedef enum zti_modes {
105	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
106	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
107	ZTI_MODE_NULL,			/* don't create a taskq */
108	ZTI_NMODES
109} zti_modes_t;
110
111#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
112#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
113#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
114
115#define	ZTI_N(n)	ZTI_P(n, 1)
116#define	ZTI_ONE		ZTI_N(1)
117
118typedef struct zio_taskq_info {
119	zti_modes_t zti_mode;
120	uint_t zti_value;
121	uint_t zti_count;
122} zio_taskq_info_t;
123
124static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125	"issue", "issue_high", "intr", "intr_high"
126};
127
128/*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
148	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
149	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
150	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
152	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
153};
154
155static void spa_sync_version(void *arg, dmu_tx_t *tx);
156static void spa_sync_props(void *arg, dmu_tx_t *tx);
157static boolean_t spa_has_active_shared_spare(spa_t *spa);
158static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
159    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
160    char **ereport);
161static void spa_vdev_resilver_done(spa_t *spa);
162
163uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
164#ifdef PSRSET_BIND
165id_t		zio_taskq_psrset_bind = PS_NONE;
166#endif
167#ifdef SYSDC
168boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
169#endif
170uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
171
172boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
173extern int	zfs_sync_pass_deferred_free;
174
175#ifndef illumos
176extern void spa_deadman(void *arg);
177#endif
178
179/*
180 * This (illegal) pool name is used when temporarily importing a spa_t in order
181 * to get the vdev stats associated with the imported devices.
182 */
183#define	TRYIMPORT_NAME	"$import"
184
185/*
186 * ==========================================================================
187 * SPA properties routines
188 * ==========================================================================
189 */
190
191/*
192 * Add a (source=src, propname=propval) list to an nvlist.
193 */
194static void
195spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
196    uint64_t intval, zprop_source_t src)
197{
198	const char *propname = zpool_prop_to_name(prop);
199	nvlist_t *propval;
200
201	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
202	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
203
204	if (strval != NULL)
205		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
206	else
207		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
208
209	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
210	nvlist_free(propval);
211}
212
213/*
214 * Get property values from the spa configuration.
215 */
216static void
217spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
218{
219	vdev_t *rvd = spa->spa_root_vdev;
220	dsl_pool_t *pool = spa->spa_dsl_pool;
221	uint64_t size, alloc, cap, version;
222	zprop_source_t src = ZPROP_SRC_NONE;
223	spa_config_dirent_t *dp;
224	metaslab_class_t *mc = spa_normal_class(spa);
225
226	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
227
228	if (rvd != NULL) {
229		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
230		size = metaslab_class_get_space(spa_normal_class(spa));
231		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
235		    size - alloc, src);
236
237		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
238		    metaslab_class_fragmentation(mc), src);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
240		    metaslab_class_expandable_space(mc), src);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
242		    (spa_mode(spa) == FREAD), src);
243
244		cap = (size == 0) ? 0 : (alloc * 100 / size);
245		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
246
247		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
248		    ddt_get_pool_dedup_ratio(spa), src);
249
250		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
251		    rvd->vdev_state, src);
252
253		version = spa_version(spa);
254		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
255			src = ZPROP_SRC_DEFAULT;
256		else
257			src = ZPROP_SRC_LOCAL;
258		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
259	}
260
261	if (pool != NULL) {
262		/*
263		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
264		 * when opening pools before this version freedir will be NULL.
265		 */
266		if (pool->dp_free_dir != NULL) {
267			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
268			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
269			    src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274
275		if (pool->dp_leak_dir != NULL) {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
277			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
278			    src);
279		} else {
280			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
281			    NULL, 0, src);
282		}
283	}
284
285	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
286
287	if (spa->spa_comment != NULL) {
288		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
289		    0, ZPROP_SRC_LOCAL);
290	}
291
292	if (spa->spa_root != NULL)
293		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
294		    0, ZPROP_SRC_LOCAL);
295
296	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
297		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
298		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
299	} else {
300		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
301		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
302	}
303
304	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
305		if (dp->scd_path == NULL) {
306			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
307			    "none", 0, ZPROP_SRC_LOCAL);
308		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
309			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
310			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
311		}
312	}
313}
314
315/*
316 * Get zpool property values.
317 */
318int
319spa_prop_get(spa_t *spa, nvlist_t **nvp)
320{
321	objset_t *mos = spa->spa_meta_objset;
322	zap_cursor_t zc;
323	zap_attribute_t za;
324	int err;
325
326	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
327
328	mutex_enter(&spa->spa_props_lock);
329
330	/*
331	 * Get properties from the spa config.
332	 */
333	spa_prop_get_config(spa, nvp);
334
335	/* If no pool property object, no more prop to get. */
336	if (mos == NULL || spa->spa_pool_props_object == 0) {
337		mutex_exit(&spa->spa_props_lock);
338		return (0);
339	}
340
341	/*
342	 * Get properties from the MOS pool property object.
343	 */
344	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
345	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
346	    zap_cursor_advance(&zc)) {
347		uint64_t intval = 0;
348		char *strval = NULL;
349		zprop_source_t src = ZPROP_SRC_DEFAULT;
350		zpool_prop_t prop;
351
352		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
353			continue;
354
355		switch (za.za_integer_length) {
356		case 8:
357			/* integer property */
358			if (za.za_first_integer !=
359			    zpool_prop_default_numeric(prop))
360				src = ZPROP_SRC_LOCAL;
361
362			if (prop == ZPOOL_PROP_BOOTFS) {
363				dsl_pool_t *dp;
364				dsl_dataset_t *ds = NULL;
365
366				dp = spa_get_dsl(spa);
367				dsl_pool_config_enter(dp, FTAG);
368				if (err = dsl_dataset_hold_obj(dp,
369				    za.za_first_integer, FTAG, &ds)) {
370					dsl_pool_config_exit(dp, FTAG);
371					break;
372				}
373
374				strval = kmem_alloc(
375				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
376				    KM_SLEEP);
377				dsl_dataset_name(ds, strval);
378				dsl_dataset_rele(ds, FTAG);
379				dsl_pool_config_exit(dp, FTAG);
380			} else {
381				strval = NULL;
382				intval = za.za_first_integer;
383			}
384
385			spa_prop_add_list(*nvp, prop, strval, intval, src);
386
387			if (strval != NULL)
388				kmem_free(strval,
389				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
390
391			break;
392
393		case 1:
394			/* string property */
395			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
396			err = zap_lookup(mos, spa->spa_pool_props_object,
397			    za.za_name, 1, za.za_num_integers, strval);
398			if (err) {
399				kmem_free(strval, za.za_num_integers);
400				break;
401			}
402			spa_prop_add_list(*nvp, prop, strval, 0, src);
403			kmem_free(strval, za.za_num_integers);
404			break;
405
406		default:
407			break;
408		}
409	}
410	zap_cursor_fini(&zc);
411	mutex_exit(&spa->spa_props_lock);
412out:
413	if (err && err != ENOENT) {
414		nvlist_free(*nvp);
415		*nvp = NULL;
416		return (err);
417	}
418
419	return (0);
420}
421
422/*
423 * Validate the given pool properties nvlist and modify the list
424 * for the property values to be set.
425 */
426static int
427spa_prop_validate(spa_t *spa, nvlist_t *props)
428{
429	nvpair_t *elem;
430	int error = 0, reset_bootfs = 0;
431	uint64_t objnum = 0;
432	boolean_t has_feature = B_FALSE;
433
434	elem = NULL;
435	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
436		uint64_t intval;
437		char *strval, *slash, *check, *fname;
438		const char *propname = nvpair_name(elem);
439		zpool_prop_t prop = zpool_name_to_prop(propname);
440
441		switch (prop) {
442		case ZPROP_INVAL:
443			if (!zpool_prop_feature(propname)) {
444				error = SET_ERROR(EINVAL);
445				break;
446			}
447
448			/*
449			 * Sanitize the input.
450			 */
451			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (nvpair_value_uint64(elem, &intval) != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			if (intval != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			fname = strchr(propname, '@') + 1;
467			if (zfeature_lookup_name(fname, NULL) != 0) {
468				error = SET_ERROR(EINVAL);
469				break;
470			}
471
472			has_feature = B_TRUE;
473			break;
474
475		case ZPOOL_PROP_VERSION:
476			error = nvpair_value_uint64(elem, &intval);
477			if (!error &&
478			    (intval < spa_version(spa) ||
479			    intval > SPA_VERSION_BEFORE_FEATURES ||
480			    has_feature))
481				error = SET_ERROR(EINVAL);
482			break;
483
484		case ZPOOL_PROP_DELEGATION:
485		case ZPOOL_PROP_AUTOREPLACE:
486		case ZPOOL_PROP_LISTSNAPS:
487		case ZPOOL_PROP_AUTOEXPAND:
488			error = nvpair_value_uint64(elem, &intval);
489			if (!error && intval > 1)
490				error = SET_ERROR(EINVAL);
491			break;
492
493		case ZPOOL_PROP_BOOTFS:
494			/*
495			 * If the pool version is less than SPA_VERSION_BOOTFS,
496			 * or the pool is still being created (version == 0),
497			 * the bootfs property cannot be set.
498			 */
499			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
500				error = SET_ERROR(ENOTSUP);
501				break;
502			}
503
504			/*
505			 * Make sure the vdev config is bootable
506			 */
507			if (!vdev_is_bootable(spa->spa_root_vdev)) {
508				error = SET_ERROR(ENOTSUP);
509				break;
510			}
511
512			reset_bootfs = 1;
513
514			error = nvpair_value_string(elem, &strval);
515
516			if (!error) {
517				objset_t *os;
518				uint64_t propval;
519
520				if (strval == NULL || strval[0] == '\0') {
521					objnum = zpool_prop_default_numeric(
522					    ZPOOL_PROP_BOOTFS);
523					break;
524				}
525
526				if (error = dmu_objset_hold(strval, FTAG, &os))
527					break;
528
529				/*
530				 * Must be ZPL, and its property settings
531				 * must be supported by GRUB (compression
532				 * is not gzip, and large blocks are not used).
533				 */
534
535				if (dmu_objset_type(os) != DMU_OST_ZFS) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
540				    &propval)) == 0 &&
541				    !BOOTFS_COMPRESS_VALID(propval)) {
542					error = SET_ERROR(ENOTSUP);
543				} else if ((error =
544				    dsl_prop_get_int_ds(dmu_objset_ds(os),
545				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
546				    &propval)) == 0 &&
547				    propval > SPA_OLD_MAXBLOCKSIZE) {
548					error = SET_ERROR(ENOTSUP);
549				} else {
550					objnum = dmu_objset_id(os);
551				}
552				dmu_objset_rele(os, FTAG);
553			}
554			break;
555
556		case ZPOOL_PROP_FAILUREMODE:
557			error = nvpair_value_uint64(elem, &intval);
558			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
559			    intval > ZIO_FAILURE_MODE_PANIC))
560				error = SET_ERROR(EINVAL);
561
562			/*
563			 * This is a special case which only occurs when
564			 * the pool has completely failed. This allows
565			 * the user to change the in-core failmode property
566			 * without syncing it out to disk (I/Os might
567			 * currently be blocked). We do this by returning
568			 * EIO to the caller (spa_prop_set) to trick it
569			 * into thinking we encountered a property validation
570			 * error.
571			 */
572			if (!error && spa_suspended(spa)) {
573				spa->spa_failmode = intval;
574				error = SET_ERROR(EIO);
575			}
576			break;
577
578		case ZPOOL_PROP_CACHEFILE:
579			if ((error = nvpair_value_string(elem, &strval)) != 0)
580				break;
581
582			if (strval[0] == '\0')
583				break;
584
585			if (strcmp(strval, "none") == 0)
586				break;
587
588			if (strval[0] != '/') {
589				error = SET_ERROR(EINVAL);
590				break;
591			}
592
593			slash = strrchr(strval, '/');
594			ASSERT(slash != NULL);
595
596			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
597			    strcmp(slash, "/..") == 0)
598				error = SET_ERROR(EINVAL);
599			break;
600
601		case ZPOOL_PROP_COMMENT:
602			if ((error = nvpair_value_string(elem, &strval)) != 0)
603				break;
604			for (check = strval; *check != '\0'; check++) {
605				/*
606				 * The kernel doesn't have an easy isprint()
607				 * check.  For this kernel check, we merely
608				 * check ASCII apart from DEL.  Fix this if
609				 * there is an easy-to-use kernel isprint().
610				 */
611				if (*check >= 0x7f) {
612					error = SET_ERROR(EINVAL);
613					break;
614				}
615			}
616			if (strlen(strval) > ZPROP_MAX_COMMENT)
617				error = E2BIG;
618			break;
619
620		case ZPOOL_PROP_DEDUPDITTO:
621			if (spa_version(spa) < SPA_VERSION_DEDUP)
622				error = SET_ERROR(ENOTSUP);
623			else
624				error = nvpair_value_uint64(elem, &intval);
625			if (error == 0 &&
626			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
627				error = SET_ERROR(EINVAL);
628			break;
629		}
630
631		if (error)
632			break;
633	}
634
635	if (!error && reset_bootfs) {
636		error = nvlist_remove(props,
637		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
638
639		if (!error) {
640			error = nvlist_add_uint64(props,
641			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
642		}
643	}
644
645	return (error);
646}
647
648void
649spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
650{
651	char *cachefile;
652	spa_config_dirent_t *dp;
653
654	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
655	    &cachefile) != 0)
656		return;
657
658	dp = kmem_alloc(sizeof (spa_config_dirent_t),
659	    KM_SLEEP);
660
661	if (cachefile[0] == '\0')
662		dp->scd_path = spa_strdup(spa_config_path);
663	else if (strcmp(cachefile, "none") == 0)
664		dp->scd_path = NULL;
665	else
666		dp->scd_path = spa_strdup(cachefile);
667
668	list_insert_head(&spa->spa_config_list, dp);
669	if (need_sync)
670		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
671}
672
673int
674spa_prop_set(spa_t *spa, nvlist_t *nvp)
675{
676	int error;
677	nvpair_t *elem = NULL;
678	boolean_t need_sync = B_FALSE;
679
680	if ((error = spa_prop_validate(spa, nvp)) != 0)
681		return (error);
682
683	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
684		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
685
686		if (prop == ZPOOL_PROP_CACHEFILE ||
687		    prop == ZPOOL_PROP_ALTROOT ||
688		    prop == ZPOOL_PROP_READONLY)
689			continue;
690
691		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
692			uint64_t ver;
693
694			if (prop == ZPOOL_PROP_VERSION) {
695				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
696			} else {
697				ASSERT(zpool_prop_feature(nvpair_name(elem)));
698				ver = SPA_VERSION_FEATURES;
699				need_sync = B_TRUE;
700			}
701
702			/* Save time if the version is already set. */
703			if (ver == spa_version(spa))
704				continue;
705
706			/*
707			 * In addition to the pool directory object, we might
708			 * create the pool properties object, the features for
709			 * read object, the features for write object, or the
710			 * feature descriptions object.
711			 */
712			error = dsl_sync_task(spa->spa_name, NULL,
713			    spa_sync_version, &ver,
714			    6, ZFS_SPACE_CHECK_RESERVED);
715			if (error)
716				return (error);
717			continue;
718		}
719
720		need_sync = B_TRUE;
721		break;
722	}
723
724	if (need_sync) {
725		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
726		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
727	}
728
729	return (0);
730}
731
732/*
733 * If the bootfs property value is dsobj, clear it.
734 */
735void
736spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
737{
738	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
739		VERIFY(zap_remove(spa->spa_meta_objset,
740		    spa->spa_pool_props_object,
741		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
742		spa->spa_bootfs = 0;
743	}
744}
745
746/*ARGSUSED*/
747static int
748spa_change_guid_check(void *arg, dmu_tx_t *tx)
749{
750	uint64_t *newguid = arg;
751	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752	vdev_t *rvd = spa->spa_root_vdev;
753	uint64_t vdev_state;
754
755	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756	vdev_state = rvd->vdev_state;
757	spa_config_exit(spa, SCL_STATE, FTAG);
758
759	if (vdev_state != VDEV_STATE_HEALTHY)
760		return (SET_ERROR(ENXIO));
761
762	ASSERT3U(spa_guid(spa), !=, *newguid);
763
764	return (0);
765}
766
767static void
768spa_change_guid_sync(void *arg, dmu_tx_t *tx)
769{
770	uint64_t *newguid = arg;
771	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
772	uint64_t oldguid;
773	vdev_t *rvd = spa->spa_root_vdev;
774
775	oldguid = spa_guid(spa);
776
777	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
778	rvd->vdev_guid = *newguid;
779	rvd->vdev_guid_sum += (*newguid - oldguid);
780	vdev_config_dirty(rvd);
781	spa_config_exit(spa, SCL_STATE, FTAG);
782
783	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
784	    oldguid, *newguid);
785}
786
787/*
788 * Change the GUID for the pool.  This is done so that we can later
789 * re-import a pool built from a clone of our own vdevs.  We will modify
790 * the root vdev's guid, our own pool guid, and then mark all of our
791 * vdevs dirty.  Note that we must make sure that all our vdevs are
792 * online when we do this, or else any vdevs that weren't present
793 * would be orphaned from our pool.  We are also going to issue a
794 * sysevent to update any watchers.
795 */
796int
797spa_change_guid(spa_t *spa)
798{
799	int error;
800	uint64_t guid;
801
802	mutex_enter(&spa->spa_vdev_top_lock);
803	mutex_enter(&spa_namespace_lock);
804	guid = spa_generate_guid(NULL);
805
806	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
807	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
808
809	if (error == 0) {
810		spa_config_sync(spa, B_FALSE, B_TRUE);
811		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
812	}
813
814	mutex_exit(&spa_namespace_lock);
815	mutex_exit(&spa->spa_vdev_top_lock);
816
817	return (error);
818}
819
820/*
821 * ==========================================================================
822 * SPA state manipulation (open/create/destroy/import/export)
823 * ==========================================================================
824 */
825
826static int
827spa_error_entry_compare(const void *a, const void *b)
828{
829	spa_error_entry_t *sa = (spa_error_entry_t *)a;
830	spa_error_entry_t *sb = (spa_error_entry_t *)b;
831	int ret;
832
833	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
834	    sizeof (zbookmark_phys_t));
835
836	if (ret < 0)
837		return (-1);
838	else if (ret > 0)
839		return (1);
840	else
841		return (0);
842}
843
844/*
845 * Utility function which retrieves copies of the current logs and
846 * re-initializes them in the process.
847 */
848void
849spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
850{
851	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
852
853	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
854	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
855
856	avl_create(&spa->spa_errlist_scrub,
857	    spa_error_entry_compare, sizeof (spa_error_entry_t),
858	    offsetof(spa_error_entry_t, se_avl));
859	avl_create(&spa->spa_errlist_last,
860	    spa_error_entry_compare, sizeof (spa_error_entry_t),
861	    offsetof(spa_error_entry_t, se_avl));
862}
863
864static void
865spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
866{
867	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
868	enum zti_modes mode = ztip->zti_mode;
869	uint_t value = ztip->zti_value;
870	uint_t count = ztip->zti_count;
871	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
872	char name[32];
873	uint_t flags = 0;
874	boolean_t batch = B_FALSE;
875
876	if (mode == ZTI_MODE_NULL) {
877		tqs->stqs_count = 0;
878		tqs->stqs_taskq = NULL;
879		return;
880	}
881
882	ASSERT3U(count, >, 0);
883
884	tqs->stqs_count = count;
885	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
886
887	switch (mode) {
888	case ZTI_MODE_FIXED:
889		ASSERT3U(value, >=, 1);
890		value = MAX(value, 1);
891		break;
892
893	case ZTI_MODE_BATCH:
894		batch = B_TRUE;
895		flags |= TASKQ_THREADS_CPU_PCT;
896		value = zio_taskq_batch_pct;
897		break;
898
899	default:
900		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
901		    "spa_activate()",
902		    zio_type_name[t], zio_taskq_types[q], mode, value);
903		break;
904	}
905
906	for (uint_t i = 0; i < count; i++) {
907		taskq_t *tq;
908
909		if (count > 1) {
910			(void) snprintf(name, sizeof (name), "%s_%s_%u",
911			    zio_type_name[t], zio_taskq_types[q], i);
912		} else {
913			(void) snprintf(name, sizeof (name), "%s_%s",
914			    zio_type_name[t], zio_taskq_types[q]);
915		}
916
917#ifdef SYSDC
918		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
919			if (batch)
920				flags |= TASKQ_DC_BATCH;
921
922			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
923			    spa->spa_proc, zio_taskq_basedc, flags);
924		} else {
925#endif
926			pri_t pri = maxclsyspri;
927			/*
928			 * The write issue taskq can be extremely CPU
929			 * intensive.  Run it at slightly lower priority
930			 * than the other taskqs.
931			 */
932			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
933				pri--;
934
935			tq = taskq_create_proc(name, value, pri, 50,
936			    INT_MAX, spa->spa_proc, flags);
937#ifdef SYSDC
938		}
939#endif
940
941		tqs->stqs_taskq[i] = tq;
942	}
943}
944
945static void
946spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
947{
948	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949
950	if (tqs->stqs_taskq == NULL) {
951		ASSERT0(tqs->stqs_count);
952		return;
953	}
954
955	for (uint_t i = 0; i < tqs->stqs_count; i++) {
956		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
957		taskq_destroy(tqs->stqs_taskq[i]);
958	}
959
960	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
961	tqs->stqs_taskq = NULL;
962}
963
964/*
965 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
966 * Note that a type may have multiple discrete taskqs to avoid lock contention
967 * on the taskq itself. In that case we choose which taskq at random by using
968 * the low bits of gethrtime().
969 */
970void
971spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
972    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
973{
974	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
975	taskq_t *tq;
976
977	ASSERT3P(tqs->stqs_taskq, !=, NULL);
978	ASSERT3U(tqs->stqs_count, !=, 0);
979
980	if (tqs->stqs_count == 1) {
981		tq = tqs->stqs_taskq[0];
982	} else {
983#ifdef _KERNEL
984		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
985#else
986		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
987#endif
988	}
989
990	taskq_dispatch_ent(tq, func, arg, flags, ent);
991}
992
993static void
994spa_create_zio_taskqs(spa_t *spa)
995{
996	for (int t = 0; t < ZIO_TYPES; t++) {
997		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
998			spa_taskqs_init(spa, t, q);
999		}
1000	}
1001}
1002
1003#ifdef _KERNEL
1004#ifdef SPA_PROCESS
1005static void
1006spa_thread(void *arg)
1007{
1008	callb_cpr_t cprinfo;
1009
1010	spa_t *spa = arg;
1011	user_t *pu = PTOU(curproc);
1012
1013	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1014	    spa->spa_name);
1015
1016	ASSERT(curproc != &p0);
1017	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1018	    "zpool-%s", spa->spa_name);
1019	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1020
1021#ifdef PSRSET_BIND
1022	/* bind this thread to the requested psrset */
1023	if (zio_taskq_psrset_bind != PS_NONE) {
1024		pool_lock();
1025		mutex_enter(&cpu_lock);
1026		mutex_enter(&pidlock);
1027		mutex_enter(&curproc->p_lock);
1028
1029		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030		    0, NULL, NULL) == 0)  {
1031			curthread->t_bind_pset = zio_taskq_psrset_bind;
1032		} else {
1033			cmn_err(CE_WARN,
1034			    "Couldn't bind process for zfs pool \"%s\" to "
1035			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036		}
1037
1038		mutex_exit(&curproc->p_lock);
1039		mutex_exit(&pidlock);
1040		mutex_exit(&cpu_lock);
1041		pool_unlock();
1042	}
1043#endif
1044
1045#ifdef SYSDC
1046	if (zio_taskq_sysdc) {
1047		sysdc_thread_enter(curthread, 100, 0);
1048	}
1049#endif
1050
1051	spa->spa_proc = curproc;
1052	spa->spa_did = curthread->t_did;
1053
1054	spa_create_zio_taskqs(spa);
1055
1056	mutex_enter(&spa->spa_proc_lock);
1057	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1058
1059	spa->spa_proc_state = SPA_PROC_ACTIVE;
1060	cv_broadcast(&spa->spa_proc_cv);
1061
1062	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1063	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1064		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1065	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1066
1067	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1068	spa->spa_proc_state = SPA_PROC_GONE;
1069	spa->spa_proc = &p0;
1070	cv_broadcast(&spa->spa_proc_cv);
1071	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1072
1073	mutex_enter(&curproc->p_lock);
1074	lwp_exit();
1075}
1076#endif	/* SPA_PROCESS */
1077#endif
1078
1079/*
1080 * Activate an uninitialized pool.
