spa.c revision 290757
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31/*
32 * SPA: Storage Pool Allocator
33 *
34 * This file contains all the routines used when modifying on-disk SPA state.
35 * This includes opening, importing, destroying, exporting a pool, and syncing a
36 * pool.
37 */
38
39#include <sys/zfs_context.h>
40#include <sys/fm/fs/zfs.h>
41#include <sys/spa_impl.h>
42#include <sys/zio.h>
43#include <sys/zio_checksum.h>
44#include <sys/dmu.h>
45#include <sys/dmu_tx.h>
46#include <sys/zap.h>
47#include <sys/zil.h>
48#include <sys/ddt.h>
49#include <sys/vdev_impl.h>
50#include <sys/metaslab.h>
51#include <sys/metaslab_impl.h>
52#include <sys/uberblock_impl.h>
53#include <sys/txg.h>
54#include <sys/avl.h>
55#include <sys/dmu_traverse.h>
56#include <sys/dmu_objset.h>
57#include <sys/unique.h>
58#include <sys/dsl_pool.h>
59#include <sys/dsl_dataset.h>
60#include <sys/dsl_dir.h>
61#include <sys/dsl_prop.h>
62#include <sys/dsl_synctask.h>
63#include <sys/fs/zfs.h>
64#include <sys/arc.h>
65#include <sys/callb.h>
66#include <sys/spa_boot.h>
67#include <sys/zfs_ioctl.h>
68#include <sys/dsl_scan.h>
69#include <sys/dmu_send.h>
70#include <sys/dsl_destroy.h>
71#include <sys/dsl_userhold.h>
72#include <sys/zfeature.h>
73#include <sys/zvol.h>
74#include <sys/trim_map.h>
75
76#ifdef	_KERNEL
77#include <sys/callb.h>
78#include <sys/cpupart.h>
79#include <sys/zone.h>
80#endif	/* _KERNEL */
81
82#include "zfs_prop.h"
83#include "zfs_comutil.h"
84
85/* Check hostid on import? */
86static int check_hostid = 1;
87
88SYSCTL_DECL(_vfs_zfs);
89TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
90SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
91    "Check hostid on import?");
92
93/*
94 * The interval, in seconds, at which failed configuration cache file writes
95 * should be retried.
96 */
97static int zfs_ccw_retry_interval = 300;
98
99typedef enum zti_modes {
100	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
101	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
102	ZTI_MODE_NULL,			/* don't create a taskq */
103	ZTI_NMODES
104} zti_modes_t;
105
106#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
107#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
108#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
109
110#define	ZTI_N(n)	ZTI_P(n, 1)
111#define	ZTI_ONE		ZTI_N(1)
112
113typedef struct zio_taskq_info {
114	zti_modes_t zti_mode;
115	uint_t zti_value;
116	uint_t zti_count;
117} zio_taskq_info_t;
118
119static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
120	"issue", "issue_high", "intr", "intr_high"
121};
122
123/*
124 * This table defines the taskq settings for each ZFS I/O type. When
125 * initializing a pool, we use this table to create an appropriately sized
126 * taskq. Some operations are low volume and therefore have a small, static
127 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
128 * macros. Other operations process a large amount of data; the ZTI_BATCH
129 * macro causes us to create a taskq oriented for throughput. Some operations
130 * are so high frequency and short-lived that the taskq itself can become a a
131 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
132 * additional degree of parallelism specified by the number of threads per-
133 * taskq and the number of taskqs; when dispatching an event in this case, the
134 * particular taskq is chosen at random.
135 *
136 * The different taskq priorities are to handle the different contexts (issue
137 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
138 * need to be handled with minimum delay.
139 */
140const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
141	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
142	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
143	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
144	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
145	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
148};
149
150static void spa_sync_version(void *arg, dmu_tx_t *tx);
151static void spa_sync_props(void *arg, dmu_tx_t *tx);
152static boolean_t spa_has_active_shared_spare(spa_t *spa);
153static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
154    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
155    char **ereport);
156static void spa_vdev_resilver_done(spa_t *spa);
157
158uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
159#ifdef PSRSET_BIND
160id_t		zio_taskq_psrset_bind = PS_NONE;
161#endif
162#ifdef SYSDC
163boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
164#endif
165uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
166
167boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
168extern int	zfs_sync_pass_deferred_free;
169
170#ifndef illumos
171extern void spa_deadman(void *arg);
172#endif
173
174/*
175 * This (illegal) pool name is used when temporarily importing a spa_t in order
176 * to get the vdev stats associated with the imported devices.
177 */
178#define	TRYIMPORT_NAME	"$import"
179
180/*
181 * ==========================================================================
182 * SPA properties routines
183 * ==========================================================================
184 */
185
186/*
187 * Add a (source=src, propname=propval) list to an nvlist.
188 */
189static void
190spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
191    uint64_t intval, zprop_source_t src)
192{
193	const char *propname = zpool_prop_to_name(prop);
194	nvlist_t *propval;
195
196	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
197	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
198
199	if (strval != NULL)
200		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
201	else
202		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
203
204	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
205	nvlist_free(propval);
206}
207
208/*
209 * Get property values from the spa configuration.
210 */
211static void
212spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
213{
214	vdev_t *rvd = spa->spa_root_vdev;
215	dsl_pool_t *pool = spa->spa_dsl_pool;
216	uint64_t size, alloc, cap, version;
217	zprop_source_t src = ZPROP_SRC_NONE;
218	spa_config_dirent_t *dp;
219	metaslab_class_t *mc = spa_normal_class(spa);
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
233		    metaslab_class_fragmentation(mc), src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
235		    metaslab_class_expandable_space(mc), src);
236		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
237		    (spa_mode(spa) == FREAD), src);
238
239		cap = (size == 0) ? 0 : (alloc * 100 / size);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
241
242		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
243		    ddt_get_pool_dedup_ratio(spa), src);
244
245		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
246		    rvd->vdev_state, src);
247
248		version = spa_version(spa);
249		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
250			src = ZPROP_SRC_DEFAULT;
251		else
252			src = ZPROP_SRC_LOCAL;
253		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
254	}
255
256	if (pool != NULL) {
257		/*
258		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
259		 * when opening pools before this version freedir will be NULL.
260		 */
261		if (pool->dp_free_dir != NULL) {
262			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
263			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
264			    src);
265		} else {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
267			    NULL, 0, src);
268		}
269
270		if (pool->dp_leak_dir != NULL) {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
272			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
273			    src);
274		} else {
275			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
276			    NULL, 0, src);
277		}
278	}
279
280	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
281
282	if (spa->spa_comment != NULL) {
283		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
284		    0, ZPROP_SRC_LOCAL);
285	}
286
287	if (spa->spa_root != NULL)
288		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
289		    0, ZPROP_SRC_LOCAL);
290
291	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
292		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
293		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
294	} else {
295		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
296		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
297	}
298
299	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
300		if (dp->scd_path == NULL) {
301			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
302			    "none", 0, ZPROP_SRC_LOCAL);
303		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
304			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
305			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
306		}
307	}
308}
309
310/*
311 * Get zpool property values.
312 */
313int
314spa_prop_get(spa_t *spa, nvlist_t **nvp)
315{
316	objset_t *mos = spa->spa_meta_objset;
317	zap_cursor_t zc;
318	zap_attribute_t za;
319	int err;
320
321	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
322
323	mutex_enter(&spa->spa_props_lock);
324
325	/*
326	 * Get properties from the spa config.
327	 */
328	spa_prop_get_config(spa, nvp);
329
330	/* If no pool property object, no more prop to get. */
331	if (mos == NULL || spa->spa_pool_props_object == 0) {
332		mutex_exit(&spa->spa_props_lock);
333		return (0);
334	}
335
336	/*
337	 * Get properties from the MOS pool property object.
338	 */
339	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
340	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
341	    zap_cursor_advance(&zc)) {
342		uint64_t intval = 0;
343		char *strval = NULL;
344		zprop_source_t src = ZPROP_SRC_DEFAULT;
345		zpool_prop_t prop;
346
347		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
348			continue;
349
350		switch (za.za_integer_length) {
351		case 8:
352			/* integer property */
353			if (za.za_first_integer !=
354			    zpool_prop_default_numeric(prop))
355				src = ZPROP_SRC_LOCAL;
356
357			if (prop == ZPOOL_PROP_BOOTFS) {
358				dsl_pool_t *dp;
359				dsl_dataset_t *ds = NULL;
360
361				dp = spa_get_dsl(spa);
362				dsl_pool_config_enter(dp, FTAG);
363				if (err = dsl_dataset_hold_obj(dp,
364				    za.za_first_integer, FTAG, &ds)) {
365					dsl_pool_config_exit(dp, FTAG);
366					break;
367				}
368
369				strval = kmem_alloc(
370				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
371				    KM_SLEEP);
372				dsl_dataset_name(ds, strval);
373				dsl_dataset_rele(ds, FTAG);
374				dsl_pool_config_exit(dp, FTAG);
375			} else {
376				strval = NULL;
377				intval = za.za_first_integer;
378			}
379
380			spa_prop_add_list(*nvp, prop, strval, intval, src);
381
382			if (strval != NULL)
383				kmem_free(strval,
384				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
385
386			break;
387
388		case 1:
389			/* string property */
390			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
391			err = zap_lookup(mos, spa->spa_pool_props_object,
392			    za.za_name, 1, za.za_num_integers, strval);
393			if (err) {
394				kmem_free(strval, za.za_num_integers);
395				break;
396			}
397			spa_prop_add_list(*nvp, prop, strval, 0, src);
398			kmem_free(strval, za.za_num_integers);
399			break;
400
401		default:
402			break;
403		}
404	}
405	zap_cursor_fini(&zc);
406	mutex_exit(&spa->spa_props_lock);
407out:
408	if (err && err != ENOENT) {
409		nvlist_free(*nvp);
410		*nvp = NULL;
411		return (err);
412	}
413
414	return (0);
415}
416
417/*
418 * Validate the given pool properties nvlist and modify the list
419 * for the property values to be set.
420 */
421static int
422spa_prop_validate(spa_t *spa, nvlist_t *props)
423{
424	nvpair_t *elem;
425	int error = 0, reset_bootfs = 0;
426	uint64_t objnum = 0;
427	boolean_t has_feature = B_FALSE;
428
429	elem = NULL;
430	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
431		uint64_t intval;
432		char *strval, *slash, *check, *fname;
433		const char *propname = nvpair_name(elem);
434		zpool_prop_t prop = zpool_name_to_prop(propname);
435
436		switch (prop) {
437		case ZPROP_INVAL:
438			if (!zpool_prop_feature(propname)) {
439				error = SET_ERROR(EINVAL);
440				break;
441			}
442
443			/*
444			 * Sanitize the input.
445			 */
446			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
447				error = SET_ERROR(EINVAL);
448				break;
449			}
450
451			if (nvpair_value_uint64(elem, &intval) != 0) {
452				error = SET_ERROR(EINVAL);
453				break;
454			}
455
456			if (intval != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			fname = strchr(propname, '@') + 1;
462			if (zfeature_lookup_name(fname, NULL) != 0) {
463				error = SET_ERROR(EINVAL);
464				break;
465			}
466
467			has_feature = B_TRUE;
468			break;
469
470		case ZPOOL_PROP_VERSION:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error &&
473			    (intval < spa_version(spa) ||
474			    intval > SPA_VERSION_BEFORE_FEATURES ||
475			    has_feature))
476				error = SET_ERROR(EINVAL);
477			break;
478
479		case ZPOOL_PROP_DELEGATION:
480		case ZPOOL_PROP_AUTOREPLACE:
481		case ZPOOL_PROP_LISTSNAPS:
482		case ZPOOL_PROP_AUTOEXPAND:
483			error = nvpair_value_uint64(elem, &intval);
484			if (!error && intval > 1)
485				error = SET_ERROR(EINVAL);
486			break;
487
488		case ZPOOL_PROP_BOOTFS:
489			/*
490			 * If the pool version is less than SPA_VERSION_BOOTFS,
491			 * or the pool is still being created (version == 0),
492			 * the bootfs property cannot be set.
493			 */
494			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
495				error = SET_ERROR(ENOTSUP);
496				break;
497			}
498
499			/*
500			 * Make sure the vdev config is bootable
501			 */
502			if (!vdev_is_bootable(spa->spa_root_vdev)) {
503				error = SET_ERROR(ENOTSUP);
504				break;
505			}
506
507			reset_bootfs = 1;
508
509			error = nvpair_value_string(elem, &strval);
510
511			if (!error) {
512				objset_t *os;
513				uint64_t propval;
514
515				if (strval == NULL || strval[0] == '\0') {
516					objnum = zpool_prop_default_numeric(
517					    ZPOOL_PROP_BOOTFS);
518					break;
519				}
520
521				if (error = dmu_objset_hold(strval, FTAG, &os))
522					break;
523
524				/*
525				 * Must be ZPL, and its property settings
526				 * must be supported by GRUB (compression
527				 * is not gzip, and large blocks are not used).
528				 */
529
530				if (dmu_objset_type(os) != DMU_OST_ZFS) {
531					error = SET_ERROR(ENOTSUP);
532				} else if ((error =
533				    dsl_prop_get_int_ds(dmu_objset_ds(os),
534				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
535				    &propval)) == 0 &&
536				    !BOOTFS_COMPRESS_VALID(propval)) {
537					error = SET_ERROR(ENOTSUP);
538				} else if ((error =
539				    dsl_prop_get_int_ds(dmu_objset_ds(os),
540				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
541				    &propval)) == 0 &&
542				    propval > SPA_OLD_MAXBLOCKSIZE) {
543					error = SET_ERROR(ENOTSUP);
544				} else {
545					objnum = dmu_objset_id(os);
546				}
547				dmu_objset_rele(os, FTAG);
548			}
549			break;
550
551		case ZPOOL_PROP_FAILUREMODE:
552			error = nvpair_value_uint64(elem, &intval);
553			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
554			    intval > ZIO_FAILURE_MODE_PANIC))
555				error = SET_ERROR(EINVAL);
556
557			/*
558			 * This is a special case which only occurs when
559			 * the pool has completely failed. This allows
560			 * the user to change the in-core failmode property
561			 * without syncing it out to disk (I/Os might
562			 * currently be blocked). We do this by returning
563			 * EIO to the caller (spa_prop_set) to trick it
564			 * into thinking we encountered a property validation
565			 * error.
566			 */
567			if (!error && spa_suspended(spa)) {
568				spa->spa_failmode = intval;
569				error = SET_ERROR(EIO);
570			}
571			break;
572
573		case ZPOOL_PROP_CACHEFILE:
574			if ((error = nvpair_value_string(elem, &strval)) != 0)
575				break;
576
577			if (strval[0] == '\0')
578				break;
579
580			if (strcmp(strval, "none") == 0)
581				break;
582
583			if (strval[0] != '/') {
584				error = SET_ERROR(EINVAL);
585				break;
586			}
587
588			slash = strrchr(strval, '/');
589			ASSERT(slash != NULL);
590
591			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
592			    strcmp(slash, "/..") == 0)
593				error = SET_ERROR(EINVAL);
594			break;
595
596		case ZPOOL_PROP_COMMENT:
597			if ((error = nvpair_value_string(elem, &strval)) != 0)
598				break;
599			for (check = strval; *check != '\0'; check++) {
600				/*
601				 * The kernel doesn't have an easy isprint()
602				 * check.  For this kernel check, we merely
603				 * check ASCII apart from DEL.  Fix this if
604				 * there is an easy-to-use kernel isprint().
605				 */
606				if (*check >= 0x7f) {
607					error = SET_ERROR(EINVAL);
608					break;
609				}
610				check++;
611			}
612			if (strlen(strval) > ZPROP_MAX_COMMENT)
613				error = E2BIG;
614			break;
615
616		case ZPOOL_PROP_DEDUPDITTO:
617			if (spa_version(spa) < SPA_VERSION_DEDUP)
618				error = SET_ERROR(ENOTSUP);
619			else
620				error = nvpair_value_uint64(elem, &intval);
621			if (error == 0 &&
622			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
623				error = SET_ERROR(EINVAL);
624			break;
625		}
626
627		if (error)
628			break;
629	}
630
631	if (!error && reset_bootfs) {
632		error = nvlist_remove(props,
633		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
634
635		if (!error) {
636			error = nvlist_add_uint64(props,
637			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
638		}
639	}
640
641	return (error);
642}
643
644void
645spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
646{
647	char *cachefile;
648	spa_config_dirent_t *dp;
649
650	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
651	    &cachefile) != 0)
652		return;
653
654	dp = kmem_alloc(sizeof (spa_config_dirent_t),
655	    KM_SLEEP);
656
657	if (cachefile[0] == '\0')
658		dp->scd_path = spa_strdup(spa_config_path);
659	else if (strcmp(cachefile, "none") == 0)
660		dp->scd_path = NULL;
661	else
662		dp->scd_path = spa_strdup(cachefile);
663
664	list_insert_head(&spa->spa_config_list, dp);
665	if (need_sync)
666		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
667}
668
669int
670spa_prop_set(spa_t *spa, nvlist_t *nvp)
671{
672	int error;
673	nvpair_t *elem = NULL;
674	boolean_t need_sync = B_FALSE;
675
676	if ((error = spa_prop_validate(spa, nvp)) != 0)
677		return (error);
678
679	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
680		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
681
682		if (prop == ZPOOL_PROP_CACHEFILE ||
683		    prop == ZPOOL_PROP_ALTROOT ||
684		    prop == ZPOOL_PROP_READONLY)
685			continue;
686
687		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
688			uint64_t ver;
689
690			if (prop == ZPOOL_PROP_VERSION) {
691				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
692			} else {
693				ASSERT(zpool_prop_feature(nvpair_name(elem)));
694				ver = SPA_VERSION_FEATURES;
695				need_sync = B_TRUE;
696			}
697
698			/* Save time if the version is already set. */
699			if (ver == spa_version(spa))
700				continue;
701
702			/*
703			 * In addition to the pool directory object, we might
704			 * create the pool properties object, the features for
705			 * read object, the features for write object, or the
706			 * feature descriptions object.
