spa.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31/*
32 * SPA: Storage Pool Allocator
33 *
34 * This file contains all the routines used when modifying on-disk SPA state.
35 * This includes opening, importing, destroying, exporting a pool, and syncing a
36 * pool.
37 */
38
39#include <sys/zfs_context.h>
40#include <sys/fm/fs/zfs.h>
41#include <sys/spa_impl.h>
42#include <sys/zio.h>
43#include <sys/zio_checksum.h>
44#include <sys/dmu.h>
45#include <sys/dmu_tx.h>
46#include <sys/zap.h>
47#include <sys/zil.h>
48#include <sys/ddt.h>
49#include <sys/vdev_impl.h>
50#include <sys/metaslab.h>
51#include <sys/metaslab_impl.h>
52#include <sys/uberblock_impl.h>
53#include <sys/txg.h>
54#include <sys/avl.h>
55#include <sys/dmu_traverse.h>
56#include <sys/dmu_objset.h>
57#include <sys/unique.h>
58#include <sys/dsl_pool.h>
59#include <sys/dsl_dataset.h>
60#include <sys/dsl_dir.h>
61#include <sys/dsl_prop.h>
62#include <sys/dsl_synctask.h>
63#include <sys/fs/zfs.h>
64#include <sys/arc.h>
65#include <sys/callb.h>
66#include <sys/spa_boot.h>
67#include <sys/zfs_ioctl.h>
68#include <sys/dsl_scan.h>
69#include <sys/dmu_send.h>
70#include <sys/dsl_destroy.h>
71#include <sys/dsl_userhold.h>
72#include <sys/zfeature.h>
73#include <sys/zvol.h>
74#include <sys/trim_map.h>
75
76#ifdef	_KERNEL
77#include <sys/callb.h>
78#include <sys/cpupart.h>
79#include <sys/zone.h>
80#endif	/* _KERNEL */
81
82#include "zfs_prop.h"
83#include "zfs_comutil.h"
84
85/* Check hostid on import? */
86static int check_hostid = 1;
87
88/*
89 * The interval, in seconds, at which failed configuration cache file writes
90 * should be retried.
91 */
92static int zfs_ccw_retry_interval = 300;
93
94SYSCTL_DECL(_vfs_zfs);
95TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
97    "Check hostid on import?");
98TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
99SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
100    &zfs_ccw_retry_interval, 0,
101    "Configuration cache file write, retry after failure, interval (seconds)");
102
103typedef enum zti_modes {
104	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106	ZTI_MODE_NULL,			/* don't create a taskq */
107	ZTI_NMODES
108} zti_modes_t;
109
110#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113
114#define	ZTI_N(n)	ZTI_P(n, 1)
115#define	ZTI_ONE		ZTI_N(1)
116
117typedef struct zio_taskq_info {
118	zti_modes_t zti_mode;
119	uint_t zti_value;
120	uint_t zti_count;
121} zio_taskq_info_t;
122
123static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124	"issue", "issue_high", "intr", "intr_high"
125};
126
127/*
128 * This table defines the taskq settings for each ZFS I/O type. When
129 * initializing a pool, we use this table to create an appropriately sized
130 * taskq. Some operations are low volume and therefore have a small, static
131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132 * macros. Other operations process a large amount of data; the ZTI_BATCH
133 * macro causes us to create a taskq oriented for throughput. Some operations
134 * are so high frequency and short-lived that the taskq itself can become a a
135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136 * additional degree of parallelism specified by the number of threads per-
137 * taskq and the number of taskqs; when dispatching an event in this case, the
138 * particular taskq is chosen at random.
139 *
140 * The different taskq priorities are to handle the different contexts (issue
141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142 * need to be handled with minimum delay.
143 */
144const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152};
153
154static void spa_sync_version(void *arg, dmu_tx_t *tx);
155static void spa_sync_props(void *arg, dmu_tx_t *tx);
156static boolean_t spa_has_active_shared_spare(spa_t *spa);
157static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
158    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
159    char **ereport);
160static void spa_vdev_resilver_done(spa_t *spa);
161
162uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163#ifdef PSRSET_BIND
164id_t		zio_taskq_psrset_bind = PS_NONE;
165#endif
166#ifdef SYSDC
167boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
168#endif
169uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
170
171boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
172extern int	zfs_sync_pass_deferred_free;
173
174#ifndef illumos
175extern void spa_deadman(void *arg);
176#endif
177
178/*
179 * This (illegal) pool name is used when temporarily importing a spa_t in order
180 * to get the vdev stats associated with the imported devices.
181 */
182#define	TRYIMPORT_NAME	"$import"
183
184/*
185 * ==========================================================================
186 * SPA properties routines
187 * ==========================================================================
188 */
189
190/*
191 * Add a (source=src, propname=propval) list to an nvlist.
192 */
193static void
194spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
195    uint64_t intval, zprop_source_t src)
196{
197	const char *propname = zpool_prop_to_name(prop);
198	nvlist_t *propval;
199
200	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
201	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
202
203	if (strval != NULL)
204		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
205	else
206		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
207
208	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
209	nvlist_free(propval);
210}
211
212/*
213 * Get property values from the spa configuration.
214 */
215static void
216spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
217{
218	vdev_t *rvd = spa->spa_root_vdev;
219	dsl_pool_t *pool = spa->spa_dsl_pool;
220	uint64_t size, alloc, cap, version;
221	zprop_source_t src = ZPROP_SRC_NONE;
222	spa_config_dirent_t *dp;
223	metaslab_class_t *mc = spa_normal_class(spa);
224
225	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
226
227	if (rvd != NULL) {
228		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
229		size = metaslab_class_get_space(spa_normal_class(spa));
230		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
234		    size - alloc, src);
235
236		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
237		    metaslab_class_fragmentation(mc), src);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
239		    metaslab_class_expandable_space(mc), src);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		/*
262		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
263		 * when opening pools before this version freedir will be NULL.
264		 */
265		if (pool->dp_free_dir != NULL) {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
267			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
268			    src);
269		} else {
270			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
271			    NULL, 0, src);
272		}
273
274		if (pool->dp_leak_dir != NULL) {
275			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
276			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
277			    src);
278		} else {
279			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
280			    NULL, 0, src);
281		}
282	}
283
284	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
285
286	if (spa->spa_comment != NULL) {
287		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
288		    0, ZPROP_SRC_LOCAL);
289	}
290
291	if (spa->spa_root != NULL)
292		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
293		    0, ZPROP_SRC_LOCAL);
294
295	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
296		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
297		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
298	} else {
299		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
300		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
301	}
302
303	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
304		if (dp->scd_path == NULL) {
305			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
306			    "none", 0, ZPROP_SRC_LOCAL);
307		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
308			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
310		}
311	}
312}
313
314/*
315 * Get zpool property values.
316 */
317int
318spa_prop_get(spa_t *spa, nvlist_t **nvp)
319{
320	objset_t *mos = spa->spa_meta_objset;
321	zap_cursor_t zc;
322	zap_attribute_t za;
323	int err;
324
325	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
326
327	mutex_enter(&spa->spa_props_lock);
328
329	/*
330	 * Get properties from the spa config.
331	 */
332	spa_prop_get_config(spa, nvp);
333
334	/* If no pool property object, no more prop to get. */
335	if (mos == NULL || spa->spa_pool_props_object == 0) {
336		mutex_exit(&spa->spa_props_lock);
337		return (0);
338	}
339
340	/*
341	 * Get properties from the MOS pool property object.
342	 */
343	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
344	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
345	    zap_cursor_advance(&zc)) {
346		uint64_t intval = 0;
347		char *strval = NULL;
348		zprop_source_t src = ZPROP_SRC_DEFAULT;
349		zpool_prop_t prop;
350
351		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
352			continue;
353
354		switch (za.za_integer_length) {
355		case 8:
356			/* integer property */
357			if (za.za_first_integer !=
358			    zpool_prop_default_numeric(prop))
359				src = ZPROP_SRC_LOCAL;
360
361			if (prop == ZPOOL_PROP_BOOTFS) {
362				dsl_pool_t *dp;
363				dsl_dataset_t *ds = NULL;
364
365				dp = spa_get_dsl(spa);
366				dsl_pool_config_enter(dp, FTAG);
367				if (err = dsl_dataset_hold_obj(dp,
368				    za.za_first_integer, FTAG, &ds)) {
369					dsl_pool_config_exit(dp, FTAG);
370					break;
371				}
372
373				strval = kmem_alloc(
374				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
375				    KM_SLEEP);
376				dsl_dataset_name(ds, strval);
377				dsl_dataset_rele(ds, FTAG);
378				dsl_pool_config_exit(dp, FTAG);
379			} else {
380				strval = NULL;
381				intval = za.za_first_integer;
382			}
383
384			spa_prop_add_list(*nvp, prop, strval, intval, src);
385
386			if (strval != NULL)
387				kmem_free(strval,
388				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
389
390			break;
391
392		case 1:
393			/* string property */
394			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
395			err = zap_lookup(mos, spa->spa_pool_props_object,
396			    za.za_name, 1, za.za_num_integers, strval);
397			if (err) {
398				kmem_free(strval, za.za_num_integers);
399				break;
400			}
401			spa_prop_add_list(*nvp, prop, strval, 0, src);
402			kmem_free(strval, za.za_num_integers);
403			break;
404
405		default:
406			break;
407		}
408	}
409	zap_cursor_fini(&zc);
410	mutex_exit(&spa->spa_props_lock);
411out:
412	if (err && err != ENOENT) {
413		nvlist_free(*nvp);
414		*nvp = NULL;
415		return (err);
416	}
417
418	return (0);
419}
420
421/*
422 * Validate the given pool properties nvlist and modify the list
423 * for the property values to be set.
424 */
425static int
426spa_prop_validate(spa_t *spa, nvlist_t *props)
427{
428	nvpair_t *elem;
429	int error = 0, reset_bootfs = 0;
430	uint64_t objnum = 0;
431	boolean_t has_feature = B_FALSE;
432
433	elem = NULL;
434	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
435		uint64_t intval;
436		char *strval, *slash, *check, *fname;
437		const char *propname = nvpair_name(elem);
438		zpool_prop_t prop = zpool_name_to_prop(propname);
439
440		switch (prop) {
441		case ZPROP_INVAL:
442			if (!zpool_prop_feature(propname)) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			/*
448			 * Sanitize the input.
449			 */
450			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (nvpair_value_uint64(elem, &intval) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			if (intval != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			fname = strchr(propname, '@') + 1;
466			if (zfeature_lookup_name(fname, NULL) != 0) {
467				error = SET_ERROR(EINVAL);
468				break;
469			}
470
471			has_feature = B_TRUE;
472			break;
473
474		case ZPOOL_PROP_VERSION:
475			error = nvpair_value_uint64(elem, &intval);
476			if (!error &&
477			    (intval < spa_version(spa) ||
478			    intval > SPA_VERSION_BEFORE_FEATURES ||
479			    has_feature))
480				error = SET_ERROR(EINVAL);
481			break;
482
483		case ZPOOL_PROP_DELEGATION:
484		case ZPOOL_PROP_AUTOREPLACE:
485		case ZPOOL_PROP_LISTSNAPS:
486		case ZPOOL_PROP_AUTOEXPAND:
487			error = nvpair_value_uint64(elem, &intval);
488			if (!error && intval > 1)
489				error = SET_ERROR(EINVAL);
490			break;
491
492		case ZPOOL_PROP_BOOTFS:
493			/*
494			 * If the pool version is less than SPA_VERSION_BOOTFS,
495			 * or the pool is still being created (version == 0),
496			 * the bootfs property cannot be set.
497			 */
498			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			/*
504			 * Make sure the vdev config is bootable
505			 */
506			if (!vdev_is_bootable(spa->spa_root_vdev)) {
507				error = SET_ERROR(ENOTSUP);
508				break;
509			}
510
511			reset_bootfs = 1;
512
513			error = nvpair_value_string(elem, &strval);
514
515			if (!error) {
516				objset_t *os;
517				uint64_t propval;
518
519				if (strval == NULL || strval[0] == '\0') {
520					objnum = zpool_prop_default_numeric(
521					    ZPOOL_PROP_BOOTFS);
522					break;
523				}
524
525				if (error = dmu_objset_hold(strval, FTAG, &os))
526					break;
527
528				/*
529				 * Must be ZPL, and its property settings
530				 * must be supported by GRUB (compression
531				 * is not gzip, and large blocks are not used).
532				 */
533
534				if (dmu_objset_type(os) != DMU_OST_ZFS) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
539				    &propval)) == 0 &&
540				    !BOOTFS_COMPRESS_VALID(propval)) {
541					error = SET_ERROR(ENOTSUP);
542				} else if ((error =
543				    dsl_prop_get_int_ds(dmu_objset_ds(os),
544				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
545				    &propval)) == 0 &&
546				    propval > SPA_OLD_MAXBLOCKSIZE) {
547					error = SET_ERROR(ENOTSUP);
548				} else {
549					objnum = dmu_objset_id(os);
550				}
551				dmu_objset_rele(os, FTAG);
552			}
553			break;
554
555		case ZPOOL_PROP_FAILUREMODE:
556			error = nvpair_value_uint64(elem, &intval);
557			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
558			    intval > ZIO_FAILURE_MODE_PANIC))
559				error = SET_ERROR(EINVAL);
560
561			/*
562			 * This is a special case which only occurs when
563			 * the pool has completely failed. This allows
564			 * the user to change the in-core failmode property
565			 * without syncing it out to disk (I/Os might
566			 * currently be blocked). We do this by returning
567			 * EIO to the caller (spa_prop_set) to trick it
568			 * into thinking we encountered a property validation
569			 * error.
570			 */
571			if (!error && spa_suspended(spa)) {
572				spa->spa_failmode = intval;
573				error = SET_ERROR(EIO);
574			}
575			break;
576
577		case ZPOOL_PROP_CACHEFILE:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580
581			if (strval[0] == '\0')
582				break;
583
584			if (strcmp(strval, "none") == 0)
585				break;
586
587			if (strval[0] != '/') {
588				error = SET_ERROR(EINVAL);
589				break;
590			}
591
592			slash = strrchr(strval, '/');
593			ASSERT(slash != NULL);
594
595			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
596			    strcmp(slash, "/..") == 0)
597				error = SET_ERROR(EINVAL);
598			break;
599
600		case ZPOOL_PROP_COMMENT:
601			if ((error = nvpair_value_string(elem, &strval)) != 0)
602				break;
603			for (check = strval; *check != '\0'; check++) {
604				/*
605				 * The kernel doesn't have an easy isprint()
606				 * check.  For this kernel check, we merely
607				 * check ASCII apart from DEL.  Fix this if
608				 * there is an easy-to-use kernel isprint().
609				 */
610				if (*check >= 0x7f) {
611					error = SET_ERROR(EINVAL);
612					break;
613				}
614			}
615			if (strlen(strval) > ZPROP_MAX_COMMENT)
616				error = E2BIG;
617			break;
618
619		case ZPOOL_PROP_DEDUPDITTO:
620			if (spa_version(spa) < SPA_VERSION_DEDUP)
621				error = SET_ERROR(ENOTSUP);
622			else
623				error = nvpair_value_uint64(elem, &intval);
624			if (error == 0 &&
625			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
626				error = SET_ERROR(EINVAL);
627			break;
628		}
629
630		if (error)
631			break;
632	}
633
634	if (!error && reset_bootfs) {
635		error = nvlist_remove(props,
636		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
637
638		if (!error) {
639			error = nvlist_add_uint64(props,
640			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
641		}
642	}
643
644	return (error);
645}
646
647void
648spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
649{
650	char *cachefile;
651	spa_config_dirent_t *dp;
652
653	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
654	    &cachefile) != 0)
655		return;
656
657	dp = kmem_alloc(sizeof (spa_config_dirent_t),
658	    KM_SLEEP);
659
660	if (cachefile[0] == '\0')
661		dp->scd_path = spa_strdup(spa_config_path);
662	else if (strcmp(cachefile, "none") == 0)
663		dp->scd_path = NULL;
664	else
665		dp->scd_path = spa_strdup(cachefile);
666
667	list_insert_head(&spa->spa_config_list, dp);
668	if (need_sync)
669		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
670}
671
672int
673spa_prop_set(spa_t *spa, nvlist_t *nvp)
674{
675	int error;
676	nvpair_t *elem = NULL;
677	boolean_t need_sync = B_FALSE;
678
679	if ((error = spa_prop_validate(spa, nvp)) != 0)
680		return (error);
681
682	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
683		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
684
685		if (prop == ZPOOL_PROP_CACHEFILE ||
686		    prop == ZPOOL_PROP_ALTROOT ||
687		    prop == ZPOOL_PROP_READONLY)
688			continue;
689
690		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
691			uint64_t ver;
692
693			if (prop == ZPOOL_PROP_VERSION) {
694				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
695			} else {
696				ASSERT(zpool_prop_feature(nvpair_name(elem)));
697				ver = SPA_VERSION_FEATURES;
698				need_sync = B_TRUE;
699			}
700
701			/* Save time if the version is already set. */
702			if (ver == spa_version(spa))
703				continue;
704
705			/*
706			 * In addition to the pool directory object, we might
707			 * create the pool properties object, the features for
708			 * read object, the features for write object, or the
709			 * feature descriptions object.
710			 */
711			error = dsl_sync_task(spa->spa_name, NULL,
712			    spa_sync_version, &ver,
713			    6, ZFS_SPACE_CHECK_RESERVED);
714			if (error)
715				return (error);
716			continue;
717		}
718
719		need_sync = B_TRUE;
720		break;
721	}
722
723	if (need_sync) {
724		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
725		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
726	}
727
728	return (0);
729}
730
731/*
732 * If the bootfs property value is dsobj, clear it.
733 */
734void
735spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
736{
737	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
738		VERIFY(zap_remove(spa->spa_meta_objset,
739		    spa->spa_pool_props_object,
740		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
741		spa->spa_bootfs = 0;
742	}
743}
744
745/*ARGSUSED*/
746static int
747spa_change_guid_check(void *arg, dmu_tx_t *tx)
748{
749	uint64_t *newguid = arg;
750	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751	vdev_t *rvd = spa->spa_root_vdev;
752	uint64_t vdev_state;
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	vdev_state = rvd->vdev_state;
756	spa_config_exit(spa, SCL_STATE, FTAG);
757
758	if (vdev_state != VDEV_STATE_HEALTHY)
759		return (SET_ERROR(ENXIO));
760
761	ASSERT3U(spa_guid(spa), !=, *newguid);
762
763	return (0);
764}
765
766static void
767spa_change_guid_sync(void *arg, dmu_tx_t *tx)
768{
769	uint64_t *newguid = arg;
770	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
771	uint64_t oldguid;
772	vdev_t *rvd = spa->spa_root_vdev;
773
774	oldguid = spa_guid(spa);
775
776	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
777	rvd->vdev_guid = *newguid;
778	rvd->vdev_guid_sum += (*newguid - oldguid);
779	vdev_config_dirty(rvd);
780	spa_config_exit(spa, SCL_STATE, FTAG);
781
782	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
783	    oldguid, *newguid);
784}
785
786/*
787 * Change the GUID for the pool.  This is done so that we can later
788 * re-import a pool built from a clone of our own vdevs.  We will modify
789 * the root vdev's guid, our own pool guid, and then mark all of our
790 * vdevs dirty.  Note that we must make sure that all our vdevs are
791 * online when we do this, or else any vdevs that weren't present
792 * would be orphaned from our pool.  We are also going to issue a
793 * sysevent to update any watchers.
794 */
795int
796spa_change_guid(spa_t *spa)
797{
798	int error;
799	uint64_t guid;
800
801	mutex_enter(&spa->spa_vdev_top_lock);
802	mutex_enter(&spa_namespace_lock);
803	guid = spa_generate_guid(NULL);
804
805	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
806	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
807
808	if (error == 0) {
809		spa_config_sync(spa, B_FALSE, B_TRUE);
810		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
811	}
812
813	mutex_exit(&spa_namespace_lock);
814	mutex_exit(&spa->spa_vdev_top_lock);
815
816	return (error);
817}
818
819/*
820 * ==========================================================================
821 * SPA state manipulation (open/create/destroy/import/export)
822 * ==========================================================================
823 */
824
825static int
826spa_error_entry_compare(const void *a, const void *b)
827{
828	spa_error_entry_t *sa = (spa_error_entry_t *)a;
829	spa_error_entry_t *sb = (spa_error_entry_t *)b;
830	int ret;
831
832	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
833	    sizeof (zbookmark_phys_t));
834
835	if (ret < 0)
836		return (-1);
837	else if (ret > 0)
838		return (1);
839	else
840		return (0);
841}
842
843/*
844 * Utility function which retrieves copies of the current logs and
845 * re-initializes them in the process.
846 */
847void
848spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
849{
850	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
851
852	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
853	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
854
855	avl_create(&spa->spa_errlist_scrub,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858	avl_create(&spa->spa_errlist_last,
859	    spa_error_entry_compare, sizeof (spa_error_entry_t),
860	    offsetof(spa_error_entry_t, se_avl));
861}
862
863static void
864spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
865{
866	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867	enum zti_modes mode = ztip->zti_mode;
868	uint_t value = ztip->zti_value;
869	uint_t count = ztip->zti_count;
870	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
871	char name[32];
872	uint_t flags = 0;
873	boolean_t batch = B_FALSE;
874
875	if (mode == ZTI_MODE_NULL) {
876		tqs->stqs_count = 0;
877		tqs->stqs_taskq = NULL;
878		return;
879	}
880
881	ASSERT3U(count, >, 0);
882
883	tqs->stqs_count = count;
884	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
885
886	switch (mode) {
887	case ZTI_MODE_FIXED:
888		ASSERT3U(value, >=, 1);
889		value = MAX(value, 1);
890		break;
891
892	case ZTI_MODE_BATCH:
893		batch = B_TRUE;
894		flags |= TASKQ_THREADS_CPU_PCT;
895		value = zio_taskq_batch_pct;
896		break;
897
898	default:
899		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
900		    "spa_activate()",
901		    zio_type_name[t], zio_taskq_types[q], mode, value);
902		break;
903	}
904
905	for (uint_t i = 0; i < count; i++) {
906		taskq_t *tq;
907
908		if (count > 1) {
909			(void) snprintf(name, sizeof (name), "%s_%s_%u",
910			    zio_type_name[t], zio_taskq_types[q], i);
911		} else {
912			(void) snprintf(name, sizeof (name), "%s_%s",
913			    zio_type_name[t], zio_taskq_types[q]);
914		}
915
916#ifdef SYSDC
917		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
918			if (batch)
919				flags |= TASKQ_DC_BATCH;
920
921			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
922			    spa->spa_proc, zio_taskq_basedc, flags);
923		} else {
924#endif
925			pri_t pri = maxclsyspri;
926			/*
927			 * The write issue taskq can be extremely CPU
928			 * intensive.  Run it at slightly lower priority
929			 * than the other taskqs.
930			 */
931			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
932				pri--;
933
934			tq = taskq_create_proc(name, value, pri, 50,
935			    INT_MAX, spa->spa_proc, flags);
936#ifdef SYSDC
937		}
938#endif
939
940		tqs->stqs_taskq[i] = tq;
941	}
942}
943
944static void
945spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948
949	if (tqs->stqs_taskq == NULL) {
950		ASSERT0(tqs->stqs_count);
951		return;
952	}
953
954	for (uint_t i = 0; i < tqs->stqs_count; i++) {
955		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
956		taskq_destroy(tqs->stqs_taskq[i]);
957	}
958
959	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
960	tqs->stqs_taskq = NULL;
961}
962
963/*
964 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
965 * Note that a type may have multiple discrete taskqs to avoid lock contention
966 * on the taskq itself. In that case we choose which taskq at random by using
967 * the low bits of gethrtime().