1081 */
1082static void
1083spa_activate(spa_t *spa, int mode)
1084{
1085	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1086
1087	spa->spa_state = POOL_STATE_ACTIVE;
1088	spa->spa_mode = mode;
1089
1090	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1092
1093	/* Try to create a covering process */
1094	mutex_enter(&spa->spa_proc_lock);
1095	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1096	ASSERT(spa->spa_proc == &p0);
1097	spa->spa_did = 0;
1098
1099#ifdef SPA_PROCESS
1100	/* Only create a process if we're going to be around a while. */
1101	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1102		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1103		    NULL, 0) == 0) {
1104			spa->spa_proc_state = SPA_PROC_CREATED;
1105			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1106				cv_wait(&spa->spa_proc_cv,
1107				    &spa->spa_proc_lock);
1108			}
1109			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1110			ASSERT(spa->spa_proc != &p0);
1111			ASSERT(spa->spa_did != 0);
1112		} else {
1113#ifdef _KERNEL
1114			cmn_err(CE_WARN,
1115			    "Couldn't create process for zfs pool \"%s\"\n",
1116			    spa->spa_name);
1117#endif
1118		}
1119	}
1120#endif	/* SPA_PROCESS */
1121	mutex_exit(&spa->spa_proc_lock);
1122
1123	/* If we didn't create a process, we need to create our taskqs. */
1124	ASSERT(spa->spa_proc == &p0);
1125	if (spa->spa_proc == &p0) {
1126		spa_create_zio_taskqs(spa);
1127	}
1128
1129	/*
1130	 * Start TRIM thread.
1131	 */
1132	trim_thread_create(spa);
1133
1134	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1135	    offsetof(vdev_t, vdev_config_dirty_node));
1136	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1137	    offsetof(objset_t, os_evicting_node));
1138	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1139	    offsetof(vdev_t, vdev_state_dirty_node));
1140
1141	txg_list_create(&spa->spa_vdev_txg_list,
1142	    offsetof(struct vdev, vdev_txg_node));
1143
1144	avl_create(&spa->spa_errlist_scrub,
1145	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1146	    offsetof(spa_error_entry_t, se_avl));
1147	avl_create(&spa->spa_errlist_last,
1148	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1149	    offsetof(spa_error_entry_t, se_avl));
1150}
1151
1152/*
1153 * Opposite of spa_activate().
1154 */
1155static void
1156spa_deactivate(spa_t *spa)
1157{
1158	ASSERT(spa->spa_sync_on == B_FALSE);
1159	ASSERT(spa->spa_dsl_pool == NULL);
1160	ASSERT(spa->spa_root_vdev == NULL);
1161	ASSERT(spa->spa_async_zio_root == NULL);
1162	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1163
1164	/*
1165	 * Stop TRIM thread in case spa_unload() wasn't called directly
1166	 * before spa_deactivate().
1167	 */
1168	trim_thread_destroy(spa);
1169
1170	spa_evicting_os_wait(spa);
1171
1172	txg_list_destroy(&spa->spa_vdev_txg_list);
1173
1174	list_destroy(&spa->spa_config_dirty_list);
1175	list_destroy(&spa->spa_evicting_os_list);
1176	list_destroy(&spa->spa_state_dirty_list);
1177
1178	for (int t = 0; t < ZIO_TYPES; t++) {
1179		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1180			spa_taskqs_fini(spa, t, q);
1181		}
1182	}
1183
1184	metaslab_class_destroy(spa->spa_normal_class);
1185	spa->spa_normal_class = NULL;
1186
1187	metaslab_class_destroy(spa->spa_log_class);
1188	spa->spa_log_class = NULL;
1189
1190	/*
1191	 * If this was part of an import or the open otherwise failed, we may
1192	 * still have errors left in the queues.  Empty them just in case.
1193	 */
1194	spa_errlog_drain(spa);
1195
1196	avl_destroy(&spa->spa_errlist_scrub);
1197	avl_destroy(&spa->spa_errlist_last);
1198
1199	spa->spa_state = POOL_STATE_UNINITIALIZED;
1200
1201	mutex_enter(&spa->spa_proc_lock);
1202	if (spa->spa_proc_state != SPA_PROC_NONE) {
1203		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1204		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1205		cv_broadcast(&spa->spa_proc_cv);
1206		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1207			ASSERT(spa->spa_proc != &p0);
1208			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1209		}
1210		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1211		spa->spa_proc_state = SPA_PROC_NONE;
1212	}
1213	ASSERT(spa->spa_proc == &p0);
1214	mutex_exit(&spa->spa_proc_lock);
1215
1216#ifdef SPA_PROCESS
1217	/*
1218	 * We want to make sure spa_thread() has actually exited the ZFS
1219	 * module, so that the module can't be unloaded out from underneath
1220	 * it.
1221	 */
1222	if (spa->spa_did != 0) {
1223		thread_join(spa->spa_did);
1224		spa->spa_did = 0;
1225	}
1226#endif	/* SPA_PROCESS */
1227}
1228
1229/*
1230 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1231 * will create all the necessary vdevs in the appropriate layout, with each vdev
1232 * in the CLOSED state.  This will prep the pool before open/creation/import.
1233 * All vdev validation is done by the vdev_alloc() routine.
1234 */
1235static int
1236spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1237    uint_t id, int atype)
1238{
1239	nvlist_t **child;
1240	uint_t children;
1241	int error;
1242
1243	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1244		return (error);
1245
1246	if ((*vdp)->vdev_ops->vdev_op_leaf)
1247		return (0);
1248
1249	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1250	    &child, &children);
1251
1252	if (error == ENOENT)
1253		return (0);
1254
1255	if (error) {
1256		vdev_free(*vdp);
1257		*vdp = NULL;
1258		return (SET_ERROR(EINVAL));
1259	}
1260
1261	for (int c = 0; c < children; c++) {
1262		vdev_t *vd;
1263		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1264		    atype)) != 0) {
1265			vdev_free(*vdp);
1266			*vdp = NULL;
1267			return (error);
1268		}
1269	}
1270
1271	ASSERT(*vdp != NULL);
1272
1273	return (0);
1274}
1275
1276/*
1277 * Opposite of spa_load().
1278 */
1279static void
1280spa_unload(spa_t *spa)
1281{
1282	int i;
1283
1284	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1285
1286	/*
1287	 * Stop TRIM thread.
1288	 */
1289	trim_thread_destroy(spa);
1290
1291	/*
1292	 * Stop async tasks.
1293	 */
1294	spa_async_suspend(spa);
1295
1296	/*
1297	 * Stop syncing.
1298	 */
1299	if (spa->spa_sync_on) {
1300		txg_sync_stop(spa->spa_dsl_pool);
1301		spa->spa_sync_on = B_FALSE;
1302	}
1303
1304	/*
1305	 * Wait for any outstanding async I/O to complete.
1306	 */
1307	if (spa->spa_async_zio_root != NULL) {
1308		for (int i = 0; i < max_ncpus; i++)
1309			(void) zio_wait(spa->spa_async_zio_root[i]);
1310		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1311		spa->spa_async_zio_root = NULL;
1312	}
1313
1314	bpobj_close(&spa->spa_deferred_bpobj);
1315
1316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1317
1318	/*
1319	 * Close all vdevs.
1320	 */
1321	if (spa->spa_root_vdev)
1322		vdev_free(spa->spa_root_vdev);
1323	ASSERT(spa->spa_root_vdev == NULL);
1324
1325	/*
1326	 * Close the dsl pool.
1327	 */
1328	if (spa->spa_dsl_pool) {
1329		dsl_pool_close(spa->spa_dsl_pool);
1330		spa->spa_dsl_pool = NULL;
1331		spa->spa_meta_objset = NULL;
1332	}
1333
1334	ddt_unload(spa);
1335
1336
1337	/*
1338	 * Drop and purge level 2 cache
1339	 */
1340	spa_l2cache_drop(spa);
1341
1342	for (i = 0; i < spa->spa_spares.sav_count; i++)
1343		vdev_free(spa->spa_spares.sav_vdevs[i]);
1344	if (spa->spa_spares.sav_vdevs) {
1345		kmem_free(spa->spa_spares.sav_vdevs,
1346		    spa->spa_spares.sav_count * sizeof (void *));
1347		spa->spa_spares.sav_vdevs = NULL;
1348	}
1349	if (spa->spa_spares.sav_config) {
1350		nvlist_free(spa->spa_spares.sav_config);
1351		spa->spa_spares.sav_config = NULL;
1352	}
1353	spa->spa_spares.sav_count = 0;
1354
1355	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1356		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1357		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1358	}
1359	if (spa->spa_l2cache.sav_vdevs) {
1360		kmem_free(spa->spa_l2cache.sav_vdevs,
1361		    spa->spa_l2cache.sav_count * sizeof (void *));
1362		spa->spa_l2cache.sav_vdevs = NULL;
1363	}
1364	if (spa->spa_l2cache.sav_config) {
1365		nvlist_free(spa->spa_l2cache.sav_config);
1366		spa->spa_l2cache.sav_config = NULL;
1367	}
1368	spa->spa_l2cache.sav_count = 0;
1369
1370	spa->spa_async_suspended = 0;
1371
1372	if (spa->spa_comment != NULL) {
1373		spa_strfree(spa->spa_comment);
1374		spa->spa_comment = NULL;
1375	}
1376
1377	spa_config_exit(spa, SCL_ALL, FTAG);
1378}
1379
1380/*
1381 * Load (or re-load) the current list of vdevs describing the active spares for
1382 * this pool.  When this is called, we have some form of basic information in
1383 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1384 * then re-generate a more complete list including status information.
1385 */
1386static void
1387spa_load_spares(spa_t *spa)
1388{
1389	nvlist_t **spares;
1390	uint_t nspares;
1391	int i;
1392	vdev_t *vd, *tvd;
1393
1394	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1395
1396	/*
1397	 * First, close and free any existing spare vdevs.
1398	 */
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		vd = spa->spa_spares.sav_vdevs[i];
1401
1402		/* Undo the call to spa_activate() below */
1403		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1404		    B_FALSE)) != NULL && tvd->vdev_isspare)
1405			spa_spare_remove(tvd);
1406		vdev_close(vd);
1407		vdev_free(vd);
1408	}
1409
1410	if (spa->spa_spares.sav_vdevs)
1411		kmem_free(spa->spa_spares.sav_vdevs,
1412		    spa->spa_spares.sav_count * sizeof (void *));
1413
1414	if (spa->spa_spares.sav_config == NULL)
1415		nspares = 0;
1416	else
1417		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1418		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1419
1420	spa->spa_spares.sav_count = (int)nspares;
1421	spa->spa_spares.sav_vdevs = NULL;
1422
1423	if (nspares == 0)
1424		return;
1425
1426	/*
1427	 * Construct the array of vdevs, opening them to get status in the
1428	 * process.   For each spare, there is potentially two different vdev_t
1429	 * structures associated with it: one in the list of spares (used only
1430	 * for basic validation purposes) and one in the active vdev
1431	 * configuration (if it's spared in).  During this phase we open and
1432	 * validate each vdev on the spare list.  If the vdev also exists in the
1433	 * active configuration, then we also mark this vdev as an active spare.
1434	 */
1435	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1436	    KM_SLEEP);
1437	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1438		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1439		    VDEV_ALLOC_SPARE) == 0);
1440		ASSERT(vd != NULL);
1441
1442		spa->spa_spares.sav_vdevs[i] = vd;
1443
1444		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1445		    B_FALSE)) != NULL) {
1446			if (!tvd->vdev_isspare)
1447				spa_spare_add(tvd);
1448
1449			/*
1450			 * We only mark the spare active if we were successfully
1451			 * able to load the vdev.  Otherwise, importing a pool
1452			 * with a bad active spare would result in strange
1453			 * behavior, because multiple pool would think the spare
1454			 * is actively in use.
1455			 *
1456			 * There is a vulnerability here to an equally bizarre
1457			 * circumstance, where a dead active spare is later
1458			 * brought back to life (onlined or otherwise).  Given
1459			 * the rarity of this scenario, and the extra complexity
1460			 * it adds, we ignore the possibility.
1461			 */
1462			if (!vdev_is_dead(tvd))
1463				spa_spare_activate(tvd);
1464		}
1465
1466		vd->vdev_top = vd;
1467		vd->vdev_aux = &spa->spa_spares;
1468
1469		if (vdev_open(vd) != 0)
1470			continue;
1471
1472		if (vdev_validate_aux(vd) == 0)
1473			spa_spare_add(vd);
1474	}
1475
1476	/*
1477	 * Recompute the stashed list of spares, with status information
1478	 * this time.
1479	 */
1480	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1481	    DATA_TYPE_NVLIST_ARRAY) == 0);
1482
1483	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1484	    KM_SLEEP);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		spares[i] = vdev_config_generate(spa,
1487		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1488	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1489	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1490	for (i = 0; i < spa->spa_spares.sav_count; i++)
1491		nvlist_free(spares[i]);
1492	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1493}
1494
1495/*
1496 * Load (or re-load) the current list of vdevs describing the active l2cache for
1497 * this pool.  When this is called, we have some form of basic information in
1498 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1499 * then re-generate a more complete list including status information.
1500 * Devices which are already active have their details maintained, and are
1501 * not re-opened.
1502 */
1503static void
1504spa_load_l2cache(spa_t *spa)
1505{
1506	nvlist_t **l2cache;
1507	uint_t nl2cache;
1508	int i, j, oldnvdevs;
1509	uint64_t guid;
1510	vdev_t *vd, **oldvdevs, **newvdevs;
1511	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1512
1513	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1514
1515	if (sav->sav_config != NULL) {
1516		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1517		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1518		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1519	} else {
1520		nl2cache = 0;
1521		newvdevs = NULL;
1522	}
1523
1524	oldvdevs = sav->sav_vdevs;
1525	oldnvdevs = sav->sav_count;
1526	sav->sav_vdevs = NULL;
1527	sav->sav_count = 0;
1528
1529	/*
1530	 * Process new nvlist of vdevs.
1531	 */
1532	for (i = 0; i < nl2cache; i++) {
1533		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1534		    &guid) == 0);
1535
1536		newvdevs[i] = NULL;
1537		for (j = 0; j < oldnvdevs; j++) {
1538			vd = oldvdevs[j];
1539			if (vd != NULL && guid == vd->vdev_guid) {
1540				/*
1541				 * Retain previous vdev for add/remove ops.
1542				 */
1543				newvdevs[i] = vd;
1544				oldvdevs[j] = NULL;
1545				break;
1546			}
1547		}
1548
1549		if (newvdevs[i] == NULL) {
1550			/*
1551			 * Create new vdev
1552			 */
1553			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1554			    VDEV_ALLOC_L2CACHE) == 0);
1555			ASSERT(vd != NULL);
1556			newvdevs[i] = vd;
1557
1558			/*
1559			 * Commit this vdev as an l2cache device,
1560			 * even if it fails to open.
1561			 */
1562			spa_l2cache_add(vd);
1563
1564			vd->vdev_top = vd;
1565			vd->vdev_aux = sav;
1566
1567			spa_l2cache_activate(vd);
1568
1569			if (vdev_open(vd) != 0)
1570				continue;
1571
1572			(void) vdev_validate_aux(vd);
1573
1574			if (!vdev_is_dead(vd))
1575				l2arc_add_vdev(spa, vd);
1576		}
1577	}
1578
1579	/*
1580	 * Purge vdevs that were dropped
1581	 */
1582	for (i = 0; i < oldnvdevs; i++) {
1583		uint64_t pool;
1584
1585		vd = oldvdevs[i];
1586		if (vd != NULL) {
1587			ASSERT(vd->vdev_isl2cache);
1588
1589			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1590			    pool != 0ULL && l2arc_vdev_present(vd))
1591				l2arc_remove_vdev(vd);
1592			vdev_clear_stats(vd);
1593			vdev_free(vd);
1594		}
1595	}
1596
1597	if (oldvdevs)
1598		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1599
1600	if (sav->sav_config == NULL)
1601		goto out;
1602
1603	sav->sav_vdevs = newvdevs;
1604	sav->sav_count = (int)nl2cache;
1605
1606	/*
1607	 * Recompute the stashed list of l2cache devices, with status
1608	 * information this time.
1609	 */
1610	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1611	    DATA_TYPE_NVLIST_ARRAY) == 0);
1612
1613	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1614	for (i = 0; i < sav->sav_count; i++)
1615		l2cache[i] = vdev_config_generate(spa,
1616		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1617	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1618	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1619out:
1620	for (i = 0; i < sav->sav_count; i++)
1621		nvlist_free(l2cache[i]);
1622	if (sav->sav_count)
1623		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1624}
1625
1626static int
1627load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1628{
1629	dmu_buf_t *db;
1630	char *packed = NULL;
1631	size_t nvsize = 0;
1632	int error;
1633	*value = NULL;
1634
1635	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1636	if (error != 0)
1637		return (error);
1638
1639	nvsize = *(uint64_t *)db->db_data;
1640	dmu_buf_rele(db, FTAG);
1641
1642	packed = kmem_alloc(nvsize, KM_SLEEP);
1643	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1644	    DMU_READ_PREFETCH);
1645	if (error == 0)
1646		error = nvlist_unpack(packed, nvsize, value, 0);
1647	kmem_free(packed, nvsize);
1648
1649	return (error);
1650}
1651
1652/*
1653 * Checks to see if the given vdev could not be opened, in which case we post a
1654 * sysevent to notify the autoreplace code that the device has been removed.
1655 */
1656static void
1657spa_check_removed(vdev_t *vd)
1658{
1659	for (int c = 0; c < vd->vdev_children; c++)
1660		spa_check_removed(vd->vdev_child[c]);
1661
1662	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1663	    !vd->vdev_ishole) {
1664		zfs_post_autoreplace(vd->vdev_spa, vd);
1665		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1666	}
1667}
1668
1669/*
1670 * Validate the current config against the MOS config
1671 */
1672static boolean_t
1673spa_config_valid(spa_t *spa, nvlist_t *config)
1674{
1675	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1676	nvlist_t *nv;
1677
1678	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1679
1680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1682
1683	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1684
1685	/*
1686	 * If we're doing a normal import, then build up any additional
1687	 * diagnostic information about missing devices in this config.
1688	 * We'll pass this up to the user for further processing.
1689	 */
1690	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1691		nvlist_t **child, *nv;
1692		uint64_t idx = 0;
1693
1694		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1695		    KM_SLEEP);
1696		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1697
1698		for (int c = 0; c < rvd->vdev_children; c++) {
1699			vdev_t *tvd = rvd->vdev_child[c];
1700			vdev_t *mtvd  = mrvd->vdev_child[c];
1701
1702			if (tvd->vdev_ops == &vdev_missing_ops &&
1703			    mtvd->vdev_ops != &vdev_missing_ops &&
1704			    mtvd->vdev_islog)
1705				child[idx++] = vdev_config_generate(spa, mtvd,
1706				    B_FALSE, 0);
1707		}
1708
1709		if (idx) {
1710			VERIFY(nvlist_add_nvlist_array(nv,
1711			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1712			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1713			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1714
1715			for (int i = 0; i < idx; i++)
1716				nvlist_free(child[i]);
1717		}
1718		nvlist_free(nv);
1719		kmem_free(child, rvd->vdev_children * sizeof (char **));
1720	}
1721
1722	/*
1723	 * Compare the root vdev tree with the information we have
1724	 * from the MOS config (mrvd). Check each top-level vdev
1725	 * with the corresponding MOS config top-level (mtvd).
1726	 */
1727	for (int c = 0; c < rvd->vdev_children; c++) {
1728		vdev_t *tvd = rvd->vdev_child[c];
1729		vdev_t *mtvd  = mrvd->vdev_child[c];
1730
1731		/*
1732		 * Resolve any "missing" vdevs in the current configuration.
1733		 * If we find that the MOS config has more accurate information
1734		 * about the top-level vdev then use that vdev instead.
1735		 */
1736		if (tvd->vdev_ops == &vdev_missing_ops &&
1737		    mtvd->vdev_ops != &vdev_missing_ops) {
1738
1739			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1740				continue;
1741
1742			/*
1743			 * Device specific actions.
1744			 */
1745			if (mtvd->vdev_islog) {
1746				spa_set_log_state(spa, SPA_LOG_CLEAR);
1747			} else {
1748				/*
1749				 * XXX - once we have 'readonly' pool
1750				 * support we should be able to handle
1751				 * missing data devices by transitioning
1752				 * the pool to readonly.
1753				 */
1754				continue;
1755			}
1756
1757			/*
1758			 * Swap the missing vdev with the data we were
1759			 * able to obtain from the MOS config.
1760			 */
1761			vdev_remove_child(rvd, tvd);
1762			vdev_remove_child(mrvd, mtvd);
1763
1764			vdev_add_child(rvd, mtvd);
1765			vdev_add_child(mrvd, tvd);
1766
1767			spa_config_exit(spa, SCL_ALL, FTAG);
1768			vdev_load(mtvd);
1769			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1770
1771			vdev_reopen(rvd);
1772		} else if (mtvd->vdev_islog) {
1773			/*
1774			 * Load the slog device's state from the MOS config
1775			 * since it's possible that the label does not
1776			 * contain the most up-to-date information.
1777			 */
1778			vdev_load_log_state(tvd, mtvd);
1779			vdev_reopen(tvd);
1780		}
1781	}
1782	vdev_free(mrvd);
1783	spa_config_exit(spa, SCL_ALL, FTAG);
1784
1785	/*
1786	 * Ensure we were able to validate the config.
1787	 */
1788	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1789}
1790
1791/*
1792 * Check for missing log devices
1793 */
1794static boolean_t
1795spa_check_logs(spa_t *spa)
1796{
1797	boolean_t rv = B_FALSE;
1798	dsl_pool_t *dp = spa_get_dsl(spa);
1799
1800	switch (spa->spa_log_state) {
1801	case SPA_LOG_MISSING:
1802		/* need to recheck in case slog has been restored */
1803	case SPA_LOG_UNKNOWN:
1804		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1805		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1806		if (rv)
1807			spa_set_log_state(spa, SPA_LOG_MISSING);
1808		break;
1809	}
1810	return (rv);
1811}
1812
1813static boolean_t
1814spa_passivate_log(spa_t *spa)
1815{
1816	vdev_t *rvd = spa->spa_root_vdev;
1817	boolean_t slog_found = B_FALSE;
1818
1819	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1820
1821	if (!spa_has_slogs(spa))
1822		return (B_FALSE);
1823
1824	for (int c = 0; c < rvd->vdev_children; c++) {
1825		vdev_t *tvd = rvd->vdev_child[c];
1826		metaslab_group_t *mg = tvd->vdev_mg;
1827
1828		if (tvd->vdev_islog) {
1829			metaslab_group_passivate(mg);
1830			slog_found = B_TRUE;
1831		}
1832	}
1833
1834	return (slog_found);
1835}
1836
1837static void
1838spa_activate_log(spa_t *spa)
1839{
1840	vdev_t *rvd = spa->spa_root_vdev;
1841
1842	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1843
1844	for (int c = 0; c < rvd->vdev_children; c++) {
1845		vdev_t *tvd = rvd->vdev_child[c];
1846		metaslab_group_t *mg = tvd->vdev_mg;
1847
1848		if (tvd->vdev_islog)
1849			metaslab_group_activate(mg);
1850	}
1851}
1852
1853int
1854spa_offline_log(spa_t *spa)
1855{
1856	int error;
1857
1858	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1859	    NULL, DS_FIND_CHILDREN);
1860	if (error == 0) {
1861		/*
1862		 * We successfully offlined the log device, sync out the
1863		 * current txg so that the "stubby" block can be removed
1864		 * by zil_sync().
1865		 */
1866		txg_wait_synced(spa->spa_dsl_pool, 0);
1867	}
1868	return (error);
1869}
1870
1871static void
1872spa_aux_check_removed(spa_aux_vdev_t *sav)
1873{
1874	int i;
1875
1876	for (i = 0; i < sav->sav_count; i++)
1877		spa_check_removed(sav->sav_vdevs[i]);
1878}
1879
1880void
1881spa_claim_notify(zio_t *zio)
1882{
1883	spa_t *spa = zio->io_spa;
1884
1885	if (zio->io_error)
1886		return;
1887
1888	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1889	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1890		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1891	mutex_exit(&spa->spa_props_lock);
1892}
1893
1894typedef struct spa_load_error {
1895	uint64_t	sle_meta_count;
1896	uint64_t	sle_data_count;
1897} spa_load_error_t;
1898
1899static void
1900spa_load_verify_done(zio_t *zio)
1901{
1902	blkptr_t *bp = zio->io_bp;
1903	spa_load_error_t *sle = zio->io_private;
1904	dmu_object_type_t type = BP_GET_TYPE(bp);
1905	int error = zio->io_error;
1906	spa_t *spa = zio->io_spa;
1907
1908	if (error) {
1909		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1910		    type != DMU_OT_INTENT_LOG)
1911			atomic_inc_64(&sle->sle_meta_count);
1912		else
1913			atomic_inc_64(&sle->sle_data_count);
1914	}
1915	zio_data_buf_free(zio->io_data, zio->io_size);
1916
1917	mutex_enter(&spa->spa_scrub_lock);
1918	spa->spa_scrub_inflight--;
1919	cv_broadcast(&spa->spa_scrub_io_cv);
1920	mutex_exit(&spa->spa_scrub_lock);
1921}
1922
1923/*
1924 * Maximum number of concurrent scrub i/os to create while verifying
1925 * a pool while importing it.
