spa.c revision 294334
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31/*
32 * SPA: Storage Pool Allocator
33 *
34 * This file contains all the routines used when modifying on-disk SPA state.
35 * This includes opening, importing, destroying, exporting a pool, and syncing a
36 * pool.
37 */
38
39#include <sys/zfs_context.h>
40#include <sys/fm/fs/zfs.h>
41#include <sys/spa_impl.h>
42#include <sys/zio.h>
43#include <sys/zio_checksum.h>
44#include <sys/dmu.h>
45#include <sys/dmu_tx.h>
46#include <sys/zap.h>
47#include <sys/zil.h>
48#include <sys/ddt.h>
49#include <sys/vdev_impl.h>
50#include <sys/metaslab.h>
51#include <sys/metaslab_impl.h>
52#include <sys/uberblock_impl.h>
53#include <sys/txg.h>
54#include <sys/avl.h>
55#include <sys/dmu_traverse.h>
56#include <sys/dmu_objset.h>
57#include <sys/unique.h>
58#include <sys/dsl_pool.h>
59#include <sys/dsl_dataset.h>
60#include <sys/dsl_dir.h>
61#include <sys/dsl_prop.h>
62#include <sys/dsl_synctask.h>
63#include <sys/fs/zfs.h>
64#include <sys/arc.h>
65#include <sys/callb.h>
66#include <sys/spa_boot.h>
67#include <sys/zfs_ioctl.h>
68#include <sys/dsl_scan.h>
69#include <sys/dmu_send.h>
70#include <sys/dsl_destroy.h>
71#include <sys/dsl_userhold.h>
72#include <sys/zfeature.h>
73#include <sys/zvol.h>
74#include <sys/trim_map.h>
75
76#ifdef	_KERNEL
77#include <sys/callb.h>
78#include <sys/cpupart.h>
79#include <sys/zone.h>
80#endif	/* _KERNEL */
81
82#include "zfs_prop.h"
83#include "zfs_comutil.h"
84
85/* Check hostid on import? */
86static int check_hostid = 1;
87
88SYSCTL_DECL(_vfs_zfs);
89TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
90SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
91    "Check hostid on import?");
92
93/*
94 * The interval, in seconds, at which failed configuration cache file writes
95 * should be retried.
96 */
97static int zfs_ccw_retry_interval = 300;
98
99typedef enum zti_modes {
100	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
101	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
102	ZTI_MODE_NULL,			/* don't create a taskq */
103	ZTI_NMODES
104} zti_modes_t;
105
106#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
107#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
108#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
109
110#define	ZTI_N(n)	ZTI_P(n, 1)
111#define	ZTI_ONE		ZTI_N(1)
112
113typedef struct zio_taskq_info {
114	zti_modes_t zti_mode;
115	uint_t zti_value;
116	uint_t zti_count;
117} zio_taskq_info_t;
118
119static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
120	"issue", "issue_high", "intr", "intr_high"
121};
122
123/*
124 * This table defines the taskq settings for each ZFS I/O type. When
125 * initializing a pool, we use this table to create an appropriately sized
126 * taskq. Some operations are low volume and therefore have a small, static
127 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
128 * macros. Other operations process a large amount of data; the ZTI_BATCH
129 * macro causes us to create a taskq oriented for throughput. Some operations
130 * are so high frequency and short-lived that the taskq itself can become a a
131 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
132 * additional degree of parallelism specified by the number of threads per-
133 * taskq and the number of taskqs; when dispatching an event in this case, the
134 * particular taskq is chosen at random.
135 *
136 * The different taskq priorities are to handle the different contexts (issue
137 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
138 * need to be handled with minimum delay.
139 */
140const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
141	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
142	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
143	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
144	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
145	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
148};
149
150static void spa_sync_version(void *arg, dmu_tx_t *tx);
151static void spa_sync_props(void *arg, dmu_tx_t *tx);
152static boolean_t spa_has_active_shared_spare(spa_t *spa);
153static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
154    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
155    char **ereport);
156static void spa_vdev_resilver_done(spa_t *spa);
157
158uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
159#ifdef PSRSET_BIND
160id_t		zio_taskq_psrset_bind = PS_NONE;
161#endif
162#ifdef SYSDC
163boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
164#endif
165uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
166
167boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
168extern int	zfs_sync_pass_deferred_free;
169
170#ifndef illumos
171extern void spa_deadman(void *arg);
172#endif
173
174/*
175 * This (illegal) pool name is used when temporarily importing a spa_t in order
176 * to get the vdev stats associated with the imported devices.
177 */
178#define	TRYIMPORT_NAME	"$import"
179
180/*
181 * ==========================================================================
182 * SPA properties routines
183 * ==========================================================================
184 */
185
186/*
187 * Add a (source=src, propname=propval) list to an nvlist.
188 */
189static void
190spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
191    uint64_t intval, zprop_source_t src)
192{
193	const char *propname = zpool_prop_to_name(prop);
194	nvlist_t *propval;
195
196	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
197	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
198
199	if (strval != NULL)
200		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
201	else
202		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
203
204	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
205	nvlist_free(propval);
206}
207
208/*
209 * Get property values from the spa configuration.
210 */
211static void
212spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
213{
214	vdev_t *rvd = spa->spa_root_vdev;
215	dsl_pool_t *pool = spa->spa_dsl_pool;
216	uint64_t size, alloc, cap, version;
217	zprop_source_t src = ZPROP_SRC_NONE;
218	spa_config_dirent_t *dp;
219	metaslab_class_t *mc = spa_normal_class(spa);
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
233		    metaslab_class_fragmentation(mc), src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
235		    metaslab_class_expandable_space(mc), src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
237		    (spa_mode(spa) == FREAD), src);
238
239		cap = (size == 0) ? 0 : (alloc * 100 / size);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
241
242		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
243		    ddt_get_pool_dedup_ratio(spa), src);
244
245		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
246		    rvd->vdev_state, src);
247
248		version = spa_version(spa);
249		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
250			src = ZPROP_SRC_DEFAULT;
251		else
252			src = ZPROP_SRC_LOCAL;
253		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
254	}
255
256	if (pool != NULL) {
257		/*
258		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
259		 * when opening pools before this version freedir will be NULL.
260		 */
261		if (pool->dp_free_dir != NULL) {
262			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
263			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
264			    src);
265		} else {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
267			    NULL, 0, src);
268		}
269
270		if (pool->dp_leak_dir != NULL) {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
272			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
273			    src);
274		} else {
275			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
276			    NULL, 0, src);
277		}
278	}
279
280	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
281
282	if (spa->spa_comment != NULL) {
283		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
284		    0, ZPROP_SRC_LOCAL);
285	}
286
287	if (spa->spa_root != NULL)
288		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
289		    0, ZPROP_SRC_LOCAL);
290
291	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
292		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
293		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
294	} else {
295		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
296		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
297	}
298
299	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
300		if (dp->scd_path == NULL) {
301			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
302			    "none", 0, ZPROP_SRC_LOCAL);
303		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
304			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
305			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
306		}
307	}
308}
309
310/*
311 * Get zpool property values.
312 */
313int
314spa_prop_get(spa_t *spa, nvlist_t **nvp)
315{
316	objset_t *mos = spa->spa_meta_objset;
317	zap_cursor_t zc;
318	zap_attribute_t za;
319	int err;
320
321	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
322
323	mutex_enter(&spa->spa_props_lock);
324
325	/*
326	 * Get properties from the spa config.
327	 */
328	spa_prop_get_config(spa, nvp);
329
330	/* If no pool property object, no more prop to get. */
331	if (mos == NULL || spa->spa_pool_props_object == 0) {
332		mutex_exit(&spa->spa_props_lock);
333		return (0);
334	}
335
336	/*
337	 * Get properties from the MOS pool property object.
338	 */
339	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
340	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
341	    zap_cursor_advance(&zc)) {
342		uint64_t intval = 0;
343		char *strval = NULL;
344		zprop_source_t src = ZPROP_SRC_DEFAULT;
345		zpool_prop_t prop;
346
347		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
348			continue;
349
350		switch (za.za_integer_length) {
351		case 8:
352			/* integer property */
353			if (za.za_first_integer !=
354			    zpool_prop_default_numeric(prop))
355				src = ZPROP_SRC_LOCAL;
356
357			if (prop == ZPOOL_PROP_BOOTFS) {
358				dsl_pool_t *dp;
359				dsl_dataset_t *ds = NULL;
360
361				dp = spa_get_dsl(spa);
362				dsl_pool_config_enter(dp, FTAG);
363				if (err = dsl_dataset_hold_obj(dp,
364				    za.za_first_integer, FTAG, &ds)) {
365					dsl_pool_config_exit(dp, FTAG);
366					break;
367				}
368
369				strval = kmem_alloc(
370				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
371				    KM_SLEEP);
372				dsl_dataset_name(ds, strval);
373				dsl_dataset_rele(ds, FTAG);
374				dsl_pool_config_exit(dp, FTAG);
375			} else {
376				strval = NULL;
377				intval = za.za_first_integer;
378			}
379
380			spa_prop_add_list(*nvp, prop, strval, intval, src);
381
382			if (strval != NULL)
383				kmem_free(strval,
384				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
385
386			break;
387
388		case 1:
389			/* string property */
390			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
391			err = zap_lookup(mos, spa->spa_pool_props_object,
392			    za.za_name, 1, za.za_num_integers, strval);
393			if (err) {
394				kmem_free(strval, za.za_num_integers);
395				break;
396			}
397			spa_prop_add_list(*nvp, prop, strval, 0, src);
398			kmem_free(strval, za.za_num_integers);
399			break;
400
401		default:
402			break;
403		}
404	}
405	zap_cursor_fini(&zc);
406	mutex_exit(&spa->spa_props_lock);
407out:
408	if (err && err != ENOENT) {
409		nvlist_free(*nvp);
410		*nvp = NULL;
411		return (err);
412	}
413
414	return (0);
415}
416
417/*
418 * Validate the given pool properties nvlist and modify the list
419 * for the property values to be set.
420 */
421static int
422spa_prop_validate(spa_t *spa, nvlist_t *props)
423{
424	nvpair_t *elem;
425	int error = 0, reset_bootfs = 0;
426	uint64_t objnum = 0;
427	boolean_t has_feature = B_FALSE;
428
429	elem = NULL;
430	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
431		uint64_t intval;
432		char *strval, *slash, *check, *fname;
433		const char *propname = nvpair_name(elem);
434		zpool_prop_t prop = zpool_name_to_prop(propname);
435
436		switch (prop) {
437		case ZPROP_INVAL:
438			if (!zpool_prop_feature(propname)) {
439				error = SET_ERROR(EINVAL);
440				break;
441			}
442
443			/*
444			 * Sanitize the input.
445			 */
446			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
447				error = SET_ERROR(EINVAL);
448				break;
449			}
450
451			if (nvpair_value_uint64(elem, &intval) != 0) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (intval != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			fname = strchr(propname, '@') + 1;
462			if (zfeature_lookup_name(fname, NULL) != 0) {
463				error = SET_ERROR(EINVAL);
464				break;
465			}
466
467			has_feature = B_TRUE;
468			break;
469
470		case ZPOOL_PROP_VERSION:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error &&
473			    (intval < spa_version(spa) ||
474			    intval > SPA_VERSION_BEFORE_FEATURES ||
475			    has_feature))
476				error = SET_ERROR(EINVAL);
477			break;
478
479		case ZPOOL_PROP_DELEGATION:
480		case ZPOOL_PROP_AUTOREPLACE:
481		case ZPOOL_PROP_LISTSNAPS:
482		case ZPOOL_PROP_AUTOEXPAND:
483			error = nvpair_value_uint64(elem, &intval);
484			if (!error && intval > 1)
485				error = SET_ERROR(EINVAL);
486			break;
487
488		case ZPOOL_PROP_BOOTFS:
489			/*
490			 * If the pool version is less than SPA_VERSION_BOOTFS,
491			 * or the pool is still being created (version == 0),
492			 * the bootfs property cannot be set.
493			 */
494			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
495				error = SET_ERROR(ENOTSUP);
496				break;
497			}
498
499			/*
500			 * Make sure the vdev config is bootable
501			 */
502			if (!vdev_is_bootable(spa->spa_root_vdev)) {
503				error = SET_ERROR(ENOTSUP);
504				break;
505			}
506
507			reset_bootfs = 1;
508
509			error = nvpair_value_string(elem, &strval);
510
511			if (!error) {
512				objset_t *os;
513				uint64_t propval;
514
515				if (strval == NULL || strval[0] == '\0') {
516					objnum = zpool_prop_default_numeric(
517					    ZPOOL_PROP_BOOTFS);
518					break;
519				}
520
521				if (error = dmu_objset_hold(strval, FTAG, &os))
522					break;
523
524				/*
525				 * Must be ZPL, and its property settings
526				 * must be supported by GRUB (compression
527				 * is not gzip, and large blocks are not used).
528				 */
529
530				if (dmu_objset_type(os) != DMU_OST_ZFS) {
531					error = SET_ERROR(ENOTSUP);
532				} else if ((error =
533				    dsl_prop_get_int_ds(dmu_objset_ds(os),
534				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
535				    &propval)) == 0 &&
536				    !BOOTFS_COMPRESS_VALID(propval)) {
537					error = SET_ERROR(ENOTSUP);
538				} else if ((error =
539				    dsl_prop_get_int_ds(dmu_objset_ds(os),
540				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
541				    &propval)) == 0 &&
542				    propval > SPA_OLD_MAXBLOCKSIZE) {
543					error = SET_ERROR(ENOTSUP);
544				} else {
545					objnum = dmu_objset_id(os);
546				}
547				dmu_objset_rele(os, FTAG);
548			}
549			break;
550
551		case ZPOOL_PROP_FAILUREMODE:
552			error = nvpair_value_uint64(elem, &intval);
553			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
554			    intval > ZIO_FAILURE_MODE_PANIC))
555				error = SET_ERROR(EINVAL);
556
557			/*
558			 * This is a special case which only occurs when
559			 * the pool has completely failed. This allows
560			 * the user to change the in-core failmode property
561			 * without syncing it out to disk (I/Os might
562			 * currently be blocked). We do this by returning
563			 * EIO to the caller (spa_prop_set) to trick it
564			 * into thinking we encountered a property validation
565			 * error.
566			 */
567			if (!error && spa_suspended(spa)) {
568				spa->spa_failmode = intval;
569				error = SET_ERROR(EIO);
570			}
571			break;
572
573		case ZPOOL_PROP_CACHEFILE:
574			if ((error = nvpair_value_string(elem, &strval)) != 0)
575				break;
576
577			if (strval[0] == '\0')
578				break;
579
580			if (strcmp(strval, "none") == 0)
581				break;
582
583			if (strval[0] != '/') {
584				error = SET_ERROR(EINVAL);
585				break;
586			}
587
588			slash = strrchr(strval, '/');
589			ASSERT(slash != NULL);
590
591			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
592			    strcmp(slash, "/..") == 0)
593				error = SET_ERROR(EINVAL);
594			break;
595
596		case ZPOOL_PROP_COMMENT:
597			if ((error = nvpair_value_string(elem, &strval)) != 0)
598				break;
599			for (check = strval; *check != '\0'; check++) {
600				/*
601				 * The kernel doesn't have an easy isprint()
602				 * check.  For this kernel check, we merely
603				 * check ASCII apart from DEL.  Fix this if
604				 * there is an easy-to-use kernel isprint().
605				 */
606				if (*check >= 0x7f) {
607					error = SET_ERROR(EINVAL);
608					break;
609				}
610			}
611			if (strlen(strval) > ZPROP_MAX_COMMENT)
612				error = E2BIG;
613			break;
614
615		case ZPOOL_PROP_DEDUPDITTO:
616			if (spa_version(spa) < SPA_VERSION_DEDUP)
617				error = SET_ERROR(ENOTSUP);
618			else
619				error = nvpair_value_uint64(elem, &intval);
620			if (error == 0 &&
621			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
622				error = SET_ERROR(EINVAL);
623			break;
624		}
625
626		if (error)
627			break;
628	}
629
630	if (!error && reset_bootfs) {
631		error = nvlist_remove(props,
632		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
633
634		if (!error) {
635			error = nvlist_add_uint64(props,
636			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
637		}
638	}
639
640	return (error);
641}
642
643void
644spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
645{
646	char *cachefile;
647	spa_config_dirent_t *dp;
648
649	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
650	    &cachefile) != 0)
651		return;
652
653	dp = kmem_alloc(sizeof (spa_config_dirent_t),
654	    KM_SLEEP);
655
656	if (cachefile[0] == '\0')
657		dp->scd_path = spa_strdup(spa_config_path);
658	else if (strcmp(cachefile, "none") == 0)
659		dp->scd_path = NULL;
660	else
661		dp->scd_path = spa_strdup(cachefile);
662
663	list_insert_head(&spa->spa_config_list, dp);
664	if (need_sync)
665		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
666}
667
668int
669spa_prop_set(spa_t *spa, nvlist_t *nvp)
670{
671	int error;
672	nvpair_t *elem = NULL;
673	boolean_t need_sync = B_FALSE;
674
675	if ((error = spa_prop_validate(spa, nvp)) != 0)
676		return (error);
677
678	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
679		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
680
681		if (prop == ZPOOL_PROP_CACHEFILE ||
682		    prop == ZPOOL_PROP_ALTROOT ||
683		    prop == ZPOOL_PROP_READONLY)
684			continue;
685
686		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
687			uint64_t ver;
688
689			if (prop == ZPOOL_PROP_VERSION) {
690				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
691			} else {
692				ASSERT(zpool_prop_feature(nvpair_name(elem)));
693				ver = SPA_VERSION_FEATURES;
694				need_sync = B_TRUE;
695			}
696
697			/* Save time if the version is already set. */
698			if (ver == spa_version(spa))
699				continue;
700
701			/*
702			 * In addition to the pool directory object, we might
703			 * create the pool properties object, the features for
704			 * read object, the features for write object, or the
705			 * feature descriptions object.
706			 */
707			error = dsl_sync_task(spa->spa_name, NULL,
708			    spa_sync_version, &ver,
709			    6, ZFS_SPACE_CHECK_RESERVED);
710			if (error)
711				return (error);
712			continue;
713		}
714
715		need_sync = B_TRUE;
716		break;
717	}
718
719	if (need_sync) {
720		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
721		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
722	}
723
724	return (0);
725}
726
727/*
728 * If the bootfs property value is dsobj, clear it.
729 */
730void
731spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
732{
733	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
734		VERIFY(zap_remove(spa->spa_meta_objset,
735		    spa->spa_pool_props_object,
736		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
737		spa->spa_bootfs = 0;
738	}
739}
740
741/*ARGSUSED*/
742static int
743spa_change_guid_check(void *arg, dmu_tx_t *tx)
744{
745	uint64_t *newguid = arg;
746	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
747	vdev_t *rvd = spa->spa_root_vdev;
748	uint64_t vdev_state;
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	vdev_state = rvd->vdev_state;
752	spa_config_exit(spa, SCL_STATE, FTAG);
753
754	if (vdev_state != VDEV_STATE_HEALTHY)
755		return (SET_ERROR(ENXIO));
756
757	ASSERT3U(spa_guid(spa), !=, *newguid);
758
759	return (0);
760}
761
762static void
763spa_change_guid_sync(void *arg, dmu_tx_t *tx)
764{
765	uint64_t *newguid = arg;
766	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
767	uint64_t oldguid;
768	vdev_t *rvd = spa->spa_root_vdev;
769
770	oldguid = spa_guid(spa);
771
772	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
773	rvd->vdev_guid = *newguid;
774	rvd->vdev_guid_sum += (*newguid - oldguid);
775	vdev_config_dirty(rvd);
776	spa_config_exit(spa, SCL_STATE, FTAG);
777
778	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
779	    oldguid, *newguid);
780}
781
782/*
783 * Change the GUID for the pool.  This is done so that we can later
784 * re-import a pool built from a clone of our own vdevs.  We will modify
785 * the root vdev's guid, our own pool guid, and then mark all of our
786 * vdevs dirty.  Note that we must make sure that all our vdevs are
787 * online when we do this, or else any vdevs that weren't present
788 * would be orphaned from our pool.  We are also going to issue a
789 * sysevent to update any watchers.
790 */
791int
792spa_change_guid(spa_t *spa)
793{
794	int error;
795	uint64_t guid;
796
797	mutex_enter(&spa->spa_vdev_top_lock);
798	mutex_enter(&spa_namespace_lock);
799	guid = spa_generate_guid(NULL);
800
801	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
802	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
803
804	if (error == 0) {
805		spa_config_sync(spa, B_FALSE, B_TRUE);
806		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
807	}
808
809	mutex_exit(&spa_namespace_lock);
810	mutex_exit(&spa->spa_vdev_top_lock);
811
812	return (error);
813}
814
815/*
816 * ==========================================================================
817 * SPA state manipulation (open/create/destroy/import/export)
818 * ==========================================================================
819 */
820
821static int
822spa_error_entry_compare(const void *a, const void *b)
823{
824	spa_error_entry_t *sa = (spa_error_entry_t *)a;
825	spa_error_entry_t *sb = (spa_error_entry_t *)b;
826	int ret;
827
828	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
829	    sizeof (zbookmark_phys_t));
830
831	if (ret < 0)
832		return (-1);
833	else if (ret > 0)
834		return (1);
835	else
836		return (0);
837}
838
839/*
840 * Utility function which retrieves copies of the current logs and
841 * re-initializes them in the process.
842 */
843void
844spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
845{
846	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
847
848	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
849	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
850
851	avl_create(&spa->spa_errlist_scrub,
852	    spa_error_entry_compare, sizeof (spa_error_entry_t),
853	    offsetof(spa_error_entry_t, se_avl));
854	avl_create(&spa->spa_errlist_last,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857}
858
859static void
860spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
861{
862	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
863	enum zti_modes mode = ztip->zti_mode;
864	uint_t value = ztip->zti_value;
865	uint_t count = ztip->zti_count;
866	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
867	char name[32];
868	uint_t flags = 0;
869	boolean_t batch = B_FALSE;
870
871	if (mode == ZTI_MODE_NULL) {
872		tqs->stqs_count = 0;
873		tqs->stqs_taskq = NULL;
874		return;
875	}
876
877	ASSERT3U(count, >, 0);
878
879	tqs->stqs_count = count;
880	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
881
882	switch (mode) {
883	case ZTI_MODE_FIXED:
884		ASSERT3U(value, >=, 1);
885		value = MAX(value, 1);
886		break;
887
888	case ZTI_MODE_BATCH:
889		batch = B_TRUE;
890		flags |= TASKQ_THREADS_CPU_PCT;
891		value = zio_taskq_batch_pct;
892		break;
893
894	default:
895		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
896		    "spa_activate()",
897		    zio_type_name[t], zio_taskq_types[q], mode, value);
898		break;
899	}
900
901	for (uint_t i = 0; i < count; i++) {
902		taskq_t *tq;
903
904		if (count > 1) {
905			(void) snprintf(name, sizeof (name), "%s_%s_%u",
906			    zio_type_name[t], zio_taskq_types[q], i);
907		} else {
908			(void) snprintf(name, sizeof (name), "%s_%s",
909			    zio_type_name[t], zio_taskq_types[q]);
910		}
911
912#ifdef SYSDC
913		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
914			if (batch)
915				flags |= TASKQ_DC_BATCH;
916
917			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
918			    spa->spa_proc, zio_taskq_basedc, flags);
919		} else {
920#endif
921			pri_t pri = maxclsyspri;
922			/*
923			 * The write issue taskq can be extremely CPU
924			 * intensive.  Run it at slightly lower priority
925			 * than the other taskqs.
926			 */
927			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
928				pri--;
929
930			tq = taskq_create_proc(name, value, pri, 50,
931			    INT_MAX, spa->spa_proc, flags);
932#ifdef SYSDC
933		}
934#endif
935
936		tqs->stqs_taskq[i] = tq;
937	}
938}
939
940static void
941spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
942{
943	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
944
945	if (tqs->stqs_taskq == NULL) {
946		ASSERT0(tqs->stqs_count);
947		return;
948	}
949
950	for (uint_t i = 0; i < tqs->stqs_count; i++) {
951		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
952		taskq_destroy(tqs->stqs_taskq[i]);
953	}
954
955	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
956	tqs->stqs_taskq = NULL;
957}
958
959/*
960 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
961 * Note that a type may have multiple discrete taskqs to avoid lock contention
962 * on the taskq itself. In that case we choose which taskq at random by using
963 * the low bits of gethrtime().