968 */
969void
970spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
971    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
972{
973	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
974	taskq_t *tq;
975
976	ASSERT3P(tqs->stqs_taskq, !=, NULL);
977	ASSERT3U(tqs->stqs_count, !=, 0);
978
979	if (tqs->stqs_count == 1) {
980		tq = tqs->stqs_taskq[0];
981	} else {
982#ifdef _KERNEL
983		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
984#else
985		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
986#endif
987	}
988
989	taskq_dispatch_ent(tq, func, arg, flags, ent);
990}
991
992static void
993spa_create_zio_taskqs(spa_t *spa)
994{
995	for (int t = 0; t < ZIO_TYPES; t++) {
996		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
997			spa_taskqs_init(spa, t, q);
998		}
999	}
1000}
1001
1002#ifdef _KERNEL
1003#ifdef SPA_PROCESS
1004static void
1005spa_thread(void *arg)
1006{
1007	callb_cpr_t cprinfo;
1008
1009	spa_t *spa = arg;
1010	user_t *pu = PTOU(curproc);
1011
1012	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1013	    spa->spa_name);
1014
1015	ASSERT(curproc != &p0);
1016	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1017	    "zpool-%s", spa->spa_name);
1018	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1019
1020#ifdef PSRSET_BIND
1021	/* bind this thread to the requested psrset */
1022	if (zio_taskq_psrset_bind != PS_NONE) {
1023		pool_lock();
1024		mutex_enter(&cpu_lock);
1025		mutex_enter(&pidlock);
1026		mutex_enter(&curproc->p_lock);
1027
1028		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1029		    0, NULL, NULL) == 0)  {
1030			curthread->t_bind_pset = zio_taskq_psrset_bind;
1031		} else {
1032			cmn_err(CE_WARN,
1033			    "Couldn't bind process for zfs pool \"%s\" to "
1034			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1035		}
1036
1037		mutex_exit(&curproc->p_lock);
1038		mutex_exit(&pidlock);
1039		mutex_exit(&cpu_lock);
1040		pool_unlock();
1041	}
1042#endif
1043
1044#ifdef SYSDC
1045	if (zio_taskq_sysdc) {
1046		sysdc_thread_enter(curthread, 100, 0);
1047	}
1048#endif
1049
1050	spa->spa_proc = curproc;
1051	spa->spa_did = curthread->t_did;
1052
1053	spa_create_zio_taskqs(spa);
1054
1055	mutex_enter(&spa->spa_proc_lock);
1056	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1057
1058	spa->spa_proc_state = SPA_PROC_ACTIVE;
1059	cv_broadcast(&spa->spa_proc_cv);
1060
1061	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1062	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1063		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1064	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1065
1066	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1067	spa->spa_proc_state = SPA_PROC_GONE;
1068	spa->spa_proc = &p0;
1069	cv_broadcast(&spa->spa_proc_cv);
1070	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1071
1072	mutex_enter(&curproc->p_lock);
1073	lwp_exit();
1074}
1075#endif	/* SPA_PROCESS */
1076#endif
1077
1078/*
1079 * Activate an uninitialized pool.
1080 */
1081static void
1082spa_activate(spa_t *spa, int mode)
1083{
1084	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1085
1086	spa->spa_state = POOL_STATE_ACTIVE;
1087	spa->spa_mode = mode;
1088
1089	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091
1092	/* Try to create a covering process */
1093	mutex_enter(&spa->spa_proc_lock);
1094	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1095	ASSERT(spa->spa_proc == &p0);
1096	spa->spa_did = 0;
1097
1098#ifdef SPA_PROCESS
1099	/* Only create a process if we're going to be around a while. */
1100	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1101		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1102		    NULL, 0) == 0) {
1103			spa->spa_proc_state = SPA_PROC_CREATED;
1104			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1105				cv_wait(&spa->spa_proc_cv,
1106				    &spa->spa_proc_lock);
1107			}
1108			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1109			ASSERT(spa->spa_proc != &p0);
1110			ASSERT(spa->spa_did != 0);
1111		} else {
1112#ifdef _KERNEL
1113			cmn_err(CE_WARN,
1114			    "Couldn't create process for zfs pool \"%s\"\n",
1115			    spa->spa_name);
1116#endif
1117		}
1118	}
1119#endif	/* SPA_PROCESS */
1120	mutex_exit(&spa->spa_proc_lock);
1121
1122	/* If we didn't create a process, we need to create our taskqs. */
1123	ASSERT(spa->spa_proc == &p0);
1124	if (spa->spa_proc == &p0) {
1125		spa_create_zio_taskqs(spa);
1126	}
1127
1128	/*
1129	 * Start TRIM thread.
1130	 */
1131	trim_thread_create(spa);
1132
1133	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_config_dirty_node));
1135	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1136	    offsetof(objset_t, os_evicting_node));
1137	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1138	    offsetof(vdev_t, vdev_state_dirty_node));
1139
1140	txg_list_create(&spa->spa_vdev_txg_list,
1141	    offsetof(struct vdev, vdev_txg_node));
1142
1143	avl_create(&spa->spa_errlist_scrub,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146	avl_create(&spa->spa_errlist_last,
1147	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1148	    offsetof(spa_error_entry_t, se_avl));
1149}
1150
1151/*
1152 * Opposite of spa_activate().
1153 */
1154static void
1155spa_deactivate(spa_t *spa)
1156{
1157	ASSERT(spa->spa_sync_on == B_FALSE);
1158	ASSERT(spa->spa_dsl_pool == NULL);
1159	ASSERT(spa->spa_root_vdev == NULL);
1160	ASSERT(spa->spa_async_zio_root == NULL);
1161	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1162
1163	/*
1164	 * Stop TRIM thread in case spa_unload() wasn't called directly
1165	 * before spa_deactivate().
1166	 */
1167	trim_thread_destroy(spa);
1168
1169	spa_evicting_os_wait(spa);
1170
1171	txg_list_destroy(&spa->spa_vdev_txg_list);
1172
1173	list_destroy(&spa->spa_config_dirty_list);
1174	list_destroy(&spa->spa_evicting_os_list);
1175	list_destroy(&spa->spa_state_dirty_list);
1176
1177	for (int t = 0; t < ZIO_TYPES; t++) {
1178		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1179			spa_taskqs_fini(spa, t, q);
1180		}
1181	}
1182
1183	metaslab_class_destroy(spa->spa_normal_class);
1184	spa->spa_normal_class = NULL;
1185
1186	metaslab_class_destroy(spa->spa_log_class);
1187	spa->spa_log_class = NULL;
1188
1189	/*
1190	 * If this was part of an import or the open otherwise failed, we may
1191	 * still have errors left in the queues.  Empty them just in case.
1192	 */
1193	spa_errlog_drain(spa);
1194
1195	avl_destroy(&spa->spa_errlist_scrub);
1196	avl_destroy(&spa->spa_errlist_last);
1197
1198	spa->spa_state = POOL_STATE_UNINITIALIZED;
1199
1200	mutex_enter(&spa->spa_proc_lock);
1201	if (spa->spa_proc_state != SPA_PROC_NONE) {
1202		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1203		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1204		cv_broadcast(&spa->spa_proc_cv);
1205		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1206			ASSERT(spa->spa_proc != &p0);
1207			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1208		}
1209		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1210		spa->spa_proc_state = SPA_PROC_NONE;
1211	}
1212	ASSERT(spa->spa_proc == &p0);
1213	mutex_exit(&spa->spa_proc_lock);
1214
1215#ifdef SPA_PROCESS
1216	/*
1217	 * We want to make sure spa_thread() has actually exited the ZFS
1218	 * module, so that the module can't be unloaded out from underneath
1219	 * it.
1220	 */
1221	if (spa->spa_did != 0) {
1222		thread_join(spa->spa_did);
1223		spa->spa_did = 0;
1224	}
1225#endif	/* SPA_PROCESS */
1226}
1227
1228/*
1229 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1230 * will create all the necessary vdevs in the appropriate layout, with each vdev
1231 * in the CLOSED state.  This will prep the pool before open/creation/import.
1232 * All vdev validation is done by the vdev_alloc() routine.
1233 */
1234static int
1235spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1236    uint_t id, int atype)
1237{
1238	nvlist_t **child;
1239	uint_t children;
1240	int error;
1241
1242	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1243		return (error);
1244
1245	if ((*vdp)->vdev_ops->vdev_op_leaf)
1246		return (0);
1247
1248	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1249	    &child, &children);
1250
1251	if (error == ENOENT)
1252		return (0);
1253
1254	if (error) {
1255		vdev_free(*vdp);
1256		*vdp = NULL;
1257		return (SET_ERROR(EINVAL));
1258	}
1259
1260	for (int c = 0; c < children; c++) {
1261		vdev_t *vd;
1262		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1263		    atype)) != 0) {
1264			vdev_free(*vdp);
1265			*vdp = NULL;
1266			return (error);
1267		}
1268	}
1269
1270	ASSERT(*vdp != NULL);
1271
1272	return (0);
1273}
1274
1275/*
1276 * Opposite of spa_load().
1277 */
1278static void
1279spa_unload(spa_t *spa)
1280{
1281	int i;
1282
1283	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1284
1285	/*
1286	 * Stop TRIM thread.
1287	 */
1288	trim_thread_destroy(spa);
1289
1290	/*
1291	 * Stop async tasks.
1292	 */
1293	spa_async_suspend(spa);
1294
1295	/*
1296	 * Stop syncing.
1297	 */
1298	if (spa->spa_sync_on) {
1299		txg_sync_stop(spa->spa_dsl_pool);
1300		spa->spa_sync_on = B_FALSE;
1301	}
1302
1303	/*
1304	 * Wait for any outstanding async I/O to complete.
1305	 */
1306	if (spa->spa_async_zio_root != NULL) {
1307		for (int i = 0; i < max_ncpus; i++)
1308			(void) zio_wait(spa->spa_async_zio_root[i]);
1309		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1310		spa->spa_async_zio_root = NULL;
1311	}
1312
1313	bpobj_close(&spa->spa_deferred_bpobj);
1314
1315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316
1317	/*
1318	 * Close all vdevs.
1319	 */
1320	if (spa->spa_root_vdev)
1321		vdev_free(spa->spa_root_vdev);
1322	ASSERT(spa->spa_root_vdev == NULL);
1323
1324	/*
1325	 * Close the dsl pool.
1326	 */
1327	if (spa->spa_dsl_pool) {
1328		dsl_pool_close(spa->spa_dsl_pool);
1329		spa->spa_dsl_pool = NULL;
1330		spa->spa_meta_objset = NULL;
1331	}
1332
1333	ddt_unload(spa);
1334
1335
1336	/*
1337	 * Drop and purge level 2 cache
1338	 */
1339	spa_l2cache_drop(spa);
1340
1341	for (i = 0; i < spa->spa_spares.sav_count; i++)
1342		vdev_free(spa->spa_spares.sav_vdevs[i]);
1343	if (spa->spa_spares.sav_vdevs) {
1344		kmem_free(spa->spa_spares.sav_vdevs,
1345		    spa->spa_spares.sav_count * sizeof (void *));
1346		spa->spa_spares.sav_vdevs = NULL;
1347	}
1348	if (spa->spa_spares.sav_config) {
1349		nvlist_free(spa->spa_spares.sav_config);
1350		spa->spa_spares.sav_config = NULL;
1351	}
1352	spa->spa_spares.sav_count = 0;
1353
1354	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1355		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1356		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1357	}
1358	if (spa->spa_l2cache.sav_vdevs) {
1359		kmem_free(spa->spa_l2cache.sav_vdevs,
1360		    spa->spa_l2cache.sav_count * sizeof (void *));
1361		spa->spa_l2cache.sav_vdevs = NULL;
1362	}
1363	if (spa->spa_l2cache.sav_config) {
1364		nvlist_free(spa->spa_l2cache.sav_config);
1365		spa->spa_l2cache.sav_config = NULL;
1366	}
1367	spa->spa_l2cache.sav_count = 0;
1368
1369	spa->spa_async_suspended = 0;
1370
1371	if (spa->spa_comment != NULL) {
1372		spa_strfree(spa->spa_comment);
1373		spa->spa_comment = NULL;
1374	}
1375
1376	spa_config_exit(spa, SCL_ALL, FTAG);
1377}
1378
1379/*
1380 * Load (or re-load) the current list of vdevs describing the active spares for
1381 * this pool.  When this is called, we have some form of basic information in
1382 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1383 * then re-generate a more complete list including status information.
1384 */
1385static void
1386spa_load_spares(spa_t *spa)
1387{
1388	nvlist_t **spares;
1389	uint_t nspares;
1390	int i;
1391	vdev_t *vd, *tvd;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	/*
1396	 * First, close and free any existing spare vdevs.
1397	 */
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		vd = spa->spa_spares.sav_vdevs[i];
1400
1401		/* Undo the call to spa_activate() below */
1402		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1403		    B_FALSE)) != NULL && tvd->vdev_isspare)
1404			spa_spare_remove(tvd);
1405		vdev_close(vd);
1406		vdev_free(vd);
1407	}
1408
1409	if (spa->spa_spares.sav_vdevs)
1410		kmem_free(spa->spa_spares.sav_vdevs,
1411		    spa->spa_spares.sav_count * sizeof (void *));
1412
1413	if (spa->spa_spares.sav_config == NULL)
1414		nspares = 0;
1415	else
1416		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1417		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1418
1419	spa->spa_spares.sav_count = (int)nspares;
1420	spa->spa_spares.sav_vdevs = NULL;
1421
1422	if (nspares == 0)
1423		return;
1424
1425	/*
1426	 * Construct the array of vdevs, opening them to get status in the
1427	 * process.   For each spare, there is potentially two different vdev_t
1428	 * structures associated with it: one in the list of spares (used only
1429	 * for basic validation purposes) and one in the active vdev
1430	 * configuration (if it's spared in).  During this phase we open and
1431	 * validate each vdev on the spare list.  If the vdev also exists in the
1432	 * active configuration, then we also mark this vdev as an active spare.
1433	 */
1434	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1435	    KM_SLEEP);
1436	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1437		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1438		    VDEV_ALLOC_SPARE) == 0);
1439		ASSERT(vd != NULL);
1440
1441		spa->spa_spares.sav_vdevs[i] = vd;
1442
1443		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1444		    B_FALSE)) != NULL) {
1445			if (!tvd->vdev_isspare)
1446				spa_spare_add(tvd);
1447
1448			/*
1449			 * We only mark the spare active if we were successfully
1450			 * able to load the vdev.  Otherwise, importing a pool
1451			 * with a bad active spare would result in strange
1452			 * behavior, because multiple pool would think the spare
1453			 * is actively in use.
1454			 *
1455			 * There is a vulnerability here to an equally bizarre
1456			 * circumstance, where a dead active spare is later
1457			 * brought back to life (onlined or otherwise).  Given
1458			 * the rarity of this scenario, and the extra complexity
1459			 * it adds, we ignore the possibility.
1460			 */
1461			if (!vdev_is_dead(tvd))
1462				spa_spare_activate(tvd);
1463		}
1464
1465		vd->vdev_top = vd;
1466		vd->vdev_aux = &spa->spa_spares;
1467
1468		if (vdev_open(vd) != 0)
1469			continue;
1470
1471		if (vdev_validate_aux(vd) == 0)
1472			spa_spare_add(vd);
1473	}
1474
1475	/*
1476	 * Recompute the stashed list of spares, with status information
1477	 * this time.
1478	 */
1479	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1483	    KM_SLEEP);
1484	for (i = 0; i < spa->spa_spares.sav_count; i++)
1485		spares[i] = vdev_config_generate(spa,
1486		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1487	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1488	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1489	for (i = 0; i < spa->spa_spares.sav_count; i++)
1490		nvlist_free(spares[i]);
1491	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1492}
1493
1494/*
1495 * Load (or re-load) the current list of vdevs describing the active l2cache for
1496 * this pool.  When this is called, we have some form of basic information in
1497 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1498 * then re-generate a more complete list including status information.
1499 * Devices which are already active have their details maintained, and are
1500 * not re-opened.
1501 */
1502static void
1503spa_load_l2cache(spa_t *spa)
1504{
1505	nvlist_t **l2cache;
1506	uint_t nl2cache;
1507	int i, j, oldnvdevs;
1508	uint64_t guid;
1509	vdev_t *vd, **oldvdevs, **newvdevs;
1510	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1511
1512	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1513
1514	if (sav->sav_config != NULL) {
1515		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1516		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1517		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1518	} else {
1519		nl2cache = 0;
1520		newvdevs = NULL;
1521	}
1522
1523	oldvdevs = sav->sav_vdevs;
1524	oldnvdevs = sav->sav_count;
1525	sav->sav_vdevs = NULL;
1526	sav->sav_count = 0;
1527
1528	/*
1529	 * Process new nvlist of vdevs.
1530	 */
1531	for (i = 0; i < nl2cache; i++) {
1532		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1533		    &guid) == 0);
1534
1535		newvdevs[i] = NULL;
1536		for (j = 0; j < oldnvdevs; j++) {
1537			vd = oldvdevs[j];
1538			if (vd != NULL && guid == vd->vdev_guid) {
1539				/*
1540				 * Retain previous vdev for add/remove ops.
1541				 */
1542				newvdevs[i] = vd;
1543				oldvdevs[j] = NULL;
1544				break;
1545			}
1546		}
1547
1548		if (newvdevs[i] == NULL) {
1549			/*
1550			 * Create new vdev
1551			 */
1552			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1553			    VDEV_ALLOC_L2CACHE) == 0);
1554			ASSERT(vd != NULL);
1555			newvdevs[i] = vd;
1556
1557			/*
1558			 * Commit this vdev as an l2cache device,
1559			 * even if it fails to open.
1560			 */
1561			spa_l2cache_add(vd);
1562
1563			vd->vdev_top = vd;
1564			vd->vdev_aux = sav;
1565
1566			spa_l2cache_activate(vd);
1567
1568			if (vdev_open(vd) != 0)
1569				continue;
1570
1571			(void) vdev_validate_aux(vd);
1572
1573			if (!vdev_is_dead(vd))
1574				l2arc_add_vdev(spa, vd);
1575		}
1576	}
1577
1578	/*
1579	 * Purge vdevs that were dropped
1580	 */
1581	for (i = 0; i < oldnvdevs; i++) {
1582		uint64_t pool;
1583
1584		vd = oldvdevs[i];
1585		if (vd != NULL) {
1586			ASSERT(vd->vdev_isl2cache);
1587
1588			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1589			    pool != 0ULL && l2arc_vdev_present(vd))
1590				l2arc_remove_vdev(vd);
1591			vdev_clear_stats(vd);
1592			vdev_free(vd);
1593		}
1594	}
1595
1596	if (oldvdevs)
1597		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1598
1599	if (sav->sav_config == NULL)
1600		goto out;
1601
1602	sav->sav_vdevs = newvdevs;
1603	sav->sav_count = (int)nl2cache;
1604
1605	/*
1606	 * Recompute the stashed list of l2cache devices, with status
1607	 * information this time.
1608	 */
1609	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1610	    DATA_TYPE_NVLIST_ARRAY) == 0);
1611
1612	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1613	for (i = 0; i < sav->sav_count; i++)
1614		l2cache[i] = vdev_config_generate(spa,
1615		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1616	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1617	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1618out:
1619	for (i = 0; i < sav->sav_count; i++)
1620		nvlist_free(l2cache[i]);
1621	if (sav->sav_count)
1622		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1623}
1624
1625static int
1626load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1627{
1628	dmu_buf_t *db;
1629	char *packed = NULL;
1630	size_t nvsize = 0;
1631	int error;
1632	*value = NULL;
1633
1634	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1635	if (error != 0)
1636		return (error);
1637
1638	nvsize = *(uint64_t *)db->db_data;
1639	dmu_buf_rele(db, FTAG);
1640
1641	packed = kmem_alloc(nvsize, KM_SLEEP);
1642	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1643	    DMU_READ_PREFETCH);
1644	if (error == 0)
1645		error = nvlist_unpack(packed, nvsize, value, 0);
1646	kmem_free(packed, nvsize);
1647
1648	return (error);
1649}
1650
1651/*
1652 * Checks to see if the given vdev could not be opened, in which case we post a
1653 * sysevent to notify the autoreplace code that the device has been removed.
1654 */
1655static void
1656spa_check_removed(vdev_t *vd)
1657{
1658	for (int c = 0; c < vd->vdev_children; c++)
1659		spa_check_removed(vd->vdev_child[c]);
1660
1661	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1662	    !vd->vdev_ishole) {
1663		zfs_post_autoreplace(vd->vdev_spa, vd);
1664		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1665	}
1666}
1667
1668/*
1669 * Validate the current config against the MOS config
1670 */
1671static boolean_t
1672spa_config_valid(spa_t *spa, nvlist_t *config)
1673{
1674	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1675	nvlist_t *nv;
1676
1677	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1678
1679	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1681
1682	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1683
1684	/*
1685	 * If we're doing a normal import, then build up any additional
1686	 * diagnostic information about missing devices in this config.
1687	 * We'll pass this up to the user for further processing.
1688	 */
1689	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1690		nvlist_t **child, *nv;
1691		uint64_t idx = 0;
1692
1693		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1694		    KM_SLEEP);
1695		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1696
1697		for (int c = 0; c < rvd->vdev_children; c++) {
1698			vdev_t *tvd = rvd->vdev_child[c];
1699			vdev_t *mtvd  = mrvd->vdev_child[c];
1700
1701			if (tvd->vdev_ops == &vdev_missing_ops &&
1702			    mtvd->vdev_ops != &vdev_missing_ops &&
1703			    mtvd->vdev_islog)
1704				child[idx++] = vdev_config_generate(spa, mtvd,
1705				    B_FALSE, 0);
1706		}
1707
1708		if (idx) {
1709			VERIFY(nvlist_add_nvlist_array(nv,
1710			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1711			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1712			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1713
1714			for (int i = 0; i < idx; i++)
1715				nvlist_free(child[i]);
1716		}
1717		nvlist_free(nv);
1718		kmem_free(child, rvd->vdev_children * sizeof (char **));
1719	}
1720
1721	/*
1722	 * Compare the root vdev tree with the information we have
1723	 * from the MOS config (mrvd). Check each top-level vdev
1724	 * with the corresponding MOS config top-level (mtvd).
1725	 */
1726	for (int c = 0; c < rvd->vdev_children; c++) {
1727		vdev_t *tvd = rvd->vdev_child[c];
1728		vdev_t *mtvd  = mrvd->vdev_child[c];
1729
1730		/*
1731		 * Resolve any "missing" vdevs in the current configuration.
1732		 * If we find that the MOS config has more accurate information
1733		 * about the top-level vdev then use that vdev instead.
1734		 */
1735		if (tvd->vdev_ops == &vdev_missing_ops &&
1736		    mtvd->vdev_ops != &vdev_missing_ops) {
1737
1738			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1739				continue;
1740
1741			/*
1742			 * Device specific actions.
1743			 */
1744			if (mtvd->vdev_islog) {
1745				spa_set_log_state(spa, SPA_LOG_CLEAR);
1746			} else {
1747				/*
1748				 * XXX - once we have 'readonly' pool
1749				 * support we should be able to handle
1750				 * missing data devices by transitioning
1751				 * the pool to readonly.
1752				 */
1753				continue;
1754			}
1755
1756			/*
1757			 * Swap the missing vdev with the data we were
1758			 * able to obtain from the MOS config.
1759			 */
1760			vdev_remove_child(rvd, tvd);
1761			vdev_remove_child(mrvd, mtvd);
1762
1763			vdev_add_child(rvd, mtvd);
1764			vdev_add_child(mrvd, tvd);
1765
1766			spa_config_exit(spa, SCL_ALL, FTAG);
1767			vdev_load(mtvd);
1768			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1769
1770			vdev_reopen(rvd);
1771		} else if (mtvd->vdev_islog) {
1772			/*
1773			 * Load the slog device's state from the MOS config
1774			 * since it's possible that the label does not
1775			 * contain the most up-to-date information.
1776			 */
1777			vdev_load_log_state(tvd, mtvd);
1778			vdev_reopen(tvd);
1779		}
1780	}
1781	vdev_free(mrvd);
1782	spa_config_exit(spa, SCL_ALL, FTAG);
1783
1784	/*
1785	 * Ensure we were able to validate the config.
1786	 */
1787	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1788}
1789
1790/*
1791 * Check for missing log devices
1792 */
1793static boolean_t
1794spa_check_logs(spa_t *spa)
1795{
1796	boolean_t rv = B_FALSE;
1797	dsl_pool_t *dp = spa_get_dsl(spa);
1798
1799	switch (spa->spa_log_state) {
1800	case SPA_LOG_MISSING:
1801		/* need to recheck in case slog has been restored */
1802	case SPA_LOG_UNKNOWN:
1803		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1804		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1805		if (rv)
1806			spa_set_log_state(spa, SPA_LOG_MISSING);
1807		break;
1808	}
1809	return (rv);
1810}
1811
1812static boolean_t
1813spa_passivate_log(spa_t *spa)
1814{
1815	vdev_t *rvd = spa->spa_root_vdev;
1816	boolean_t slog_found = B_FALSE;
1817
1818	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1819
1820	if (!spa_has_slogs(spa))
1821		return (B_FALSE);
1822
1823	for (int c = 0; c < rvd->vdev_children; c++) {
1824		vdev_t *tvd = rvd->vdev_child[c];
1825		metaslab_group_t *mg = tvd->vdev_mg;
1826
1827		if (tvd->vdev_islog) {
1828			metaslab_group_passivate(mg);
1829			slog_found = B_TRUE;
1830		}
1831	}
1832
1833	return (slog_found);
1834}
1835
1836static void
1837spa_activate_log(spa_t *spa)
1838{
1839	vdev_t *rvd = spa->spa_root_vdev;
1840
1841	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1842
1843	for (int c = 0; c < rvd->vdev_children; c++) {
1844		vdev_t *tvd = rvd->vdev_child[c];
1845		metaslab_group_t *mg = tvd->vdev_mg;
1846
1847		if (tvd->vdev_islog)
1848			metaslab_group_activate(mg);
1849	}
1850}
1851
1852int
1853spa_offline_log(spa_t *spa)
1854{
1855	int error;
1856
1857	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1858	    NULL, DS_FIND_CHILDREN);
1859	if (error == 0) {
1860		/*
1861		 * We successfully offlined the log device, sync out the
1862		 * current txg so that the "stubby" block can be removed
1863		 * by zil_sync().