1926 */
1927int spa_load_verify_maxinflight = 10000;
1928boolean_t spa_load_verify_metadata = B_TRUE;
1929boolean_t spa_load_verify_data = B_TRUE;
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1932    &spa_load_verify_maxinflight, 0,
1933    "Maximum number of concurrent scrub I/Os to create while verifying a "
1934    "pool while importing it");
1935
1936SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1937    &spa_load_verify_metadata, 0,
1938    "Check metadata on import?");
1939
1940SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1941    &spa_load_verify_data, 0,
1942    "Check user data on import?");
1943
1944/*ARGSUSED*/
1945static int
1946spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1947    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1948{
1949	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1950		return (0);
1951	/*
1952	 * Note: normally this routine will not be called if
1953	 * spa_load_verify_metadata is not set.  However, it may be useful
1954	 * to manually set the flag after the traversal has begun.
1955	 */
1956	if (!spa_load_verify_metadata)
1957		return (0);
1958	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1959		return (0);
1960
1961	zio_t *rio = arg;
1962	size_t size = BP_GET_PSIZE(bp);
1963	void *data = zio_data_buf_alloc(size);
1964
1965	mutex_enter(&spa->spa_scrub_lock);
1966	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1967		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1968	spa->spa_scrub_inflight++;
1969	mutex_exit(&spa->spa_scrub_lock);
1970
1971	zio_nowait(zio_read(rio, spa, bp, data, size,
1972	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1973	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1974	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1975	return (0);
1976}
1977
1978static int
1979spa_load_verify(spa_t *spa)
1980{
1981	zio_t *rio;
1982	spa_load_error_t sle = { 0 };
1983	zpool_rewind_policy_t policy;
1984	boolean_t verify_ok = B_FALSE;
1985	int error = 0;
1986
1987	zpool_get_rewind_policy(spa->spa_config, &policy);
1988
1989	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1990		return (0);
1991
1992	rio = zio_root(spa, NULL, &sle,
1993	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1994
1995	if (spa_load_verify_metadata) {
1996		error = traverse_pool(spa, spa->spa_verify_min_txg,
1997		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1998		    spa_load_verify_cb, rio);
1999	}
2000
2001	(void) zio_wait(rio);
2002
2003	spa->spa_load_meta_errors = sle.sle_meta_count;
2004	spa->spa_load_data_errors = sle.sle_data_count;
2005
2006	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2007	    sle.sle_data_count <= policy.zrp_maxdata) {
2008		int64_t loss = 0;
2009
2010		verify_ok = B_TRUE;
2011		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2012		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2013
2014		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2015		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2016		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2017		VERIFY(nvlist_add_int64(spa->spa_load_info,
2018		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2019		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2020		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2021	} else {
2022		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2023	}
2024
2025	if (error) {
2026		if (error != ENXIO && error != EIO)
2027			error = SET_ERROR(EIO);
2028		return (error);
2029	}
2030
2031	return (verify_ok ? 0 : EIO);
2032}
2033
2034/*
2035 * Find a value in the pool props object.
2036 */
2037static void
2038spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2039{
2040	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2041	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2042}
2043
2044/*
2045 * Find a value in the pool directory object.
2046 */
2047static int
2048spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2049{
2050	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2051	    name, sizeof (uint64_t), 1, val));
2052}
2053
2054static int
2055spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2056{
2057	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2058	return (err);
2059}
2060
2061/*
2062 * Fix up config after a partly-completed split.  This is done with the
2063 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2064 * pool have that entry in their config, but only the splitting one contains
2065 * a list of all the guids of the vdevs that are being split off.
2066 *
2067 * This function determines what to do with that list: either rejoin
2068 * all the disks to the pool, or complete the splitting process.  To attempt
2069 * the rejoin, each disk that is offlined is marked online again, and
2070 * we do a reopen() call.  If the vdev label for every disk that was
2071 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2072 * then we call vdev_split() on each disk, and complete the split.
2073 *
2074 * Otherwise we leave the config alone, with all the vdevs in place in
2075 * the original pool.
2076 */
2077static void
2078spa_try_repair(spa_t *spa, nvlist_t *config)
2079{
2080	uint_t extracted;
2081	uint64_t *glist;
2082	uint_t i, gcount;
2083	nvlist_t *nvl;
2084	vdev_t **vd;
2085	boolean_t attempt_reopen;
2086
2087	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2088		return;
2089
2090	/* check that the config is complete */
2091	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2092	    &glist, &gcount) != 0)
2093		return;
2094
2095	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2096
2097	/* attempt to online all the vdevs & validate */
2098	attempt_reopen = B_TRUE;
2099	for (i = 0; i < gcount; i++) {
2100		if (glist[i] == 0)	/* vdev is hole */
2101			continue;
2102
2103		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2104		if (vd[i] == NULL) {
2105			/*
2106			 * Don't bother attempting to reopen the disks;
2107			 * just do the split.
2108			 */
2109			attempt_reopen = B_FALSE;
2110		} else {
2111			/* attempt to re-online it */
2112			vd[i]->vdev_offline = B_FALSE;
2113		}
2114	}
2115
2116	if (attempt_reopen) {
2117		vdev_reopen(spa->spa_root_vdev);
2118
2119		/* check each device to see what state it's in */
2120		for (extracted = 0, i = 0; i < gcount; i++) {
2121			if (vd[i] != NULL &&
2122			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2123				break;
2124			++extracted;
2125		}
2126	}
2127
2128	/*
2129	 * If every disk has been moved to the new pool, or if we never
2130	 * even attempted to look at them, then we split them off for
2131	 * good.
2132	 */
2133	if (!attempt_reopen || gcount == extracted) {
2134		for (i = 0; i < gcount; i++)
2135			if (vd[i] != NULL)
2136				vdev_split(vd[i]);
2137		vdev_reopen(spa->spa_root_vdev);
2138	}
2139
2140	kmem_free(vd, gcount * sizeof (vdev_t *));
2141}
2142
2143static int
2144spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2145    boolean_t mosconfig)
2146{
2147	nvlist_t *config = spa->spa_config;
2148	char *ereport = FM_EREPORT_ZFS_POOL;
2149	char *comment;
2150	int error;
2151	uint64_t pool_guid;
2152	nvlist_t *nvl;
2153
2154	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2155		return (SET_ERROR(EINVAL));
2156
2157	ASSERT(spa->spa_comment == NULL);
2158	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2159		spa->spa_comment = spa_strdup(comment);
2160
2161	/*
2162	 * Versioning wasn't explicitly added to the label until later, so if
2163	 * it's not present treat it as the initial version.
2164	 */
2165	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2166	    &spa->spa_ubsync.ub_version) != 0)
2167		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2168
2169	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2170	    &spa->spa_config_txg);
2171
2172	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2173	    spa_guid_exists(pool_guid, 0)) {
2174		error = SET_ERROR(EEXIST);
2175	} else {
2176		spa->spa_config_guid = pool_guid;
2177
2178		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2179		    &nvl) == 0) {
2180			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2181			    KM_SLEEP) == 0);
2182		}
2183
2184		nvlist_free(spa->spa_load_info);
2185		spa->spa_load_info = fnvlist_alloc();
2186
2187		gethrestime(&spa->spa_loaded_ts);
2188		error = spa_load_impl(spa, pool_guid, config, state, type,
2189		    mosconfig, &ereport);
2190	}
2191
2192	/*
2193	 * Don't count references from objsets that are already closed
2194	 * and are making their way through the eviction process.
2195	 */
2196	spa_evicting_os_wait(spa);
2197	spa->spa_minref = refcount_count(&spa->spa_refcount);
2198	if (error) {
2199		if (error != EEXIST) {
2200			spa->spa_loaded_ts.tv_sec = 0;
2201			spa->spa_loaded_ts.tv_nsec = 0;
2202		}
2203		if (error != EBADF) {
2204			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2205		}
2206	}
2207	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2208	spa->spa_ena = 0;
2209
2210	return (error);
2211}
2212
2213/*
2214 * Load an existing storage pool, using the pool's builtin spa_config as a
2215 * source of configuration information.
2216 */
2217static int
2218spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2219    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2220    char **ereport)
2221{
2222	int error = 0;
2223	nvlist_t *nvroot = NULL;
2224	nvlist_t *label;
2225	vdev_t *rvd;
2226	uberblock_t *ub = &spa->spa_uberblock;
2227	uint64_t children, config_cache_txg = spa->spa_config_txg;
2228	int orig_mode = spa->spa_mode;
2229	int parse;
2230	uint64_t obj;
2231	boolean_t missing_feat_write = B_FALSE;
2232
2233	/*
2234	 * If this is an untrusted config, access the pool in read-only mode.
2235	 * This prevents things like resilvering recently removed devices.
2236	 */
2237	if (!mosconfig)
2238		spa->spa_mode = FREAD;
2239
2240	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2241
2242	spa->spa_load_state = state;
2243
2244	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2245		return (SET_ERROR(EINVAL));
2246
2247	parse = (type == SPA_IMPORT_EXISTING ?
2248	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2249
2250	/*
2251	 * Create "The Godfather" zio to hold all async IOs
2252	 */
2253	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2254	    KM_SLEEP);
2255	for (int i = 0; i < max_ncpus; i++) {
2256		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2257		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2258		    ZIO_FLAG_GODFATHER);
2259	}
2260
2261	/*
2262	 * Parse the configuration into a vdev tree.  We explicitly set the
2263	 * value that will be returned by spa_version() since parsing the
2264	 * configuration requires knowing the version number.
2265	 */
2266	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2267	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2268	spa_config_exit(spa, SCL_ALL, FTAG);
2269
2270	if (error != 0)
2271		return (error);
2272
2273	ASSERT(spa->spa_root_vdev == rvd);
2274	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2275	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2276
2277	if (type != SPA_IMPORT_ASSEMBLE) {
2278		ASSERT(spa_guid(spa) == pool_guid);
2279	}
2280
2281	/*
2282	 * Try to open all vdevs, loading each label in the process.
2283	 */
2284	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2285	error = vdev_open(rvd);
2286	spa_config_exit(spa, SCL_ALL, FTAG);
2287	if (error != 0)
2288		return (error);
2289
2290	/*
2291	 * We need to validate the vdev labels against the configuration that
2292	 * we have in hand, which is dependent on the setting of mosconfig. If
2293	 * mosconfig is true then we're validating the vdev labels based on
2294	 * that config.  Otherwise, we're validating against the cached config
2295	 * (zpool.cache) that was read when we loaded the zfs module, and then
2296	 * later we will recursively call spa_load() and validate against
2297	 * the vdev config.
2298	 *
2299	 * If we're assembling a new pool that's been split off from an
2300	 * existing pool, the labels haven't yet been updated so we skip
2301	 * validation for now.
2302	 */
2303	if (type != SPA_IMPORT_ASSEMBLE) {
2304		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2305		error = vdev_validate(rvd, mosconfig);
2306		spa_config_exit(spa, SCL_ALL, FTAG);
2307
2308		if (error != 0)
2309			return (error);
2310
2311		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2312			return (SET_ERROR(ENXIO));
2313	}
2314
2315	/*
2316	 * Find the best uberblock.
2317	 */
2318	vdev_uberblock_load(rvd, ub, &label);
2319
2320	/*
2321	 * If we weren't able to find a single valid uberblock, return failure.
2322	 */
2323	if (ub->ub_txg == 0) {
2324		nvlist_free(label);
2325		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2326	}
2327
2328	/*
2329	 * If the pool has an unsupported version we can't open it.
2330	 */
2331	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2332		nvlist_free(label);
2333		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2334	}
2335
2336	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2337		nvlist_t *features;
2338
2339		/*
2340		 * If we weren't able to find what's necessary for reading the
2341		 * MOS in the label, return failure.
2342		 */
2343		if (label == NULL || nvlist_lookup_nvlist(label,
2344		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2345			nvlist_free(label);
2346			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2347			    ENXIO));
2348		}
2349
2350		/*
2351		 * Update our in-core representation with the definitive values
2352		 * from the label.
2353		 */
2354		nvlist_free(spa->spa_label_features);
2355		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2356	}
2357
2358	nvlist_free(label);
2359
2360	/*
2361	 * Look through entries in the label nvlist's features_for_read. If
2362	 * there is a feature listed there which we don't understand then we
2363	 * cannot open a pool.
2364	 */
2365	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2366		nvlist_t *unsup_feat;
2367
2368		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2369		    0);
2370
2371		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2372		    NULL); nvp != NULL;
2373		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2374			if (!zfeature_is_supported(nvpair_name(nvp))) {
2375				VERIFY(nvlist_add_string(unsup_feat,
2376				    nvpair_name(nvp), "") == 0);
2377			}
2378		}
2379
2380		if (!nvlist_empty(unsup_feat)) {
2381			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2382			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2383			nvlist_free(unsup_feat);
2384			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2385			    ENOTSUP));
2386		}
2387
2388		nvlist_free(unsup_feat);
2389	}
2390
2391	/*
2392	 * If the vdev guid sum doesn't match the uberblock, we have an
2393	 * incomplete configuration.  We first check to see if the pool
2394	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2395	 * If it is, defer the vdev_guid_sum check till later so we
2396	 * can handle missing vdevs.
2397	 */
2398	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2399	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2400	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2401		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2402
2403	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2404		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2405		spa_try_repair(spa, config);
2406		spa_config_exit(spa, SCL_ALL, FTAG);
2407		nvlist_free(spa->spa_config_splitting);
2408		spa->spa_config_splitting = NULL;
2409	}
2410
2411	/*
2412	 * Initialize internal SPA structures.
2413	 */
2414	spa->spa_state = POOL_STATE_ACTIVE;
2415	spa->spa_ubsync = spa->spa_uberblock;
2416	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2417	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2418	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2419	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2420	spa->spa_claim_max_txg = spa->spa_first_txg;
2421	spa->spa_prev_software_version = ub->ub_software_version;
2422
2423	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2424	if (error)
2425		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2427
2428	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2429		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2430
2431	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2432		boolean_t missing_feat_read = B_FALSE;
2433		nvlist_t *unsup_feat, *enabled_feat;
2434
2435		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2436		    &spa->spa_feat_for_read_obj) != 0) {
2437			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438		}
2439
2440		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2441		    &spa->spa_feat_for_write_obj) != 0) {
2442			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443		}
2444
2445		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2446		    &spa->spa_feat_desc_obj) != 0) {
2447			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448		}
2449
2450		enabled_feat = fnvlist_alloc();
2451		unsup_feat = fnvlist_alloc();
2452
2453		if (!spa_features_check(spa, B_FALSE,
2454		    unsup_feat, enabled_feat))
2455			missing_feat_read = B_TRUE;
2456
2457		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2458			if (!spa_features_check(spa, B_TRUE,
2459			    unsup_feat, enabled_feat)) {
2460				missing_feat_write = B_TRUE;
2461			}
2462		}
2463
2464		fnvlist_add_nvlist(spa->spa_load_info,
2465		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2466
2467		if (!nvlist_empty(unsup_feat)) {
2468			fnvlist_add_nvlist(spa->spa_load_info,
2469			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2470		}
2471
2472		fnvlist_free(enabled_feat);
2473		fnvlist_free(unsup_feat);
2474
2475		if (!missing_feat_read) {
2476			fnvlist_add_boolean(spa->spa_load_info,
2477			    ZPOOL_CONFIG_CAN_RDONLY);
2478		}
2479
2480		/*
2481		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2482		 * twofold: to determine whether the pool is available for
2483		 * import in read-write mode and (if it is not) whether the
2484		 * pool is available for import in read-only mode. If the pool
2485		 * is available for import in read-write mode, it is displayed
2486		 * as available in userland; if it is not available for import
2487		 * in read-only mode, it is displayed as unavailable in
2488		 * userland. If the pool is available for import in read-only
2489		 * mode but not read-write mode, it is displayed as unavailable
2490		 * in userland with a special note that the pool is actually
2491		 * available for open in read-only mode.
2492		 *
2493		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2494		 * missing a feature for write, we must first determine whether
2495		 * the pool can be opened read-only before returning to
2496		 * userland in order to know whether to display the
2497		 * abovementioned note.
2498		 */
2499		if (missing_feat_read || (missing_feat_write &&
2500		    spa_writeable(spa))) {
2501			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2502			    ENOTSUP));
2503		}
2504
2505		/*
2506		 * Load refcounts for ZFS features from disk into an in-memory
2507		 * cache during SPA initialization.
2508		 */
2509		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2510			uint64_t refcount;
2511
2512			error = feature_get_refcount_from_disk(spa,
2513			    &spa_feature_table[i], &refcount);
2514			if (error == 0) {
2515				spa->spa_feat_refcount_cache[i] = refcount;
2516			} else if (error == ENOTSUP) {
2517				spa->spa_feat_refcount_cache[i] =
2518				    SPA_FEATURE_DISABLED;
2519			} else {
2520				return (spa_vdev_err(rvd,
2521				    VDEV_AUX_CORRUPT_DATA, EIO));
2522			}
2523		}
2524	}
2525
2526	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2527		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2528		    &spa->spa_feat_enabled_txg_obj) != 0)
2529			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530	}
2531
2532	spa->spa_is_initializing = B_TRUE;
2533	error = dsl_pool_open(spa->spa_dsl_pool);
2534	spa->spa_is_initializing = B_FALSE;
2535	if (error != 0)
2536		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2537
2538	if (!mosconfig) {
2539		uint64_t hostid;
2540		nvlist_t *policy = NULL, *nvconfig;
2541
2542		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2543			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2544
2545		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2546		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2547			char *hostname;
2548			unsigned long myhostid = 0;
2549
2550			VERIFY(nvlist_lookup_string(nvconfig,
2551			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2552
2553#ifdef	_KERNEL
2554			myhostid = zone_get_hostid(NULL);
2555#else	/* _KERNEL */
2556			/*
2557			 * We're emulating the system's hostid in userland, so
2558			 * we can't use zone_get_hostid().
2559			 */
2560			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2561#endif	/* _KERNEL */
2562			if (check_hostid && hostid != 0 && myhostid != 0 &&
2563			    hostid != myhostid) {
2564				nvlist_free(nvconfig);
2565				cmn_err(CE_WARN, "pool '%s' could not be "
2566				    "loaded as it was last accessed by "
2567				    "another system (host: %s hostid: 0x%lx). "
2568				    "See: http://illumos.org/msg/ZFS-8000-EY",
2569				    spa_name(spa), hostname,
2570				    (unsigned long)hostid);
2571				return (SET_ERROR(EBADF));
2572			}
2573		}
2574		if (nvlist_lookup_nvlist(spa->spa_config,
2575		    ZPOOL_REWIND_POLICY, &policy) == 0)
2576			VERIFY(nvlist_add_nvlist(nvconfig,
2577			    ZPOOL_REWIND_POLICY, policy) == 0);
2578
2579		spa_config_set(spa, nvconfig);
2580		spa_unload(spa);
2581		spa_deactivate(spa);
2582		spa_activate(spa, orig_mode);
2583
2584		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2585	}
2586
2587	/* Grab the secret checksum salt from the MOS. */
2588	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2589	    DMU_POOL_CHECKSUM_SALT, 1,
2590	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2591	    spa->spa_cksum_salt.zcs_bytes);
2592	if (error == ENOENT) {
2593		/* Generate a new salt for subsequent use */
2594		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2595		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2596	} else if (error != 0) {
2597		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598	}
2599
2600	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2601		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2603	if (error != 0)
2604		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605
2606	/*
2607	 * Load the bit that tells us to use the new accounting function
2608	 * (raid-z deflation).  If we have an older pool, this will not
2609	 * be present.
2610	 */
2611	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2612	if (error != 0 && error != ENOENT)
2613		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614
2615	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2616	    &spa->spa_creation_version);
2617	if (error != 0 && error != ENOENT)
2618		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619
2620	/*
2621	 * Load the persistent error log.  If we have an older pool, this will
2622	 * not be present.
2623	 */
2624	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2625	if (error != 0 && error != ENOENT)
2626		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2627
2628	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2629	    &spa->spa_errlog_scrub);
2630	if (error != 0 && error != ENOENT)
2631		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2632
2633	/*
2634	 * Load the history object.  If we have an older pool, this
2635	 * will not be present.
2636	 */
2637	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2638	if (error != 0 && error != ENOENT)
2639		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640
2641	/*
2642	 * If we're assembling the pool from the split-off vdevs of
2643	 * an existing pool, we don't want to attach the spares & cache
2644	 * devices.
2645	 */
2646
2647	/*
2648	 * Load any hot spares for this pool.
2649	 */
2650	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2651	if (error != 0 && error != ENOENT)
2652		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2654		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2655		if (load_nvlist(spa, spa->spa_spares.sav_object,
2656		    &spa->spa_spares.sav_config) != 0)
2657			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2658
2659		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2660		spa_load_spares(spa);
2661		spa_config_exit(spa, SCL_ALL, FTAG);
2662	} else if (error == 0) {
2663		spa->spa_spares.sav_sync = B_TRUE;
2664	}
2665
2666	/*
2667	 * Load any level 2 ARC devices for this pool.
2668	 */
2669	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2670	    &spa->spa_l2cache.sav_object);
2671	if (error != 0 && error != ENOENT)
2672		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2673	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2674		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2675		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2676		    &spa->spa_l2cache.sav_config) != 0)
2677			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2678
2679		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2680		spa_load_l2cache(spa);
2681		spa_config_exit(spa, SCL_ALL, FTAG);
2682	} else if (error == 0) {
2683		spa->spa_l2cache.sav_sync = B_TRUE;
2684	}
2685
2686	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2687
2688	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2689	if (error && error != ENOENT)
2690		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2691
2692	if (error == 0) {
2693		uint64_t autoreplace;
2694
2695		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2696		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2697		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2698		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2699		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2700		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2701		    &spa->spa_dedup_ditto);
2702
2703		spa->spa_autoreplace = (autoreplace != 0);
2704	}
2705
2706	/*
2707	 * If the 'autoreplace' property is set, then post a resource notifying
2708	 * the ZFS DE that it should not issue any faults for unopenable
2709	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2710	 * unopenable vdevs so that the normal autoreplace handler can take
2711	 * over.
2712	 */
2713	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2714		spa_check_removed(spa->spa_root_vdev);
2715		/*
2716		 * For the import case, this is done in spa_import(), because
2717		 * at this point we're using the spare definitions from
2718		 * the MOS config, not necessarily from the userland config.
2719		 */
2720		if (state != SPA_LOAD_IMPORT) {
2721			spa_aux_check_removed(&spa->spa_spares);
2722			spa_aux_check_removed(&spa->spa_l2cache);
2723		}
2724	}
2725
2726	/*
2727	 * Load the vdev state for all toplevel vdevs.
2728	 */
2729	vdev_load(rvd);
2730
2731	/*
2732	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2733	 */
2734	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2735	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2736	spa_config_exit(spa, SCL_ALL, FTAG);
2737
2738	/*
2739	 * Load the DDTs (dedup tables).
2740	 */
2741	error = ddt_load(spa);
2742	if (error != 0)
2743		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2744
2745	spa_update_dspace(spa);
2746
2747	/*
2748	 * Validate the config, using the MOS config to fill in any
2749	 * information which might be missing.  If we fail to validate
2750	 * the config then declare the pool unfit for use. If we're
2751	 * assembling a pool from a split, the log is not transferred
2752	 * over.
2753	 */
2754	if (type != SPA_IMPORT_ASSEMBLE) {
2755		nvlist_t *nvconfig;
2756
2757		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2758			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2759
2760		if (!spa_config_valid(spa, nvconfig)) {
2761			nvlist_free(nvconfig);
2762			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2763			    ENXIO));
2764		}
2765		nvlist_free(nvconfig);
2766
2767		/*
2768		 * Now that we've validated the config, check the state of the
2769		 * root vdev.  If it can't be opened, it indicates one or
2770		 * more toplevel vdevs are faulted.
2771		 */
2772		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2773			return (SET_ERROR(ENXIO));
2774
2775		if (spa_writeable(spa) && spa_check_logs(spa)) {
2776			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2777			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2778		}
2779	}
2780
2781	if (missing_feat_write) {
2782		ASSERT(state == SPA_LOAD_TRYIMPORT);
2783
2784		/*
2785		 * At this point, we know that we can open the pool in
2786		 * read-only mode but not read-write mode. We now have enough
2787		 * information and can return to userland.