964 */
965void
966spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
967    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
968{
969	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970	taskq_t *tq;
971
972	ASSERT3P(tqs->stqs_taskq, !=, NULL);
973	ASSERT3U(tqs->stqs_count, !=, 0);
974
975	if (tqs->stqs_count == 1) {
976		tq = tqs->stqs_taskq[0];
977	} else {
978#ifdef _KERNEL
979		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
980#else
981		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
982#endif
983	}
984
985	taskq_dispatch_ent(tq, func, arg, flags, ent);
986}
987
988static void
989spa_create_zio_taskqs(spa_t *spa)
990{
991	for (int t = 0; t < ZIO_TYPES; t++) {
992		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
993			spa_taskqs_init(spa, t, q);
994		}
995	}
996}
997
998#ifdef _KERNEL
999#ifdef SPA_PROCESS
1000static void
1001spa_thread(void *arg)
1002{
1003	callb_cpr_t cprinfo;
1004
1005	spa_t *spa = arg;
1006	user_t *pu = PTOU(curproc);
1007
1008	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1009	    spa->spa_name);
1010
1011	ASSERT(curproc != &p0);
1012	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1013	    "zpool-%s", spa->spa_name);
1014	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1015
1016#ifdef PSRSET_BIND
1017	/* bind this thread to the requested psrset */
1018	if (zio_taskq_psrset_bind != PS_NONE) {
1019		pool_lock();
1020		mutex_enter(&cpu_lock);
1021		mutex_enter(&pidlock);
1022		mutex_enter(&curproc->p_lock);
1023
1024		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1025		    0, NULL, NULL) == 0)  {
1026			curthread->t_bind_pset = zio_taskq_psrset_bind;
1027		} else {
1028			cmn_err(CE_WARN,
1029			    "Couldn't bind process for zfs pool \"%s\" to "
1030			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1031		}
1032
1033		mutex_exit(&curproc->p_lock);
1034		mutex_exit(&pidlock);
1035		mutex_exit(&cpu_lock);
1036		pool_unlock();
1037	}
1038#endif
1039
1040#ifdef SYSDC
1041	if (zio_taskq_sysdc) {
1042		sysdc_thread_enter(curthread, 100, 0);
1043	}
1044#endif
1045
1046	spa->spa_proc = curproc;
1047	spa->spa_did = curthread->t_did;
1048
1049	spa_create_zio_taskqs(spa);
1050
1051	mutex_enter(&spa->spa_proc_lock);
1052	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1053
1054	spa->spa_proc_state = SPA_PROC_ACTIVE;
1055	cv_broadcast(&spa->spa_proc_cv);
1056
1057	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1058	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1059		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1060	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1061
1062	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1063	spa->spa_proc_state = SPA_PROC_GONE;
1064	spa->spa_proc = &p0;
1065	cv_broadcast(&spa->spa_proc_cv);
1066	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1067
1068	mutex_enter(&curproc->p_lock);
1069	lwp_exit();
1070}
1071#endif	/* SPA_PROCESS */
1072#endif
1073
1074/*
1075 * Activate an uninitialized pool.
1076 */
1077static void
1078spa_activate(spa_t *spa, int mode)
1079{
1080	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1081
1082	spa->spa_state = POOL_STATE_ACTIVE;
1083	spa->spa_mode = mode;
1084
1085	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1086	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1087
1088	/* Try to create a covering process */
1089	mutex_enter(&spa->spa_proc_lock);
1090	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1091	ASSERT(spa->spa_proc == &p0);
1092	spa->spa_did = 0;
1093
1094#ifdef SPA_PROCESS
1095	/* Only create a process if we're going to be around a while. */
1096	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1097		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1098		    NULL, 0) == 0) {
1099			spa->spa_proc_state = SPA_PROC_CREATED;
1100			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1101				cv_wait(&spa->spa_proc_cv,
1102				    &spa->spa_proc_lock);
1103			}
1104			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1105			ASSERT(spa->spa_proc != &p0);
1106			ASSERT(spa->spa_did != 0);
1107		} else {
1108#ifdef _KERNEL
1109			cmn_err(CE_WARN,
1110			    "Couldn't create process for zfs pool \"%s\"\n",
1111			    spa->spa_name);
1112#endif
1113		}
1114	}
1115#endif	/* SPA_PROCESS */
1116	mutex_exit(&spa->spa_proc_lock);
1117
1118	/* If we didn't create a process, we need to create our taskqs. */
1119	ASSERT(spa->spa_proc == &p0);
1120	if (spa->spa_proc == &p0) {
1121		spa_create_zio_taskqs(spa);
1122	}
1123
1124	/*
1125	 * Start TRIM thread.
1126	 */
1127	trim_thread_create(spa);
1128
1129	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1130	    offsetof(vdev_t, vdev_config_dirty_node));
1131	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1132	    offsetof(objset_t, os_evicting_node));
1133	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_state_dirty_node));
1135
1136	txg_list_create(&spa->spa_vdev_txg_list,
1137	    offsetof(struct vdev, vdev_txg_node));
1138
1139	avl_create(&spa->spa_errlist_scrub,
1140	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1141	    offsetof(spa_error_entry_t, se_avl));
1142	avl_create(&spa->spa_errlist_last,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145}
1146
1147/*
1148 * Opposite of spa_activate().
1149 */
1150static void
1151spa_deactivate(spa_t *spa)
1152{
1153	ASSERT(spa->spa_sync_on == B_FALSE);
1154	ASSERT(spa->spa_dsl_pool == NULL);
1155	ASSERT(spa->spa_root_vdev == NULL);
1156	ASSERT(spa->spa_async_zio_root == NULL);
1157	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1158
1159	/*
1160	 * Stop TRIM thread in case spa_unload() wasn't called directly
1161	 * before spa_deactivate().
1162	 */
1163	trim_thread_destroy(spa);
1164
1165	spa_evicting_os_wait(spa);
1166
1167	txg_list_destroy(&spa->spa_vdev_txg_list);
1168
1169	list_destroy(&spa->spa_config_dirty_list);
1170	list_destroy(&spa->spa_evicting_os_list);
1171	list_destroy(&spa->spa_state_dirty_list);
1172
1173	for (int t = 0; t < ZIO_TYPES; t++) {
1174		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1175			spa_taskqs_fini(spa, t, q);
1176		}
1177	}
1178
1179	metaslab_class_destroy(spa->spa_normal_class);
1180	spa->spa_normal_class = NULL;
1181
1182	metaslab_class_destroy(spa->spa_log_class);
1183	spa->spa_log_class = NULL;
1184
1185	/*
1186	 * If this was part of an import or the open otherwise failed, we may
1187	 * still have errors left in the queues.  Empty them just in case.
1188	 */
1189	spa_errlog_drain(spa);
1190
1191	avl_destroy(&spa->spa_errlist_scrub);
1192	avl_destroy(&spa->spa_errlist_last);
1193
1194	spa->spa_state = POOL_STATE_UNINITIALIZED;
1195
1196	mutex_enter(&spa->spa_proc_lock);
1197	if (spa->spa_proc_state != SPA_PROC_NONE) {
1198		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1199		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1200		cv_broadcast(&spa->spa_proc_cv);
1201		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1202			ASSERT(spa->spa_proc != &p0);
1203			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1204		}
1205		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1206		spa->spa_proc_state = SPA_PROC_NONE;
1207	}
1208	ASSERT(spa->spa_proc == &p0);
1209	mutex_exit(&spa->spa_proc_lock);
1210
1211#ifdef SPA_PROCESS
1212	/*
1213	 * We want to make sure spa_thread() has actually exited the ZFS
1214	 * module, so that the module can't be unloaded out from underneath
1215	 * it.
1216	 */
1217	if (spa->spa_did != 0) {
1218		thread_join(spa->spa_did);
1219		spa->spa_did = 0;
1220	}
1221#endif	/* SPA_PROCESS */
1222}
1223
1224/*
1225 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1226 * will create all the necessary vdevs in the appropriate layout, with each vdev
1227 * in the CLOSED state.  This will prep the pool before open/creation/import.
1228 * All vdev validation is done by the vdev_alloc() routine.
1229 */
1230static int
1231spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1232    uint_t id, int atype)
1233{
1234	nvlist_t **child;
1235	uint_t children;
1236	int error;
1237
1238	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1239		return (error);
1240
1241	if ((*vdp)->vdev_ops->vdev_op_leaf)
1242		return (0);
1243
1244	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1245	    &child, &children);
1246
1247	if (error == ENOENT)
1248		return (0);
1249
1250	if (error) {
1251		vdev_free(*vdp);
1252		*vdp = NULL;
1253		return (SET_ERROR(EINVAL));
1254	}
1255
1256	for (int c = 0; c < children; c++) {
1257		vdev_t *vd;
1258		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1259		    atype)) != 0) {
1260			vdev_free(*vdp);
1261			*vdp = NULL;
1262			return (error);
1263		}
1264	}
1265
1266	ASSERT(*vdp != NULL);
1267
1268	return (0);
1269}
1270
1271/*
1272 * Opposite of spa_load().
1273 */
1274static void
1275spa_unload(spa_t *spa)
1276{
1277	int i;
1278
1279	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1280
1281	/*
1282	 * Stop TRIM thread.
1283	 */
1284	trim_thread_destroy(spa);
1285
1286	/*
1287	 * Stop async tasks.
1288	 */
1289	spa_async_suspend(spa);
1290
1291	/*
1292	 * Stop syncing.
1293	 */
1294	if (spa->spa_sync_on) {
1295		txg_sync_stop(spa->spa_dsl_pool);
1296		spa->spa_sync_on = B_FALSE;
1297	}
1298
1299	/*
1300	 * Wait for any outstanding async I/O to complete.
1301	 */
1302	if (spa->spa_async_zio_root != NULL) {
1303		for (int i = 0; i < max_ncpus; i++)
1304			(void) zio_wait(spa->spa_async_zio_root[i]);
1305		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1306		spa->spa_async_zio_root = NULL;
1307	}
1308
1309	bpobj_close(&spa->spa_deferred_bpobj);
1310
1311	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1312
1313	/*
1314	 * Close all vdevs.
1315	 */
1316	if (spa->spa_root_vdev)
1317		vdev_free(spa->spa_root_vdev);
1318	ASSERT(spa->spa_root_vdev == NULL);
1319
1320	/*
1321	 * Close the dsl pool.
1322	 */
1323	if (spa->spa_dsl_pool) {
1324		dsl_pool_close(spa->spa_dsl_pool);
1325		spa->spa_dsl_pool = NULL;
1326		spa->spa_meta_objset = NULL;
1327	}
1328
1329	ddt_unload(spa);
1330
1331
1332	/*
1333	 * Drop and purge level 2 cache
1334	 */
1335	spa_l2cache_drop(spa);
1336
1337	for (i = 0; i < spa->spa_spares.sav_count; i++)
1338		vdev_free(spa->spa_spares.sav_vdevs[i]);
1339	if (spa->spa_spares.sav_vdevs) {
1340		kmem_free(spa->spa_spares.sav_vdevs,
1341		    spa->spa_spares.sav_count * sizeof (void *));
1342		spa->spa_spares.sav_vdevs = NULL;
1343	}
1344	if (spa->spa_spares.sav_config) {
1345		nvlist_free(spa->spa_spares.sav_config);
1346		spa->spa_spares.sav_config = NULL;
1347	}
1348	spa->spa_spares.sav_count = 0;
1349
1350	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1351		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1352		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1353	}
1354	if (spa->spa_l2cache.sav_vdevs) {
1355		kmem_free(spa->spa_l2cache.sav_vdevs,
1356		    spa->spa_l2cache.sav_count * sizeof (void *));
1357		spa->spa_l2cache.sav_vdevs = NULL;
1358	}
1359	if (spa->spa_l2cache.sav_config) {
1360		nvlist_free(spa->spa_l2cache.sav_config);
1361		spa->spa_l2cache.sav_config = NULL;
1362	}
1363	spa->spa_l2cache.sav_count = 0;
1364
1365	spa->spa_async_suspended = 0;
1366
1367	if (spa->spa_comment != NULL) {
1368		spa_strfree(spa->spa_comment);
1369		spa->spa_comment = NULL;
1370	}
1371
1372	spa_config_exit(spa, SCL_ALL, FTAG);
1373}
1374
1375/*
1376 * Load (or re-load) the current list of vdevs describing the active spares for
1377 * this pool.  When this is called, we have some form of basic information in
1378 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1379 * then re-generate a more complete list including status information.
1380 */
1381static void
1382spa_load_spares(spa_t *spa)
1383{
1384	nvlist_t **spares;
1385	uint_t nspares;
1386	int i;
1387	vdev_t *vd, *tvd;
1388
1389	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1390
1391	/*
1392	 * First, close and free any existing spare vdevs.
1393	 */
1394	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1395		vd = spa->spa_spares.sav_vdevs[i];
1396
1397		/* Undo the call to spa_activate() below */
1398		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1399		    B_FALSE)) != NULL && tvd->vdev_isspare)
1400			spa_spare_remove(tvd);
1401		vdev_close(vd);
1402		vdev_free(vd);
1403	}
1404
1405	if (spa->spa_spares.sav_vdevs)
1406		kmem_free(spa->spa_spares.sav_vdevs,
1407		    spa->spa_spares.sav_count * sizeof (void *));
1408
1409	if (spa->spa_spares.sav_config == NULL)
1410		nspares = 0;
1411	else
1412		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1413		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1414
1415	spa->spa_spares.sav_count = (int)nspares;
1416	spa->spa_spares.sav_vdevs = NULL;
1417
1418	if (nspares == 0)
1419		return;
1420
1421	/*
1422	 * Construct the array of vdevs, opening them to get status in the
1423	 * process.   For each spare, there is potentially two different vdev_t
1424	 * structures associated with it: one in the list of spares (used only
1425	 * for basic validation purposes) and one in the active vdev
1426	 * configuration (if it's spared in).  During this phase we open and
1427	 * validate each vdev on the spare list.  If the vdev also exists in the
1428	 * active configuration, then we also mark this vdev as an active spare.
1429	 */
1430	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1431	    KM_SLEEP);
1432	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1433		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1434		    VDEV_ALLOC_SPARE) == 0);
1435		ASSERT(vd != NULL);
1436
1437		spa->spa_spares.sav_vdevs[i] = vd;
1438
1439		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1440		    B_FALSE)) != NULL) {
1441			if (!tvd->vdev_isspare)
1442				spa_spare_add(tvd);
1443
1444			/*
1445			 * We only mark the spare active if we were successfully
1446			 * able to load the vdev.  Otherwise, importing a pool
1447			 * with a bad active spare would result in strange
1448			 * behavior, because multiple pool would think the spare
1449			 * is actively in use.
1450			 *
1451			 * There is a vulnerability here to an equally bizarre
1452			 * circumstance, where a dead active spare is later
1453			 * brought back to life (onlined or otherwise).  Given
1454			 * the rarity of this scenario, and the extra complexity
1455			 * it adds, we ignore the possibility.
1456			 */
1457			if (!vdev_is_dead(tvd))
1458				spa_spare_activate(tvd);
1459		}
1460
1461		vd->vdev_top = vd;
1462		vd->vdev_aux = &spa->spa_spares;
1463
1464		if (vdev_open(vd) != 0)
1465			continue;
1466
1467		if (vdev_validate_aux(vd) == 0)
1468			spa_spare_add(vd);
1469	}
1470
1471	/*
1472	 * Recompute the stashed list of spares, with status information
1473	 * this time.
1474	 */
1475	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1476	    DATA_TYPE_NVLIST_ARRAY) == 0);
1477
1478	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1479	    KM_SLEEP);
1480	for (i = 0; i < spa->spa_spares.sav_count; i++)
1481		spares[i] = vdev_config_generate(spa,
1482		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1483	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1484	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		nvlist_free(spares[i]);
1487	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1488}
1489
1490/*
1491 * Load (or re-load) the current list of vdevs describing the active l2cache for
1492 * this pool.  When this is called, we have some form of basic information in
1493 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1494 * then re-generate a more complete list including status information.
1495 * Devices which are already active have their details maintained, and are
1496 * not re-opened.
1497 */
1498static void
1499spa_load_l2cache(spa_t *spa)
1500{
1501	nvlist_t **l2cache;
1502	uint_t nl2cache;
1503	int i, j, oldnvdevs;
1504	uint64_t guid;
1505	vdev_t *vd, **oldvdevs, **newvdevs;
1506	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1507
1508	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1509
1510	if (sav->sav_config != NULL) {
1511		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1512		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1513		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1514	} else {
1515		nl2cache = 0;
1516		newvdevs = NULL;
1517	}
1518
1519	oldvdevs = sav->sav_vdevs;
1520	oldnvdevs = sav->sav_count;
1521	sav->sav_vdevs = NULL;
1522	sav->sav_count = 0;
1523
1524	/*
1525	 * Process new nvlist of vdevs.
1526	 */
1527	for (i = 0; i < nl2cache; i++) {
1528		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1529		    &guid) == 0);
1530
1531		newvdevs[i] = NULL;
1532		for (j = 0; j < oldnvdevs; j++) {
1533			vd = oldvdevs[j];
1534			if (vd != NULL && guid == vd->vdev_guid) {
1535				/*
1536				 * Retain previous vdev for add/remove ops.
1537				 */
1538				newvdevs[i] = vd;
1539				oldvdevs[j] = NULL;
1540				break;
1541			}
1542		}
1543
1544		if (newvdevs[i] == NULL) {
1545			/*
1546			 * Create new vdev
1547			 */
1548			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1549			    VDEV_ALLOC_L2CACHE) == 0);
1550			ASSERT(vd != NULL);
1551			newvdevs[i] = vd;
1552
1553			/*
1554			 * Commit this vdev as an l2cache device,
1555			 * even if it fails to open.
1556			 */
1557			spa_l2cache_add(vd);
1558
1559			vd->vdev_top = vd;
1560			vd->vdev_aux = sav;
1561
1562			spa_l2cache_activate(vd);
1563
1564			if (vdev_open(vd) != 0)
1565				continue;
1566
1567			(void) vdev_validate_aux(vd);
1568
1569			if (!vdev_is_dead(vd))
1570				l2arc_add_vdev(spa, vd);
1571		}
1572	}
1573
1574	/*
1575	 * Purge vdevs that were dropped
1576	 */
1577	for (i = 0; i < oldnvdevs; i++) {
1578		uint64_t pool;
1579
1580		vd = oldvdevs[i];
1581		if (vd != NULL) {
1582			ASSERT(vd->vdev_isl2cache);
1583
1584			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1585			    pool != 0ULL && l2arc_vdev_present(vd))
1586				l2arc_remove_vdev(vd);
1587			vdev_clear_stats(vd);
1588			vdev_free(vd);
1589		}
1590	}
1591
1592	if (oldvdevs)
1593		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1594
1595	if (sav->sav_config == NULL)
1596		goto out;
1597
1598	sav->sav_vdevs = newvdevs;
1599	sav->sav_count = (int)nl2cache;
1600
1601	/*
1602	 * Recompute the stashed list of l2cache devices, with status
1603	 * information this time.
1604	 */
1605	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1606	    DATA_TYPE_NVLIST_ARRAY) == 0);
1607
1608	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1609	for (i = 0; i < sav->sav_count; i++)
1610		l2cache[i] = vdev_config_generate(spa,
1611		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1612	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1613	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1614out:
1615	for (i = 0; i < sav->sav_count; i++)
1616		nvlist_free(l2cache[i]);
1617	if (sav->sav_count)
1618		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1619}
1620
1621static int
1622load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1623{
1624	dmu_buf_t *db;
1625	char *packed = NULL;
1626	size_t nvsize = 0;
1627	int error;
1628	*value = NULL;
1629
1630	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1631	if (error != 0)
1632		return (error);
1633
1634	nvsize = *(uint64_t *)db->db_data;
1635	dmu_buf_rele(db, FTAG);
1636
1637	packed = kmem_alloc(nvsize, KM_SLEEP);
1638	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1639	    DMU_READ_PREFETCH);
1640	if (error == 0)
1641		error = nvlist_unpack(packed, nvsize, value, 0);
1642	kmem_free(packed, nvsize);
1643
1644	return (error);
1645}
1646
1647/*
1648 * Checks to see if the given vdev could not be opened, in which case we post a
1649 * sysevent to notify the autoreplace code that the device has been removed.
1650 */
1651static void
1652spa_check_removed(vdev_t *vd)
1653{
1654	for (int c = 0; c < vd->vdev_children; c++)
1655		spa_check_removed(vd->vdev_child[c]);
1656
1657	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1658	    !vd->vdev_ishole) {
1659		zfs_post_autoreplace(vd->vdev_spa, vd);
1660		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1661	}
1662}
1663
1664/*
1665 * Validate the current config against the MOS config
1666 */
1667static boolean_t
1668spa_config_valid(spa_t *spa, nvlist_t *config)
1669{
1670	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1671	nvlist_t *nv;
1672
1673	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1674
1675	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1676	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1677
1678	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1679
1680	/*
1681	 * If we're doing a normal import, then build up any additional
1682	 * diagnostic information about missing devices in this config.
1683	 * We'll pass this up to the user for further processing.
1684	 */
1685	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1686		nvlist_t **child, *nv;
1687		uint64_t idx = 0;
1688
1689		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1690		    KM_SLEEP);
1691		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1692
1693		for (int c = 0; c < rvd->vdev_children; c++) {
1694			vdev_t *tvd = rvd->vdev_child[c];
1695			vdev_t *mtvd  = mrvd->vdev_child[c];
1696
1697			if (tvd->vdev_ops == &vdev_missing_ops &&
1698			    mtvd->vdev_ops != &vdev_missing_ops &&
1699			    mtvd->vdev_islog)
1700				child[idx++] = vdev_config_generate(spa, mtvd,
1701				    B_FALSE, 0);
1702		}
1703
1704		if (idx) {
1705			VERIFY(nvlist_add_nvlist_array(nv,
1706			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1707			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1708			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1709
1710			for (int i = 0; i < idx; i++)
1711				nvlist_free(child[i]);
1712		}
1713		nvlist_free(nv);
1714		kmem_free(child, rvd->vdev_children * sizeof (char **));
1715	}
1716
1717	/*
1718	 * Compare the root vdev tree with the information we have
1719	 * from the MOS config (mrvd). Check each top-level vdev
1720	 * with the corresponding MOS config top-level (mtvd).
1721	 */
1722	for (int c = 0; c < rvd->vdev_children; c++) {
1723		vdev_t *tvd = rvd->vdev_child[c];
1724		vdev_t *mtvd  = mrvd->vdev_child[c];
1725
1726		/*
1727		 * Resolve any "missing" vdevs in the current configuration.
1728		 * If we find that the MOS config has more accurate information
1729		 * about the top-level vdev then use that vdev instead.
1730		 */
1731		if (tvd->vdev_ops == &vdev_missing_ops &&
1732		    mtvd->vdev_ops != &vdev_missing_ops) {
1733
1734			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1735				continue;
1736
1737			/*
1738			 * Device specific actions.
1739			 */
1740			if (mtvd->vdev_islog) {
1741				spa_set_log_state(spa, SPA_LOG_CLEAR);
1742			} else {
1743				/*
1744				 * XXX - once we have 'readonly' pool
1745				 * support we should be able to handle
1746				 * missing data devices by transitioning
1747				 * the pool to readonly.
1748				 */
1749				continue;
1750			}
1751
1752			/*
1753			 * Swap the missing vdev with the data we were
1754			 * able to obtain from the MOS config.
1755			 */
1756			vdev_remove_child(rvd, tvd);
1757			vdev_remove_child(mrvd, mtvd);
1758
1759			vdev_add_child(rvd, mtvd);
1760			vdev_add_child(mrvd, tvd);
1761
1762			spa_config_exit(spa, SCL_ALL, FTAG);
1763			vdev_load(mtvd);
1764			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1765
1766			vdev_reopen(rvd);
1767		} else if (mtvd->vdev_islog) {
1768			/*
1769			 * Load the slog device's state from the MOS config
1770			 * since it's possible that the label does not
1771			 * contain the most up-to-date information.
1772			 */
1773			vdev_load_log_state(tvd, mtvd);
1774			vdev_reopen(tvd);
1775		}
1776	}
1777	vdev_free(mrvd);
1778	spa_config_exit(spa, SCL_ALL, FTAG);
1779
1780	/*
1781	 * Ensure we were able to validate the config.
1782	 */
1783	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1784}
1785
1786/*
1787 * Check for missing log devices
1788 */
1789static boolean_t
1790spa_check_logs(spa_t *spa)
1791{
1792	boolean_t rv = B_FALSE;
1793	dsl_pool_t *dp = spa_get_dsl(spa);
1794
1795	switch (spa->spa_log_state) {
1796	case SPA_LOG_MISSING:
1797		/* need to recheck in case slog has been restored */
1798	case SPA_LOG_UNKNOWN:
1799		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1800		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1801		if (rv)
1802			spa_set_log_state(spa, SPA_LOG_MISSING);
1803		break;
1804	}
1805	return (rv);
1806}
1807
1808static boolean_t
1809spa_passivate_log(spa_t *spa)
1810{
1811	vdev_t *rvd = spa->spa_root_vdev;
1812	boolean_t slog_found = B_FALSE;
1813
1814	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1815
1816	if (!spa_has_slogs(spa))
1817		return (B_FALSE);
1818
1819	for (int c = 0; c < rvd->vdev_children; c++) {
1820		vdev_t *tvd = rvd->vdev_child[c];
1821		metaslab_group_t *mg = tvd->vdev_mg;
1822
1823		if (tvd->vdev_islog) {
1824			metaslab_group_passivate(mg);
1825			slog_found = B_TRUE;
1826		}
1827	}
1828
1829	return (slog_found);
1830}
1831
1832static void
1833spa_activate_log(spa_t *spa)
1834{
1835	vdev_t *rvd = spa->spa_root_vdev;
1836
1837	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1838
1839	for (int c = 0; c < rvd->vdev_children; c++) {
1840		vdev_t *tvd = rvd->vdev_child[c];
1841		metaslab_group_t *mg = tvd->vdev_mg;
1842
1843		if (tvd->vdev_islog)
1844			metaslab_group_activate(mg);
1845	}
1846}
1847
1848int
1849spa_offline_log(spa_t *spa)
1850{
1851	int error;
1852
1853	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1854	    NULL, DS_FIND_CHILDREN);
1855	if (error == 0) {
1856		/*
1857		 * We successfully offlined the log device, sync out the
1858		 * current txg so that the "stubby" block can be removed
1859		 * by zil_sync().