1864		 */
1865		txg_wait_synced(spa->spa_dsl_pool, 0);
1866	}
1867	return (error);
1868}
1869
1870static void
1871spa_aux_check_removed(spa_aux_vdev_t *sav)
1872{
1873	int i;
1874
1875	for (i = 0; i < sav->sav_count; i++)
1876		spa_check_removed(sav->sav_vdevs[i]);
1877}
1878
1879void
1880spa_claim_notify(zio_t *zio)
1881{
1882	spa_t *spa = zio->io_spa;
1883
1884	if (zio->io_error)
1885		return;
1886
1887	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1888	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1889		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1890	mutex_exit(&spa->spa_props_lock);
1891}
1892
1893typedef struct spa_load_error {
1894	uint64_t	sle_meta_count;
1895	uint64_t	sle_data_count;
1896} spa_load_error_t;
1897
1898static void
1899spa_load_verify_done(zio_t *zio)
1900{
1901	blkptr_t *bp = zio->io_bp;
1902	spa_load_error_t *sle = zio->io_private;
1903	dmu_object_type_t type = BP_GET_TYPE(bp);
1904	int error = zio->io_error;
1905	spa_t *spa = zio->io_spa;
1906
1907	if (error) {
1908		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1909		    type != DMU_OT_INTENT_LOG)
1910			atomic_inc_64(&sle->sle_meta_count);
1911		else
1912			atomic_inc_64(&sle->sle_data_count);
1913	}
1914	zio_data_buf_free(zio->io_data, zio->io_size);
1915
1916	mutex_enter(&spa->spa_scrub_lock);
1917	spa->spa_scrub_inflight--;
1918	cv_broadcast(&spa->spa_scrub_io_cv);
1919	mutex_exit(&spa->spa_scrub_lock);
1920}
1921
1922/*
1923 * Maximum number of concurrent scrub i/os to create while verifying
1924 * a pool while importing it.
1925 */
1926int spa_load_verify_maxinflight = 10000;
1927boolean_t spa_load_verify_metadata = B_TRUE;
1928boolean_t spa_load_verify_data = B_TRUE;
1929
1930SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1931    &spa_load_verify_maxinflight, 0,
1932    "Maximum number of concurrent scrub I/Os to create while verifying a "
1933    "pool while importing it");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1936    &spa_load_verify_metadata, 0,
1937    "Check metadata on import?");
1938
1939SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1940    &spa_load_verify_data, 0,
1941    "Check user data on import?");
1942
1943/*ARGSUSED*/
1944static int
1945spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1946    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1947{
1948	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1949		return (0);
1950	/*
1951	 * Note: normally this routine will not be called if
1952	 * spa_load_verify_metadata is not set.  However, it may be useful
1953	 * to manually set the flag after the traversal has begun.
1954	 */
1955	if (!spa_load_verify_metadata)
1956		return (0);
1957	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1958		return (0);
1959
1960	zio_t *rio = arg;
1961	size_t size = BP_GET_PSIZE(bp);
1962	void *data = zio_data_buf_alloc(size);
1963
1964	mutex_enter(&spa->spa_scrub_lock);
1965	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1966		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1967	spa->spa_scrub_inflight++;
1968	mutex_exit(&spa->spa_scrub_lock);
1969
1970	zio_nowait(zio_read(rio, spa, bp, data, size,
1971	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1972	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1973	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1974	return (0);
1975}
1976
1977static int
1978spa_load_verify(spa_t *spa)
1979{
1980	zio_t *rio;
1981	spa_load_error_t sle = { 0 };
1982	zpool_rewind_policy_t policy;
1983	boolean_t verify_ok = B_FALSE;
1984	int error = 0;
1985
1986	zpool_get_rewind_policy(spa->spa_config, &policy);
1987
1988	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1989		return (0);
1990
1991	rio = zio_root(spa, NULL, &sle,
1992	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1993
1994	if (spa_load_verify_metadata) {
1995		error = traverse_pool(spa, spa->spa_verify_min_txg,
1996		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1997		    spa_load_verify_cb, rio);
1998	}
1999
2000	(void) zio_wait(rio);
2001
2002	spa->spa_load_meta_errors = sle.sle_meta_count;
2003	spa->spa_load_data_errors = sle.sle_data_count;
2004
2005	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2006	    sle.sle_data_count <= policy.zrp_maxdata) {
2007		int64_t loss = 0;
2008
2009		verify_ok = B_TRUE;
2010		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2011		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2012
2013		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2014		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2016		VERIFY(nvlist_add_int64(spa->spa_load_info,
2017		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2018		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2019		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2020	} else {
2021		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2022	}
2023
2024	if (error) {
2025		if (error != ENXIO && error != EIO)
2026			error = SET_ERROR(EIO);
2027		return (error);
2028	}
2029
2030	return (verify_ok ? 0 : EIO);
2031}
2032
2033/*
2034 * Find a value in the pool props object.
2035 */
2036static void
2037spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2038{
2039	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2040	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2041}
2042
2043/*
2044 * Find a value in the pool directory object.
2045 */
2046static int
2047spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2048{
2049	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2050	    name, sizeof (uint64_t), 1, val));
2051}
2052
2053static int
2054spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2055{
2056	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2057	return (err);
2058}
2059
2060/*
2061 * Fix up config after a partly-completed split.  This is done with the
2062 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2063 * pool have that entry in their config, but only the splitting one contains
2064 * a list of all the guids of the vdevs that are being split off.
2065 *
2066 * This function determines what to do with that list: either rejoin
2067 * all the disks to the pool, or complete the splitting process.  To attempt
2068 * the rejoin, each disk that is offlined is marked online again, and
2069 * we do a reopen() call.  If the vdev label for every disk that was
2070 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2071 * then we call vdev_split() on each disk, and complete the split.
2072 *
2073 * Otherwise we leave the config alone, with all the vdevs in place in
2074 * the original pool.
2075 */
2076static void
2077spa_try_repair(spa_t *spa, nvlist_t *config)
2078{
2079	uint_t extracted;
2080	uint64_t *glist;
2081	uint_t i, gcount;
2082	nvlist_t *nvl;
2083	vdev_t **vd;
2084	boolean_t attempt_reopen;
2085
2086	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2087		return;
2088
2089	/* check that the config is complete */
2090	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2091	    &glist, &gcount) != 0)
2092		return;
2093
2094	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2095
2096	/* attempt to online all the vdevs & validate */
2097	attempt_reopen = B_TRUE;
2098	for (i = 0; i < gcount; i++) {
2099		if (glist[i] == 0)	/* vdev is hole */
2100			continue;
2101
2102		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2103		if (vd[i] == NULL) {
2104			/*
2105			 * Don't bother attempting to reopen the disks;
2106			 * just do the split.
2107			 */
2108			attempt_reopen = B_FALSE;
2109		} else {
2110			/* attempt to re-online it */
2111			vd[i]->vdev_offline = B_FALSE;
2112		}
2113	}
2114
2115	if (attempt_reopen) {
2116		vdev_reopen(spa->spa_root_vdev);
2117
2118		/* check each device to see what state it's in */
2119		for (extracted = 0, i = 0; i < gcount; i++) {
2120			if (vd[i] != NULL &&
2121			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2122				break;
2123			++extracted;
2124		}
2125	}
2126
2127	/*
2128	 * If every disk has been moved to the new pool, or if we never
2129	 * even attempted to look at them, then we split them off for
2130	 * good.
2131	 */
2132	if (!attempt_reopen || gcount == extracted) {
2133		for (i = 0; i < gcount; i++)
2134			if (vd[i] != NULL)
2135				vdev_split(vd[i]);
2136		vdev_reopen(spa->spa_root_vdev);
2137	}
2138
2139	kmem_free(vd, gcount * sizeof (vdev_t *));
2140}
2141
2142static int
2143spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2144    boolean_t mosconfig)
2145{
2146	nvlist_t *config = spa->spa_config;
2147	char *ereport = FM_EREPORT_ZFS_POOL;
2148	char *comment;
2149	int error;
2150	uint64_t pool_guid;
2151	nvlist_t *nvl;
2152
2153	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2154		return (SET_ERROR(EINVAL));
2155
2156	ASSERT(spa->spa_comment == NULL);
2157	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2158		spa->spa_comment = spa_strdup(comment);
2159
2160	/*
2161	 * Versioning wasn't explicitly added to the label until later, so if
2162	 * it's not present treat it as the initial version.
2163	 */
2164	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2165	    &spa->spa_ubsync.ub_version) != 0)
2166		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2167
2168	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2169	    &spa->spa_config_txg);
2170
2171	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2172	    spa_guid_exists(pool_guid, 0)) {
2173		error = SET_ERROR(EEXIST);
2174	} else {
2175		spa->spa_config_guid = pool_guid;
2176
2177		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2178		    &nvl) == 0) {
2179			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2180			    KM_SLEEP) == 0);
2181		}
2182
2183		nvlist_free(spa->spa_load_info);
2184		spa->spa_load_info = fnvlist_alloc();
2185
2186		gethrestime(&spa->spa_loaded_ts);
2187		error = spa_load_impl(spa, pool_guid, config, state, type,
2188		    mosconfig, &ereport);
2189	}
2190
2191	/*
2192	 * Don't count references from objsets that are already closed
2193	 * and are making their way through the eviction process.
2194	 */
2195	spa_evicting_os_wait(spa);
2196	spa->spa_minref = refcount_count(&spa->spa_refcount);
2197	if (error) {
2198		if (error != EEXIST) {
2199			spa->spa_loaded_ts.tv_sec = 0;
2200			spa->spa_loaded_ts.tv_nsec = 0;
2201		}
2202		if (error != EBADF) {
2203			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2204		}
2205	}
2206	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2207	spa->spa_ena = 0;
2208
2209	return (error);
2210}
2211
2212/*
2213 * Load an existing storage pool, using the pool's builtin spa_config as a
2214 * source of configuration information.
2215 */
2216static int
2217spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2218    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2219    char **ereport)
2220{
2221	int error = 0;
2222	nvlist_t *nvroot = NULL;
2223	nvlist_t *label;
2224	vdev_t *rvd;
2225	uberblock_t *ub = &spa->spa_uberblock;
2226	uint64_t children, config_cache_txg = spa->spa_config_txg;
2227	int orig_mode = spa->spa_mode;
2228	int parse;
2229	uint64_t obj;
2230	boolean_t missing_feat_write = B_FALSE;
2231
2232	/*
2233	 * If this is an untrusted config, access the pool in read-only mode.
2234	 * This prevents things like resilvering recently removed devices.
2235	 */
2236	if (!mosconfig)
2237		spa->spa_mode = FREAD;
2238
2239	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2240
2241	spa->spa_load_state = state;
2242
2243	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2244		return (SET_ERROR(EINVAL));
2245
2246	parse = (type == SPA_IMPORT_EXISTING ?
2247	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2248
2249	/*
2250	 * Create "The Godfather" zio to hold all async IOs
2251	 */
2252	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2253	    KM_SLEEP);
2254	for (int i = 0; i < max_ncpus; i++) {
2255		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2256		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2257		    ZIO_FLAG_GODFATHER);
2258	}
2259
2260	/*
2261	 * Parse the configuration into a vdev tree.  We explicitly set the
2262	 * value that will be returned by spa_version() since parsing the
2263	 * configuration requires knowing the version number.
2264	 */
2265	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2266	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2267	spa_config_exit(spa, SCL_ALL, FTAG);
2268
2269	if (error != 0)
2270		return (error);
2271
2272	ASSERT(spa->spa_root_vdev == rvd);
2273	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2274	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2275
2276	if (type != SPA_IMPORT_ASSEMBLE) {
2277		ASSERT(spa_guid(spa) == pool_guid);
2278	}
2279
2280	/*
2281	 * Try to open all vdevs, loading each label in the process.
2282	 */
2283	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2284	error = vdev_open(rvd);
2285	spa_config_exit(spa, SCL_ALL, FTAG);
2286	if (error != 0)
2287		return (error);
2288
2289	/*
2290	 * We need to validate the vdev labels against the configuration that
2291	 * we have in hand, which is dependent on the setting of mosconfig. If
2292	 * mosconfig is true then we're validating the vdev labels based on
2293	 * that config.  Otherwise, we're validating against the cached config
2294	 * (zpool.cache) that was read when we loaded the zfs module, and then
2295	 * later we will recursively call spa_load() and validate against
2296	 * the vdev config.
2297	 *
2298	 * If we're assembling a new pool that's been split off from an
2299	 * existing pool, the labels haven't yet been updated so we skip
2300	 * validation for now.
2301	 */
2302	if (type != SPA_IMPORT_ASSEMBLE) {
2303		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2304		error = vdev_validate(rvd, mosconfig);
2305		spa_config_exit(spa, SCL_ALL, FTAG);
2306
2307		if (error != 0)
2308			return (error);
2309
2310		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2311			return (SET_ERROR(ENXIO));
2312	}
2313
2314	/*
2315	 * Find the best uberblock.
2316	 */
2317	vdev_uberblock_load(rvd, ub, &label);
2318
2319	/*
2320	 * If we weren't able to find a single valid uberblock, return failure.
2321	 */
2322	if (ub->ub_txg == 0) {
2323		nvlist_free(label);
2324		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2325	}
2326
2327	/*
2328	 * If the pool has an unsupported version we can't open it.
2329	 */
2330	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2331		nvlist_free(label);
2332		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2333	}
2334
2335	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2336		nvlist_t *features;
2337
2338		/*
2339		 * If we weren't able to find what's necessary for reading the
2340		 * MOS in the label, return failure.
2341		 */
2342		if (label == NULL || nvlist_lookup_nvlist(label,
2343		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2344			nvlist_free(label);
2345			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2346			    ENXIO));
2347		}
2348
2349		/*
2350		 * Update our in-core representation with the definitive values
2351		 * from the label.
2352		 */
2353		nvlist_free(spa->spa_label_features);
2354		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2355	}
2356
2357	nvlist_free(label);
2358
2359	/*
2360	 * Look through entries in the label nvlist's features_for_read. If
2361	 * there is a feature listed there which we don't understand then we
2362	 * cannot open a pool.
2363	 */
2364	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2365		nvlist_t *unsup_feat;
2366
2367		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2368		    0);
2369
2370		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2371		    NULL); nvp != NULL;
2372		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2373			if (!zfeature_is_supported(nvpair_name(nvp))) {
2374				VERIFY(nvlist_add_string(unsup_feat,
2375				    nvpair_name(nvp), "") == 0);
2376			}
2377		}
2378
2379		if (!nvlist_empty(unsup_feat)) {
2380			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2381			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2382			nvlist_free(unsup_feat);
2383			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2384			    ENOTSUP));
2385		}
2386
2387		nvlist_free(unsup_feat);
2388	}
2389
2390	/*
2391	 * If the vdev guid sum doesn't match the uberblock, we have an
2392	 * incomplete configuration.  We first check to see if the pool
2393	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2394	 * If it is, defer the vdev_guid_sum check till later so we
2395	 * can handle missing vdevs.
2396	 */
2397	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2398	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2399	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2400		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2401
2402	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2403		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2404		spa_try_repair(spa, config);
2405		spa_config_exit(spa, SCL_ALL, FTAG);
2406		nvlist_free(spa->spa_config_splitting);
2407		spa->spa_config_splitting = NULL;
2408	}
2409
2410	/*
2411	 * Initialize internal SPA structures.
2412	 */
2413	spa->spa_state = POOL_STATE_ACTIVE;
2414	spa->spa_ubsync = spa->spa_uberblock;
2415	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2416	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2417	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2418	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2419	spa->spa_claim_max_txg = spa->spa_first_txg;
2420	spa->spa_prev_software_version = ub->ub_software_version;
2421
2422	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2423	if (error)
2424		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2426
2427	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2428		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2429
2430	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2431		boolean_t missing_feat_read = B_FALSE;
2432		nvlist_t *unsup_feat, *enabled_feat;
2433
2434		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2435		    &spa->spa_feat_for_read_obj) != 0) {
2436			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2437		}
2438
2439		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2440		    &spa->spa_feat_for_write_obj) != 0) {
2441			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442		}
2443
2444		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2445		    &spa->spa_feat_desc_obj) != 0) {
2446			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447		}
2448
2449		enabled_feat = fnvlist_alloc();
2450		unsup_feat = fnvlist_alloc();
2451
2452		if (!spa_features_check(spa, B_FALSE,
2453		    unsup_feat, enabled_feat))
2454			missing_feat_read = B_TRUE;
2455
2456		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2457			if (!spa_features_check(spa, B_TRUE,
2458			    unsup_feat, enabled_feat)) {
2459				missing_feat_write = B_TRUE;
2460			}
2461		}
2462
2463		fnvlist_add_nvlist(spa->spa_load_info,
2464		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2465
2466		if (!nvlist_empty(unsup_feat)) {
2467			fnvlist_add_nvlist(spa->spa_load_info,
2468			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2469		}
2470
2471		fnvlist_free(enabled_feat);
2472		fnvlist_free(unsup_feat);
2473
2474		if (!missing_feat_read) {
2475			fnvlist_add_boolean(spa->spa_load_info,
2476			    ZPOOL_CONFIG_CAN_RDONLY);
2477		}
2478
2479		/*
2480		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2481		 * twofold: to determine whether the pool is available for
2482		 * import in read-write mode and (if it is not) whether the
2483		 * pool is available for import in read-only mode. If the pool
2484		 * is available for import in read-write mode, it is displayed
2485		 * as available in userland; if it is not available for import
2486		 * in read-only mode, it is displayed as unavailable in
2487		 * userland. If the pool is available for import in read-only
2488		 * mode but not read-write mode, it is displayed as unavailable
2489		 * in userland with a special note that the pool is actually
2490		 * available for open in read-only mode.
2491		 *
2492		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2493		 * missing a feature for write, we must first determine whether
2494		 * the pool can be opened read-only before returning to
2495		 * userland in order to know whether to display the
2496		 * abovementioned note.
2497		 */
2498		if (missing_feat_read || (missing_feat_write &&
2499		    spa_writeable(spa))) {
2500			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2501			    ENOTSUP));
2502		}
2503
2504		/*
2505		 * Load refcounts for ZFS features from disk into an in-memory
2506		 * cache during SPA initialization.
2507		 */
2508		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2509			uint64_t refcount;
2510
2511			error = feature_get_refcount_from_disk(spa,
2512			    &spa_feature_table[i], &refcount);
2513			if (error == 0) {
2514				spa->spa_feat_refcount_cache[i] = refcount;
2515			} else if (error == ENOTSUP) {
2516				spa->spa_feat_refcount_cache[i] =
2517				    SPA_FEATURE_DISABLED;
2518			} else {
2519				return (spa_vdev_err(rvd,
2520				    VDEV_AUX_CORRUPT_DATA, EIO));
2521			}
2522		}
2523	}
2524
2525	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2526		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2527		    &spa->spa_feat_enabled_txg_obj) != 0)
2528			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2529	}
2530
2531	spa->spa_is_initializing = B_TRUE;
2532	error = dsl_pool_open(spa->spa_dsl_pool);
2533	spa->spa_is_initializing = B_FALSE;
2534	if (error != 0)
2535		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536
2537	if (!mosconfig) {
2538		uint64_t hostid;
2539		nvlist_t *policy = NULL, *nvconfig;
2540
2541		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2542			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543
2544		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2545		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2546			char *hostname;
2547			unsigned long myhostid = 0;
2548
2549			VERIFY(nvlist_lookup_string(nvconfig,
2550			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2551
2552#ifdef	_KERNEL
2553			myhostid = zone_get_hostid(NULL);
2554#else	/* _KERNEL */
2555			/*
2556			 * We're emulating the system's hostid in userland, so
2557			 * we can't use zone_get_hostid().
2558			 */
2559			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2560#endif	/* _KERNEL */
2561			if (check_hostid && hostid != 0 && myhostid != 0 &&
2562			    hostid != myhostid) {
2563				nvlist_free(nvconfig);
2564				cmn_err(CE_WARN, "pool '%s' could not be "
2565				    "loaded as it was last accessed by "
2566				    "another system (host: %s hostid: 0x%lx). "
2567				    "See: http://illumos.org/msg/ZFS-8000-EY",
2568				    spa_name(spa), hostname,
2569				    (unsigned long)hostid);
2570				return (SET_ERROR(EBADF));
2571			}
2572		}
2573		if (nvlist_lookup_nvlist(spa->spa_config,
2574		    ZPOOL_REWIND_POLICY, &policy) == 0)
2575			VERIFY(nvlist_add_nvlist(nvconfig,
2576			    ZPOOL_REWIND_POLICY, policy) == 0);
2577
2578		spa_config_set(spa, nvconfig);
2579		spa_unload(spa);
2580		spa_deactivate(spa);
2581		spa_activate(spa, orig_mode);
2582
2583		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2584	}
2585
2586	/* Grab the secret checksum salt from the MOS. */
2587	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2588	    DMU_POOL_CHECKSUM_SALT, 1,
2589	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2590	    spa->spa_cksum_salt.zcs_bytes);
2591	if (error == ENOENT) {
2592		/* Generate a new salt for subsequent use */
2593		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2594		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2595	} else if (error != 0) {
2596		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597	}
2598
2599	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2602	if (error != 0)
2603		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605	/*
2606	 * Load the bit that tells us to use the new accounting function
2607	 * (raid-z deflation).  If we have an older pool, this will not
2608	 * be present.
2609	 */
2610	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2611	if (error != 0 && error != ENOENT)
2612		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613
2614	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2615	    &spa->spa_creation_version);
2616	if (error != 0 && error != ENOENT)
2617		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618
2619	/*
2620	 * Load the persistent error log.  If we have an older pool, this will
2621	 * not be present.
2622	 */
2623	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2624	if (error != 0 && error != ENOENT)
2625		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626
2627	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2628	    &spa->spa_errlog_scrub);
2629	if (error != 0 && error != ENOENT)
2630		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631
2632	/*
2633	 * Load the history object.  If we have an older pool, this
2634	 * will not be present.
2635	 */
2636	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2637	if (error != 0 && error != ENOENT)
2638		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2639
2640	/*
2641	 * If we're assembling the pool from the split-off vdevs of
2642	 * an existing pool, we don't want to attach the spares & cache
2643	 * devices.
2644	 */
2645
2646	/*
2647	 * Load any hot spares for this pool.
2648	 */
2649	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2650	if (error != 0 && error != ENOENT)
2651		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2652	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2653		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2654		if (load_nvlist(spa, spa->spa_spares.sav_object,
2655		    &spa->spa_spares.sav_config) != 0)
2656			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657
2658		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2659		spa_load_spares(spa);
2660		spa_config_exit(spa, SCL_ALL, FTAG);
2661	} else if (error == 0) {
2662		spa->spa_spares.sav_sync = B_TRUE;
2663	}
2664
2665	/*
2666	 * Load any level 2 ARC devices for this pool.
2667	 */
2668	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2669	    &spa->spa_l2cache.sav_object);
2670	if (error != 0 && error != ENOENT)
2671		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2673		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2674		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2675		    &spa->spa_l2cache.sav_config) != 0)
2676			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2677
2678		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2679		spa_load_l2cache(spa);
2680		spa_config_exit(spa, SCL_ALL, FTAG);
2681	} else if (error == 0) {
2682		spa->spa_l2cache.sav_sync = B_TRUE;
2683	}
2684
2685	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2686
2687	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2688	if (error && error != ENOENT)
2689		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690
2691	if (error == 0) {
2692		uint64_t autoreplace;
2693
2694		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2695		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2696		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2697		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2698		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2699		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2700		    &spa->spa_dedup_ditto);
2701
2702		spa->spa_autoreplace = (autoreplace != 0);
2703	}
2704
2705	/*
2706	 * If the 'autoreplace' property is set, then post a resource notifying
2707	 * the ZFS DE that it should not issue any faults for unopenable
2708	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2709	 * unopenable vdevs so that the normal autoreplace handler can take
2710	 * over.
2711	 */
2712	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2713		spa_check_removed(spa->spa_root_vdev);
2714		/*
2715		 * For the import case, this is done in spa_import(), because
2716		 * at this point we're using the spare definitions from
2717		 * the MOS config, not necessarily from the userland config.
2718		 */
2719		if (state != SPA_LOAD_IMPORT) {
2720			spa_aux_check_removed(&spa->spa_spares);
2721			spa_aux_check_removed(&spa->spa_l2cache);
2722		}
2723	}
2724
2725	/*
2726	 * Load the vdev state for all toplevel vdevs.
2727	 */
2728	vdev_load(rvd);
2729
2730	/*
2731	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2732	 */
2733	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2734	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2735	spa_config_exit(spa, SCL_ALL, FTAG);
2736
2737	/*
2738	 * Load the DDTs (dedup tables).
2739	 */
2740	error = ddt_load(spa);
2741	if (error != 0)
2742		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2743
2744	spa_update_dspace(spa);
2745
2746	/*
2747	 * Validate the config, using the MOS config to fill in any
2748	 * information which might be missing.  If we fail to validate
2749	 * the config then declare the pool unfit for use. If we're
2750	 * assembling a pool from a split, the log is not transferred
2751	 * over.