707			 */
708			error = dsl_sync_task(spa->spa_name, NULL,
709			    spa_sync_version, &ver,
710			    6, ZFS_SPACE_CHECK_RESERVED);
711			if (error)
712				return (error);
713			continue;
714		}
715
716		need_sync = B_TRUE;
717		break;
718	}
719
720	if (need_sync) {
721		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
722		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
723	}
724
725	return (0);
726}
727
728/*
729 * If the bootfs property value is dsobj, clear it.
730 */
731void
732spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
733{
734	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
735		VERIFY(zap_remove(spa->spa_meta_objset,
736		    spa->spa_pool_props_object,
737		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
738		spa->spa_bootfs = 0;
739	}
740}
741
742/*ARGSUSED*/
743static int
744spa_change_guid_check(void *arg, dmu_tx_t *tx)
745{
746	uint64_t *newguid = arg;
747	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
748	vdev_t *rvd = spa->spa_root_vdev;
749	uint64_t vdev_state;
750
751	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
752	vdev_state = rvd->vdev_state;
753	spa_config_exit(spa, SCL_STATE, FTAG);
754
755	if (vdev_state != VDEV_STATE_HEALTHY)
756		return (SET_ERROR(ENXIO));
757
758	ASSERT3U(spa_guid(spa), !=, *newguid);
759
760	return (0);
761}
762
763static void
764spa_change_guid_sync(void *arg, dmu_tx_t *tx)
765{
766	uint64_t *newguid = arg;
767	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
768	uint64_t oldguid;
769	vdev_t *rvd = spa->spa_root_vdev;
770
771	oldguid = spa_guid(spa);
772
773	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
774	rvd->vdev_guid = *newguid;
775	rvd->vdev_guid_sum += (*newguid - oldguid);
776	vdev_config_dirty(rvd);
777	spa_config_exit(spa, SCL_STATE, FTAG);
778
779	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
780	    oldguid, *newguid);
781}
782
783/*
784 * Change the GUID for the pool.  This is done so that we can later
785 * re-import a pool built from a clone of our own vdevs.  We will modify
786 * the root vdev's guid, our own pool guid, and then mark all of our
787 * vdevs dirty.  Note that we must make sure that all our vdevs are
788 * online when we do this, or else any vdevs that weren't present
789 * would be orphaned from our pool.  We are also going to issue a
790 * sysevent to update any watchers.
791 */
792int
793spa_change_guid(spa_t *spa)
794{
795	int error;
796	uint64_t guid;
797
798	mutex_enter(&spa->spa_vdev_top_lock);
799	mutex_enter(&spa_namespace_lock);
800	guid = spa_generate_guid(NULL);
801
802	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
803	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
804
805	if (error == 0) {
806		spa_config_sync(spa, B_FALSE, B_TRUE);
807		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
808	}
809
810	mutex_exit(&spa_namespace_lock);
811	mutex_exit(&spa->spa_vdev_top_lock);
812
813	return (error);
814}
815
816/*
817 * ==========================================================================
818 * SPA state manipulation (open/create/destroy/import/export)
819 * ==========================================================================
820 */
821
822static int
823spa_error_entry_compare(const void *a, const void *b)
824{
825	spa_error_entry_t *sa = (spa_error_entry_t *)a;
826	spa_error_entry_t *sb = (spa_error_entry_t *)b;
827	int ret;
828
829	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
830	    sizeof (zbookmark_phys_t));
831
832	if (ret < 0)
833		return (-1);
834	else if (ret > 0)
835		return (1);
836	else
837		return (0);
838}
839
840/*
841 * Utility function which retrieves copies of the current logs and
842 * re-initializes them in the process.
843 */
844void
845spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
846{
847	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
848
849	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
850	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
851
852	avl_create(&spa->spa_errlist_scrub,
853	    spa_error_entry_compare, sizeof (spa_error_entry_t),
854	    offsetof(spa_error_entry_t, se_avl));
855	avl_create(&spa->spa_errlist_last,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858}
859
860static void
861spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
862{
863	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
864	enum zti_modes mode = ztip->zti_mode;
865	uint_t value = ztip->zti_value;
866	uint_t count = ztip->zti_count;
867	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
868	char name[32];
869	uint_t flags = 0;
870	boolean_t batch = B_FALSE;
871
872	if (mode == ZTI_MODE_NULL) {
873		tqs->stqs_count = 0;
874		tqs->stqs_taskq = NULL;
875		return;
876	}
877
878	ASSERT3U(count, >, 0);
879
880	tqs->stqs_count = count;
881	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
882
883	switch (mode) {
884	case ZTI_MODE_FIXED:
885		ASSERT3U(value, >=, 1);
886		value = MAX(value, 1);
887		break;
888
889	case ZTI_MODE_BATCH:
890		batch = B_TRUE;
891		flags |= TASKQ_THREADS_CPU_PCT;
892		value = zio_taskq_batch_pct;
893		break;
894
895	default:
896		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
897		    "spa_activate()",
898		    zio_type_name[t], zio_taskq_types[q], mode, value);
899		break;
900	}
901
902	for (uint_t i = 0; i < count; i++) {
903		taskq_t *tq;
904
905		if (count > 1) {
906			(void) snprintf(name, sizeof (name), "%s_%s_%u",
907			    zio_type_name[t], zio_taskq_types[q], i);
908		} else {
909			(void) snprintf(name, sizeof (name), "%s_%s",
910			    zio_type_name[t], zio_taskq_types[q]);
911		}
912
913#ifdef SYSDC
914		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
915			if (batch)
916				flags |= TASKQ_DC_BATCH;
917
918			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
919			    spa->spa_proc, zio_taskq_basedc, flags);
920		} else {
921#endif
922			pri_t pri = maxclsyspri;
923			/*
924			 * The write issue taskq can be extremely CPU
925			 * intensive.  Run it at slightly lower priority
926			 * than the other taskqs.
927			 */
928			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
929				pri--;
930
931			tq = taskq_create_proc(name, value, pri, 50,
932			    INT_MAX, spa->spa_proc, flags);
933#ifdef SYSDC
934		}
935#endif
936
937		tqs->stqs_taskq[i] = tq;
938	}
939}
940
941static void
942spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
943{
944	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
945
946	if (tqs->stqs_taskq == NULL) {
947		ASSERT0(tqs->stqs_count);
948		return;
949	}
950
951	for (uint_t i = 0; i < tqs->stqs_count; i++) {
952		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
953		taskq_destroy(tqs->stqs_taskq[i]);
954	}
955
956	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
957	tqs->stqs_taskq = NULL;
958}
959
960/*
961 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
962 * Note that a type may have multiple discrete taskqs to avoid lock contention
963 * on the taskq itself. In that case we choose which taskq at random by using
964 * the low bits of gethrtime().
965 */
966void
967spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
968    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
969{
970	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
971	taskq_t *tq;
972
973	ASSERT3P(tqs->stqs_taskq, !=, NULL);
974	ASSERT3U(tqs->stqs_count, !=, 0);
975
976	if (tqs->stqs_count == 1) {
977		tq = tqs->stqs_taskq[0];
978	} else {
979#ifdef _KERNEL
980		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
981#else
982		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
983#endif
984	}
985
986	taskq_dispatch_ent(tq, func, arg, flags, ent);
987}
988
989static void
990spa_create_zio_taskqs(spa_t *spa)
991{
992	for (int t = 0; t < ZIO_TYPES; t++) {
993		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
994			spa_taskqs_init(spa, t, q);
995		}
996	}
997}
998
999#ifdef _KERNEL
1000#ifdef SPA_PROCESS
1001static void
1002spa_thread(void *arg)
1003{
1004	callb_cpr_t cprinfo;
1005
1006	spa_t *spa = arg;
1007	user_t *pu = PTOU(curproc);
1008
1009	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1010	    spa->spa_name);
1011
1012	ASSERT(curproc != &p0);
1013	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1014	    "zpool-%s", spa->spa_name);
1015	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1016
1017#ifdef PSRSET_BIND
1018	/* bind this thread to the requested psrset */
1019	if (zio_taskq_psrset_bind != PS_NONE) {
1020		pool_lock();
1021		mutex_enter(&cpu_lock);
1022		mutex_enter(&pidlock);
1023		mutex_enter(&curproc->p_lock);
1024
1025		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1026		    0, NULL, NULL) == 0)  {
1027			curthread->t_bind_pset = zio_taskq_psrset_bind;
1028		} else {
1029			cmn_err(CE_WARN,
1030			    "Couldn't bind process for zfs pool \"%s\" to "
1031			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1032		}
1033
1034		mutex_exit(&curproc->p_lock);
1035		mutex_exit(&pidlock);
1036		mutex_exit(&cpu_lock);
1037		pool_unlock();
1038	}
1039#endif
1040
1041#ifdef SYSDC
1042	if (zio_taskq_sysdc) {
1043		sysdc_thread_enter(curthread, 100, 0);
1044	}
1045#endif
1046
1047	spa->spa_proc = curproc;
1048	spa->spa_did = curthread->t_did;
1049
1050	spa_create_zio_taskqs(spa);
1051
1052	mutex_enter(&spa->spa_proc_lock);
1053	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1054
1055	spa->spa_proc_state = SPA_PROC_ACTIVE;
1056	cv_broadcast(&spa->spa_proc_cv);
1057
1058	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1059	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1060		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1061	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1062
1063	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1064	spa->spa_proc_state = SPA_PROC_GONE;
1065	spa->spa_proc = &p0;
1066	cv_broadcast(&spa->spa_proc_cv);
1067	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1068
1069	mutex_enter(&curproc->p_lock);
1070	lwp_exit();
1071}
1072#endif	/* SPA_PROCESS */
1073#endif
1074
1075/*
1076 * Activate an uninitialized pool.
1077 */
1078static void
1079spa_activate(spa_t *spa, int mode)
1080{
1081	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1082
1083	spa->spa_state = POOL_STATE_ACTIVE;
1084	spa->spa_mode = mode;
1085
1086	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1087	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1088
1089	/* Try to create a covering process */
1090	mutex_enter(&spa->spa_proc_lock);
1091	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1092	ASSERT(spa->spa_proc == &p0);
1093	spa->spa_did = 0;
1094
1095#ifdef SPA_PROCESS
1096	/* Only create a process if we're going to be around a while. */
1097	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1098		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1099		    NULL, 0) == 0) {
1100			spa->spa_proc_state = SPA_PROC_CREATED;
1101			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1102				cv_wait(&spa->spa_proc_cv,
1103				    &spa->spa_proc_lock);
1104			}
1105			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1106			ASSERT(spa->spa_proc != &p0);
1107			ASSERT(spa->spa_did != 0);
1108		} else {
1109#ifdef _KERNEL
1110			cmn_err(CE_WARN,
1111			    "Couldn't create process for zfs pool \"%s\"\n",
1112			    spa->spa_name);
1113#endif
1114		}
1115	}
1116#endif	/* SPA_PROCESS */
1117	mutex_exit(&spa->spa_proc_lock);
1118
1119	/* If we didn't create a process, we need to create our taskqs. */
1120	ASSERT(spa->spa_proc == &p0);
1121	if (spa->spa_proc == &p0) {
1122		spa_create_zio_taskqs(spa);
1123	}
1124
1125	/*
1126	 * Start TRIM thread.
1127	 */
1128	trim_thread_create(spa);
1129
1130	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1131	    offsetof(vdev_t, vdev_config_dirty_node));
1132	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1133	    offsetof(objset_t, os_evicting_node));
1134	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1135	    offsetof(vdev_t, vdev_state_dirty_node));
1136
1137	txg_list_create(&spa->spa_vdev_txg_list,
1138	    offsetof(struct vdev, vdev_txg_node));
1139
1140	avl_create(&spa->spa_errlist_scrub,
1141	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1142	    offsetof(spa_error_entry_t, se_avl));
1143	avl_create(&spa->spa_errlist_last,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146}
1147
1148/*
1149 * Opposite of spa_activate().
1150 */
1151static void
1152spa_deactivate(spa_t *spa)
1153{
1154	ASSERT(spa->spa_sync_on == B_FALSE);
1155	ASSERT(spa->spa_dsl_pool == NULL);
1156	ASSERT(spa->spa_root_vdev == NULL);
1157	ASSERT(spa->spa_async_zio_root == NULL);
1158	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1159
1160	/*
1161	 * Stop TRIM thread in case spa_unload() wasn't called directly
1162	 * before spa_deactivate().
1163	 */
1164	trim_thread_destroy(spa);
1165
1166	spa_evicting_os_wait(spa);
1167
1168	txg_list_destroy(&spa->spa_vdev_txg_list);
1169
1170	list_destroy(&spa->spa_config_dirty_list);
1171	list_destroy(&spa->spa_evicting_os_list);
1172	list_destroy(&spa->spa_state_dirty_list);
1173
1174	for (int t = 0; t < ZIO_TYPES; t++) {
1175		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1176			spa_taskqs_fini(spa, t, q);
1177		}
1178	}
1179
1180	metaslab_class_destroy(spa->spa_normal_class);
1181	spa->spa_normal_class = NULL;
1182
1183	metaslab_class_destroy(spa->spa_log_class);
1184	spa->spa_log_class = NULL;
1185
1186	/*
1187	 * If this was part of an import or the open otherwise failed, we may
1188	 * still have errors left in the queues.  Empty them just in case.
1189	 */
1190	spa_errlog_drain(spa);
1191
1192	avl_destroy(&spa->spa_errlist_scrub);
1193	avl_destroy(&spa->spa_errlist_last);
1194
1195	spa->spa_state = POOL_STATE_UNINITIALIZED;
1196
1197	mutex_enter(&spa->spa_proc_lock);
1198	if (spa->spa_proc_state != SPA_PROC_NONE) {
1199		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1200		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1201		cv_broadcast(&spa->spa_proc_cv);
1202		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1203			ASSERT(spa->spa_proc != &p0);
1204			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1205		}
1206		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1207		spa->spa_proc_state = SPA_PROC_NONE;
1208	}
1209	ASSERT(spa->spa_proc == &p0);
1210	mutex_exit(&spa->spa_proc_lock);
1211
1212#ifdef SPA_PROCESS
1213	/*
1214	 * We want to make sure spa_thread() has actually exited the ZFS
1215	 * module, so that the module can't be unloaded out from underneath
1216	 * it.
1217	 */
1218	if (spa->spa_did != 0) {
1219		thread_join(spa->spa_did);
1220		spa->spa_did = 0;
1221	}
1222#endif	/* SPA_PROCESS */
1223}
1224
1225/*
1226 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1227 * will create all the necessary vdevs in the appropriate layout, with each vdev
1228 * in the CLOSED state.  This will prep the pool before open/creation/import.
1229 * All vdev validation is done by the vdev_alloc() routine.
1230 */
1231static int
1232spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1233    uint_t id, int atype)
1234{
1235	nvlist_t **child;
1236	uint_t children;
1237	int error;
1238
1239	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1240		return (error);
1241
1242	if ((*vdp)->vdev_ops->vdev_op_leaf)
1243		return (0);
1244
1245	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1246	    &child, &children);
1247
1248	if (error == ENOENT)
1249		return (0);
1250
1251	if (error) {
1252		vdev_free(*vdp);
1253		*vdp = NULL;
1254		return (SET_ERROR(EINVAL));
1255	}
1256
1257	for (int c = 0; c < children; c++) {
1258		vdev_t *vd;
1259		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1260		    atype)) != 0) {
1261			vdev_free(*vdp);
1262			*vdp = NULL;
1263			return (error);
1264		}
1265	}
1266
1267	ASSERT(*vdp != NULL);
1268
1269	return (0);
1270}
1271
1272/*
1273 * Opposite of spa_load().
1274 */
1275static void
1276spa_unload(spa_t *spa)
1277{
1278	int i;
1279
1280	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1281
1282	/*
1283	 * Stop TRIM thread.
1284	 */
1285	trim_thread_destroy(spa);
1286
1287	/*
1288	 * Stop async tasks.
1289	 */
1290	spa_async_suspend(spa);
1291
1292	/*
1293	 * Stop syncing.
1294	 */
1295	if (spa->spa_sync_on) {
1296		txg_sync_stop(spa->spa_dsl_pool);
1297		spa->spa_sync_on = B_FALSE;
1298	}
1299
1300	/*
1301	 * Wait for any outstanding async I/O to complete.
1302	 */
1303	if (spa->spa_async_zio_root != NULL) {
1304		for (int i = 0; i < max_ncpus; i++)
1305			(void) zio_wait(spa->spa_async_zio_root[i]);
1306		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1307		spa->spa_async_zio_root = NULL;
1308	}
1309
1310	bpobj_close(&spa->spa_deferred_bpobj);
1311
1312	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1313
1314	/*
1315	 * Close all vdevs.
1316	 */
1317	if (spa->spa_root_vdev)
1318		vdev_free(spa->spa_root_vdev);
1319	ASSERT(spa->spa_root_vdev == NULL);
1320
1321	/*
1322	 * Close the dsl pool.