2788		 */
2789		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2790	}
2791
2792	/*
2793	 * We've successfully opened the pool, verify that we're ready
2794	 * to start pushing transactions.
2795	 */
2796	if (state != SPA_LOAD_TRYIMPORT) {
2797		if (error = spa_load_verify(spa))
2798			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2799			    error));
2800	}
2801
2802	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2803	    spa->spa_load_max_txg == UINT64_MAX)) {
2804		dmu_tx_t *tx;
2805		int need_update = B_FALSE;
2806		dsl_pool_t *dp = spa_get_dsl(spa);
2807
2808		ASSERT(state != SPA_LOAD_TRYIMPORT);
2809
2810		/*
2811		 * Claim log blocks that haven't been committed yet.
2812		 * This must all happen in a single txg.
2813		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2814		 * invoked from zil_claim_log_block()'s i/o done callback.
2815		 * Price of rollback is that we abandon the log.
2816		 */
2817		spa->spa_claiming = B_TRUE;
2818
2819		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2820		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2821		    zil_claim, tx, DS_FIND_CHILDREN);
2822		dmu_tx_commit(tx);
2823
2824		spa->spa_claiming = B_FALSE;
2825
2826		spa_set_log_state(spa, SPA_LOG_GOOD);
2827		spa->spa_sync_on = B_TRUE;
2828		txg_sync_start(spa->spa_dsl_pool);
2829
2830		/*
2831		 * Wait for all claims to sync.  We sync up to the highest
2832		 * claimed log block birth time so that claimed log blocks
2833		 * don't appear to be from the future.  spa_claim_max_txg
2834		 * will have been set for us by either zil_check_log_chain()
2835		 * (invoked from spa_check_logs()) or zil_claim() above.
2836		 */
2837		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2838
2839		/*
2840		 * If the config cache is stale, or we have uninitialized
2841		 * metaslabs (see spa_vdev_add()), then update the config.
2842		 *
2843		 * If this is a verbatim import, trust the current
2844		 * in-core spa_config and update the disk labels.
2845		 */
2846		if (config_cache_txg != spa->spa_config_txg ||
2847		    state == SPA_LOAD_IMPORT ||
2848		    state == SPA_LOAD_RECOVER ||
2849		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2850			need_update = B_TRUE;
2851
2852		for (int c = 0; c < rvd->vdev_children; c++)
2853			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2854				need_update = B_TRUE;
2855
2856		/*
2857		 * Update the config cache asychronously in case we're the
2858		 * root pool, in which case the config cache isn't writable yet.
2859		 */
2860		if (need_update)
2861			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2862
2863		/*
2864		 * Check all DTLs to see if anything needs resilvering.
2865		 */
2866		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2867		    vdev_resilver_needed(rvd, NULL, NULL))
2868			spa_async_request(spa, SPA_ASYNC_RESILVER);
2869
2870		/*
2871		 * Log the fact that we booted up (so that we can detect if
2872		 * we rebooted in the middle of an operation).
2873		 */
2874		spa_history_log_version(spa, "open");
2875
2876		/*
2877		 * Delete any inconsistent datasets.
2878		 */
2879		(void) dmu_objset_find(spa_name(spa),
2880		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2881
2882		/*
2883		 * Clean up any stale temporary dataset userrefs.
2884		 */
2885		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2886	}
2887
2888	return (0);
2889}
2890
2891static int
2892spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2893{
2894	int mode = spa->spa_mode;
2895
2896	spa_unload(spa);
2897	spa_deactivate(spa);
2898
2899	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2900
2901	spa_activate(spa, mode);
2902	spa_async_suspend(spa);
2903
2904	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2905}
2906
2907/*
2908 * If spa_load() fails this function will try loading prior txg's. If
2909 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2910 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2911 * function will not rewind the pool and will return the same error as
2912 * spa_load().
2913 */
2914static int
2915spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2916    uint64_t max_request, int rewind_flags)
2917{
2918	nvlist_t *loadinfo = NULL;
2919	nvlist_t *config = NULL;
2920	int load_error, rewind_error;
2921	uint64_t safe_rewind_txg;
2922	uint64_t min_txg;
2923
2924	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2925		spa->spa_load_max_txg = spa->spa_load_txg;
2926		spa_set_log_state(spa, SPA_LOG_CLEAR);
2927	} else {
2928		spa->spa_load_max_txg = max_request;
2929		if (max_request != UINT64_MAX)
2930			spa->spa_extreme_rewind = B_TRUE;
2931	}
2932
2933	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2934	    mosconfig);
2935	if (load_error == 0)
2936		return (0);
2937
2938	if (spa->spa_root_vdev != NULL)
2939		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2940
2941	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2942	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2943
2944	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2945		nvlist_free(config);
2946		return (load_error);
2947	}
2948
2949	if (state == SPA_LOAD_RECOVER) {
2950		/* Price of rolling back is discarding txgs, including log */
2951		spa_set_log_state(spa, SPA_LOG_CLEAR);
2952	} else {
2953		/*
2954		 * If we aren't rolling back save the load info from our first
2955		 * import attempt so that we can restore it after attempting
2956		 * to rewind.
2957		 */
2958		loadinfo = spa->spa_load_info;
2959		spa->spa_load_info = fnvlist_alloc();
2960	}
2961
2962	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2963	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2964	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2965	    TXG_INITIAL : safe_rewind_txg;
2966
2967	/*
2968	 * Continue as long as we're finding errors, we're still within
2969	 * the acceptable rewind range, and we're still finding uberblocks
2970	 */
2971	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2972	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2973		if (spa->spa_load_max_txg < safe_rewind_txg)
2974			spa->spa_extreme_rewind = B_TRUE;
2975		rewind_error = spa_load_retry(spa, state, mosconfig);
2976	}
2977
2978	spa->spa_extreme_rewind = B_FALSE;
2979	spa->spa_load_max_txg = UINT64_MAX;
2980
2981	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2982		spa_config_set(spa, config);
2983
2984	if (state == SPA_LOAD_RECOVER) {
2985		ASSERT3P(loadinfo, ==, NULL);
2986		return (rewind_error);
2987	} else {
2988		/* Store the rewind info as part of the initial load info */
2989		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2990		    spa->spa_load_info);
2991
2992		/* Restore the initial load info */
2993		fnvlist_free(spa->spa_load_info);
2994		spa->spa_load_info = loadinfo;
2995
2996		return (load_error);
2997	}
2998}
2999
3000/*
3001 * Pool Open/Import
3002 *
3003 * The import case is identical to an open except that the configuration is sent
3004 * down from userland, instead of grabbed from the configuration cache.  For the
3005 * case of an open, the pool configuration will exist in the
3006 * POOL_STATE_UNINITIALIZED state.
3007 *
3008 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3009 * the same time open the pool, without having to keep around the spa_t in some
3010 * ambiguous state.
3011 */
3012static int
3013spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3014    nvlist_t **config)
3015{
3016	spa_t *spa;
3017	spa_load_state_t state = SPA_LOAD_OPEN;
3018	int error;
3019	int locked = B_FALSE;
3020	int firstopen = B_FALSE;
3021
3022	*spapp = NULL;
3023
3024	/*
3025	 * As disgusting as this is, we need to support recursive calls to this
3026	 * function because dsl_dir_open() is called during spa_load(), and ends
3027	 * up calling spa_open() again.  The real fix is to figure out how to
3028	 * avoid dsl_dir_open() calling this in the first place.
3029	 */
3030	if (mutex_owner(&spa_namespace_lock) != curthread) {
3031		mutex_enter(&spa_namespace_lock);
3032		locked = B_TRUE;
3033	}
3034
3035	if ((spa = spa_lookup(pool)) == NULL) {
3036		if (locked)
3037			mutex_exit(&spa_namespace_lock);
3038		return (SET_ERROR(ENOENT));
3039	}
3040
3041	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3042		zpool_rewind_policy_t policy;
3043
3044		firstopen = B_TRUE;
3045
3046		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3047		    &policy);
3048		if (policy.zrp_request & ZPOOL_DO_REWIND)
3049			state = SPA_LOAD_RECOVER;
3050
3051		spa_activate(spa, spa_mode_global);
3052
3053		if (state != SPA_LOAD_RECOVER)
3054			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3055
3056		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3057		    policy.zrp_request);
3058
3059		if (error == EBADF) {
3060			/*
3061			 * If vdev_validate() returns failure (indicated by
3062			 * EBADF), it indicates that one of the vdevs indicates
3063			 * that the pool has been exported or destroyed.  If
3064			 * this is the case, the config cache is out of sync and
3065			 * we should remove the pool from the namespace.
3066			 */
3067			spa_unload(spa);
3068			spa_deactivate(spa);
3069			spa_config_sync(spa, B_TRUE, B_TRUE);
3070			spa_remove(spa);
3071			if (locked)
3072				mutex_exit(&spa_namespace_lock);
3073			return (SET_ERROR(ENOENT));
3074		}
3075
3076		if (error) {
3077			/*
3078			 * We can't open the pool, but we still have useful
3079			 * information: the state of each vdev after the
3080			 * attempted vdev_open().  Return this to the user.
3081			 */
3082			if (config != NULL && spa->spa_config) {
3083				VERIFY(nvlist_dup(spa->spa_config, config,
3084				    KM_SLEEP) == 0);
3085				VERIFY(nvlist_add_nvlist(*config,
3086				    ZPOOL_CONFIG_LOAD_INFO,
3087				    spa->spa_load_info) == 0);
3088			}
3089			spa_unload(spa);
3090			spa_deactivate(spa);
3091			spa->spa_last_open_failed = error;
3092			if (locked)
3093				mutex_exit(&spa_namespace_lock);
3094			*spapp = NULL;
3095			return (error);
3096		}
3097	}
3098
3099	spa_open_ref(spa, tag);
3100
3101	if (config != NULL)
3102		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3103
3104	/*
3105	 * If we've recovered the pool, pass back any information we
3106	 * gathered while doing the load.
3107	 */
3108	if (state == SPA_LOAD_RECOVER) {
3109		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3110		    spa->spa_load_info) == 0);
3111	}
3112
3113	if (locked) {
3114		spa->spa_last_open_failed = 0;
3115		spa->spa_last_ubsync_txg = 0;
3116		spa->spa_load_txg = 0;
3117		mutex_exit(&spa_namespace_lock);
3118#ifdef __FreeBSD__
3119#ifdef _KERNEL
3120		if (firstopen)
3121			zvol_create_minors(spa->spa_name);
3122#endif
3123#endif
3124	}
3125
3126	*spapp = spa;
3127
3128	return (0);
3129}
3130
3131int
3132spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3133    nvlist_t **config)
3134{
3135	return (spa_open_common(name, spapp, tag, policy, config));
3136}
3137
3138int
3139spa_open(const char *name, spa_t **spapp, void *tag)
3140{
3141	return (spa_open_common(name, spapp, tag, NULL, NULL));
3142}
3143
3144/*
3145 * Lookup the given spa_t, incrementing the inject count in the process,
3146 * preventing it from being exported or destroyed.
3147 */
3148spa_t *
3149spa_inject_addref(char *name)
3150{
3151	spa_t *spa;
3152
3153	mutex_enter(&spa_namespace_lock);
3154	if ((spa = spa_lookup(name)) == NULL) {
3155		mutex_exit(&spa_namespace_lock);
3156		return (NULL);
3157	}
3158	spa->spa_inject_ref++;
3159	mutex_exit(&spa_namespace_lock);
3160
3161	return (spa);
3162}
3163
3164void
3165spa_inject_delref(spa_t *spa)
3166{
3167	mutex_enter(&spa_namespace_lock);
3168	spa->spa_inject_ref--;
3169	mutex_exit(&spa_namespace_lock);
3170}
3171
3172/*
3173 * Add spares device information to the nvlist.
3174 */
3175static void
3176spa_add_spares(spa_t *spa, nvlist_t *config)
3177{
3178	nvlist_t **spares;
3179	uint_t i, nspares;
3180	nvlist_t *nvroot;
3181	uint64_t guid;
3182	vdev_stat_t *vs;
3183	uint_t vsc;
3184	uint64_t pool;
3185
3186	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3187
3188	if (spa->spa_spares.sav_count == 0)
3189		return;
3190
3191	VERIFY(nvlist_lookup_nvlist(config,
3192	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3193	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3194	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3195	if (nspares != 0) {
3196		VERIFY(nvlist_add_nvlist_array(nvroot,
3197		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3198		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3199		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3200
3201		/*
3202		 * Go through and find any spares which have since been
3203		 * repurposed as an active spare.  If this is the case, update
3204		 * their status appropriately.
3205		 */
3206		for (i = 0; i < nspares; i++) {
3207			VERIFY(nvlist_lookup_uint64(spares[i],
3208			    ZPOOL_CONFIG_GUID, &guid) == 0);
3209			if (spa_spare_exists(guid, &pool, NULL) &&
3210			    pool != 0ULL) {
3211				VERIFY(nvlist_lookup_uint64_array(
3212				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3213				    (uint64_t **)&vs, &vsc) == 0);
3214				vs->vs_state = VDEV_STATE_CANT_OPEN;
3215				vs->vs_aux = VDEV_AUX_SPARED;
3216			}
3217		}
3218	}
3219}
3220
3221/*
3222 * Add l2cache device information to the nvlist, including vdev stats.
3223 */
3224static void
3225spa_add_l2cache(spa_t *spa, nvlist_t *config)
3226{
3227	nvlist_t **l2cache;
3228	uint_t i, j, nl2cache;
3229	nvlist_t *nvroot;
3230	uint64_t guid;
3231	vdev_t *vd;
3232	vdev_stat_t *vs;
3233	uint_t vsc;
3234
3235	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3236
3237	if (spa->spa_l2cache.sav_count == 0)
3238		return;
3239
3240	VERIFY(nvlist_lookup_nvlist(config,
3241	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3242	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3243	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3244	if (nl2cache != 0) {
3245		VERIFY(nvlist_add_nvlist_array(nvroot,
3246		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3247		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3248		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3249
3250		/*
3251		 * Update level 2 cache device stats.
3252		 */
3253
3254		for (i = 0; i < nl2cache; i++) {
3255			VERIFY(nvlist_lookup_uint64(l2cache[i],
3256			    ZPOOL_CONFIG_GUID, &guid) == 0);
3257
3258			vd = NULL;
3259			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3260				if (guid ==
3261				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3262					vd = spa->spa_l2cache.sav_vdevs[j];
3263					break;
3264				}
3265			}
3266			ASSERT(vd != NULL);
3267
3268			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3269			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3270			    == 0);
3271			vdev_get_stats(vd, vs);
3272		}
3273	}
3274}
3275
3276static void
3277spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3278{
3279	nvlist_t *features;
3280	zap_cursor_t zc;
3281	zap_attribute_t za;
3282
3283	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3284	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3285
3286	/* We may be unable to read features if pool is suspended. */
3287	if (spa_suspended(spa))
3288		goto out;
3289
3290	if (spa->spa_feat_for_read_obj != 0) {
3291		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3292		    spa->spa_feat_for_read_obj);
3293		    zap_cursor_retrieve(&zc, &za) == 0;
3294		    zap_cursor_advance(&zc)) {
3295			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3296			    za.za_num_integers == 1);
3297			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3298			    za.za_first_integer));
3299		}
3300		zap_cursor_fini(&zc);
3301	}
3302
3303	if (spa->spa_feat_for_write_obj != 0) {
3304		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3305		    spa->spa_feat_for_write_obj);
3306		    zap_cursor_retrieve(&zc, &za) == 0;
3307		    zap_cursor_advance(&zc)) {
3308			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3309			    za.za_num_integers == 1);
3310			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3311			    za.za_first_integer));
3312		}
3313		zap_cursor_fini(&zc);
3314	}
3315
3316out:
3317	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3318	    features) == 0);
3319	nvlist_free(features);
3320}
3321
3322int
3323spa_get_stats(const char *name, nvlist_t **config,
3324    char *altroot, size_t buflen)
3325{
3326	int error;
3327	spa_t *spa;
3328
3329	*config = NULL;
3330	error = spa_open_common(name, &spa, FTAG, NULL, config);
3331
3332	if (spa != NULL) {
3333		/*
3334		 * This still leaves a window of inconsistency where the spares
3335		 * or l2cache devices could change and the config would be
3336		 * self-inconsistent.
3337		 */
3338		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3339
3340		if (*config != NULL) {
3341			uint64_t loadtimes[2];
3342
3343			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3344			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3345			VERIFY(nvlist_add_uint64_array(*config,
3346			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3347
3348			VERIFY(nvlist_add_uint64(*config,
3349			    ZPOOL_CONFIG_ERRCOUNT,
3350			    spa_get_errlog_size(spa)) == 0);
3351
3352			if (spa_suspended(spa))
3353				VERIFY(nvlist_add_uint64(*config,
3354				    ZPOOL_CONFIG_SUSPENDED,
3355				    spa->spa_failmode) == 0);
3356
3357			spa_add_spares(spa, *config);
3358			spa_add_l2cache(spa, *config);
3359			spa_add_feature_stats(spa, *config);
3360		}
3361	}
3362
3363	/*
3364	 * We want to get the alternate root even for faulted pools, so we cheat
3365	 * and call spa_lookup() directly.
3366	 */
3367	if (altroot) {
3368		if (spa == NULL) {
3369			mutex_enter(&spa_namespace_lock);
3370			spa = spa_lookup(name);
3371			if (spa)
3372				spa_altroot(spa, altroot, buflen);
3373			else
3374				altroot[0] = '\0';
3375			spa = NULL;
3376			mutex_exit(&spa_namespace_lock);
3377		} else {
3378			spa_altroot(spa, altroot, buflen);
3379		}
3380	}
3381
3382	if (spa != NULL) {
3383		spa_config_exit(spa, SCL_CONFIG, FTAG);
3384		spa_close(spa, FTAG);
3385	}
3386
3387	return (error);
3388}
3389
3390/*
3391 * Validate that the auxiliary device array is well formed.  We must have an
3392 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3393 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3394 * specified, as long as they are well-formed.
3395 */
3396static int
3397spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3398    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3399    vdev_labeltype_t label)
3400{
3401	nvlist_t **dev;
3402	uint_t i, ndev;
3403	vdev_t *vd;
3404	int error;
3405
3406	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3407
3408	/*
3409	 * It's acceptable to have no devs specified.
3410	 */
3411	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3412		return (0);
3413
3414	if (ndev == 0)
3415		return (SET_ERROR(EINVAL));
3416
3417	/*
3418	 * Make sure the pool is formatted with a version that supports this
3419	 * device type.
3420	 */
3421	if (spa_version(spa) < version)
3422		return (SET_ERROR(ENOTSUP));
3423
3424	/*
3425	 * Set the pending device list so we correctly handle device in-use
3426	 * checking.
3427	 */
3428	sav->sav_pending = dev;
3429	sav->sav_npending = ndev;
3430
3431	for (i = 0; i < ndev; i++) {
3432		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3433		    mode)) != 0)
3434			goto out;
3435
3436		if (!vd->vdev_ops->vdev_op_leaf) {
3437			vdev_free(vd);
3438			error = SET_ERROR(EINVAL);
3439			goto out;
3440		}
3441
3442		/*
3443		 * The L2ARC currently only supports disk devices in
3444		 * kernel context.  For user-level testing, we allow it.
3445		 */
3446#ifdef _KERNEL
3447		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3448		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3449			error = SET_ERROR(ENOTBLK);
3450			vdev_free(vd);
3451			goto out;
3452		}
3453#endif
3454		vd->vdev_top = vd;
3455
3456		if ((error = vdev_open(vd)) == 0 &&
3457		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3458			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3459			    vd->vdev_guid) == 0);
3460		}
3461
3462		vdev_free(vd);
3463
3464		if (error &&
3465		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3466			goto out;
3467		else
3468			error = 0;
3469	}
3470
3471out:
3472	sav->sav_pending = NULL;
3473	sav->sav_npending = 0;
3474	return (error);
3475}
3476
3477static int
3478spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3479{
3480	int error;
3481
3482	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3483
3484	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3485	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3486	    VDEV_LABEL_SPARE)) != 0) {
3487		return (error);
3488	}
3489
3490	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3491	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3492	    VDEV_LABEL_L2CACHE));
3493}
3494
3495static void
3496spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3497    const char *config)
3498{
3499	int i;
3500
3501	if (sav->sav_config != NULL) {
3502		nvlist_t **olddevs;
3503		uint_t oldndevs;
3504		nvlist_t **newdevs;
3505
3506		/*
3507		 * Generate new dev list by concatentating with the
3508		 * current dev list.
3509		 */
3510		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3511		    &olddevs, &oldndevs) == 0);
3512
3513		newdevs = kmem_alloc(sizeof (void *) *
3514		    (ndevs + oldndevs), KM_SLEEP);
3515		for (i = 0; i < oldndevs; i++)
3516			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3517			    KM_SLEEP) == 0);
3518		for (i = 0; i < ndevs; i++)
3519			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3520			    KM_SLEEP) == 0);
3521
3522		VERIFY(nvlist_remove(sav->sav_config, config,
3523		    DATA_TYPE_NVLIST_ARRAY) == 0);
3524
3525		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3526		    config, newdevs, ndevs + oldndevs) == 0);
3527		for (i = 0; i < oldndevs + ndevs; i++)
3528			nvlist_free(newdevs[i]);
3529		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3530	} else {
3531		/*
3532		 * Generate a new dev list.
3533		 */
3534		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3535		    KM_SLEEP) == 0);
3536		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3537		    devs, ndevs) == 0);
3538	}
3539}
3540
3541/*
3542 * Stop and drop level 2 ARC devices
3543 */
3544void
3545spa_l2cache_drop(spa_t *spa)
3546{
3547	vdev_t *vd;
3548	int i;
3549	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3550
3551	for (i = 0; i < sav->sav_count; i++) {
3552		uint64_t pool;
3553
3554		vd = sav->sav_vdevs[i];
3555		ASSERT(vd != NULL);
3556
3557		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3558		    pool != 0ULL && l2arc_vdev_present(vd))
3559			l2arc_remove_vdev(vd);
3560	}
3561}
3562
3563/*
3564 * Pool Creation
3565 */
3566int
3567spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3568    nvlist_t *zplprops)
3569{
3570	spa_t *spa;
3571	char *altroot = NULL;
3572	vdev_t *rvd;
3573	dsl_pool_t *dp;
3574	dmu_tx_t *tx;
3575	int error = 0;
3576	uint64_t txg = TXG_INITIAL;
3577	nvlist_t **spares, **l2cache;
3578	uint_t nspares, nl2cache;
3579	uint64_t version, obj;
3580	boolean_t has_features;
3581
3582	/*
3583	 * If this pool already exists, return failure.
3584	 */
3585	mutex_enter(&spa_namespace_lock);
3586	if (spa_lookup(pool) != NULL) {
3587		mutex_exit(&spa_namespace_lock);
3588		return (SET_ERROR(EEXIST));
3589	}
3590
3591	/*
3592	 * Allocate a new spa_t structure.
3593	 */
3594	(void) nvlist_lookup_string(props,
3595	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3596	spa = spa_add(pool, NULL, altroot);
3597	spa_activate(spa, spa_mode_global);
3598
3599	if (props && (error = spa_prop_validate(spa, props))) {
3600		spa_deactivate(spa);
3601		spa_remove(spa);
3602		mutex_exit(&spa_namespace_lock);
3603		return (error);
3604	}
3605
3606	has_features = B_FALSE;
3607	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3608	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3609		if (zpool_prop_feature(nvpair_name(elem)))
3610			has_features = B_TRUE;
3611	}
3612
3613	if (has_features || nvlist_lookup_uint64(props,
3614	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3615		version = SPA_VERSION;
3616	}
3617	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3618
3619	spa->spa_first_txg = txg;
3620	spa->spa_uberblock.ub_txg = txg - 1;
3621	spa->spa_uberblock.ub_version = version;
3622	spa->spa_ubsync = spa->spa_uberblock;
3623
3624	/*
3625	 * Create "The Godfather" zio to hold all async IOs
3626	 */
3627	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3628	    KM_SLEEP);
3629	for (int i = 0; i < max_ncpus; i++) {
3630		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3631		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3632		    ZIO_FLAG_GODFATHER);
3633	}
3634
3635	/*
3636	 * Create the root vdev.
3637	 */
3638	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3639
3640	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3641
3642	ASSERT(error != 0 || rvd != NULL);
3643	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3644
3645	if (error == 0 && !zfs_allocatable_devs(nvroot))
3646		error = SET_ERROR(EINVAL);
3647
3648	if (error == 0 &&
3649	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3650	    (error = spa_validate_aux(spa, nvroot, txg,
3651	    VDEV_ALLOC_ADD)) == 0) {
3652		for (int c = 0; c < rvd->vdev_children; c++) {
3653			vdev_ashift_optimize(rvd->vdev_child[c]);
3654			vdev_metaslab_set_size(rvd->vdev_child[c]);
3655			vdev_expand(rvd->vdev_child[c], txg);
3656		}
3657	}
3658
3659	spa_config_exit(spa, SCL_ALL, FTAG);
3660
3661	if (error != 0) {
3662		spa_unload(spa);
3663		spa_deactivate(spa);
3664		spa_remove(spa);
3665		mutex_exit(&spa_namespace_lock);
3666		return (error);
3667	}
3668
3669	/*
3670	 * Get the list of spares, if specified.