1860		 */
1861		txg_wait_synced(spa->spa_dsl_pool, 0);
1862	}
1863	return (error);
1864}
1865
1866static void
1867spa_aux_check_removed(spa_aux_vdev_t *sav)
1868{
1869	int i;
1870
1871	for (i = 0; i < sav->sav_count; i++)
1872		spa_check_removed(sav->sav_vdevs[i]);
1873}
1874
1875void
1876spa_claim_notify(zio_t *zio)
1877{
1878	spa_t *spa = zio->io_spa;
1879
1880	if (zio->io_error)
1881		return;
1882
1883	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1884	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1885		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1886	mutex_exit(&spa->spa_props_lock);
1887}
1888
1889typedef struct spa_load_error {
1890	uint64_t	sle_meta_count;
1891	uint64_t	sle_data_count;
1892} spa_load_error_t;
1893
1894static void
1895spa_load_verify_done(zio_t *zio)
1896{
1897	blkptr_t *bp = zio->io_bp;
1898	spa_load_error_t *sle = zio->io_private;
1899	dmu_object_type_t type = BP_GET_TYPE(bp);
1900	int error = zio->io_error;
1901	spa_t *spa = zio->io_spa;
1902
1903	if (error) {
1904		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1905		    type != DMU_OT_INTENT_LOG)
1906			atomic_inc_64(&sle->sle_meta_count);
1907		else
1908			atomic_inc_64(&sle->sle_data_count);
1909	}
1910	zio_data_buf_free(zio->io_data, zio->io_size);
1911
1912	mutex_enter(&spa->spa_scrub_lock);
1913	spa->spa_scrub_inflight--;
1914	cv_broadcast(&spa->spa_scrub_io_cv);
1915	mutex_exit(&spa->spa_scrub_lock);
1916}
1917
1918/*
1919 * Maximum number of concurrent scrub i/os to create while verifying
1920 * a pool while importing it.
1921 */
1922int spa_load_verify_maxinflight = 10000;
1923boolean_t spa_load_verify_metadata = B_TRUE;
1924boolean_t spa_load_verify_data = B_TRUE;
1925
1926SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1927    &spa_load_verify_maxinflight, 0,
1928    "Maximum number of concurrent scrub I/Os to create while verifying a "
1929    "pool while importing it");
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1932    &spa_load_verify_metadata, 0,
1933    "Check metadata on import?");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1936    &spa_load_verify_data, 0,
1937    "Check user data on import?");
1938
1939/*ARGSUSED*/
1940static int
1941spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1942    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1943{
1944	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1945		return (0);
1946	/*
1947	 * Note: normally this routine will not be called if
1948	 * spa_load_verify_metadata is not set.  However, it may be useful
1949	 * to manually set the flag after the traversal has begun.
1950	 */
1951	if (!spa_load_verify_metadata)
1952		return (0);
1953	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1954		return (0);
1955
1956	zio_t *rio = arg;
1957	size_t size = BP_GET_PSIZE(bp);
1958	void *data = zio_data_buf_alloc(size);
1959
1960	mutex_enter(&spa->spa_scrub_lock);
1961	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1962		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1963	spa->spa_scrub_inflight++;
1964	mutex_exit(&spa->spa_scrub_lock);
1965
1966	zio_nowait(zio_read(rio, spa, bp, data, size,
1967	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1968	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1969	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1970	return (0);
1971}
1972
1973static int
1974spa_load_verify(spa_t *spa)
1975{
1976	zio_t *rio;
1977	spa_load_error_t sle = { 0 };
1978	zpool_rewind_policy_t policy;
1979	boolean_t verify_ok = B_FALSE;
1980	int error = 0;
1981
1982	zpool_get_rewind_policy(spa->spa_config, &policy);
1983
1984	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1985		return (0);
1986
1987	rio = zio_root(spa, NULL, &sle,
1988	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1989
1990	if (spa_load_verify_metadata) {
1991		error = traverse_pool(spa, spa->spa_verify_min_txg,
1992		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1993		    spa_load_verify_cb, rio);
1994	}
1995
1996	(void) zio_wait(rio);
1997
1998	spa->spa_load_meta_errors = sle.sle_meta_count;
1999	spa->spa_load_data_errors = sle.sle_data_count;
2000
2001	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2002	    sle.sle_data_count <= policy.zrp_maxdata) {
2003		int64_t loss = 0;
2004
2005		verify_ok = B_TRUE;
2006		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2007		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2008
2009		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2010		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2011		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2012		VERIFY(nvlist_add_int64(spa->spa_load_info,
2013		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2014		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2016	} else {
2017		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2018	}
2019
2020	if (error) {
2021		if (error != ENXIO && error != EIO)
2022			error = SET_ERROR(EIO);
2023		return (error);
2024	}
2025
2026	return (verify_ok ? 0 : EIO);
2027}
2028
2029/*
2030 * Find a value in the pool props object.
2031 */
2032static void
2033spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2034{
2035	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2036	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2037}
2038
2039/*
2040 * Find a value in the pool directory object.
2041 */
2042static int
2043spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2044{
2045	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2046	    name, sizeof (uint64_t), 1, val));
2047}
2048
2049static int
2050spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2051{
2052	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2053	return (err);
2054}
2055
2056/*
2057 * Fix up config after a partly-completed split.  This is done with the
2058 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2059 * pool have that entry in their config, but only the splitting one contains
2060 * a list of all the guids of the vdevs that are being split off.
2061 *
2062 * This function determines what to do with that list: either rejoin
2063 * all the disks to the pool, or complete the splitting process.  To attempt
2064 * the rejoin, each disk that is offlined is marked online again, and
2065 * we do a reopen() call.  If the vdev label for every disk that was
2066 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2067 * then we call vdev_split() on each disk, and complete the split.
2068 *
2069 * Otherwise we leave the config alone, with all the vdevs in place in
2070 * the original pool.
2071 */
2072static void
2073spa_try_repair(spa_t *spa, nvlist_t *config)
2074{
2075	uint_t extracted;
2076	uint64_t *glist;
2077	uint_t i, gcount;
2078	nvlist_t *nvl;
2079	vdev_t **vd;
2080	boolean_t attempt_reopen;
2081
2082	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2083		return;
2084
2085	/* check that the config is complete */
2086	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2087	    &glist, &gcount) != 0)
2088		return;
2089
2090	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2091
2092	/* attempt to online all the vdevs & validate */
2093	attempt_reopen = B_TRUE;
2094	for (i = 0; i < gcount; i++) {
2095		if (glist[i] == 0)	/* vdev is hole */
2096			continue;
2097
2098		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2099		if (vd[i] == NULL) {
2100			/*
2101			 * Don't bother attempting to reopen the disks;
2102			 * just do the split.
2103			 */
2104			attempt_reopen = B_FALSE;
2105		} else {
2106			/* attempt to re-online it */
2107			vd[i]->vdev_offline = B_FALSE;
2108		}
2109	}
2110
2111	if (attempt_reopen) {
2112		vdev_reopen(spa->spa_root_vdev);
2113
2114		/* check each device to see what state it's in */
2115		for (extracted = 0, i = 0; i < gcount; i++) {
2116			if (vd[i] != NULL &&
2117			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2118				break;
2119			++extracted;
2120		}
2121	}
2122
2123	/*
2124	 * If every disk has been moved to the new pool, or if we never
2125	 * even attempted to look at them, then we split them off for
2126	 * good.
2127	 */
2128	if (!attempt_reopen || gcount == extracted) {
2129		for (i = 0; i < gcount; i++)
2130			if (vd[i] != NULL)
2131				vdev_split(vd[i]);
2132		vdev_reopen(spa->spa_root_vdev);
2133	}
2134
2135	kmem_free(vd, gcount * sizeof (vdev_t *));
2136}
2137
2138static int
2139spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2140    boolean_t mosconfig)
2141{
2142	nvlist_t *config = spa->spa_config;
2143	char *ereport = FM_EREPORT_ZFS_POOL;
2144	char *comment;
2145	int error;
2146	uint64_t pool_guid;
2147	nvlist_t *nvl;
2148
2149	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2150		return (SET_ERROR(EINVAL));
2151
2152	ASSERT(spa->spa_comment == NULL);
2153	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2154		spa->spa_comment = spa_strdup(comment);
2155
2156	/*
2157	 * Versioning wasn't explicitly added to the label until later, so if
2158	 * it's not present treat it as the initial version.
2159	 */
2160	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2161	    &spa->spa_ubsync.ub_version) != 0)
2162		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2163
2164	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2165	    &spa->spa_config_txg);
2166
2167	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2168	    spa_guid_exists(pool_guid, 0)) {
2169		error = SET_ERROR(EEXIST);
2170	} else {
2171		spa->spa_config_guid = pool_guid;
2172
2173		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2174		    &nvl) == 0) {
2175			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2176			    KM_SLEEP) == 0);
2177		}
2178
2179		nvlist_free(spa->spa_load_info);
2180		spa->spa_load_info = fnvlist_alloc();
2181
2182		gethrestime(&spa->spa_loaded_ts);
2183		error = spa_load_impl(spa, pool_guid, config, state, type,
2184		    mosconfig, &ereport);
2185	}
2186
2187	/*
2188	 * Don't count references from objsets that are already closed
2189	 * and are making their way through the eviction process.
2190	 */
2191	spa_evicting_os_wait(spa);
2192	spa->spa_minref = refcount_count(&spa->spa_refcount);
2193	if (error) {
2194		if (error != EEXIST) {
2195			spa->spa_loaded_ts.tv_sec = 0;
2196			spa->spa_loaded_ts.tv_nsec = 0;
2197		}
2198		if (error != EBADF) {
2199			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2200		}
2201	}
2202	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2203	spa->spa_ena = 0;
2204
2205	return (error);
2206}
2207
2208/*
2209 * Load an existing storage pool, using the pool's builtin spa_config as a
2210 * source of configuration information.
2211 */
2212static int
2213spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2214    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2215    char **ereport)
2216{
2217	int error = 0;
2218	nvlist_t *nvroot = NULL;
2219	nvlist_t *label;
2220	vdev_t *rvd;
2221	uberblock_t *ub = &spa->spa_uberblock;
2222	uint64_t children, config_cache_txg = spa->spa_config_txg;
2223	int orig_mode = spa->spa_mode;
2224	int parse;
2225	uint64_t obj;
2226	boolean_t missing_feat_write = B_FALSE;
2227
2228	/*
2229	 * If this is an untrusted config, access the pool in read-only mode.
2230	 * This prevents things like resilvering recently removed devices.
2231	 */
2232	if (!mosconfig)
2233		spa->spa_mode = FREAD;
2234
2235	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2236
2237	spa->spa_load_state = state;
2238
2239	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2240		return (SET_ERROR(EINVAL));
2241
2242	parse = (type == SPA_IMPORT_EXISTING ?
2243	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2244
2245	/*
2246	 * Create "The Godfather" zio to hold all async IOs
2247	 */
2248	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2249	    KM_SLEEP);
2250	for (int i = 0; i < max_ncpus; i++) {
2251		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2252		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2253		    ZIO_FLAG_GODFATHER);
2254	}
2255
2256	/*
2257	 * Parse the configuration into a vdev tree.  We explicitly set the
2258	 * value that will be returned by spa_version() since parsing the
2259	 * configuration requires knowing the version number.
2260	 */
2261	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2262	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2263	spa_config_exit(spa, SCL_ALL, FTAG);
2264
2265	if (error != 0)
2266		return (error);
2267
2268	ASSERT(spa->spa_root_vdev == rvd);
2269	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2270	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2271
2272	if (type != SPA_IMPORT_ASSEMBLE) {
2273		ASSERT(spa_guid(spa) == pool_guid);
2274	}
2275
2276	/*
2277	 * Try to open all vdevs, loading each label in the process.
2278	 */
2279	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2280	error = vdev_open(rvd);
2281	spa_config_exit(spa, SCL_ALL, FTAG);
2282	if (error != 0)
2283		return (error);
2284
2285	/*
2286	 * We need to validate the vdev labels against the configuration that
2287	 * we have in hand, which is dependent on the setting of mosconfig. If
2288	 * mosconfig is true then we're validating the vdev labels based on
2289	 * that config.  Otherwise, we're validating against the cached config
2290	 * (zpool.cache) that was read when we loaded the zfs module, and then
2291	 * later we will recursively call spa_load() and validate against
2292	 * the vdev config.
2293	 *
2294	 * If we're assembling a new pool that's been split off from an
2295	 * existing pool, the labels haven't yet been updated so we skip
2296	 * validation for now.
2297	 */
2298	if (type != SPA_IMPORT_ASSEMBLE) {
2299		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2300		error = vdev_validate(rvd, mosconfig);
2301		spa_config_exit(spa, SCL_ALL, FTAG);
2302
2303		if (error != 0)
2304			return (error);
2305
2306		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2307			return (SET_ERROR(ENXIO));
2308	}
2309
2310	/*
2311	 * Find the best uberblock.
2312	 */
2313	vdev_uberblock_load(rvd, ub, &label);
2314
2315	/*
2316	 * If we weren't able to find a single valid uberblock, return failure.
2317	 */
2318	if (ub->ub_txg == 0) {
2319		nvlist_free(label);
2320		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2321	}
2322
2323	/*
2324	 * If the pool has an unsupported version we can't open it.
2325	 */
2326	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2327		nvlist_free(label);
2328		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2329	}
2330
2331	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2332		nvlist_t *features;
2333
2334		/*
2335		 * If we weren't able to find what's necessary for reading the
2336		 * MOS in the label, return failure.
2337		 */
2338		if (label == NULL || nvlist_lookup_nvlist(label,
2339		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2340			nvlist_free(label);
2341			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2342			    ENXIO));
2343		}
2344
2345		/*
2346		 * Update our in-core representation with the definitive values
2347		 * from the label.
2348		 */
2349		nvlist_free(spa->spa_label_features);
2350		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2351	}
2352
2353	nvlist_free(label);
2354
2355	/*
2356	 * Look through entries in the label nvlist's features_for_read. If
2357	 * there is a feature listed there which we don't understand then we
2358	 * cannot open a pool.
2359	 */
2360	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2361		nvlist_t *unsup_feat;
2362
2363		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2364		    0);
2365
2366		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2367		    NULL); nvp != NULL;
2368		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2369			if (!zfeature_is_supported(nvpair_name(nvp))) {
2370				VERIFY(nvlist_add_string(unsup_feat,
2371				    nvpair_name(nvp), "") == 0);
2372			}
2373		}
2374
2375		if (!nvlist_empty(unsup_feat)) {
2376			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2377			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2378			nvlist_free(unsup_feat);
2379			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2380			    ENOTSUP));
2381		}
2382
2383		nvlist_free(unsup_feat);
2384	}
2385
2386	/*
2387	 * If the vdev guid sum doesn't match the uberblock, we have an
2388	 * incomplete configuration.  We first check to see if the pool
2389	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2390	 * If it is, defer the vdev_guid_sum check till later so we
2391	 * can handle missing vdevs.
2392	 */
2393	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2394	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2395	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2396		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2397
2398	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2399		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2400		spa_try_repair(spa, config);
2401		spa_config_exit(spa, SCL_ALL, FTAG);
2402		nvlist_free(spa->spa_config_splitting);
2403		spa->spa_config_splitting = NULL;
2404	}
2405
2406	/*
2407	 * Initialize internal SPA structures.
2408	 */
2409	spa->spa_state = POOL_STATE_ACTIVE;
2410	spa->spa_ubsync = spa->spa_uberblock;
2411	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2412	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2413	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2414	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2415	spa->spa_claim_max_txg = spa->spa_first_txg;
2416	spa->spa_prev_software_version = ub->ub_software_version;
2417
2418	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2419	if (error)
2420		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2422
2423	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2424		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425
2426	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2427		boolean_t missing_feat_read = B_FALSE;
2428		nvlist_t *unsup_feat, *enabled_feat;
2429
2430		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2431		    &spa->spa_feat_for_read_obj) != 0) {
2432			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433		}
2434
2435		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2436		    &spa->spa_feat_for_write_obj) != 0) {
2437			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438		}
2439
2440		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2441		    &spa->spa_feat_desc_obj) != 0) {
2442			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443		}
2444
2445		enabled_feat = fnvlist_alloc();
2446		unsup_feat = fnvlist_alloc();
2447
2448		if (!spa_features_check(spa, B_FALSE,
2449		    unsup_feat, enabled_feat))
2450			missing_feat_read = B_TRUE;
2451
2452		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2453			if (!spa_features_check(spa, B_TRUE,
2454			    unsup_feat, enabled_feat)) {
2455				missing_feat_write = B_TRUE;
2456			}
2457		}
2458
2459		fnvlist_add_nvlist(spa->spa_load_info,
2460		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2461
2462		if (!nvlist_empty(unsup_feat)) {
2463			fnvlist_add_nvlist(spa->spa_load_info,
2464			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2465		}
2466
2467		fnvlist_free(enabled_feat);
2468		fnvlist_free(unsup_feat);
2469
2470		if (!missing_feat_read) {
2471			fnvlist_add_boolean(spa->spa_load_info,
2472			    ZPOOL_CONFIG_CAN_RDONLY);
2473		}
2474
2475		/*
2476		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2477		 * twofold: to determine whether the pool is available for
2478		 * import in read-write mode and (if it is not) whether the
2479		 * pool is available for import in read-only mode. If the pool
2480		 * is available for import in read-write mode, it is displayed
2481		 * as available in userland; if it is not available for import
2482		 * in read-only mode, it is displayed as unavailable in
2483		 * userland. If the pool is available for import in read-only
2484		 * mode but not read-write mode, it is displayed as unavailable
2485		 * in userland with a special note that the pool is actually
2486		 * available for open in read-only mode.
2487		 *
2488		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2489		 * missing a feature for write, we must first determine whether
2490		 * the pool can be opened read-only before returning to
2491		 * userland in order to know whether to display the
2492		 * abovementioned note.
2493		 */
2494		if (missing_feat_read || (missing_feat_write &&
2495		    spa_writeable(spa))) {
2496			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2497			    ENOTSUP));
2498		}
2499
2500		/*
2501		 * Load refcounts for ZFS features from disk into an in-memory
2502		 * cache during SPA initialization.
2503		 */
2504		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2505			uint64_t refcount;
2506
2507			error = feature_get_refcount_from_disk(spa,
2508			    &spa_feature_table[i], &refcount);
2509			if (error == 0) {
2510				spa->spa_feat_refcount_cache[i] = refcount;
2511			} else if (error == ENOTSUP) {
2512				spa->spa_feat_refcount_cache[i] =
2513				    SPA_FEATURE_DISABLED;
2514			} else {
2515				return (spa_vdev_err(rvd,
2516				    VDEV_AUX_CORRUPT_DATA, EIO));
2517			}
2518		}
2519	}
2520
2521	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2522		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2523		    &spa->spa_feat_enabled_txg_obj) != 0)
2524			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525	}
2526
2527	spa->spa_is_initializing = B_TRUE;
2528	error = dsl_pool_open(spa->spa_dsl_pool);
2529	spa->spa_is_initializing = B_FALSE;
2530	if (error != 0)
2531		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532
2533	if (!mosconfig) {
2534		uint64_t hostid;
2535		nvlist_t *policy = NULL, *nvconfig;
2536
2537		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2538			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539
2540		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2541		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2542			char *hostname;
2543			unsigned long myhostid = 0;
2544
2545			VERIFY(nvlist_lookup_string(nvconfig,
2546			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2547
2548#ifdef	_KERNEL
2549			myhostid = zone_get_hostid(NULL);
2550#else	/* _KERNEL */
2551			/*
2552			 * We're emulating the system's hostid in userland, so
2553			 * we can't use zone_get_hostid().
2554			 */
2555			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2556#endif	/* _KERNEL */
2557			if (check_hostid && hostid != 0 && myhostid != 0 &&
2558			    hostid != myhostid) {
2559				nvlist_free(nvconfig);
2560				cmn_err(CE_WARN, "pool '%s' could not be "
2561				    "loaded as it was last accessed by "
2562				    "another system (host: %s hostid: 0x%lx). "
2563				    "See: http://illumos.org/msg/ZFS-8000-EY",
2564				    spa_name(spa), hostname,
2565				    (unsigned long)hostid);
2566				return (SET_ERROR(EBADF));
2567			}
2568		}
2569		if (nvlist_lookup_nvlist(spa->spa_config,
2570		    ZPOOL_REWIND_POLICY, &policy) == 0)
2571			VERIFY(nvlist_add_nvlist(nvconfig,
2572			    ZPOOL_REWIND_POLICY, policy) == 0);
2573
2574		spa_config_set(spa, nvconfig);
2575		spa_unload(spa);
2576		spa_deactivate(spa);
2577		spa_activate(spa, orig_mode);
2578
2579		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2580	}
2581
2582	/* Grab the secret checksum salt from the MOS. */
2583	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2584	    DMU_POOL_CHECKSUM_SALT, 1,
2585	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2586	    spa->spa_cksum_salt.zcs_bytes);
2587	if (error == ENOENT) {
2588		/* Generate a new salt for subsequent use */
2589		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2590		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2591	} else if (error != 0) {
2592		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593	}
2594
2595	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2596		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2598	if (error != 0)
2599		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600
2601	/*
2602	 * Load the bit that tells us to use the new accounting function
2603	 * (raid-z deflation).  If we have an older pool, this will not
2604	 * be present.
2605	 */
2606	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2607	if (error != 0 && error != ENOENT)
2608		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609
2610	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2611	    &spa->spa_creation_version);
2612	if (error != 0 && error != ENOENT)
2613		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614
2615	/*
2616	 * Load the persistent error log.  If we have an older pool, this will
2617	 * not be present.
2618	 */
2619	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2620	if (error != 0 && error != ENOENT)
2621		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622
2623	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2624	    &spa->spa_errlog_scrub);
2625	if (error != 0 && error != ENOENT)
2626		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2627
2628	/*
2629	 * Load the history object.  If we have an older pool, this
2630	 * will not be present.
2631	 */
2632	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635
2636	/*
2637	 * If we're assembling the pool from the split-off vdevs of
2638	 * an existing pool, we don't want to attach the spares & cache
2639	 * devices.
2640	 */
2641
2642	/*
2643	 * Load any hot spares for this pool.
2644	 */
2645	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2646	if (error != 0 && error != ENOENT)
2647		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2648	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2649		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2650		if (load_nvlist(spa, spa->spa_spares.sav_object,
2651		    &spa->spa_spares.sav_config) != 0)
2652			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2653
2654		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2655		spa_load_spares(spa);
2656		spa_config_exit(spa, SCL_ALL, FTAG);
2657	} else if (error == 0) {
2658		spa->spa_spares.sav_sync = B_TRUE;
2659	}
2660
2661	/*
2662	 * Load any level 2 ARC devices for this pool.
2663	 */
2664	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2665	    &spa->spa_l2cache.sav_object);
2666	if (error != 0 && error != ENOENT)
2667		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2668	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2669		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2670		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2671		    &spa->spa_l2cache.sav_config) != 0)
2672			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2673
2674		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2675		spa_load_l2cache(spa);
2676		spa_config_exit(spa, SCL_ALL, FTAG);
2677	} else if (error == 0) {
2678		spa->spa_l2cache.sav_sync = B_TRUE;
2679	}
2680
2681	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2682
2683	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2684	if (error && error != ENOENT)
2685		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2686
2687	if (error == 0) {
2688		uint64_t autoreplace;
2689
2690		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2691		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2692		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2693		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2694		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2695		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2696		    &spa->spa_dedup_ditto);
2697
2698		spa->spa_autoreplace = (autoreplace != 0);
2699	}
2700
2701	/*
2702	 * If the 'autoreplace' property is set, then post a resource notifying
2703	 * the ZFS DE that it should not issue any faults for unopenable
2704	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2705	 * unopenable vdevs so that the normal autoreplace handler can take
2706	 * over.
2707	 */
2708	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2709		spa_check_removed(spa->spa_root_vdev);
2710		/*
2711		 * For the import case, this is done in spa_import(), because
2712		 * at this point we're using the spare definitions from
2713		 * the MOS config, not necessarily from the userland config.
2714		 */
2715		if (state != SPA_LOAD_IMPORT) {
2716			spa_aux_check_removed(&spa->spa_spares);
2717			spa_aux_check_removed(&spa->spa_l2cache);
2718		}
2719	}
2720
2721	/*
2722	 * Load the vdev state for all toplevel vdevs.