1323	 */
1324	if (spa->spa_dsl_pool) {
1325		dsl_pool_close(spa->spa_dsl_pool);
1326		spa->spa_dsl_pool = NULL;
1327		spa->spa_meta_objset = NULL;
1328	}
1329
1330	ddt_unload(spa);
1331
1332
1333	/*
1334	 * Drop and purge level 2 cache
1335	 */
1336	spa_l2cache_drop(spa);
1337
1338	for (i = 0; i < spa->spa_spares.sav_count; i++)
1339		vdev_free(spa->spa_spares.sav_vdevs[i]);
1340	if (spa->spa_spares.sav_vdevs) {
1341		kmem_free(spa->spa_spares.sav_vdevs,
1342		    spa->spa_spares.sav_count * sizeof (void *));
1343		spa->spa_spares.sav_vdevs = NULL;
1344	}
1345	if (spa->spa_spares.sav_config) {
1346		nvlist_free(spa->spa_spares.sav_config);
1347		spa->spa_spares.sav_config = NULL;
1348	}
1349	spa->spa_spares.sav_count = 0;
1350
1351	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1352		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1353		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1354	}
1355	if (spa->spa_l2cache.sav_vdevs) {
1356		kmem_free(spa->spa_l2cache.sav_vdevs,
1357		    spa->spa_l2cache.sav_count * sizeof (void *));
1358		spa->spa_l2cache.sav_vdevs = NULL;
1359	}
1360	if (spa->spa_l2cache.sav_config) {
1361		nvlist_free(spa->spa_l2cache.sav_config);
1362		spa->spa_l2cache.sav_config = NULL;
1363	}
1364	spa->spa_l2cache.sav_count = 0;
1365
1366	spa->spa_async_suspended = 0;
1367
1368	if (spa->spa_comment != NULL) {
1369		spa_strfree(spa->spa_comment);
1370		spa->spa_comment = NULL;
1371	}
1372
1373	spa_config_exit(spa, SCL_ALL, FTAG);
1374}
1375
1376/*
1377 * Load (or re-load) the current list of vdevs describing the active spares for
1378 * this pool.  When this is called, we have some form of basic information in
1379 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1380 * then re-generate a more complete list including status information.
1381 */
1382static void
1383spa_load_spares(spa_t *spa)
1384{
1385	nvlist_t **spares;
1386	uint_t nspares;
1387	int i;
1388	vdev_t *vd, *tvd;
1389
1390	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1391
1392	/*
1393	 * First, close and free any existing spare vdevs.
1394	 */
1395	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1396		vd = spa->spa_spares.sav_vdevs[i];
1397
1398		/* Undo the call to spa_activate() below */
1399		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1400		    B_FALSE)) != NULL && tvd->vdev_isspare)
1401			spa_spare_remove(tvd);
1402		vdev_close(vd);
1403		vdev_free(vd);
1404	}
1405
1406	if (spa->spa_spares.sav_vdevs)
1407		kmem_free(spa->spa_spares.sav_vdevs,
1408		    spa->spa_spares.sav_count * sizeof (void *));
1409
1410	if (spa->spa_spares.sav_config == NULL)
1411		nspares = 0;
1412	else
1413		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1414		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1415
1416	spa->spa_spares.sav_count = (int)nspares;
1417	spa->spa_spares.sav_vdevs = NULL;
1418
1419	if (nspares == 0)
1420		return;
1421
1422	/*
1423	 * Construct the array of vdevs, opening them to get status in the
1424	 * process.   For each spare, there is potentially two different vdev_t
1425	 * structures associated with it: one in the list of spares (used only
1426	 * for basic validation purposes) and one in the active vdev
1427	 * configuration (if it's spared in).  During this phase we open and
1428	 * validate each vdev on the spare list.  If the vdev also exists in the
1429	 * active configuration, then we also mark this vdev as an active spare.
1430	 */
1431	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1432	    KM_SLEEP);
1433	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1434		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1435		    VDEV_ALLOC_SPARE) == 0);
1436		ASSERT(vd != NULL);
1437
1438		spa->spa_spares.sav_vdevs[i] = vd;
1439
1440		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1441		    B_FALSE)) != NULL) {
1442			if (!tvd->vdev_isspare)
1443				spa_spare_add(tvd);
1444
1445			/*
1446			 * We only mark the spare active if we were successfully
1447			 * able to load the vdev.  Otherwise, importing a pool
1448			 * with a bad active spare would result in strange
1449			 * behavior, because multiple pool would think the spare
1450			 * is actively in use.
1451			 *
1452			 * There is a vulnerability here to an equally bizarre
1453			 * circumstance, where a dead active spare is later
1454			 * brought back to life (onlined or otherwise).  Given
1455			 * the rarity of this scenario, and the extra complexity
1456			 * it adds, we ignore the possibility.
1457			 */
1458			if (!vdev_is_dead(tvd))
1459				spa_spare_activate(tvd);
1460		}
1461
1462		vd->vdev_top = vd;
1463		vd->vdev_aux = &spa->spa_spares;
1464
1465		if (vdev_open(vd) != 0)
1466			continue;
1467
1468		if (vdev_validate_aux(vd) == 0)
1469			spa_spare_add(vd);
1470	}
1471
1472	/*
1473	 * Recompute the stashed list of spares, with status information
1474	 * this time.
1475	 */
1476	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1477	    DATA_TYPE_NVLIST_ARRAY) == 0);
1478
1479	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1480	    KM_SLEEP);
1481	for (i = 0; i < spa->spa_spares.sav_count; i++)
1482		spares[i] = vdev_config_generate(spa,
1483		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1484	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1485	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1486	for (i = 0; i < spa->spa_spares.sav_count; i++)
1487		nvlist_free(spares[i]);
1488	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1489}
1490
1491/*
1492 * Load (or re-load) the current list of vdevs describing the active l2cache for
1493 * this pool.  When this is called, we have some form of basic information in
1494 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1495 * then re-generate a more complete list including status information.
1496 * Devices which are already active have their details maintained, and are
1497 * not re-opened.
1498 */
1499static void
1500spa_load_l2cache(spa_t *spa)
1501{
1502	nvlist_t **l2cache;
1503	uint_t nl2cache;
1504	int i, j, oldnvdevs;
1505	uint64_t guid;
1506	vdev_t *vd, **oldvdevs, **newvdevs;
1507	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1508
1509	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1510
1511	if (sav->sav_config != NULL) {
1512		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1513		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1514		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1515	} else {
1516		nl2cache = 0;
1517		newvdevs = NULL;
1518	}
1519
1520	oldvdevs = sav->sav_vdevs;
1521	oldnvdevs = sav->sav_count;
1522	sav->sav_vdevs = NULL;
1523	sav->sav_count = 0;
1524
1525	/*
1526	 * Process new nvlist of vdevs.
1527	 */
1528	for (i = 0; i < nl2cache; i++) {
1529		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1530		    &guid) == 0);
1531
1532		newvdevs[i] = NULL;
1533		for (j = 0; j < oldnvdevs; j++) {
1534			vd = oldvdevs[j];
1535			if (vd != NULL && guid == vd->vdev_guid) {
1536				/*
1537				 * Retain previous vdev for add/remove ops.
1538				 */
1539				newvdevs[i] = vd;
1540				oldvdevs[j] = NULL;
1541				break;
1542			}
1543		}
1544
1545		if (newvdevs[i] == NULL) {
1546			/*
1547			 * Create new vdev
1548			 */
1549			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1550			    VDEV_ALLOC_L2CACHE) == 0);
1551			ASSERT(vd != NULL);
1552			newvdevs[i] = vd;
1553
1554			/*
1555			 * Commit this vdev as an l2cache device,
1556			 * even if it fails to open.
1557			 */
1558			spa_l2cache_add(vd);
1559
1560			vd->vdev_top = vd;
1561			vd->vdev_aux = sav;
1562
1563			spa_l2cache_activate(vd);
1564
1565			if (vdev_open(vd) != 0)
1566				continue;
1567
1568			(void) vdev_validate_aux(vd);
1569
1570			if (!vdev_is_dead(vd))
1571				l2arc_add_vdev(spa, vd);
1572		}
1573	}
1574
1575	/*
1576	 * Purge vdevs that were dropped
1577	 */
1578	for (i = 0; i < oldnvdevs; i++) {
1579		uint64_t pool;
1580
1581		vd = oldvdevs[i];
1582		if (vd != NULL) {
1583			ASSERT(vd->vdev_isl2cache);
1584
1585			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1586			    pool != 0ULL && l2arc_vdev_present(vd))
1587				l2arc_remove_vdev(vd);
1588			vdev_clear_stats(vd);
1589			vdev_free(vd);
1590		}
1591	}
1592
1593	if (oldvdevs)
1594		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1595
1596	if (sav->sav_config == NULL)
1597		goto out;
1598
1599	sav->sav_vdevs = newvdevs;
1600	sav->sav_count = (int)nl2cache;
1601
1602	/*
1603	 * Recompute the stashed list of l2cache devices, with status
1604	 * information this time.
1605	 */
1606	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1607	    DATA_TYPE_NVLIST_ARRAY) == 0);
1608
1609	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1610	for (i = 0; i < sav->sav_count; i++)
1611		l2cache[i] = vdev_config_generate(spa,
1612		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1613	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1614	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1615out:
1616	for (i = 0; i < sav->sav_count; i++)
1617		nvlist_free(l2cache[i]);
1618	if (sav->sav_count)
1619		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1620}
1621
1622static int
1623load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1624{
1625	dmu_buf_t *db;
1626	char *packed = NULL;
1627	size_t nvsize = 0;
1628	int error;
1629	*value = NULL;
1630
1631	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1632	if (error != 0)
1633		return (error);
1634
1635	nvsize = *(uint64_t *)db->db_data;
1636	dmu_buf_rele(db, FTAG);
1637
1638	packed = kmem_alloc(nvsize, KM_SLEEP);
1639	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1640	    DMU_READ_PREFETCH);
1641	if (error == 0)
1642		error = nvlist_unpack(packed, nvsize, value, 0);
1643	kmem_free(packed, nvsize);
1644
1645	return (error);
1646}
1647
1648/*
1649 * Checks to see if the given vdev could not be opened, in which case we post a
1650 * sysevent to notify the autoreplace code that the device has been removed.
1651 */
1652static void
1653spa_check_removed(vdev_t *vd)
1654{
1655	for (int c = 0; c < vd->vdev_children; c++)
1656		spa_check_removed(vd->vdev_child[c]);
1657
1658	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1659	    !vd->vdev_ishole) {
1660		zfs_post_autoreplace(vd->vdev_spa, vd);
1661		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1662	}
1663}
1664
1665/*
1666 * Validate the current config against the MOS config
1667 */
1668static boolean_t
1669spa_config_valid(spa_t *spa, nvlist_t *config)
1670{
1671	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1672	nvlist_t *nv;
1673
1674	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1675
1676	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1677	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1678
1679	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1680
1681	/*
1682	 * If we're doing a normal import, then build up any additional
1683	 * diagnostic information about missing devices in this config.
1684	 * We'll pass this up to the user for further processing.
1685	 */
1686	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1687		nvlist_t **child, *nv;
1688		uint64_t idx = 0;
1689
1690		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1691		    KM_SLEEP);
1692		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1693
1694		for (int c = 0; c < rvd->vdev_children; c++) {
1695			vdev_t *tvd = rvd->vdev_child[c];
1696			vdev_t *mtvd  = mrvd->vdev_child[c];
1697
1698			if (tvd->vdev_ops == &vdev_missing_ops &&
1699			    mtvd->vdev_ops != &vdev_missing_ops &&
1700			    mtvd->vdev_islog)
1701				child[idx++] = vdev_config_generate(spa, mtvd,
1702				    B_FALSE, 0);
1703		}
1704
1705		if (idx) {
1706			VERIFY(nvlist_add_nvlist_array(nv,
1707			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1708			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1709			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1710
1711			for (int i = 0; i < idx; i++)
1712				nvlist_free(child[i]);
1713		}
1714		nvlist_free(nv);
1715		kmem_free(child, rvd->vdev_children * sizeof (char **));
1716	}
1717
1718	/*
1719	 * Compare the root vdev tree with the information we have
1720	 * from the MOS config (mrvd). Check each top-level vdev
1721	 * with the corresponding MOS config top-level (mtvd).
1722	 */
1723	for (int c = 0; c < rvd->vdev_children; c++) {
1724		vdev_t *tvd = rvd->vdev_child[c];
1725		vdev_t *mtvd  = mrvd->vdev_child[c];
1726
1727		/*
1728		 * Resolve any "missing" vdevs in the current configuration.
1729		 * If we find that the MOS config has more accurate information
1730		 * about the top-level vdev then use that vdev instead.
1731		 */
1732		if (tvd->vdev_ops == &vdev_missing_ops &&
1733		    mtvd->vdev_ops != &vdev_missing_ops) {
1734
1735			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1736				continue;
1737
1738			/*
1739			 * Device specific actions.
1740			 */
1741			if (mtvd->vdev_islog) {
1742				spa_set_log_state(spa, SPA_LOG_CLEAR);
1743			} else {
1744				/*
1745				 * XXX - once we have 'readonly' pool
1746				 * support we should be able to handle
1747				 * missing data devices by transitioning
1748				 * the pool to readonly.
1749				 */
1750				continue;
1751			}
1752
1753			/*
1754			 * Swap the missing vdev with the data we were
1755			 * able to obtain from the MOS config.
1756			 */
1757			vdev_remove_child(rvd, tvd);
1758			vdev_remove_child(mrvd, mtvd);
1759
1760			vdev_add_child(rvd, mtvd);
1761			vdev_add_child(mrvd, tvd);
1762
1763			spa_config_exit(spa, SCL_ALL, FTAG);
1764			vdev_load(mtvd);
1765			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1766
1767			vdev_reopen(rvd);
1768		} else if (mtvd->vdev_islog) {
1769			/*
1770			 * Load the slog device's state from the MOS config
1771			 * since it's possible that the label does not
1772			 * contain the most up-to-date information.
1773			 */
1774			vdev_load_log_state(tvd, mtvd);
1775			vdev_reopen(tvd);
1776		}
1777	}
1778	vdev_free(mrvd);
1779	spa_config_exit(spa, SCL_ALL, FTAG);
1780
1781	/*
1782	 * Ensure we were able to validate the config.
1783	 */
1784	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1785}
1786
1787/*
1788 * Check for missing log devices
1789 */
1790static boolean_t
1791spa_check_logs(spa_t *spa)
1792{
1793	boolean_t rv = B_FALSE;
1794	dsl_pool_t *dp = spa_get_dsl(spa);
1795
1796	switch (spa->spa_log_state) {
1797	case SPA_LOG_MISSING:
1798		/* need to recheck in case slog has been restored */
1799	case SPA_LOG_UNKNOWN:
1800		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1801		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1802		if (rv)
1803			spa_set_log_state(spa, SPA_LOG_MISSING);
1804		break;
1805	}
1806	return (rv);
1807}
1808
1809static boolean_t
1810spa_passivate_log(spa_t *spa)
1811{
1812	vdev_t *rvd = spa->spa_root_vdev;
1813	boolean_t slog_found = B_FALSE;
1814
1815	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1816
1817	if (!spa_has_slogs(spa))
1818		return (B_FALSE);
1819
1820	for (int c = 0; c < rvd->vdev_children; c++) {
1821		vdev_t *tvd = rvd->vdev_child[c];
1822		metaslab_group_t *mg = tvd->vdev_mg;
1823
1824		if (tvd->vdev_islog) {
1825			metaslab_group_passivate(mg);
1826			slog_found = B_TRUE;
1827		}
1828	}
1829
1830	return (slog_found);
1831}
1832
1833static void
1834spa_activate_log(spa_t *spa)
1835{
1836	vdev_t *rvd = spa->spa_root_vdev;
1837
1838	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1839
1840	for (int c = 0; c < rvd->vdev_children; c++) {
1841		vdev_t *tvd = rvd->vdev_child[c];
1842		metaslab_group_t *mg = tvd->vdev_mg;
1843
1844		if (tvd->vdev_islog)
1845			metaslab_group_activate(mg);
1846	}
1847}
1848
1849int
1850spa_offline_log(spa_t *spa)
1851{
1852	int error;
1853
1854	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1855	    NULL, DS_FIND_CHILDREN);
1856	if (error == 0) {
1857		/*
1858		 * We successfully offlined the log device, sync out the
1859		 * current txg so that the "stubby" block can be removed
1860		 * by zil_sync().
1861		 */
1862		txg_wait_synced(spa->spa_dsl_pool, 0);
1863	}
1864	return (error);
1865}
1866
1867static void
1868spa_aux_check_removed(spa_aux_vdev_t *sav)
1869{
1870	int i;
1871
1872	for (i = 0; i < sav->sav_count; i++)
1873		spa_check_removed(sav->sav_vdevs[i]);
1874}
1875
1876void
1877spa_claim_notify(zio_t *zio)
1878{
1879	spa_t *spa = zio->io_spa;
1880
1881	if (zio->io_error)
1882		return;
1883
1884	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1885	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1886		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1887	mutex_exit(&spa->spa_props_lock);
1888}
1889
1890typedef struct spa_load_error {
1891	uint64_t	sle_meta_count;
1892	uint64_t	sle_data_count;
1893} spa_load_error_t;
1894
1895static void
1896spa_load_verify_done(zio_t *zio)
1897{
1898	blkptr_t *bp = zio->io_bp;
1899	spa_load_error_t *sle = zio->io_private;
1900	dmu_object_type_t type = BP_GET_TYPE(bp);
1901	int error = zio->io_error;
1902	spa_t *spa = zio->io_spa;
1903
1904	if (error) {
1905		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1906		    type != DMU_OT_INTENT_LOG)
1907			atomic_inc_64(&sle->sle_meta_count);
1908		else
1909			atomic_inc_64(&sle->sle_data_count);
1910	}
1911	zio_data_buf_free(zio->io_data, zio->io_size);
1912
1913	mutex_enter(&spa->spa_scrub_lock);
1914	spa->spa_scrub_inflight--;
1915	cv_broadcast(&spa->spa_scrub_io_cv);
1916	mutex_exit(&spa->spa_scrub_lock);
1917}
1918
1919/*
1920 * Maximum number of concurrent scrub i/os to create while verifying
1921 * a pool while importing it.
1922 */
1923int spa_load_verify_maxinflight = 10000;
1924boolean_t spa_load_verify_metadata = B_TRUE;
1925boolean_t spa_load_verify_data = B_TRUE;
1926
1927SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1928    &spa_load_verify_maxinflight, 0,
1929    "Maximum number of concurrent scrub I/Os to create while verifying a "
1930    "pool while importing it");
1931
1932SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1933    &spa_load_verify_metadata, 0,
1934    "Check metadata on import?");
1935
1936SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1937    &spa_load_verify_data, 0,
1938    "Check user data on import?");
1939
1940/*ARGSUSED*/
1941static int
1942spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1943    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1944{
1945	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1946		return (0);
1947	/*
1948	 * Note: normally this routine will not be called if
1949	 * spa_load_verify_metadata is not set.  However, it may be useful
1950	 * to manually set the flag after the traversal has begun.