3671	 */
3672	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3673	    &spares, &nspares) == 0) {
3674		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3675		    KM_SLEEP) == 0);
3676		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3677		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3678		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3679		spa_load_spares(spa);
3680		spa_config_exit(spa, SCL_ALL, FTAG);
3681		spa->spa_spares.sav_sync = B_TRUE;
3682	}
3683
3684	/*
3685	 * Get the list of level 2 cache devices, if specified.
3686	 */
3687	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3688	    &l2cache, &nl2cache) == 0) {
3689		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3690		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3691		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3692		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3693		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3694		spa_load_l2cache(spa);
3695		spa_config_exit(spa, SCL_ALL, FTAG);
3696		spa->spa_l2cache.sav_sync = B_TRUE;
3697	}
3698
3699	spa->spa_is_initializing = B_TRUE;
3700	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3701	spa->spa_meta_objset = dp->dp_meta_objset;
3702	spa->spa_is_initializing = B_FALSE;
3703
3704	/*
3705	 * Create DDTs (dedup tables).
3706	 */
3707	ddt_create(spa);
3708
3709	spa_update_dspace(spa);
3710
3711	tx = dmu_tx_create_assigned(dp, txg);
3712
3713	/*
3714	 * Create the pool config object.
3715	 */
3716	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3717	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3718	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3719
3720	if (zap_add(spa->spa_meta_objset,
3721	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3722	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3723		cmn_err(CE_PANIC, "failed to add pool config");
3724	}
3725
3726	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3727		spa_feature_create_zap_objects(spa, tx);
3728
3729	if (zap_add(spa->spa_meta_objset,
3730	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3731	    sizeof (uint64_t), 1, &version, tx) != 0) {
3732		cmn_err(CE_PANIC, "failed to add pool version");
3733	}
3734
3735	/* Newly created pools with the right version are always deflated. */
3736	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3737		spa->spa_deflate = TRUE;
3738		if (zap_add(spa->spa_meta_objset,
3739		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3740		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3741			cmn_err(CE_PANIC, "failed to add deflate");
3742		}
3743	}
3744
3745	/*
3746	 * Create the deferred-free bpobj.  Turn off compression
3747	 * because sync-to-convergence takes longer if the blocksize
3748	 * keeps changing.
3749	 */
3750	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3751	dmu_object_set_compress(spa->spa_meta_objset, obj,
3752	    ZIO_COMPRESS_OFF, tx);
3753	if (zap_add(spa->spa_meta_objset,
3754	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3755	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3756		cmn_err(CE_PANIC, "failed to add bpobj");
3757	}
3758	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3759	    spa->spa_meta_objset, obj));
3760
3761	/*
3762	 * Create the pool's history object.
3763	 */
3764	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3765		spa_history_create_obj(spa, tx);
3766
3767	/*
3768	 * Generate some random noise for salted checksums to operate on.
3769	 */
3770	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3771	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3772
3773	/*
3774	 * Set pool properties.
3775	 */
3776	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3777	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3778	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3779	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3780
3781	if (props != NULL) {
3782		spa_configfile_set(spa, props, B_FALSE);
3783		spa_sync_props(props, tx);
3784	}
3785
3786	dmu_tx_commit(tx);
3787
3788	spa->spa_sync_on = B_TRUE;
3789	txg_sync_start(spa->spa_dsl_pool);
3790
3791	/*
3792	 * We explicitly wait for the first transaction to complete so that our
3793	 * bean counters are appropriately updated.
3794	 */
3795	txg_wait_synced(spa->spa_dsl_pool, txg);
3796
3797	spa_config_sync(spa, B_FALSE, B_TRUE);
3798	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3799
3800	spa_history_log_version(spa, "create");
3801
3802	/*
3803	 * Don't count references from objsets that are already closed
3804	 * and are making their way through the eviction process.
3805	 */
3806	spa_evicting_os_wait(spa);
3807	spa->spa_minref = refcount_count(&spa->spa_refcount);
3808
3809	mutex_exit(&spa_namespace_lock);
3810
3811	return (0);
3812}
3813
3814#ifdef _KERNEL
3815#ifdef illumos
3816/*
3817 * Get the root pool information from the root disk, then import the root pool
3818 * during the system boot up time.
3819 */
3820extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3821
3822static nvlist_t *
3823spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3824{
3825	nvlist_t *config;
3826	nvlist_t *nvtop, *nvroot;
3827	uint64_t pgid;
3828
3829	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3830		return (NULL);
3831
3832	/*
3833	 * Add this top-level vdev to the child array.
3834	 */
3835	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3836	    &nvtop) == 0);
3837	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3838	    &pgid) == 0);
3839	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3840
3841	/*
3842	 * Put this pool's top-level vdevs into a root vdev.
3843	 */
3844	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3845	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3846	    VDEV_TYPE_ROOT) == 0);
3847	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3848	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3849	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3850	    &nvtop, 1) == 0);
3851
3852	/*
3853	 * Replace the existing vdev_tree with the new root vdev in
3854	 * this pool's configuration (remove the old, add the new).
3855	 */
3856	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3857	nvlist_free(nvroot);
3858	return (config);
3859}
3860
3861/*
3862 * Walk the vdev tree and see if we can find a device with "better"
3863 * configuration. A configuration is "better" if the label on that
3864 * device has a more recent txg.
3865 */
3866static void
3867spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3868{
3869	for (int c = 0; c < vd->vdev_children; c++)
3870		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3871
3872	if (vd->vdev_ops->vdev_op_leaf) {
3873		nvlist_t *label;
3874		uint64_t label_txg;
3875
3876		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3877		    &label) != 0)
3878			return;
3879
3880		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3881		    &label_txg) == 0);
3882
3883		/*
3884		 * Do we have a better boot device?
3885		 */
3886		if (label_txg > *txg) {
3887			*txg = label_txg;
3888			*avd = vd;
3889		}
3890		nvlist_free(label);
3891	}
3892}
3893
3894/*
3895 * Import a root pool.
3896 *
3897 * For x86. devpath_list will consist of devid and/or physpath name of
3898 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3899 * The GRUB "findroot" command will return the vdev we should boot.
3900 *
3901 * For Sparc, devpath_list consists the physpath name of the booting device
3902 * no matter the rootpool is a single device pool or a mirrored pool.
3903 * e.g.
3904 *	"/pci@1f,0/ide@d/disk@0,0:a"
3905 */
3906int
3907spa_import_rootpool(char *devpath, char *devid)
3908{
3909	spa_t *spa;
3910	vdev_t *rvd, *bvd, *avd = NULL;
3911	nvlist_t *config, *nvtop;
3912	uint64_t guid, txg;
3913	char *pname;
3914	int error;
3915
3916	/*
3917	 * Read the label from the boot device and generate a configuration.
3918	 */
3919	config = spa_generate_rootconf(devpath, devid, &guid);
3920#if defined(_OBP) && defined(_KERNEL)
3921	if (config == NULL) {
3922		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3923			/* iscsi boot */
3924			get_iscsi_bootpath_phy(devpath);
3925			config = spa_generate_rootconf(devpath, devid, &guid);
3926		}
3927	}
3928#endif
3929	if (config == NULL) {
3930		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3931		    devpath);
3932		return (SET_ERROR(EIO));
3933	}
3934
3935	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3936	    &pname) == 0);
3937	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3938
3939	mutex_enter(&spa_namespace_lock);
3940	if ((spa = spa_lookup(pname)) != NULL) {
3941		/*
3942		 * Remove the existing root pool from the namespace so that we
3943		 * can replace it with the correct config we just read in.
3944		 */
3945		spa_remove(spa);
3946	}
3947
3948	spa = spa_add(pname, config, NULL);
3949	spa->spa_is_root = B_TRUE;
3950	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3951
3952	/*
3953	 * Build up a vdev tree based on the boot device's label config.
3954	 */
3955	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3956	    &nvtop) == 0);
3957	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3958	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3959	    VDEV_ALLOC_ROOTPOOL);
3960	spa_config_exit(spa, SCL_ALL, FTAG);
3961	if (error) {
3962		mutex_exit(&spa_namespace_lock);
3963		nvlist_free(config);
3964		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3965		    pname);
3966		return (error);
3967	}
3968
3969	/*
3970	 * Get the boot vdev.
3971	 */
3972	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3973		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3974		    (u_longlong_t)guid);
3975		error = SET_ERROR(ENOENT);
3976		goto out;
3977	}
3978
3979	/*
3980	 * Determine if there is a better boot device.
3981	 */
3982	avd = bvd;
3983	spa_alt_rootvdev(rvd, &avd, &txg);
3984	if (avd != bvd) {
3985		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3986		    "try booting from '%s'", avd->vdev_path);
3987		error = SET_ERROR(EINVAL);
3988		goto out;
3989	}
3990
3991	/*
3992	 * If the boot device is part of a spare vdev then ensure that
3993	 * we're booting off the active spare.
3994	 */
3995	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3996	    !bvd->vdev_isspare) {
3997		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3998		    "try booting from '%s'",
3999		    bvd->vdev_parent->
4000		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4001		error = SET_ERROR(EINVAL);
4002		goto out;
4003	}
4004
4005	error = 0;
4006out:
4007	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4008	vdev_free(rvd);
4009	spa_config_exit(spa, SCL_ALL, FTAG);
4010	mutex_exit(&spa_namespace_lock);
4011
4012	nvlist_free(config);
4013	return (error);
4014}
4015
4016#else	/* !illumos */
4017
4018extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4019    uint64_t *count);
4020
4021static nvlist_t *
4022spa_generate_rootconf(const char *name)
4023{
4024	nvlist_t **configs, **tops;
4025	nvlist_t *config;
4026	nvlist_t *best_cfg, *nvtop, *nvroot;
4027	uint64_t *holes;
4028	uint64_t best_txg;
4029	uint64_t nchildren;
4030	uint64_t pgid;
4031	uint64_t count;
4032	uint64_t i;
4033	uint_t   nholes;
4034
4035	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4036		return (NULL);
4037
4038	ASSERT3U(count, !=, 0);
4039	best_txg = 0;
4040	for (i = 0; i < count; i++) {
4041		uint64_t txg;
4042
4043		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4044		    &txg) == 0);
4045		if (txg > best_txg) {
4046			best_txg = txg;
4047			best_cfg = configs[i];
4048		}
4049	}
4050
4051	/*
4052	 * Multi-vdev root pool configuration discovery is not supported yet.
4053	 */
4054	nchildren = 1;
4055	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4056	holes = NULL;
4057	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4058	    &holes, &nholes);
4059
4060	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4061	for (i = 0; i < nchildren; i++) {
4062		if (i >= count)
4063			break;
4064		if (configs[i] == NULL)
4065			continue;
4066		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4067		    &nvtop) == 0);
4068		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4069	}
4070	for (i = 0; holes != NULL && i < nholes; i++) {
4071		if (i >= nchildren)
4072			continue;
4073		if (tops[holes[i]] != NULL)
4074			continue;
4075		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4076		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4077		    VDEV_TYPE_HOLE) == 0);
4078		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4079		    holes[i]) == 0);
4080		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4081		    0) == 0);
4082	}
4083	for (i = 0; i < nchildren; i++) {
4084		if (tops[i] != NULL)
4085			continue;
4086		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4087		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4088		    VDEV_TYPE_MISSING) == 0);
4089		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4090		    i) == 0);
4091		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4092		    0) == 0);
4093	}
4094
4095	/*
4096	 * Create pool config based on the best vdev config.
4097	 */
4098	nvlist_dup(best_cfg, &config, KM_SLEEP);
4099
4100	/*
4101	 * Put this pool's top-level vdevs into a root vdev.
4102	 */
4103	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4104	    &pgid) == 0);
4105	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4106	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4107	    VDEV_TYPE_ROOT) == 0);
4108	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4109	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4110	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4111	    tops, nchildren) == 0);
4112
4113	/*
4114	 * Replace the existing vdev_tree with the new root vdev in
4115	 * this pool's configuration (remove the old, add the new).
4116	 */
4117	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4118
4119	/*
4120	 * Drop vdev config elements that should not be present at pool level.
4121	 */
4122	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4123	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4124
4125	for (i = 0; i < count; i++)
4126		nvlist_free(configs[i]);
4127	kmem_free(configs, count * sizeof(void *));
4128	for (i = 0; i < nchildren; i++)
4129		nvlist_free(tops[i]);
4130	kmem_free(tops, nchildren * sizeof(void *));
4131	nvlist_free(nvroot);
4132	return (config);
4133}
4134
4135int
4136spa_import_rootpool(const char *name)
4137{
4138	spa_t *spa;
4139	vdev_t *rvd, *bvd, *avd = NULL;
4140	nvlist_t *config, *nvtop;
4141	uint64_t txg;
4142	char *pname;
4143	int error;
4144
4145	/*
4146	 * Read the label from the boot device and generate a configuration.
4147	 */
4148	config = spa_generate_rootconf(name);
4149
4150	mutex_enter(&spa_namespace_lock);
4151	if (config != NULL) {
4152		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4153		    &pname) == 0 && strcmp(name, pname) == 0);
4154		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4155		    == 0);
4156
4157		if ((spa = spa_lookup(pname)) != NULL) {
4158			/*
4159			 * Remove the existing root pool from the namespace so
4160			 * that we can replace it with the correct config
4161			 * we just read in.
4162			 */
4163			spa_remove(spa);
4164		}
4165		spa = spa_add(pname, config, NULL);
4166
4167		/*
4168		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4169		 * via spa_version().
4170		 */
4171		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4172		    &spa->spa_ubsync.ub_version) != 0)
4173			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4174	} else if ((spa = spa_lookup(name)) == NULL) {
4175		mutex_exit(&spa_namespace_lock);
4176		nvlist_free(config);
4177		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4178		    name);
4179		return (EIO);
4180	} else {
4181		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4182	}
4183	spa->spa_is_root = B_TRUE;
4184	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4185
4186	/*
4187	 * Build up a vdev tree based on the boot device's label config.
4188	 */
4189	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4190	    &nvtop) == 0);
4191	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4192	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4193	    VDEV_ALLOC_ROOTPOOL);
4194	spa_config_exit(spa, SCL_ALL, FTAG);
4195	if (error) {
4196		mutex_exit(&spa_namespace_lock);
4197		nvlist_free(config);
4198		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4199		    pname);
4200		return (error);
4201	}
4202
4203	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4204	vdev_free(rvd);
4205	spa_config_exit(spa, SCL_ALL, FTAG);
4206	mutex_exit(&spa_namespace_lock);
4207
4208	nvlist_free(config);
4209	return (0);
4210}
4211
4212#endif	/* illumos */
4213#endif	/* _KERNEL */
4214
4215/*
4216 * Import a non-root pool into the system.
4217 */
4218int
4219spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4220{
4221	spa_t *spa;
4222	char *altroot = NULL;
4223	spa_load_state_t state = SPA_LOAD_IMPORT;
4224	zpool_rewind_policy_t policy;
4225	uint64_t mode = spa_mode_global;
4226	uint64_t readonly = B_FALSE;
4227	int error;
4228	nvlist_t *nvroot;
4229	nvlist_t **spares, **l2cache;
4230	uint_t nspares, nl2cache;
4231
4232	/*
4233	 * If a pool with this name exists, return failure.
4234	 */
4235	mutex_enter(&spa_namespace_lock);
4236	if (spa_lookup(pool) != NULL) {
4237		mutex_exit(&spa_namespace_lock);
4238		return (SET_ERROR(EEXIST));
4239	}
4240
4241	/*
4242	 * Create and initialize the spa structure.
4243	 */
4244	(void) nvlist_lookup_string(props,
4245	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4246	(void) nvlist_lookup_uint64(props,
4247	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4248	if (readonly)
4249		mode = FREAD;
4250	spa = spa_add(pool, config, altroot);
4251	spa->spa_import_flags = flags;
4252
4253	/*
4254	 * Verbatim import - Take a pool and insert it into the namespace
4255	 * as if it had been loaded at boot.
4256	 */
4257	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4258		if (props != NULL)
4259			spa_configfile_set(spa, props, B_FALSE);
4260
4261		spa_config_sync(spa, B_FALSE, B_TRUE);
4262		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4263
4264		mutex_exit(&spa_namespace_lock);
4265		return (0);
4266	}
4267
4268	spa_activate(spa, mode);
4269
4270	/*
4271	 * Don't start async tasks until we know everything is healthy.
4272	 */
4273	spa_async_suspend(spa);
4274
4275	zpool_get_rewind_policy(config, &policy);
4276	if (policy.zrp_request & ZPOOL_DO_REWIND)
4277		state = SPA_LOAD_RECOVER;
4278
4279	/*
4280	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4281	 * because the user-supplied config is actually the one to trust when
4282	 * doing an import.
4283	 */
4284	if (state != SPA_LOAD_RECOVER)
4285		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4286
4287	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4288	    policy.zrp_request);
4289
4290	/*
4291	 * Propagate anything learned while loading the pool and pass it
4292	 * back to caller (i.e. rewind info, missing devices, etc).
4293	 */
4294	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4295	    spa->spa_load_info) == 0);
4296
4297	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4298	/*
4299	 * Toss any existing sparelist, as it doesn't have any validity
4300	 * anymore, and conflicts with spa_has_spare().
4301	 */
4302	if (spa->spa_spares.sav_config) {
4303		nvlist_free(spa->spa_spares.sav_config);
4304		spa->spa_spares.sav_config = NULL;
4305		spa_load_spares(spa);
4306	}
4307	if (spa->spa_l2cache.sav_config) {
4308		nvlist_free(spa->spa_l2cache.sav_config);
4309		spa->spa_l2cache.sav_config = NULL;
4310		spa_load_l2cache(spa);
4311	}
4312
4313	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4314	    &nvroot) == 0);
4315	if (error == 0)
4316		error = spa_validate_aux(spa, nvroot, -1ULL,
4317		    VDEV_ALLOC_SPARE);
4318	if (error == 0)
4319		error = spa_validate_aux(spa, nvroot, -1ULL,
4320		    VDEV_ALLOC_L2CACHE);
4321	spa_config_exit(spa, SCL_ALL, FTAG);
4322
4323	if (props != NULL)
4324		spa_configfile_set(spa, props, B_FALSE);
4325
4326	if (error != 0 || (props && spa_writeable(spa) &&
4327	    (error = spa_prop_set(spa, props)))) {
4328		spa_unload(spa);
4329		spa_deactivate(spa);
4330		spa_remove(spa);
4331		mutex_exit(&spa_namespace_lock);
4332		return (error);
4333	}
4334
4335	spa_async_resume(spa);
4336
4337	/*
4338	 * Override any spares and level 2 cache devices as specified by
4339	 * the user, as these may have correct device names/devids, etc.
4340	 */
4341	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4342	    &spares, &nspares) == 0) {
4343		if (spa->spa_spares.sav_config)
4344			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4345			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4346		else
4347			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4348			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4349		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4350		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4351		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4352		spa_load_spares(spa);
4353		spa_config_exit(spa, SCL_ALL, FTAG);
4354		spa->spa_spares.sav_sync = B_TRUE;
4355	}
4356	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4357	    &l2cache, &nl2cache) == 0) {
4358		if (spa->spa_l2cache.sav_config)
4359			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4360			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4361		else
4362			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4363			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4364		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4365		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4366		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4367		spa_load_l2cache(spa);
4368		spa_config_exit(spa, SCL_ALL, FTAG);
4369		spa->spa_l2cache.sav_sync = B_TRUE;
4370	}
4371
4372	/*
4373	 * Check for any removed devices.
4374	 */
4375	if (spa->spa_autoreplace) {
4376		spa_aux_check_removed(&spa->spa_spares);
4377		spa_aux_check_removed(&spa->spa_l2cache);
4378	}
4379
4380	if (spa_writeable(spa)) {
4381		/*
4382		 * Update the config cache to include the newly-imported pool.
4383		 */
4384		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4385	}
4386
4387	/*
4388	 * It's possible that the pool was expanded while it was exported.
4389	 * We kick off an async task to handle this for us.
4390	 */
4391	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4392
4393	spa_history_log_version(spa, "import");
4394
4395	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4396
4397	mutex_exit(&spa_namespace_lock);
4398
4399#ifdef __FreeBSD__
4400#ifdef _KERNEL
4401	zvol_create_minors(pool);
4402#endif
4403#endif
4404	return (0);
4405}
4406
4407nvlist_t *
4408spa_tryimport(nvlist_t *tryconfig)
4409{
4410	nvlist_t *config = NULL;
4411	char *poolname;
4412	spa_t *spa;
4413	uint64_t state;
4414	int error;
4415
4416	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4417		return (NULL);
4418
4419	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4420		return (NULL);
4421
4422	/*
4423	 * Create and initialize the spa structure.
4424	 */
4425	mutex_enter(&spa_namespace_lock);
4426	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4427	spa_activate(spa, FREAD);
4428
4429	/*
4430	 * Pass off the heavy lifting to spa_load().
4431	 * Pass TRUE for mosconfig because the user-supplied config
4432	 * is actually the one to trust when doing an import.
4433	 */
4434	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4435
4436	/*
4437	 * If 'tryconfig' was at least parsable, return the current config.
4438	 */
4439	if (spa->spa_root_vdev != NULL) {
4440		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4441		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4442		    poolname) == 0);
4443		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4444		    state) == 0);
4445		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4446		    spa->spa_uberblock.ub_timestamp) == 0);
4447		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4448		    spa->spa_load_info) == 0);
4449
4450		/*
4451		 * If the bootfs property exists on this pool then we
4452		 * copy it out so that external consumers can tell which
4453		 * pools are bootable.
4454		 */
4455		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4456			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4457
4458			/*
4459			 * We have to play games with the name since the
4460			 * pool was opened as TRYIMPORT_NAME.
4461			 */
4462			if (dsl_dsobj_to_dsname(spa_name(spa),
4463			    spa->spa_bootfs, tmpname) == 0) {
4464				char *cp;
4465				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4466
4467				cp = strchr(tmpname, '/');
4468				if (cp == NULL) {
4469					(void) strlcpy(dsname, tmpname,
4470					    MAXPATHLEN);
4471				} else {
4472					(void) snprintf(dsname, MAXPATHLEN,
4473					    "%s/%s", poolname, ++cp);
4474				}
4475				VERIFY(nvlist_add_string(config,
4476				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4477				kmem_free(dsname, MAXPATHLEN);
4478			}
4479			kmem_free(tmpname, MAXPATHLEN);
4480		}
4481
4482		/*
4483		 * Add the list of hot spares and level 2 cache devices.
4484		 */
4485		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4486		spa_add_spares(spa, config);
4487		spa_add_l2cache(spa, config);
4488		spa_config_exit(spa, SCL_CONFIG, FTAG);
4489	}
4490
4491	spa_unload(spa);
4492	spa_deactivate(spa);
4493	spa_remove(spa);
4494	mutex_exit(&spa_namespace_lock);
4495
4496	return (config);
4497}
4498
4499/*
4500 * Pool export/destroy
4501 *
4502 * The act of destroying or exporting a pool is very simple.  We make sure there
4503 * is no more pending I/O and any references to the pool are gone.  Then, we
4504 * update the pool state and sync all the labels to disk, removing the
4505 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4506 * we don't sync the labels or remove the configuration cache.
4507 */
4508static int
4509spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4510    boolean_t force, boolean_t hardforce)
4511{
4512	spa_t *spa;
4513
4514	if (oldconfig)
4515		*oldconfig = NULL;
4516
4517	if (!(spa_mode_global & FWRITE))
4518		return (SET_ERROR(EROFS));
4519
4520	mutex_enter(&spa_namespace_lock);
4521	if ((spa = spa_lookup(pool)) == NULL) {
4522		mutex_exit(&spa_namespace_lock);
4523		return (SET_ERROR(ENOENT));
4524	}
4525
4526	/*
4527	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4528	 * reacquire the namespace lock, and see if we can export.
4529	 */
4530	spa_open_ref(spa, FTAG);
4531	mutex_exit(&spa_namespace_lock);
4532	spa_async_suspend(spa);
4533	mutex_enter(&spa_namespace_lock);
4534	spa_close(spa, FTAG);
4535
4536	/*
4537	 * The pool will be in core if it's openable,
4538	 * in which case we can modify its state.
4539	 */
4540	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4541		/*
4542		 * Objsets may be open only because they're dirty, so we
4543		 * have to force it to sync before checking spa_refcnt.