2752	 */
2753	if (type != SPA_IMPORT_ASSEMBLE) {
2754		nvlist_t *nvconfig;
2755
2756		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2757			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2758
2759		if (!spa_config_valid(spa, nvconfig)) {
2760			nvlist_free(nvconfig);
2761			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2762			    ENXIO));
2763		}
2764		nvlist_free(nvconfig);
2765
2766		/*
2767		 * Now that we've validated the config, check the state of the
2768		 * root vdev.  If it can't be opened, it indicates one or
2769		 * more toplevel vdevs are faulted.
2770		 */
2771		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2772			return (SET_ERROR(ENXIO));
2773
2774		if (spa_writeable(spa) && spa_check_logs(spa)) {
2775			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2776			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2777		}
2778	}
2779
2780	if (missing_feat_write) {
2781		ASSERT(state == SPA_LOAD_TRYIMPORT);
2782
2783		/*
2784		 * At this point, we know that we can open the pool in
2785		 * read-only mode but not read-write mode. We now have enough
2786		 * information and can return to userland.
2787		 */
2788		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2789	}
2790
2791	/*
2792	 * We've successfully opened the pool, verify that we're ready
2793	 * to start pushing transactions.
2794	 */
2795	if (state != SPA_LOAD_TRYIMPORT) {
2796		if (error = spa_load_verify(spa))
2797			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2798			    error));
2799	}
2800
2801	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2802	    spa->spa_load_max_txg == UINT64_MAX)) {
2803		dmu_tx_t *tx;
2804		int need_update = B_FALSE;
2805		dsl_pool_t *dp = spa_get_dsl(spa);
2806
2807		ASSERT(state != SPA_LOAD_TRYIMPORT);
2808
2809		/*
2810		 * Claim log blocks that haven't been committed yet.
2811		 * This must all happen in a single txg.
2812		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2813		 * invoked from zil_claim_log_block()'s i/o done callback.
2814		 * Price of rollback is that we abandon the log.
2815		 */
2816		spa->spa_claiming = B_TRUE;
2817
2818		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2819		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2820		    zil_claim, tx, DS_FIND_CHILDREN);
2821		dmu_tx_commit(tx);
2822
2823		spa->spa_claiming = B_FALSE;
2824
2825		spa_set_log_state(spa, SPA_LOG_GOOD);
2826		spa->spa_sync_on = B_TRUE;
2827		txg_sync_start(spa->spa_dsl_pool);
2828
2829		/*
2830		 * Wait for all claims to sync.  We sync up to the highest
2831		 * claimed log block birth time so that claimed log blocks
2832		 * don't appear to be from the future.  spa_claim_max_txg
2833		 * will have been set for us by either zil_check_log_chain()
2834		 * (invoked from spa_check_logs()) or zil_claim() above.
2835		 */
2836		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2837
2838		/*
2839		 * If the config cache is stale, or we have uninitialized
2840		 * metaslabs (see spa_vdev_add()), then update the config.
2841		 *
2842		 * If this is a verbatim import, trust the current
2843		 * in-core spa_config and update the disk labels.
2844		 */
2845		if (config_cache_txg != spa->spa_config_txg ||
2846		    state == SPA_LOAD_IMPORT ||
2847		    state == SPA_LOAD_RECOVER ||
2848		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2849			need_update = B_TRUE;
2850
2851		for (int c = 0; c < rvd->vdev_children; c++)
2852			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2853				need_update = B_TRUE;
2854
2855		/*
2856		 * Update the config cache asychronously in case we're the
2857		 * root pool, in which case the config cache isn't writable yet.
2858		 */
2859		if (need_update)
2860			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2861
2862		/*
2863		 * Check all DTLs to see if anything needs resilvering.
2864		 */
2865		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2866		    vdev_resilver_needed(rvd, NULL, NULL))
2867			spa_async_request(spa, SPA_ASYNC_RESILVER);
2868
2869		/*
2870		 * Log the fact that we booted up (so that we can detect if
2871		 * we rebooted in the middle of an operation).
2872		 */
2873		spa_history_log_version(spa, "open");
2874
2875		/*
2876		 * Delete any inconsistent datasets.
2877		 */
2878		(void) dmu_objset_find(spa_name(spa),
2879		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2880
2881		/*
2882		 * Clean up any stale temporary dataset userrefs.
2883		 */
2884		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2885	}
2886
2887	return (0);
2888}
2889
2890static int
2891spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2892{
2893	int mode = spa->spa_mode;
2894
2895	spa_unload(spa);
2896	spa_deactivate(spa);
2897
2898	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2899
2900	spa_activate(spa, mode);
2901	spa_async_suspend(spa);
2902
2903	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2904}
2905
2906/*
2907 * If spa_load() fails this function will try loading prior txg's. If
2908 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2909 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2910 * function will not rewind the pool and will return the same error as
2911 * spa_load().
2912 */
2913static int
2914spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2915    uint64_t max_request, int rewind_flags)
2916{
2917	nvlist_t *loadinfo = NULL;
2918	nvlist_t *config = NULL;
2919	int load_error, rewind_error;
2920	uint64_t safe_rewind_txg;
2921	uint64_t min_txg;
2922
2923	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2924		spa->spa_load_max_txg = spa->spa_load_txg;
2925		spa_set_log_state(spa, SPA_LOG_CLEAR);
2926	} else {
2927		spa->spa_load_max_txg = max_request;
2928		if (max_request != UINT64_MAX)
2929			spa->spa_extreme_rewind = B_TRUE;
2930	}
2931
2932	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2933	    mosconfig);
2934	if (load_error == 0)
2935		return (0);
2936
2937	if (spa->spa_root_vdev != NULL)
2938		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2939
2940	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2941	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2942
2943	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2944		nvlist_free(config);
2945		return (load_error);
2946	}
2947
2948	if (state == SPA_LOAD_RECOVER) {
2949		/* Price of rolling back is discarding txgs, including log */
2950		spa_set_log_state(spa, SPA_LOG_CLEAR);
2951	} else {
2952		/*
2953		 * If we aren't rolling back save the load info from our first
2954		 * import attempt so that we can restore it after attempting
2955		 * to rewind.
2956		 */
2957		loadinfo = spa->spa_load_info;
2958		spa->spa_load_info = fnvlist_alloc();
2959	}
2960
2961	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2962	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2963	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2964	    TXG_INITIAL : safe_rewind_txg;
2965
2966	/*
2967	 * Continue as long as we're finding errors, we're still within
2968	 * the acceptable rewind range, and we're still finding uberblocks
2969	 */
2970	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2971	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2972		if (spa->spa_load_max_txg < safe_rewind_txg)
2973			spa->spa_extreme_rewind = B_TRUE;
2974		rewind_error = spa_load_retry(spa, state, mosconfig);
2975	}
2976
2977	spa->spa_extreme_rewind = B_FALSE;
2978	spa->spa_load_max_txg = UINT64_MAX;
2979
2980	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2981		spa_config_set(spa, config);
2982
2983	if (state == SPA_LOAD_RECOVER) {
2984		ASSERT3P(loadinfo, ==, NULL);
2985		return (rewind_error);
2986	} else {
2987		/* Store the rewind info as part of the initial load info */
2988		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2989		    spa->spa_load_info);
2990
2991		/* Restore the initial load info */
2992		fnvlist_free(spa->spa_load_info);
2993		spa->spa_load_info = loadinfo;
2994
2995		return (load_error);
2996	}
2997}
2998
2999/*
3000 * Pool Open/Import
3001 *
3002 * The import case is identical to an open except that the configuration is sent
3003 * down from userland, instead of grabbed from the configuration cache.  For the
3004 * case of an open, the pool configuration will exist in the
3005 * POOL_STATE_UNINITIALIZED state.
3006 *
3007 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3008 * the same time open the pool, without having to keep around the spa_t in some
3009 * ambiguous state.
3010 */
3011static int
3012spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3013    nvlist_t **config)
3014{
3015	spa_t *spa;
3016	spa_load_state_t state = SPA_LOAD_OPEN;
3017	int error;
3018	int locked = B_FALSE;
3019	int firstopen = B_FALSE;
3020
3021	*spapp = NULL;
3022
3023	/*
3024	 * As disgusting as this is, we need to support recursive calls to this
3025	 * function because dsl_dir_open() is called during spa_load(), and ends
3026	 * up calling spa_open() again.  The real fix is to figure out how to
3027	 * avoid dsl_dir_open() calling this in the first place.
3028	 */
3029	if (mutex_owner(&spa_namespace_lock) != curthread) {
3030		mutex_enter(&spa_namespace_lock);
3031		locked = B_TRUE;
3032	}
3033
3034	if ((spa = spa_lookup(pool)) == NULL) {
3035		if (locked)
3036			mutex_exit(&spa_namespace_lock);
3037		return (SET_ERROR(ENOENT));
3038	}
3039
3040	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3041		zpool_rewind_policy_t policy;
3042
3043		firstopen = B_TRUE;
3044
3045		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3046		    &policy);
3047		if (policy.zrp_request & ZPOOL_DO_REWIND)
3048			state = SPA_LOAD_RECOVER;
3049
3050		spa_activate(spa, spa_mode_global);
3051
3052		if (state != SPA_LOAD_RECOVER)
3053			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3054
3055		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3056		    policy.zrp_request);
3057
3058		if (error == EBADF) {
3059			/*
3060			 * If vdev_validate() returns failure (indicated by
3061			 * EBADF), it indicates that one of the vdevs indicates
3062			 * that the pool has been exported or destroyed.  If
3063			 * this is the case, the config cache is out of sync and
3064			 * we should remove the pool from the namespace.
3065			 */
3066			spa_unload(spa);
3067			spa_deactivate(spa);
3068			spa_config_sync(spa, B_TRUE, B_TRUE);
3069			spa_remove(spa);
3070			if (locked)
3071				mutex_exit(&spa_namespace_lock);
3072			return (SET_ERROR(ENOENT));
3073		}
3074
3075		if (error) {
3076			/*
3077			 * We can't open the pool, but we still have useful
3078			 * information: the state of each vdev after the
3079			 * attempted vdev_open().  Return this to the user.
3080			 */
3081			if (config != NULL && spa->spa_config) {
3082				VERIFY(nvlist_dup(spa->spa_config, config,
3083				    KM_SLEEP) == 0);
3084				VERIFY(nvlist_add_nvlist(*config,
3085				    ZPOOL_CONFIG_LOAD_INFO,
3086				    spa->spa_load_info) == 0);
3087			}
3088			spa_unload(spa);
3089			spa_deactivate(spa);
3090			spa->spa_last_open_failed = error;
3091			if (locked)
3092				mutex_exit(&spa_namespace_lock);
3093			*spapp = NULL;
3094			return (error);
3095		}
3096	}
3097
3098	spa_open_ref(spa, tag);
3099
3100	if (config != NULL)
3101		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3102
3103	/*
3104	 * If we've recovered the pool, pass back any information we
3105	 * gathered while doing the load.
3106	 */
3107	if (state == SPA_LOAD_RECOVER) {
3108		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3109		    spa->spa_load_info) == 0);
3110	}
3111
3112	if (locked) {
3113		spa->spa_last_open_failed = 0;
3114		spa->spa_last_ubsync_txg = 0;
3115		spa->spa_load_txg = 0;
3116		mutex_exit(&spa_namespace_lock);
3117#ifdef __FreeBSD__
3118#ifdef _KERNEL
3119		if (firstopen)
3120			zvol_create_minors(spa->spa_name);
3121#endif
3122#endif
3123	}
3124
3125	*spapp = spa;
3126
3127	return (0);
3128}
3129
3130int
3131spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3132    nvlist_t **config)
3133{
3134	return (spa_open_common(name, spapp, tag, policy, config));
3135}
3136
3137int
3138spa_open(const char *name, spa_t **spapp, void *tag)
3139{
3140	return (spa_open_common(name, spapp, tag, NULL, NULL));
3141}
3142
3143/*
3144 * Lookup the given spa_t, incrementing the inject count in the process,
3145 * preventing it from being exported or destroyed.
3146 */
3147spa_t *
3148spa_inject_addref(char *name)
3149{
3150	spa_t *spa;
3151
3152	mutex_enter(&spa_namespace_lock);
3153	if ((spa = spa_lookup(name)) == NULL) {
3154		mutex_exit(&spa_namespace_lock);
3155		return (NULL);
3156	}
3157	spa->spa_inject_ref++;
3158	mutex_exit(&spa_namespace_lock);
3159
3160	return (spa);
3161}
3162
3163void
3164spa_inject_delref(spa_t *spa)
3165{
3166	mutex_enter(&spa_namespace_lock);
3167	spa->spa_inject_ref--;
3168	mutex_exit(&spa_namespace_lock);
3169}
3170
3171/*
3172 * Add spares device information to the nvlist.
3173 */
3174static void
3175spa_add_spares(spa_t *spa, nvlist_t *config)
3176{
3177	nvlist_t **spares;
3178	uint_t i, nspares;
3179	nvlist_t *nvroot;
3180	uint64_t guid;
3181	vdev_stat_t *vs;
3182	uint_t vsc;
3183	uint64_t pool;
3184
3185	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3186
3187	if (spa->spa_spares.sav_count == 0)
3188		return;
3189
3190	VERIFY(nvlist_lookup_nvlist(config,
3191	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3192	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3193	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3194	if (nspares != 0) {
3195		VERIFY(nvlist_add_nvlist_array(nvroot,
3196		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3197		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3198		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3199
3200		/*
3201		 * Go through and find any spares which have since been
3202		 * repurposed as an active spare.  If this is the case, update
3203		 * their status appropriately.
3204		 */
3205		for (i = 0; i < nspares; i++) {
3206			VERIFY(nvlist_lookup_uint64(spares[i],
3207			    ZPOOL_CONFIG_GUID, &guid) == 0);
3208			if (spa_spare_exists(guid, &pool, NULL) &&
3209			    pool != 0ULL) {
3210				VERIFY(nvlist_lookup_uint64_array(
3211				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3212				    (uint64_t **)&vs, &vsc) == 0);
3213				vs->vs_state = VDEV_STATE_CANT_OPEN;
3214				vs->vs_aux = VDEV_AUX_SPARED;
3215			}
3216		}
3217	}
3218}
3219
3220/*
3221 * Add l2cache device information to the nvlist, including vdev stats.
3222 */
3223static void
3224spa_add_l2cache(spa_t *spa, nvlist_t *config)
3225{
3226	nvlist_t **l2cache;
3227	uint_t i, j, nl2cache;
3228	nvlist_t *nvroot;
3229	uint64_t guid;
3230	vdev_t *vd;
3231	vdev_stat_t *vs;
3232	uint_t vsc;
3233
3234	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3235
3236	if (spa->spa_l2cache.sav_count == 0)
3237		return;
3238
3239	VERIFY(nvlist_lookup_nvlist(config,
3240	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3241	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3242	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3243	if (nl2cache != 0) {
3244		VERIFY(nvlist_add_nvlist_array(nvroot,
3245		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3246		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3247		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3248
3249		/*
3250		 * Update level 2 cache device stats.
3251		 */
3252
3253		for (i = 0; i < nl2cache; i++) {
3254			VERIFY(nvlist_lookup_uint64(l2cache[i],
3255			    ZPOOL_CONFIG_GUID, &guid) == 0);
3256
3257			vd = NULL;
3258			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3259				if (guid ==
3260				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3261					vd = spa->spa_l2cache.sav_vdevs[j];
3262					break;
3263				}
3264			}
3265			ASSERT(vd != NULL);
3266
3267			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3268			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3269			    == 0);
3270			vdev_get_stats(vd, vs);
3271		}
3272	}
3273}
3274
3275static void
3276spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3277{
3278	nvlist_t *features;
3279	zap_cursor_t zc;
3280	zap_attribute_t za;
3281
3282	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3283	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3284
3285	/* We may be unable to read features if pool is suspended. */
3286	if (spa_suspended(spa))
3287		goto out;
3288
3289	if (spa->spa_feat_for_read_obj != 0) {
3290		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3291		    spa->spa_feat_for_read_obj);
3292		    zap_cursor_retrieve(&zc, &za) == 0;
3293		    zap_cursor_advance(&zc)) {
3294			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3295			    za.za_num_integers == 1);
3296			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3297			    za.za_first_integer));
3298		}
3299		zap_cursor_fini(&zc);
3300	}
3301
3302	if (spa->spa_feat_for_write_obj != 0) {
3303		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3304		    spa->spa_feat_for_write_obj);
3305		    zap_cursor_retrieve(&zc, &za) == 0;
3306		    zap_cursor_advance(&zc)) {
3307			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3308			    za.za_num_integers == 1);
3309			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3310			    za.za_first_integer));
3311		}
3312		zap_cursor_fini(&zc);
3313	}
3314
3315out:
3316	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3317	    features) == 0);
3318	nvlist_free(features);
3319}
3320
3321int
3322spa_get_stats(const char *name, nvlist_t **config,
3323    char *altroot, size_t buflen)
3324{
3325	int error;
3326	spa_t *spa;
3327
3328	*config = NULL;
3329	error = spa_open_common(name, &spa, FTAG, NULL, config);
3330
3331	if (spa != NULL) {
3332		/*
3333		 * This still leaves a window of inconsistency where the spares
3334		 * or l2cache devices could change and the config would be
3335		 * self-inconsistent.
3336		 */
3337		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3338
3339		if (*config != NULL) {
3340			uint64_t loadtimes[2];
3341
3342			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3343			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3344			VERIFY(nvlist_add_uint64_array(*config,
3345			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3346
3347			VERIFY(nvlist_add_uint64(*config,
3348			    ZPOOL_CONFIG_ERRCOUNT,
3349			    spa_get_errlog_size(spa)) == 0);
3350
3351			if (spa_suspended(spa))
3352				VERIFY(nvlist_add_uint64(*config,
3353				    ZPOOL_CONFIG_SUSPENDED,
3354				    spa->spa_failmode) == 0);
3355
3356			spa_add_spares(spa, *config);
3357			spa_add_l2cache(spa, *config);
3358			spa_add_feature_stats(spa, *config);
3359		}
3360	}
3361
3362	/*
3363	 * We want to get the alternate root even for faulted pools, so we cheat
3364	 * and call spa_lookup() directly.
3365	 */
3366	if (altroot) {
3367		if (spa == NULL) {
3368			mutex_enter(&spa_namespace_lock);
3369			spa = spa_lookup(name);
3370			if (spa)
3371				spa_altroot(spa, altroot, buflen);
3372			else
3373				altroot[0] = '\0';
3374			spa = NULL;
3375			mutex_exit(&spa_namespace_lock);
3376		} else {
3377			spa_altroot(spa, altroot, buflen);
3378		}
3379	}
3380
3381	if (spa != NULL) {
3382		spa_config_exit(spa, SCL_CONFIG, FTAG);
3383		spa_close(spa, FTAG);
3384	}
3385
3386	return (error);
3387}
3388
3389/*
3390 * Validate that the auxiliary device array is well formed.  We must have an
3391 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3392 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3393 * specified, as long as they are well-formed.
3394 */
3395static int
3396spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3397    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3398    vdev_labeltype_t label)
3399{
3400	nvlist_t **dev;
3401	uint_t i, ndev;
3402	vdev_t *vd;
3403	int error;
3404
3405	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3406
3407	/*
3408	 * It's acceptable to have no devs specified.
3409	 */
3410	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3411		return (0);
3412
3413	if (ndev == 0)
3414		return (SET_ERROR(EINVAL));
3415
3416	/*
3417	 * Make sure the pool is formatted with a version that supports this
3418	 * device type.
3419	 */
3420	if (spa_version(spa) < version)
3421		return (SET_ERROR(ENOTSUP));
3422
3423	/*
3424	 * Set the pending device list so we correctly handle device in-use
3425	 * checking.
3426	 */
3427	sav->sav_pending = dev;
3428	sav->sav_npending = ndev;
3429
3430	for (i = 0; i < ndev; i++) {
3431		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3432		    mode)) != 0)
3433			goto out;
3434
3435		if (!vd->vdev_ops->vdev_op_leaf) {
3436			vdev_free(vd);
3437			error = SET_ERROR(EINVAL);
3438			goto out;
3439		}
3440
3441		/*
3442		 * The L2ARC currently only supports disk devices in
3443		 * kernel context.  For user-level testing, we allow it.
3444		 */
3445#ifdef _KERNEL
3446		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3447		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3448			error = SET_ERROR(ENOTBLK);
3449			vdev_free(vd);
3450			goto out;
3451		}
3452#endif
3453		vd->vdev_top = vd;
3454
3455		if ((error = vdev_open(vd)) == 0 &&
3456		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3457			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3458			    vd->vdev_guid) == 0);
3459		}
3460
3461		vdev_free(vd);
3462
3463		if (error &&
3464		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3465			goto out;
3466		else
3467			error = 0;
3468	}
3469
3470out:
3471	sav->sav_pending = NULL;
3472	sav->sav_npending = 0;
3473	return (error);
3474}
3475
3476static int
3477spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3478{
3479	int error;
3480
3481	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3482
3483	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3484	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3485	    VDEV_LABEL_SPARE)) != 0) {
3486		return (error);
3487	}
3488
3489	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3490	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3491	    VDEV_LABEL_L2CACHE));
3492}
3493
3494static void
3495spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3496    const char *config)
3497{
3498	int i;
3499
3500	if (sav->sav_config != NULL) {
3501		nvlist_t **olddevs;
3502		uint_t oldndevs;
3503		nvlist_t **newdevs;
3504
3505		/*
3506		 * Generate new dev list by concatentating with the
3507		 * current dev list.
3508		 */
3509		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3510		    &olddevs, &oldndevs) == 0);
3511
3512		newdevs = kmem_alloc(sizeof (void *) *
3513		    (ndevs + oldndevs), KM_SLEEP);
3514		for (i = 0; i < oldndevs; i++)
3515			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3516			    KM_SLEEP) == 0);
3517		for (i = 0; i < ndevs; i++)
3518			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3519			    KM_SLEEP) == 0);
3520
3521		VERIFY(nvlist_remove(sav->sav_config, config,
3522		    DATA_TYPE_NVLIST_ARRAY) == 0);
3523
3524		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3525		    config, newdevs, ndevs + oldndevs) == 0);
3526		for (i = 0; i < oldndevs + ndevs; i++)
3527			nvlist_free(newdevs[i]);
3528		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3529	} else {
3530		/*
3531		 * Generate a new dev list.
3532		 */
3533		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3534		    KM_SLEEP) == 0);
3535		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3536		    devs, ndevs) == 0);
3537	}
3538}
3539
3540/*
3541 * Stop and drop level 2 ARC devices
3542 */
3543void
3544spa_l2cache_drop(spa_t *spa)
3545{
3546	vdev_t *vd;
3547	int i;
3548	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3549
3550	for (i = 0; i < sav->sav_count; i++) {
3551		uint64_t pool;
3552
3553		vd = sav->sav_vdevs[i];
3554		ASSERT(vd != NULL);
3555
3556		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3557		    pool != 0ULL && l2arc_vdev_present(vd))
3558			l2arc_remove_vdev(vd);
3559	}
3560}
3561
3562/*
3563 * Pool Creation
3564 */
3565int
3566spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3567    nvlist_t *zplprops)
3568{
3569	spa_t *spa;
3570	char *altroot = NULL;
3571	vdev_t *rvd;
3572	dsl_pool_t *dp;
3573	dmu_tx_t *tx;
3574	int error = 0;
3575	uint64_t txg = TXG_INITIAL;
3576	nvlist_t **spares, **l2cache;
3577	uint_t nspares, nl2cache;
3578	uint64_t version, obj;
3579	boolean_t has_features;
3580
3581	/*
3582	 * If this pool already exists, return failure.
3583	 */
3584	mutex_enter(&spa_namespace_lock);
3585	if (spa_lookup(pool) != NULL) {
3586		mutex_exit(&spa_namespace_lock);
3587		return (SET_ERROR(EEXIST));
3588	}
3589
3590	/*
3591	 * Allocate a new spa_t structure.
3592	 */
3593	(void) nvlist_lookup_string(props,
3594	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3595	spa = spa_add(pool, NULL, altroot);
3596	spa_activate(spa, spa_mode_global);
3597
3598	if (props && (error = spa_prop_validate(spa, props))) {
3599		spa_deactivate(spa);
3600		spa_remove(spa);
3601		mutex_exit(&spa_namespace_lock);
3602		return (error);
3603	}
3604
3605	has_features = B_FALSE;
3606	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3607	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3608		if (zpool_prop_feature(nvpair_name(elem)))
3609			has_features = B_TRUE;
3610	}
3611
3612	if (has_features || nvlist_lookup_uint64(props,
3613	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3614		version = SPA_VERSION;
3615	}
3616	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3617
3618	spa->spa_first_txg = txg;
3619	spa->spa_uberblock.ub_txg = txg - 1;
3620	spa->spa_uberblock.ub_version = version;
3621	spa->spa_ubsync = spa->spa_uberblock;
3622
3623	/*
3624	 * Create "The Godfather" zio to hold all async IOs
3625	 */
3626	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3627	    KM_SLEEP);
3628	for (int i = 0; i < max_ncpus; i++) {
3629		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3630		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3631		    ZIO_FLAG_GODFATHER);
3632	}
3633
3634	/*
3635	 * Create the root vdev.