1951	 */
1952	if (!spa_load_verify_metadata)
1953		return (0);
1954	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1955		return (0);
1956
1957	zio_t *rio = arg;
1958	size_t size = BP_GET_PSIZE(bp);
1959	void *data = zio_data_buf_alloc(size);
1960
1961	mutex_enter(&spa->spa_scrub_lock);
1962	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1963		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1964	spa->spa_scrub_inflight++;
1965	mutex_exit(&spa->spa_scrub_lock);
1966
1967	zio_nowait(zio_read(rio, spa, bp, data, size,
1968	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1969	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1970	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1971	return (0);
1972}
1973
1974static int
1975spa_load_verify(spa_t *spa)
1976{
1977	zio_t *rio;
1978	spa_load_error_t sle = { 0 };
1979	zpool_rewind_policy_t policy;
1980	boolean_t verify_ok = B_FALSE;
1981	int error = 0;
1982
1983	zpool_get_rewind_policy(spa->spa_config, &policy);
1984
1985	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1986		return (0);
1987
1988	rio = zio_root(spa, NULL, &sle,
1989	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1990
1991	if (spa_load_verify_metadata) {
1992		error = traverse_pool(spa, spa->spa_verify_min_txg,
1993		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1994		    spa_load_verify_cb, rio);
1995	}
1996
1997	(void) zio_wait(rio);
1998
1999	spa->spa_load_meta_errors = sle.sle_meta_count;
2000	spa->spa_load_data_errors = sle.sle_data_count;
2001
2002	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2003	    sle.sle_data_count <= policy.zrp_maxdata) {
2004		int64_t loss = 0;
2005
2006		verify_ok = B_TRUE;
2007		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2008		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2009
2010		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2011		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2012		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2013		VERIFY(nvlist_add_int64(spa->spa_load_info,
2014		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2015		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2016		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2017	} else {
2018		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2019	}
2020
2021	if (error) {
2022		if (error != ENXIO && error != EIO)
2023			error = SET_ERROR(EIO);
2024		return (error);
2025	}
2026
2027	return (verify_ok ? 0 : EIO);
2028}
2029
2030/*
2031 * Find a value in the pool props object.
2032 */
2033static void
2034spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2035{
2036	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2037	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2038}
2039
2040/*
2041 * Find a value in the pool directory object.
2042 */
2043static int
2044spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2045{
2046	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2047	    name, sizeof (uint64_t), 1, val));
2048}
2049
2050static int
2051spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2052{
2053	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2054	return (err);
2055}
2056
2057/*
2058 * Fix up config after a partly-completed split.  This is done with the
2059 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2060 * pool have that entry in their config, but only the splitting one contains
2061 * a list of all the guids of the vdevs that are being split off.
2062 *
2063 * This function determines what to do with that list: either rejoin
2064 * all the disks to the pool, or complete the splitting process.  To attempt
2065 * the rejoin, each disk that is offlined is marked online again, and
2066 * we do a reopen() call.  If the vdev label for every disk that was
2067 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2068 * then we call vdev_split() on each disk, and complete the split.
2069 *
2070 * Otherwise we leave the config alone, with all the vdevs in place in
2071 * the original pool.
2072 */
2073static void
2074spa_try_repair(spa_t *spa, nvlist_t *config)
2075{
2076	uint_t extracted;
2077	uint64_t *glist;
2078	uint_t i, gcount;
2079	nvlist_t *nvl;
2080	vdev_t **vd;
2081	boolean_t attempt_reopen;
2082
2083	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2084		return;
2085
2086	/* check that the config is complete */
2087	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2088	    &glist, &gcount) != 0)
2089		return;
2090
2091	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2092
2093	/* attempt to online all the vdevs & validate */
2094	attempt_reopen = B_TRUE;
2095	for (i = 0; i < gcount; i++) {
2096		if (glist[i] == 0)	/* vdev is hole */
2097			continue;
2098
2099		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2100		if (vd[i] == NULL) {
2101			/*
2102			 * Don't bother attempting to reopen the disks;
2103			 * just do the split.
2104			 */
2105			attempt_reopen = B_FALSE;
2106		} else {
2107			/* attempt to re-online it */
2108			vd[i]->vdev_offline = B_FALSE;
2109		}
2110	}
2111
2112	if (attempt_reopen) {
2113		vdev_reopen(spa->spa_root_vdev);
2114
2115		/* check each device to see what state it's in */
2116		for (extracted = 0, i = 0; i < gcount; i++) {
2117			if (vd[i] != NULL &&
2118			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2119				break;
2120			++extracted;
2121		}
2122	}
2123
2124	/*
2125	 * If every disk has been moved to the new pool, or if we never
2126	 * even attempted to look at them, then we split them off for
2127	 * good.
2128	 */
2129	if (!attempt_reopen || gcount == extracted) {
2130		for (i = 0; i < gcount; i++)
2131			if (vd[i] != NULL)
2132				vdev_split(vd[i]);
2133		vdev_reopen(spa->spa_root_vdev);
2134	}
2135
2136	kmem_free(vd, gcount * sizeof (vdev_t *));
2137}
2138
2139static int
2140spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2141    boolean_t mosconfig)
2142{
2143	nvlist_t *config = spa->spa_config;
2144	char *ereport = FM_EREPORT_ZFS_POOL;
2145	char *comment;
2146	int error;
2147	uint64_t pool_guid;
2148	nvlist_t *nvl;
2149
2150	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2151		return (SET_ERROR(EINVAL));
2152
2153	ASSERT(spa->spa_comment == NULL);
2154	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2155		spa->spa_comment = spa_strdup(comment);
2156
2157	/*
2158	 * Versioning wasn't explicitly added to the label until later, so if
2159	 * it's not present treat it as the initial version.
2160	 */
2161	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2162	    &spa->spa_ubsync.ub_version) != 0)
2163		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2164
2165	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2166	    &spa->spa_config_txg);
2167
2168	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2169	    spa_guid_exists(pool_guid, 0)) {
2170		error = SET_ERROR(EEXIST);
2171	} else {
2172		spa->spa_config_guid = pool_guid;
2173
2174		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2175		    &nvl) == 0) {
2176			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2177			    KM_SLEEP) == 0);
2178		}
2179
2180		nvlist_free(spa->spa_load_info);
2181		spa->spa_load_info = fnvlist_alloc();
2182
2183		gethrestime(&spa->spa_loaded_ts);
2184		error = spa_load_impl(spa, pool_guid, config, state, type,
2185		    mosconfig, &ereport);
2186	}
2187
2188	/*
2189	 * Don't count references from objsets that are already closed
2190	 * and are making their way through the eviction process.
2191	 */
2192	spa_evicting_os_wait(spa);
2193	spa->spa_minref = refcount_count(&spa->spa_refcount);
2194	if (error) {
2195		if (error != EEXIST) {
2196			spa->spa_loaded_ts.tv_sec = 0;
2197			spa->spa_loaded_ts.tv_nsec = 0;
2198		}
2199		if (error != EBADF) {
2200			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2201		}
2202	}
2203	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2204	spa->spa_ena = 0;
2205
2206	return (error);
2207}
2208
2209/*
2210 * Load an existing storage pool, using the pool's builtin spa_config as a
2211 * source of configuration information.
2212 */
2213static int
2214spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2215    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2216    char **ereport)
2217{
2218	int error = 0;
2219	nvlist_t *nvroot = NULL;
2220	nvlist_t *label;
2221	vdev_t *rvd;
2222	uberblock_t *ub = &spa->spa_uberblock;
2223	uint64_t children, config_cache_txg = spa->spa_config_txg;
2224	int orig_mode = spa->spa_mode;
2225	int parse;
2226	uint64_t obj;
2227	boolean_t missing_feat_write = B_FALSE;
2228
2229	/*
2230	 * If this is an untrusted config, access the pool in read-only mode.
2231	 * This prevents things like resilvering recently removed devices.
2232	 */
2233	if (!mosconfig)
2234		spa->spa_mode = FREAD;
2235
2236	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2237
2238	spa->spa_load_state = state;
2239
2240	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2241		return (SET_ERROR(EINVAL));
2242
2243	parse = (type == SPA_IMPORT_EXISTING ?
2244	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2245
2246	/*
2247	 * Create "The Godfather" zio to hold all async IOs
2248	 */
2249	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2250	    KM_SLEEP);
2251	for (int i = 0; i < max_ncpus; i++) {
2252		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2253		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2254		    ZIO_FLAG_GODFATHER);
2255	}
2256
2257	/*
2258	 * Parse the configuration into a vdev tree.  We explicitly set the
2259	 * value that will be returned by spa_version() since parsing the
2260	 * configuration requires knowing the version number.
2261	 */
2262	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2263	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2264	spa_config_exit(spa, SCL_ALL, FTAG);
2265
2266	if (error != 0)
2267		return (error);
2268
2269	ASSERT(spa->spa_root_vdev == rvd);
2270	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2271	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2272
2273	if (type != SPA_IMPORT_ASSEMBLE) {
2274		ASSERT(spa_guid(spa) == pool_guid);
2275	}
2276
2277	/*
2278	 * Try to open all vdevs, loading each label in the process.
2279	 */
2280	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2281	error = vdev_open(rvd);
2282	spa_config_exit(spa, SCL_ALL, FTAG);
2283	if (error != 0)
2284		return (error);
2285
2286	/*
2287	 * We need to validate the vdev labels against the configuration that
2288	 * we have in hand, which is dependent on the setting of mosconfig. If
2289	 * mosconfig is true then we're validating the vdev labels based on
2290	 * that config.  Otherwise, we're validating against the cached config
2291	 * (zpool.cache) that was read when we loaded the zfs module, and then
2292	 * later we will recursively call spa_load() and validate against
2293	 * the vdev config.
2294	 *
2295	 * If we're assembling a new pool that's been split off from an
2296	 * existing pool, the labels haven't yet been updated so we skip
2297	 * validation for now.
2298	 */
2299	if (type != SPA_IMPORT_ASSEMBLE) {
2300		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2301		error = vdev_validate(rvd, mosconfig);
2302		spa_config_exit(spa, SCL_ALL, FTAG);
2303
2304		if (error != 0)
2305			return (error);
2306
2307		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2308			return (SET_ERROR(ENXIO));
2309	}
2310
2311	/*
2312	 * Find the best uberblock.
2313	 */
2314	vdev_uberblock_load(rvd, ub, &label);
2315
2316	/*
2317	 * If we weren't able to find a single valid uberblock, return failure.
2318	 */
2319	if (ub->ub_txg == 0) {
2320		nvlist_free(label);
2321		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2322	}
2323
2324	/*
2325	 * If the pool has an unsupported version we can't open it.
2326	 */
2327	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2328		nvlist_free(label);
2329		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2330	}
2331
2332	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2333		nvlist_t *features;
2334
2335		/*
2336		 * If we weren't able to find what's necessary for reading the
2337		 * MOS in the label, return failure.
2338		 */
2339		if (label == NULL || nvlist_lookup_nvlist(label,
2340		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2341			nvlist_free(label);
2342			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2343			    ENXIO));
2344		}
2345
2346		/*
2347		 * Update our in-core representation with the definitive values
2348		 * from the label.
2349		 */
2350		nvlist_free(spa->spa_label_features);
2351		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2352	}
2353
2354	nvlist_free(label);
2355
2356	/*
2357	 * Look through entries in the label nvlist's features_for_read. If
2358	 * there is a feature listed there which we don't understand then we
2359	 * cannot open a pool.
2360	 */
2361	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2362		nvlist_t *unsup_feat;
2363
2364		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2365		    0);
2366
2367		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2368		    NULL); nvp != NULL;
2369		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2370			if (!zfeature_is_supported(nvpair_name(nvp))) {
2371				VERIFY(nvlist_add_string(unsup_feat,
2372				    nvpair_name(nvp), "") == 0);
2373			}
2374		}
2375
2376		if (!nvlist_empty(unsup_feat)) {
2377			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2378			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2379			nvlist_free(unsup_feat);
2380			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2381			    ENOTSUP));
2382		}
2383
2384		nvlist_free(unsup_feat);
2385	}
2386
2387	/*
2388	 * If the vdev guid sum doesn't match the uberblock, we have an
2389	 * incomplete configuration.  We first check to see if the pool
2390	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2391	 * If it is, defer the vdev_guid_sum check till later so we
2392	 * can handle missing vdevs.
2393	 */
2394	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2395	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2396	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2397		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2398
2399	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2400		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2401		spa_try_repair(spa, config);
2402		spa_config_exit(spa, SCL_ALL, FTAG);
2403		nvlist_free(spa->spa_config_splitting);
2404		spa->spa_config_splitting = NULL;
2405	}
2406
2407	/*
2408	 * Initialize internal SPA structures.
2409	 */
2410	spa->spa_state = POOL_STATE_ACTIVE;
2411	spa->spa_ubsync = spa->spa_uberblock;
2412	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2413	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2414	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2415	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2416	spa->spa_claim_max_txg = spa->spa_first_txg;
2417	spa->spa_prev_software_version = ub->ub_software_version;
2418
2419	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2420	if (error)
2421		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2422	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2423
2424	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2425		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426
2427	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2428		boolean_t missing_feat_read = B_FALSE;
2429		nvlist_t *unsup_feat, *enabled_feat;
2430
2431		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2432		    &spa->spa_feat_for_read_obj) != 0) {
2433			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434		}
2435
2436		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2437		    &spa->spa_feat_for_write_obj) != 0) {
2438			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439		}
2440
2441		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2442		    &spa->spa_feat_desc_obj) != 0) {
2443			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2444		}
2445
2446		enabled_feat = fnvlist_alloc();
2447		unsup_feat = fnvlist_alloc();
2448
2449		if (!spa_features_check(spa, B_FALSE,
2450		    unsup_feat, enabled_feat))
2451			missing_feat_read = B_TRUE;
2452
2453		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2454			if (!spa_features_check(spa, B_TRUE,
2455			    unsup_feat, enabled_feat)) {
2456				missing_feat_write = B_TRUE;
2457			}
2458		}
2459
2460		fnvlist_add_nvlist(spa->spa_load_info,
2461		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2462
2463		if (!nvlist_empty(unsup_feat)) {
2464			fnvlist_add_nvlist(spa->spa_load_info,
2465			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2466		}
2467
2468		fnvlist_free(enabled_feat);
2469		fnvlist_free(unsup_feat);
2470
2471		if (!missing_feat_read) {
2472			fnvlist_add_boolean(spa->spa_load_info,
2473			    ZPOOL_CONFIG_CAN_RDONLY);
2474		}
2475
2476		/*
2477		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2478		 * twofold: to determine whether the pool is available for
2479		 * import in read-write mode and (if it is not) whether the
2480		 * pool is available for import in read-only mode. If the pool
2481		 * is available for import in read-write mode, it is displayed
2482		 * as available in userland; if it is not available for import
2483		 * in read-only mode, it is displayed as unavailable in
2484		 * userland. If the pool is available for import in read-only
2485		 * mode but not read-write mode, it is displayed as unavailable
2486		 * in userland with a special note that the pool is actually
2487		 * available for open in read-only mode.
2488		 *
2489		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2490		 * missing a feature for write, we must first determine whether
2491		 * the pool can be opened read-only before returning to
2492		 * userland in order to know whether to display the
2493		 * abovementioned note.
2494		 */
2495		if (missing_feat_read || (missing_feat_write &&
2496		    spa_writeable(spa))) {
2497			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2498			    ENOTSUP));
2499		}
2500
2501		/*
2502		 * Load refcounts for ZFS features from disk into an in-memory
2503		 * cache during SPA initialization.
2504		 */
2505		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2506			uint64_t refcount;
2507
2508			error = feature_get_refcount_from_disk(spa,
2509			    &spa_feature_table[i], &refcount);
2510			if (error == 0) {
2511				spa->spa_feat_refcount_cache[i] = refcount;
2512			} else if (error == ENOTSUP) {
2513				spa->spa_feat_refcount_cache[i] =
2514				    SPA_FEATURE_DISABLED;
2515			} else {
2516				return (spa_vdev_err(rvd,
2517				    VDEV_AUX_CORRUPT_DATA, EIO));
2518			}
2519		}
2520	}
2521
2522	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2523		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2524		    &spa->spa_feat_enabled_txg_obj) != 0)
2525			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526	}
2527
2528	spa->spa_is_initializing = B_TRUE;
2529	error = dsl_pool_open(spa->spa_dsl_pool);
2530	spa->spa_is_initializing = B_FALSE;
2531	if (error != 0)
2532		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533
2534	if (!mosconfig) {
2535		uint64_t hostid;
2536		nvlist_t *policy = NULL, *nvconfig;
2537
2538		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2539			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540
2541		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2542		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2543			char *hostname;
2544			unsigned long myhostid = 0;
2545
2546			VERIFY(nvlist_lookup_string(nvconfig,
2547			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2548
2549#ifdef	_KERNEL
2550			myhostid = zone_get_hostid(NULL);
2551#else	/* _KERNEL */
2552			/*
2553			 * We're emulating the system's hostid in userland, so
2554			 * we can't use zone_get_hostid().