4544		 */
4545		txg_wait_synced(spa->spa_dsl_pool, 0);
4546		spa_evicting_os_wait(spa);
4547
4548		/*
4549		 * A pool cannot be exported or destroyed if there are active
4550		 * references.  If we are resetting a pool, allow references by
4551		 * fault injection handlers.
4552		 */
4553		if (!spa_refcount_zero(spa) ||
4554		    (spa->spa_inject_ref != 0 &&
4555		    new_state != POOL_STATE_UNINITIALIZED)) {
4556			spa_async_resume(spa);
4557			mutex_exit(&spa_namespace_lock);
4558			return (SET_ERROR(EBUSY));
4559		}
4560
4561		/*
4562		 * A pool cannot be exported if it has an active shared spare.
4563		 * This is to prevent other pools stealing the active spare
4564		 * from an exported pool. At user's own will, such pool can
4565		 * be forcedly exported.
4566		 */
4567		if (!force && new_state == POOL_STATE_EXPORTED &&
4568		    spa_has_active_shared_spare(spa)) {
4569			spa_async_resume(spa);
4570			mutex_exit(&spa_namespace_lock);
4571			return (SET_ERROR(EXDEV));
4572		}
4573
4574		/*
4575		 * We want this to be reflected on every label,
4576		 * so mark them all dirty.  spa_unload() will do the
4577		 * final sync that pushes these changes out.
4578		 */
4579		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4580			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4581			spa->spa_state = new_state;
4582			spa->spa_final_txg = spa_last_synced_txg(spa) +
4583			    TXG_DEFER_SIZE + 1;
4584			vdev_config_dirty(spa->spa_root_vdev);
4585			spa_config_exit(spa, SCL_ALL, FTAG);
4586		}
4587	}
4588
4589	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4590
4591	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4592		spa_unload(spa);
4593		spa_deactivate(spa);
4594	}
4595
4596	if (oldconfig && spa->spa_config)
4597		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4598
4599	if (new_state != POOL_STATE_UNINITIALIZED) {
4600		if (!hardforce)
4601			spa_config_sync(spa, B_TRUE, B_TRUE);
4602		spa_remove(spa);
4603	}
4604	mutex_exit(&spa_namespace_lock);
4605
4606	return (0);
4607}
4608
4609/*
4610 * Destroy a storage pool.
4611 */
4612int
4613spa_destroy(char *pool)
4614{
4615	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4616	    B_FALSE, B_FALSE));
4617}
4618
4619/*
4620 * Export a storage pool.
4621 */
4622int
4623spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4624    boolean_t hardforce)
4625{
4626	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4627	    force, hardforce));
4628}
4629
4630/*
4631 * Similar to spa_export(), this unloads the spa_t without actually removing it
4632 * from the namespace in any way.
4633 */
4634int
4635spa_reset(char *pool)
4636{
4637	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4638	    B_FALSE, B_FALSE));
4639}
4640
4641/*
4642 * ==========================================================================
4643 * Device manipulation
4644 * ==========================================================================
4645 */
4646
4647/*
4648 * Add a device to a storage pool.
4649 */
4650int
4651spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4652{
4653	uint64_t txg, id;
4654	int error;
4655	vdev_t *rvd = spa->spa_root_vdev;
4656	vdev_t *vd, *tvd;
4657	nvlist_t **spares, **l2cache;
4658	uint_t nspares, nl2cache;
4659
4660	ASSERT(spa_writeable(spa));
4661
4662	txg = spa_vdev_enter(spa);
4663
4664	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4665	    VDEV_ALLOC_ADD)) != 0)
4666		return (spa_vdev_exit(spa, NULL, txg, error));
4667
4668	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4669
4670	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4671	    &nspares) != 0)
4672		nspares = 0;
4673
4674	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4675	    &nl2cache) != 0)
4676		nl2cache = 0;
4677
4678	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4679		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4680
4681	if (vd->vdev_children != 0 &&
4682	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4683		return (spa_vdev_exit(spa, vd, txg, error));
4684
4685	/*
4686	 * We must validate the spares and l2cache devices after checking the
4687	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4688	 */
4689	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4690		return (spa_vdev_exit(spa, vd, txg, error));
4691
4692	/*
4693	 * Transfer each new top-level vdev from vd to rvd.
4694	 */
4695	for (int c = 0; c < vd->vdev_children; c++) {
4696
4697		/*
4698		 * Set the vdev id to the first hole, if one exists.
4699		 */
4700		for (id = 0; id < rvd->vdev_children; id++) {
4701			if (rvd->vdev_child[id]->vdev_ishole) {
4702				vdev_free(rvd->vdev_child[id]);
4703				break;
4704			}
4705		}
4706		tvd = vd->vdev_child[c];
4707		vdev_remove_child(vd, tvd);
4708		tvd->vdev_id = id;
4709		vdev_add_child(rvd, tvd);
4710		vdev_config_dirty(tvd);
4711	}
4712
4713	if (nspares != 0) {
4714		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4715		    ZPOOL_CONFIG_SPARES);
4716		spa_load_spares(spa);
4717		spa->spa_spares.sav_sync = B_TRUE;
4718	}
4719
4720	if (nl2cache != 0) {
4721		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4722		    ZPOOL_CONFIG_L2CACHE);
4723		spa_load_l2cache(spa);
4724		spa->spa_l2cache.sav_sync = B_TRUE;
4725	}
4726
4727	/*
4728	 * We have to be careful when adding new vdevs to an existing pool.
4729	 * If other threads start allocating from these vdevs before we
4730	 * sync the config cache, and we lose power, then upon reboot we may
4731	 * fail to open the pool because there are DVAs that the config cache
4732	 * can't translate.  Therefore, we first add the vdevs without
4733	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4734	 * and then let spa_config_update() initialize the new metaslabs.
4735	 *
4736	 * spa_load() checks for added-but-not-initialized vdevs, so that
4737	 * if we lose power at any point in this sequence, the remaining
4738	 * steps will be completed the next time we load the pool.
4739	 */
4740	(void) spa_vdev_exit(spa, vd, txg, 0);
4741
4742	mutex_enter(&spa_namespace_lock);
4743	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4744	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4745	mutex_exit(&spa_namespace_lock);
4746
4747	return (0);
4748}
4749
4750/*
4751 * Attach a device to a mirror.  The arguments are the path to any device
4752 * in the mirror, and the nvroot for the new device.  If the path specifies
4753 * a device that is not mirrored, we automatically insert the mirror vdev.
4754 *
4755 * If 'replacing' is specified, the new device is intended to replace the
4756 * existing device; in this case the two devices are made into their own
4757 * mirror using the 'replacing' vdev, which is functionally identical to
4758 * the mirror vdev (it actually reuses all the same ops) but has a few
4759 * extra rules: you can't attach to it after it's been created, and upon
4760 * completion of resilvering, the first disk (the one being replaced)
4761 * is automatically detached.
4762 */
4763int
4764spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4765{
4766	uint64_t txg, dtl_max_txg;
4767	vdev_t *rvd = spa->spa_root_vdev;
4768	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4769	vdev_ops_t *pvops;
4770	char *oldvdpath, *newvdpath;
4771	int newvd_isspare;
4772	int error;
4773
4774	ASSERT(spa_writeable(spa));
4775
4776	txg = spa_vdev_enter(spa);
4777
4778	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4779
4780	if (oldvd == NULL)
4781		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4782
4783	if (!oldvd->vdev_ops->vdev_op_leaf)
4784		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4785
4786	pvd = oldvd->vdev_parent;
4787
4788	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4789	    VDEV_ALLOC_ATTACH)) != 0)
4790		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4791
4792	if (newrootvd->vdev_children != 1)
4793		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4794
4795	newvd = newrootvd->vdev_child[0];
4796
4797	if (!newvd->vdev_ops->vdev_op_leaf)
4798		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4799
4800	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4801		return (spa_vdev_exit(spa, newrootvd, txg, error));
4802
4803	/*
4804	 * Spares can't replace logs
4805	 */
4806	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4807		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4808
4809	if (!replacing) {
4810		/*
4811		 * For attach, the only allowable parent is a mirror or the root
4812		 * vdev.
4813		 */
4814		if (pvd->vdev_ops != &vdev_mirror_ops &&
4815		    pvd->vdev_ops != &vdev_root_ops)
4816			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4817
4818		pvops = &vdev_mirror_ops;
4819	} else {
4820		/*
4821		 * Active hot spares can only be replaced by inactive hot
4822		 * spares.
4823		 */
4824		if (pvd->vdev_ops == &vdev_spare_ops &&
4825		    oldvd->vdev_isspare &&
4826		    !spa_has_spare(spa, newvd->vdev_guid))
4827			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4828
4829		/*
4830		 * If the source is a hot spare, and the parent isn't already a
4831		 * spare, then we want to create a new hot spare.  Otherwise, we
4832		 * want to create a replacing vdev.  The user is not allowed to
4833		 * attach to a spared vdev child unless the 'isspare' state is
4834		 * the same (spare replaces spare, non-spare replaces
4835		 * non-spare).
4836		 */
4837		if (pvd->vdev_ops == &vdev_replacing_ops &&
4838		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4839			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4840		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4841		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4842			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4843		}
4844
4845		if (newvd->vdev_isspare)
4846			pvops = &vdev_spare_ops;
4847		else
4848			pvops = &vdev_replacing_ops;
4849	}
4850
4851	/*
4852	 * Make sure the new device is big enough.
4853	 */
4854	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4855		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4856
4857	/*
4858	 * The new device cannot have a higher alignment requirement
4859	 * than the top-level vdev.
4860	 */
4861	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4862		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4863
4864	/*
4865	 * If this is an in-place replacement, update oldvd's path and devid
4866	 * to make it distinguishable from newvd, and unopenable from now on.
4867	 */
4868	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4869		spa_strfree(oldvd->vdev_path);
4870		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4871		    KM_SLEEP);
4872		(void) sprintf(oldvd->vdev_path, "%s/%s",
4873		    newvd->vdev_path, "old");
4874		if (oldvd->vdev_devid != NULL) {
4875			spa_strfree(oldvd->vdev_devid);
4876			oldvd->vdev_devid = NULL;
4877		}
4878	}
4879
4880	/* mark the device being resilvered */
4881	newvd->vdev_resilver_txg = txg;
4882
4883	/*
4884	 * If the parent is not a mirror, or if we're replacing, insert the new
4885	 * mirror/replacing/spare vdev above oldvd.
4886	 */
4887	if (pvd->vdev_ops != pvops)
4888		pvd = vdev_add_parent(oldvd, pvops);
4889
4890	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4891	ASSERT(pvd->vdev_ops == pvops);
4892	ASSERT(oldvd->vdev_parent == pvd);
4893
4894	/*
4895	 * Extract the new device from its root and add it to pvd.
4896	 */
4897	vdev_remove_child(newrootvd, newvd);
4898	newvd->vdev_id = pvd->vdev_children;
4899	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4900	vdev_add_child(pvd, newvd);
4901
4902	tvd = newvd->vdev_top;
4903	ASSERT(pvd->vdev_top == tvd);
4904	ASSERT(tvd->vdev_parent == rvd);
4905
4906	vdev_config_dirty(tvd);
4907
4908	/*
4909	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4910	 * for any dmu_sync-ed blocks.  It will propagate upward when
4911	 * spa_vdev_exit() calls vdev_dtl_reassess().
4912	 */
4913	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4914
4915	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4916	    dtl_max_txg - TXG_INITIAL);
4917
4918	if (newvd->vdev_isspare) {
4919		spa_spare_activate(newvd);
4920		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4921	}
4922
4923	oldvdpath = spa_strdup(oldvd->vdev_path);
4924	newvdpath = spa_strdup(newvd->vdev_path);
4925	newvd_isspare = newvd->vdev_isspare;
4926
4927	/*
4928	 * Mark newvd's DTL dirty in this txg.
4929	 */
4930	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4931
4932	/*
4933	 * Schedule the resilver to restart in the future. We do this to
4934	 * ensure that dmu_sync-ed blocks have been stitched into the
4935	 * respective datasets.
4936	 */
4937	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4938
4939	if (spa->spa_bootfs)
4940		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4941
4942	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4943
4944	/*
4945	 * Commit the config
4946	 */
4947	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4948
4949	spa_history_log_internal(spa, "vdev attach", NULL,
4950	    "%s vdev=%s %s vdev=%s",
4951	    replacing && newvd_isspare ? "spare in" :
4952	    replacing ? "replace" : "attach", newvdpath,
4953	    replacing ? "for" : "to", oldvdpath);
4954
4955	spa_strfree(oldvdpath);
4956	spa_strfree(newvdpath);
4957
4958	return (0);
4959}
4960
4961/*
4962 * Detach a device from a mirror or replacing vdev.
4963 *
4964 * If 'replace_done' is specified, only detach if the parent
4965 * is a replacing vdev.
4966 */
4967int
4968spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4969{
4970	uint64_t txg;
4971	int error;
4972	vdev_t *rvd = spa->spa_root_vdev;
4973	vdev_t *vd, *pvd, *cvd, *tvd;
4974	boolean_t unspare = B_FALSE;
4975	uint64_t unspare_guid = 0;
4976	char *vdpath;
4977
4978	ASSERT(spa_writeable(spa));
4979
4980	txg = spa_vdev_enter(spa);
4981
4982	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4983
4984	if (vd == NULL)
4985		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4986
4987	if (!vd->vdev_ops->vdev_op_leaf)
4988		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4989
4990	pvd = vd->vdev_parent;
4991
4992	/*
4993	 * If the parent/child relationship is not as expected, don't do it.
4994	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4995	 * vdev that's replacing B with C.  The user's intent in replacing
4996	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4997	 * the replace by detaching C, the expected behavior is to end up
4998	 * M(A,B).  But suppose that right after deciding to detach C,
4999	 * the replacement of B completes.  We would have M(A,C), and then
5000	 * ask to detach C, which would leave us with just A -- not what
5001	 * the user wanted.  To prevent this, we make sure that the
5002	 * parent/child relationship hasn't changed -- in this example,
5003	 * that C's parent is still the replacing vdev R.
5004	 */
5005	if (pvd->vdev_guid != pguid && pguid != 0)
5006		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5007
5008	/*
5009	 * Only 'replacing' or 'spare' vdevs can be replaced.
5010	 */
5011	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5012	    pvd->vdev_ops != &vdev_spare_ops)
5013		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5014
5015	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5016	    spa_version(spa) >= SPA_VERSION_SPARES);
5017
5018	/*
5019	 * Only mirror, replacing, and spare vdevs support detach.
5020	 */
5021	if (pvd->vdev_ops != &vdev_replacing_ops &&
5022	    pvd->vdev_ops != &vdev_mirror_ops &&
5023	    pvd->vdev_ops != &vdev_spare_ops)
5024		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5025
5026	/*
5027	 * If this device has the only valid copy of some data,
5028	 * we cannot safely detach it.
5029	 */
5030	if (vdev_dtl_required(vd))
5031		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5032
5033	ASSERT(pvd->vdev_children >= 2);
5034
5035	/*
5036	 * If we are detaching the second disk from a replacing vdev, then
5037	 * check to see if we changed the original vdev's path to have "/old"
5038	 * at the end in spa_vdev_attach().  If so, undo that change now.
5039	 */
5040	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5041	    vd->vdev_path != NULL) {
5042		size_t len = strlen(vd->vdev_path);
5043
5044		for (int c = 0; c < pvd->vdev_children; c++) {
5045			cvd = pvd->vdev_child[c];
5046
5047			if (cvd == vd || cvd->vdev_path == NULL)
5048				continue;
5049
5050			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5051			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5052				spa_strfree(cvd->vdev_path);
5053				cvd->vdev_path = spa_strdup(vd->vdev_path);
5054				break;
5055			}
5056		}
5057	}
5058
5059	/*
5060	 * If we are detaching the original disk from a spare, then it implies
5061	 * that the spare should become a real disk, and be removed from the
5062	 * active spare list for the pool.
5063	 */
5064	if (pvd->vdev_ops == &vdev_spare_ops &&
5065	    vd->vdev_id == 0 &&
5066	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5067		unspare = B_TRUE;
5068
5069	/*
5070	 * Erase the disk labels so the disk can be used for other things.
5071	 * This must be done after all other error cases are handled,
5072	 * but before we disembowel vd (so we can still do I/O to it).
5073	 * But if we can't do it, don't treat the error as fatal --
5074	 * it may be that the unwritability of the disk is the reason
5075	 * it's being detached!
5076	 */
5077	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5078
5079	/*
5080	 * Remove vd from its parent and compact the parent's children.
5081	 */
5082	vdev_remove_child(pvd, vd);
5083	vdev_compact_children(pvd);
5084
5085	/*
5086	 * Remember one of the remaining children so we can get tvd below.
5087	 */
5088	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5089
5090	/*
5091	 * If we need to remove the remaining child from the list of hot spares,
5092	 * do it now, marking the vdev as no longer a spare in the process.
5093	 * We must do this before vdev_remove_parent(), because that can
5094	 * change the GUID if it creates a new toplevel GUID.  For a similar
5095	 * reason, we must remove the spare now, in the same txg as the detach;
5096	 * otherwise someone could attach a new sibling, change the GUID, and
5097	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5098	 */
5099	if (unspare) {
5100		ASSERT(cvd->vdev_isspare);
5101		spa_spare_remove(cvd);
5102		unspare_guid = cvd->vdev_guid;
5103		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5104		cvd->vdev_unspare = B_TRUE;
5105	}
5106
5107	/*
5108	 * If the parent mirror/replacing vdev only has one child,
5109	 * the parent is no longer needed.  Remove it from the tree.
5110	 */
5111	if (pvd->vdev_children == 1) {
5112		if (pvd->vdev_ops == &vdev_spare_ops)
5113			cvd->vdev_unspare = B_FALSE;
5114		vdev_remove_parent(cvd);
5115	}
5116
5117
5118	/*
5119	 * We don't set tvd until now because the parent we just removed
5120	 * may have been the previous top-level vdev.
5121	 */
5122	tvd = cvd->vdev_top;
5123	ASSERT(tvd->vdev_parent == rvd);
5124
5125	/*
5126	 * Reevaluate the parent vdev state.
5127	 */
5128	vdev_propagate_state(cvd);
5129
5130	/*
5131	 * If the 'autoexpand' property is set on the pool then automatically
5132	 * try to expand the size of the pool. For example if the device we
5133	 * just detached was smaller than the others, it may be possible to
5134	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5135	 * first so that we can obtain the updated sizes of the leaf vdevs.
5136	 */
5137	if (spa->spa_autoexpand) {
5138		vdev_reopen(tvd);
5139		vdev_expand(tvd, txg);
5140	}
5141
5142	vdev_config_dirty(tvd);
5143
5144	/*
5145	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5146	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5147	 * But first make sure we're not on any *other* txg's DTL list, to
5148	 * prevent vd from being accessed after it's freed.
5149	 */
5150	vdpath = spa_strdup(vd->vdev_path);
5151	for (int t = 0; t < TXG_SIZE; t++)
5152		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5153	vd->vdev_detached = B_TRUE;
5154	vdev_dirty(tvd, VDD_DTL, vd, txg);
5155
5156	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5157
5158	/* hang on to the spa before we release the lock */
5159	spa_open_ref(spa, FTAG);
5160
5161	error = spa_vdev_exit(spa, vd, txg, 0);
5162
5163	spa_history_log_internal(spa, "detach", NULL,
5164	    "vdev=%s", vdpath);
5165	spa_strfree(vdpath);
5166
5167	/*
5168	 * If this was the removal of the original device in a hot spare vdev,
5169	 * then we want to go through and remove the device from the hot spare
5170	 * list of every other pool.
5171	 */
5172	if (unspare) {
5173		spa_t *altspa = NULL;
5174
5175		mutex_enter(&spa_namespace_lock);
5176		while ((altspa = spa_next(altspa)) != NULL) {
5177			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5178			    altspa == spa)
5179				continue;
5180
5181			spa_open_ref(altspa, FTAG);
5182			mutex_exit(&spa_namespace_lock);
5183			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5184			mutex_enter(&spa_namespace_lock);
5185			spa_close(altspa, FTAG);
5186		}
5187		mutex_exit(&spa_namespace_lock);
5188
5189		/* search the rest of the vdevs for spares to remove */
5190		spa_vdev_resilver_done(spa);
5191	}
5192
5193	/* all done with the spa; OK to release */
5194	mutex_enter(&spa_namespace_lock);
5195	spa_close(spa, FTAG);
5196	mutex_exit(&spa_namespace_lock);
5197
5198	return (error);
5199}
5200
5201/*
5202 * Split a set of devices from their mirrors, and create a new pool from them.
5203 */
5204int
5205spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5206    nvlist_t *props, boolean_t exp)
5207{
5208	int error = 0;
5209	uint64_t txg, *glist;
5210	spa_t *newspa;
5211	uint_t c, children, lastlog;
5212	nvlist_t **child, *nvl, *tmp;
5213	dmu_tx_t *tx;
5214	char *altroot = NULL;
5215	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5216	boolean_t activate_slog;
5217
5218	ASSERT(spa_writeable(spa));
5219
5220	txg = spa_vdev_enter(spa);
5221
5222	/* clear the log and flush everything up to now */
5223	activate_slog = spa_passivate_log(spa);
5224	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5225	error = spa_offline_log(spa);
5226	txg = spa_vdev_config_enter(spa);
5227
5228	if (activate_slog)
5229		spa_activate_log(spa);
5230
5231	if (error != 0)
5232		return (spa_vdev_exit(spa, NULL, txg, error));
5233
5234	/* check new spa name before going any further */
5235	if (spa_lookup(newname) != NULL)
5236		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5237
5238	/*
5239	 * scan through all the children to ensure they're all mirrors
5240	 */
5241	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5242	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5243	    &children) != 0)
5244		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5245
5246	/* first, check to ensure we've got the right child count */
5247	rvd = spa->spa_root_vdev;
5248	lastlog = 0;
5249	for (c = 0; c < rvd->vdev_children; c++) {
5250		vdev_t *vd = rvd->vdev_child[c];
5251
5252		/* don't count the holes & logs as children */
5253		if (vd->vdev_islog || vd->vdev_ishole) {
5254			if (lastlog == 0)
5255				lastlog = c;
5256			continue;
5257		}
5258
5259		lastlog = 0;
5260	}
5261	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5262		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5263
5264	/* next, ensure no spare or cache devices are part of the split */
5265	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5266	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5267		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5268
5269	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5270	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5271
5272	/* then, loop over each vdev and validate it */
5273	for (c = 0; c < children; c++) {
5274		uint64_t is_hole = 0;
5275
5276		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5277		    &is_hole);
5278
5279		if (is_hole != 0) {
5280			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5281			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5282				continue;
5283			} else {
5284				error = SET_ERROR(EINVAL);
5285				break;
5286			}
5287		}
5288
5289		/* which disk is going to be split? */
5290		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5291		    &glist[c]) != 0) {
5292			error = SET_ERROR(EINVAL);
5293			break;
5294		}
5295
5296		/* look it up in the spa */
5297		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5298		if (vml[c] == NULL) {
5299			error = SET_ERROR(ENODEV);
5300			break;
5301		}
5302
5303		/* make sure there's nothing stopping the split */
5304		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5305		    vml[c]->vdev_islog ||
5306		    vml[c]->vdev_ishole ||
5307		    vml[c]->vdev_isspare ||
5308		    vml[c]->vdev_isl2cache ||
5309		    !vdev_writeable(vml[c]) ||
5310		    vml[c]->vdev_children != 0 ||
5311		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5312		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5313			error = SET_ERROR(EINVAL);
5314			break;
5315		}
5316
5317		if (vdev_dtl_required(vml[c])) {
5318			error = SET_ERROR(EBUSY);
5319			break;
5320		}
5321
5322		/* we need certain info from the top level */
5323		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5324		    vml[c]->vdev_top->vdev_ms_array) == 0);
5325		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5326		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5327		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5328		    vml[c]->vdev_top->vdev_asize) == 0);
5329		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5330		    vml[c]->vdev_top->vdev_ashift) == 0);
5331	}
5332
5333	if (error != 0) {
5334		kmem_free(vml, children * sizeof (vdev_t *));
5335		kmem_free(glist, children * sizeof (uint64_t));
5336		return (spa_vdev_exit(spa, NULL, txg, error));
5337	}
5338
5339	/* stop writers from using the disks */
5340	for (c = 0; c < children; c++) {
5341		if (vml[c] != NULL)
5342			vml[c]->vdev_offline = B_TRUE;
5343	}
5344	vdev_reopen(spa->spa_root_vdev);
5345
5346	/*
5347	 * Temporarily record the splitting vdevs in the spa config.  This
5348	 * will disappear once the config is regenerated.