2723	 */
2724	vdev_load(rvd);
2725
2726	/*
2727	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2728	 */
2729	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2730	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2731	spa_config_exit(spa, SCL_ALL, FTAG);
2732
2733	/*
2734	 * Load the DDTs (dedup tables).
2735	 */
2736	error = ddt_load(spa);
2737	if (error != 0)
2738		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2739
2740	spa_update_dspace(spa);
2741
2742	/*
2743	 * Validate the config, using the MOS config to fill in any
2744	 * information which might be missing.  If we fail to validate
2745	 * the config then declare the pool unfit for use. If we're
2746	 * assembling a pool from a split, the log is not transferred
2747	 * over.
2748	 */
2749	if (type != SPA_IMPORT_ASSEMBLE) {
2750		nvlist_t *nvconfig;
2751
2752		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2753			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2754
2755		if (!spa_config_valid(spa, nvconfig)) {
2756			nvlist_free(nvconfig);
2757			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2758			    ENXIO));
2759		}
2760		nvlist_free(nvconfig);
2761
2762		/*
2763		 * Now that we've validated the config, check the state of the
2764		 * root vdev.  If it can't be opened, it indicates one or
2765		 * more toplevel vdevs are faulted.
2766		 */
2767		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2768			return (SET_ERROR(ENXIO));
2769
2770		if (spa_writeable(spa) && spa_check_logs(spa)) {
2771			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2772			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2773		}
2774	}
2775
2776	if (missing_feat_write) {
2777		ASSERT(state == SPA_LOAD_TRYIMPORT);
2778
2779		/*
2780		 * At this point, we know that we can open the pool in
2781		 * read-only mode but not read-write mode. We now have enough
2782		 * information and can return to userland.
2783		 */
2784		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2785	}
2786
2787	/*
2788	 * We've successfully opened the pool, verify that we're ready
2789	 * to start pushing transactions.
2790	 */
2791	if (state != SPA_LOAD_TRYIMPORT) {
2792		if (error = spa_load_verify(spa))
2793			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2794			    error));
2795	}
2796
2797	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2798	    spa->spa_load_max_txg == UINT64_MAX)) {
2799		dmu_tx_t *tx;
2800		int need_update = B_FALSE;
2801		dsl_pool_t *dp = spa_get_dsl(spa);
2802
2803		ASSERT(state != SPA_LOAD_TRYIMPORT);
2804
2805		/*
2806		 * Claim log blocks that haven't been committed yet.
2807		 * This must all happen in a single txg.
2808		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2809		 * invoked from zil_claim_log_block()'s i/o done callback.
2810		 * Price of rollback is that we abandon the log.
2811		 */
2812		spa->spa_claiming = B_TRUE;
2813
2814		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2815		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2816		    zil_claim, tx, DS_FIND_CHILDREN);
2817		dmu_tx_commit(tx);
2818
2819		spa->spa_claiming = B_FALSE;
2820
2821		spa_set_log_state(spa, SPA_LOG_GOOD);
2822		spa->spa_sync_on = B_TRUE;
2823		txg_sync_start(spa->spa_dsl_pool);
2824
2825		/*
2826		 * Wait for all claims to sync.  We sync up to the highest
2827		 * claimed log block birth time so that claimed log blocks
2828		 * don't appear to be from the future.  spa_claim_max_txg
2829		 * will have been set for us by either zil_check_log_chain()
2830		 * (invoked from spa_check_logs()) or zil_claim() above.
2831		 */
2832		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2833
2834		/*
2835		 * If the config cache is stale, or we have uninitialized
2836		 * metaslabs (see spa_vdev_add()), then update the config.
2837		 *
2838		 * If this is a verbatim import, trust the current
2839		 * in-core spa_config and update the disk labels.
2840		 */
2841		if (config_cache_txg != spa->spa_config_txg ||
2842		    state == SPA_LOAD_IMPORT ||
2843		    state == SPA_LOAD_RECOVER ||
2844		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2845			need_update = B_TRUE;
2846
2847		for (int c = 0; c < rvd->vdev_children; c++)
2848			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2849				need_update = B_TRUE;
2850
2851		/*
2852		 * Update the config cache asychronously in case we're the
2853		 * root pool, in which case the config cache isn't writable yet.
2854		 */
2855		if (need_update)
2856			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2857
2858		/*
2859		 * Check all DTLs to see if anything needs resilvering.
2860		 */
2861		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2862		    vdev_resilver_needed(rvd, NULL, NULL))
2863			spa_async_request(spa, SPA_ASYNC_RESILVER);
2864
2865		/*
2866		 * Log the fact that we booted up (so that we can detect if
2867		 * we rebooted in the middle of an operation).
2868		 */
2869		spa_history_log_version(spa, "open");
2870
2871		/*
2872		 * Delete any inconsistent datasets.
2873		 */
2874		(void) dmu_objset_find(spa_name(spa),
2875		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2876
2877		/*
2878		 * Clean up any stale temporary dataset userrefs.
2879		 */
2880		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2881	}
2882
2883	return (0);
2884}
2885
2886static int
2887spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2888{
2889	int mode = spa->spa_mode;
2890
2891	spa_unload(spa);
2892	spa_deactivate(spa);
2893
2894	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2895
2896	spa_activate(spa, mode);
2897	spa_async_suspend(spa);
2898
2899	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2900}
2901
2902/*
2903 * If spa_load() fails this function will try loading prior txg's. If
2904 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2905 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2906 * function will not rewind the pool and will return the same error as
2907 * spa_load().
2908 */
2909static int
2910spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2911    uint64_t max_request, int rewind_flags)
2912{
2913	nvlist_t *loadinfo = NULL;
2914	nvlist_t *config = NULL;
2915	int load_error, rewind_error;
2916	uint64_t safe_rewind_txg;
2917	uint64_t min_txg;
2918
2919	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2920		spa->spa_load_max_txg = spa->spa_load_txg;
2921		spa_set_log_state(spa, SPA_LOG_CLEAR);
2922	} else {
2923		spa->spa_load_max_txg = max_request;
2924		if (max_request != UINT64_MAX)
2925			spa->spa_extreme_rewind = B_TRUE;
2926	}
2927
2928	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2929	    mosconfig);
2930	if (load_error == 0)
2931		return (0);
2932
2933	if (spa->spa_root_vdev != NULL)
2934		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2935
2936	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2937	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2938
2939	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2940		nvlist_free(config);
2941		return (load_error);
2942	}
2943
2944	if (state == SPA_LOAD_RECOVER) {
2945		/* Price of rolling back is discarding txgs, including log */
2946		spa_set_log_state(spa, SPA_LOG_CLEAR);
2947	} else {
2948		/*
2949		 * If we aren't rolling back save the load info from our first
2950		 * import attempt so that we can restore it after attempting
2951		 * to rewind.
2952		 */
2953		loadinfo = spa->spa_load_info;
2954		spa->spa_load_info = fnvlist_alloc();
2955	}
2956
2957	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2958	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2959	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2960	    TXG_INITIAL : safe_rewind_txg;
2961
2962	/*
2963	 * Continue as long as we're finding errors, we're still within
2964	 * the acceptable rewind range, and we're still finding uberblocks
2965	 */
2966	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2967	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2968		if (spa->spa_load_max_txg < safe_rewind_txg)
2969			spa->spa_extreme_rewind = B_TRUE;
2970		rewind_error = spa_load_retry(spa, state, mosconfig);
2971	}
2972
2973	spa->spa_extreme_rewind = B_FALSE;
2974	spa->spa_load_max_txg = UINT64_MAX;
2975
2976	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2977		spa_config_set(spa, config);
2978
2979	if (state == SPA_LOAD_RECOVER) {
2980		ASSERT3P(loadinfo, ==, NULL);
2981		return (rewind_error);
2982	} else {
2983		/* Store the rewind info as part of the initial load info */
2984		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2985		    spa->spa_load_info);
2986
2987		/* Restore the initial load info */
2988		fnvlist_free(spa->spa_load_info);
2989		spa->spa_load_info = loadinfo;
2990
2991		return (load_error);
2992	}
2993}
2994
2995/*
2996 * Pool Open/Import
2997 *
2998 * The import case is identical to an open except that the configuration is sent
2999 * down from userland, instead of grabbed from the configuration cache.  For the
3000 * case of an open, the pool configuration will exist in the
3001 * POOL_STATE_UNINITIALIZED state.
3002 *
3003 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3004 * the same time open the pool, without having to keep around the spa_t in some
3005 * ambiguous state.
3006 */
3007static int
3008spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3009    nvlist_t **config)
3010{
3011	spa_t *spa;
3012	spa_load_state_t state = SPA_LOAD_OPEN;
3013	int error;
3014	int locked = B_FALSE;
3015	int firstopen = B_FALSE;
3016
3017	*spapp = NULL;
3018
3019	/*
3020	 * As disgusting as this is, we need to support recursive calls to this
3021	 * function because dsl_dir_open() is called during spa_load(), and ends
3022	 * up calling spa_open() again.  The real fix is to figure out how to
3023	 * avoid dsl_dir_open() calling this in the first place.
3024	 */
3025	if (mutex_owner(&spa_namespace_lock) != curthread) {
3026		mutex_enter(&spa_namespace_lock);
3027		locked = B_TRUE;
3028	}
3029
3030	if ((spa = spa_lookup(pool)) == NULL) {
3031		if (locked)
3032			mutex_exit(&spa_namespace_lock);
3033		return (SET_ERROR(ENOENT));
3034	}
3035
3036	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3037		zpool_rewind_policy_t policy;
3038
3039		firstopen = B_TRUE;
3040
3041		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3042		    &policy);
3043		if (policy.zrp_request & ZPOOL_DO_REWIND)
3044			state = SPA_LOAD_RECOVER;
3045
3046		spa_activate(spa, spa_mode_global);
3047
3048		if (state != SPA_LOAD_RECOVER)
3049			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3050
3051		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3052		    policy.zrp_request);
3053
3054		if (error == EBADF) {
3055			/*
3056			 * If vdev_validate() returns failure (indicated by
3057			 * EBADF), it indicates that one of the vdevs indicates
3058			 * that the pool has been exported or destroyed.  If
3059			 * this is the case, the config cache is out of sync and
3060			 * we should remove the pool from the namespace.
3061			 */
3062			spa_unload(spa);
3063			spa_deactivate(spa);
3064			spa_config_sync(spa, B_TRUE, B_TRUE);
3065			spa_remove(spa);
3066			if (locked)
3067				mutex_exit(&spa_namespace_lock);
3068			return (SET_ERROR(ENOENT));
3069		}
3070
3071		if (error) {
3072			/*
3073			 * We can't open the pool, but we still have useful
3074			 * information: the state of each vdev after the
3075			 * attempted vdev_open().  Return this to the user.
3076			 */
3077			if (config != NULL && spa->spa_config) {
3078				VERIFY(nvlist_dup(spa->spa_config, config,
3079				    KM_SLEEP) == 0);
3080				VERIFY(nvlist_add_nvlist(*config,
3081				    ZPOOL_CONFIG_LOAD_INFO,
3082				    spa->spa_load_info) == 0);
3083			}
3084			spa_unload(spa);
3085			spa_deactivate(spa);
3086			spa->spa_last_open_failed = error;
3087			if (locked)
3088				mutex_exit(&spa_namespace_lock);
3089			*spapp = NULL;
3090			return (error);
3091		}
3092	}
3093
3094	spa_open_ref(spa, tag);
3095
3096	if (config != NULL)
3097		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3098
3099	/*
3100	 * If we've recovered the pool, pass back any information we
3101	 * gathered while doing the load.
3102	 */
3103	if (state == SPA_LOAD_RECOVER) {
3104		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3105		    spa->spa_load_info) == 0);
3106	}
3107
3108	if (locked) {
3109		spa->spa_last_open_failed = 0;
3110		spa->spa_last_ubsync_txg = 0;
3111		spa->spa_load_txg = 0;
3112		mutex_exit(&spa_namespace_lock);
3113#ifdef __FreeBSD__
3114#ifdef _KERNEL
3115		if (firstopen)
3116			zvol_create_minors(spa->spa_name);
3117#endif
3118#endif
3119	}
3120
3121	*spapp = spa;
3122
3123	return (0);
3124}
3125
3126int
3127spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3128    nvlist_t **config)
3129{
3130	return (spa_open_common(name, spapp, tag, policy, config));
3131}
3132
3133int
3134spa_open(const char *name, spa_t **spapp, void *tag)
3135{
3136	return (spa_open_common(name, spapp, tag, NULL, NULL));
3137}
3138
3139/*
3140 * Lookup the given spa_t, incrementing the inject count in the process,
3141 * preventing it from being exported or destroyed.
3142 */
3143spa_t *
3144spa_inject_addref(char *name)
3145{
3146	spa_t *spa;
3147
3148	mutex_enter(&spa_namespace_lock);
3149	if ((spa = spa_lookup(name)) == NULL) {
3150		mutex_exit(&spa_namespace_lock);
3151		return (NULL);
3152	}
3153	spa->spa_inject_ref++;
3154	mutex_exit(&spa_namespace_lock);
3155
3156	return (spa);
3157}
3158
3159void
3160spa_inject_delref(spa_t *spa)
3161{
3162	mutex_enter(&spa_namespace_lock);
3163	spa->spa_inject_ref--;
3164	mutex_exit(&spa_namespace_lock);
3165}
3166
3167/*
3168 * Add spares device information to the nvlist.
3169 */
3170static void
3171spa_add_spares(spa_t *spa, nvlist_t *config)
3172{
3173	nvlist_t **spares;
3174	uint_t i, nspares;
3175	nvlist_t *nvroot;
3176	uint64_t guid;
3177	vdev_stat_t *vs;
3178	uint_t vsc;
3179	uint64_t pool;
3180
3181	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3182
3183	if (spa->spa_spares.sav_count == 0)
3184		return;
3185
3186	VERIFY(nvlist_lookup_nvlist(config,
3187	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3188	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3189	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3190	if (nspares != 0) {
3191		VERIFY(nvlist_add_nvlist_array(nvroot,
3192		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3193		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3194		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3195
3196		/*
3197		 * Go through and find any spares which have since been
3198		 * repurposed as an active spare.  If this is the case, update
3199		 * their status appropriately.
3200		 */
3201		for (i = 0; i < nspares; i++) {
3202			VERIFY(nvlist_lookup_uint64(spares[i],
3203			    ZPOOL_CONFIG_GUID, &guid) == 0);
3204			if (spa_spare_exists(guid, &pool, NULL) &&
3205			    pool != 0ULL) {
3206				VERIFY(nvlist_lookup_uint64_array(
3207				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3208				    (uint64_t **)&vs, &vsc) == 0);
3209				vs->vs_state = VDEV_STATE_CANT_OPEN;
3210				vs->vs_aux = VDEV_AUX_SPARED;
3211			}
3212		}
3213	}
3214}
3215
3216/*
3217 * Add l2cache device information to the nvlist, including vdev stats.
3218 */
3219static void
3220spa_add_l2cache(spa_t *spa, nvlist_t *config)
3221{
3222	nvlist_t **l2cache;
3223	uint_t i, j, nl2cache;
3224	nvlist_t *nvroot;
3225	uint64_t guid;
3226	vdev_t *vd;
3227	vdev_stat_t *vs;
3228	uint_t vsc;
3229
3230	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3231
3232	if (spa->spa_l2cache.sav_count == 0)
3233		return;
3234
3235	VERIFY(nvlist_lookup_nvlist(config,
3236	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3237	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3238	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3239	if (nl2cache != 0) {
3240		VERIFY(nvlist_add_nvlist_array(nvroot,
3241		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3242		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3243		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3244
3245		/*
3246		 * Update level 2 cache device stats.
3247		 */
3248
3249		for (i = 0; i < nl2cache; i++) {
3250			VERIFY(nvlist_lookup_uint64(l2cache[i],
3251			    ZPOOL_CONFIG_GUID, &guid) == 0);
3252
3253			vd = NULL;
3254			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3255				if (guid ==
3256				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3257					vd = spa->spa_l2cache.sav_vdevs[j];
3258					break;
3259				}
3260			}
3261			ASSERT(vd != NULL);
3262
3263			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3264			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3265			    == 0);
3266			vdev_get_stats(vd, vs);
3267		}
3268	}
3269}
3270
3271static void
3272spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3273{
3274	nvlist_t *features;
3275	zap_cursor_t zc;
3276	zap_attribute_t za;
3277
3278	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3279	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3280
3281	/* We may be unable to read features if pool is suspended. */
3282	if (spa_suspended(spa))
3283		goto out;
3284
3285	if (spa->spa_feat_for_read_obj != 0) {
3286		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3287		    spa->spa_feat_for_read_obj);
3288		    zap_cursor_retrieve(&zc, &za) == 0;
3289		    zap_cursor_advance(&zc)) {
3290			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3291			    za.za_num_integers == 1);
3292			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3293			    za.za_first_integer));
3294		}
3295		zap_cursor_fini(&zc);
3296	}
3297
3298	if (spa->spa_feat_for_write_obj != 0) {
3299		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3300		    spa->spa_feat_for_write_obj);
3301		    zap_cursor_retrieve(&zc, &za) == 0;
3302		    zap_cursor_advance(&zc)) {
3303			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3304			    za.za_num_integers == 1);
3305			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3306			    za.za_first_integer));
3307		}
3308		zap_cursor_fini(&zc);
3309	}
3310
3311out:
3312	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3313	    features) == 0);
3314	nvlist_free(features);
3315}
3316
3317int
3318spa_get_stats(const char *name, nvlist_t **config,
3319    char *altroot, size_t buflen)
3320{
3321	int error;
3322	spa_t *spa;
3323
3324	*config = NULL;
3325	error = spa_open_common(name, &spa, FTAG, NULL, config);
3326
3327	if (spa != NULL) {
3328		/*
3329		 * This still leaves a window of inconsistency where the spares
3330		 * or l2cache devices could change and the config would be
3331		 * self-inconsistent.
3332		 */
3333		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3334
3335		if (*config != NULL) {
3336			uint64_t loadtimes[2];
3337
3338			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3339			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3340			VERIFY(nvlist_add_uint64_array(*config,
3341			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3342
3343			VERIFY(nvlist_add_uint64(*config,
3344			    ZPOOL_CONFIG_ERRCOUNT,
3345			    spa_get_errlog_size(spa)) == 0);
3346
3347			if (spa_suspended(spa))
3348				VERIFY(nvlist_add_uint64(*config,
3349				    ZPOOL_CONFIG_SUSPENDED,
3350				    spa->spa_failmode) == 0);
3351
3352			spa_add_spares(spa, *config);
3353			spa_add_l2cache(spa, *config);
3354			spa_add_feature_stats(spa, *config);
3355		}
3356	}
3357
3358	/*
3359	 * We want to get the alternate root even for faulted pools, so we cheat
3360	 * and call spa_lookup() directly.
3361	 */
3362	if (altroot) {
3363		if (spa == NULL) {
3364			mutex_enter(&spa_namespace_lock);
3365			spa = spa_lookup(name);
3366			if (spa)
3367				spa_altroot(spa, altroot, buflen);
3368			else
3369				altroot[0] = '\0';
3370			spa = NULL;
3371			mutex_exit(&spa_namespace_lock);
3372		} else {
3373			spa_altroot(spa, altroot, buflen);
3374		}
3375	}
3376
3377	if (spa != NULL) {
3378		spa_config_exit(spa, SCL_CONFIG, FTAG);
3379		spa_close(spa, FTAG);
3380	}
3381
3382	return (error);
3383}
3384
3385/*
3386 * Validate that the auxiliary device array is well formed.  We must have an
3387 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3388 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3389 * specified, as long as they are well-formed.
3390 */
3391static int
3392spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3393    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3394    vdev_labeltype_t label)
3395{
3396	nvlist_t **dev;
3397	uint_t i, ndev;
3398	vdev_t *vd;
3399	int error;
3400
3401	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3402
3403	/*
3404	 * It's acceptable to have no devs specified.
3405	 */
3406	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3407		return (0);
3408
3409	if (ndev == 0)
3410		return (SET_ERROR(EINVAL));
3411
3412	/*
3413	 * Make sure the pool is formatted with a version that supports this
3414	 * device type.
3415	 */
3416	if (spa_version(spa) < version)
3417		return (SET_ERROR(ENOTSUP));
3418
3419	/*
3420	 * Set the pending device list so we correctly handle device in-use
3421	 * checking.
3422	 */
3423	sav->sav_pending = dev;
3424	sav->sav_npending = ndev;
3425
3426	for (i = 0; i < ndev; i++) {
3427		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3428		    mode)) != 0)
3429			goto out;
3430
3431		if (!vd->vdev_ops->vdev_op_leaf) {
3432			vdev_free(vd);
3433			error = SET_ERROR(EINVAL);
3434			goto out;
3435		}
3436
3437		/*
3438		 * The L2ARC currently only supports disk devices in
3439		 * kernel context.  For user-level testing, we allow it.
3440		 */
3441#ifdef _KERNEL
3442		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3443		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3444			error = SET_ERROR(ENOTBLK);
3445			vdev_free(vd);
3446			goto out;
3447		}
3448#endif
3449		vd->vdev_top = vd;
3450
3451		if ((error = vdev_open(vd)) == 0 &&
3452		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3453			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3454			    vd->vdev_guid) == 0);
3455		}
3456
3457		vdev_free(vd);
3458
3459		if (error &&
3460		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3461			goto out;
3462		else
3463			error = 0;
3464	}
3465
3466out:
3467	sav->sav_pending = NULL;
3468	sav->sav_npending = 0;
3469	return (error);
3470}
3471
3472static int
3473spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3474{
3475	int error;
3476
3477	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3478
3479	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3480	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3481	    VDEV_LABEL_SPARE)) != 0) {
3482		return (error);
3483	}
3484
3485	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3486	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3487	    VDEV_LABEL_L2CACHE));
3488}
3489
3490static void
3491spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3492    const char *config)
3493{
3494	int i;
3495
3496	if (sav->sav_config != NULL) {
3497		nvlist_t **olddevs;
3498		uint_t oldndevs;
3499		nvlist_t **newdevs;
3500
3501		/*
3502		 * Generate new dev list by concatentating with the
3503		 * current dev list.
3504		 */
3505		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3506		    &olddevs, &oldndevs) == 0);
3507
3508		newdevs = kmem_alloc(sizeof (void *) *
3509		    (ndevs + oldndevs), KM_SLEEP);
3510		for (i = 0; i < oldndevs; i++)
3511			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3512			    KM_SLEEP) == 0);
3513		for (i = 0; i < ndevs; i++)
3514			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3515			    KM_SLEEP) == 0);
3516
3517		VERIFY(nvlist_remove(sav->sav_config, config,
3518		    DATA_TYPE_NVLIST_ARRAY) == 0);
3519
3520		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3521		    config, newdevs, ndevs + oldndevs) == 0);
3522		for (i = 0; i < oldndevs + ndevs; i++)
3523			nvlist_free(newdevs[i]);
3524		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3525	} else {
3526		/*
3527		 * Generate a new dev list.
3528		 */
3529		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3530		    KM_SLEEP) == 0);
3531		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3532		    devs, ndevs) == 0);
3533	}
3534}
3535
3536/*
3537 * Stop and drop level 2 ARC devices
3538 */
3539void
3540spa_l2cache_drop(spa_t *spa)
3541{
3542	vdev_t *vd;
3543	int i;
3544	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3545
3546	for (i = 0; i < sav->sav_count; i++) {
3547		uint64_t pool;
3548
3549		vd = sav->sav_vdevs[i];
3550		ASSERT(vd != NULL);
3551
3552		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3553		    pool != 0ULL && l2arc_vdev_present(vd))
3554			l2arc_remove_vdev(vd);
3555	}
3556}
3557
3558/*
3559 * Pool Creation
3560 */
3561int
3562spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3563    nvlist_t *zplprops)
3564{
3565	spa_t *spa;
3566	char *altroot = NULL;
3567	vdev_t *rvd;
3568	dsl_pool_t *dp;
3569	dmu_tx_t *tx;
3570	int error = 0;
3571	uint64_t txg = TXG_INITIAL;
3572	nvlist_t **spares, **l2cache;
3573	uint_t nspares, nl2cache;
3574	uint64_t version, obj;
3575	boolean_t has_features;
3576
3577	/*
3578	 * If this pool already exists, return failure.
3579	 */
3580	mutex_enter(&spa_namespace_lock);
3581	if (spa_lookup(pool) != NULL) {
3582		mutex_exit(&spa_namespace_lock);
3583		return (SET_ERROR(EEXIST));
3584	}
3585
3586	/*
3587	 * Allocate a new spa_t structure.