2555			 */
2556			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2557#endif	/* _KERNEL */
2558			if (check_hostid && hostid != 0 && myhostid != 0 &&
2559			    hostid != myhostid) {
2560				nvlist_free(nvconfig);
2561				cmn_err(CE_WARN, "pool '%s' could not be "
2562				    "loaded as it was last accessed by "
2563				    "another system (host: %s hostid: 0x%lx). "
2564				    "See: http://illumos.org/msg/ZFS-8000-EY",
2565				    spa_name(spa), hostname,
2566				    (unsigned long)hostid);
2567				return (SET_ERROR(EBADF));
2568			}
2569		}
2570		if (nvlist_lookup_nvlist(spa->spa_config,
2571		    ZPOOL_REWIND_POLICY, &policy) == 0)
2572			VERIFY(nvlist_add_nvlist(nvconfig,
2573			    ZPOOL_REWIND_POLICY, policy) == 0);
2574
2575		spa_config_set(spa, nvconfig);
2576		spa_unload(spa);
2577		spa_deactivate(spa);
2578		spa_activate(spa, orig_mode);
2579
2580		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2581	}
2582
2583	/* Grab the secret checksum salt from the MOS. */
2584	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2585	    DMU_POOL_CHECKSUM_SALT, 1,
2586	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2587	    spa->spa_cksum_salt.zcs_bytes);
2588	if (error == ENOENT) {
2589		/* Generate a new salt for subsequent use */
2590		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2591		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2592	} else if (error != 0) {
2593		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2594	}
2595
2596	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2597		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2599	if (error != 0)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601
2602	/*
2603	 * Load the bit that tells us to use the new accounting function
2604	 * (raid-z deflation).  If we have an older pool, this will not
2605	 * be present.
2606	 */
2607	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2608	if (error != 0 && error != ENOENT)
2609		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610
2611	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2612	    &spa->spa_creation_version);
2613	if (error != 0 && error != ENOENT)
2614		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2615
2616	/*
2617	 * Load the persistent error log.  If we have an older pool, this will
2618	 * not be present.
2619	 */
2620	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2621	if (error != 0 && error != ENOENT)
2622		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623
2624	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2625	    &spa->spa_errlog_scrub);
2626	if (error != 0 && error != ENOENT)
2627		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2628
2629	/*
2630	 * Load the history object.  If we have an older pool, this
2631	 * will not be present.
2632	 */
2633	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2634	if (error != 0 && error != ENOENT)
2635		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2636
2637	/*
2638	 * If we're assembling the pool from the split-off vdevs of
2639	 * an existing pool, we don't want to attach the spares & cache
2640	 * devices.
2641	 */
2642
2643	/*
2644	 * Load any hot spares for this pool.
2645	 */
2646	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2647	if (error != 0 && error != ENOENT)
2648		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2650		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2651		if (load_nvlist(spa, spa->spa_spares.sav_object,
2652		    &spa->spa_spares.sav_config) != 0)
2653			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2654
2655		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2656		spa_load_spares(spa);
2657		spa_config_exit(spa, SCL_ALL, FTAG);
2658	} else if (error == 0) {
2659		spa->spa_spares.sav_sync = B_TRUE;
2660	}
2661
2662	/*
2663	 * Load any level 2 ARC devices for this pool.
2664	 */
2665	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2666	    &spa->spa_l2cache.sav_object);
2667	if (error != 0 && error != ENOENT)
2668		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2669	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2670		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2671		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2672		    &spa->spa_l2cache.sav_config) != 0)
2673			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674
2675		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2676		spa_load_l2cache(spa);
2677		spa_config_exit(spa, SCL_ALL, FTAG);
2678	} else if (error == 0) {
2679		spa->spa_l2cache.sav_sync = B_TRUE;
2680	}
2681
2682	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2683
2684	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2685	if (error && error != ENOENT)
2686		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687
2688	if (error == 0) {
2689		uint64_t autoreplace;
2690
2691		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2692		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2693		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2694		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2695		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2696		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2697		    &spa->spa_dedup_ditto);
2698
2699		spa->spa_autoreplace = (autoreplace != 0);
2700	}
2701
2702	/*
2703	 * If the 'autoreplace' property is set, then post a resource notifying
2704	 * the ZFS DE that it should not issue any faults for unopenable
2705	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2706	 * unopenable vdevs so that the normal autoreplace handler can take
2707	 * over.
2708	 */
2709	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2710		spa_check_removed(spa->spa_root_vdev);
2711		/*
2712		 * For the import case, this is done in spa_import(), because
2713		 * at this point we're using the spare definitions from
2714		 * the MOS config, not necessarily from the userland config.
2715		 */
2716		if (state != SPA_LOAD_IMPORT) {
2717			spa_aux_check_removed(&spa->spa_spares);
2718			spa_aux_check_removed(&spa->spa_l2cache);
2719		}
2720	}
2721
2722	/*
2723	 * Load the vdev state for all toplevel vdevs.
2724	 */
2725	vdev_load(rvd);
2726
2727	/*
2728	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2729	 */
2730	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2731	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2732	spa_config_exit(spa, SCL_ALL, FTAG);
2733
2734	/*
2735	 * Load the DDTs (dedup tables).
2736	 */
2737	error = ddt_load(spa);
2738	if (error != 0)
2739		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2740
2741	spa_update_dspace(spa);
2742
2743	/*
2744	 * Validate the config, using the MOS config to fill in any
2745	 * information which might be missing.  If we fail to validate
2746	 * the config then declare the pool unfit for use. If we're
2747	 * assembling a pool from a split, the log is not transferred
2748	 * over.
2749	 */
2750	if (type != SPA_IMPORT_ASSEMBLE) {
2751		nvlist_t *nvconfig;
2752
2753		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2754			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2755
2756		if (!spa_config_valid(spa, nvconfig)) {
2757			nvlist_free(nvconfig);
2758			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2759			    ENXIO));
2760		}
2761		nvlist_free(nvconfig);
2762
2763		/*
2764		 * Now that we've validated the config, check the state of the
2765		 * root vdev.  If it can't be opened, it indicates one or
2766		 * more toplevel vdevs are faulted.
2767		 */
2768		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2769			return (SET_ERROR(ENXIO));
2770
2771		if (spa_writeable(spa) && spa_check_logs(spa)) {
2772			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2773			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2774		}
2775	}
2776
2777	if (missing_feat_write) {
2778		ASSERT(state == SPA_LOAD_TRYIMPORT);
2779
2780		/*
2781		 * At this point, we know that we can open the pool in
2782		 * read-only mode but not read-write mode. We now have enough
2783		 * information and can return to userland.
2784		 */
2785		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2786	}
2787
2788	/*
2789	 * We've successfully opened the pool, verify that we're ready
2790	 * to start pushing transactions.
2791	 */
2792	if (state != SPA_LOAD_TRYIMPORT) {
2793		if (error = spa_load_verify(spa))
2794			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2795			    error));
2796	}
2797
2798	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2799	    spa->spa_load_max_txg == UINT64_MAX)) {
2800		dmu_tx_t *tx;
2801		int need_update = B_FALSE;
2802		dsl_pool_t *dp = spa_get_dsl(spa);
2803
2804		ASSERT(state != SPA_LOAD_TRYIMPORT);
2805
2806		/*
2807		 * Claim log blocks that haven't been committed yet.
2808		 * This must all happen in a single txg.
2809		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2810		 * invoked from zil_claim_log_block()'s i/o done callback.
2811		 * Price of rollback is that we abandon the log.
2812		 */
2813		spa->spa_claiming = B_TRUE;
2814
2815		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2816		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2817		    zil_claim, tx, DS_FIND_CHILDREN);
2818		dmu_tx_commit(tx);
2819
2820		spa->spa_claiming = B_FALSE;
2821
2822		spa_set_log_state(spa, SPA_LOG_GOOD);
2823		spa->spa_sync_on = B_TRUE;
2824		txg_sync_start(spa->spa_dsl_pool);
2825
2826		/*
2827		 * Wait for all claims to sync.  We sync up to the highest
2828		 * claimed log block birth time so that claimed log blocks
2829		 * don't appear to be from the future.  spa_claim_max_txg
2830		 * will have been set for us by either zil_check_log_chain()
2831		 * (invoked from spa_check_logs()) or zil_claim() above.
2832		 */
2833		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2834
2835		/*
2836		 * If the config cache is stale, or we have uninitialized
2837		 * metaslabs (see spa_vdev_add()), then update the config.
2838		 *
2839		 * If this is a verbatim import, trust the current
2840		 * in-core spa_config and update the disk labels.
2841		 */
2842		if (config_cache_txg != spa->spa_config_txg ||
2843		    state == SPA_LOAD_IMPORT ||
2844		    state == SPA_LOAD_RECOVER ||
2845		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2846			need_update = B_TRUE;
2847
2848		for (int c = 0; c < rvd->vdev_children; c++)
2849			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2850				need_update = B_TRUE;
2851
2852		/*
2853		 * Update the config cache asychronously in case we're the
2854		 * root pool, in which case the config cache isn't writable yet.
2855		 */
2856		if (need_update)
2857			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2858
2859		/*
2860		 * Check all DTLs to see if anything needs resilvering.
2861		 */
2862		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2863		    vdev_resilver_needed(rvd, NULL, NULL))
2864			spa_async_request(spa, SPA_ASYNC_RESILVER);
2865
2866		/*
2867		 * Log the fact that we booted up (so that we can detect if
2868		 * we rebooted in the middle of an operation).
2869		 */
2870		spa_history_log_version(spa, "open");
2871
2872		/*
2873		 * Delete any inconsistent datasets.
2874		 */
2875		(void) dmu_objset_find(spa_name(spa),
2876		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2877
2878		/*
2879		 * Clean up any stale temporary dataset userrefs.
2880		 */
2881		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2882	}
2883
2884	return (0);
2885}
2886
2887static int
2888spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2889{
2890	int mode = spa->spa_mode;
2891
2892	spa_unload(spa);
2893	spa_deactivate(spa);
2894
2895	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2896
2897	spa_activate(spa, mode);
2898	spa_async_suspend(spa);
2899
2900	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2901}
2902
2903/*
2904 * If spa_load() fails this function will try loading prior txg's. If
2905 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2906 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2907 * function will not rewind the pool and will return the same error as
2908 * spa_load().
2909 */
2910static int
2911spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2912    uint64_t max_request, int rewind_flags)
2913{
2914	nvlist_t *loadinfo = NULL;
2915	nvlist_t *config = NULL;
2916	int load_error, rewind_error;
2917	uint64_t safe_rewind_txg;
2918	uint64_t min_txg;
2919
2920	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2921		spa->spa_load_max_txg = spa->spa_load_txg;
2922		spa_set_log_state(spa, SPA_LOG_CLEAR);
2923	} else {
2924		spa->spa_load_max_txg = max_request;
2925		if (max_request != UINT64_MAX)
2926			spa->spa_extreme_rewind = B_TRUE;
2927	}
2928
2929	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2930	    mosconfig);
2931	if (load_error == 0)
2932		return (0);
2933
2934	if (spa->spa_root_vdev != NULL)
2935		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2936
2937	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2938	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2939
2940	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2941		nvlist_free(config);
2942		return (load_error);
2943	}
2944
2945	if (state == SPA_LOAD_RECOVER) {
2946		/* Price of rolling back is discarding txgs, including log */
2947		spa_set_log_state(spa, SPA_LOG_CLEAR);
2948	} else {
2949		/*
2950		 * If we aren't rolling back save the load info from our first
2951		 * import attempt so that we can restore it after attempting
2952		 * to rewind.
2953		 */
2954		loadinfo = spa->spa_load_info;
2955		spa->spa_load_info = fnvlist_alloc();
2956	}
2957
2958	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2959	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2960	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2961	    TXG_INITIAL : safe_rewind_txg;
2962
2963	/*
2964	 * Continue as long as we're finding errors, we're still within
2965	 * the acceptable rewind range, and we're still finding uberblocks
2966	 */
2967	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2968	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2969		if (spa->spa_load_max_txg < safe_rewind_txg)
2970			spa->spa_extreme_rewind = B_TRUE;
2971		rewind_error = spa_load_retry(spa, state, mosconfig);
2972	}
2973
2974	spa->spa_extreme_rewind = B_FALSE;
2975	spa->spa_load_max_txg = UINT64_MAX;
2976
2977	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2978		spa_config_set(spa, config);
2979
2980	if (state == SPA_LOAD_RECOVER) {
2981		ASSERT3P(loadinfo, ==, NULL);
2982		return (rewind_error);
2983	} else {
2984		/* Store the rewind info as part of the initial load info */
2985		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2986		    spa->spa_load_info);
2987
2988		/* Restore the initial load info */
2989		fnvlist_free(spa->spa_load_info);
2990		spa->spa_load_info = loadinfo;
2991
2992		return (load_error);
2993	}
2994}
2995
2996/*
2997 * Pool Open/Import
2998 *
2999 * The import case is identical to an open except that the configuration is sent
3000 * down from userland, instead of grabbed from the configuration cache.  For the
3001 * case of an open, the pool configuration will exist in the
3002 * POOL_STATE_UNINITIALIZED state.
3003 *
3004 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3005 * the same time open the pool, without having to keep around the spa_t in some
3006 * ambiguous state.
3007 */
3008static int
3009spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3010    nvlist_t **config)
3011{
3012	spa_t *spa;
3013	spa_load_state_t state = SPA_LOAD_OPEN;
3014	int error;
3015	int locked = B_FALSE;
3016	int firstopen = B_FALSE;
3017
3018	*spapp = NULL;
3019
3020	/*
3021	 * As disgusting as this is, we need to support recursive calls to this
3022	 * function because dsl_dir_open() is called during spa_load(), and ends
3023	 * up calling spa_open() again.  The real fix is to figure out how to
3024	 * avoid dsl_dir_open() calling this in the first place.
3025	 */
3026	if (mutex_owner(&spa_namespace_lock) != curthread) {
3027		mutex_enter(&spa_namespace_lock);
3028		locked = B_TRUE;
3029	}
3030
3031	if ((spa = spa_lookup(pool)) == NULL) {
3032		if (locked)
3033			mutex_exit(&spa_namespace_lock);
3034		return (SET_ERROR(ENOENT));
3035	}
3036
3037	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3038		zpool_rewind_policy_t policy;
3039
3040		firstopen = B_TRUE;
3041
3042		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3043		    &policy);
3044		if (policy.zrp_request & ZPOOL_DO_REWIND)
3045			state = SPA_LOAD_RECOVER;
3046
3047		spa_activate(spa, spa_mode_global);
3048
3049		if (state != SPA_LOAD_RECOVER)
3050			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3051
3052		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3053		    policy.zrp_request);
3054
3055		if (error == EBADF) {
3056			/*
3057			 * If vdev_validate() returns failure (indicated by
3058			 * EBADF), it indicates that one of the vdevs indicates
3059			 * that the pool has been exported or destroyed.  If
3060			 * this is the case, the config cache is out of sync and
3061			 * we should remove the pool from the namespace.
3062			 */
3063			spa_unload(spa);
3064			spa_deactivate(spa);
3065			spa_config_sync(spa, B_TRUE, B_TRUE);
3066			spa_remove(spa);
3067			if (locked)
3068				mutex_exit(&spa_namespace_lock);
3069			return (SET_ERROR(ENOENT));
3070		}
3071
3072		if (error) {
3073			/*
3074			 * We can't open the pool, but we still have useful
3075			 * information: the state of each vdev after the
3076			 * attempted vdev_open().  Return this to the user.
3077			 */
3078			if (config != NULL && spa->spa_config) {
3079				VERIFY(nvlist_dup(spa->spa_config, config,
3080				    KM_SLEEP) == 0);
3081				VERIFY(nvlist_add_nvlist(*config,
3082				    ZPOOL_CONFIG_LOAD_INFO,
3083				    spa->spa_load_info) == 0);
3084			}
3085			spa_unload(spa);
3086			spa_deactivate(spa);
3087			spa->spa_last_open_failed = error;
3088			if (locked)
3089				mutex_exit(&spa_namespace_lock);
3090			*spapp = NULL;
3091			return (error);
3092		}
3093	}
3094
3095	spa_open_ref(spa, tag);
3096
3097	if (config != NULL)
3098		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3099
3100	/*
3101	 * If we've recovered the pool, pass back any information we
3102	 * gathered while doing the load.
3103	 */
3104	if (state == SPA_LOAD_RECOVER) {
3105		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3106		    spa->spa_load_info) == 0);
3107	}
3108
3109	if (locked) {
3110		spa->spa_last_open_failed = 0;
3111		spa->spa_last_ubsync_txg = 0;
3112		spa->spa_load_txg = 0;
3113		mutex_exit(&spa_namespace_lock);
3114#ifdef __FreeBSD__
3115#ifdef _KERNEL
3116		if (firstopen)
3117			zvol_create_minors(spa->spa_name);
3118#endif
3119#endif
3120	}
3121
3122	*spapp = spa;
3123
3124	return (0);
3125}
3126
3127int
3128spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3129    nvlist_t **config)
3130{
3131	return (spa_open_common(name, spapp, tag, policy, config));
3132}
3133
3134int
3135spa_open(const char *name, spa_t **spapp, void *tag)
3136{
3137	return (spa_open_common(name, spapp, tag, NULL, NULL));
3138}
3139
3140/*
3141 * Lookup the given spa_t, incrementing the inject count in the process,
3142 * preventing it from being exported or destroyed.
3143 */
3144spa_t *
3145spa_inject_addref(char *name)
3146{
3147	spa_t *spa;
3148
3149	mutex_enter(&spa_namespace_lock);
3150	if ((spa = spa_lookup(name)) == NULL) {
3151		mutex_exit(&spa_namespace_lock);
3152		return (NULL);
3153	}
3154	spa->spa_inject_ref++;
3155	mutex_exit(&spa_namespace_lock);
3156
3157	return (spa);
3158}
3159
3160void
3161spa_inject_delref(spa_t *spa)
3162{
3163	mutex_enter(&spa_namespace_lock);
3164	spa->spa_inject_ref--;
3165	mutex_exit(&spa_namespace_lock);
3166}
3167
3168/*
3169 * Add spares device information to the nvlist.