3636	 */
3637	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3638
3639	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3640
3641	ASSERT(error != 0 || rvd != NULL);
3642	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3643
3644	if (error == 0 && !zfs_allocatable_devs(nvroot))
3645		error = SET_ERROR(EINVAL);
3646
3647	if (error == 0 &&
3648	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3649	    (error = spa_validate_aux(spa, nvroot, txg,
3650	    VDEV_ALLOC_ADD)) == 0) {
3651		for (int c = 0; c < rvd->vdev_children; c++) {
3652			vdev_ashift_optimize(rvd->vdev_child[c]);
3653			vdev_metaslab_set_size(rvd->vdev_child[c]);
3654			vdev_expand(rvd->vdev_child[c], txg);
3655		}
3656	}
3657
3658	spa_config_exit(spa, SCL_ALL, FTAG);
3659
3660	if (error != 0) {
3661		spa_unload(spa);
3662		spa_deactivate(spa);
3663		spa_remove(spa);
3664		mutex_exit(&spa_namespace_lock);
3665		return (error);
3666	}
3667
3668	/*
3669	 * Get the list of spares, if specified.
3670	 */
3671	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3672	    &spares, &nspares) == 0) {
3673		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3674		    KM_SLEEP) == 0);
3675		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3676		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3678		spa_load_spares(spa);
3679		spa_config_exit(spa, SCL_ALL, FTAG);
3680		spa->spa_spares.sav_sync = B_TRUE;
3681	}
3682
3683	/*
3684	 * Get the list of level 2 cache devices, if specified.
3685	 */
3686	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3687	    &l2cache, &nl2cache) == 0) {
3688		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3689		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3690		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3691		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3692		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3693		spa_load_l2cache(spa);
3694		spa_config_exit(spa, SCL_ALL, FTAG);
3695		spa->spa_l2cache.sav_sync = B_TRUE;
3696	}
3697
3698	spa->spa_is_initializing = B_TRUE;
3699	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3700	spa->spa_meta_objset = dp->dp_meta_objset;
3701	spa->spa_is_initializing = B_FALSE;
3702
3703	/*
3704	 * Create DDTs (dedup tables).
3705	 */
3706	ddt_create(spa);
3707
3708	spa_update_dspace(spa);
3709
3710	tx = dmu_tx_create_assigned(dp, txg);
3711
3712	/*
3713	 * Create the pool config object.
3714	 */
3715	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3716	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3717	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3718
3719	if (zap_add(spa->spa_meta_objset,
3720	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3721	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3722		cmn_err(CE_PANIC, "failed to add pool config");
3723	}
3724
3725	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3726		spa_feature_create_zap_objects(spa, tx);
3727
3728	if (zap_add(spa->spa_meta_objset,
3729	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3730	    sizeof (uint64_t), 1, &version, tx) != 0) {
3731		cmn_err(CE_PANIC, "failed to add pool version");
3732	}
3733
3734	/* Newly created pools with the right version are always deflated. */
3735	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3736		spa->spa_deflate = TRUE;
3737		if (zap_add(spa->spa_meta_objset,
3738		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3739		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3740			cmn_err(CE_PANIC, "failed to add deflate");
3741		}
3742	}
3743
3744	/*
3745	 * Create the deferred-free bpobj.  Turn off compression
3746	 * because sync-to-convergence takes longer if the blocksize
3747	 * keeps changing.
3748	 */
3749	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3750	dmu_object_set_compress(spa->spa_meta_objset, obj,
3751	    ZIO_COMPRESS_OFF, tx);
3752	if (zap_add(spa->spa_meta_objset,
3753	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3754	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3755		cmn_err(CE_PANIC, "failed to add bpobj");
3756	}
3757	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3758	    spa->spa_meta_objset, obj));
3759
3760	/*
3761	 * Create the pool's history object.
3762	 */
3763	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3764		spa_history_create_obj(spa, tx);
3765
3766	/*
3767	 * Generate some random noise for salted checksums to operate on.
3768	 */
3769	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3770	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3771
3772	/*
3773	 * Set pool properties.
3774	 */
3775	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3776	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3777	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3778	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3779
3780	if (props != NULL) {
3781		spa_configfile_set(spa, props, B_FALSE);
3782		spa_sync_props(props, tx);
3783	}
3784
3785	dmu_tx_commit(tx);
3786
3787	spa->spa_sync_on = B_TRUE;
3788	txg_sync_start(spa->spa_dsl_pool);
3789
3790	/*
3791	 * We explicitly wait for the first transaction to complete so that our
3792	 * bean counters are appropriately updated.
3793	 */
3794	txg_wait_synced(spa->spa_dsl_pool, txg);
3795
3796	spa_config_sync(spa, B_FALSE, B_TRUE);
3797	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3798
3799	spa_history_log_version(spa, "create");
3800
3801	/*
3802	 * Don't count references from objsets that are already closed
3803	 * and are making their way through the eviction process.
3804	 */
3805	spa_evicting_os_wait(spa);
3806	spa->spa_minref = refcount_count(&spa->spa_refcount);
3807
3808	mutex_exit(&spa_namespace_lock);
3809
3810	return (0);
3811}
3812
3813#ifdef _KERNEL
3814#ifdef illumos
3815/*
3816 * Get the root pool information from the root disk, then import the root pool
3817 * during the system boot up time.
3818 */
3819extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3820
3821static nvlist_t *
3822spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3823{
3824	nvlist_t *config;
3825	nvlist_t *nvtop, *nvroot;
3826	uint64_t pgid;
3827
3828	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3829		return (NULL);
3830
3831	/*
3832	 * Add this top-level vdev to the child array.
3833	 */
3834	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3835	    &nvtop) == 0);
3836	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3837	    &pgid) == 0);
3838	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3839
3840	/*
3841	 * Put this pool's top-level vdevs into a root vdev.
3842	 */
3843	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3844	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3845	    VDEV_TYPE_ROOT) == 0);
3846	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3847	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3848	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3849	    &nvtop, 1) == 0);
3850
3851	/*
3852	 * Replace the existing vdev_tree with the new root vdev in
3853	 * this pool's configuration (remove the old, add the new).
3854	 */
3855	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3856	nvlist_free(nvroot);
3857	return (config);
3858}
3859
3860/*
3861 * Walk the vdev tree and see if we can find a device with "better"
3862 * configuration. A configuration is "better" if the label on that
3863 * device has a more recent txg.
3864 */
3865static void
3866spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3867{
3868	for (int c = 0; c < vd->vdev_children; c++)
3869		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3870
3871	if (vd->vdev_ops->vdev_op_leaf) {
3872		nvlist_t *label;
3873		uint64_t label_txg;
3874
3875		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3876		    &label) != 0)
3877			return;
3878
3879		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3880		    &label_txg) == 0);
3881
3882		/*
3883		 * Do we have a better boot device?
3884		 */
3885		if (label_txg > *txg) {
3886			*txg = label_txg;
3887			*avd = vd;
3888		}
3889		nvlist_free(label);
3890	}
3891}
3892
3893/*
3894 * Import a root pool.
3895 *
3896 * For x86. devpath_list will consist of devid and/or physpath name of
3897 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3898 * The GRUB "findroot" command will return the vdev we should boot.
3899 *
3900 * For Sparc, devpath_list consists the physpath name of the booting device
3901 * no matter the rootpool is a single device pool or a mirrored pool.
3902 * e.g.
3903 *	"/pci@1f,0/ide@d/disk@0,0:a"
3904 */
3905int
3906spa_import_rootpool(char *devpath, char *devid)
3907{
3908	spa_t *spa;
3909	vdev_t *rvd, *bvd, *avd = NULL;
3910	nvlist_t *config, *nvtop;
3911	uint64_t guid, txg;
3912	char *pname;
3913	int error;
3914
3915	/*
3916	 * Read the label from the boot device and generate a configuration.
3917	 */
3918	config = spa_generate_rootconf(devpath, devid, &guid);
3919#if defined(_OBP) && defined(_KERNEL)
3920	if (config == NULL) {
3921		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3922			/* iscsi boot */
3923			get_iscsi_bootpath_phy(devpath);
3924			config = spa_generate_rootconf(devpath, devid, &guid);
3925		}
3926	}
3927#endif
3928	if (config == NULL) {
3929		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3930		    devpath);
3931		return (SET_ERROR(EIO));
3932	}
3933
3934	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3935	    &pname) == 0);
3936	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3937
3938	mutex_enter(&spa_namespace_lock);
3939	if ((spa = spa_lookup(pname)) != NULL) {
3940		/*
3941		 * Remove the existing root pool from the namespace so that we
3942		 * can replace it with the correct config we just read in.
3943		 */
3944		spa_remove(spa);
3945	}
3946
3947	spa = spa_add(pname, config, NULL);
3948	spa->spa_is_root = B_TRUE;
3949	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3950
3951	/*
3952	 * Build up a vdev tree based on the boot device's label config.
3953	 */
3954	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3955	    &nvtop) == 0);
3956	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3957	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3958	    VDEV_ALLOC_ROOTPOOL);
3959	spa_config_exit(spa, SCL_ALL, FTAG);
3960	if (error) {
3961		mutex_exit(&spa_namespace_lock);
3962		nvlist_free(config);
3963		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3964		    pname);
3965		return (error);
3966	}
3967
3968	/*
3969	 * Get the boot vdev.
3970	 */
3971	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3972		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3973		    (u_longlong_t)guid);
3974		error = SET_ERROR(ENOENT);
3975		goto out;
3976	}
3977
3978	/*
3979	 * Determine if there is a better boot device.
3980	 */
3981	avd = bvd;
3982	spa_alt_rootvdev(rvd, &avd, &txg);
3983	if (avd != bvd) {
3984		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3985		    "try booting from '%s'", avd->vdev_path);
3986		error = SET_ERROR(EINVAL);
3987		goto out;
3988	}
3989
3990	/*
3991	 * If the boot device is part of a spare vdev then ensure that
3992	 * we're booting off the active spare.
3993	 */
3994	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3995	    !bvd->vdev_isspare) {
3996		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3997		    "try booting from '%s'",
3998		    bvd->vdev_parent->
3999		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4000		error = SET_ERROR(EINVAL);
4001		goto out;
4002	}
4003
4004	error = 0;
4005out:
4006	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4007	vdev_free(rvd);
4008	spa_config_exit(spa, SCL_ALL, FTAG);
4009	mutex_exit(&spa_namespace_lock);
4010
4011	nvlist_free(config);
4012	return (error);
4013}
4014
4015#else	/* !illumos */
4016
4017extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4018    uint64_t *count);
4019
4020static nvlist_t *
4021spa_generate_rootconf(const char *name)
4022{
4023	nvlist_t **configs, **tops;
4024	nvlist_t *config;
4025	nvlist_t *best_cfg, *nvtop, *nvroot;
4026	uint64_t *holes;
4027	uint64_t best_txg;
4028	uint64_t nchildren;
4029	uint64_t pgid;
4030	uint64_t count;
4031	uint64_t i;
4032	uint_t   nholes;
4033
4034	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4035		return (NULL);
4036
4037	ASSERT3U(count, !=, 0);
4038	best_txg = 0;
4039	for (i = 0; i < count; i++) {
4040		uint64_t txg;
4041
4042		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4043		    &txg) == 0);
4044		if (txg > best_txg) {
4045			best_txg = txg;
4046			best_cfg = configs[i];
4047		}
4048	}
4049
4050	/*
4051	 * Multi-vdev root pool configuration discovery is not supported yet.
4052	 */
4053	nchildren = 1;
4054	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4055	holes = NULL;
4056	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4057	    &holes, &nholes);
4058
4059	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4060	for (i = 0; i < nchildren; i++) {
4061		if (i >= count)
4062			break;
4063		if (configs[i] == NULL)
4064			continue;
4065		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4066		    &nvtop) == 0);
4067		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4068	}
4069	for (i = 0; holes != NULL && i < nholes; i++) {
4070		if (i >= nchildren)
4071			continue;
4072		if (tops[holes[i]] != NULL)
4073			continue;
4074		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4075		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4076		    VDEV_TYPE_HOLE) == 0);
4077		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4078		    holes[i]) == 0);
4079		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4080		    0) == 0);
4081	}
4082	for (i = 0; i < nchildren; i++) {
4083		if (tops[i] != NULL)
4084			continue;
4085		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4086		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4087		    VDEV_TYPE_MISSING) == 0);
4088		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4089		    i) == 0);
4090		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4091		    0) == 0);
4092	}
4093
4094	/*
4095	 * Create pool config based on the best vdev config.
4096	 */
4097	nvlist_dup(best_cfg, &config, KM_SLEEP);
4098
4099	/*
4100	 * Put this pool's top-level vdevs into a root vdev.
4101	 */
4102	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4103	    &pgid) == 0);
4104	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4105	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4106	    VDEV_TYPE_ROOT) == 0);
4107	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4108	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4109	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4110	    tops, nchildren) == 0);
4111
4112	/*
4113	 * Replace the existing vdev_tree with the new root vdev in
4114	 * this pool's configuration (remove the old, add the new).
4115	 */
4116	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4117
4118	/*
4119	 * Drop vdev config elements that should not be present at pool level.
4120	 */
4121	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4122	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4123
4124	for (i = 0; i < count; i++)
4125		nvlist_free(configs[i]);
4126	kmem_free(configs, count * sizeof(void *));
4127	for (i = 0; i < nchildren; i++)
4128		nvlist_free(tops[i]);
4129	kmem_free(tops, nchildren * sizeof(void *));
4130	nvlist_free(nvroot);
4131	return (config);
4132}
4133
4134int
4135spa_import_rootpool(const char *name)
4136{
4137	spa_t *spa;
4138	vdev_t *rvd, *bvd, *avd = NULL;
4139	nvlist_t *config, *nvtop;
4140	uint64_t txg;
4141	char *pname;
4142	int error;
4143
4144	/*
4145	 * Read the label from the boot device and generate a configuration.
4146	 */
4147	config = spa_generate_rootconf(name);
4148
4149	mutex_enter(&spa_namespace_lock);
4150	if (config != NULL) {
4151		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4152		    &pname) == 0 && strcmp(name, pname) == 0);
4153		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4154		    == 0);
4155
4156		if ((spa = spa_lookup(pname)) != NULL) {
4157			/*
4158			 * Remove the existing root pool from the namespace so
4159			 * that we can replace it with the correct config
4160			 * we just read in.
4161			 */
4162			spa_remove(spa);
4163		}
4164		spa = spa_add(pname, config, NULL);
4165
4166		/*
4167		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4168		 * via spa_version().
4169		 */
4170		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4171		    &spa->spa_ubsync.ub_version) != 0)
4172			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4173	} else if ((spa = spa_lookup(name)) == NULL) {
4174		mutex_exit(&spa_namespace_lock);
4175		nvlist_free(config);
4176		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4177		    name);
4178		return (EIO);
4179	} else {
4180		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4181	}
4182	spa->spa_is_root = B_TRUE;
4183	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4184
4185	/*
4186	 * Build up a vdev tree based on the boot device's label config.
4187	 */
4188	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4189	    &nvtop) == 0);
4190	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4191	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4192	    VDEV_ALLOC_ROOTPOOL);
4193	spa_config_exit(spa, SCL_ALL, FTAG);
4194	if (error) {
4195		mutex_exit(&spa_namespace_lock);
4196		nvlist_free(config);
4197		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4198		    pname);
4199		return (error);
4200	}
4201
4202	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4203	vdev_free(rvd);
4204	spa_config_exit(spa, SCL_ALL, FTAG);
4205	mutex_exit(&spa_namespace_lock);
4206
4207	nvlist_free(config);
4208	return (0);
4209}
4210
4211#endif	/* illumos */
4212#endif	/* _KERNEL */
4213
4214/*
4215 * Import a non-root pool into the system.
4216 */
4217int
4218spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4219{
4220	spa_t *spa;
4221	char *altroot = NULL;
4222	spa_load_state_t state = SPA_LOAD_IMPORT;
4223	zpool_rewind_policy_t policy;
4224	uint64_t mode = spa_mode_global;
4225	uint64_t readonly = B_FALSE;
4226	int error;
4227	nvlist_t *nvroot;
4228	nvlist_t **spares, **l2cache;
4229	uint_t nspares, nl2cache;
4230
4231	/*
4232	 * If a pool with this name exists, return failure.
4233	 */
4234	mutex_enter(&spa_namespace_lock);
4235	if (spa_lookup(pool) != NULL) {
4236		mutex_exit(&spa_namespace_lock);
4237		return (SET_ERROR(EEXIST));
4238	}
4239
4240	/*
4241	 * Create and initialize the spa structure.
4242	 */
4243	(void) nvlist_lookup_string(props,
4244	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4245	(void) nvlist_lookup_uint64(props,
4246	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4247	if (readonly)
4248		mode = FREAD;
4249	spa = spa_add(pool, config, altroot);
4250	spa->spa_import_flags = flags;
4251
4252	/*
4253	 * Verbatim import - Take a pool and insert it into the namespace
4254	 * as if it had been loaded at boot.
4255	 */
4256	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4257		if (props != NULL)
4258			spa_configfile_set(spa, props, B_FALSE);
4259
4260		spa_config_sync(spa, B_FALSE, B_TRUE);
4261		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4262
4263		mutex_exit(&spa_namespace_lock);
4264		return (0);
4265	}
4266
4267	spa_activate(spa, mode);
4268
4269	/*
4270	 * Don't start async tasks until we know everything is healthy.
4271	 */
4272	spa_async_suspend(spa);
4273
4274	zpool_get_rewind_policy(config, &policy);
4275	if (policy.zrp_request & ZPOOL_DO_REWIND)
4276		state = SPA_LOAD_RECOVER;
4277
4278	/*
4279	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4280	 * because the user-supplied config is actually the one to trust when
4281	 * doing an import.
4282	 */
4283	if (state != SPA_LOAD_RECOVER)
4284		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4285
4286	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4287	    policy.zrp_request);
4288
4289	/*
4290	 * Propagate anything learned while loading the pool and pass it
4291	 * back to caller (i.e. rewind info, missing devices, etc).
4292	 */
4293	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4294	    spa->spa_load_info) == 0);
4295
4296	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4297	/*
4298	 * Toss any existing sparelist, as it doesn't have any validity
4299	 * anymore, and conflicts with spa_has_spare().
4300	 */
4301	if (spa->spa_spares.sav_config) {
4302		nvlist_free(spa->spa_spares.sav_config);
4303		spa->spa_spares.sav_config = NULL;
4304		spa_load_spares(spa);
4305	}
4306	if (spa->spa_l2cache.sav_config) {
4307		nvlist_free(spa->spa_l2cache.sav_config);
4308		spa->spa_l2cache.sav_config = NULL;
4309		spa_load_l2cache(spa);
4310	}
4311
4312	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4313	    &nvroot) == 0);
4314	if (error == 0)
4315		error = spa_validate_aux(spa, nvroot, -1ULL,
4316		    VDEV_ALLOC_SPARE);
4317	if (error == 0)
4318		error = spa_validate_aux(spa, nvroot, -1ULL,
4319		    VDEV_ALLOC_L2CACHE);
4320	spa_config_exit(spa, SCL_ALL, FTAG);
4321
4322	if (props != NULL)
4323		spa_configfile_set(spa, props, B_FALSE);
4324
4325	if (error != 0 || (props && spa_writeable(spa) &&
4326	    (error = spa_prop_set(spa, props)))) {
4327		spa_unload(spa);
4328		spa_deactivate(spa);
4329		spa_remove(spa);
4330		mutex_exit(&spa_namespace_lock);
4331		return (error);
4332	}
4333
4334	spa_async_resume(spa);
4335
4336	/*
4337	 * Override any spares and level 2 cache devices as specified by
4338	 * the user, as these may have correct device names/devids, etc.
4339	 */
4340	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4341	    &spares, &nspares) == 0) {
4342		if (spa->spa_spares.sav_config)
4343			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4344			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4345		else
4346			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4347			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4348		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4349		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4350		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4351		spa_load_spares(spa);
4352		spa_config_exit(spa, SCL_ALL, FTAG);
4353		spa->spa_spares.sav_sync = B_TRUE;
4354	}
4355	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4356	    &l2cache, &nl2cache) == 0) {
4357		if (spa->spa_l2cache.sav_config)
4358			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4359			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4360		else
4361			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4362			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4363		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4364		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4365		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4366		spa_load_l2cache(spa);
4367		spa_config_exit(spa, SCL_ALL, FTAG);
4368		spa->spa_l2cache.sav_sync = B_TRUE;
4369	}
4370
4371	/*
4372	 * Check for any removed devices.
4373	 */
4374	if (spa->spa_autoreplace) {
4375		spa_aux_check_removed(&spa->spa_spares);
4376		spa_aux_check_removed(&spa->spa_l2cache);
4377	}
4378
4379	if (spa_writeable(spa)) {
4380		/*
4381		 * Update the config cache to include the newly-imported pool.
4382		 */
4383		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4384	}
4385
4386	/*
4387	 * It's possible that the pool was expanded while it was exported.
4388	 * We kick off an async task to handle this for us.
4389	 */
4390	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4391
4392	spa_history_log_version(spa, "import");
4393
4394	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4395
4396	mutex_exit(&spa_namespace_lock);
4397
4398#ifdef __FreeBSD__
4399#ifdef _KERNEL
4400	zvol_create_minors(pool);
4401#endif
4402#endif
4403	return (0);
4404}
4405
4406nvlist_t *
4407spa_tryimport(nvlist_t *tryconfig)
4408{
4409	nvlist_t *config = NULL;
4410	char *poolname;
4411	spa_t *spa;
4412	uint64_t state;
4413	int error;
4414
4415	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4416		return (NULL);
4417
4418	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4419		return (NULL);
4420
4421	/*
4422	 * Create and initialize the spa structure.
4423	 */
4424	mutex_enter(&spa_namespace_lock);
4425	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4426	spa_activate(spa, FREAD);
4427
4428	/*
4429	 * Pass off the heavy lifting to spa_load().
4430	 * Pass TRUE for mosconfig because the user-supplied config
4431	 * is actually the one to trust when doing an import.
4432	 */
4433	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4434
4435	/*
4436	 * If 'tryconfig' was at least parsable, return the current config.
4437	 */
4438	if (spa->spa_root_vdev != NULL) {
4439		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4440		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4441		    poolname) == 0);
4442		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4443		    state) == 0);
4444		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4445		    spa->spa_uberblock.ub_timestamp) == 0);
4446		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4447		    spa->spa_load_info) == 0);
4448
4449		/*
4450		 * If the bootfs property exists on this pool then we
4451		 * copy it out so that external consumers can tell which
4452		 * pools are bootable.
4453		 */
4454		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4455			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4456
4457			/*
4458			 * We have to play games with the name since the
4459			 * pool was opened as TRYIMPORT_NAME.
4460			 */
4461			if (dsl_dsobj_to_dsname(spa_name(spa),
4462			    spa->spa_bootfs, tmpname) == 0) {
4463				char *cp;
4464				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4465
4466				cp = strchr(tmpname, '/');
4467				if (cp == NULL) {
4468					(void) strlcpy(dsname, tmpname,
4469					    MAXPATHLEN);
4470				} else {
4471					(void) snprintf(dsname, MAXPATHLEN,
4472					    "%s/%s", poolname, ++cp);
4473				}
4474				VERIFY(nvlist_add_string(config,
4475				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4476				kmem_free(dsname, MAXPATHLEN);
4477			}
4478			kmem_free(tmpname, MAXPATHLEN);
4479		}
4480
4481		/*
4482		 * Add the list of hot spares and level 2 cache devices.
4483		 */
4484		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4485		spa_add_spares(spa, config);
4486		spa_add_l2cache(spa, config);
4487		spa_config_exit(spa, SCL_CONFIG, FTAG);
4488	}
4489
4490	spa_unload(spa);
4491	spa_deactivate(spa);
4492	spa_remove(spa);
4493	mutex_exit(&spa_namespace_lock);
4494
4495	return (config);
4496}
4497
4498/*
4499 * Pool export/destroy
4500 *
4501 * The act of destroying or exporting a pool is very simple.  We make sure there
4502 * is no more pending I/O and any references to the pool are gone.  Then, we
4503 * update the pool state and sync all the labels to disk, removing the
4504 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4505 * we don't sync the labels or remove the configuration cache.
4506 */
4507static int
4508spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4509    boolean_t force, boolean_t hardforce)
4510{
4511	spa_t *spa;
4512
4513	if (oldconfig)
4514		*oldconfig = NULL;
4515
4516	if (!(spa_mode_global & FWRITE))
4517		return (SET_ERROR(EROFS));
4518
4519	mutex_enter(&spa_namespace_lock);
4520	if ((spa = spa_lookup(pool)) == NULL) {
4521		mutex_exit(&spa_namespace_lock);
4522		return (SET_ERROR(ENOENT));
4523	}
4524
4525	/*
4526	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4527	 * reacquire the namespace lock, and see if we can export.