3588	 */
3589	(void) nvlist_lookup_string(props,
3590	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3591	spa = spa_add(pool, NULL, altroot);
3592	spa_activate(spa, spa_mode_global);
3593
3594	if (props && (error = spa_prop_validate(spa, props))) {
3595		spa_deactivate(spa);
3596		spa_remove(spa);
3597		mutex_exit(&spa_namespace_lock);
3598		return (error);
3599	}
3600
3601	has_features = B_FALSE;
3602	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3603	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3604		if (zpool_prop_feature(nvpair_name(elem)))
3605			has_features = B_TRUE;
3606	}
3607
3608	if (has_features || nvlist_lookup_uint64(props,
3609	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3610		version = SPA_VERSION;
3611	}
3612	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3613
3614	spa->spa_first_txg = txg;
3615	spa->spa_uberblock.ub_txg = txg - 1;
3616	spa->spa_uberblock.ub_version = version;
3617	spa->spa_ubsync = spa->spa_uberblock;
3618
3619	/*
3620	 * Create "The Godfather" zio to hold all async IOs
3621	 */
3622	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3623	    KM_SLEEP);
3624	for (int i = 0; i < max_ncpus; i++) {
3625		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3626		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3627		    ZIO_FLAG_GODFATHER);
3628	}
3629
3630	/*
3631	 * Create the root vdev.
3632	 */
3633	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3634
3635	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3636
3637	ASSERT(error != 0 || rvd != NULL);
3638	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3639
3640	if (error == 0 && !zfs_allocatable_devs(nvroot))
3641		error = SET_ERROR(EINVAL);
3642
3643	if (error == 0 &&
3644	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3645	    (error = spa_validate_aux(spa, nvroot, txg,
3646	    VDEV_ALLOC_ADD)) == 0) {
3647		for (int c = 0; c < rvd->vdev_children; c++) {
3648			vdev_ashift_optimize(rvd->vdev_child[c]);
3649			vdev_metaslab_set_size(rvd->vdev_child[c]);
3650			vdev_expand(rvd->vdev_child[c], txg);
3651		}
3652	}
3653
3654	spa_config_exit(spa, SCL_ALL, FTAG);
3655
3656	if (error != 0) {
3657		spa_unload(spa);
3658		spa_deactivate(spa);
3659		spa_remove(spa);
3660		mutex_exit(&spa_namespace_lock);
3661		return (error);
3662	}
3663
3664	/*
3665	 * Get the list of spares, if specified.
3666	 */
3667	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3668	    &spares, &nspares) == 0) {
3669		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3670		    KM_SLEEP) == 0);
3671		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3672		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3673		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3674		spa_load_spares(spa);
3675		spa_config_exit(spa, SCL_ALL, FTAG);
3676		spa->spa_spares.sav_sync = B_TRUE;
3677	}
3678
3679	/*
3680	 * Get the list of level 2 cache devices, if specified.
3681	 */
3682	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3683	    &l2cache, &nl2cache) == 0) {
3684		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3685		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3686		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3687		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3688		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3689		spa_load_l2cache(spa);
3690		spa_config_exit(spa, SCL_ALL, FTAG);
3691		spa->spa_l2cache.sav_sync = B_TRUE;
3692	}
3693
3694	spa->spa_is_initializing = B_TRUE;
3695	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3696	spa->spa_meta_objset = dp->dp_meta_objset;
3697	spa->spa_is_initializing = B_FALSE;
3698
3699	/*
3700	 * Create DDTs (dedup tables).
3701	 */
3702	ddt_create(spa);
3703
3704	spa_update_dspace(spa);
3705
3706	tx = dmu_tx_create_assigned(dp, txg);
3707
3708	/*
3709	 * Create the pool config object.
3710	 */
3711	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3712	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3713	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3714
3715	if (zap_add(spa->spa_meta_objset,
3716	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3717	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3718		cmn_err(CE_PANIC, "failed to add pool config");
3719	}
3720
3721	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3722		spa_feature_create_zap_objects(spa, tx);
3723
3724	if (zap_add(spa->spa_meta_objset,
3725	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3726	    sizeof (uint64_t), 1, &version, tx) != 0) {
3727		cmn_err(CE_PANIC, "failed to add pool version");
3728	}
3729
3730	/* Newly created pools with the right version are always deflated. */
3731	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3732		spa->spa_deflate = TRUE;
3733		if (zap_add(spa->spa_meta_objset,
3734		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3735		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3736			cmn_err(CE_PANIC, "failed to add deflate");
3737		}
3738	}
3739
3740	/*
3741	 * Create the deferred-free bpobj.  Turn off compression
3742	 * because sync-to-convergence takes longer if the blocksize
3743	 * keeps changing.
3744	 */
3745	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3746	dmu_object_set_compress(spa->spa_meta_objset, obj,
3747	    ZIO_COMPRESS_OFF, tx);
3748	if (zap_add(spa->spa_meta_objset,
3749	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3750	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3751		cmn_err(CE_PANIC, "failed to add bpobj");
3752	}
3753	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3754	    spa->spa_meta_objset, obj));
3755
3756	/*
3757	 * Create the pool's history object.
3758	 */
3759	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3760		spa_history_create_obj(spa, tx);
3761
3762	/*
3763	 * Generate some random noise for salted checksums to operate on.
3764	 */
3765	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3766	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3767
3768	/*
3769	 * Set pool properties.
3770	 */
3771	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3772	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3773	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3774	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3775
3776	if (props != NULL) {
3777		spa_configfile_set(spa, props, B_FALSE);
3778		spa_sync_props(props, tx);
3779	}
3780
3781	dmu_tx_commit(tx);
3782
3783	spa->spa_sync_on = B_TRUE;
3784	txg_sync_start(spa->spa_dsl_pool);
3785
3786	/*
3787	 * We explicitly wait for the first transaction to complete so that our
3788	 * bean counters are appropriately updated.
3789	 */
3790	txg_wait_synced(spa->spa_dsl_pool, txg);
3791
3792	spa_config_sync(spa, B_FALSE, B_TRUE);
3793	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3794
3795	spa_history_log_version(spa, "create");
3796
3797	/*
3798	 * Don't count references from objsets that are already closed
3799	 * and are making their way through the eviction process.
3800	 */
3801	spa_evicting_os_wait(spa);
3802	spa->spa_minref = refcount_count(&spa->spa_refcount);
3803
3804	mutex_exit(&spa_namespace_lock);
3805
3806	return (0);
3807}
3808
3809#ifdef _KERNEL
3810#if defined(sun)
3811/*
3812 * Get the root pool information from the root disk, then import the root pool
3813 * during the system boot up time.
3814 */
3815extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3816
3817static nvlist_t *
3818spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3819{
3820	nvlist_t *config;
3821	nvlist_t *nvtop, *nvroot;
3822	uint64_t pgid;
3823
3824	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3825		return (NULL);
3826
3827	/*
3828	 * Add this top-level vdev to the child array.
3829	 */
3830	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3831	    &nvtop) == 0);
3832	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3833	    &pgid) == 0);
3834	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3835
3836	/*
3837	 * Put this pool's top-level vdevs into a root vdev.
3838	 */
3839	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3840	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3841	    VDEV_TYPE_ROOT) == 0);
3842	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3843	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3844	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3845	    &nvtop, 1) == 0);
3846
3847	/*
3848	 * Replace the existing vdev_tree with the new root vdev in
3849	 * this pool's configuration (remove the old, add the new).
3850	 */
3851	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3852	nvlist_free(nvroot);
3853	return (config);
3854}
3855
3856/*
3857 * Walk the vdev tree and see if we can find a device with "better"
3858 * configuration. A configuration is "better" if the label on that
3859 * device has a more recent txg.
3860 */
3861static void
3862spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3863{
3864	for (int c = 0; c < vd->vdev_children; c++)
3865		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3866
3867	if (vd->vdev_ops->vdev_op_leaf) {
3868		nvlist_t *label;
3869		uint64_t label_txg;
3870
3871		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3872		    &label) != 0)
3873			return;
3874
3875		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3876		    &label_txg) == 0);
3877
3878		/*
3879		 * Do we have a better boot device?
3880		 */
3881		if (label_txg > *txg) {
3882			*txg = label_txg;
3883			*avd = vd;
3884		}
3885		nvlist_free(label);
3886	}
3887}
3888
3889/*
3890 * Import a root pool.
3891 *
3892 * For x86. devpath_list will consist of devid and/or physpath name of
3893 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3894 * The GRUB "findroot" command will return the vdev we should boot.
3895 *
3896 * For Sparc, devpath_list consists the physpath name of the booting device
3897 * no matter the rootpool is a single device pool or a mirrored pool.
3898 * e.g.
3899 *	"/pci@1f,0/ide@d/disk@0,0:a"
3900 */
3901int
3902spa_import_rootpool(char *devpath, char *devid)
3903{
3904	spa_t *spa;
3905	vdev_t *rvd, *bvd, *avd = NULL;
3906	nvlist_t *config, *nvtop;
3907	uint64_t guid, txg;
3908	char *pname;
3909	int error;
3910
3911	/*
3912	 * Read the label from the boot device and generate a configuration.
3913	 */
3914	config = spa_generate_rootconf(devpath, devid, &guid);
3915#if defined(_OBP) && defined(_KERNEL)
3916	if (config == NULL) {
3917		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3918			/* iscsi boot */
3919			get_iscsi_bootpath_phy(devpath);
3920			config = spa_generate_rootconf(devpath, devid, &guid);
3921		}
3922	}
3923#endif
3924	if (config == NULL) {
3925		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3926		    devpath);
3927		return (SET_ERROR(EIO));
3928	}
3929
3930	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3931	    &pname) == 0);
3932	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3933
3934	mutex_enter(&spa_namespace_lock);
3935	if ((spa = spa_lookup(pname)) != NULL) {
3936		/*
3937		 * Remove the existing root pool from the namespace so that we
3938		 * can replace it with the correct config we just read in.
3939		 */
3940		spa_remove(spa);
3941	}
3942
3943	spa = spa_add(pname, config, NULL);
3944	spa->spa_is_root = B_TRUE;
3945	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3946
3947	/*
3948	 * Build up a vdev tree based on the boot device's label config.
3949	 */
3950	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3951	    &nvtop) == 0);
3952	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3953	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3954	    VDEV_ALLOC_ROOTPOOL);
3955	spa_config_exit(spa, SCL_ALL, FTAG);
3956	if (error) {
3957		mutex_exit(&spa_namespace_lock);
3958		nvlist_free(config);
3959		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3960		    pname);
3961		return (error);
3962	}
3963
3964	/*
3965	 * Get the boot vdev.
3966	 */
3967	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3968		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3969		    (u_longlong_t)guid);
3970		error = SET_ERROR(ENOENT);
3971		goto out;
3972	}
3973
3974	/*
3975	 * Determine if there is a better boot device.
3976	 */
3977	avd = bvd;
3978	spa_alt_rootvdev(rvd, &avd, &txg);
3979	if (avd != bvd) {
3980		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3981		    "try booting from '%s'", avd->vdev_path);
3982		error = SET_ERROR(EINVAL);
3983		goto out;
3984	}
3985
3986	/*
3987	 * If the boot device is part of a spare vdev then ensure that
3988	 * we're booting off the active spare.
3989	 */
3990	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3991	    !bvd->vdev_isspare) {
3992		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3993		    "try booting from '%s'",
3994		    bvd->vdev_parent->
3995		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3996		error = SET_ERROR(EINVAL);
3997		goto out;
3998	}
3999
4000	error = 0;
4001out:
4002	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4003	vdev_free(rvd);
4004	spa_config_exit(spa, SCL_ALL, FTAG);
4005	mutex_exit(&spa_namespace_lock);
4006
4007	nvlist_free(config);
4008	return (error);
4009}
4010
4011#else
4012
4013extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4014    uint64_t *count);
4015
4016static nvlist_t *
4017spa_generate_rootconf(const char *name)
4018{
4019	nvlist_t **configs, **tops;
4020	nvlist_t *config;
4021	nvlist_t *best_cfg, *nvtop, *nvroot;
4022	uint64_t *holes;
4023	uint64_t best_txg;
4024	uint64_t nchildren;
4025	uint64_t pgid;
4026	uint64_t count;
4027	uint64_t i;
4028	uint_t   nholes;
4029
4030	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4031		return (NULL);
4032
4033	ASSERT3U(count, !=, 0);
4034	best_txg = 0;
4035	for (i = 0; i < count; i++) {
4036		uint64_t txg;
4037
4038		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4039		    &txg) == 0);
4040		if (txg > best_txg) {
4041			best_txg = txg;
4042			best_cfg = configs[i];
4043		}
4044	}
4045
4046	/*
4047	 * Multi-vdev root pool configuration discovery is not supported yet.
4048	 */
4049	nchildren = 1;
4050	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4051	holes = NULL;
4052	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4053	    &holes, &nholes);
4054
4055	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4056	for (i = 0; i < nchildren; i++) {
4057		if (i >= count)
4058			break;
4059		if (configs[i] == NULL)
4060			continue;
4061		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4062		    &nvtop) == 0);
4063		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4064	}
4065	for (i = 0; holes != NULL && i < nholes; i++) {
4066		if (i >= nchildren)
4067			continue;
4068		if (tops[holes[i]] != NULL)
4069			continue;
4070		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4071		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4072		    VDEV_TYPE_HOLE) == 0);
4073		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4074		    holes[i]) == 0);
4075		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4076		    0) == 0);
4077	}
4078	for (i = 0; i < nchildren; i++) {
4079		if (tops[i] != NULL)
4080			continue;
4081		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4082		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4083		    VDEV_TYPE_MISSING) == 0);
4084		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4085		    i) == 0);
4086		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4087		    0) == 0);
4088	}
4089
4090	/*
4091	 * Create pool config based on the best vdev config.
4092	 */
4093	nvlist_dup(best_cfg, &config, KM_SLEEP);
4094
4095	/*
4096	 * Put this pool's top-level vdevs into a root vdev.
4097	 */
4098	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4099	    &pgid) == 0);
4100	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4101	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4102	    VDEV_TYPE_ROOT) == 0);
4103	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4104	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4105	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4106	    tops, nchildren) == 0);
4107
4108	/*
4109	 * Replace the existing vdev_tree with the new root vdev in
4110	 * this pool's configuration (remove the old, add the new).
4111	 */
4112	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4113
4114	/*
4115	 * Drop vdev config elements that should not be present at pool level.
4116	 */
4117	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4118	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4119
4120	for (i = 0; i < count; i++)
4121		nvlist_free(configs[i]);
4122	kmem_free(configs, count * sizeof(void *));
4123	for (i = 0; i < nchildren; i++)
4124		nvlist_free(tops[i]);
4125	kmem_free(tops, nchildren * sizeof(void *));
4126	nvlist_free(nvroot);
4127	return (config);
4128}
4129
4130int
4131spa_import_rootpool(const char *name)
4132{
4133	spa_t *spa;
4134	vdev_t *rvd, *bvd, *avd = NULL;
4135	nvlist_t *config, *nvtop;
4136	uint64_t txg;
4137	char *pname;
4138	int error;
4139
4140	/*
4141	 * Read the label from the boot device and generate a configuration.
4142	 */
4143	config = spa_generate_rootconf(name);
4144
4145	mutex_enter(&spa_namespace_lock);
4146	if (config != NULL) {
4147		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4148		    &pname) == 0 && strcmp(name, pname) == 0);
4149		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4150		    == 0);
4151
4152		if ((spa = spa_lookup(pname)) != NULL) {
4153			/*
4154			 * Remove the existing root pool from the namespace so
4155			 * that we can replace it with the correct config
4156			 * we just read in.
4157			 */
4158			spa_remove(spa);
4159		}
4160		spa = spa_add(pname, config, NULL);
4161
4162		/*
4163		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4164		 * via spa_version().
4165		 */
4166		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4167		    &spa->spa_ubsync.ub_version) != 0)
4168			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4169	} else if ((spa = spa_lookup(name)) == NULL) {
4170		mutex_exit(&spa_namespace_lock);
4171		nvlist_free(config);
4172		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4173		    name);
4174		return (EIO);
4175	} else {
4176		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4177	}
4178	spa->spa_is_root = B_TRUE;
4179	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4180
4181	/*
4182	 * Build up a vdev tree based on the boot device's label config.
4183	 */
4184	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4185	    &nvtop) == 0);
4186	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4187	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4188	    VDEV_ALLOC_ROOTPOOL);
4189	spa_config_exit(spa, SCL_ALL, FTAG);
4190	if (error) {
4191		mutex_exit(&spa_namespace_lock);
4192		nvlist_free(config);
4193		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4194		    pname);
4195		return (error);
4196	}
4197
4198	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4199	vdev_free(rvd);
4200	spa_config_exit(spa, SCL_ALL, FTAG);
4201	mutex_exit(&spa_namespace_lock);
4202
4203	nvlist_free(config);
4204	return (0);
4205}
4206
4207#endif	/* sun */
4208#endif
4209
4210/*
4211 * Import a non-root pool into the system.
4212 */
4213int
4214spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4215{
4216	spa_t *spa;
4217	char *altroot = NULL;
4218	spa_load_state_t state = SPA_LOAD_IMPORT;
4219	zpool_rewind_policy_t policy;
4220	uint64_t mode = spa_mode_global;
4221	uint64_t readonly = B_FALSE;
4222	int error;
4223	nvlist_t *nvroot;
4224	nvlist_t **spares, **l2cache;
4225	uint_t nspares, nl2cache;
4226
4227	/*
4228	 * If a pool with this name exists, return failure.
4229	 */
4230	mutex_enter(&spa_namespace_lock);
4231	if (spa_lookup(pool) != NULL) {
4232		mutex_exit(&spa_namespace_lock);
4233		return (SET_ERROR(EEXIST));
4234	}
4235
4236	/*
4237	 * Create and initialize the spa structure.
4238	 */
4239	(void) nvlist_lookup_string(props,
4240	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4241	(void) nvlist_lookup_uint64(props,
4242	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4243	if (readonly)
4244		mode = FREAD;
4245	spa = spa_add(pool, config, altroot);
4246	spa->spa_import_flags = flags;
4247
4248	/*
4249	 * Verbatim import - Take a pool and insert it into the namespace
4250	 * as if it had been loaded at boot.
4251	 */
4252	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4253		if (props != NULL)
4254			spa_configfile_set(spa, props, B_FALSE);
4255
4256		spa_config_sync(spa, B_FALSE, B_TRUE);
4257		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4258
4259		mutex_exit(&spa_namespace_lock);
4260		return (0);
4261	}
4262
4263	spa_activate(spa, mode);
4264
4265	/*
4266	 * Don't start async tasks until we know everything is healthy.
4267	 */
4268	spa_async_suspend(spa);
4269
4270	zpool_get_rewind_policy(config, &policy);
4271	if (policy.zrp_request & ZPOOL_DO_REWIND)
4272		state = SPA_LOAD_RECOVER;
4273
4274	/*
4275	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4276	 * because the user-supplied config is actually the one to trust when
4277	 * doing an import.
4278	 */
4279	if (state != SPA_LOAD_RECOVER)
4280		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4281
4282	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4283	    policy.zrp_request);
4284
4285	/*
4286	 * Propagate anything learned while loading the pool and pass it
4287	 * back to caller (i.e. rewind info, missing devices, etc).
4288	 */
4289	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4290	    spa->spa_load_info) == 0);
4291
4292	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4293	/*
4294	 * Toss any existing sparelist, as it doesn't have any validity
4295	 * anymore, and conflicts with spa_has_spare().
4296	 */
4297	if (spa->spa_spares.sav_config) {
4298		nvlist_free(spa->spa_spares.sav_config);
4299		spa->spa_spares.sav_config = NULL;
4300		spa_load_spares(spa);
4301	}
4302	if (spa->spa_l2cache.sav_config) {
4303		nvlist_free(spa->spa_l2cache.sav_config);
4304		spa->spa_l2cache.sav_config = NULL;
4305		spa_load_l2cache(spa);
4306	}
4307
4308	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4309	    &nvroot) == 0);
4310	if (error == 0)
4311		error = spa_validate_aux(spa, nvroot, -1ULL,
4312		    VDEV_ALLOC_SPARE);
4313	if (error == 0)
4314		error = spa_validate_aux(spa, nvroot, -1ULL,
4315		    VDEV_ALLOC_L2CACHE);
4316	spa_config_exit(spa, SCL_ALL, FTAG);
4317
4318	if (props != NULL)
4319		spa_configfile_set(spa, props, B_FALSE);
4320
4321	if (error != 0 || (props && spa_writeable(spa) &&
4322	    (error = spa_prop_set(spa, props)))) {
4323		spa_unload(spa);
4324		spa_deactivate(spa);
4325		spa_remove(spa);
4326		mutex_exit(&spa_namespace_lock);
4327		return (error);
4328	}
4329
4330	spa_async_resume(spa);
4331
4332	/*
4333	 * Override any spares and level 2 cache devices as specified by
4334	 * the user, as these may have correct device names/devids, etc.
4335	 */
4336	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4337	    &spares, &nspares) == 0) {
4338		if (spa->spa_spares.sav_config)
4339			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4340			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4341		else
4342			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4343			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4344		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4345		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4346		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4347		spa_load_spares(spa);
4348		spa_config_exit(spa, SCL_ALL, FTAG);
4349		spa->spa_spares.sav_sync = B_TRUE;
4350	}
4351	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4352	    &l2cache, &nl2cache) == 0) {
4353		if (spa->spa_l2cache.sav_config)
4354			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4355			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4356		else
4357			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4358			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4359		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4360		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4361		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4362		spa_load_l2cache(spa);
4363		spa_config_exit(spa, SCL_ALL, FTAG);
4364		spa->spa_l2cache.sav_sync = B_TRUE;
4365	}
4366
4367	/*
4368	 * Check for any removed devices.
4369	 */
4370	if (spa->spa_autoreplace) {
4371		spa_aux_check_removed(&spa->spa_spares);
4372		spa_aux_check_removed(&spa->spa_l2cache);
4373	}
4374
4375	if (spa_writeable(spa)) {
4376		/*
4377		 * Update the config cache to include the newly-imported pool.
4378		 */
4379		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4380	}
4381
4382	/*
4383	 * It's possible that the pool was expanded while it was exported.
4384	 * We kick off an async task to handle this for us.
4385	 */
4386	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4387
4388	spa_history_log_version(spa, "import");
4389
4390	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4391
4392	mutex_exit(&spa_namespace_lock);
4393
4394#ifdef __FreeBSD__
4395#ifdef _KERNEL
4396	zvol_create_minors(pool);
4397#endif
4398#endif
4399	return (0);
4400}
4401
4402nvlist_t *
4403spa_tryimport(nvlist_t *tryconfig)
4404{
4405	nvlist_t *config = NULL;
4406	char *poolname;
4407	spa_t *spa;
4408	uint64_t state;
4409	int error;
4410
4411	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4412		return (NULL);
4413
4414	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4415		return (NULL);
4416
4417	/*
4418	 * Create and initialize the spa structure.
4419	 */
4420	mutex_enter(&spa_namespace_lock);
4421	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4422	spa_activate(spa, FREAD);
4423
4424	/*
4425	 * Pass off the heavy lifting to spa_load().
4426	 * Pass TRUE for mosconfig because the user-supplied config
4427	 * is actually the one to trust when doing an import.
4428	 */
4429	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4430
4431	/*
4432	 * If 'tryconfig' was at least parsable, return the current config.
4433	 */
4434	if (spa->spa_root_vdev != NULL) {
4435		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4436		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4437		    poolname) == 0);
4438		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4439		    state) == 0);
4440		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4441		    spa->spa_uberblock.ub_timestamp) == 0);
4442		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4443		    spa->spa_load_info) == 0);
4444
4445		/*
4446		 * If the bootfs property exists on this pool then we
4447		 * copy it out so that external consumers can tell which
4448		 * pools are bootable.
4449		 */
4450		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4451			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4452
4453			/*
4454			 * We have to play games with the name since the
4455			 * pool was opened as TRYIMPORT_NAME.
4456			 */
4457			if (dsl_dsobj_to_dsname(spa_name(spa),
4458			    spa->spa_bootfs, tmpname) == 0) {
4459				char *cp;
4460				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4461
4462				cp = strchr(tmpname, '/');
4463				if (cp == NULL) {
4464					(void) strlcpy(dsname, tmpname,
4465					    MAXPATHLEN);
4466				} else {
4467					(void) snprintf(dsname, MAXPATHLEN,
4468					    "%s/%s", poolname, ++cp);
4469				}
4470				VERIFY(nvlist_add_string(config,
4471				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4472				kmem_free(dsname, MAXPATHLEN);
4473			}
4474			kmem_free(tmpname, MAXPATHLEN);
4475		}
4476
4477		/*
4478		 * Add the list of hot spares and level 2 cache devices.
4479		 */
4480		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4481		spa_add_spares(spa, config);
4482		spa_add_l2cache(spa, config);
4483		spa_config_exit(spa, SCL_CONFIG, FTAG);
4484	}
4485
4486	spa_unload(spa);
4487	spa_deactivate(spa);
4488	spa_remove(spa);
4489	mutex_exit(&spa_namespace_lock);
4490
4491	return (config);
4492}
4493
4494/*
4495 * Pool export/destroy
4496 *
4497 * The act of destroying or exporting a pool is very simple.  We make sure there
4498 * is no more pending I/O and any references to the pool are gone.  Then, we
4499 * update the pool state and sync all the labels to disk, removing the
4500 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4501 * we don't sync the labels or remove the configuration cache.