3170 */
3171static void
3172spa_add_spares(spa_t *spa, nvlist_t *config)
3173{
3174	nvlist_t **spares;
3175	uint_t i, nspares;
3176	nvlist_t *nvroot;
3177	uint64_t guid;
3178	vdev_stat_t *vs;
3179	uint_t vsc;
3180	uint64_t pool;
3181
3182	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3183
3184	if (spa->spa_spares.sav_count == 0)
3185		return;
3186
3187	VERIFY(nvlist_lookup_nvlist(config,
3188	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3189	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3190	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3191	if (nspares != 0) {
3192		VERIFY(nvlist_add_nvlist_array(nvroot,
3193		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3194		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3195		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3196
3197		/*
3198		 * Go through and find any spares which have since been
3199		 * repurposed as an active spare.  If this is the case, update
3200		 * their status appropriately.
3201		 */
3202		for (i = 0; i < nspares; i++) {
3203			VERIFY(nvlist_lookup_uint64(spares[i],
3204			    ZPOOL_CONFIG_GUID, &guid) == 0);
3205			if (spa_spare_exists(guid, &pool, NULL) &&
3206			    pool != 0ULL) {
3207				VERIFY(nvlist_lookup_uint64_array(
3208				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3209				    (uint64_t **)&vs, &vsc) == 0);
3210				vs->vs_state = VDEV_STATE_CANT_OPEN;
3211				vs->vs_aux = VDEV_AUX_SPARED;
3212			}
3213		}
3214	}
3215}
3216
3217/*
3218 * Add l2cache device information to the nvlist, including vdev stats.
3219 */
3220static void
3221spa_add_l2cache(spa_t *spa, nvlist_t *config)
3222{
3223	nvlist_t **l2cache;
3224	uint_t i, j, nl2cache;
3225	nvlist_t *nvroot;
3226	uint64_t guid;
3227	vdev_t *vd;
3228	vdev_stat_t *vs;
3229	uint_t vsc;
3230
3231	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3232
3233	if (spa->spa_l2cache.sav_count == 0)
3234		return;
3235
3236	VERIFY(nvlist_lookup_nvlist(config,
3237	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3238	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3239	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3240	if (nl2cache != 0) {
3241		VERIFY(nvlist_add_nvlist_array(nvroot,
3242		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3243		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3244		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3245
3246		/*
3247		 * Update level 2 cache device stats.
3248		 */
3249
3250		for (i = 0; i < nl2cache; i++) {
3251			VERIFY(nvlist_lookup_uint64(l2cache[i],
3252			    ZPOOL_CONFIG_GUID, &guid) == 0);
3253
3254			vd = NULL;
3255			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3256				if (guid ==
3257				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3258					vd = spa->spa_l2cache.sav_vdevs[j];
3259					break;
3260				}
3261			}
3262			ASSERT(vd != NULL);
3263
3264			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3265			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3266			    == 0);
3267			vdev_get_stats(vd, vs);
3268		}
3269	}
3270}
3271
3272static void
3273spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3274{
3275	nvlist_t *features;
3276	zap_cursor_t zc;
3277	zap_attribute_t za;
3278
3279	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3280	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3281
3282	/* We may be unable to read features if pool is suspended. */
3283	if (spa_suspended(spa))
3284		goto out;
3285
3286	if (spa->spa_feat_for_read_obj != 0) {
3287		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3288		    spa->spa_feat_for_read_obj);
3289		    zap_cursor_retrieve(&zc, &za) == 0;
3290		    zap_cursor_advance(&zc)) {
3291			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3292			    za.za_num_integers == 1);
3293			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3294			    za.za_first_integer));
3295		}
3296		zap_cursor_fini(&zc);
3297	}
3298
3299	if (spa->spa_feat_for_write_obj != 0) {
3300		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3301		    spa->spa_feat_for_write_obj);
3302		    zap_cursor_retrieve(&zc, &za) == 0;
3303		    zap_cursor_advance(&zc)) {
3304			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3305			    za.za_num_integers == 1);
3306			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3307			    za.za_first_integer));
3308		}
3309		zap_cursor_fini(&zc);
3310	}
3311
3312out:
3313	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3314	    features) == 0);
3315	nvlist_free(features);
3316}
3317
3318int
3319spa_get_stats(const char *name, nvlist_t **config,
3320    char *altroot, size_t buflen)
3321{
3322	int error;
3323	spa_t *spa;
3324
3325	*config = NULL;
3326	error = spa_open_common(name, &spa, FTAG, NULL, config);
3327
3328	if (spa != NULL) {
3329		/*
3330		 * This still leaves a window of inconsistency where the spares
3331		 * or l2cache devices could change and the config would be
3332		 * self-inconsistent.
3333		 */
3334		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3335
3336		if (*config != NULL) {
3337			uint64_t loadtimes[2];
3338
3339			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3340			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3341			VERIFY(nvlist_add_uint64_array(*config,
3342			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3343
3344			VERIFY(nvlist_add_uint64(*config,
3345			    ZPOOL_CONFIG_ERRCOUNT,
3346			    spa_get_errlog_size(spa)) == 0);
3347
3348			if (spa_suspended(spa))
3349				VERIFY(nvlist_add_uint64(*config,
3350				    ZPOOL_CONFIG_SUSPENDED,
3351				    spa->spa_failmode) == 0);
3352
3353			spa_add_spares(spa, *config);
3354			spa_add_l2cache(spa, *config);
3355			spa_add_feature_stats(spa, *config);
3356		}
3357	}
3358
3359	/*
3360	 * We want to get the alternate root even for faulted pools, so we cheat
3361	 * and call spa_lookup() directly.
3362	 */
3363	if (altroot) {
3364		if (spa == NULL) {
3365			mutex_enter(&spa_namespace_lock);
3366			spa = spa_lookup(name);
3367			if (spa)
3368				spa_altroot(spa, altroot, buflen);
3369			else
3370				altroot[0] = '\0';
3371			spa = NULL;
3372			mutex_exit(&spa_namespace_lock);
3373		} else {
3374			spa_altroot(spa, altroot, buflen);
3375		}
3376	}
3377
3378	if (spa != NULL) {
3379		spa_config_exit(spa, SCL_CONFIG, FTAG);
3380		spa_close(spa, FTAG);
3381	}
3382
3383	return (error);
3384}
3385
3386/*
3387 * Validate that the auxiliary device array is well formed.  We must have an
3388 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3389 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3390 * specified, as long as they are well-formed.
3391 */
3392static int
3393spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3394    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3395    vdev_labeltype_t label)
3396{
3397	nvlist_t **dev;
3398	uint_t i, ndev;
3399	vdev_t *vd;
3400	int error;
3401
3402	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3403
3404	/*
3405	 * It's acceptable to have no devs specified.
3406	 */
3407	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3408		return (0);
3409
3410	if (ndev == 0)
3411		return (SET_ERROR(EINVAL));
3412
3413	/*
3414	 * Make sure the pool is formatted with a version that supports this
3415	 * device type.
3416	 */
3417	if (spa_version(spa) < version)
3418		return (SET_ERROR(ENOTSUP));
3419
3420	/*
3421	 * Set the pending device list so we correctly handle device in-use
3422	 * checking.
3423	 */
3424	sav->sav_pending = dev;
3425	sav->sav_npending = ndev;
3426
3427	for (i = 0; i < ndev; i++) {
3428		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3429		    mode)) != 0)
3430			goto out;
3431
3432		if (!vd->vdev_ops->vdev_op_leaf) {
3433			vdev_free(vd);
3434			error = SET_ERROR(EINVAL);
3435			goto out;
3436		}
3437
3438		/*
3439		 * The L2ARC currently only supports disk devices in
3440		 * kernel context.  For user-level testing, we allow it.
3441		 */
3442#ifdef _KERNEL
3443		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3444		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3445			error = SET_ERROR(ENOTBLK);
3446			vdev_free(vd);
3447			goto out;
3448		}
3449#endif
3450		vd->vdev_top = vd;
3451
3452		if ((error = vdev_open(vd)) == 0 &&
3453		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3454			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3455			    vd->vdev_guid) == 0);
3456		}
3457
3458		vdev_free(vd);
3459
3460		if (error &&
3461		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3462			goto out;
3463		else
3464			error = 0;
3465	}
3466
3467out:
3468	sav->sav_pending = NULL;
3469	sav->sav_npending = 0;
3470	return (error);
3471}
3472
3473static int
3474spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3475{
3476	int error;
3477
3478	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3479
3480	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3481	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3482	    VDEV_LABEL_SPARE)) != 0) {
3483		return (error);
3484	}
3485
3486	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3487	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3488	    VDEV_LABEL_L2CACHE));
3489}
3490
3491static void
3492spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3493    const char *config)
3494{
3495	int i;
3496
3497	if (sav->sav_config != NULL) {
3498		nvlist_t **olddevs;
3499		uint_t oldndevs;
3500		nvlist_t **newdevs;
3501
3502		/*
3503		 * Generate new dev list by concatentating with the
3504		 * current dev list.
3505		 */
3506		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3507		    &olddevs, &oldndevs) == 0);
3508
3509		newdevs = kmem_alloc(sizeof (void *) *
3510		    (ndevs + oldndevs), KM_SLEEP);
3511		for (i = 0; i < oldndevs; i++)
3512			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3513			    KM_SLEEP) == 0);
3514		for (i = 0; i < ndevs; i++)
3515			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3516			    KM_SLEEP) == 0);
3517
3518		VERIFY(nvlist_remove(sav->sav_config, config,
3519		    DATA_TYPE_NVLIST_ARRAY) == 0);
3520
3521		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3522		    config, newdevs, ndevs + oldndevs) == 0);
3523		for (i = 0; i < oldndevs + ndevs; i++)
3524			nvlist_free(newdevs[i]);
3525		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3526	} else {
3527		/*
3528		 * Generate a new dev list.
3529		 */
3530		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3531		    KM_SLEEP) == 0);
3532		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3533		    devs, ndevs) == 0);
3534	}
3535}
3536
3537/*
3538 * Stop and drop level 2 ARC devices
3539 */
3540void
3541spa_l2cache_drop(spa_t *spa)
3542{
3543	vdev_t *vd;
3544	int i;
3545	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3546
3547	for (i = 0; i < sav->sav_count; i++) {
3548		uint64_t pool;
3549
3550		vd = sav->sav_vdevs[i];
3551		ASSERT(vd != NULL);
3552
3553		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3554		    pool != 0ULL && l2arc_vdev_present(vd))
3555			l2arc_remove_vdev(vd);
3556	}
3557}
3558
3559/*
3560 * Pool Creation
3561 */
3562int
3563spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3564    nvlist_t *zplprops)
3565{
3566	spa_t *spa;
3567	char *altroot = NULL;
3568	vdev_t *rvd;
3569	dsl_pool_t *dp;
3570	dmu_tx_t *tx;
3571	int error = 0;
3572	uint64_t txg = TXG_INITIAL;
3573	nvlist_t **spares, **l2cache;
3574	uint_t nspares, nl2cache;
3575	uint64_t version, obj;
3576	boolean_t has_features;
3577
3578	/*
3579	 * If this pool already exists, return failure.
3580	 */
3581	mutex_enter(&spa_namespace_lock);
3582	if (spa_lookup(pool) != NULL) {
3583		mutex_exit(&spa_namespace_lock);
3584		return (SET_ERROR(EEXIST));
3585	}
3586
3587	/*
3588	 * Allocate a new spa_t structure.
3589	 */
3590	(void) nvlist_lookup_string(props,
3591	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3592	spa = spa_add(pool, NULL, altroot);
3593	spa_activate(spa, spa_mode_global);
3594
3595	if (props && (error = spa_prop_validate(spa, props))) {
3596		spa_deactivate(spa);
3597		spa_remove(spa);
3598		mutex_exit(&spa_namespace_lock);
3599		return (error);
3600	}
3601
3602	has_features = B_FALSE;
3603	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3604	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3605		if (zpool_prop_feature(nvpair_name(elem)))
3606			has_features = B_TRUE;
3607	}
3608
3609	if (has_features || nvlist_lookup_uint64(props,
3610	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3611		version = SPA_VERSION;
3612	}
3613	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3614
3615	spa->spa_first_txg = txg;
3616	spa->spa_uberblock.ub_txg = txg - 1;
3617	spa->spa_uberblock.ub_version = version;
3618	spa->spa_ubsync = spa->spa_uberblock;
3619
3620	/*
3621	 * Create "The Godfather" zio to hold all async IOs
3622	 */
3623	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3624	    KM_SLEEP);
3625	for (int i = 0; i < max_ncpus; i++) {
3626		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3627		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3628		    ZIO_FLAG_GODFATHER);
3629	}
3630
3631	/*
3632	 * Create the root vdev.
3633	 */
3634	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3635
3636	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3637
3638	ASSERT(error != 0 || rvd != NULL);
3639	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3640
3641	if (error == 0 && !zfs_allocatable_devs(nvroot))
3642		error = SET_ERROR(EINVAL);
3643
3644	if (error == 0 &&
3645	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3646	    (error = spa_validate_aux(spa, nvroot, txg,
3647	    VDEV_ALLOC_ADD)) == 0) {
3648		for (int c = 0; c < rvd->vdev_children; c++) {
3649			vdev_ashift_optimize(rvd->vdev_child[c]);
3650			vdev_metaslab_set_size(rvd->vdev_child[c]);
3651			vdev_expand(rvd->vdev_child[c], txg);
3652		}
3653	}
3654
3655	spa_config_exit(spa, SCL_ALL, FTAG);
3656
3657	if (error != 0) {
3658		spa_unload(spa);
3659		spa_deactivate(spa);
3660		spa_remove(spa);
3661		mutex_exit(&spa_namespace_lock);
3662		return (error);
3663	}
3664
3665	/*
3666	 * Get the list of spares, if specified.
3667	 */
3668	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3669	    &spares, &nspares) == 0) {
3670		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3671		    KM_SLEEP) == 0);
3672		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3673		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3674		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3675		spa_load_spares(spa);
3676		spa_config_exit(spa, SCL_ALL, FTAG);
3677		spa->spa_spares.sav_sync = B_TRUE;
3678	}
3679
3680	/*
3681	 * Get the list of level 2 cache devices, if specified.
3682	 */
3683	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3684	    &l2cache, &nl2cache) == 0) {
3685		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3686		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3687		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3688		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3689		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3690		spa_load_l2cache(spa);
3691		spa_config_exit(spa, SCL_ALL, FTAG);
3692		spa->spa_l2cache.sav_sync = B_TRUE;
3693	}
3694
3695	spa->spa_is_initializing = B_TRUE;
3696	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3697	spa->spa_meta_objset = dp->dp_meta_objset;
3698	spa->spa_is_initializing = B_FALSE;
3699
3700	/*
3701	 * Create DDTs (dedup tables).
3702	 */
3703	ddt_create(spa);
3704
3705	spa_update_dspace(spa);
3706
3707	tx = dmu_tx_create_assigned(dp, txg);
3708
3709	/*
3710	 * Create the pool config object.
3711	 */
3712	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3713	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3714	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3715
3716	if (zap_add(spa->spa_meta_objset,
3717	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3718	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3719		cmn_err(CE_PANIC, "failed to add pool config");
3720	}
3721
3722	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3723		spa_feature_create_zap_objects(spa, tx);
3724
3725	if (zap_add(spa->spa_meta_objset,
3726	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3727	    sizeof (uint64_t), 1, &version, tx) != 0) {
3728		cmn_err(CE_PANIC, "failed to add pool version");
3729	}
3730
3731	/* Newly created pools with the right version are always deflated. */
3732	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3733		spa->spa_deflate = TRUE;
3734		if (zap_add(spa->spa_meta_objset,
3735		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3736		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3737			cmn_err(CE_PANIC, "failed to add deflate");
3738		}
3739	}
3740
3741	/*
3742	 * Create the deferred-free bpobj.  Turn off compression
3743	 * because sync-to-convergence takes longer if the blocksize
3744	 * keeps changing.
3745	 */
3746	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3747	dmu_object_set_compress(spa->spa_meta_objset, obj,
3748	    ZIO_COMPRESS_OFF, tx);
3749	if (zap_add(spa->spa_meta_objset,
3750	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3751	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3752		cmn_err(CE_PANIC, "failed to add bpobj");
3753	}
3754	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3755	    spa->spa_meta_objset, obj));
3756
3757	/*
3758	 * Create the pool's history object.
3759	 */
3760	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3761		spa_history_create_obj(spa, tx);
3762
3763	/*
3764	 * Generate some random noise for salted checksums to operate on.
3765	 */
3766	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3767	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3768
3769	/*
3770	 * Set pool properties.
3771	 */
3772	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3773	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3774	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3775	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3776
3777	if (props != NULL) {
3778		spa_configfile_set(spa, props, B_FALSE);
3779		spa_sync_props(props, tx);
3780	}
3781
3782	dmu_tx_commit(tx);
3783
3784	spa->spa_sync_on = B_TRUE;
3785	txg_sync_start(spa->spa_dsl_pool);
3786
3787	/*
3788	 * We explicitly wait for the first transaction to complete so that our
3789	 * bean counters are appropriately updated.
3790	 */
3791	txg_wait_synced(spa->spa_dsl_pool, txg);
3792
3793	spa_config_sync(spa, B_FALSE, B_TRUE);
3794	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3795
3796	spa_history_log_version(spa, "create");
3797
3798	/*
3799	 * Don't count references from objsets that are already closed
3800	 * and are making their way through the eviction process.
3801	 */
3802	spa_evicting_os_wait(spa);
3803	spa->spa_minref = refcount_count(&spa->spa_refcount);
3804
3805	mutex_exit(&spa_namespace_lock);
3806
3807	return (0);
3808}
3809
3810#ifdef _KERNEL
3811#if defined(sun)
3812/*
3813 * Get the root pool information from the root disk, then import the root pool
3814 * during the system boot up time.
3815 */
3816extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3817
3818static nvlist_t *
3819spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3820{
3821	nvlist_t *config;
3822	nvlist_t *nvtop, *nvroot;
3823	uint64_t pgid;
3824
3825	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3826		return (NULL);
3827
3828	/*
3829	 * Add this top-level vdev to the child array.