5349	 */
5350	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5351	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5352	    glist, children) == 0);
5353	kmem_free(glist, children * sizeof (uint64_t));
5354
5355	mutex_enter(&spa->spa_props_lock);
5356	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5357	    nvl) == 0);
5358	mutex_exit(&spa->spa_props_lock);
5359	spa->spa_config_splitting = nvl;
5360	vdev_config_dirty(spa->spa_root_vdev);
5361
5362	/* configure and create the new pool */
5363	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5364	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5365	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5366	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5367	    spa_version(spa)) == 0);
5368	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5369	    spa->spa_config_txg) == 0);
5370	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5371	    spa_generate_guid(NULL)) == 0);
5372	(void) nvlist_lookup_string(props,
5373	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5374
5375	/* add the new pool to the namespace */
5376	newspa = spa_add(newname, config, altroot);
5377	newspa->spa_config_txg = spa->spa_config_txg;
5378	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5379
5380	/* release the spa config lock, retaining the namespace lock */
5381	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5382
5383	if (zio_injection_enabled)
5384		zio_handle_panic_injection(spa, FTAG, 1);
5385
5386	spa_activate(newspa, spa_mode_global);
5387	spa_async_suspend(newspa);
5388
5389#ifndef illumos
5390	/* mark that we are creating new spa by splitting */
5391	newspa->spa_splitting_newspa = B_TRUE;
5392#endif
5393	/* create the new pool from the disks of the original pool */
5394	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5395#ifndef illumos
5396	newspa->spa_splitting_newspa = B_FALSE;
5397#endif
5398	if (error)
5399		goto out;
5400
5401	/* if that worked, generate a real config for the new pool */
5402	if (newspa->spa_root_vdev != NULL) {
5403		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5404		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5405		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5406		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5407		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5408		    B_TRUE));
5409	}
5410
5411	/* set the props */
5412	if (props != NULL) {
5413		spa_configfile_set(newspa, props, B_FALSE);
5414		error = spa_prop_set(newspa, props);
5415		if (error)
5416			goto out;
5417	}
5418
5419	/* flush everything */
5420	txg = spa_vdev_config_enter(newspa);
5421	vdev_config_dirty(newspa->spa_root_vdev);
5422	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5423
5424	if (zio_injection_enabled)
5425		zio_handle_panic_injection(spa, FTAG, 2);
5426
5427	spa_async_resume(newspa);
5428
5429	/* finally, update the original pool's config */
5430	txg = spa_vdev_config_enter(spa);
5431	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5432	error = dmu_tx_assign(tx, TXG_WAIT);
5433	if (error != 0)
5434		dmu_tx_abort(tx);
5435	for (c = 0; c < children; c++) {
5436		if (vml[c] != NULL) {
5437			vdev_split(vml[c]);
5438			if (error == 0)
5439				spa_history_log_internal(spa, "detach", tx,
5440				    "vdev=%s", vml[c]->vdev_path);
5441			vdev_free(vml[c]);
5442		}
5443	}
5444	vdev_config_dirty(spa->spa_root_vdev);
5445	spa->spa_config_splitting = NULL;
5446	nvlist_free(nvl);
5447	if (error == 0)
5448		dmu_tx_commit(tx);
5449	(void) spa_vdev_exit(spa, NULL, txg, 0);
5450
5451	if (zio_injection_enabled)
5452		zio_handle_panic_injection(spa, FTAG, 3);
5453
5454	/* split is complete; log a history record */
5455	spa_history_log_internal(newspa, "split", NULL,
5456	    "from pool %s", spa_name(spa));
5457
5458	kmem_free(vml, children * sizeof (vdev_t *));
5459
5460	/* if we're not going to mount the filesystems in userland, export */
5461	if (exp)
5462		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5463		    B_FALSE, B_FALSE);
5464
5465	return (error);
5466
5467out:
5468	spa_unload(newspa);
5469	spa_deactivate(newspa);
5470	spa_remove(newspa);
5471
5472	txg = spa_vdev_config_enter(spa);
5473
5474	/* re-online all offlined disks */
5475	for (c = 0; c < children; c++) {
5476		if (vml[c] != NULL)
5477			vml[c]->vdev_offline = B_FALSE;
5478	}
5479	vdev_reopen(spa->spa_root_vdev);
5480
5481	nvlist_free(spa->spa_config_splitting);
5482	spa->spa_config_splitting = NULL;
5483	(void) spa_vdev_exit(spa, NULL, txg, error);
5484
5485	kmem_free(vml, children * sizeof (vdev_t *));
5486	return (error);
5487}
5488
5489static nvlist_t *
5490spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5491{
5492	for (int i = 0; i < count; i++) {
5493		uint64_t guid;
5494
5495		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5496		    &guid) == 0);
5497
5498		if (guid == target_guid)
5499			return (nvpp[i]);
5500	}
5501
5502	return (NULL);
5503}
5504
5505static void
5506spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5507	nvlist_t *dev_to_remove)
5508{
5509	nvlist_t **newdev = NULL;
5510
5511	if (count > 1)
5512		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5513
5514	for (int i = 0, j = 0; i < count; i++) {
5515		if (dev[i] == dev_to_remove)
5516			continue;
5517		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5518	}
5519
5520	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5521	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5522
5523	for (int i = 0; i < count - 1; i++)
5524		nvlist_free(newdev[i]);
5525
5526	if (count > 1)
5527		kmem_free(newdev, (count - 1) * sizeof (void *));
5528}
5529
5530/*
5531 * Evacuate the device.
5532 */
5533static int
5534spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5535{
5536	uint64_t txg;
5537	int error = 0;
5538
5539	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5540	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5541	ASSERT(vd == vd->vdev_top);
5542
5543	/*
5544	 * Evacuate the device.  We don't hold the config lock as writer
5545	 * since we need to do I/O but we do keep the
5546	 * spa_namespace_lock held.  Once this completes the device
5547	 * should no longer have any blocks allocated on it.
5548	 */
5549	if (vd->vdev_islog) {
5550		if (vd->vdev_stat.vs_alloc != 0)
5551			error = spa_offline_log(spa);
5552	} else {
5553		error = SET_ERROR(ENOTSUP);
5554	}
5555
5556	if (error)
5557		return (error);
5558
5559	/*
5560	 * The evacuation succeeded.  Remove any remaining MOS metadata
5561	 * associated with this vdev, and wait for these changes to sync.
5562	 */
5563	ASSERT0(vd->vdev_stat.vs_alloc);
5564	txg = spa_vdev_config_enter(spa);
5565	vd->vdev_removing = B_TRUE;
5566	vdev_dirty_leaves(vd, VDD_DTL, txg);
5567	vdev_config_dirty(vd);
5568	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5569
5570	return (0);
5571}
5572
5573/*
5574 * Complete the removal by cleaning up the namespace.
5575 */
5576static void
5577spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5578{
5579	vdev_t *rvd = spa->spa_root_vdev;
5580	uint64_t id = vd->vdev_id;
5581	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5582
5583	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5584	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5585	ASSERT(vd == vd->vdev_top);
5586
5587	/*
5588	 * Only remove any devices which are empty.
5589	 */
5590	if (vd->vdev_stat.vs_alloc != 0)
5591		return;
5592
5593	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5594
5595	if (list_link_active(&vd->vdev_state_dirty_node))
5596		vdev_state_clean(vd);
5597	if (list_link_active(&vd->vdev_config_dirty_node))
5598		vdev_config_clean(vd);
5599
5600	vdev_free(vd);
5601
5602	if (last_vdev) {
5603		vdev_compact_children(rvd);
5604	} else {
5605		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5606		vdev_add_child(rvd, vd);
5607	}
5608	vdev_config_dirty(rvd);
5609
5610	/*
5611	 * Reassess the health of our root vdev.
5612	 */
5613	vdev_reopen(rvd);
5614}
5615
5616/*
5617 * Remove a device from the pool -
5618 *
5619 * Removing a device from the vdev namespace requires several steps
5620 * and can take a significant amount of time.  As a result we use
5621 * the spa_vdev_config_[enter/exit] functions which allow us to
5622 * grab and release the spa_config_lock while still holding the namespace
5623 * lock.  During each step the configuration is synced out.
5624 *
5625 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5626 * devices.
5627 */
5628int
5629spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5630{
5631	vdev_t *vd;
5632	metaslab_group_t *mg;
5633	nvlist_t **spares, **l2cache, *nv;
5634	uint64_t txg = 0;
5635	uint_t nspares, nl2cache;
5636	int error = 0;
5637	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5638
5639	ASSERT(spa_writeable(spa));
5640
5641	if (!locked)
5642		txg = spa_vdev_enter(spa);
5643
5644	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5645
5646	if (spa->spa_spares.sav_vdevs != NULL &&
5647	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5648	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5649	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5650		/*
5651		 * Only remove the hot spare if it's not currently in use
5652		 * in this pool.
5653		 */
5654		if (vd == NULL || unspare) {
5655			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5656			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5657			spa_load_spares(spa);
5658			spa->spa_spares.sav_sync = B_TRUE;
5659		} else {
5660			error = SET_ERROR(EBUSY);
5661		}
5662	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5663	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5664	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5665	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5666		/*
5667		 * Cache devices can always be removed.
5668		 */
5669		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5670		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5671		spa_load_l2cache(spa);
5672		spa->spa_l2cache.sav_sync = B_TRUE;
5673	} else if (vd != NULL && vd->vdev_islog) {
5674		ASSERT(!locked);
5675		ASSERT(vd == vd->vdev_top);
5676
5677		mg = vd->vdev_mg;
5678
5679		/*
5680		 * Stop allocating from this vdev.
5681		 */
5682		metaslab_group_passivate(mg);
5683
5684		/*
5685		 * Wait for the youngest allocations and frees to sync,
5686		 * and then wait for the deferral of those frees to finish.
5687		 */
5688		spa_vdev_config_exit(spa, NULL,
5689		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5690
5691		/*
5692		 * Attempt to evacuate the vdev.
5693		 */
5694		error = spa_vdev_remove_evacuate(spa, vd);
5695
5696		txg = spa_vdev_config_enter(spa);
5697
5698		/*
5699		 * If we couldn't evacuate the vdev, unwind.
5700		 */
5701		if (error) {
5702			metaslab_group_activate(mg);
5703			return (spa_vdev_exit(spa, NULL, txg, error));
5704		}
5705
5706		/*
5707		 * Clean up the vdev namespace.
5708		 */
5709		spa_vdev_remove_from_namespace(spa, vd);
5710
5711	} else if (vd != NULL) {
5712		/*
5713		 * Normal vdevs cannot be removed (yet).
5714		 */
5715		error = SET_ERROR(ENOTSUP);
5716	} else {
5717		/*
5718		 * There is no vdev of any kind with the specified guid.
5719		 */
5720		error = SET_ERROR(ENOENT);
5721	}
5722
5723	if (!locked)
5724		return (spa_vdev_exit(spa, NULL, txg, error));
5725
5726	return (error);
5727}
5728
5729/*
5730 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5731 * currently spared, so we can detach it.
5732 */
5733static vdev_t *
5734spa_vdev_resilver_done_hunt(vdev_t *vd)
5735{
5736	vdev_t *newvd, *oldvd;
5737
5738	for (int c = 0; c < vd->vdev_children; c++) {
5739		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5740		if (oldvd != NULL)
5741			return (oldvd);
5742	}
5743
5744	/*
5745	 * Check for a completed replacement.  We always consider the first
5746	 * vdev in the list to be the oldest vdev, and the last one to be
5747	 * the newest (see spa_vdev_attach() for how that works).  In
5748	 * the case where the newest vdev is faulted, we will not automatically
5749	 * remove it after a resilver completes.  This is OK as it will require
5750	 * user intervention to determine which disk the admin wishes to keep.
5751	 */
5752	if (vd->vdev_ops == &vdev_replacing_ops) {
5753		ASSERT(vd->vdev_children > 1);
5754
5755		newvd = vd->vdev_child[vd->vdev_children - 1];
5756		oldvd = vd->vdev_child[0];
5757
5758		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5759		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5760		    !vdev_dtl_required(oldvd))
5761			return (oldvd);
5762	}
5763
5764	/*
5765	 * Check for a completed resilver with the 'unspare' flag set.
5766	 */
5767	if (vd->vdev_ops == &vdev_spare_ops) {
5768		vdev_t *first = vd->vdev_child[0];
5769		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5770
5771		if (last->vdev_unspare) {
5772			oldvd = first;
5773			newvd = last;
5774		} else if (first->vdev_unspare) {
5775			oldvd = last;
5776			newvd = first;
5777		} else {
5778			oldvd = NULL;
5779		}
5780
5781		if (oldvd != NULL &&
5782		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5783		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5784		    !vdev_dtl_required(oldvd))
5785			return (oldvd);
5786
5787		/*
5788		 * If there are more than two spares attached to a disk,
5789		 * and those spares are not required, then we want to
5790		 * attempt to free them up now so that they can be used
5791		 * by other pools.  Once we're back down to a single
5792		 * disk+spare, we stop removing them.
5793		 */
5794		if (vd->vdev_children > 2) {
5795			newvd = vd->vdev_child[1];
5796
5797			if (newvd->vdev_isspare && last->vdev_isspare &&
5798			    vdev_dtl_empty(last, DTL_MISSING) &&
5799			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5800			    !vdev_dtl_required(newvd))
5801				return (newvd);
5802		}
5803	}
5804
5805	return (NULL);
5806}
5807
5808static void
5809spa_vdev_resilver_done(spa_t *spa)
5810{
5811	vdev_t *vd, *pvd, *ppvd;
5812	uint64_t guid, sguid, pguid, ppguid;
5813
5814	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5815
5816	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5817		pvd = vd->vdev_parent;
5818		ppvd = pvd->vdev_parent;
5819		guid = vd->vdev_guid;
5820		pguid = pvd->vdev_guid;
5821		ppguid = ppvd->vdev_guid;
5822		sguid = 0;
5823		/*
5824		 * If we have just finished replacing a hot spared device, then
5825		 * we need to detach the parent's first child (the original hot
5826		 * spare) as well.
5827		 */
5828		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5829		    ppvd->vdev_children == 2) {
5830			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5831			sguid = ppvd->vdev_child[1]->vdev_guid;
5832		}
5833		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5834
5835		spa_config_exit(spa, SCL_ALL, FTAG);
5836		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5837			return;
5838		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5839			return;
5840		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5841	}
5842
5843	spa_config_exit(spa, SCL_ALL, FTAG);
5844}
5845
5846/*
5847 * Update the stored path or FRU for this vdev.
5848 */
5849int
5850spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5851    boolean_t ispath)
5852{
5853	vdev_t *vd;
5854	boolean_t sync = B_FALSE;
5855
5856	ASSERT(spa_writeable(spa));
5857
5858	spa_vdev_state_enter(spa, SCL_ALL);
5859
5860	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5861		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5862
5863	if (!vd->vdev_ops->vdev_op_leaf)
5864		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5865
5866	if (ispath) {
5867		if (strcmp(value, vd->vdev_path) != 0) {
5868			spa_strfree(vd->vdev_path);
5869			vd->vdev_path = spa_strdup(value);
5870			sync = B_TRUE;
5871		}
5872	} else {
5873		if (vd->vdev_fru == NULL) {
5874			vd->vdev_fru = spa_strdup(value);
5875			sync = B_TRUE;
5876		} else if (strcmp(value, vd->vdev_fru) != 0) {
5877			spa_strfree(vd->vdev_fru);
5878			vd->vdev_fru = spa_strdup(value);
5879			sync = B_TRUE;
5880		}
5881	}
5882
5883	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5884}
5885
5886int
5887spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5888{
5889	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5890}
5891
5892int
5893spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5894{
5895	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5896}
5897
5898/*
5899 * ==========================================================================
5900 * SPA Scanning
5901 * ==========================================================================
5902 */
5903
5904int
5905spa_scan_stop(spa_t *spa)
5906{
5907	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5908	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5909		return (SET_ERROR(EBUSY));
5910	return (dsl_scan_cancel(spa->spa_dsl_pool));
5911}
5912
5913int
5914spa_scan(spa_t *spa, pool_scan_func_t func)
5915{
5916	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5917
5918	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5919		return (SET_ERROR(ENOTSUP));
5920
5921	/*
5922	 * If a resilver was requested, but there is no DTL on a
5923	 * writeable leaf device, we have nothing to do.
5924	 */
5925	if (func == POOL_SCAN_RESILVER &&
5926	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5927		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5928		return (0);
5929	}
5930
5931	return (dsl_scan(spa->spa_dsl_pool, func));
5932}
5933
5934/*
5935 * ==========================================================================
5936 * SPA async task processing
5937 * ==========================================================================
5938 */
5939
5940static void
5941spa_async_remove(spa_t *spa, vdev_t *vd)
5942{
5943	if (vd->vdev_remove_wanted) {
5944		vd->vdev_remove_wanted = B_FALSE;
5945		vd->vdev_delayed_close = B_FALSE;
5946		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5947
5948		/*
5949		 * We want to clear the stats, but we don't want to do a full
5950		 * vdev_clear() as that will cause us to throw away
5951		 * degraded/faulted state as well as attempt to reopen the
5952		 * device, all of which is a waste.
5953		 */
5954		vd->vdev_stat.vs_read_errors = 0;
5955		vd->vdev_stat.vs_write_errors = 0;
5956		vd->vdev_stat.vs_checksum_errors = 0;
5957
5958		vdev_state_dirty(vd->vdev_top);
5959		/* Tell userspace that the vdev is gone. */
5960		zfs_post_remove(spa, vd);
5961	}
5962
5963	for (int c = 0; c < vd->vdev_children; c++)
5964		spa_async_remove(spa, vd->vdev_child[c]);
5965}
5966
5967static void
5968spa_async_probe(spa_t *spa, vdev_t *vd)
5969{
5970	if (vd->vdev_probe_wanted) {
5971		vd->vdev_probe_wanted = B_FALSE;
5972		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5973	}
5974
5975	for (int c = 0; c < vd->vdev_children; c++)
5976		spa_async_probe(spa, vd->vdev_child[c]);
5977}
5978
5979static void
5980spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5981{
5982	sysevent_id_t eid;
5983	nvlist_t *attr;
5984	char *physpath;
5985
5986	if (!spa->spa_autoexpand)
5987		return;
5988
5989	for (int c = 0; c < vd->vdev_children; c++) {
5990		vdev_t *cvd = vd->vdev_child[c];
5991		spa_async_autoexpand(spa, cvd);
5992	}
5993
5994	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5995		return;
5996
5997	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5998	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5999
6000	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6001	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6002
6003	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6004	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6005
6006	nvlist_free(attr);
6007	kmem_free(physpath, MAXPATHLEN);
6008}
6009
6010static void
6011spa_async_thread(void *arg)
6012{
6013	spa_t *spa = arg;
6014	int tasks;
6015
6016	ASSERT(spa->spa_sync_on);
6017
6018	mutex_enter(&spa->spa_async_lock);
6019	tasks = spa->spa_async_tasks;
6020	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6021	mutex_exit(&spa->spa_async_lock);
6022
6023	/*
6024	 * See if the config needs to be updated.
6025	 */
6026	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6027		uint64_t old_space, new_space;
6028
6029		mutex_enter(&spa_namespace_lock);
6030		old_space = metaslab_class_get_space(spa_normal_class(spa));
6031		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6032		new_space = metaslab_class_get_space(spa_normal_class(spa));
6033		mutex_exit(&spa_namespace_lock);
6034
6035		/*
6036		 * If the pool grew as a result of the config update,
6037		 * then log an internal history event.
6038		 */
6039		if (new_space != old_space) {
6040			spa_history_log_internal(spa, "vdev online", NULL,
6041			    "pool '%s' size: %llu(+%llu)",
6042			    spa_name(spa), new_space, new_space - old_space);
6043		}
6044	}
6045
6046	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6047		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6048		spa_async_autoexpand(spa, spa->spa_root_vdev);
6049		spa_config_exit(spa, SCL_CONFIG, FTAG);
6050	}
6051
6052	/*
6053	 * See if any devices need to be probed.
6054	 */
6055	if (tasks & SPA_ASYNC_PROBE) {
6056		spa_vdev_state_enter(spa, SCL_NONE);
6057		spa_async_probe(spa, spa->spa_root_vdev);
6058		(void) spa_vdev_state_exit(spa, NULL, 0);
6059	}
6060
6061	/*
6062	 * If any devices are done replacing, detach them.
6063	 */
6064	if (tasks & SPA_ASYNC_RESILVER_DONE)
6065		spa_vdev_resilver_done(spa);
6066
6067	/*
6068	 * Kick off a resilver.
6069	 */
6070	if (tasks & SPA_ASYNC_RESILVER)
6071		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6072
6073	/*
6074	 * Let the world know that we're done.
6075	 */
6076	mutex_enter(&spa->spa_async_lock);
6077	spa->spa_async_thread = NULL;
6078	cv_broadcast(&spa->spa_async_cv);
6079	mutex_exit(&spa->spa_async_lock);
6080	thread_exit();
6081}
6082
6083static void
6084spa_async_thread_vd(void *arg)
6085{
6086	spa_t *spa = arg;
6087	int tasks;
6088
6089	ASSERT(spa->spa_sync_on);
6090
6091	mutex_enter(&spa->spa_async_lock);
6092	tasks = spa->spa_async_tasks;
6093retry:
6094	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6095	mutex_exit(&spa->spa_async_lock);
6096
6097	/*
6098	 * See if any devices need to be marked REMOVED.
6099	 */
6100	if (tasks & SPA_ASYNC_REMOVE) {
6101		spa_vdev_state_enter(spa, SCL_NONE);
6102		spa_async_remove(spa, spa->spa_root_vdev);
6103		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6104			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6105		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6106			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6107		(void) spa_vdev_state_exit(spa, NULL, 0);
6108	}
6109
6110	/*
6111	 * Let the world know that we're done.
6112	 */
6113	mutex_enter(&spa->spa_async_lock);
6114	tasks = spa->spa_async_tasks;
6115	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6116		goto retry;
6117	spa->spa_async_thread_vd = NULL;
6118	cv_broadcast(&spa->spa_async_cv);
6119	mutex_exit(&spa->spa_async_lock);
6120	thread_exit();
6121}
6122
6123void
6124spa_async_suspend(spa_t *spa)
6125{
6126	mutex_enter(&spa->spa_async_lock);
6127	spa->spa_async_suspended++;
6128	while (spa->spa_async_thread != NULL &&
6129	    spa->spa_async_thread_vd != NULL)
6130		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6131	mutex_exit(&spa->spa_async_lock);
6132}
6133
6134void
6135spa_async_resume(spa_t *spa)
6136{
6137	mutex_enter(&spa->spa_async_lock);
6138	ASSERT(spa->spa_async_suspended != 0);
6139	spa->spa_async_suspended--;
6140	mutex_exit(&spa->spa_async_lock);
6141}
6142
6143static boolean_t
6144spa_async_tasks_pending(spa_t *spa)
6145{
6146	uint_t non_config_tasks;
6147	uint_t config_task;
6148	boolean_t config_task_suspended;
6149
6150	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6151	    SPA_ASYNC_REMOVE);
6152	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6153	if (spa->spa_ccw_fail_time == 0) {
6154		config_task_suspended = B_FALSE;
6155	} else {
6156		config_task_suspended =
6157		    (gethrtime() - spa->spa_ccw_fail_time) <
6158		    (zfs_ccw_retry_interval * NANOSEC);
6159	}
6160
6161	return (non_config_tasks || (config_task && !config_task_suspended));
6162}
6163
6164static void
6165spa_async_dispatch(spa_t *spa)
6166{
6167	mutex_enter(&spa->spa_async_lock);
6168	if (spa_async_tasks_pending(spa) &&
6169	    !spa->spa_async_suspended &&
6170	    spa->spa_async_thread == NULL &&
6171	    rootdir != NULL)
6172		spa->spa_async_thread = thread_create(NULL, 0,
6173		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6174	mutex_exit(&spa->spa_async_lock);
6175}
6176
6177static void
6178spa_async_dispatch_vd(spa_t *spa)
6179{
6180	mutex_enter(&spa->spa_async_lock);
6181	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6182	    !spa->spa_async_suspended &&
6183	    spa->spa_async_thread_vd == NULL &&
6184	    rootdir != NULL)
6185		spa->spa_async_thread_vd = thread_create(NULL, 0,
6186		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6187	mutex_exit(&spa->spa_async_lock);
6188}
6189
6190void
6191spa_async_request(spa_t *spa, int task)
6192{
6193	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6194	mutex_enter(&spa->spa_async_lock);
6195	spa->spa_async_tasks |= task;
6196	mutex_exit(&spa->spa_async_lock);
6197	spa_async_dispatch_vd(spa);
6198}
6199
6200/*
6201 * ==========================================================================
6202 * SPA syncing routines
6203 * ==========================================================================
6204 */
6205
6206static int
6207bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6208{
6209	bpobj_t *bpo = arg;
6210	bpobj_enqueue(bpo, bp, tx);
6211	return (0);
6212}
6213
6214static int
6215spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6216{
6217	zio_t *zio = arg;
6218
6219	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6220	    BP_GET_PSIZE(bp), zio->io_flags));
6221	return (0);
6222}
6223
6224/*
6225 * Note: this simple function is not inlined to make it easier to dtrace the
6226 * amount of time spent syncing frees.