4502 */
4503static int
4504spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4505    boolean_t force, boolean_t hardforce)
4506{
4507	spa_t *spa;
4508
4509	if (oldconfig)
4510		*oldconfig = NULL;
4511
4512	if (!(spa_mode_global & FWRITE))
4513		return (SET_ERROR(EROFS));
4514
4515	mutex_enter(&spa_namespace_lock);
4516	if ((spa = spa_lookup(pool)) == NULL) {
4517		mutex_exit(&spa_namespace_lock);
4518		return (SET_ERROR(ENOENT));
4519	}
4520
4521	/*
4522	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4523	 * reacquire the namespace lock, and see if we can export.
4524	 */
4525	spa_open_ref(spa, FTAG);
4526	mutex_exit(&spa_namespace_lock);
4527	spa_async_suspend(spa);
4528	mutex_enter(&spa_namespace_lock);
4529	spa_close(spa, FTAG);
4530
4531	/*
4532	 * The pool will be in core if it's openable,
4533	 * in which case we can modify its state.
4534	 */
4535	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4536		/*
4537		 * Objsets may be open only because they're dirty, so we
4538		 * have to force it to sync before checking spa_refcnt.
4539		 */
4540		txg_wait_synced(spa->spa_dsl_pool, 0);
4541		spa_evicting_os_wait(spa);
4542
4543		/*
4544		 * A pool cannot be exported or destroyed if there are active
4545		 * references.  If we are resetting a pool, allow references by
4546		 * fault injection handlers.
4547		 */
4548		if (!spa_refcount_zero(spa) ||
4549		    (spa->spa_inject_ref != 0 &&
4550		    new_state != POOL_STATE_UNINITIALIZED)) {
4551			spa_async_resume(spa);
4552			mutex_exit(&spa_namespace_lock);
4553			return (SET_ERROR(EBUSY));
4554		}
4555
4556		/*
4557		 * A pool cannot be exported if it has an active shared spare.
4558		 * This is to prevent other pools stealing the active spare
4559		 * from an exported pool. At user's own will, such pool can
4560		 * be forcedly exported.
4561		 */
4562		if (!force && new_state == POOL_STATE_EXPORTED &&
4563		    spa_has_active_shared_spare(spa)) {
4564			spa_async_resume(spa);
4565			mutex_exit(&spa_namespace_lock);
4566			return (SET_ERROR(EXDEV));
4567		}
4568
4569		/*
4570		 * We want this to be reflected on every label,
4571		 * so mark them all dirty.  spa_unload() will do the
4572		 * final sync that pushes these changes out.
4573		 */
4574		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4575			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4576			spa->spa_state = new_state;
4577			spa->spa_final_txg = spa_last_synced_txg(spa) +
4578			    TXG_DEFER_SIZE + 1;
4579			vdev_config_dirty(spa->spa_root_vdev);
4580			spa_config_exit(spa, SCL_ALL, FTAG);
4581		}
4582	}
4583
4584	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4585
4586	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4587		spa_unload(spa);
4588		spa_deactivate(spa);
4589	}
4590
4591	if (oldconfig && spa->spa_config)
4592		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4593
4594	if (new_state != POOL_STATE_UNINITIALIZED) {
4595		if (!hardforce)
4596			spa_config_sync(spa, B_TRUE, B_TRUE);
4597		spa_remove(spa);
4598	}
4599	mutex_exit(&spa_namespace_lock);
4600
4601	return (0);
4602}
4603
4604/*
4605 * Destroy a storage pool.
4606 */
4607int
4608spa_destroy(char *pool)
4609{
4610	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4611	    B_FALSE, B_FALSE));
4612}
4613
4614/*
4615 * Export a storage pool.
4616 */
4617int
4618spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4619    boolean_t hardforce)
4620{
4621	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4622	    force, hardforce));
4623}
4624
4625/*
4626 * Similar to spa_export(), this unloads the spa_t without actually removing it
4627 * from the namespace in any way.
4628 */
4629int
4630spa_reset(char *pool)
4631{
4632	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4633	    B_FALSE, B_FALSE));
4634}
4635
4636/*
4637 * ==========================================================================
4638 * Device manipulation
4639 * ==========================================================================
4640 */
4641
4642/*
4643 * Add a device to a storage pool.
4644 */
4645int
4646spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4647{
4648	uint64_t txg, id;
4649	int error;
4650	vdev_t *rvd = spa->spa_root_vdev;
4651	vdev_t *vd, *tvd;
4652	nvlist_t **spares, **l2cache;
4653	uint_t nspares, nl2cache;
4654
4655	ASSERT(spa_writeable(spa));
4656
4657	txg = spa_vdev_enter(spa);
4658
4659	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4660	    VDEV_ALLOC_ADD)) != 0)
4661		return (spa_vdev_exit(spa, NULL, txg, error));
4662
4663	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4664
4665	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4666	    &nspares) != 0)
4667		nspares = 0;
4668
4669	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4670	    &nl2cache) != 0)
4671		nl2cache = 0;
4672
4673	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4674		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4675
4676	if (vd->vdev_children != 0 &&
4677	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4678		return (spa_vdev_exit(spa, vd, txg, error));
4679
4680	/*
4681	 * We must validate the spares and l2cache devices after checking the
4682	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4683	 */
4684	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4685		return (spa_vdev_exit(spa, vd, txg, error));
4686
4687	/*
4688	 * Transfer each new top-level vdev from vd to rvd.
4689	 */
4690	for (int c = 0; c < vd->vdev_children; c++) {
4691
4692		/*
4693		 * Set the vdev id to the first hole, if one exists.
4694		 */
4695		for (id = 0; id < rvd->vdev_children; id++) {
4696			if (rvd->vdev_child[id]->vdev_ishole) {
4697				vdev_free(rvd->vdev_child[id]);
4698				break;
4699			}
4700		}
4701		tvd = vd->vdev_child[c];
4702		vdev_remove_child(vd, tvd);
4703		tvd->vdev_id = id;
4704		vdev_add_child(rvd, tvd);
4705		vdev_config_dirty(tvd);
4706	}
4707
4708	if (nspares != 0) {
4709		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4710		    ZPOOL_CONFIG_SPARES);
4711		spa_load_spares(spa);
4712		spa->spa_spares.sav_sync = B_TRUE;
4713	}
4714
4715	if (nl2cache != 0) {
4716		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4717		    ZPOOL_CONFIG_L2CACHE);
4718		spa_load_l2cache(spa);
4719		spa->spa_l2cache.sav_sync = B_TRUE;
4720	}
4721
4722	/*
4723	 * We have to be careful when adding new vdevs to an existing pool.
4724	 * If other threads start allocating from these vdevs before we
4725	 * sync the config cache, and we lose power, then upon reboot we may
4726	 * fail to open the pool because there are DVAs that the config cache
4727	 * can't translate.  Therefore, we first add the vdevs without
4728	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4729	 * and then let spa_config_update() initialize the new metaslabs.
4730	 *
4731	 * spa_load() checks for added-but-not-initialized vdevs, so that
4732	 * if we lose power at any point in this sequence, the remaining
4733	 * steps will be completed the next time we load the pool.
4734	 */
4735	(void) spa_vdev_exit(spa, vd, txg, 0);
4736
4737	mutex_enter(&spa_namespace_lock);
4738	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4739	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4740	mutex_exit(&spa_namespace_lock);
4741
4742	return (0);
4743}
4744
4745/*
4746 * Attach a device to a mirror.  The arguments are the path to any device
4747 * in the mirror, and the nvroot for the new device.  If the path specifies
4748 * a device that is not mirrored, we automatically insert the mirror vdev.
4749 *
4750 * If 'replacing' is specified, the new device is intended to replace the
4751 * existing device; in this case the two devices are made into their own
4752 * mirror using the 'replacing' vdev, which is functionally identical to
4753 * the mirror vdev (it actually reuses all the same ops) but has a few
4754 * extra rules: you can't attach to it after it's been created, and upon
4755 * completion of resilvering, the first disk (the one being replaced)
4756 * is automatically detached.
4757 */
4758int
4759spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4760{
4761	uint64_t txg, dtl_max_txg;
4762	vdev_t *rvd = spa->spa_root_vdev;
4763	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4764	vdev_ops_t *pvops;
4765	char *oldvdpath, *newvdpath;
4766	int newvd_isspare;
4767	int error;
4768
4769	ASSERT(spa_writeable(spa));
4770
4771	txg = spa_vdev_enter(spa);
4772
4773	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4774
4775	if (oldvd == NULL)
4776		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4777
4778	if (!oldvd->vdev_ops->vdev_op_leaf)
4779		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4780
4781	pvd = oldvd->vdev_parent;
4782
4783	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4784	    VDEV_ALLOC_ATTACH)) != 0)
4785		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4786
4787	if (newrootvd->vdev_children != 1)
4788		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4789
4790	newvd = newrootvd->vdev_child[0];
4791
4792	if (!newvd->vdev_ops->vdev_op_leaf)
4793		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4794
4795	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4796		return (spa_vdev_exit(spa, newrootvd, txg, error));
4797
4798	/*
4799	 * Spares can't replace logs
4800	 */
4801	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4802		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4803
4804	if (!replacing) {
4805		/*
4806		 * For attach, the only allowable parent is a mirror or the root
4807		 * vdev.
4808		 */
4809		if (pvd->vdev_ops != &vdev_mirror_ops &&
4810		    pvd->vdev_ops != &vdev_root_ops)
4811			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4812
4813		pvops = &vdev_mirror_ops;
4814	} else {
4815		/*
4816		 * Active hot spares can only be replaced by inactive hot
4817		 * spares.
4818		 */
4819		if (pvd->vdev_ops == &vdev_spare_ops &&
4820		    oldvd->vdev_isspare &&
4821		    !spa_has_spare(spa, newvd->vdev_guid))
4822			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4823
4824		/*
4825		 * If the source is a hot spare, and the parent isn't already a
4826		 * spare, then we want to create a new hot spare.  Otherwise, we
4827		 * want to create a replacing vdev.  The user is not allowed to
4828		 * attach to a spared vdev child unless the 'isspare' state is
4829		 * the same (spare replaces spare, non-spare replaces
4830		 * non-spare).
4831		 */
4832		if (pvd->vdev_ops == &vdev_replacing_ops &&
4833		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4834			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4835		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4836		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4837			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4838		}
4839
4840		if (newvd->vdev_isspare)
4841			pvops = &vdev_spare_ops;
4842		else
4843			pvops = &vdev_replacing_ops;
4844	}
4845
4846	/*
4847	 * Make sure the new device is big enough.
4848	 */
4849	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4850		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4851
4852	/*
4853	 * The new device cannot have a higher alignment requirement
4854	 * than the top-level vdev.
4855	 */
4856	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4857		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4858
4859	/*
4860	 * If this is an in-place replacement, update oldvd's path and devid
4861	 * to make it distinguishable from newvd, and unopenable from now on.
4862	 */
4863	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4864		spa_strfree(oldvd->vdev_path);
4865		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4866		    KM_SLEEP);
4867		(void) sprintf(oldvd->vdev_path, "%s/%s",
4868		    newvd->vdev_path, "old");
4869		if (oldvd->vdev_devid != NULL) {
4870			spa_strfree(oldvd->vdev_devid);
4871			oldvd->vdev_devid = NULL;
4872		}
4873	}
4874
4875	/* mark the device being resilvered */
4876	newvd->vdev_resilver_txg = txg;
4877
4878	/*
4879	 * If the parent is not a mirror, or if we're replacing, insert the new
4880	 * mirror/replacing/spare vdev above oldvd.
4881	 */
4882	if (pvd->vdev_ops != pvops)
4883		pvd = vdev_add_parent(oldvd, pvops);
4884
4885	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4886	ASSERT(pvd->vdev_ops == pvops);
4887	ASSERT(oldvd->vdev_parent == pvd);
4888
4889	/*
4890	 * Extract the new device from its root and add it to pvd.
4891	 */
4892	vdev_remove_child(newrootvd, newvd);
4893	newvd->vdev_id = pvd->vdev_children;
4894	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4895	vdev_add_child(pvd, newvd);
4896
4897	tvd = newvd->vdev_top;
4898	ASSERT(pvd->vdev_top == tvd);
4899	ASSERT(tvd->vdev_parent == rvd);
4900
4901	vdev_config_dirty(tvd);
4902
4903	/*
4904	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4905	 * for any dmu_sync-ed blocks.  It will propagate upward when
4906	 * spa_vdev_exit() calls vdev_dtl_reassess().
4907	 */
4908	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4909
4910	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4911	    dtl_max_txg - TXG_INITIAL);
4912
4913	if (newvd->vdev_isspare) {
4914		spa_spare_activate(newvd);
4915		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4916	}
4917
4918	oldvdpath = spa_strdup(oldvd->vdev_path);
4919	newvdpath = spa_strdup(newvd->vdev_path);
4920	newvd_isspare = newvd->vdev_isspare;
4921
4922	/*
4923	 * Mark newvd's DTL dirty in this txg.
4924	 */
4925	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4926
4927	/*
4928	 * Schedule the resilver to restart in the future. We do this to
4929	 * ensure that dmu_sync-ed blocks have been stitched into the
4930	 * respective datasets.
4931	 */
4932	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4933
4934	if (spa->spa_bootfs)
4935		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4936
4937	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4938
4939	/*
4940	 * Commit the config
4941	 */
4942	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4943
4944	spa_history_log_internal(spa, "vdev attach", NULL,
4945	    "%s vdev=%s %s vdev=%s",
4946	    replacing && newvd_isspare ? "spare in" :
4947	    replacing ? "replace" : "attach", newvdpath,
4948	    replacing ? "for" : "to", oldvdpath);
4949
4950	spa_strfree(oldvdpath);
4951	spa_strfree(newvdpath);
4952
4953	return (0);
4954}
4955
4956/*
4957 * Detach a device from a mirror or replacing vdev.
4958 *
4959 * If 'replace_done' is specified, only detach if the parent
4960 * is a replacing vdev.
4961 */
4962int
4963spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4964{
4965	uint64_t txg;
4966	int error;
4967	vdev_t *rvd = spa->spa_root_vdev;
4968	vdev_t *vd, *pvd, *cvd, *tvd;
4969	boolean_t unspare = B_FALSE;
4970	uint64_t unspare_guid = 0;
4971	char *vdpath;
4972
4973	ASSERT(spa_writeable(spa));
4974
4975	txg = spa_vdev_enter(spa);
4976
4977	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4978
4979	if (vd == NULL)
4980		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4981
4982	if (!vd->vdev_ops->vdev_op_leaf)
4983		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4984
4985	pvd = vd->vdev_parent;
4986
4987	/*
4988	 * If the parent/child relationship is not as expected, don't do it.
4989	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4990	 * vdev that's replacing B with C.  The user's intent in replacing
4991	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4992	 * the replace by detaching C, the expected behavior is to end up
4993	 * M(A,B).  But suppose that right after deciding to detach C,
4994	 * the replacement of B completes.  We would have M(A,C), and then
4995	 * ask to detach C, which would leave us with just A -- not what
4996	 * the user wanted.  To prevent this, we make sure that the
4997	 * parent/child relationship hasn't changed -- in this example,
4998	 * that C's parent is still the replacing vdev R.
4999	 */
5000	if (pvd->vdev_guid != pguid && pguid != 0)
5001		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5002
5003	/*
5004	 * Only 'replacing' or 'spare' vdevs can be replaced.
5005	 */
5006	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5007	    pvd->vdev_ops != &vdev_spare_ops)
5008		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5009
5010	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5011	    spa_version(spa) >= SPA_VERSION_SPARES);
5012
5013	/*
5014	 * Only mirror, replacing, and spare vdevs support detach.
5015	 */
5016	if (pvd->vdev_ops != &vdev_replacing_ops &&
5017	    pvd->vdev_ops != &vdev_mirror_ops &&
5018	    pvd->vdev_ops != &vdev_spare_ops)
5019		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5020
5021	/*
5022	 * If this device has the only valid copy of some data,
5023	 * we cannot safely detach it.
5024	 */
5025	if (vdev_dtl_required(vd))
5026		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5027
5028	ASSERT(pvd->vdev_children >= 2);
5029
5030	/*
5031	 * If we are detaching the second disk from a replacing vdev, then
5032	 * check to see if we changed the original vdev's path to have "/old"
5033	 * at the end in spa_vdev_attach().  If so, undo that change now.
5034	 */
5035	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5036	    vd->vdev_path != NULL) {
5037		size_t len = strlen(vd->vdev_path);
5038
5039		for (int c = 0; c < pvd->vdev_children; c++) {
5040			cvd = pvd->vdev_child[c];
5041
5042			if (cvd == vd || cvd->vdev_path == NULL)
5043				continue;
5044
5045			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5046			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5047				spa_strfree(cvd->vdev_path);
5048				cvd->vdev_path = spa_strdup(vd->vdev_path);
5049				break;
5050			}
5051		}
5052	}
5053
5054	/*
5055	 * If we are detaching the original disk from a spare, then it implies
5056	 * that the spare should become a real disk, and be removed from the
5057	 * active spare list for the pool.
5058	 */
5059	if (pvd->vdev_ops == &vdev_spare_ops &&
5060	    vd->vdev_id == 0 &&
5061	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5062		unspare = B_TRUE;
5063
5064	/*
5065	 * Erase the disk labels so the disk can be used for other things.
5066	 * This must be done after all other error cases are handled,
5067	 * but before we disembowel vd (so we can still do I/O to it).
5068	 * But if we can't do it, don't treat the error as fatal --
5069	 * it may be that the unwritability of the disk is the reason
5070	 * it's being detached!
5071	 */
5072	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5073
5074	/*
5075	 * Remove vd from its parent and compact the parent's children.
5076	 */
5077	vdev_remove_child(pvd, vd);
5078	vdev_compact_children(pvd);
5079
5080	/*
5081	 * Remember one of the remaining children so we can get tvd below.
5082	 */
5083	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5084
5085	/*
5086	 * If we need to remove the remaining child from the list of hot spares,
5087	 * do it now, marking the vdev as no longer a spare in the process.
5088	 * We must do this before vdev_remove_parent(), because that can
5089	 * change the GUID if it creates a new toplevel GUID.  For a similar
5090	 * reason, we must remove the spare now, in the same txg as the detach;
5091	 * otherwise someone could attach a new sibling, change the GUID, and
5092	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5093	 */
5094	if (unspare) {
5095		ASSERT(cvd->vdev_isspare);
5096		spa_spare_remove(cvd);
5097		unspare_guid = cvd->vdev_guid;
5098		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5099		cvd->vdev_unspare = B_TRUE;
5100	}
5101
5102	/*
5103	 * If the parent mirror/replacing vdev only has one child,
5104	 * the parent is no longer needed.  Remove it from the tree.
5105	 */
5106	if (pvd->vdev_children == 1) {
5107		if (pvd->vdev_ops == &vdev_spare_ops)
5108			cvd->vdev_unspare = B_FALSE;
5109		vdev_remove_parent(cvd);
5110	}
5111
5112
5113	/*
5114	 * We don't set tvd until now because the parent we just removed
5115	 * may have been the previous top-level vdev.
5116	 */
5117	tvd = cvd->vdev_top;
5118	ASSERT(tvd->vdev_parent == rvd);
5119
5120	/*
5121	 * Reevaluate the parent vdev state.
5122	 */
5123	vdev_propagate_state(cvd);
5124
5125	/*
5126	 * If the 'autoexpand' property is set on the pool then automatically
5127	 * try to expand the size of the pool. For example if the device we
5128	 * just detached was smaller than the others, it may be possible to
5129	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5130	 * first so that we can obtain the updated sizes of the leaf vdevs.
5131	 */
5132	if (spa->spa_autoexpand) {
5133		vdev_reopen(tvd);
5134		vdev_expand(tvd, txg);
5135	}
5136
5137	vdev_config_dirty(tvd);
5138
5139	/*
5140	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5141	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5142	 * But first make sure we're not on any *other* txg's DTL list, to
5143	 * prevent vd from being accessed after it's freed.
5144	 */
5145	vdpath = spa_strdup(vd->vdev_path);
5146	for (int t = 0; t < TXG_SIZE; t++)
5147		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5148	vd->vdev_detached = B_TRUE;
5149	vdev_dirty(tvd, VDD_DTL, vd, txg);
5150
5151	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5152
5153	/* hang on to the spa before we release the lock */
5154	spa_open_ref(spa, FTAG);
5155
5156	error = spa_vdev_exit(spa, vd, txg, 0);
5157
5158	spa_history_log_internal(spa, "detach", NULL,
5159	    "vdev=%s", vdpath);
5160	spa_strfree(vdpath);
5161
5162	/*
5163	 * If this was the removal of the original device in a hot spare vdev,
5164	 * then we want to go through and remove the device from the hot spare
5165	 * list of every other pool.
5166	 */
5167	if (unspare) {
5168		spa_t *altspa = NULL;
5169
5170		mutex_enter(&spa_namespace_lock);
5171		while ((altspa = spa_next(altspa)) != NULL) {
5172			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5173			    altspa == spa)
5174				continue;
5175
5176			spa_open_ref(altspa, FTAG);
5177			mutex_exit(&spa_namespace_lock);
5178			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5179			mutex_enter(&spa_namespace_lock);
5180			spa_close(altspa, FTAG);
5181		}
5182		mutex_exit(&spa_namespace_lock);
5183
5184		/* search the rest of the vdevs for spares to remove */
5185		spa_vdev_resilver_done(spa);
5186	}
5187
5188	/* all done with the spa; OK to release */
5189	mutex_enter(&spa_namespace_lock);
5190	spa_close(spa, FTAG);
5191	mutex_exit(&spa_namespace_lock);
5192
5193	return (error);
5194}
5195
5196/*
5197 * Split a set of devices from their mirrors, and create a new pool from them.
5198 */
5199int
5200spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5201    nvlist_t *props, boolean_t exp)
5202{
5203	int error = 0;
5204	uint64_t txg, *glist;
5205	spa_t *newspa;
5206	uint_t c, children, lastlog;
5207	nvlist_t **child, *nvl, *tmp;
5208	dmu_tx_t *tx;
5209	char *altroot = NULL;
5210	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5211	boolean_t activate_slog;
5212
5213	ASSERT(spa_writeable(spa));
5214
5215	txg = spa_vdev_enter(spa);
5216
5217	/* clear the log and flush everything up to now */
5218	activate_slog = spa_passivate_log(spa);
5219	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5220	error = spa_offline_log(spa);
5221	txg = spa_vdev_config_enter(spa);
5222
5223	if (activate_slog)
5224		spa_activate_log(spa);
5225
5226	if (error != 0)
5227		return (spa_vdev_exit(spa, NULL, txg, error));
5228
5229	/* check new spa name before going any further */
5230	if (spa_lookup(newname) != NULL)
5231		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5232
5233	/*
5234	 * scan through all the children to ensure they're all mirrors
5235	 */
5236	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5237	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5238	    &children) != 0)
5239		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5240
5241	/* first, check to ensure we've got the right child count */
5242	rvd = spa->spa_root_vdev;
5243	lastlog = 0;
5244	for (c = 0; c < rvd->vdev_children; c++) {
5245		vdev_t *vd = rvd->vdev_child[c];
5246
5247		/* don't count the holes & logs as children */
5248		if (vd->vdev_islog || vd->vdev_ishole) {
5249			if (lastlog == 0)
5250				lastlog = c;
5251			continue;
5252		}
5253
5254		lastlog = 0;
5255	}
5256	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5257		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5258
5259	/* next, ensure no spare or cache devices are part of the split */
5260	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5261	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5262		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5263
5264	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5265	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5266
5267	/* then, loop over each vdev and validate it */
5268	for (c = 0; c < children; c++) {
5269		uint64_t is_hole = 0;
5270
5271		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5272		    &is_hole);
5273
5274		if (is_hole != 0) {
5275			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5276			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5277				continue;
5278			} else {
5279				error = SET_ERROR(EINVAL);
5280				break;
5281			}
5282		}
5283
5284		/* which disk is going to be split? */
5285		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5286		    &glist[c]) != 0) {
5287			error = SET_ERROR(EINVAL);
5288			break;
5289		}
5290
5291		/* look it up in the spa */
5292		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5293		if (vml[c] == NULL) {
5294			error = SET_ERROR(ENODEV);
5295			break;
5296		}
5297
5298		/* make sure there's nothing stopping the split */
5299		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5300		    vml[c]->vdev_islog ||
5301		    vml[c]->vdev_ishole ||
5302		    vml[c]->vdev_isspare ||
5303		    vml[c]->vdev_isl2cache ||
5304		    !vdev_writeable(vml[c]) ||
5305		    vml[c]->vdev_children != 0 ||
5306		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5307		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5308			error = SET_ERROR(EINVAL);
5309			break;
5310		}
5311
5312		if (vdev_dtl_required(vml[c])) {
5313			error = SET_ERROR(EBUSY);
5314			break;
5315		}
5316
5317		/* we need certain info from the top level */
5318		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5319		    vml[c]->vdev_top->vdev_ms_array) == 0);
5320		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5321		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5322		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5323		    vml[c]->vdev_top->vdev_asize) == 0);
5324		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5325		    vml[c]->vdev_top->vdev_ashift) == 0);
5326	}
5327
5328	if (error != 0) {
5329		kmem_free(vml, children * sizeof (vdev_t *));
5330		kmem_free(glist, children * sizeof (uint64_t));
5331		return (spa_vdev_exit(spa, NULL, txg, error));
5332	}
5333
5334	/* stop writers from using the disks */
5335	for (c = 0; c < children; c++) {
5336		if (vml[c] != NULL)
5337			vml[c]->vdev_offline = B_TRUE;
5338	}
5339	vdev_reopen(spa->spa_root_vdev);
5340
5341	/*
5342	 * Temporarily record the splitting vdevs in the spa config.  This
5343	 * will disappear once the config is regenerated.