3830	 */
3831	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3832	    &nvtop) == 0);
3833	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3834	    &pgid) == 0);
3835	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3836
3837	/*
3838	 * Put this pool's top-level vdevs into a root vdev.
3839	 */
3840	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3841	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3842	    VDEV_TYPE_ROOT) == 0);
3843	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3844	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3845	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3846	    &nvtop, 1) == 0);
3847
3848	/*
3849	 * Replace the existing vdev_tree with the new root vdev in
3850	 * this pool's configuration (remove the old, add the new).
3851	 */
3852	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3853	nvlist_free(nvroot);
3854	return (config);
3855}
3856
3857/*
3858 * Walk the vdev tree and see if we can find a device with "better"
3859 * configuration. A configuration is "better" if the label on that
3860 * device has a more recent txg.
3861 */
3862static void
3863spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3864{
3865	for (int c = 0; c < vd->vdev_children; c++)
3866		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3867
3868	if (vd->vdev_ops->vdev_op_leaf) {
3869		nvlist_t *label;
3870		uint64_t label_txg;
3871
3872		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3873		    &label) != 0)
3874			return;
3875
3876		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3877		    &label_txg) == 0);
3878
3879		/*
3880		 * Do we have a better boot device?
3881		 */
3882		if (label_txg > *txg) {
3883			*txg = label_txg;
3884			*avd = vd;
3885		}
3886		nvlist_free(label);
3887	}
3888}
3889
3890/*
3891 * Import a root pool.
3892 *
3893 * For x86. devpath_list will consist of devid and/or physpath name of
3894 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3895 * The GRUB "findroot" command will return the vdev we should boot.
3896 *
3897 * For Sparc, devpath_list consists the physpath name of the booting device
3898 * no matter the rootpool is a single device pool or a mirrored pool.
3899 * e.g.
3900 *	"/pci@1f,0/ide@d/disk@0,0:a"
3901 */
3902int
3903spa_import_rootpool(char *devpath, char *devid)
3904{
3905	spa_t *spa;
3906	vdev_t *rvd, *bvd, *avd = NULL;
3907	nvlist_t *config, *nvtop;
3908	uint64_t guid, txg;
3909	char *pname;
3910	int error;
3911
3912	/*
3913	 * Read the label from the boot device and generate a configuration.
3914	 */
3915	config = spa_generate_rootconf(devpath, devid, &guid);
3916#if defined(_OBP) && defined(_KERNEL)
3917	if (config == NULL) {
3918		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3919			/* iscsi boot */
3920			get_iscsi_bootpath_phy(devpath);
3921			config = spa_generate_rootconf(devpath, devid, &guid);
3922		}
3923	}
3924#endif
3925	if (config == NULL) {
3926		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3927		    devpath);
3928		return (SET_ERROR(EIO));
3929	}
3930
3931	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3932	    &pname) == 0);
3933	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3934
3935	mutex_enter(&spa_namespace_lock);
3936	if ((spa = spa_lookup(pname)) != NULL) {
3937		/*
3938		 * Remove the existing root pool from the namespace so that we
3939		 * can replace it with the correct config we just read in.
3940		 */
3941		spa_remove(spa);
3942	}
3943
3944	spa = spa_add(pname, config, NULL);
3945	spa->spa_is_root = B_TRUE;
3946	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3947
3948	/*
3949	 * Build up a vdev tree based on the boot device's label config.
3950	 */
3951	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3952	    &nvtop) == 0);
3953	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3954	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3955	    VDEV_ALLOC_ROOTPOOL);
3956	spa_config_exit(spa, SCL_ALL, FTAG);
3957	if (error) {
3958		mutex_exit(&spa_namespace_lock);
3959		nvlist_free(config);
3960		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3961		    pname);
3962		return (error);
3963	}
3964
3965	/*
3966	 * Get the boot vdev.
3967	 */
3968	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3969		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3970		    (u_longlong_t)guid);
3971		error = SET_ERROR(ENOENT);
3972		goto out;
3973	}
3974
3975	/*
3976	 * Determine if there is a better boot device.
3977	 */
3978	avd = bvd;
3979	spa_alt_rootvdev(rvd, &avd, &txg);
3980	if (avd != bvd) {
3981		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3982		    "try booting from '%s'", avd->vdev_path);
3983		error = SET_ERROR(EINVAL);
3984		goto out;
3985	}
3986
3987	/*
3988	 * If the boot device is part of a spare vdev then ensure that
3989	 * we're booting off the active spare.
3990	 */
3991	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3992	    !bvd->vdev_isspare) {
3993		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3994		    "try booting from '%s'",
3995		    bvd->vdev_parent->
3996		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3997		error = SET_ERROR(EINVAL);
3998		goto out;
3999	}
4000
4001	error = 0;
4002out:
4003	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4004	vdev_free(rvd);
4005	spa_config_exit(spa, SCL_ALL, FTAG);
4006	mutex_exit(&spa_namespace_lock);
4007
4008	nvlist_free(config);
4009	return (error);
4010}
4011
4012#else
4013
4014extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4015    uint64_t *count);
4016
4017static nvlist_t *
4018spa_generate_rootconf(const char *name)
4019{
4020	nvlist_t **configs, **tops;
4021	nvlist_t *config;
4022	nvlist_t *best_cfg, *nvtop, *nvroot;
4023	uint64_t *holes;
4024	uint64_t best_txg;
4025	uint64_t nchildren;
4026	uint64_t pgid;
4027	uint64_t count;
4028	uint64_t i;
4029	uint_t   nholes;
4030
4031	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4032		return (NULL);
4033
4034	ASSERT3U(count, !=, 0);
4035	best_txg = 0;
4036	for (i = 0; i < count; i++) {
4037		uint64_t txg;
4038
4039		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4040		    &txg) == 0);
4041		if (txg > best_txg) {
4042			best_txg = txg;
4043			best_cfg = configs[i];
4044		}
4045	}
4046
4047	/*
4048	 * Multi-vdev root pool configuration discovery is not supported yet.
4049	 */
4050	nchildren = 1;
4051	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4052	holes = NULL;
4053	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4054	    &holes, &nholes);
4055
4056	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4057	for (i = 0; i < nchildren; i++) {
4058		if (i >= count)
4059			break;
4060		if (configs[i] == NULL)
4061			continue;
4062		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4063		    &nvtop) == 0);
4064		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4065	}
4066	for (i = 0; holes != NULL && i < nholes; i++) {
4067		if (i >= nchildren)
4068			continue;
4069		if (tops[holes[i]] != NULL)
4070			continue;
4071		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4072		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4073		    VDEV_TYPE_HOLE) == 0);
4074		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4075		    holes[i]) == 0);
4076		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4077		    0) == 0);
4078	}
4079	for (i = 0; i < nchildren; i++) {
4080		if (tops[i] != NULL)
4081			continue;
4082		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4083		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4084		    VDEV_TYPE_MISSING) == 0);
4085		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4086		    i) == 0);
4087		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4088		    0) == 0);
4089	}
4090
4091	/*
4092	 * Create pool config based on the best vdev config.
4093	 */
4094	nvlist_dup(best_cfg, &config, KM_SLEEP);
4095
4096	/*
4097	 * Put this pool's top-level vdevs into a root vdev.
4098	 */
4099	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4100	    &pgid) == 0);
4101	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4102	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4103	    VDEV_TYPE_ROOT) == 0);
4104	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4105	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4106	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4107	    tops, nchildren) == 0);
4108
4109	/*
4110	 * Replace the existing vdev_tree with the new root vdev in
4111	 * this pool's configuration (remove the old, add the new).
4112	 */
4113	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4114
4115	/*
4116	 * Drop vdev config elements that should not be present at pool level.
4117	 */
4118	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4119	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4120
4121	for (i = 0; i < count; i++)
4122		nvlist_free(configs[i]);
4123	kmem_free(configs, count * sizeof(void *));
4124	for (i = 0; i < nchildren; i++)
4125		nvlist_free(tops[i]);
4126	kmem_free(tops, nchildren * sizeof(void *));
4127	nvlist_free(nvroot);
4128	return (config);
4129}
4130
4131int
4132spa_import_rootpool(const char *name)
4133{
4134	spa_t *spa;
4135	vdev_t *rvd, *bvd, *avd = NULL;
4136	nvlist_t *config, *nvtop;
4137	uint64_t txg;
4138	char *pname;
4139	int error;
4140
4141	/*
4142	 * Read the label from the boot device and generate a configuration.
4143	 */
4144	config = spa_generate_rootconf(name);
4145
4146	mutex_enter(&spa_namespace_lock);
4147	if (config != NULL) {
4148		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4149		    &pname) == 0 && strcmp(name, pname) == 0);
4150		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4151		    == 0);
4152
4153		if ((spa = spa_lookup(pname)) != NULL) {
4154			/*
4155			 * Remove the existing root pool from the namespace so
4156			 * that we can replace it with the correct config
4157			 * we just read in.
4158			 */
4159			spa_remove(spa);
4160		}
4161		spa = spa_add(pname, config, NULL);
4162
4163		/*
4164		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4165		 * via spa_version().
4166		 */
4167		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4168		    &spa->spa_ubsync.ub_version) != 0)
4169			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4170	} else if ((spa = spa_lookup(name)) == NULL) {
4171		mutex_exit(&spa_namespace_lock);
4172		nvlist_free(config);
4173		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4174		    name);
4175		return (EIO);
4176	} else {
4177		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4178	}
4179	spa->spa_is_root = B_TRUE;
4180	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4181
4182	/*
4183	 * Build up a vdev tree based on the boot device's label config.
4184	 */
4185	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4186	    &nvtop) == 0);
4187	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4188	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4189	    VDEV_ALLOC_ROOTPOOL);
4190	spa_config_exit(spa, SCL_ALL, FTAG);
4191	if (error) {
4192		mutex_exit(&spa_namespace_lock);
4193		nvlist_free(config);
4194		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4195		    pname);
4196		return (error);
4197	}
4198
4199	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4200	vdev_free(rvd);
4201	spa_config_exit(spa, SCL_ALL, FTAG);
4202	mutex_exit(&spa_namespace_lock);
4203
4204	nvlist_free(config);
4205	return (0);
4206}
4207
4208#endif	/* sun */
4209#endif
4210
4211/*
4212 * Import a non-root pool into the system.
4213 */
4214int
4215spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4216{
4217	spa_t *spa;
4218	char *altroot = NULL;
4219	spa_load_state_t state = SPA_LOAD_IMPORT;
4220	zpool_rewind_policy_t policy;
4221	uint64_t mode = spa_mode_global;
4222	uint64_t readonly = B_FALSE;
4223	int error;
4224	nvlist_t *nvroot;
4225	nvlist_t **spares, **l2cache;
4226	uint_t nspares, nl2cache;
4227
4228	/*
4229	 * If a pool with this name exists, return failure.
4230	 */
4231	mutex_enter(&spa_namespace_lock);
4232	if (spa_lookup(pool) != NULL) {
4233		mutex_exit(&spa_namespace_lock);
4234		return (SET_ERROR(EEXIST));
4235	}
4236
4237	/*
4238	 * Create and initialize the spa structure.
4239	 */
4240	(void) nvlist_lookup_string(props,
4241	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4242	(void) nvlist_lookup_uint64(props,
4243	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4244	if (readonly)
4245		mode = FREAD;
4246	spa = spa_add(pool, config, altroot);
4247	spa->spa_import_flags = flags;
4248
4249	/*
4250	 * Verbatim import - Take a pool and insert it into the namespace
4251	 * as if it had been loaded at boot.
4252	 */
4253	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4254		if (props != NULL)
4255			spa_configfile_set(spa, props, B_FALSE);
4256
4257		spa_config_sync(spa, B_FALSE, B_TRUE);
4258		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4259
4260		mutex_exit(&spa_namespace_lock);
4261		return (0);
4262	}
4263
4264	spa_activate(spa, mode);
4265
4266	/*
4267	 * Don't start async tasks until we know everything is healthy.
4268	 */
4269	spa_async_suspend(spa);
4270
4271	zpool_get_rewind_policy(config, &policy);
4272	if (policy.zrp_request & ZPOOL_DO_REWIND)
4273		state = SPA_LOAD_RECOVER;
4274
4275	/*
4276	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4277	 * because the user-supplied config is actually the one to trust when
4278	 * doing an import.
4279	 */
4280	if (state != SPA_LOAD_RECOVER)
4281		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4282
4283	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4284	    policy.zrp_request);
4285
4286	/*
4287	 * Propagate anything learned while loading the pool and pass it
4288	 * back to caller (i.e. rewind info, missing devices, etc).
4289	 */
4290	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4291	    spa->spa_load_info) == 0);
4292
4293	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4294	/*
4295	 * Toss any existing sparelist, as it doesn't have any validity
4296	 * anymore, and conflicts with spa_has_spare().
4297	 */
4298	if (spa->spa_spares.sav_config) {
4299		nvlist_free(spa->spa_spares.sav_config);
4300		spa->spa_spares.sav_config = NULL;
4301		spa_load_spares(spa);
4302	}
4303	if (spa->spa_l2cache.sav_config) {
4304		nvlist_free(spa->spa_l2cache.sav_config);
4305		spa->spa_l2cache.sav_config = NULL;
4306		spa_load_l2cache(spa);
4307	}
4308
4309	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4310	    &nvroot) == 0);
4311	if (error == 0)
4312		error = spa_validate_aux(spa, nvroot, -1ULL,
4313		    VDEV_ALLOC_SPARE);
4314	if (error == 0)
4315		error = spa_validate_aux(spa, nvroot, -1ULL,
4316		    VDEV_ALLOC_L2CACHE);
4317	spa_config_exit(spa, SCL_ALL, FTAG);
4318
4319	if (props != NULL)
4320		spa_configfile_set(spa, props, B_FALSE);
4321
4322	if (error != 0 || (props && spa_writeable(spa) &&
4323	    (error = spa_prop_set(spa, props)))) {
4324		spa_unload(spa);
4325		spa_deactivate(spa);
4326		spa_remove(spa);
4327		mutex_exit(&spa_namespace_lock);
4328		return (error);
4329	}
4330
4331	spa_async_resume(spa);
4332
4333	/*
4334	 * Override any spares and level 2 cache devices as specified by
4335	 * the user, as these may have correct device names/devids, etc.
4336	 */
4337	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4338	    &spares, &nspares) == 0) {
4339		if (spa->spa_spares.sav_config)
4340			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4341			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4342		else
4343			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4344			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4345		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4346		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4347		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4348		spa_load_spares(spa);
4349		spa_config_exit(spa, SCL_ALL, FTAG);
4350		spa->spa_spares.sav_sync = B_TRUE;
4351	}
4352	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4353	    &l2cache, &nl2cache) == 0) {
4354		if (spa->spa_l2cache.sav_config)
4355			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4356			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4357		else
4358			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4359			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4360		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4361		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4362		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4363		spa_load_l2cache(spa);
4364		spa_config_exit(spa, SCL_ALL, FTAG);
4365		spa->spa_l2cache.sav_sync = B_TRUE;
4366	}
4367
4368	/*
4369	 * Check for any removed devices.
4370	 */
4371	if (spa->spa_autoreplace) {
4372		spa_aux_check_removed(&spa->spa_spares);
4373		spa_aux_check_removed(&spa->spa_l2cache);
4374	}
4375
4376	if (spa_writeable(spa)) {
4377		/*
4378		 * Update the config cache to include the newly-imported pool.
4379		 */
4380		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4381	}
4382
4383	/*
4384	 * It's possible that the pool was expanded while it was exported.
4385	 * We kick off an async task to handle this for us.
4386	 */
4387	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4388
4389	spa_history_log_version(spa, "import");
4390
4391	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4392
4393	mutex_exit(&spa_namespace_lock);
4394
4395#ifdef __FreeBSD__
4396#ifdef _KERNEL
4397	zvol_create_minors(pool);
4398#endif
4399#endif
4400	return (0);
4401}
4402
4403nvlist_t *
4404spa_tryimport(nvlist_t *tryconfig)
4405{
4406	nvlist_t *config = NULL;
4407	char *poolname;
4408	spa_t *spa;
4409	uint64_t state;
4410	int error;
4411
4412	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4413		return (NULL);
4414
4415	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4416		return (NULL);
4417
4418	/*
4419	 * Create and initialize the spa structure.
4420	 */
4421	mutex_enter(&spa_namespace_lock);
4422	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4423	spa_activate(spa, FREAD);
4424
4425	/*
4426	 * Pass off the heavy lifting to spa_load().
4427	 * Pass TRUE for mosconfig because the user-supplied config
4428	 * is actually the one to trust when doing an import.
4429	 */
4430	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4431
4432	/*
4433	 * If 'tryconfig' was at least parsable, return the current config.
4434	 */
4435	if (spa->spa_root_vdev != NULL) {
4436		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4437		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4438		    poolname) == 0);
4439		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4440		    state) == 0);
4441		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4442		    spa->spa_uberblock.ub_timestamp) == 0);
4443		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4444		    spa->spa_load_info) == 0);
4445
4446		/*
4447		 * If the bootfs property exists on this pool then we
4448		 * copy it out so that external consumers can tell which
4449		 * pools are bootable.
4450		 */
4451		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4452			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4453
4454			/*
4455			 * We have to play games with the name since the
4456			 * pool was opened as TRYIMPORT_NAME.
4457			 */
4458			if (dsl_dsobj_to_dsname(spa_name(spa),
4459			    spa->spa_bootfs, tmpname) == 0) {
4460				char *cp;
4461				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4462
4463				cp = strchr(tmpname, '/');
4464				if (cp == NULL) {
4465					(void) strlcpy(dsname, tmpname,
4466					    MAXPATHLEN);
4467				} else {
4468					(void) snprintf(dsname, MAXPATHLEN,
4469					    "%s/%s", poolname, ++cp);
4470				}
4471				VERIFY(nvlist_add_string(config,
4472				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4473				kmem_free(dsname, MAXPATHLEN);
4474			}
4475			kmem_free(tmpname, MAXPATHLEN);
4476		}
4477
4478		/*
4479		 * Add the list of hot spares and level 2 cache devices.