4528	 */
4529	spa_open_ref(spa, FTAG);
4530	mutex_exit(&spa_namespace_lock);
4531	spa_async_suspend(spa);
4532	mutex_enter(&spa_namespace_lock);
4533	spa_close(spa, FTAG);
4534
4535	/*
4536	 * The pool will be in core if it's openable,
4537	 * in which case we can modify its state.
4538	 */
4539	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4540		/*
4541		 * Objsets may be open only because they're dirty, so we
4542		 * have to force it to sync before checking spa_refcnt.
4543		 */
4544		txg_wait_synced(spa->spa_dsl_pool, 0);
4545		spa_evicting_os_wait(spa);
4546
4547		/*
4548		 * A pool cannot be exported or destroyed if there are active
4549		 * references.  If we are resetting a pool, allow references by
4550		 * fault injection handlers.
4551		 */
4552		if (!spa_refcount_zero(spa) ||
4553		    (spa->spa_inject_ref != 0 &&
4554		    new_state != POOL_STATE_UNINITIALIZED)) {
4555			spa_async_resume(spa);
4556			mutex_exit(&spa_namespace_lock);
4557			return (SET_ERROR(EBUSY));
4558		}
4559
4560		/*
4561		 * A pool cannot be exported if it has an active shared spare.
4562		 * This is to prevent other pools stealing the active spare
4563		 * from an exported pool. At user's own will, such pool can
4564		 * be forcedly exported.
4565		 */
4566		if (!force && new_state == POOL_STATE_EXPORTED &&
4567		    spa_has_active_shared_spare(spa)) {
4568			spa_async_resume(spa);
4569			mutex_exit(&spa_namespace_lock);
4570			return (SET_ERROR(EXDEV));
4571		}
4572
4573		/*
4574		 * We want this to be reflected on every label,
4575		 * so mark them all dirty.  spa_unload() will do the
4576		 * final sync that pushes these changes out.
4577		 */
4578		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4579			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4580			spa->spa_state = new_state;
4581			spa->spa_final_txg = spa_last_synced_txg(spa) +
4582			    TXG_DEFER_SIZE + 1;
4583			vdev_config_dirty(spa->spa_root_vdev);
4584			spa_config_exit(spa, SCL_ALL, FTAG);
4585		}
4586	}
4587
4588	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4589
4590	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4591		spa_unload(spa);
4592		spa_deactivate(spa);
4593	}
4594
4595	if (oldconfig && spa->spa_config)
4596		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4597
4598	if (new_state != POOL_STATE_UNINITIALIZED) {
4599		if (!hardforce)
4600			spa_config_sync(spa, B_TRUE, B_TRUE);
4601		spa_remove(spa);
4602	}
4603	mutex_exit(&spa_namespace_lock);
4604
4605	return (0);
4606}
4607
4608/*
4609 * Destroy a storage pool.
4610 */
4611int
4612spa_destroy(char *pool)
4613{
4614	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4615	    B_FALSE, B_FALSE));
4616}
4617
4618/*
4619 * Export a storage pool.
4620 */
4621int
4622spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4623    boolean_t hardforce)
4624{
4625	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4626	    force, hardforce));
4627}
4628
4629/*
4630 * Similar to spa_export(), this unloads the spa_t without actually removing it
4631 * from the namespace in any way.
4632 */
4633int
4634spa_reset(char *pool)
4635{
4636	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4637	    B_FALSE, B_FALSE));
4638}
4639
4640/*
4641 * ==========================================================================
4642 * Device manipulation
4643 * ==========================================================================
4644 */
4645
4646/*
4647 * Add a device to a storage pool.
4648 */
4649int
4650spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4651{
4652	uint64_t txg, id;
4653	int error;
4654	vdev_t *rvd = spa->spa_root_vdev;
4655	vdev_t *vd, *tvd;
4656	nvlist_t **spares, **l2cache;
4657	uint_t nspares, nl2cache;
4658
4659	ASSERT(spa_writeable(spa));
4660
4661	txg = spa_vdev_enter(spa);
4662
4663	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4664	    VDEV_ALLOC_ADD)) != 0)
4665		return (spa_vdev_exit(spa, NULL, txg, error));
4666
4667	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4668
4669	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4670	    &nspares) != 0)
4671		nspares = 0;
4672
4673	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4674	    &nl2cache) != 0)
4675		nl2cache = 0;
4676
4677	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4678		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4679
4680	if (vd->vdev_children != 0 &&
4681	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4682		return (spa_vdev_exit(spa, vd, txg, error));
4683
4684	/*
4685	 * We must validate the spares and l2cache devices after checking the
4686	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4687	 */
4688	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4689		return (spa_vdev_exit(spa, vd, txg, error));
4690
4691	/*
4692	 * Transfer each new top-level vdev from vd to rvd.
4693	 */
4694	for (int c = 0; c < vd->vdev_children; c++) {
4695
4696		/*
4697		 * Set the vdev id to the first hole, if one exists.
4698		 */
4699		for (id = 0; id < rvd->vdev_children; id++) {
4700			if (rvd->vdev_child[id]->vdev_ishole) {
4701				vdev_free(rvd->vdev_child[id]);
4702				break;
4703			}
4704		}
4705		tvd = vd->vdev_child[c];
4706		vdev_remove_child(vd, tvd);
4707		tvd->vdev_id = id;
4708		vdev_add_child(rvd, tvd);
4709		vdev_config_dirty(tvd);
4710	}
4711
4712	if (nspares != 0) {
4713		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4714		    ZPOOL_CONFIG_SPARES);
4715		spa_load_spares(spa);
4716		spa->spa_spares.sav_sync = B_TRUE;
4717	}
4718
4719	if (nl2cache != 0) {
4720		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4721		    ZPOOL_CONFIG_L2CACHE);
4722		spa_load_l2cache(spa);
4723		spa->spa_l2cache.sav_sync = B_TRUE;
4724	}
4725
4726	/*
4727	 * We have to be careful when adding new vdevs to an existing pool.
4728	 * If other threads start allocating from these vdevs before we
4729	 * sync the config cache, and we lose power, then upon reboot we may
4730	 * fail to open the pool because there are DVAs that the config cache
4731	 * can't translate.  Therefore, we first add the vdevs without
4732	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4733	 * and then let spa_config_update() initialize the new metaslabs.
4734	 *
4735	 * spa_load() checks for added-but-not-initialized vdevs, so that
4736	 * if we lose power at any point in this sequence, the remaining
4737	 * steps will be completed the next time we load the pool.
4738	 */
4739	(void) spa_vdev_exit(spa, vd, txg, 0);
4740
4741	mutex_enter(&spa_namespace_lock);
4742	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4743	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4744	mutex_exit(&spa_namespace_lock);
4745
4746	return (0);
4747}
4748
4749/*
4750 * Attach a device to a mirror.  The arguments are the path to any device
4751 * in the mirror, and the nvroot for the new device.  If the path specifies
4752 * a device that is not mirrored, we automatically insert the mirror vdev.
4753 *
4754 * If 'replacing' is specified, the new device is intended to replace the
4755 * existing device; in this case the two devices are made into their own
4756 * mirror using the 'replacing' vdev, which is functionally identical to
4757 * the mirror vdev (it actually reuses all the same ops) but has a few
4758 * extra rules: you can't attach to it after it's been created, and upon
4759 * completion of resilvering, the first disk (the one being replaced)
4760 * is automatically detached.
4761 */
4762int
4763spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4764{
4765	uint64_t txg, dtl_max_txg;
4766	vdev_t *rvd = spa->spa_root_vdev;
4767	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4768	vdev_ops_t *pvops;
4769	char *oldvdpath, *newvdpath;
4770	int newvd_isspare;
4771	int error;
4772
4773	ASSERT(spa_writeable(spa));
4774
4775	txg = spa_vdev_enter(spa);
4776
4777	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4778
4779	if (oldvd == NULL)
4780		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4781
4782	if (!oldvd->vdev_ops->vdev_op_leaf)
4783		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4784
4785	pvd = oldvd->vdev_parent;
4786
4787	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4788	    VDEV_ALLOC_ATTACH)) != 0)
4789		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4790
4791	if (newrootvd->vdev_children != 1)
4792		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4793
4794	newvd = newrootvd->vdev_child[0];
4795
4796	if (!newvd->vdev_ops->vdev_op_leaf)
4797		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4798
4799	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4800		return (spa_vdev_exit(spa, newrootvd, txg, error));
4801
4802	/*
4803	 * Spares can't replace logs
4804	 */
4805	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4806		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4807
4808	if (!replacing) {
4809		/*
4810		 * For attach, the only allowable parent is a mirror or the root
4811		 * vdev.
4812		 */
4813		if (pvd->vdev_ops != &vdev_mirror_ops &&
4814		    pvd->vdev_ops != &vdev_root_ops)
4815			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4816
4817		pvops = &vdev_mirror_ops;
4818	} else {
4819		/*
4820		 * Active hot spares can only be replaced by inactive hot
4821		 * spares.
4822		 */
4823		if (pvd->vdev_ops == &vdev_spare_ops &&
4824		    oldvd->vdev_isspare &&
4825		    !spa_has_spare(spa, newvd->vdev_guid))
4826			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4827
4828		/*
4829		 * If the source is a hot spare, and the parent isn't already a
4830		 * spare, then we want to create a new hot spare.  Otherwise, we
4831		 * want to create a replacing vdev.  The user is not allowed to
4832		 * attach to a spared vdev child unless the 'isspare' state is
4833		 * the same (spare replaces spare, non-spare replaces
4834		 * non-spare).
4835		 */
4836		if (pvd->vdev_ops == &vdev_replacing_ops &&
4837		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4838			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4839		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4840		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4841			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4842		}
4843
4844		if (newvd->vdev_isspare)
4845			pvops = &vdev_spare_ops;
4846		else
4847			pvops = &vdev_replacing_ops;
4848	}
4849
4850	/*
4851	 * Make sure the new device is big enough.
4852	 */
4853	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4854		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4855
4856	/*
4857	 * The new device cannot have a higher alignment requirement
4858	 * than the top-level vdev.
4859	 */
4860	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4861		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4862
4863	/*
4864	 * If this is an in-place replacement, update oldvd's path and devid
4865	 * to make it distinguishable from newvd, and unopenable from now on.
4866	 */
4867	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4868		spa_strfree(oldvd->vdev_path);
4869		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4870		    KM_SLEEP);
4871		(void) sprintf(oldvd->vdev_path, "%s/%s",
4872		    newvd->vdev_path, "old");
4873		if (oldvd->vdev_devid != NULL) {
4874			spa_strfree(oldvd->vdev_devid);
4875			oldvd->vdev_devid = NULL;
4876		}
4877	}
4878
4879	/* mark the device being resilvered */
4880	newvd->vdev_resilver_txg = txg;
4881
4882	/*
4883	 * If the parent is not a mirror, or if we're replacing, insert the new
4884	 * mirror/replacing/spare vdev above oldvd.
4885	 */
4886	if (pvd->vdev_ops != pvops)
4887		pvd = vdev_add_parent(oldvd, pvops);
4888
4889	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4890	ASSERT(pvd->vdev_ops == pvops);
4891	ASSERT(oldvd->vdev_parent == pvd);
4892
4893	/*
4894	 * Extract the new device from its root and add it to pvd.
4895	 */
4896	vdev_remove_child(newrootvd, newvd);
4897	newvd->vdev_id = pvd->vdev_children;
4898	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4899	vdev_add_child(pvd, newvd);
4900
4901	tvd = newvd->vdev_top;
4902	ASSERT(pvd->vdev_top == tvd);
4903	ASSERT(tvd->vdev_parent == rvd);
4904
4905	vdev_config_dirty(tvd);
4906
4907	/*
4908	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4909	 * for any dmu_sync-ed blocks.  It will propagate upward when
4910	 * spa_vdev_exit() calls vdev_dtl_reassess().
4911	 */
4912	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4913
4914	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4915	    dtl_max_txg - TXG_INITIAL);
4916
4917	if (newvd->vdev_isspare) {
4918		spa_spare_activate(newvd);
4919		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4920	}
4921
4922	oldvdpath = spa_strdup(oldvd->vdev_path);
4923	newvdpath = spa_strdup(newvd->vdev_path);
4924	newvd_isspare = newvd->vdev_isspare;
4925
4926	/*
4927	 * Mark newvd's DTL dirty in this txg.
4928	 */
4929	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4930
4931	/*
4932	 * Schedule the resilver to restart in the future. We do this to
4933	 * ensure that dmu_sync-ed blocks have been stitched into the
4934	 * respective datasets.
4935	 */
4936	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4937
4938	if (spa->spa_bootfs)
4939		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4940
4941	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4942
4943	/*
4944	 * Commit the config
4945	 */
4946	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4947
4948	spa_history_log_internal(spa, "vdev attach", NULL,
4949	    "%s vdev=%s %s vdev=%s",
4950	    replacing && newvd_isspare ? "spare in" :
4951	    replacing ? "replace" : "attach", newvdpath,
4952	    replacing ? "for" : "to", oldvdpath);
4953
4954	spa_strfree(oldvdpath);
4955	spa_strfree(newvdpath);
4956
4957	return (0);
4958}
4959
4960/*
4961 * Detach a device from a mirror or replacing vdev.
4962 *
4963 * If 'replace_done' is specified, only detach if the parent
4964 * is a replacing vdev.
4965 */
4966int
4967spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4968{
4969	uint64_t txg;
4970	int error;
4971	vdev_t *rvd = spa->spa_root_vdev;
4972	vdev_t *vd, *pvd, *cvd, *tvd;
4973	boolean_t unspare = B_FALSE;
4974	uint64_t unspare_guid = 0;
4975	char *vdpath;
4976
4977	ASSERT(spa_writeable(spa));
4978
4979	txg = spa_vdev_enter(spa);
4980
4981	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4982
4983	if (vd == NULL)
4984		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4985
4986	if (!vd->vdev_ops->vdev_op_leaf)
4987		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4988
4989	pvd = vd->vdev_parent;
4990
4991	/*
4992	 * If the parent/child relationship is not as expected, don't do it.
4993	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4994	 * vdev that's replacing B with C.  The user's intent in replacing
4995	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4996	 * the replace by detaching C, the expected behavior is to end up
4997	 * M(A,B).  But suppose that right after deciding to detach C,
4998	 * the replacement of B completes.  We would have M(A,C), and then
4999	 * ask to detach C, which would leave us with just A -- not what
5000	 * the user wanted.  To prevent this, we make sure that the
5001	 * parent/child relationship hasn't changed -- in this example,
5002	 * that C's parent is still the replacing vdev R.
5003	 */
5004	if (pvd->vdev_guid != pguid && pguid != 0)
5005		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5006
5007	/*
5008	 * Only 'replacing' or 'spare' vdevs can be replaced.
5009	 */
5010	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5011	    pvd->vdev_ops != &vdev_spare_ops)
5012		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5013
5014	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5015	    spa_version(spa) >= SPA_VERSION_SPARES);
5016
5017	/*
5018	 * Only mirror, replacing, and spare vdevs support detach.
5019	 */
5020	if (pvd->vdev_ops != &vdev_replacing_ops &&
5021	    pvd->vdev_ops != &vdev_mirror_ops &&
5022	    pvd->vdev_ops != &vdev_spare_ops)
5023		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5024
5025	/*
5026	 * If this device has the only valid copy of some data,
5027	 * we cannot safely detach it.
5028	 */
5029	if (vdev_dtl_required(vd))
5030		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5031
5032	ASSERT(pvd->vdev_children >= 2);
5033
5034	/*
5035	 * If we are detaching the second disk from a replacing vdev, then
5036	 * check to see if we changed the original vdev's path to have "/old"
5037	 * at the end in spa_vdev_attach().  If so, undo that change now.
5038	 */
5039	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5040	    vd->vdev_path != NULL) {
5041		size_t len = strlen(vd->vdev_path);
5042
5043		for (int c = 0; c < pvd->vdev_children; c++) {
5044			cvd = pvd->vdev_child[c];
5045
5046			if (cvd == vd || cvd->vdev_path == NULL)
5047				continue;
5048
5049			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5050			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5051				spa_strfree(cvd->vdev_path);
5052				cvd->vdev_path = spa_strdup(vd->vdev_path);
5053				break;
5054			}
5055		}
5056	}
5057
5058	/*
5059	 * If we are detaching the original disk from a spare, then it implies
5060	 * that the spare should become a real disk, and be removed from the
5061	 * active spare list for the pool.
5062	 */
5063	if (pvd->vdev_ops == &vdev_spare_ops &&
5064	    vd->vdev_id == 0 &&
5065	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5066		unspare = B_TRUE;
5067
5068	/*
5069	 * Erase the disk labels so the disk can be used for other things.
5070	 * This must be done after all other error cases are handled,
5071	 * but before we disembowel vd (so we can still do I/O to it).
5072	 * But if we can't do it, don't treat the error as fatal --
5073	 * it may be that the unwritability of the disk is the reason
5074	 * it's being detached!
5075	 */
5076	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5077
5078	/*
5079	 * Remove vd from its parent and compact the parent's children.
5080	 */
5081	vdev_remove_child(pvd, vd);
5082	vdev_compact_children(pvd);
5083
5084	/*
5085	 * Remember one of the remaining children so we can get tvd below.
5086	 */
5087	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5088
5089	/*
5090	 * If we need to remove the remaining child from the list of hot spares,
5091	 * do it now, marking the vdev as no longer a spare in the process.
5092	 * We must do this before vdev_remove_parent(), because that can
5093	 * change the GUID if it creates a new toplevel GUID.  For a similar
5094	 * reason, we must remove the spare now, in the same txg as the detach;
5095	 * otherwise someone could attach a new sibling, change the GUID, and
5096	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5097	 */
5098	if (unspare) {
5099		ASSERT(cvd->vdev_isspare);
5100		spa_spare_remove(cvd);
5101		unspare_guid = cvd->vdev_guid;
5102		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5103		cvd->vdev_unspare = B_TRUE;
5104	}
5105
5106	/*
5107	 * If the parent mirror/replacing vdev only has one child,
5108	 * the parent is no longer needed.  Remove it from the tree.
5109	 */
5110	if (pvd->vdev_children == 1) {
5111		if (pvd->vdev_ops == &vdev_spare_ops)
5112			cvd->vdev_unspare = B_FALSE;
5113		vdev_remove_parent(cvd);
5114	}
5115
5116
5117	/*
5118	 * We don't set tvd until now because the parent we just removed
5119	 * may have been the previous top-level vdev.
5120	 */
5121	tvd = cvd->vdev_top;
5122	ASSERT(tvd->vdev_parent == rvd);
5123
5124	/*
5125	 * Reevaluate the parent vdev state.
5126	 */
5127	vdev_propagate_state(cvd);
5128
5129	/*
5130	 * If the 'autoexpand' property is set on the pool then automatically
5131	 * try to expand the size of the pool. For example if the device we
5132	 * just detached was smaller than the others, it may be possible to
5133	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5134	 * first so that we can obtain the updated sizes of the leaf vdevs.
5135	 */
5136	if (spa->spa_autoexpand) {
5137		vdev_reopen(tvd);
5138		vdev_expand(tvd, txg);
5139	}
5140
5141	vdev_config_dirty(tvd);
5142
5143	/*
5144	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5145	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5146	 * But first make sure we're not on any *other* txg's DTL list, to
5147	 * prevent vd from being accessed after it's freed.
5148	 */
5149	vdpath = spa_strdup(vd->vdev_path);
5150	for (int t = 0; t < TXG_SIZE; t++)
5151		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5152	vd->vdev_detached = B_TRUE;
5153	vdev_dirty(tvd, VDD_DTL, vd, txg);
5154
5155	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5156
5157	/* hang on to the spa before we release the lock */
5158	spa_open_ref(spa, FTAG);
5159
5160	error = spa_vdev_exit(spa, vd, txg, 0);
5161
5162	spa_history_log_internal(spa, "detach", NULL,
5163	    "vdev=%s", vdpath);
5164	spa_strfree(vdpath);
5165
5166	/*
5167	 * If this was the removal of the original device in a hot spare vdev,
5168	 * then we want to go through and remove the device from the hot spare
5169	 * list of every other pool.
5170	 */
5171	if (unspare) {
5172		spa_t *altspa = NULL;
5173
5174		mutex_enter(&spa_namespace_lock);
5175		while ((altspa = spa_next(altspa)) != NULL) {
5176			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5177			    altspa == spa)
5178				continue;
5179
5180			spa_open_ref(altspa, FTAG);
5181			mutex_exit(&spa_namespace_lock);
5182			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5183			mutex_enter(&spa_namespace_lock);
5184			spa_close(altspa, FTAG);
5185		}
5186		mutex_exit(&spa_namespace_lock);
5187
5188		/* search the rest of the vdevs for spares to remove */
5189		spa_vdev_resilver_done(spa);
5190	}
5191
5192	/* all done with the spa; OK to release */
5193	mutex_enter(&spa_namespace_lock);
5194	spa_close(spa, FTAG);
5195	mutex_exit(&spa_namespace_lock);
5196
5197	return (error);
5198}
5199
5200/*
5201 * Split a set of devices from their mirrors, and create a new pool from them.
5202 */
5203int
5204spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5205    nvlist_t *props, boolean_t exp)
5206{
5207	int error = 0;
5208	uint64_t txg, *glist;
5209	spa_t *newspa;
5210	uint_t c, children, lastlog;
5211	nvlist_t **child, *nvl, *tmp;
5212	dmu_tx_t *tx;
5213	char *altroot = NULL;
5214	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5215	boolean_t activate_slog;
5216
5217	ASSERT(spa_writeable(spa));
5218
5219	txg = spa_vdev_enter(spa);
5220
5221	/* clear the log and flush everything up to now */
5222	activate_slog = spa_passivate_log(spa);
5223	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5224	error = spa_offline_log(spa);
5225	txg = spa_vdev_config_enter(spa);
5226
5227	if (activate_slog)
5228		spa_activate_log(spa);
5229
5230	if (error != 0)
5231		return (spa_vdev_exit(spa, NULL, txg, error));
5232
5233	/* check new spa name before going any further */
5234	if (spa_lookup(newname) != NULL)
5235		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5236
5237	/*
5238	 * scan through all the children to ensure they're all mirrors
5239	 */
5240	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5241	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5242	    &children) != 0)
5243		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5244
5245	/* first, check to ensure we've got the right child count */
5246	rvd = spa->spa_root_vdev;
5247	lastlog = 0;
5248	for (c = 0; c < rvd->vdev_children; c++) {
5249		vdev_t *vd = rvd->vdev_child[c];
5250
5251		/* don't count the holes & logs as children */
5252		if (vd->vdev_islog || vd->vdev_ishole) {
5253			if (lastlog == 0)
5254				lastlog = c;
5255			continue;
5256		}
5257
5258		lastlog = 0;
5259	}
5260	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5261		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5262
5263	/* next, ensure no spare or cache devices are part of the split */
5264	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5265	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5266		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5267
5268	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5269	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5270
5271	/* then, loop over each vdev and validate it */
5272	for (c = 0; c < children; c++) {
5273		uint64_t is_hole = 0;
5274
5275		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5276		    &is_hole);
5277
5278		if (is_hole != 0) {
5279			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5280			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5281				continue;
5282			} else {
5283				error = SET_ERROR(EINVAL);
5284				break;
5285			}
5286		}
5287
5288		/* which disk is going to be split? */
5289		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5290		    &glist[c]) != 0) {
5291			error = SET_ERROR(EINVAL);
5292			break;
5293		}
5294
5295		/* look it up in the spa */
5296		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5297		if (vml[c] == NULL) {
5298			error = SET_ERROR(ENODEV);
5299			break;
5300		}
5301
5302		/* make sure there's nothing stopping the split */
5303		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5304		    vml[c]->vdev_islog ||
5305		    vml[c]->vdev_ishole ||
5306		    vml[c]->vdev_isspare ||
5307		    vml[c]->vdev_isl2cache ||
5308		    !vdev_writeable(vml[c]) ||
5309		    vml[c]->vdev_children != 0 ||
5310		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5311		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5312			error = SET_ERROR(EINVAL);
5313			break;
5314		}
5315
5316		if (vdev_dtl_required(vml[c])) {
5317			error = SET_ERROR(EBUSY);
5318			break;
5319		}
5320
5321		/* we need certain info from the top level */
5322		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5323		    vml[c]->vdev_top->vdev_ms_array) == 0);
5324		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5325		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5326		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5327		    vml[c]->vdev_top->vdev_asize) == 0);
5328		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5329		    vml[c]->vdev_top->vdev_ashift) == 0);
5330	}
5331
5332	if (error != 0) {
5333		kmem_free(vml, children * sizeof (vdev_t *));
5334		kmem_free(glist, children * sizeof (uint64_t));
5335		return (spa_vdev_exit(spa, NULL, txg, error));
5336	}
5337
5338	/* stop writers from using the disks */
5339	for (c = 0; c < children; c++) {
5340		if (vml[c] != NULL)
5341			vml[c]->vdev_offline = B_TRUE;
5342	}
5343	vdev_reopen(spa->spa_root_vdev);
5344
5345	/*
5346	 * Temporarily record the splitting vdevs in the spa config.  This
5347	 * will disappear once the config is regenerated.