6227 */
6228static void
6229spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6230{
6231	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6232	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6233	VERIFY(zio_wait(zio) == 0);
6234}
6235
6236/*
6237 * Note: this simple function is not inlined to make it easier to dtrace the
6238 * amount of time spent syncing deferred frees.
6239 */
6240static void
6241spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6242{
6243	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6244	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6245	    spa_free_sync_cb, zio, tx), ==, 0);
6246	VERIFY0(zio_wait(zio));
6247}
6248
6249
6250static void
6251spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6252{
6253	char *packed = NULL;
6254	size_t bufsize;
6255	size_t nvsize = 0;
6256	dmu_buf_t *db;
6257
6258	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6259
6260	/*
6261	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6262	 * information.  This avoids the dmu_buf_will_dirty() path and
6263	 * saves us a pre-read to get data we don't actually care about.
6264	 */
6265	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6266	packed = kmem_alloc(bufsize, KM_SLEEP);
6267
6268	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6269	    KM_SLEEP) == 0);
6270	bzero(packed + nvsize, bufsize - nvsize);
6271
6272	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6273
6274	kmem_free(packed, bufsize);
6275
6276	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6277	dmu_buf_will_dirty(db, tx);
6278	*(uint64_t *)db->db_data = nvsize;
6279	dmu_buf_rele(db, FTAG);
6280}
6281
6282static void
6283spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6284    const char *config, const char *entry)
6285{
6286	nvlist_t *nvroot;
6287	nvlist_t **list;
6288	int i;
6289
6290	if (!sav->sav_sync)
6291		return;
6292
6293	/*
6294	 * Update the MOS nvlist describing the list of available devices.
6295	 * spa_validate_aux() will have already made sure this nvlist is
6296	 * valid and the vdevs are labeled appropriately.
6297	 */
6298	if (sav->sav_object == 0) {
6299		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6300		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6301		    sizeof (uint64_t), tx);
6302		VERIFY(zap_update(spa->spa_meta_objset,
6303		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6304		    &sav->sav_object, tx) == 0);
6305	}
6306
6307	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6308	if (sav->sav_count == 0) {
6309		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6310	} else {
6311		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6312		for (i = 0; i < sav->sav_count; i++)
6313			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6314			    B_FALSE, VDEV_CONFIG_L2CACHE);
6315		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6316		    sav->sav_count) == 0);
6317		for (i = 0; i < sav->sav_count; i++)
6318			nvlist_free(list[i]);
6319		kmem_free(list, sav->sav_count * sizeof (void *));
6320	}
6321
6322	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6323	nvlist_free(nvroot);
6324
6325	sav->sav_sync = B_FALSE;
6326}
6327
6328static void
6329spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6330{
6331	nvlist_t *config;
6332
6333	if (list_is_empty(&spa->spa_config_dirty_list))
6334		return;
6335
6336	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6337
6338	config = spa_config_generate(spa, spa->spa_root_vdev,
6339	    dmu_tx_get_txg(tx), B_FALSE);
6340
6341	/*
6342	 * If we're upgrading the spa version then make sure that
6343	 * the config object gets updated with the correct version.
6344	 */
6345	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6346		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6347		    spa->spa_uberblock.ub_version);
6348
6349	spa_config_exit(spa, SCL_STATE, FTAG);
6350
6351	nvlist_free(spa->spa_config_syncing);
6352	spa->spa_config_syncing = config;
6353
6354	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6355}
6356
6357static void
6358spa_sync_version(void *arg, dmu_tx_t *tx)
6359{
6360	uint64_t *versionp = arg;
6361	uint64_t version = *versionp;
6362	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6363
6364	/*
6365	 * Setting the version is special cased when first creating the pool.
6366	 */
6367	ASSERT(tx->tx_txg != TXG_INITIAL);
6368
6369	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6370	ASSERT(version >= spa_version(spa));
6371
6372	spa->spa_uberblock.ub_version = version;
6373	vdev_config_dirty(spa->spa_root_vdev);
6374	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6375}
6376
6377/*
6378 * Set zpool properties.
6379 */
6380static void
6381spa_sync_props(void *arg, dmu_tx_t *tx)
6382{
6383	nvlist_t *nvp = arg;
6384	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6385	objset_t *mos = spa->spa_meta_objset;
6386	nvpair_t *elem = NULL;
6387
6388	mutex_enter(&spa->spa_props_lock);
6389
6390	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6391		uint64_t intval;
6392		char *strval, *fname;
6393		zpool_prop_t prop;
6394		const char *propname;
6395		zprop_type_t proptype;
6396		spa_feature_t fid;
6397
6398		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6399		case ZPROP_INVAL:
6400			/*
6401			 * We checked this earlier in spa_prop_validate().
6402			 */
6403			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6404
6405			fname = strchr(nvpair_name(elem), '@') + 1;
6406			VERIFY0(zfeature_lookup_name(fname, &fid));
6407
6408			spa_feature_enable(spa, fid, tx);
6409			spa_history_log_internal(spa, "set", tx,
6410			    "%s=enabled", nvpair_name(elem));
6411			break;
6412
6413		case ZPOOL_PROP_VERSION:
6414			intval = fnvpair_value_uint64(elem);
6415			/*
6416			 * The version is synced seperatly before other
6417			 * properties and should be correct by now.
6418			 */
6419			ASSERT3U(spa_version(spa), >=, intval);
6420			break;
6421
6422		case ZPOOL_PROP_ALTROOT:
6423			/*
6424			 * 'altroot' is a non-persistent property. It should
6425			 * have been set temporarily at creation or import time.
6426			 */
6427			ASSERT(spa->spa_root != NULL);
6428			break;
6429
6430		case ZPOOL_PROP_READONLY:
6431		case ZPOOL_PROP_CACHEFILE:
6432			/*
6433			 * 'readonly' and 'cachefile' are also non-persisitent
6434			 * properties.
6435			 */
6436			break;
6437		case ZPOOL_PROP_COMMENT:
6438			strval = fnvpair_value_string(elem);
6439			if (spa->spa_comment != NULL)
6440				spa_strfree(spa->spa_comment);
6441			spa->spa_comment = spa_strdup(strval);
6442			/*
6443			 * We need to dirty the configuration on all the vdevs
6444			 * so that their labels get updated.  It's unnecessary
6445			 * to do this for pool creation since the vdev's
6446			 * configuratoin has already been dirtied.
6447			 */
6448			if (tx->tx_txg != TXG_INITIAL)
6449				vdev_config_dirty(spa->spa_root_vdev);
6450			spa_history_log_internal(spa, "set", tx,
6451			    "%s=%s", nvpair_name(elem), strval);
6452			break;
6453		default:
6454			/*
6455			 * Set pool property values in the poolprops mos object.
6456			 */
6457			if (spa->spa_pool_props_object == 0) {
6458				spa->spa_pool_props_object =
6459				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6460				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6461				    tx);
6462			}
6463
6464			/* normalize the property name */
6465			propname = zpool_prop_to_name(prop);
6466			proptype = zpool_prop_get_type(prop);
6467
6468			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6469				ASSERT(proptype == PROP_TYPE_STRING);
6470				strval = fnvpair_value_string(elem);
6471				VERIFY0(zap_update(mos,
6472				    spa->spa_pool_props_object, propname,
6473				    1, strlen(strval) + 1, strval, tx));
6474				spa_history_log_internal(spa, "set", tx,
6475				    "%s=%s", nvpair_name(elem), strval);
6476			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6477				intval = fnvpair_value_uint64(elem);
6478
6479				if (proptype == PROP_TYPE_INDEX) {
6480					const char *unused;
6481					VERIFY0(zpool_prop_index_to_string(
6482					    prop, intval, &unused));
6483				}
6484				VERIFY0(zap_update(mos,
6485				    spa->spa_pool_props_object, propname,
6486				    8, 1, &intval, tx));
6487				spa_history_log_internal(spa, "set", tx,
6488				    "%s=%lld", nvpair_name(elem), intval);
6489			} else {
6490				ASSERT(0); /* not allowed */
6491			}
6492
6493			switch (prop) {
6494			case ZPOOL_PROP_DELEGATION:
6495				spa->spa_delegation = intval;
6496				break;
6497			case ZPOOL_PROP_BOOTFS:
6498				spa->spa_bootfs = intval;
6499				break;
6500			case ZPOOL_PROP_FAILUREMODE:
6501				spa->spa_failmode = intval;
6502				break;
6503			case ZPOOL_PROP_AUTOEXPAND:
6504				spa->spa_autoexpand = intval;
6505				if (tx->tx_txg != TXG_INITIAL)
6506					spa_async_request(spa,
6507					    SPA_ASYNC_AUTOEXPAND);
6508				break;
6509			case ZPOOL_PROP_DEDUPDITTO:
6510				spa->spa_dedup_ditto = intval;
6511				break;
6512			default:
6513				break;
6514			}
6515		}
6516
6517	}
6518
6519	mutex_exit(&spa->spa_props_lock);
6520}
6521
6522/*
6523 * Perform one-time upgrade on-disk changes.  spa_version() does not
6524 * reflect the new version this txg, so there must be no changes this
6525 * txg to anything that the upgrade code depends on after it executes.
6526 * Therefore this must be called after dsl_pool_sync() does the sync
6527 * tasks.
6528 */
6529static void
6530spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6531{
6532	dsl_pool_t *dp = spa->spa_dsl_pool;
6533
6534	ASSERT(spa->spa_sync_pass == 1);
6535
6536	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6537
6538	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6539	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6540		dsl_pool_create_origin(dp, tx);
6541
6542		/* Keeping the origin open increases spa_minref */
6543		spa->spa_minref += 3;
6544	}
6545
6546	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6547	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6548		dsl_pool_upgrade_clones(dp, tx);
6549	}
6550
6551	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6552	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6553		dsl_pool_upgrade_dir_clones(dp, tx);
6554
6555		/* Keeping the freedir open increases spa_minref */
6556		spa->spa_minref += 3;
6557	}
6558
6559	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6560	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6561		spa_feature_create_zap_objects(spa, tx);
6562	}
6563
6564	/*
6565	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6566	 * when possibility to use lz4 compression for metadata was added
6567	 * Old pools that have this feature enabled must be upgraded to have
6568	 * this feature active
6569	 */
6570	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6571		boolean_t lz4_en = spa_feature_is_enabled(spa,
6572		    SPA_FEATURE_LZ4_COMPRESS);
6573		boolean_t lz4_ac = spa_feature_is_active(spa,
6574		    SPA_FEATURE_LZ4_COMPRESS);
6575
6576		if (lz4_en && !lz4_ac)
6577			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6578	}
6579
6580	/*
6581	 * If we haven't written the salt, do so now.  Note that the
6582	 * feature may not be activated yet, but that's fine since
6583	 * the presence of this ZAP entry is backwards compatible.
6584	 */
6585	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6586	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6587		VERIFY0(zap_add(spa->spa_meta_objset,
6588		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6589		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6590		    spa->spa_cksum_salt.zcs_bytes, tx));
6591	}
6592
6593	rrw_exit(&dp->dp_config_rwlock, FTAG);
6594}
6595
6596/*
6597 * Sync the specified transaction group.  New blocks may be dirtied as
6598 * part of the process, so we iterate until it converges.
6599 */
6600void
6601spa_sync(spa_t *spa, uint64_t txg)
6602{
6603	dsl_pool_t *dp = spa->spa_dsl_pool;
6604	objset_t *mos = spa->spa_meta_objset;
6605	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6606	vdev_t *rvd = spa->spa_root_vdev;
6607	vdev_t *vd;
6608	dmu_tx_t *tx;
6609	int error;
6610
6611	VERIFY(spa_writeable(spa));
6612
6613	/*
6614	 * Lock out configuration changes.
6615	 */
6616	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6617
6618	spa->spa_syncing_txg = txg;
6619	spa->spa_sync_pass = 0;
6620
6621	/*
6622	 * If there are any pending vdev state changes, convert them
6623	 * into config changes that go out with this transaction group.
6624	 */
6625	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6626	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6627		/*
6628		 * We need the write lock here because, for aux vdevs,
6629		 * calling vdev_config_dirty() modifies sav_config.
6630		 * This is ugly and will become unnecessary when we
6631		 * eliminate the aux vdev wart by integrating all vdevs
6632		 * into the root vdev tree.
6633		 */
6634		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6635		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6636		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6637			vdev_state_clean(vd);
6638			vdev_config_dirty(vd);
6639		}
6640		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6641		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6642	}
6643	spa_config_exit(spa, SCL_STATE, FTAG);
6644
6645	tx = dmu_tx_create_assigned(dp, txg);
6646
6647	spa->spa_sync_starttime = gethrtime();
6648#ifdef illumos
6649	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6650	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6651#else	/* !illumos */
6652#ifdef _KERNEL
6653	callout_reset(&spa->spa_deadman_cycid,
6654	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6655#endif
6656#endif	/* illumos */
6657
6658	/*
6659	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6660	 * set spa_deflate if we have no raid-z vdevs.
6661	 */
6662	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6663	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6664		int i;
6665
6666		for (i = 0; i < rvd->vdev_children; i++) {
6667			vd = rvd->vdev_child[i];
6668			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6669				break;
6670		}
6671		if (i == rvd->vdev_children) {
6672			spa->spa_deflate = TRUE;
6673			VERIFY(0 == zap_add(spa->spa_meta_objset,
6674			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6675			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6676		}
6677	}
6678
6679	/*
6680	 * Iterate to convergence.
6681	 */
6682	do {
6683		int pass = ++spa->spa_sync_pass;
6684
6685		spa_sync_config_object(spa, tx);
6686		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6687		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6688		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6689		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6690		spa_errlog_sync(spa, txg);
6691		dsl_pool_sync(dp, txg);
6692
6693		if (pass < zfs_sync_pass_deferred_free) {
6694			spa_sync_frees(spa, free_bpl, tx);
6695		} else {
6696			/*
6697			 * We can not defer frees in pass 1, because
6698			 * we sync the deferred frees later in pass 1.
6699			 */
6700			ASSERT3U(pass, >, 1);
6701			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6702			    &spa->spa_deferred_bpobj, tx);
6703		}
6704
6705		ddt_sync(spa, txg);
6706		dsl_scan_sync(dp, tx);
6707
6708		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6709			vdev_sync(vd, txg);
6710
6711		if (pass == 1) {
6712			spa_sync_upgrades(spa, tx);
6713			ASSERT3U(txg, >=,
6714			    spa->spa_uberblock.ub_rootbp.blk_birth);
6715			/*
6716			 * Note: We need to check if the MOS is dirty
6717			 * because we could have marked the MOS dirty
6718			 * without updating the uberblock (e.g. if we
6719			 * have sync tasks but no dirty user data).  We
6720			 * need to check the uberblock's rootbp because
6721			 * it is updated if we have synced out dirty
6722			 * data (though in this case the MOS will most
6723			 * likely also be dirty due to second order
6724			 * effects, we don't want to rely on that here).
6725			 */
6726			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6727			    !dmu_objset_is_dirty(mos, txg)) {
6728				/*
6729				 * Nothing changed on the first pass,
6730				 * therefore this TXG is a no-op.  Avoid
6731				 * syncing deferred frees, so that we
6732				 * can keep this TXG as a no-op.
6733				 */
6734				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6735				    txg));
6736				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6737				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6738				break;
6739			}
6740			spa_sync_deferred_frees(spa, tx);
6741		}
6742
6743	} while (dmu_objset_is_dirty(mos, txg));
6744
6745	/*
6746	 * Rewrite the vdev configuration (which includes the uberblock)
6747	 * to commit the transaction group.
6748	 *
6749	 * If there are no dirty vdevs, we sync the uberblock to a few
6750	 * random top-level vdevs that are known to be visible in the
6751	 * config cache (see spa_vdev_add() for a complete description).
6752	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6753	 */
6754	for (;;) {
6755		/*
6756		 * We hold SCL_STATE to prevent vdev open/close/etc.
6757		 * while we're attempting to write the vdev labels.
6758		 */
6759		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6760
6761		if (list_is_empty(&spa->spa_config_dirty_list)) {
6762			vdev_t *svd[SPA_DVAS_PER_BP];
6763			int svdcount = 0;
6764			int children = rvd->vdev_children;
6765			int c0 = spa_get_random(children);
6766
6767			for (int c = 0; c < children; c++) {
6768				vd = rvd->vdev_child[(c0 + c) % children];
6769				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6770					continue;
6771				svd[svdcount++] = vd;
6772				if (svdcount == SPA_DVAS_PER_BP)
6773					break;
6774			}
6775			error = vdev_config_sync(svd, svdcount, txg);
6776		} else {
6777			error = vdev_config_sync(rvd->vdev_child,
6778			    rvd->vdev_children, txg);
6779		}
6780
6781		if (error == 0)
6782			spa->spa_last_synced_guid = rvd->vdev_guid;
6783
6784		spa_config_exit(spa, SCL_STATE, FTAG);
6785
6786		if (error == 0)
6787			break;
6788		zio_suspend(spa, NULL);
6789		zio_resume_wait(spa);
6790	}
6791	dmu_tx_commit(tx);
6792
6793#ifdef illumos
6794	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6795#else	/* !illumos */
6796#ifdef _KERNEL
6797	callout_drain(&spa->spa_deadman_cycid);
6798#endif
6799#endif	/* illumos */
6800
6801	/*
6802	 * Clear the dirty config list.
6803	 */
6804	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6805		vdev_config_clean(vd);
6806
6807	/*
6808	 * Now that the new config has synced transactionally,
6809	 * let it become visible to the config cache.
6810	 */
6811	if (spa->spa_config_syncing != NULL) {
6812		spa_config_set(spa, spa->spa_config_syncing);
6813		spa->spa_config_txg = txg;
6814		spa->spa_config_syncing = NULL;
6815	}
6816
6817	spa->spa_ubsync = spa->spa_uberblock;
6818
6819	dsl_pool_sync_done(dp, txg);
6820
6821	/*
6822	 * Update usable space statistics.
6823	 */
6824	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6825		vdev_sync_done(vd, txg);
6826
6827	spa_update_dspace(spa);
6828
6829	/*
6830	 * It had better be the case that we didn't dirty anything
6831	 * since vdev_config_sync().
6832	 */
6833	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6834	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6835	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6836
6837	spa->spa_sync_pass = 0;
6838
6839	spa_config_exit(spa, SCL_CONFIG, FTAG);
6840
6841	spa_handle_ignored_writes(spa);
6842
6843	/*
6844	 * If any async tasks have been requested, kick them off.
6845	 */
6846	spa_async_dispatch(spa);
6847	spa_async_dispatch_vd(spa);
6848}
6849
6850/*
6851 * Sync all pools.  We don't want to hold the namespace lock across these
6852 * operations, so we take a reference on the spa_t and drop the lock during the
6853 * sync.
6854 */
6855void
6856spa_sync_allpools(void)
6857{
6858	spa_t *spa = NULL;
6859	mutex_enter(&spa_namespace_lock);
6860	while ((spa = spa_next(spa)) != NULL) {
6861		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6862		    !spa_writeable(spa) || spa_suspended(spa))
6863			continue;
6864		spa_open_ref(spa, FTAG);
6865		mutex_exit(&spa_namespace_lock);
6866		txg_wait_synced(spa_get_dsl(spa), 0);
6867		mutex_enter(&spa_namespace_lock);
6868		spa_close(spa, FTAG);
6869	}
6870	mutex_exit(&spa_namespace_lock);
6871}
6872
6873/*
6874 * ==========================================================================
6875 * Miscellaneous routines
6876 * ==========================================================================
6877 */
6878
6879/*
6880 * Remove all pools in the system.
6881 */
6882void
6883spa_evict_all(void)
6884{
6885	spa_t *spa;
6886
6887	/*
6888	 * Remove all cached state.  All pools should be closed now,
6889	 * so every spa in the AVL tree should be unreferenced.
6890	 */
6891	mutex_enter(&spa_namespace_lock);
6892	while ((spa = spa_next(NULL)) != NULL) {
6893		/*
6894		 * Stop async tasks.  The async thread may need to detach
6895		 * a device that's been replaced, which requires grabbing
6896		 * spa_namespace_lock, so we must drop it here.
6897		 */
6898		spa_open_ref(spa, FTAG);
6899		mutex_exit(&spa_namespace_lock);
6900		spa_async_suspend(spa);
6901		mutex_enter(&spa_namespace_lock);
6902		spa_close(spa, FTAG);
6903
6904		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6905			spa_unload(spa);
6906			spa_deactivate(spa);
6907		}
6908		spa_remove(spa);
6909	}
6910	mutex_exit(&spa_namespace_lock);
6911}
6912
6913vdev_t *
6914spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6915{
6916	vdev_t *vd;
6917	int i;
6918
6919	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6920		return (vd);
6921
6922	if (aux) {
6923		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6924			vd = spa->spa_l2cache.sav_vdevs[i];
6925			if (vd->vdev_guid == guid)
6926				return (vd);
6927		}
6928
6929		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6930			vd = spa->spa_spares.sav_vdevs[i];
6931			if (vd->vdev_guid == guid)
6932				return (vd);
6933		}
6934	}
6935
6936	return (NULL);
6937}
6938
6939void
6940spa_upgrade(spa_t *spa, uint64_t version)
6941{
6942	ASSERT(spa_writeable(spa));
6943
6944	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6945
6946	/*
6947	 * This should only be called for a non-faulted pool, and since a
6948	 * future version would result in an unopenable pool, this shouldn't be
6949	 * possible.
6950	 */
6951	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6952	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6953
6954	spa->spa_uberblock.ub_version = version;
6955	vdev_config_dirty(spa->spa_root_vdev);
6956
6957	spa_config_exit(spa, SCL_ALL, FTAG);
6958
6959	txg_wait_synced(spa_get_dsl(spa), 0);
6960}
6961
6962boolean_t
6963spa_has_spare(spa_t *spa, uint64_t guid)
6964{
6965	int i;
6966	uint64_t spareguid;
6967	spa_aux_vdev_t *sav = &spa->spa_spares;
6968
6969	for (i = 0; i < sav->sav_count; i++)
6970		if (sav->sav_vdevs[i]->vdev_guid == guid)
6971			return (B_TRUE);
6972
6973	for (i = 0; i < sav->sav_npending; i++) {
6974		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6975		    &spareguid) == 0 && spareguid == guid)
6976			return (B_TRUE);
6977	}
6978
6979	return (B_FALSE);
6980}
6981
6982/*
6983 * Check if a pool has an active shared spare device.
6984 * Note: reference count of an active spare is 2, as a spare and as a replace
6985 */
6986static boolean_t
6987spa_has_active_shared_spare(spa_t *spa)
6988{
6989	int i, refcnt;
6990	uint64_t pool;
6991	spa_aux_vdev_t *sav = &spa->spa_spares;
6992
6993	for (i = 0; i < sav->sav_count; i++) {
6994		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6995		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6996		    refcnt > 2)
6997			return (B_TRUE);
6998	}
6999
7000	return (B_FALSE);
7001}
7002
7003/*
7004 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7005 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7006 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7007 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7008 * or zdb as real changes.
7009 */
7010void
7011spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7012{
7013#ifdef _KERNEL
7014	sysevent_t		*ev;
7015	sysevent_attr_list_t	*attr = NULL;
7016	sysevent_value_t	value;
7017	sysevent_id_t		eid;
7018
7019	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7020	    SE_SLEEP);
7021
7022	value.value_type = SE_DATA_TYPE_STRING;
7023	value.value.sv_string = spa_name(spa);
7024	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7025		goto done;
7026
7027	value.value_type = SE_DATA_TYPE_UINT64;
7028	value.value.sv_uint64 = spa_guid(spa);
7029	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7030		goto done;
7031
7032	if (vd) {
7033		value.value_type = SE_DATA_TYPE_UINT64;
7034		value.value.sv_uint64 = vd->vdev_guid;
7035		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7036		    SE_SLEEP) != 0)
7037			goto done;
7038
7039		if (vd->vdev_path) {
7040			value.value_type = SE_DATA_TYPE_STRING;
7041			value.value.sv_string = vd->vdev_path;
7042			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7043			    &value, SE_SLEEP) != 0)
7044				goto done;
7045		}
7046	}
7047
7048	if (sysevent_attach_attributes(ev, attr) != 0)
7049		goto done;
7050	attr = NULL;
7051
7052	(void) log_sysevent(ev, SE_SLEEP, &eid);
7053
7054done:
7055	if (attr)
7056		sysevent_free_attr(attr);
7057	sysevent_free(ev);
7058#endif
7059}
7060