5344	 */
5345	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5346	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5347	    glist, children) == 0);
5348	kmem_free(glist, children * sizeof (uint64_t));
5349
5350	mutex_enter(&spa->spa_props_lock);
5351	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5352	    nvl) == 0);
5353	mutex_exit(&spa->spa_props_lock);
5354	spa->spa_config_splitting = nvl;
5355	vdev_config_dirty(spa->spa_root_vdev);
5356
5357	/* configure and create the new pool */
5358	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5359	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5360	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5361	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5362	    spa_version(spa)) == 0);
5363	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5364	    spa->spa_config_txg) == 0);
5365	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5366	    spa_generate_guid(NULL)) == 0);
5367	(void) nvlist_lookup_string(props,
5368	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5369
5370	/* add the new pool to the namespace */
5371	newspa = spa_add(newname, config, altroot);
5372	newspa->spa_config_txg = spa->spa_config_txg;
5373	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5374
5375	/* release the spa config lock, retaining the namespace lock */
5376	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5377
5378	if (zio_injection_enabled)
5379		zio_handle_panic_injection(spa, FTAG, 1);
5380
5381	spa_activate(newspa, spa_mode_global);
5382	spa_async_suspend(newspa);
5383
5384#ifndef sun
5385	/* mark that we are creating new spa by splitting */
5386	newspa->spa_splitting_newspa = B_TRUE;
5387#endif
5388	/* create the new pool from the disks of the original pool */
5389	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5390#ifndef sun
5391	newspa->spa_splitting_newspa = B_FALSE;
5392#endif
5393	if (error)
5394		goto out;
5395
5396	/* if that worked, generate a real config for the new pool */
5397	if (newspa->spa_root_vdev != NULL) {
5398		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5399		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5400		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5401		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5402		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5403		    B_TRUE));
5404	}
5405
5406	/* set the props */
5407	if (props != NULL) {
5408		spa_configfile_set(newspa, props, B_FALSE);
5409		error = spa_prop_set(newspa, props);
5410		if (error)
5411			goto out;
5412	}
5413
5414	/* flush everything */
5415	txg = spa_vdev_config_enter(newspa);
5416	vdev_config_dirty(newspa->spa_root_vdev);
5417	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5418
5419	if (zio_injection_enabled)
5420		zio_handle_panic_injection(spa, FTAG, 2);
5421
5422	spa_async_resume(newspa);
5423
5424	/* finally, update the original pool's config */
5425	txg = spa_vdev_config_enter(spa);
5426	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5427	error = dmu_tx_assign(tx, TXG_WAIT);
5428	if (error != 0)
5429		dmu_tx_abort(tx);
5430	for (c = 0; c < children; c++) {
5431		if (vml[c] != NULL) {
5432			vdev_split(vml[c]);
5433			if (error == 0)
5434				spa_history_log_internal(spa, "detach", tx,
5435				    "vdev=%s", vml[c]->vdev_path);
5436			vdev_free(vml[c]);
5437		}
5438	}
5439	vdev_config_dirty(spa->spa_root_vdev);
5440	spa->spa_config_splitting = NULL;
5441	nvlist_free(nvl);
5442	if (error == 0)
5443		dmu_tx_commit(tx);
5444	(void) spa_vdev_exit(spa, NULL, txg, 0);
5445
5446	if (zio_injection_enabled)
5447		zio_handle_panic_injection(spa, FTAG, 3);
5448
5449	/* split is complete; log a history record */
5450	spa_history_log_internal(newspa, "split", NULL,
5451	    "from pool %s", spa_name(spa));
5452
5453	kmem_free(vml, children * sizeof (vdev_t *));
5454
5455	/* if we're not going to mount the filesystems in userland, export */
5456	if (exp)
5457		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5458		    B_FALSE, B_FALSE);
5459
5460	return (error);
5461
5462out:
5463	spa_unload(newspa);
5464	spa_deactivate(newspa);
5465	spa_remove(newspa);
5466
5467	txg = spa_vdev_config_enter(spa);
5468
5469	/* re-online all offlined disks */
5470	for (c = 0; c < children; c++) {
5471		if (vml[c] != NULL)
5472			vml[c]->vdev_offline = B_FALSE;
5473	}
5474	vdev_reopen(spa->spa_root_vdev);
5475
5476	nvlist_free(spa->spa_config_splitting);
5477	spa->spa_config_splitting = NULL;
5478	(void) spa_vdev_exit(spa, NULL, txg, error);
5479
5480	kmem_free(vml, children * sizeof (vdev_t *));
5481	return (error);
5482}
5483
5484static nvlist_t *
5485spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5486{
5487	for (int i = 0; i < count; i++) {
5488		uint64_t guid;
5489
5490		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5491		    &guid) == 0);
5492
5493		if (guid == target_guid)
5494			return (nvpp[i]);
5495	}
5496
5497	return (NULL);
5498}
5499
5500static void
5501spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5502	nvlist_t *dev_to_remove)
5503{
5504	nvlist_t **newdev = NULL;
5505
5506	if (count > 1)
5507		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5508
5509	for (int i = 0, j = 0; i < count; i++) {
5510		if (dev[i] == dev_to_remove)
5511			continue;
5512		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5513	}
5514
5515	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5516	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5517
5518	for (int i = 0; i < count - 1; i++)
5519		nvlist_free(newdev[i]);
5520
5521	if (count > 1)
5522		kmem_free(newdev, (count - 1) * sizeof (void *));
5523}
5524
5525/*
5526 * Evacuate the device.
5527 */
5528static int
5529spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5530{
5531	uint64_t txg;
5532	int error = 0;
5533
5534	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5535	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5536	ASSERT(vd == vd->vdev_top);
5537
5538	/*
5539	 * Evacuate the device.  We don't hold the config lock as writer
5540	 * since we need to do I/O but we do keep the
5541	 * spa_namespace_lock held.  Once this completes the device
5542	 * should no longer have any blocks allocated on it.
5543	 */
5544	if (vd->vdev_islog) {
5545		if (vd->vdev_stat.vs_alloc != 0)
5546			error = spa_offline_log(spa);
5547	} else {
5548		error = SET_ERROR(ENOTSUP);
5549	}
5550
5551	if (error)
5552		return (error);
5553
5554	/*
5555	 * The evacuation succeeded.  Remove any remaining MOS metadata
5556	 * associated with this vdev, and wait for these changes to sync.
5557	 */
5558	ASSERT0(vd->vdev_stat.vs_alloc);
5559	txg = spa_vdev_config_enter(spa);
5560	vd->vdev_removing = B_TRUE;
5561	vdev_dirty_leaves(vd, VDD_DTL, txg);
5562	vdev_config_dirty(vd);
5563	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5564
5565	return (0);
5566}
5567
5568/*
5569 * Complete the removal by cleaning up the namespace.
5570 */
5571static void
5572spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5573{
5574	vdev_t *rvd = spa->spa_root_vdev;
5575	uint64_t id = vd->vdev_id;
5576	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5577
5578	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5579	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5580	ASSERT(vd == vd->vdev_top);
5581
5582	/*
5583	 * Only remove any devices which are empty.
5584	 */
5585	if (vd->vdev_stat.vs_alloc != 0)
5586		return;
5587
5588	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5589
5590	if (list_link_active(&vd->vdev_state_dirty_node))
5591		vdev_state_clean(vd);
5592	if (list_link_active(&vd->vdev_config_dirty_node))
5593		vdev_config_clean(vd);
5594
5595	vdev_free(vd);
5596
5597	if (last_vdev) {
5598		vdev_compact_children(rvd);
5599	} else {
5600		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5601		vdev_add_child(rvd, vd);
5602	}
5603	vdev_config_dirty(rvd);
5604
5605	/*
5606	 * Reassess the health of our root vdev.
5607	 */
5608	vdev_reopen(rvd);
5609}
5610
5611/*
5612 * Remove a device from the pool -
5613 *
5614 * Removing a device from the vdev namespace requires several steps
5615 * and can take a significant amount of time.  As a result we use
5616 * the spa_vdev_config_[enter/exit] functions which allow us to
5617 * grab and release the spa_config_lock while still holding the namespace
5618 * lock.  During each step the configuration is synced out.
5619 *
5620 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5621 * devices.
5622 */
5623int
5624spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5625{
5626	vdev_t *vd;
5627	metaslab_group_t *mg;
5628	nvlist_t **spares, **l2cache, *nv;
5629	uint64_t txg = 0;
5630	uint_t nspares, nl2cache;
5631	int error = 0;
5632	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5633
5634	ASSERT(spa_writeable(spa));
5635
5636	if (!locked)
5637		txg = spa_vdev_enter(spa);
5638
5639	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5640
5641	if (spa->spa_spares.sav_vdevs != NULL &&
5642	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5643	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5644	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5645		/*
5646		 * Only remove the hot spare if it's not currently in use
5647		 * in this pool.
5648		 */
5649		if (vd == NULL || unspare) {
5650			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5651			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5652			spa_load_spares(spa);
5653			spa->spa_spares.sav_sync = B_TRUE;
5654		} else {
5655			error = SET_ERROR(EBUSY);
5656		}
5657	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5658	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5659	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5660	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5661		/*
5662		 * Cache devices can always be removed.
5663		 */
5664		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5665		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5666		spa_load_l2cache(spa);
5667		spa->spa_l2cache.sav_sync = B_TRUE;
5668	} else if (vd != NULL && vd->vdev_islog) {
5669		ASSERT(!locked);
5670		ASSERT(vd == vd->vdev_top);
5671
5672		mg = vd->vdev_mg;
5673
5674		/*
5675		 * Stop allocating from this vdev.
5676		 */
5677		metaslab_group_passivate(mg);
5678
5679		/*
5680		 * Wait for the youngest allocations and frees to sync,
5681		 * and then wait for the deferral of those frees to finish.
5682		 */
5683		spa_vdev_config_exit(spa, NULL,
5684		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5685
5686		/*
5687		 * Attempt to evacuate the vdev.
5688		 */
5689		error = spa_vdev_remove_evacuate(spa, vd);
5690
5691		txg = spa_vdev_config_enter(spa);
5692
5693		/*
5694		 * If we couldn't evacuate the vdev, unwind.
5695		 */
5696		if (error) {
5697			metaslab_group_activate(mg);
5698			return (spa_vdev_exit(spa, NULL, txg, error));
5699		}
5700
5701		/*
5702		 * Clean up the vdev namespace.
5703		 */
5704		spa_vdev_remove_from_namespace(spa, vd);
5705
5706	} else if (vd != NULL) {
5707		/*
5708		 * Normal vdevs cannot be removed (yet).
5709		 */
5710		error = SET_ERROR(ENOTSUP);
5711	} else {
5712		/*
5713		 * There is no vdev of any kind with the specified guid.
5714		 */
5715		error = SET_ERROR(ENOENT);
5716	}
5717
5718	if (!locked)
5719		return (spa_vdev_exit(spa, NULL, txg, error));
5720
5721	return (error);
5722}
5723
5724/*
5725 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5726 * currently spared, so we can detach it.
5727 */
5728static vdev_t *
5729spa_vdev_resilver_done_hunt(vdev_t *vd)
5730{
5731	vdev_t *newvd, *oldvd;
5732
5733	for (int c = 0; c < vd->vdev_children; c++) {
5734		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5735		if (oldvd != NULL)
5736			return (oldvd);
5737	}
5738
5739	/*
5740	 * Check for a completed replacement.  We always consider the first
5741	 * vdev in the list to be the oldest vdev, and the last one to be
5742	 * the newest (see spa_vdev_attach() for how that works).  In
5743	 * the case where the newest vdev is faulted, we will not automatically
5744	 * remove it after a resilver completes.  This is OK as it will require
5745	 * user intervention to determine which disk the admin wishes to keep.
5746	 */
5747	if (vd->vdev_ops == &vdev_replacing_ops) {
5748		ASSERT(vd->vdev_children > 1);
5749
5750		newvd = vd->vdev_child[vd->vdev_children - 1];
5751		oldvd = vd->vdev_child[0];
5752
5753		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5754		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5755		    !vdev_dtl_required(oldvd))
5756			return (oldvd);
5757	}
5758
5759	/*
5760	 * Check for a completed resilver with the 'unspare' flag set.
5761	 */
5762	if (vd->vdev_ops == &vdev_spare_ops) {
5763		vdev_t *first = vd->vdev_child[0];
5764		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5765
5766		if (last->vdev_unspare) {
5767			oldvd = first;
5768			newvd = last;
5769		} else if (first->vdev_unspare) {
5770			oldvd = last;
5771			newvd = first;
5772		} else {
5773			oldvd = NULL;
5774		}
5775
5776		if (oldvd != NULL &&
5777		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5778		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5779		    !vdev_dtl_required(oldvd))
5780			return (oldvd);
5781
5782		/*
5783		 * If there are more than two spares attached to a disk,
5784		 * and those spares are not required, then we want to
5785		 * attempt to free them up now so that they can be used
5786		 * by other pools.  Once we're back down to a single
5787		 * disk+spare, we stop removing them.
5788		 */
5789		if (vd->vdev_children > 2) {
5790			newvd = vd->vdev_child[1];
5791
5792			if (newvd->vdev_isspare && last->vdev_isspare &&
5793			    vdev_dtl_empty(last, DTL_MISSING) &&
5794			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5795			    !vdev_dtl_required(newvd))
5796				return (newvd);
5797		}
5798	}
5799
5800	return (NULL);
5801}
5802
5803static void
5804spa_vdev_resilver_done(spa_t *spa)
5805{
5806	vdev_t *vd, *pvd, *ppvd;
5807	uint64_t guid, sguid, pguid, ppguid;
5808
5809	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5810
5811	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5812		pvd = vd->vdev_parent;
5813		ppvd = pvd->vdev_parent;
5814		guid = vd->vdev_guid;
5815		pguid = pvd->vdev_guid;
5816		ppguid = ppvd->vdev_guid;
5817		sguid = 0;
5818		/*
5819		 * If we have just finished replacing a hot spared device, then
5820		 * we need to detach the parent's first child (the original hot
5821		 * spare) as well.
5822		 */
5823		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5824		    ppvd->vdev_children == 2) {
5825			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5826			sguid = ppvd->vdev_child[1]->vdev_guid;
5827		}
5828		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5829
5830		spa_config_exit(spa, SCL_ALL, FTAG);
5831		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5832			return;
5833		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5834			return;
5835		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5836	}
5837
5838	spa_config_exit(spa, SCL_ALL, FTAG);
5839}
5840
5841/*
5842 * Update the stored path or FRU for this vdev.
5843 */
5844int
5845spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5846    boolean_t ispath)
5847{
5848	vdev_t *vd;
5849	boolean_t sync = B_FALSE;
5850
5851	ASSERT(spa_writeable(spa));
5852
5853	spa_vdev_state_enter(spa, SCL_ALL);
5854
5855	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5856		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5857
5858	if (!vd->vdev_ops->vdev_op_leaf)
5859		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5860
5861	if (ispath) {
5862		if (strcmp(value, vd->vdev_path) != 0) {
5863			spa_strfree(vd->vdev_path);
5864			vd->vdev_path = spa_strdup(value);
5865			sync = B_TRUE;
5866		}
5867	} else {
5868		if (vd->vdev_fru == NULL) {
5869			vd->vdev_fru = spa_strdup(value);
5870			sync = B_TRUE;
5871		} else if (strcmp(value, vd->vdev_fru) != 0) {
5872			spa_strfree(vd->vdev_fru);
5873			vd->vdev_fru = spa_strdup(value);
5874			sync = B_TRUE;
5875		}
5876	}
5877
5878	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5879}
5880
5881int
5882spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5883{
5884	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5885}
5886
5887int
5888spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5889{
5890	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5891}
5892
5893/*
5894 * ==========================================================================
5895 * SPA Scanning
5896 * ==========================================================================
5897 */
5898
5899int
5900spa_scan_stop(spa_t *spa)
5901{
5902	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5903	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5904		return (SET_ERROR(EBUSY));
5905	return (dsl_scan_cancel(spa->spa_dsl_pool));
5906}
5907
5908int
5909spa_scan(spa_t *spa, pool_scan_func_t func)
5910{
5911	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5912
5913	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5914		return (SET_ERROR(ENOTSUP));
5915
5916	/*
5917	 * If a resilver was requested, but there is no DTL on a
5918	 * writeable leaf device, we have nothing to do.
5919	 */
5920	if (func == POOL_SCAN_RESILVER &&
5921	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5922		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5923		return (0);
5924	}
5925
5926	return (dsl_scan(spa->spa_dsl_pool, func));
5927}
5928
5929/*
5930 * ==========================================================================
5931 * SPA async task processing
5932 * ==========================================================================
5933 */
5934
5935static void
5936spa_async_remove(spa_t *spa, vdev_t *vd)
5937{
5938	if (vd->vdev_remove_wanted) {
5939		vd->vdev_remove_wanted = B_FALSE;
5940		vd->vdev_delayed_close = B_FALSE;
5941		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5942
5943		/*
5944		 * We want to clear the stats, but we don't want to do a full
5945		 * vdev_clear() as that will cause us to throw away
5946		 * degraded/faulted state as well as attempt to reopen the
5947		 * device, all of which is a waste.
5948		 */
5949		vd->vdev_stat.vs_read_errors = 0;
5950		vd->vdev_stat.vs_write_errors = 0;
5951		vd->vdev_stat.vs_checksum_errors = 0;
5952
5953		vdev_state_dirty(vd->vdev_top);
5954	}
5955
5956	for (int c = 0; c < vd->vdev_children; c++)
5957		spa_async_remove(spa, vd->vdev_child[c]);
5958}
5959
5960static void
5961spa_async_probe(spa_t *spa, vdev_t *vd)
5962{
5963	if (vd->vdev_probe_wanted) {
5964		vd->vdev_probe_wanted = B_FALSE;
5965		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5966	}
5967
5968	for (int c = 0; c < vd->vdev_children; c++)
5969		spa_async_probe(spa, vd->vdev_child[c]);
5970}
5971
5972static void
5973spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5974{
5975	sysevent_id_t eid;
5976	nvlist_t *attr;
5977	char *physpath;
5978
5979	if (!spa->spa_autoexpand)
5980		return;
5981
5982	for (int c = 0; c < vd->vdev_children; c++) {
5983		vdev_t *cvd = vd->vdev_child[c];
5984		spa_async_autoexpand(spa, cvd);
5985	}
5986
5987	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5988		return;
5989
5990	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5991	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5992
5993	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5994	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5995
5996	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5997	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5998
5999	nvlist_free(attr);
6000	kmem_free(physpath, MAXPATHLEN);
6001}
6002
6003static void
6004spa_async_thread(void *arg)
6005{
6006	spa_t *spa = arg;
6007	int tasks;
6008
6009	ASSERT(spa->spa_sync_on);
6010
6011	mutex_enter(&spa->spa_async_lock);
6012	tasks = spa->spa_async_tasks;
6013	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6014	mutex_exit(&spa->spa_async_lock);
6015
6016	/*
6017	 * See if the config needs to be updated.
6018	 */
6019	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6020		uint64_t old_space, new_space;
6021
6022		mutex_enter(&spa_namespace_lock);
6023		old_space = metaslab_class_get_space(spa_normal_class(spa));
6024		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6025		new_space = metaslab_class_get_space(spa_normal_class(spa));
6026		mutex_exit(&spa_namespace_lock);
6027
6028		/*
6029		 * If the pool grew as a result of the config update,
6030		 * then log an internal history event.
6031		 */
6032		if (new_space != old_space) {
6033			spa_history_log_internal(spa, "vdev online", NULL,
6034			    "pool '%s' size: %llu(+%llu)",
6035			    spa_name(spa), new_space, new_space - old_space);
6036		}
6037	}
6038
6039	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6040		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6041		spa_async_autoexpand(spa, spa->spa_root_vdev);
6042		spa_config_exit(spa, SCL_CONFIG, FTAG);
6043	}
6044
6045	/*
6046	 * See if any devices need to be probed.
6047	 */
6048	if (tasks & SPA_ASYNC_PROBE) {
6049		spa_vdev_state_enter(spa, SCL_NONE);
6050		spa_async_probe(spa, spa->spa_root_vdev);
6051		(void) spa_vdev_state_exit(spa, NULL, 0);
6052	}
6053
6054	/*
6055	 * If any devices are done replacing, detach them.
6056	 */
6057	if (tasks & SPA_ASYNC_RESILVER_DONE)
6058		spa_vdev_resilver_done(spa);
6059
6060	/*
6061	 * Kick off a resilver.
6062	 */
6063	if (tasks & SPA_ASYNC_RESILVER)
6064		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6065
6066	/*
6067	 * Let the world know that we're done.
6068	 */
6069	mutex_enter(&spa->spa_async_lock);
6070	spa->spa_async_thread = NULL;
6071	cv_broadcast(&spa->spa_async_cv);
6072	mutex_exit(&spa->spa_async_lock);
6073	thread_exit();
6074}
6075
6076static void
6077spa_async_thread_vd(void *arg)
6078{
6079	spa_t *spa = arg;
6080	int tasks;
6081
6082	ASSERT(spa->spa_sync_on);
6083
6084	mutex_enter(&spa->spa_async_lock);
6085	tasks = spa->spa_async_tasks;
6086retry:
6087	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6088	mutex_exit(&spa->spa_async_lock);
6089
6090	/*
6091	 * See if any devices need to be marked REMOVED.
6092	 */
6093	if (tasks & SPA_ASYNC_REMOVE) {
6094		spa_vdev_state_enter(spa, SCL_NONE);
6095		spa_async_remove(spa, spa->spa_root_vdev);
6096		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6097			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6098		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6099			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6100		(void) spa_vdev_state_exit(spa, NULL, 0);
6101	}
6102
6103	/*
6104	 * Let the world know that we're done.
6105	 */
6106	mutex_enter(&spa->spa_async_lock);
6107	tasks = spa->spa_async_tasks;
6108	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6109		goto retry;
6110	spa->spa_async_thread_vd = NULL;
6111	cv_broadcast(&spa->spa_async_cv);
6112	mutex_exit(&spa->spa_async_lock);
6113	thread_exit();
6114}
6115
6116void
6117spa_async_suspend(spa_t *spa)
6118{
6119	mutex_enter(&spa->spa_async_lock);
6120	spa->spa_async_suspended++;
6121	while (spa->spa_async_thread != NULL &&
6122	    spa->spa_async_thread_vd != NULL)
6123		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6124	mutex_exit(&spa->spa_async_lock);
6125}
6126
6127void
6128spa_async_resume(spa_t *spa)
6129{
6130	mutex_enter(&spa->spa_async_lock);
6131	ASSERT(spa->spa_async_suspended != 0);
6132	spa->spa_async_suspended--;
6133	mutex_exit(&spa->spa_async_lock);
6134}
6135
6136static boolean_t
6137spa_async_tasks_pending(spa_t *spa)
6138{
6139	uint_t non_config_tasks;
6140	uint_t config_task;
6141	boolean_t config_task_suspended;
6142
6143	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6144	    SPA_ASYNC_REMOVE);
6145	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6146	if (spa->spa_ccw_fail_time == 0) {
6147		config_task_suspended = B_FALSE;
6148	} else {
6149		config_task_suspended =
6150		    (gethrtime() - spa->spa_ccw_fail_time) <
6151		    (zfs_ccw_retry_interval * NANOSEC);
6152	}
6153
6154	return (non_config_tasks || (config_task && !config_task_suspended));
6155}
6156
6157static void
6158spa_async_dispatch(spa_t *spa)
6159{
6160	mutex_enter(&spa->spa_async_lock);
6161	if (spa_async_tasks_pending(spa) &&
6162	    !spa->spa_async_suspended &&
6163	    spa->spa_async_thread == NULL &&
6164	    rootdir != NULL)
6165		spa->spa_async_thread = thread_create(NULL, 0,
6166		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6167	mutex_exit(&spa->spa_async_lock);
6168}
6169
6170static void
6171spa_async_dispatch_vd(spa_t *spa)
6172{
6173	mutex_enter(&spa->spa_async_lock);
6174	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6175	    !spa->spa_async_suspended &&
6176	    spa->spa_async_thread_vd == NULL &&
6177	    rootdir != NULL)
6178		spa->spa_async_thread_vd = thread_create(NULL, 0,
6179		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6180	mutex_exit(&spa->spa_async_lock);
6181}
6182
6183void
6184spa_async_request(spa_t *spa, int task)
6185{
6186	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6187	mutex_enter(&spa->spa_async_lock);
6188	spa->spa_async_tasks |= task;
6189	mutex_exit(&spa->spa_async_lock);
6190	spa_async_dispatch_vd(spa);
6191}
6192
6193/*
6194 * ==========================================================================
6195 * SPA syncing routines
6196 * ==========================================================================
6197 */
6198
6199static int
6200bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6201{
6202	bpobj_t *bpo = arg;
6203	bpobj_enqueue(bpo, bp, tx);
6204	return (0);
6205}
6206
6207static int
6208spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6209{
6210	zio_t *zio = arg;
6211
6212	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6213	    BP_GET_PSIZE(bp), zio->io_flags));
6214	return (0);
6215}
6216
6217/*
6218 * Note: this simple function is not inlined to make it easier to dtrace the
6219 * amount of time spent syncing frees.