5348	 */
5349	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5350	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5351	    glist, children) == 0);
5352	kmem_free(glist, children * sizeof (uint64_t));
5353
5354	mutex_enter(&spa->spa_props_lock);
5355	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5356	    nvl) == 0);
5357	mutex_exit(&spa->spa_props_lock);
5358	spa->spa_config_splitting = nvl;
5359	vdev_config_dirty(spa->spa_root_vdev);
5360
5361	/* configure and create the new pool */
5362	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5363	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5364	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5365	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5366	    spa_version(spa)) == 0);
5367	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5368	    spa->spa_config_txg) == 0);
5369	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5370	    spa_generate_guid(NULL)) == 0);
5371	(void) nvlist_lookup_string(props,
5372	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5373
5374	/* add the new pool to the namespace */
5375	newspa = spa_add(newname, config, altroot);
5376	newspa->spa_config_txg = spa->spa_config_txg;
5377	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5378
5379	/* release the spa config lock, retaining the namespace lock */
5380	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5381
5382	if (zio_injection_enabled)
5383		zio_handle_panic_injection(spa, FTAG, 1);
5384
5385	spa_activate(newspa, spa_mode_global);
5386	spa_async_suspend(newspa);
5387
5388#ifndef illumos
5389	/* mark that we are creating new spa by splitting */
5390	newspa->spa_splitting_newspa = B_TRUE;
5391#endif
5392	/* create the new pool from the disks of the original pool */
5393	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5394#ifndef illumos
5395	newspa->spa_splitting_newspa = B_FALSE;
5396#endif
5397	if (error)
5398		goto out;
5399
5400	/* if that worked, generate a real config for the new pool */
5401	if (newspa->spa_root_vdev != NULL) {
5402		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5403		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5404		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5405		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5406		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5407		    B_TRUE));
5408	}
5409
5410	/* set the props */
5411	if (props != NULL) {
5412		spa_configfile_set(newspa, props, B_FALSE);
5413		error = spa_prop_set(newspa, props);
5414		if (error)
5415			goto out;
5416	}
5417
5418	/* flush everything */
5419	txg = spa_vdev_config_enter(newspa);
5420	vdev_config_dirty(newspa->spa_root_vdev);
5421	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5422
5423	if (zio_injection_enabled)
5424		zio_handle_panic_injection(spa, FTAG, 2);
5425
5426	spa_async_resume(newspa);
5427
5428	/* finally, update the original pool's config */
5429	txg = spa_vdev_config_enter(spa);
5430	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5431	error = dmu_tx_assign(tx, TXG_WAIT);
5432	if (error != 0)
5433		dmu_tx_abort(tx);
5434	for (c = 0; c < children; c++) {
5435		if (vml[c] != NULL) {
5436			vdev_split(vml[c]);
5437			if (error == 0)
5438				spa_history_log_internal(spa, "detach", tx,
5439				    "vdev=%s", vml[c]->vdev_path);
5440			vdev_free(vml[c]);
5441		}
5442	}
5443	vdev_config_dirty(spa->spa_root_vdev);
5444	spa->spa_config_splitting = NULL;
5445	nvlist_free(nvl);
5446	if (error == 0)
5447		dmu_tx_commit(tx);
5448	(void) spa_vdev_exit(spa, NULL, txg, 0);
5449
5450	if (zio_injection_enabled)
5451		zio_handle_panic_injection(spa, FTAG, 3);
5452
5453	/* split is complete; log a history record */
5454	spa_history_log_internal(newspa, "split", NULL,
5455	    "from pool %s", spa_name(spa));
5456
5457	kmem_free(vml, children * sizeof (vdev_t *));
5458
5459	/* if we're not going to mount the filesystems in userland, export */
5460	if (exp)
5461		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5462		    B_FALSE, B_FALSE);
5463
5464	return (error);
5465
5466out:
5467	spa_unload(newspa);
5468	spa_deactivate(newspa);
5469	spa_remove(newspa);
5470
5471	txg = spa_vdev_config_enter(spa);
5472
5473	/* re-online all offlined disks */
5474	for (c = 0; c < children; c++) {
5475		if (vml[c] != NULL)
5476			vml[c]->vdev_offline = B_FALSE;
5477	}
5478	vdev_reopen(spa->spa_root_vdev);
5479
5480	nvlist_free(spa->spa_config_splitting);
5481	spa->spa_config_splitting = NULL;
5482	(void) spa_vdev_exit(spa, NULL, txg, error);
5483
5484	kmem_free(vml, children * sizeof (vdev_t *));
5485	return (error);
5486}
5487
5488static nvlist_t *
5489spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5490{
5491	for (int i = 0; i < count; i++) {
5492		uint64_t guid;
5493
5494		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5495		    &guid) == 0);
5496
5497		if (guid == target_guid)
5498			return (nvpp[i]);
5499	}
5500
5501	return (NULL);
5502}
5503
5504static void
5505spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5506	nvlist_t *dev_to_remove)
5507{
5508	nvlist_t **newdev = NULL;
5509
5510	if (count > 1)
5511		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5512
5513	for (int i = 0, j = 0; i < count; i++) {
5514		if (dev[i] == dev_to_remove)
5515			continue;
5516		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5517	}
5518
5519	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5520	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5521
5522	for (int i = 0; i < count - 1; i++)
5523		nvlist_free(newdev[i]);
5524
5525	if (count > 1)
5526		kmem_free(newdev, (count - 1) * sizeof (void *));
5527}
5528
5529/*
5530 * Evacuate the device.
5531 */
5532static int
5533spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5534{
5535	uint64_t txg;
5536	int error = 0;
5537
5538	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5539	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5540	ASSERT(vd == vd->vdev_top);
5541
5542	/*
5543	 * Evacuate the device.  We don't hold the config lock as writer
5544	 * since we need to do I/O but we do keep the
5545	 * spa_namespace_lock held.  Once this completes the device
5546	 * should no longer have any blocks allocated on it.
5547	 */
5548	if (vd->vdev_islog) {
5549		if (vd->vdev_stat.vs_alloc != 0)
5550			error = spa_offline_log(spa);
5551	} else {
5552		error = SET_ERROR(ENOTSUP);
5553	}
5554
5555	if (error)
5556		return (error);
5557
5558	/*
5559	 * The evacuation succeeded.  Remove any remaining MOS metadata
5560	 * associated with this vdev, and wait for these changes to sync.
5561	 */
5562	ASSERT0(vd->vdev_stat.vs_alloc);
5563	txg = spa_vdev_config_enter(spa);
5564	vd->vdev_removing = B_TRUE;
5565	vdev_dirty_leaves(vd, VDD_DTL, txg);
5566	vdev_config_dirty(vd);
5567	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5568
5569	return (0);
5570}
5571
5572/*
5573 * Complete the removal by cleaning up the namespace.
5574 */
5575static void
5576spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5577{
5578	vdev_t *rvd = spa->spa_root_vdev;
5579	uint64_t id = vd->vdev_id;
5580	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5581
5582	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5583	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5584	ASSERT(vd == vd->vdev_top);
5585
5586	/*
5587	 * Only remove any devices which are empty.
5588	 */
5589	if (vd->vdev_stat.vs_alloc != 0)
5590		return;
5591
5592	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5593
5594	if (list_link_active(&vd->vdev_state_dirty_node))
5595		vdev_state_clean(vd);
5596	if (list_link_active(&vd->vdev_config_dirty_node))
5597		vdev_config_clean(vd);
5598
5599	vdev_free(vd);
5600
5601	if (last_vdev) {
5602		vdev_compact_children(rvd);
5603	} else {
5604		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5605		vdev_add_child(rvd, vd);
5606	}
5607	vdev_config_dirty(rvd);
5608
5609	/*
5610	 * Reassess the health of our root vdev.
5611	 */
5612	vdev_reopen(rvd);
5613}
5614
5615/*
5616 * Remove a device from the pool -
5617 *
5618 * Removing a device from the vdev namespace requires several steps
5619 * and can take a significant amount of time.  As a result we use
5620 * the spa_vdev_config_[enter/exit] functions which allow us to
5621 * grab and release the spa_config_lock while still holding the namespace
5622 * lock.  During each step the configuration is synced out.
5623 *
5624 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5625 * devices.
5626 */
5627int
5628spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5629{
5630	vdev_t *vd;
5631	metaslab_group_t *mg;
5632	nvlist_t **spares, **l2cache, *nv;
5633	uint64_t txg = 0;
5634	uint_t nspares, nl2cache;
5635	int error = 0;
5636	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5637
5638	ASSERT(spa_writeable(spa));
5639
5640	if (!locked)
5641		txg = spa_vdev_enter(spa);
5642
5643	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5644
5645	if (spa->spa_spares.sav_vdevs != NULL &&
5646	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5647	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5648	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5649		/*
5650		 * Only remove the hot spare if it's not currently in use
5651		 * in this pool.
5652		 */
5653		if (vd == NULL || unspare) {
5654			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5655			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5656			spa_load_spares(spa);
5657			spa->spa_spares.sav_sync = B_TRUE;
5658		} else {
5659			error = SET_ERROR(EBUSY);
5660		}
5661	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5662	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5663	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5664	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5665		/*
5666		 * Cache devices can always be removed.
5667		 */
5668		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5669		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5670		spa_load_l2cache(spa);
5671		spa->spa_l2cache.sav_sync = B_TRUE;
5672	} else if (vd != NULL && vd->vdev_islog) {
5673		ASSERT(!locked);
5674		ASSERT(vd == vd->vdev_top);
5675
5676		mg = vd->vdev_mg;
5677
5678		/*
5679		 * Stop allocating from this vdev.
5680		 */
5681		metaslab_group_passivate(mg);
5682
5683		/*
5684		 * Wait for the youngest allocations and frees to sync,
5685		 * and then wait for the deferral of those frees to finish.
5686		 */
5687		spa_vdev_config_exit(spa, NULL,
5688		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5689
5690		/*
5691		 * Attempt to evacuate the vdev.
5692		 */
5693		error = spa_vdev_remove_evacuate(spa, vd);
5694
5695		txg = spa_vdev_config_enter(spa);
5696
5697		/*
5698		 * If we couldn't evacuate the vdev, unwind.
5699		 */
5700		if (error) {
5701			metaslab_group_activate(mg);
5702			return (spa_vdev_exit(spa, NULL, txg, error));
5703		}
5704
5705		/*
5706		 * Clean up the vdev namespace.
5707		 */
5708		spa_vdev_remove_from_namespace(spa, vd);
5709
5710	} else if (vd != NULL) {
5711		/*
5712		 * Normal vdevs cannot be removed (yet).
5713		 */
5714		error = SET_ERROR(ENOTSUP);
5715	} else {
5716		/*
5717		 * There is no vdev of any kind with the specified guid.
5718		 */
5719		error = SET_ERROR(ENOENT);
5720	}
5721
5722	if (!locked)
5723		return (spa_vdev_exit(spa, NULL, txg, error));
5724
5725	return (error);
5726}
5727
5728/*
5729 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5730 * currently spared, so we can detach it.
5731 */
5732static vdev_t *
5733spa_vdev_resilver_done_hunt(vdev_t *vd)
5734{
5735	vdev_t *newvd, *oldvd;
5736
5737	for (int c = 0; c < vd->vdev_children; c++) {
5738		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5739		if (oldvd != NULL)
5740			return (oldvd);
5741	}
5742
5743	/*
5744	 * Check for a completed replacement.  We always consider the first
5745	 * vdev in the list to be the oldest vdev, and the last one to be
5746	 * the newest (see spa_vdev_attach() for how that works).  In
5747	 * the case where the newest vdev is faulted, we will not automatically
5748	 * remove it after a resilver completes.  This is OK as it will require
5749	 * user intervention to determine which disk the admin wishes to keep.
5750	 */
5751	if (vd->vdev_ops == &vdev_replacing_ops) {
5752		ASSERT(vd->vdev_children > 1);
5753
5754		newvd = vd->vdev_child[vd->vdev_children - 1];
5755		oldvd = vd->vdev_child[0];
5756
5757		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5758		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5759		    !vdev_dtl_required(oldvd))
5760			return (oldvd);
5761	}
5762
5763	/*
5764	 * Check for a completed resilver with the 'unspare' flag set.
5765	 */
5766	if (vd->vdev_ops == &vdev_spare_ops) {
5767		vdev_t *first = vd->vdev_child[0];
5768		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5769
5770		if (last->vdev_unspare) {
5771			oldvd = first;
5772			newvd = last;
5773		} else if (first->vdev_unspare) {
5774			oldvd = last;
5775			newvd = first;
5776		} else {
5777			oldvd = NULL;
5778		}
5779
5780		if (oldvd != NULL &&
5781		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5782		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5783		    !vdev_dtl_required(oldvd))
5784			return (oldvd);
5785
5786		/*
5787		 * If there are more than two spares attached to a disk,
5788		 * and those spares are not required, then we want to
5789		 * attempt to free them up now so that they can be used
5790		 * by other pools.  Once we're back down to a single
5791		 * disk+spare, we stop removing them.
5792		 */
5793		if (vd->vdev_children > 2) {
5794			newvd = vd->vdev_child[1];
5795
5796			if (newvd->vdev_isspare && last->vdev_isspare &&
5797			    vdev_dtl_empty(last, DTL_MISSING) &&
5798			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5799			    !vdev_dtl_required(newvd))
5800				return (newvd);
5801		}
5802	}
5803
5804	return (NULL);
5805}
5806
5807static void
5808spa_vdev_resilver_done(spa_t *spa)
5809{
5810	vdev_t *vd, *pvd, *ppvd;
5811	uint64_t guid, sguid, pguid, ppguid;
5812
5813	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5814
5815	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5816		pvd = vd->vdev_parent;
5817		ppvd = pvd->vdev_parent;
5818		guid = vd->vdev_guid;
5819		pguid = pvd->vdev_guid;
5820		ppguid = ppvd->vdev_guid;
5821		sguid = 0;
5822		/*
5823		 * If we have just finished replacing a hot spared device, then
5824		 * we need to detach the parent's first child (the original hot
5825		 * spare) as well.
5826		 */
5827		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5828		    ppvd->vdev_children == 2) {
5829			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5830			sguid = ppvd->vdev_child[1]->vdev_guid;
5831		}
5832		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5833
5834		spa_config_exit(spa, SCL_ALL, FTAG);
5835		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5836			return;
5837		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5838			return;
5839		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5840	}
5841
5842	spa_config_exit(spa, SCL_ALL, FTAG);
5843}
5844
5845/*
5846 * Update the stored path or FRU for this vdev.
5847 */
5848int
5849spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5850    boolean_t ispath)
5851{
5852	vdev_t *vd;
5853	boolean_t sync = B_FALSE;
5854
5855	ASSERT(spa_writeable(spa));
5856
5857	spa_vdev_state_enter(spa, SCL_ALL);
5858
5859	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5860		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5861
5862	if (!vd->vdev_ops->vdev_op_leaf)
5863		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5864
5865	if (ispath) {
5866		if (strcmp(value, vd->vdev_path) != 0) {
5867			spa_strfree(vd->vdev_path);
5868			vd->vdev_path = spa_strdup(value);
5869			sync = B_TRUE;
5870		}
5871	} else {
5872		if (vd->vdev_fru == NULL) {
5873			vd->vdev_fru = spa_strdup(value);
5874			sync = B_TRUE;
5875		} else if (strcmp(value, vd->vdev_fru) != 0) {
5876			spa_strfree(vd->vdev_fru);
5877			vd->vdev_fru = spa_strdup(value);
5878			sync = B_TRUE;
5879		}
5880	}
5881
5882	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5883}
5884
5885int
5886spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5887{
5888	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5889}
5890
5891int
5892spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5893{
5894	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5895}
5896
5897/*
5898 * ==========================================================================
5899 * SPA Scanning
5900 * ==========================================================================
5901 */
5902
5903int
5904spa_scan_stop(spa_t *spa)
5905{
5906	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5907	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5908		return (SET_ERROR(EBUSY));
5909	return (dsl_scan_cancel(spa->spa_dsl_pool));
5910}
5911
5912int
5913spa_scan(spa_t *spa, pool_scan_func_t func)
5914{
5915	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5916
5917	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5918		return (SET_ERROR(ENOTSUP));
5919
5920	/*
5921	 * If a resilver was requested, but there is no DTL on a
5922	 * writeable leaf device, we have nothing to do.
5923	 */
5924	if (func == POOL_SCAN_RESILVER &&
5925	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5926		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5927		return (0);
5928	}
5929
5930	return (dsl_scan(spa->spa_dsl_pool, func));
5931}
5932
5933/*
5934 * ==========================================================================
5935 * SPA async task processing
5936 * ==========================================================================
5937 */
5938
5939static void
5940spa_async_remove(spa_t *spa, vdev_t *vd)
5941{
5942	if (vd->vdev_remove_wanted) {
5943		vd->vdev_remove_wanted = B_FALSE;
5944		vd->vdev_delayed_close = B_FALSE;
5945		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5946
5947		/*
5948		 * We want to clear the stats, but we don't want to do a full
5949		 * vdev_clear() as that will cause us to throw away
5950		 * degraded/faulted state as well as attempt to reopen the
5951		 * device, all of which is a waste.
5952		 */
5953		vd->vdev_stat.vs_read_errors = 0;
5954		vd->vdev_stat.vs_write_errors = 0;
5955		vd->vdev_stat.vs_checksum_errors = 0;
5956
5957		vdev_state_dirty(vd->vdev_top);
5958		/* Tell userspace that the vdev is gone. */
5959		zfs_post_remove(spa, vd);
5960	}
5961
5962	for (int c = 0; c < vd->vdev_children; c++)
5963		spa_async_remove(spa, vd->vdev_child[c]);
5964}
5965
5966static void
5967spa_async_probe(spa_t *spa, vdev_t *vd)
5968{
5969	if (vd->vdev_probe_wanted) {
5970		vd->vdev_probe_wanted = B_FALSE;
5971		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5972	}
5973
5974	for (int c = 0; c < vd->vdev_children; c++)
5975		spa_async_probe(spa, vd->vdev_child[c]);
5976}
5977
5978static void
5979spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5980{
5981	sysevent_id_t eid;
5982	nvlist_t *attr;
5983	char *physpath;
5984
5985	if (!spa->spa_autoexpand)
5986		return;
5987
5988	for (int c = 0; c < vd->vdev_children; c++) {
5989		vdev_t *cvd = vd->vdev_child[c];
5990		spa_async_autoexpand(spa, cvd);
5991	}
5992
5993	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5994		return;
5995
5996	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5997	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5998
5999	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6000	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6001
6002	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6003	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6004
6005	nvlist_free(attr);
6006	kmem_free(physpath, MAXPATHLEN);
6007}
6008
6009static void
6010spa_async_thread(void *arg)
6011{
6012	spa_t *spa = arg;
6013	int tasks;
6014
6015	ASSERT(spa->spa_sync_on);
6016
6017	mutex_enter(&spa->spa_async_lock);
6018	tasks = spa->spa_async_tasks;
6019	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6020	mutex_exit(&spa->spa_async_lock);
6021
6022	/*
6023	 * See if the config needs to be updated.
6024	 */
6025	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6026		uint64_t old_space, new_space;
6027
6028		mutex_enter(&spa_namespace_lock);
6029		old_space = metaslab_class_get_space(spa_normal_class(spa));
6030		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6031		new_space = metaslab_class_get_space(spa_normal_class(spa));
6032		mutex_exit(&spa_namespace_lock);
6033
6034		/*
6035		 * If the pool grew as a result of the config update,
6036		 * then log an internal history event.
6037		 */
6038		if (new_space != old_space) {
6039			spa_history_log_internal(spa, "vdev online", NULL,
6040			    "pool '%s' size: %llu(+%llu)",
6041			    spa_name(spa), new_space, new_space - old_space);
6042		}
6043	}
6044
6045	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6046		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6047		spa_async_autoexpand(spa, spa->spa_root_vdev);
6048		spa_config_exit(spa, SCL_CONFIG, FTAG);
6049	}
6050
6051	/*
6052	 * See if any devices need to be probed.
6053	 */
6054	if (tasks & SPA_ASYNC_PROBE) {
6055		spa_vdev_state_enter(spa, SCL_NONE);
6056		spa_async_probe(spa, spa->spa_root_vdev);
6057		(void) spa_vdev_state_exit(spa, NULL, 0);
6058	}
6059
6060	/*
6061	 * If any devices are done replacing, detach them.
6062	 */
6063	if (tasks & SPA_ASYNC_RESILVER_DONE)
6064		spa_vdev_resilver_done(spa);
6065
6066	/*
6067	 * Kick off a resilver.
6068	 */
6069	if (tasks & SPA_ASYNC_RESILVER)
6070		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6071
6072	/*
6073	 * Let the world know that we're done.
6074	 */
6075	mutex_enter(&spa->spa_async_lock);
6076	spa->spa_async_thread = NULL;
6077	cv_broadcast(&spa->spa_async_cv);
6078	mutex_exit(&spa->spa_async_lock);
6079	thread_exit();
6080}
6081
6082static void
6083spa_async_thread_vd(void *arg)
6084{
6085	spa_t *spa = arg;
6086	int tasks;
6087
6088	ASSERT(spa->spa_sync_on);
6089
6090	mutex_enter(&spa->spa_async_lock);
6091	tasks = spa->spa_async_tasks;
6092retry:
6093	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6094	mutex_exit(&spa->spa_async_lock);
6095
6096	/*
6097	 * See if any devices need to be marked REMOVED.
6098	 */
6099	if (tasks & SPA_ASYNC_REMOVE) {
6100		spa_vdev_state_enter(spa, SCL_NONE);
6101		spa_async_remove(spa, spa->spa_root_vdev);
6102		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6103			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6104		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6105			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6106		(void) spa_vdev_state_exit(spa, NULL, 0);
6107	}
6108
6109	/*
6110	 * Let the world know that we're done.
6111	 */
6112	mutex_enter(&spa->spa_async_lock);
6113	tasks = spa->spa_async_tasks;
6114	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6115		goto retry;
6116	spa->spa_async_thread_vd = NULL;
6117	cv_broadcast(&spa->spa_async_cv);
6118	mutex_exit(&spa->spa_async_lock);
6119	thread_exit();
6120}
6121
6122void
6123spa_async_suspend(spa_t *spa)
6124{
6125	mutex_enter(&spa->spa_async_lock);
6126	spa->spa_async_suspended++;
6127	while (spa->spa_async_thread != NULL &&
6128	    spa->spa_async_thread_vd != NULL)
6129		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6130	mutex_exit(&spa->spa_async_lock);
6131}
6132
6133void
6134spa_async_resume(spa_t *spa)
6135{
6136	mutex_enter(&spa->spa_async_lock);
6137	ASSERT(spa->spa_async_suspended != 0);
6138	spa->spa_async_suspended--;
6139	mutex_exit(&spa->spa_async_lock);
6140}
6141
6142static boolean_t
6143spa_async_tasks_pending(spa_t *spa)
6144{
6145	uint_t non_config_tasks;
6146	uint_t config_task;
6147	boolean_t config_task_suspended;
6148
6149	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6150	    SPA_ASYNC_REMOVE);
6151	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6152	if (spa->spa_ccw_fail_time == 0) {
6153		config_task_suspended = B_FALSE;
6154	} else {
6155		config_task_suspended =
6156		    (gethrtime() - spa->spa_ccw_fail_time) <
6157		    (zfs_ccw_retry_interval * NANOSEC);
6158	}
6159
6160	return (non_config_tasks || (config_task && !config_task_suspended));
6161}
6162
6163static void
6164spa_async_dispatch(spa_t *spa)
6165{
6166	mutex_enter(&spa->spa_async_lock);
6167	if (spa_async_tasks_pending(spa) &&
6168	    !spa->spa_async_suspended &&
6169	    spa->spa_async_thread == NULL &&
6170	    rootdir != NULL)
6171		spa->spa_async_thread = thread_create(NULL, 0,
6172		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6173	mutex_exit(&spa->spa_async_lock);
6174}
6175
6176static void
6177spa_async_dispatch_vd(spa_t *spa)
6178{
6179	mutex_enter(&spa->spa_async_lock);
6180	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6181	    !spa->spa_async_suspended &&
6182	    spa->spa_async_thread_vd == NULL &&
6183	    rootdir != NULL)
6184		spa->spa_async_thread_vd = thread_create(NULL, 0,
6185		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6186	mutex_exit(&spa->spa_async_lock);
6187}
6188
6189void
6190spa_async_request(spa_t *spa, int task)
6191{
6192	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6193	mutex_enter(&spa->spa_async_lock);
6194	spa->spa_async_tasks |= task;
6195	mutex_exit(&spa->spa_async_lock);
6196	spa_async_dispatch_vd(spa);
6197}
6198
6199/*
6200 * ==========================================================================
6201 * SPA syncing routines
6202 * ==========================================================================
6203 */
6204
6205static int
6206bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6207{
6208	bpobj_t *bpo = arg;
6209	bpobj_enqueue(bpo, bp, tx);
6210	return (0);
6211}
6212
6213static int
6214spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6215{
6216	zio_t *zio = arg;
6217
6218	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6219	    BP_GET_PSIZE(bp), zio->io_flags));
6220	return (0);
6221}
6222
6223/*
6224 * Note: this simple function is not inlined to make it easier to dtrace the
6225 * amount of time spent syncing frees.
6226 */
6227static void
6228spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6229{
6230	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6231	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6232	VERIFY(zio_wait(zio) == 0);
6233}
6234
6235/*
6236 * Note: this simple function is not inlined to make it easier to dtrace the
6237 * amount of time spent syncing deferred frees.
6238 */
6239static void
6240spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6241{
6242	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6243	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6244	    spa_free_sync_cb, zio, tx), ==, 0);
6245	VERIFY0(zio_wait(zio));
6246}
6247
6248
6249static void
6250spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6251{
6252	char *packed = NULL;
6253	size_t bufsize;
6254	size_t nvsize = 0;
6255	dmu_buf_t *db;
6256
6257	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6258
6259	/*
6260	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6261	 * information.  This avoids the dmu_buf_will_dirty() path and
6262	 * saves us a pre-read to get data we don't actually care about.
6263	 */
6264	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6265	packed = kmem_alloc(bufsize, KM_SLEEP);
6266
6267	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6268	    KM_SLEEP) == 0);
6269	bzero(packed + nvsize, bufsize - nvsize);
6270
6271	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6272
6273	kmem_free(packed, bufsize);
6274
6275	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6276	dmu_buf_will_dirty(db, tx);
6277	*(uint64_t *)db->db_data = nvsize;
6278	dmu_buf_rele(db, FTAG);
6279}
6280
6281static void
6282spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6283    const char *config, const char *entry)
6284{
6285	nvlist_t *nvroot;
6286	nvlist_t **list;
6287	int i;
6288
6289	if (!sav->sav_sync)
6290		return;
6291
6292	/*
6293	 * Update the MOS nvlist describing the list of available devices.
6294	 * spa_validate_aux() will have already made sure this nvlist is
6295	 * valid and the vdevs are labeled appropriately.
6296	 */
6297	if (sav->sav_object == 0) {
6298		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6299		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6300		    sizeof (uint64_t), tx);
6301		VERIFY(zap_update(spa->spa_meta_objset,
6302		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6303		    &sav->sav_object, tx) == 0);
6304	}
6305
6306	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6307	if (sav->sav_count == 0) {
6308		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6309	} else {
6310		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6311		for (i = 0; i < sav->sav_count; i++)
6312			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6313			    B_FALSE, VDEV_CONFIG_L2CACHE);
6314		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6315		    sav->sav_count) == 0);
6316		for (i = 0; i < sav->sav_count; i++)
6317			nvlist_free(list[i]);
6318		kmem_free(list, sav->sav_count * sizeof (void *));
6319	}
6320
6321	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6322	nvlist_free(nvroot);
6323
6324	sav->sav_sync = B_FALSE;
6325}
6326
6327static void
6328spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6329{
6330	nvlist_t *config;
6331
6332	if (list_is_empty(&spa->spa_config_dirty_list))
6333		return;
6334
6335	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6336
6337	config = spa_config_generate(spa, spa->spa_root_vdev,
6338	    dmu_tx_get_txg(tx), B_FALSE);
6339
6340	/*
6341	 * If we're upgrading the spa version then make sure that
6342	 * the config object gets updated with the correct version.
6343	 */
6344	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6345		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6346		    spa->spa_uberblock.ub_version);
6347
6348	spa_config_exit(spa, SCL_STATE, FTAG);
6349
6350	if (spa->spa_config_syncing)
6351		nvlist_free(spa->spa_config_syncing);
6352	spa->spa_config_syncing = config;
6353
6354	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6355}
6356
6357static void
6358spa_sync_version(void *arg, dmu_tx_t *tx)
6359{
6360	uint64_t *versionp = arg;
6361	uint64_t version = *versionp;
6362	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6363
6364	/*
6365	 * Setting the version is special cased when first creating the pool.
6366	 */
6367	ASSERT(tx->tx_txg != TXG_INITIAL);
6368
6369	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6370	ASSERT(version >= spa_version(spa));
6371
6372	spa->spa_uberblock.ub_version = version;
6373	vdev_config_dirty(spa->spa_root_vdev);
6374	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6375}
6376
6377/*
6378 * Set zpool properties.
6379 */
6380static void
6381spa_sync_props(void *arg, dmu_tx_t *tx)
6382{
6383	nvlist_t *nvp = arg;
6384	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6385	objset_t *mos = spa->spa_meta_objset;
6386	nvpair_t *elem = NULL;
6387
6388	mutex_enter(&spa->spa_props_lock);
6389
6390	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6391		uint64_t intval;
6392		char *strval, *fname;
6393		zpool_prop_t prop;
6394		const char *propname;
6395		zprop_type_t proptype;
6396		spa_feature_t fid;
6397
6398		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6399		case ZPROP_INVAL:
6400			/*
6401			 * We checked this earlier in spa_prop_validate().
6402			 */
6403			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6404
6405			fname = strchr(nvpair_name(elem), '@') + 1;
6406			VERIFY0(zfeature_lookup_name(fname, &fid));
6407
6408			spa_feature_enable(spa, fid, tx);
6409			spa_history_log_internal(spa, "set", tx,
6410			    "%s=enabled", nvpair_name(elem));
6411			break;
6412
6413		case ZPOOL_PROP_VERSION:
6414			intval = fnvpair_value_uint64(elem);
6415			/*
6416			 * The version is synced seperatly before other
6417			 * properties and should be correct by now.
6418			 */
6419			ASSERT3U(spa_version(spa), >=, intval);
6420			break;
6421
6422		case ZPOOL_PROP_ALTROOT:
6423			/*
6424			 * 'altroot' is a non-persistent property. It should
6425			 * have been set temporarily at creation or import time.
6426			 */
6427			ASSERT(spa->spa_root != NULL);
6428			break;
6429
6430		case ZPOOL_PROP_READONLY:
6431		case ZPOOL_PROP_CACHEFILE:
6432			/*
6433			 * 'readonly' and 'cachefile' are also non-persisitent
6434			 * properties.
6435			 */
6436			break;
6437		case ZPOOL_PROP_COMMENT:
6438			strval = fnvpair_value_string(elem);
6439			if (spa->spa_comment != NULL)
6440				spa_strfree(spa->spa_comment);
6441			spa->spa_comment = spa_strdup(strval);
6442			/*
6443			 * We need to dirty the configuration on all the vdevs
6444			 * so that their labels get updated.  It's unnecessary
6445			 * to do this for pool creation since the vdev's
6446			 * configuratoin has already been dirtied.
6447			 */
6448			if (tx->tx_txg != TXG_INITIAL)
6449				vdev_config_dirty(spa->spa_root_vdev);
6450			spa_history_log_internal(spa, "set", tx,
6451			    "%s=%s", nvpair_name(elem), strval);
6452			break;
6453		default:
6454			/*
6455			 * Set pool property values in the poolprops mos object.
6456			 */
6457			if (spa->spa_pool_props_object == 0) {
6458				spa->spa_pool_props_object =
6459				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6460				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6461				    tx);
6462			}
6463
6464			/* normalize the property name */
6465			propname = zpool_prop_to_name(prop);
6466			proptype = zpool_prop_get_type(prop);
6467
6468			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6469				ASSERT(proptype == PROP_TYPE_STRING);
6470				strval = fnvpair_value_string(elem);
6471				VERIFY0(zap_update(mos,
6472				    spa->spa_pool_props_object, propname,
6473				    1, strlen(strval) + 1, strval, tx));
6474				spa_history_log_internal(spa, "set", tx,
6475				    "%s=%s", nvpair_name(elem), strval);
6476			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6477				intval = fnvpair_value_uint64(elem);
6478
6479				if (proptype == PROP_TYPE_INDEX) {
6480					const char *unused;
6481					VERIFY0(zpool_prop_index_to_string(
6482					    prop, intval, &unused));
6483				}
6484				VERIFY0(zap_update(mos,
6485				    spa->spa_pool_props_object, propname,
6486				    8, 1, &intval, tx));
6487				spa_history_log_internal(spa, "set", tx,
6488				    "%s=%lld", nvpair_name(elem), intval);
6489			} else {
6490				ASSERT(0); /* not allowed */
6491			}
6492
6493			switch (prop) {
6494			case ZPOOL_PROP_DELEGATION:
6495				spa->spa_delegation = intval;
6496				break;
6497			case ZPOOL_PROP_BOOTFS:
6498				spa->spa_bootfs = intval;
6499				break;
6500			case ZPOOL_PROP_FAILUREMODE:
6501				spa->spa_failmode = intval;
6502				break;
6503			case ZPOOL_PROP_AUTOEXPAND:
6504				spa->spa_autoexpand = intval;
6505				if (tx->tx_txg != TXG_INITIAL)
6506					spa_async_request(spa,
6507					    SPA_ASYNC_AUTOEXPAND);
6508				break;
6509			case ZPOOL_PROP_DEDUPDITTO:
6510				spa->spa_dedup_ditto = intval;
6511				break;
6512			default:
6513				break;
6514			}
6515		}
6516
6517	}
6518
6519	mutex_exit(&spa->spa_props_lock);
6520}
6521
6522/*
6523 * Perform one-time upgrade on-disk changes.  spa_version() does not
6524 * reflect the new version this txg, so there must be no changes this
6525 * txg to anything that the upgrade code depends on after it executes.
6526 * Therefore this must be called after dsl_pool_sync() does the sync
6527 * tasks.
6528 */
6529static void
6530spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6531{
6532	dsl_pool_t *dp = spa->spa_dsl_pool;
6533
6534	ASSERT(spa->spa_sync_pass == 1);
6535
6536	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6537
6538	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6539	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6540		dsl_pool_create_origin(dp, tx);
6541
6542		/* Keeping the origin open increases spa_minref */
6543		spa->spa_minref += 3;
6544	}
6545
6546	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6547	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6548		dsl_pool_upgrade_clones(dp, tx);
6549	}
6550
6551	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6552	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6553		dsl_pool_upgrade_dir_clones(dp, tx);
6554
6555		/* Keeping the freedir open increases spa_minref */
6556		spa->spa_minref += 3;
6557	}
6558
6559	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6560	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6561		spa_feature_create_zap_objects(spa, tx);
6562	}
6563
6564	/*
6565	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6566	 * when possibility to use lz4 compression for metadata was added
6567	 * Old pools that have this feature enabled must be upgraded to have
6568	 * this feature active
6569	 */
6570	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6571		boolean_t lz4_en = spa_feature_is_enabled(spa,
6572		    SPA_FEATURE_LZ4_COMPRESS);
6573		boolean_t lz4_ac = spa_feature_is_active(spa,
6574		    SPA_FEATURE_LZ4_COMPRESS);
6575
6576		if (lz4_en && !lz4_ac)
6577			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6578	}
6579
6580	/*
6581	 * If we haven't written the salt, do so now.  Note that the
6582	 * feature may not be activated yet, but that's fine since
6583	 * the presence of this ZAP entry is backwards compatible.
6584	 */
6585	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6586	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6587		VERIFY0(zap_add(spa->spa_meta_objset,
6588		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6589		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6590		    spa->spa_cksum_salt.zcs_bytes, tx));
6591	}
6592
6593	rrw_exit(&dp->dp_config_rwlock, FTAG);
6594}
6595
6596/*
6597 * Sync the specified transaction group.  New blocks may be dirtied as
6598 * part of the process, so we iterate until it converges.
6599 */
6600void
6601spa_sync(spa_t *spa, uint64_t txg)
6602{
6603	dsl_pool_t *dp = spa->spa_dsl_pool;
6604	objset_t *mos = spa->spa_meta_objset;
6605	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6606	vdev_t *rvd = spa->spa_root_vdev;
6607	vdev_t *vd;
6608	dmu_tx_t *tx;
6609	int error;
6610
6611	VERIFY(spa_writeable(spa));
6612
6613	/*
6614	 * Lock out configuration changes.
6615	 */
6616	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6617
6618	spa->spa_syncing_txg = txg;
6619	spa->spa_sync_pass = 0;
6620
6621	/*
6622	 * If there are any pending vdev state changes, convert them
6623	 * into config changes that go out with this transaction group.
6624	 */
6625	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6626	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6627		/*
6628		 * We need the write lock here because, for aux vdevs,
6629		 * calling vdev_config_dirty() modifies sav_config.
6630		 * This is ugly and will become unnecessary when we
6631		 * eliminate the aux vdev wart by integrating all vdevs
6632		 * into the root vdev tree.
6633		 */
6634		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6635		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6636		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6637			vdev_state_clean(vd);
6638			vdev_config_dirty(vd);
6639		}
6640		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6641		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6642	}
6643	spa_config_exit(spa, SCL_STATE, FTAG);
6644
6645	tx = dmu_tx_create_assigned(dp, txg);
6646
6647	spa->spa_sync_starttime = gethrtime();
6648#ifdef illumos
6649	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6650	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6651#else	/* !illumos */
6652#ifdef _KERNEL
6653	callout_reset(&spa->spa_deadman_cycid,
6654	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6655#endif
6656#endif	/* illumos */
6657
6658	/*
6659	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6660	 * set spa_deflate if we have no raid-z vdevs.
6661	 */
6662	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6663	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6664		int i;
6665
6666		for (i = 0; i < rvd->vdev_children; i++) {
6667			vd = rvd->vdev_child[i];
6668			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6669				break;
6670		}
6671		if (i == rvd->vdev_children) {
6672			spa->spa_deflate = TRUE;
6673			VERIFY(0 == zap_add(spa->spa_meta_objset,
6674			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6675			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6676		}
6677	}
6678
6679	/*
6680	 * Iterate to convergence.
6681	 */
6682	do {
6683		int pass = ++spa->spa_sync_pass;
6684
6685		spa_sync_config_object(spa, tx);
6686		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6687		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6688		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6689		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6690		spa_errlog_sync(spa, txg);
6691		dsl_pool_sync(dp, txg);
6692
6693		if (pass < zfs_sync_pass_deferred_free) {
6694			spa_sync_frees(spa, free_bpl, tx);
6695		} else {
6696			/*
6697			 * We can not defer frees in pass 1, because
6698			 * we sync the deferred frees later in pass 1.
6699			 */
6700			ASSERT3U(pass, >, 1);
6701			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6702			    &spa->spa_deferred_bpobj, tx);
6703		}
6704
6705		ddt_sync(spa, txg);
6706		dsl_scan_sync(dp, tx);
6707
6708		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6709			vdev_sync(vd, txg);
6710
6711		if (pass == 1) {
6712			spa_sync_upgrades(spa, tx);
6713			ASSERT3U(txg, >=,
6714			    spa->spa_uberblock.ub_rootbp.blk_birth);
6715			/*
6716			 * Note: We need to check if the MOS is dirty
6717			 * because we could have marked the MOS dirty
6718			 * without updating the uberblock (e.g. if we
6719			 * have sync tasks but no dirty user data).  We
6720			 * need to check the uberblock's rootbp because
6721			 * it is updated if we have synced out dirty
6722			 * data (though in this case the MOS will most
6723			 * likely also be dirty due to second order
6724			 * effects, we don't want to rely on that here).
6725			 */
6726			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6727			    !dmu_objset_is_dirty(mos, txg)) {
6728				/*
6729				 * Nothing changed on the first pass,
6730				 * therefore this TXG is a no-op.  Avoid
6731				 * syncing deferred frees, so that we
6732				 * can keep this TXG as a no-op.
6733				 */
6734				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6735				    txg));
6736				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6737				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6738				break;
6739			}
6740			spa_sync_deferred_frees(spa, tx);
6741		}
6742
6743	} while (dmu_objset_is_dirty(mos, txg));
6744
6745	/*
6746	 * Rewrite the vdev configuration (which includes the uberblock)
6747	 * to commit the transaction group.
6748	 *
6749	 * If there are no dirty vdevs, we sync the uberblock to a few
6750	 * random top-level vdevs that are known to be visible in the
6751	 * config cache (see spa_vdev_add() for a complete description).
6752	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6753	 */
6754	for (;;) {
6755		/*
6756		 * We hold SCL_STATE to prevent vdev open/close/etc.
6757		 * while we're attempting to write the vdev labels.
6758		 */
6759		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6760
6761		if (list_is_empty(&spa->spa_config_dirty_list)) {
6762			vdev_t *svd[SPA_DVAS_PER_BP];
6763			int svdcount = 0;
6764			int children = rvd->vdev_children;
6765			int c0 = spa_get_random(children);
6766
6767			for (int c = 0; c < children; c++) {
6768				vd = rvd->vdev_child[(c0 + c) % children];
6769				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6770					continue;
6771				svd[svdcount++] = vd;
6772				if (svdcount == SPA_DVAS_PER_BP)
6773					break;
6774			}
6775			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6776			if (error != 0)
6777				error = vdev_config_sync(svd, svdcount, txg,
6778				    B_TRUE);
6779		} else {
6780			error = vdev_config_sync(rvd->vdev_child,
6781			    rvd->vdev_children, txg, B_FALSE);
6782			if (error != 0)
6783				error = vdev_config_sync(rvd->vdev_child,
6784				    rvd->vdev_children, txg, B_TRUE);
6785		}
6786
6787		if (error == 0)
6788			spa->spa_last_synced_guid = rvd->vdev_guid;
6789
6790		spa_config_exit(spa, SCL_STATE, FTAG);
6791
6792		if (error == 0)
6793			break;
6794		zio_suspend(spa, NULL);
6795		zio_resume_wait(spa);
6796	}
6797	dmu_tx_commit(tx);
6798
6799#ifdef illumos
6800	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6801#else	/* !illumos */
6802#ifdef _KERNEL
6803	callout_drain(&spa->spa_deadman_cycid);
6804#endif
6805#endif	/* illumos */
6806
6807	/*
6808	 * Clear the dirty config list.
6809	 */
6810	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6811		vdev_config_clean(vd);
6812
6813	/*
6814	 * Now that the new config has synced transactionally,
6815	 * let it become visible to the config cache.
6816	 */
6817	if (spa->spa_config_syncing != NULL) {
6818		spa_config_set(spa, spa->spa_config_syncing);
6819		spa->spa_config_txg = txg;
6820		spa->spa_config_syncing = NULL;
6821	}
6822
6823	spa->spa_ubsync = spa->spa_uberblock;
6824
6825	dsl_pool_sync_done(dp, txg);
6826
6827	/*
6828	 * Update usable space statistics.
6829	 */
6830	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6831		vdev_sync_done(vd, txg);
6832
6833	spa_update_dspace(spa);
6834
6835	/*
6836	 * It had better be the case that we didn't dirty anything
6837	 * since vdev_config_sync().
6838	 */
6839	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6840	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6841	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6842
6843	spa->spa_sync_pass = 0;
6844
6845	spa_config_exit(spa, SCL_CONFIG, FTAG);
6846
6847	spa_handle_ignored_writes(spa);
6848
6849	/*
6850	 * If any async tasks have been requested, kick them off.
6851	 */
6852	spa_async_dispatch(spa);
6853	spa_async_dispatch_vd(spa);
6854}
6855
6856/*
6857 * Sync all pools.  We don't want to hold the namespace lock across these
6858 * operations, so we take a reference on the spa_t and drop the lock during the
6859 * sync.
6860 */
6861void
6862spa_sync_allpools(void)
6863{
6864	spa_t *spa = NULL;
6865	mutex_enter(&spa_namespace_lock);
6866	while ((spa = spa_next(spa)) != NULL) {
6867		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6868		    !spa_writeable(spa) || spa_suspended(spa))
6869			continue;
6870		spa_open_ref(spa, FTAG);
6871		mutex_exit(&spa_namespace_lock);
6872		txg_wait_synced(spa_get_dsl(spa), 0);
6873		mutex_enter(&spa_namespace_lock);
6874		spa_close(spa, FTAG);
6875	}
6876	mutex_exit(&spa_namespace_lock);
6877}
6878
6879/*
6880 * ==========================================================================
6881 * Miscellaneous routines
6882 * ==========================================================================
6883 */
6884
6885/*
6886 * Remove all pools in the system.
6887 */
6888void
6889spa_evict_all(void)
6890{
6891	spa_t *spa;
6892
6893	/*
6894	 * Remove all cached state.  All pools should be closed now,
6895	 * so every spa in the AVL tree should be unreferenced.
6896	 */
6897	mutex_enter(&spa_namespace_lock);
6898	while ((spa = spa_next(NULL)) != NULL) {
6899		/*
6900		 * Stop async tasks.  The async thread may need to detach
6901		 * a device that's been replaced, which requires grabbing
6902		 * spa_namespace_lock, so we must drop it here.
6903		 */
6904		spa_open_ref(spa, FTAG);
6905		mutex_exit(&spa_namespace_lock);
6906		spa_async_suspend(spa);
6907		mutex_enter(&spa_namespace_lock);
6908		spa_close(spa, FTAG);
6909
6910		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6911			spa_unload(spa);
6912			spa_deactivate(spa);
6913		}
6914		spa_remove(spa);
6915	}
6916	mutex_exit(&spa_namespace_lock);
6917}
6918
6919vdev_t *
6920spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6921{
6922	vdev_t *vd;
6923	int i;
6924
6925	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6926		return (vd);
6927
6928	if (aux) {
6929		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6930			vd = spa->spa_l2cache.sav_vdevs[i];
6931			if (vd->vdev_guid == guid)
6932				return (vd);
6933		}
6934
6935		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6936			vd = spa->spa_spares.sav_vdevs[i];
6937			if (vd->vdev_guid == guid)
6938				return (vd);
6939		}
6940	}
6941
6942	return (NULL);
6943}
6944
6945void
6946spa_upgrade(spa_t *spa, uint64_t version)
6947{
6948	ASSERT(spa_writeable(spa));
6949
6950	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6951
6952	/*
6953	 * This should only be called for a non-faulted pool, and since a
6954	 * future version would result in an unopenable pool, this shouldn't be
6955	 * possible.
6956	 */
6957	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6958	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6959
6960	spa->spa_uberblock.ub_version = version;
6961	vdev_config_dirty(spa->spa_root_vdev);
6962
6963	spa_config_exit(spa, SCL_ALL, FTAG);
6964
6965	txg_wait_synced(spa_get_dsl(spa), 0);
6966}
6967
6968boolean_t
6969spa_has_spare(spa_t *spa, uint64_t guid)
6970{
6971	int i;
6972	uint64_t spareguid;
6973	spa_aux_vdev_t *sav = &spa->spa_spares;
6974
6975	for (i = 0; i < sav->sav_count; i++)
6976		if (sav->sav_vdevs[i]->vdev_guid == guid)
6977			return (B_TRUE);
6978
6979	for (i = 0; i < sav->sav_npending; i++) {
6980		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6981		    &spareguid) == 0 && spareguid == guid)
6982			return (B_TRUE);
6983	}
6984
6985	return (B_FALSE);
6986}
6987
6988/*
6989 * Check if a pool has an active shared spare device.
6990 * Note: reference count of an active spare is 2, as a spare and as a replace
6991 */
6992static boolean_t
6993spa_has_active_shared_spare(spa_t *spa)
6994{
6995	int i, refcnt;
6996	uint64_t pool;
6997	spa_aux_vdev_t *sav = &spa->spa_spares;
6998
6999	for (i = 0; i < sav->sav_count; i++) {
7000		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7001		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7002		    refcnt > 2)
7003			return (B_TRUE);
7004	}
7005
7006	return (B_FALSE);
7007}
7008
7009/*
7010 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7011 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7012 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7013 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7014 * or zdb as real changes.
7015 */
7016void
7017spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7018{
7019#ifdef _KERNEL
7020	sysevent_t		*ev;
7021	sysevent_attr_list_t	*attr = NULL;
7022	sysevent_value_t	value;
7023	sysevent_id_t		eid;
7024
7025	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7026	    SE_SLEEP);
7027
7028	value.value_type = SE_DATA_TYPE_STRING;
7029	value.value.sv_string = spa_name(spa);
7030	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7031		goto done;
7032
7033	value.value_type = SE_DATA_TYPE_UINT64;
7034	value.value.sv_uint64 = spa_guid(spa);
7035	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7036		goto done;
7037
7038	if (vd) {
7039		value.value_type = SE_DATA_TYPE_UINT64;
7040		value.value.sv_uint64 = vd->vdev_guid;
7041		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7042		    SE_SLEEP) != 0)
7043			goto done;
7044
7045		if (vd->vdev_path) {
7046			value.value_type = SE_DATA_TYPE_STRING;
7047			value.value.sv_string = vd->vdev_path;
7048			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7049			    &value, SE_SLEEP) != 0)
7050				goto done;
7051		}
7052	}
7053
7054	if (sysevent_attach_attributes(ev, attr) != 0)
7055		goto done;
7056	attr = NULL;
7057
7058	(void) log_sysevent(ev, SE_SLEEP, &eid);
7059
7060done:
7061	if (attr)
7062		sysevent_free_attr(attr);
7063	sysevent_free(ev);
7064#endif
7065}
7066