6220 */
6221static void
6222spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6223{
6224	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6225	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6226	VERIFY(zio_wait(zio) == 0);
6227}
6228
6229/*
6230 * Note: this simple function is not inlined to make it easier to dtrace the
6231 * amount of time spent syncing deferred frees.
6232 */
6233static void
6234spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6235{
6236	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6237	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6238	    spa_free_sync_cb, zio, tx), ==, 0);
6239	VERIFY0(zio_wait(zio));
6240}
6241
6242
6243static void
6244spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6245{
6246	char *packed = NULL;
6247	size_t bufsize;
6248	size_t nvsize = 0;
6249	dmu_buf_t *db;
6250
6251	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6252
6253	/*
6254	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6255	 * information.  This avoids the dmu_buf_will_dirty() path and
6256	 * saves us a pre-read to get data we don't actually care about.
6257	 */
6258	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6259	packed = kmem_alloc(bufsize, KM_SLEEP);
6260
6261	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6262	    KM_SLEEP) == 0);
6263	bzero(packed + nvsize, bufsize - nvsize);
6264
6265	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6266
6267	kmem_free(packed, bufsize);
6268
6269	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6270	dmu_buf_will_dirty(db, tx);
6271	*(uint64_t *)db->db_data = nvsize;
6272	dmu_buf_rele(db, FTAG);
6273}
6274
6275static void
6276spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6277    const char *config, const char *entry)
6278{
6279	nvlist_t *nvroot;
6280	nvlist_t **list;
6281	int i;
6282
6283	if (!sav->sav_sync)
6284		return;
6285
6286	/*
6287	 * Update the MOS nvlist describing the list of available devices.
6288	 * spa_validate_aux() will have already made sure this nvlist is
6289	 * valid and the vdevs are labeled appropriately.
6290	 */
6291	if (sav->sav_object == 0) {
6292		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6293		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6294		    sizeof (uint64_t), tx);
6295		VERIFY(zap_update(spa->spa_meta_objset,
6296		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6297		    &sav->sav_object, tx) == 0);
6298	}
6299
6300	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6301	if (sav->sav_count == 0) {
6302		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6303	} else {
6304		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6305		for (i = 0; i < sav->sav_count; i++)
6306			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6307			    B_FALSE, VDEV_CONFIG_L2CACHE);
6308		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6309		    sav->sav_count) == 0);
6310		for (i = 0; i < sav->sav_count; i++)
6311			nvlist_free(list[i]);
6312		kmem_free(list, sav->sav_count * sizeof (void *));
6313	}
6314
6315	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6316	nvlist_free(nvroot);
6317
6318	sav->sav_sync = B_FALSE;
6319}
6320
6321static void
6322spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6323{
6324	nvlist_t *config;
6325
6326	if (list_is_empty(&spa->spa_config_dirty_list))
6327		return;
6328
6329	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6330
6331	config = spa_config_generate(spa, spa->spa_root_vdev,
6332	    dmu_tx_get_txg(tx), B_FALSE);
6333
6334	/*
6335	 * If we're upgrading the spa version then make sure that
6336	 * the config object gets updated with the correct version.
6337	 */
6338	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6339		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6340		    spa->spa_uberblock.ub_version);
6341
6342	spa_config_exit(spa, SCL_STATE, FTAG);
6343
6344	if (spa->spa_config_syncing)
6345		nvlist_free(spa->spa_config_syncing);
6346	spa->spa_config_syncing = config;
6347
6348	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6349}
6350
6351static void
6352spa_sync_version(void *arg, dmu_tx_t *tx)
6353{
6354	uint64_t *versionp = arg;
6355	uint64_t version = *versionp;
6356	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6357
6358	/*
6359	 * Setting the version is special cased when first creating the pool.
6360	 */
6361	ASSERT(tx->tx_txg != TXG_INITIAL);
6362
6363	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6364	ASSERT(version >= spa_version(spa));
6365
6366	spa->spa_uberblock.ub_version = version;
6367	vdev_config_dirty(spa->spa_root_vdev);
6368	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6369}
6370
6371/*
6372 * Set zpool properties.
6373 */
6374static void
6375spa_sync_props(void *arg, dmu_tx_t *tx)
6376{
6377	nvlist_t *nvp = arg;
6378	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6379	objset_t *mos = spa->spa_meta_objset;
6380	nvpair_t *elem = NULL;
6381
6382	mutex_enter(&spa->spa_props_lock);
6383
6384	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6385		uint64_t intval;
6386		char *strval, *fname;
6387		zpool_prop_t prop;
6388		const char *propname;
6389		zprop_type_t proptype;
6390		spa_feature_t fid;
6391
6392		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6393		case ZPROP_INVAL:
6394			/*
6395			 * We checked this earlier in spa_prop_validate().
6396			 */
6397			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6398
6399			fname = strchr(nvpair_name(elem), '@') + 1;
6400			VERIFY0(zfeature_lookup_name(fname, &fid));
6401
6402			spa_feature_enable(spa, fid, tx);
6403			spa_history_log_internal(spa, "set", tx,
6404			    "%s=enabled", nvpair_name(elem));
6405			break;
6406
6407		case ZPOOL_PROP_VERSION:
6408			intval = fnvpair_value_uint64(elem);
6409			/*
6410			 * The version is synced seperatly before other
6411			 * properties and should be correct by now.
6412			 */
6413			ASSERT3U(spa_version(spa), >=, intval);
6414			break;
6415
6416		case ZPOOL_PROP_ALTROOT:
6417			/*
6418			 * 'altroot' is a non-persistent property. It should
6419			 * have been set temporarily at creation or import time.
6420			 */
6421			ASSERT(spa->spa_root != NULL);
6422			break;
6423
6424		case ZPOOL_PROP_READONLY:
6425		case ZPOOL_PROP_CACHEFILE:
6426			/*
6427			 * 'readonly' and 'cachefile' are also non-persisitent
6428			 * properties.
6429			 */
6430			break;
6431		case ZPOOL_PROP_COMMENT:
6432			strval = fnvpair_value_string(elem);
6433			if (spa->spa_comment != NULL)
6434				spa_strfree(spa->spa_comment);
6435			spa->spa_comment = spa_strdup(strval);
6436			/*
6437			 * We need to dirty the configuration on all the vdevs
6438			 * so that their labels get updated.  It's unnecessary
6439			 * to do this for pool creation since the vdev's
6440			 * configuratoin has already been dirtied.
6441			 */
6442			if (tx->tx_txg != TXG_INITIAL)
6443				vdev_config_dirty(spa->spa_root_vdev);
6444			spa_history_log_internal(spa, "set", tx,
6445			    "%s=%s", nvpair_name(elem), strval);
6446			break;
6447		default:
6448			/*
6449			 * Set pool property values in the poolprops mos object.
6450			 */
6451			if (spa->spa_pool_props_object == 0) {
6452				spa->spa_pool_props_object =
6453				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6454				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6455				    tx);
6456			}
6457
6458			/* normalize the property name */
6459			propname = zpool_prop_to_name(prop);
6460			proptype = zpool_prop_get_type(prop);
6461
6462			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6463				ASSERT(proptype == PROP_TYPE_STRING);
6464				strval = fnvpair_value_string(elem);
6465				VERIFY0(zap_update(mos,
6466				    spa->spa_pool_props_object, propname,
6467				    1, strlen(strval) + 1, strval, tx));
6468				spa_history_log_internal(spa, "set", tx,
6469				    "%s=%s", nvpair_name(elem), strval);
6470			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6471				intval = fnvpair_value_uint64(elem);
6472
6473				if (proptype == PROP_TYPE_INDEX) {
6474					const char *unused;
6475					VERIFY0(zpool_prop_index_to_string(
6476					    prop, intval, &unused));
6477				}
6478				VERIFY0(zap_update(mos,
6479				    spa->spa_pool_props_object, propname,
6480				    8, 1, &intval, tx));
6481				spa_history_log_internal(spa, "set", tx,
6482				    "%s=%lld", nvpair_name(elem), intval);
6483			} else {
6484				ASSERT(0); /* not allowed */
6485			}
6486
6487			switch (prop) {
6488			case ZPOOL_PROP_DELEGATION:
6489				spa->spa_delegation = intval;
6490				break;
6491			case ZPOOL_PROP_BOOTFS:
6492				spa->spa_bootfs = intval;
6493				break;
6494			case ZPOOL_PROP_FAILUREMODE:
6495				spa->spa_failmode = intval;
6496				break;
6497			case ZPOOL_PROP_AUTOEXPAND:
6498				spa->spa_autoexpand = intval;
6499				if (tx->tx_txg != TXG_INITIAL)
6500					spa_async_request(spa,
6501					    SPA_ASYNC_AUTOEXPAND);
6502				break;
6503			case ZPOOL_PROP_DEDUPDITTO:
6504				spa->spa_dedup_ditto = intval;
6505				break;
6506			default:
6507				break;
6508			}
6509		}
6510
6511	}
6512
6513	mutex_exit(&spa->spa_props_lock);
6514}
6515
6516/*
6517 * Perform one-time upgrade on-disk changes.  spa_version() does not
6518 * reflect the new version this txg, so there must be no changes this
6519 * txg to anything that the upgrade code depends on after it executes.
6520 * Therefore this must be called after dsl_pool_sync() does the sync
6521 * tasks.
6522 */
6523static void
6524spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6525{
6526	dsl_pool_t *dp = spa->spa_dsl_pool;
6527
6528	ASSERT(spa->spa_sync_pass == 1);
6529
6530	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6531
6532	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6533	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6534		dsl_pool_create_origin(dp, tx);
6535
6536		/* Keeping the origin open increases spa_minref */
6537		spa->spa_minref += 3;
6538	}
6539
6540	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6541	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6542		dsl_pool_upgrade_clones(dp, tx);
6543	}
6544
6545	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6546	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6547		dsl_pool_upgrade_dir_clones(dp, tx);
6548
6549		/* Keeping the freedir open increases spa_minref */
6550		spa->spa_minref += 3;
6551	}
6552
6553	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6554	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6555		spa_feature_create_zap_objects(spa, tx);
6556	}
6557
6558	/*
6559	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6560	 * when possibility to use lz4 compression for metadata was added
6561	 * Old pools that have this feature enabled must be upgraded to have
6562	 * this feature active
6563	 */
6564	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6565		boolean_t lz4_en = spa_feature_is_enabled(spa,
6566		    SPA_FEATURE_LZ4_COMPRESS);
6567		boolean_t lz4_ac = spa_feature_is_active(spa,
6568		    SPA_FEATURE_LZ4_COMPRESS);
6569
6570		if (lz4_en && !lz4_ac)
6571			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6572	}
6573
6574	/*
6575	 * If we haven't written the salt, do so now.  Note that the
6576	 * feature may not be activated yet, but that's fine since
6577	 * the presence of this ZAP entry is backwards compatible.
6578	 */
6579	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6580	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6581		VERIFY0(zap_add(spa->spa_meta_objset,
6582		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6583		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6584		    spa->spa_cksum_salt.zcs_bytes, tx));
6585	}
6586
6587	rrw_exit(&dp->dp_config_rwlock, FTAG);
6588}
6589
6590/*
6591 * Sync the specified transaction group.  New blocks may be dirtied as
6592 * part of the process, so we iterate until it converges.
6593 */
6594void
6595spa_sync(spa_t *spa, uint64_t txg)
6596{
6597	dsl_pool_t *dp = spa->spa_dsl_pool;
6598	objset_t *mos = spa->spa_meta_objset;
6599	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6600	vdev_t *rvd = spa->spa_root_vdev;
6601	vdev_t *vd;
6602	dmu_tx_t *tx;
6603	int error;
6604
6605	VERIFY(spa_writeable(spa));
6606
6607	/*
6608	 * Lock out configuration changes.
6609	 */
6610	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6611
6612	spa->spa_syncing_txg = txg;
6613	spa->spa_sync_pass = 0;
6614
6615	/*
6616	 * If there are any pending vdev state changes, convert them
6617	 * into config changes that go out with this transaction group.
6618	 */
6619	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6620	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6621		/*
6622		 * We need the write lock here because, for aux vdevs,
6623		 * calling vdev_config_dirty() modifies sav_config.
6624		 * This is ugly and will become unnecessary when we
6625		 * eliminate the aux vdev wart by integrating all vdevs
6626		 * into the root vdev tree.
6627		 */
6628		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6629		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6630		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6631			vdev_state_clean(vd);
6632			vdev_config_dirty(vd);
6633		}
6634		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6635		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6636	}
6637	spa_config_exit(spa, SCL_STATE, FTAG);
6638
6639	tx = dmu_tx_create_assigned(dp, txg);
6640
6641	spa->spa_sync_starttime = gethrtime();
6642#ifdef illumos
6643	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6644	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6645#else	/* FreeBSD */
6646#ifdef _KERNEL
6647	callout_reset(&spa->spa_deadman_cycid,
6648	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6649#endif
6650#endif
6651
6652	/*
6653	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6654	 * set spa_deflate if we have no raid-z vdevs.
6655	 */
6656	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6657	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6658		int i;
6659
6660		for (i = 0; i < rvd->vdev_children; i++) {
6661			vd = rvd->vdev_child[i];
6662			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6663				break;
6664		}
6665		if (i == rvd->vdev_children) {
6666			spa->spa_deflate = TRUE;
6667			VERIFY(0 == zap_add(spa->spa_meta_objset,
6668			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6669			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6670		}
6671	}
6672
6673	/*
6674	 * Iterate to convergence.
6675	 */
6676	do {
6677		int pass = ++spa->spa_sync_pass;
6678
6679		spa_sync_config_object(spa, tx);
6680		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6681		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6682		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6683		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6684		spa_errlog_sync(spa, txg);
6685		dsl_pool_sync(dp, txg);
6686
6687		if (pass < zfs_sync_pass_deferred_free) {
6688			spa_sync_frees(spa, free_bpl, tx);
6689		} else {
6690			/*
6691			 * We can not defer frees in pass 1, because
6692			 * we sync the deferred frees later in pass 1.
6693			 */
6694			ASSERT3U(pass, >, 1);
6695			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6696			    &spa->spa_deferred_bpobj, tx);
6697		}
6698
6699		ddt_sync(spa, txg);
6700		dsl_scan_sync(dp, tx);
6701
6702		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6703			vdev_sync(vd, txg);
6704
6705		if (pass == 1) {
6706			spa_sync_upgrades(spa, tx);
6707			ASSERT3U(txg, >=,
6708			    spa->spa_uberblock.ub_rootbp.blk_birth);
6709			/*
6710			 * Note: We need to check if the MOS is dirty
6711			 * because we could have marked the MOS dirty
6712			 * without updating the uberblock (e.g. if we
6713			 * have sync tasks but no dirty user data).  We
6714			 * need to check the uberblock's rootbp because
6715			 * it is updated if we have synced out dirty
6716			 * data (though in this case the MOS will most
6717			 * likely also be dirty due to second order
6718			 * effects, we don't want to rely on that here).
6719			 */
6720			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6721			    !dmu_objset_is_dirty(mos, txg)) {
6722				/*
6723				 * Nothing changed on the first pass,
6724				 * therefore this TXG is a no-op.  Avoid
6725				 * syncing deferred frees, so that we
6726				 * can keep this TXG as a no-op.
6727				 */
6728				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6729				    txg));
6730				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6731				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6732				break;
6733			}
6734			spa_sync_deferred_frees(spa, tx);
6735		}
6736
6737	} while (dmu_objset_is_dirty(mos, txg));
6738
6739	/*
6740	 * Rewrite the vdev configuration (which includes the uberblock)
6741	 * to commit the transaction group.
6742	 *
6743	 * If there are no dirty vdevs, we sync the uberblock to a few
6744	 * random top-level vdevs that are known to be visible in the
6745	 * config cache (see spa_vdev_add() for a complete description).
6746	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6747	 */
6748	for (;;) {
6749		/*
6750		 * We hold SCL_STATE to prevent vdev open/close/etc.
6751		 * while we're attempting to write the vdev labels.
6752		 */
6753		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6754
6755		if (list_is_empty(&spa->spa_config_dirty_list)) {
6756			vdev_t *svd[SPA_DVAS_PER_BP];
6757			int svdcount = 0;
6758			int children = rvd->vdev_children;
6759			int c0 = spa_get_random(children);
6760
6761			for (int c = 0; c < children; c++) {
6762				vd = rvd->vdev_child[(c0 + c) % children];
6763				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6764					continue;
6765				svd[svdcount++] = vd;
6766				if (svdcount == SPA_DVAS_PER_BP)
6767					break;
6768			}
6769			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6770			if (error != 0)
6771				error = vdev_config_sync(svd, svdcount, txg,
6772				    B_TRUE);
6773		} else {
6774			error = vdev_config_sync(rvd->vdev_child,
6775			    rvd->vdev_children, txg, B_FALSE);
6776			if (error != 0)
6777				error = vdev_config_sync(rvd->vdev_child,
6778				    rvd->vdev_children, txg, B_TRUE);
6779		}
6780
6781		if (error == 0)
6782			spa->spa_last_synced_guid = rvd->vdev_guid;
6783
6784		spa_config_exit(spa, SCL_STATE, FTAG);
6785
6786		if (error == 0)
6787			break;
6788		zio_suspend(spa, NULL);
6789		zio_resume_wait(spa);
6790	}
6791	dmu_tx_commit(tx);
6792
6793#ifdef illumos
6794	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6795#else	/* FreeBSD */
6796#ifdef _KERNEL
6797	callout_drain(&spa->spa_deadman_cycid);
6798#endif
6799#endif
6800
6801	/*
6802	 * Clear the dirty config list.
6803	 */
6804	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6805		vdev_config_clean(vd);
6806
6807	/*
6808	 * Now that the new config has synced transactionally,
6809	 * let it become visible to the config cache.
6810	 */
6811	if (spa->spa_config_syncing != NULL) {
6812		spa_config_set(spa, spa->spa_config_syncing);
6813		spa->spa_config_txg = txg;
6814		spa->spa_config_syncing = NULL;
6815	}
6816
6817	spa->spa_ubsync = spa->spa_uberblock;
6818
6819	dsl_pool_sync_done(dp, txg);
6820
6821	/*
6822	 * Update usable space statistics.
6823	 */
6824	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6825		vdev_sync_done(vd, txg);
6826
6827	spa_update_dspace(spa);
6828
6829	/*
6830	 * It had better be the case that we didn't dirty anything
6831	 * since vdev_config_sync().
6832	 */
6833	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6834	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6835	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6836
6837	spa->spa_sync_pass = 0;
6838
6839	spa_config_exit(spa, SCL_CONFIG, FTAG);
6840
6841	spa_handle_ignored_writes(spa);
6842
6843	/*
6844	 * If any async tasks have been requested, kick them off.
6845	 */
6846	spa_async_dispatch(spa);
6847	spa_async_dispatch_vd(spa);
6848}
6849
6850/*
6851 * Sync all pools.  We don't want to hold the namespace lock across these
6852 * operations, so we take a reference on the spa_t and drop the lock during the
6853 * sync.
6854 */
6855void
6856spa_sync_allpools(void)
6857{
6858	spa_t *spa = NULL;
6859	mutex_enter(&spa_namespace_lock);
6860	while ((spa = spa_next(spa)) != NULL) {
6861		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6862		    !spa_writeable(spa) || spa_suspended(spa))
6863			continue;
6864		spa_open_ref(spa, FTAG);
6865		mutex_exit(&spa_namespace_lock);
6866		txg_wait_synced(spa_get_dsl(spa), 0);
6867		mutex_enter(&spa_namespace_lock);
6868		spa_close(spa, FTAG);
6869	}
6870	mutex_exit(&spa_namespace_lock);
6871}
6872
6873/*
6874 * ==========================================================================
6875 * Miscellaneous routines
6876 * ==========================================================================
6877 */
6878
6879/*
6880 * Remove all pools in the system.
6881 */
6882void
6883spa_evict_all(void)
6884{
6885	spa_t *spa;
6886
6887	/*
6888	 * Remove all cached state.  All pools should be closed now,
6889	 * so every spa in the AVL tree should be unreferenced.
6890	 */
6891	mutex_enter(&spa_namespace_lock);
6892	while ((spa = spa_next(NULL)) != NULL) {
6893		/*
6894		 * Stop async tasks.  The async thread may need to detach
6895		 * a device that's been replaced, which requires grabbing
6896		 * spa_namespace_lock, so we must drop it here.
6897		 */
6898		spa_open_ref(spa, FTAG);
6899		mutex_exit(&spa_namespace_lock);
6900		spa_async_suspend(spa);
6901		mutex_enter(&spa_namespace_lock);
6902		spa_close(spa, FTAG);
6903
6904		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6905			spa_unload(spa);
6906			spa_deactivate(spa);
6907		}
6908		spa_remove(spa);
6909	}
6910	mutex_exit(&spa_namespace_lock);
6911}
6912
6913vdev_t *
6914spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6915{
6916	vdev_t *vd;
6917	int i;
6918
6919	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6920		return (vd);
6921
6922	if (aux) {
6923		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6924			vd = spa->spa_l2cache.sav_vdevs[i];
6925			if (vd->vdev_guid == guid)
6926				return (vd);
6927		}
6928
6929		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6930			vd = spa->spa_spares.sav_vdevs[i];
6931			if (vd->vdev_guid == guid)
6932				return (vd);
6933		}
6934	}
6935
6936	return (NULL);
6937}
6938
6939void
6940spa_upgrade(spa_t *spa, uint64_t version)
6941{
6942	ASSERT(spa_writeable(spa));
6943
6944	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6945
6946	/*
6947	 * This should only be called for a non-faulted pool, and since a
6948	 * future version would result in an unopenable pool, this shouldn't be
6949	 * possible.
6950	 */
6951	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6952	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6953
6954	spa->spa_uberblock.ub_version = version;
6955	vdev_config_dirty(spa->spa_root_vdev);
6956
6957	spa_config_exit(spa, SCL_ALL, FTAG);
6958
6959	txg_wait_synced(spa_get_dsl(spa), 0);
6960}
6961
6962boolean_t
6963spa_has_spare(spa_t *spa, uint64_t guid)
6964{
6965	int i;
6966	uint64_t spareguid;
6967	spa_aux_vdev_t *sav = &spa->spa_spares;
6968
6969	for (i = 0; i < sav->sav_count; i++)
6970		if (sav->sav_vdevs[i]->vdev_guid == guid)
6971			return (B_TRUE);
6972
6973	for (i = 0; i < sav->sav_npending; i++) {
6974		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6975		    &spareguid) == 0 && spareguid == guid)
6976			return (B_TRUE);
6977	}
6978
6979	return (B_FALSE);
6980}
6981
6982/*
6983 * Check if a pool has an active shared spare device.
6984 * Note: reference count of an active spare is 2, as a spare and as a replace
6985 */
6986static boolean_t
6987spa_has_active_shared_spare(spa_t *spa)
6988{
6989	int i, refcnt;
6990	uint64_t pool;
6991	spa_aux_vdev_t *sav = &spa->spa_spares;
6992
6993	for (i = 0; i < sav->sav_count; i++) {
6994		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6995		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6996		    refcnt > 2)
6997			return (B_TRUE);
6998	}
6999
7000	return (B_FALSE);
7001}
7002
7003/*
7004 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7005 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7006 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7007 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7008 * or zdb as real changes.
7009 */
7010void
7011spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7012{
7013#ifdef _KERNEL
7014	sysevent_t		*ev;
7015	sysevent_attr_list_t	*attr = NULL;
7016	sysevent_value_t	value;
7017	sysevent_id_t		eid;
7018
7019	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7020	    SE_SLEEP);
7021
7022	value.value_type = SE_DATA_TYPE_STRING;
7023	value.value.sv_string = spa_name(spa);
7024	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7025		goto done;
7026
7027	value.value_type = SE_DATA_TYPE_UINT64;
7028	value.value.sv_uint64 = spa_guid(spa);
7029	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7030		goto done;
7031
7032	if (vd) {
7033		value.value_type = SE_DATA_TYPE_UINT64;
7034		value.value.sv_uint64 = vd->vdev_guid;
7035		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7036		    SE_SLEEP) != 0)
7037			goto done;
7038
7039		if (vd->vdev_path) {
7040			value.value_type = SE_DATA_TYPE_STRING;
7041			value.value.sv_string = vd->vdev_path;
7042			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7043			    &value, SE_SLEEP) != 0)
7044				goto done;
7045		}
7046	}
7047
7048	if (sysevent_attach_attributes(ev, attr) != 0)
7049		goto done;
7050	attr = NULL;
7051
7052	(void) log_sysevent(ev, SE_SLEEP, &eid);
7053
7054done:
7055	if (attr)
7056		sysevent_free_attr(attr);
7057	sysevent_free(ev);
7058#endif
7059}
7060