4480		 */
4481		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4482		spa_add_spares(spa, config);
4483		spa_add_l2cache(spa, config);
4484		spa_config_exit(spa, SCL_CONFIG, FTAG);
4485	}
4486
4487	spa_unload(spa);
4488	spa_deactivate(spa);
4489	spa_remove(spa);
4490	mutex_exit(&spa_namespace_lock);
4491
4492	return (config);
4493}
4494
4495/*
4496 * Pool export/destroy
4497 *
4498 * The act of destroying or exporting a pool is very simple.  We make sure there
4499 * is no more pending I/O and any references to the pool are gone.  Then, we
4500 * update the pool state and sync all the labels to disk, removing the
4501 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4502 * we don't sync the labels or remove the configuration cache.
4503 */
4504static int
4505spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4506    boolean_t force, boolean_t hardforce)
4507{
4508	spa_t *spa;
4509
4510	if (oldconfig)
4511		*oldconfig = NULL;
4512
4513	if (!(spa_mode_global & FWRITE))
4514		return (SET_ERROR(EROFS));
4515
4516	mutex_enter(&spa_namespace_lock);
4517	if ((spa = spa_lookup(pool)) == NULL) {
4518		mutex_exit(&spa_namespace_lock);
4519		return (SET_ERROR(ENOENT));
4520	}
4521
4522	/*
4523	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4524	 * reacquire the namespace lock, and see if we can export.
4525	 */
4526	spa_open_ref(spa, FTAG);
4527	mutex_exit(&spa_namespace_lock);
4528	spa_async_suspend(spa);
4529	mutex_enter(&spa_namespace_lock);
4530	spa_close(spa, FTAG);
4531
4532	/*
4533	 * The pool will be in core if it's openable,
4534	 * in which case we can modify its state.
4535	 */
4536	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4537		/*
4538		 * Objsets may be open only because they're dirty, so we
4539		 * have to force it to sync before checking spa_refcnt.
4540		 */
4541		txg_wait_synced(spa->spa_dsl_pool, 0);
4542		spa_evicting_os_wait(spa);
4543
4544		/*
4545		 * A pool cannot be exported or destroyed if there are active
4546		 * references.  If we are resetting a pool, allow references by
4547		 * fault injection handlers.
4548		 */
4549		if (!spa_refcount_zero(spa) ||
4550		    (spa->spa_inject_ref != 0 &&
4551		    new_state != POOL_STATE_UNINITIALIZED)) {
4552			spa_async_resume(spa);
4553			mutex_exit(&spa_namespace_lock);
4554			return (SET_ERROR(EBUSY));
4555		}
4556
4557		/*
4558		 * A pool cannot be exported if it has an active shared spare.
4559		 * This is to prevent other pools stealing the active spare
4560		 * from an exported pool. At user's own will, such pool can
4561		 * be forcedly exported.
4562		 */
4563		if (!force && new_state == POOL_STATE_EXPORTED &&
4564		    spa_has_active_shared_spare(spa)) {
4565			spa_async_resume(spa);
4566			mutex_exit(&spa_namespace_lock);
4567			return (SET_ERROR(EXDEV));
4568		}
4569
4570		/*
4571		 * We want this to be reflected on every label,
4572		 * so mark them all dirty.  spa_unload() will do the
4573		 * final sync that pushes these changes out.
4574		 */
4575		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4576			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4577			spa->spa_state = new_state;
4578			spa->spa_final_txg = spa_last_synced_txg(spa) +
4579			    TXG_DEFER_SIZE + 1;
4580			vdev_config_dirty(spa->spa_root_vdev);
4581			spa_config_exit(spa, SCL_ALL, FTAG);
4582		}
4583	}
4584
4585	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4586
4587	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4588		spa_unload(spa);
4589		spa_deactivate(spa);
4590	}
4591
4592	if (oldconfig && spa->spa_config)
4593		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4594
4595	if (new_state != POOL_STATE_UNINITIALIZED) {
4596		if (!hardforce)
4597			spa_config_sync(spa, B_TRUE, B_TRUE);
4598		spa_remove(spa);
4599	}
4600	mutex_exit(&spa_namespace_lock);
4601
4602	return (0);
4603}
4604
4605/*
4606 * Destroy a storage pool.
4607 */
4608int
4609spa_destroy(char *pool)
4610{
4611	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4612	    B_FALSE, B_FALSE));
4613}
4614
4615/*
4616 * Export a storage pool.
4617 */
4618int
4619spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4620    boolean_t hardforce)
4621{
4622	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4623	    force, hardforce));
4624}
4625
4626/*
4627 * Similar to spa_export(), this unloads the spa_t without actually removing it
4628 * from the namespace in any way.
4629 */
4630int
4631spa_reset(char *pool)
4632{
4633	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4634	    B_FALSE, B_FALSE));
4635}
4636
4637/*
4638 * ==========================================================================
4639 * Device manipulation
4640 * ==========================================================================
4641 */
4642
4643/*
4644 * Add a device to a storage pool.
4645 */
4646int
4647spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4648{
4649	uint64_t txg, id;
4650	int error;
4651	vdev_t *rvd = spa->spa_root_vdev;
4652	vdev_t *vd, *tvd;
4653	nvlist_t **spares, **l2cache;
4654	uint_t nspares, nl2cache;
4655
4656	ASSERT(spa_writeable(spa));
4657
4658	txg = spa_vdev_enter(spa);
4659
4660	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4661	    VDEV_ALLOC_ADD)) != 0)
4662		return (spa_vdev_exit(spa, NULL, txg, error));
4663
4664	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4665
4666	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4667	    &nspares) != 0)
4668		nspares = 0;
4669
4670	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4671	    &nl2cache) != 0)
4672		nl2cache = 0;
4673
4674	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4675		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4676
4677	if (vd->vdev_children != 0 &&
4678	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4679		return (spa_vdev_exit(spa, vd, txg, error));
4680
4681	/*
4682	 * We must validate the spares and l2cache devices after checking the
4683	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4684	 */
4685	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4686		return (spa_vdev_exit(spa, vd, txg, error));
4687
4688	/*
4689	 * Transfer each new top-level vdev from vd to rvd.
4690	 */
4691	for (int c = 0; c < vd->vdev_children; c++) {
4692
4693		/*
4694		 * Set the vdev id to the first hole, if one exists.
4695		 */
4696		for (id = 0; id < rvd->vdev_children; id++) {
4697			if (rvd->vdev_child[id]->vdev_ishole) {
4698				vdev_free(rvd->vdev_child[id]);
4699				break;
4700			}
4701		}
4702		tvd = vd->vdev_child[c];
4703		vdev_remove_child(vd, tvd);
4704		tvd->vdev_id = id;
4705		vdev_add_child(rvd, tvd);
4706		vdev_config_dirty(tvd);
4707	}
4708
4709	if (nspares != 0) {
4710		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4711		    ZPOOL_CONFIG_SPARES);
4712		spa_load_spares(spa);
4713		spa->spa_spares.sav_sync = B_TRUE;
4714	}
4715
4716	if (nl2cache != 0) {
4717		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4718		    ZPOOL_CONFIG_L2CACHE);
4719		spa_load_l2cache(spa);
4720		spa->spa_l2cache.sav_sync = B_TRUE;
4721	}
4722
4723	/*
4724	 * We have to be careful when adding new vdevs to an existing pool.
4725	 * If other threads start allocating from these vdevs before we
4726	 * sync the config cache, and we lose power, then upon reboot we may
4727	 * fail to open the pool because there are DVAs that the config cache
4728	 * can't translate.  Therefore, we first add the vdevs without
4729	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4730	 * and then let spa_config_update() initialize the new metaslabs.
4731	 *
4732	 * spa_load() checks for added-but-not-initialized vdevs, so that
4733	 * if we lose power at any point in this sequence, the remaining
4734	 * steps will be completed the next time we load the pool.
4735	 */
4736	(void) spa_vdev_exit(spa, vd, txg, 0);
4737
4738	mutex_enter(&spa_namespace_lock);
4739	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4740	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4741	mutex_exit(&spa_namespace_lock);
4742
4743	return (0);
4744}
4745
4746/*
4747 * Attach a device to a mirror.  The arguments are the path to any device
4748 * in the mirror, and the nvroot for the new device.  If the path specifies
4749 * a device that is not mirrored, we automatically insert the mirror vdev.
4750 *
4751 * If 'replacing' is specified, the new device is intended to replace the
4752 * existing device; in this case the two devices are made into their own
4753 * mirror using the 'replacing' vdev, which is functionally identical to
4754 * the mirror vdev (it actually reuses all the same ops) but has a few
4755 * extra rules: you can't attach to it after it's been created, and upon
4756 * completion of resilvering, the first disk (the one being replaced)
4757 * is automatically detached.
4758 */
4759int
4760spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4761{
4762	uint64_t txg, dtl_max_txg;
4763	vdev_t *rvd = spa->spa_root_vdev;
4764	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4765	vdev_ops_t *pvops;
4766	char *oldvdpath, *newvdpath;
4767	int newvd_isspare;
4768	int error;
4769
4770	ASSERT(spa_writeable(spa));
4771
4772	txg = spa_vdev_enter(spa);
4773
4774	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4775
4776	if (oldvd == NULL)
4777		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4778
4779	if (!oldvd->vdev_ops->vdev_op_leaf)
4780		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4781
4782	pvd = oldvd->vdev_parent;
4783
4784	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4785	    VDEV_ALLOC_ATTACH)) != 0)
4786		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4787
4788	if (newrootvd->vdev_children != 1)
4789		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4790
4791	newvd = newrootvd->vdev_child[0];
4792
4793	if (!newvd->vdev_ops->vdev_op_leaf)
4794		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4795
4796	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4797		return (spa_vdev_exit(spa, newrootvd, txg, error));
4798
4799	/*
4800	 * Spares can't replace logs
4801	 */
4802	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4803		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4804
4805	if (!replacing) {
4806		/*
4807		 * For attach, the only allowable parent is a mirror or the root
4808		 * vdev.
4809		 */
4810		if (pvd->vdev_ops != &vdev_mirror_ops &&
4811		    pvd->vdev_ops != &vdev_root_ops)
4812			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4813
4814		pvops = &vdev_mirror_ops;
4815	} else {
4816		/*
4817		 * Active hot spares can only be replaced by inactive hot
4818		 * spares.
4819		 */
4820		if (pvd->vdev_ops == &vdev_spare_ops &&
4821		    oldvd->vdev_isspare &&
4822		    !spa_has_spare(spa, newvd->vdev_guid))
4823			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4824
4825		/*
4826		 * If the source is a hot spare, and the parent isn't already a
4827		 * spare, then we want to create a new hot spare.  Otherwise, we
4828		 * want to create a replacing vdev.  The user is not allowed to
4829		 * attach to a spared vdev child unless the 'isspare' state is
4830		 * the same (spare replaces spare, non-spare replaces
4831		 * non-spare).
4832		 */
4833		if (pvd->vdev_ops == &vdev_replacing_ops &&
4834		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4835			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4836		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4837		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4838			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4839		}
4840
4841		if (newvd->vdev_isspare)
4842			pvops = &vdev_spare_ops;
4843		else
4844			pvops = &vdev_replacing_ops;
4845	}
4846
4847	/*
4848	 * Make sure the new device is big enough.
4849	 */
4850	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4851		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4852
4853	/*
4854	 * The new device cannot have a higher alignment requirement
4855	 * than the top-level vdev.
4856	 */
4857	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4858		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4859
4860	/*
4861	 * If this is an in-place replacement, update oldvd's path and devid
4862	 * to make it distinguishable from newvd, and unopenable from now on.
4863	 */
4864	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4865		spa_strfree(oldvd->vdev_path);
4866		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4867		    KM_SLEEP);
4868		(void) sprintf(oldvd->vdev_path, "%s/%s",
4869		    newvd->vdev_path, "old");
4870		if (oldvd->vdev_devid != NULL) {
4871			spa_strfree(oldvd->vdev_devid);
4872			oldvd->vdev_devid = NULL;
4873		}
4874	}
4875
4876	/* mark the device being resilvered */
4877	newvd->vdev_resilver_txg = txg;
4878
4879	/*
4880	 * If the parent is not a mirror, or if we're replacing, insert the new
4881	 * mirror/replacing/spare vdev above oldvd.
4882	 */
4883	if (pvd->vdev_ops != pvops)
4884		pvd = vdev_add_parent(oldvd, pvops);
4885
4886	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4887	ASSERT(pvd->vdev_ops == pvops);
4888	ASSERT(oldvd->vdev_parent == pvd);
4889
4890	/*
4891	 * Extract the new device from its root and add it to pvd.
4892	 */
4893	vdev_remove_child(newrootvd, newvd);
4894	newvd->vdev_id = pvd->vdev_children;
4895	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4896	vdev_add_child(pvd, newvd);
4897
4898	tvd = newvd->vdev_top;
4899	ASSERT(pvd->vdev_top == tvd);
4900	ASSERT(tvd->vdev_parent == rvd);
4901
4902	vdev_config_dirty(tvd);
4903
4904	/*
4905	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4906	 * for any dmu_sync-ed blocks.  It will propagate upward when
4907	 * spa_vdev_exit() calls vdev_dtl_reassess().
4908	 */
4909	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4910
4911	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4912	    dtl_max_txg - TXG_INITIAL);
4913
4914	if (newvd->vdev_isspare) {
4915		spa_spare_activate(newvd);
4916		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4917	}
4918
4919	oldvdpath = spa_strdup(oldvd->vdev_path);
4920	newvdpath = spa_strdup(newvd->vdev_path);
4921	newvd_isspare = newvd->vdev_isspare;
4922
4923	/*
4924	 * Mark newvd's DTL dirty in this txg.
4925	 */
4926	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4927
4928	/*
4929	 * Schedule the resilver to restart in the future. We do this to
4930	 * ensure that dmu_sync-ed blocks have been stitched into the
4931	 * respective datasets.
4932	 */
4933	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4934
4935	if (spa->spa_bootfs)
4936		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4937
4938	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4939
4940	/*
4941	 * Commit the config
4942	 */
4943	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4944
4945	spa_history_log_internal(spa, "vdev attach", NULL,
4946	    "%s vdev=%s %s vdev=%s",
4947	    replacing && newvd_isspare ? "spare in" :
4948	    replacing ? "replace" : "attach", newvdpath,
4949	    replacing ? "for" : "to", oldvdpath);
4950
4951	spa_strfree(oldvdpath);
4952	spa_strfree(newvdpath);
4953
4954	return (0);
4955}
4956
4957/*
4958 * Detach a device from a mirror or replacing vdev.
4959 *
4960 * If 'replace_done' is specified, only detach if the parent
4961 * is a replacing vdev.
4962 */
4963int
4964spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4965{
4966	uint64_t txg;
4967	int error;
4968	vdev_t *rvd = spa->spa_root_vdev;
4969	vdev_t *vd, *pvd, *cvd, *tvd;
4970	boolean_t unspare = B_FALSE;
4971	uint64_t unspare_guid = 0;
4972	char *vdpath;
4973
4974	ASSERT(spa_writeable(spa));
4975
4976	txg = spa_vdev_enter(spa);
4977
4978	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4979
4980	if (vd == NULL)
4981		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4982
4983	if (!vd->vdev_ops->vdev_op_leaf)
4984		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4985
4986	pvd = vd->vdev_parent;
4987
4988	/*
4989	 * If the parent/child relationship is not as expected, don't do it.
4990	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4991	 * vdev that's replacing B with C.  The user's intent in replacing
4992	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4993	 * the replace by detaching C, the expected behavior is to end up
4994	 * M(A,B).  But suppose that right after deciding to detach C,
4995	 * the replacement of B completes.  We would have M(A,C), and then
4996	 * ask to detach C, which would leave us with just A -- not what
4997	 * the user wanted.  To prevent this, we make sure that the
4998	 * parent/child relationship hasn't changed -- in this example,
4999	 * that C's parent is still the replacing vdev R.
5000	 */
5001	if (pvd->vdev_guid != pguid && pguid != 0)
5002		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5003
5004	/*
5005	 * Only 'replacing' or 'spare' vdevs can be replaced.
5006	 */
5007	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5008	    pvd->vdev_ops != &vdev_spare_ops)
5009		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5010
5011	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5012	    spa_version(spa) >= SPA_VERSION_SPARES);
5013
5014	/*
5015	 * Only mirror, replacing, and spare vdevs support detach.
5016	 */
5017	if (pvd->vdev_ops != &vdev_replacing_ops &&
5018	    pvd->vdev_ops != &vdev_mirror_ops &&
5019	    pvd->vdev_ops != &vdev_spare_ops)
5020		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5021
5022	/*
5023	 * If this device has the only valid copy of some data,
5024	 * we cannot safely detach it.
5025	 */
5026	if (vdev_dtl_required(vd))
5027		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5028
5029	ASSERT(pvd->vdev_children >= 2);
5030
5031	/*
5032	 * If we are detaching the second disk from a replacing vdev, then
5033	 * check to see if we changed the original vdev's path to have "/old"
5034	 * at the end in spa_vdev_attach().  If so, undo that change now.
5035	 */
5036	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5037	    vd->vdev_path != NULL) {
5038		size_t len = strlen(vd->vdev_path);
5039
5040		for (int c = 0; c < pvd->vdev_children; c++) {
5041			cvd = pvd->vdev_child[c];
5042
5043			if (cvd == vd || cvd->vdev_path == NULL)
5044				continue;
5045
5046			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5047			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5048				spa_strfree(cvd->vdev_path);
5049				cvd->vdev_path = spa_strdup(vd->vdev_path);
5050				break;
5051			}
5052		}
5053	}
5054
5055	/*
5056	 * If we are detaching the original disk from a spare, then it implies
5057	 * that the spare should become a real disk, and be removed from the
5058	 * active spare list for the pool.
5059	 */
5060	if (pvd->vdev_ops == &vdev_spare_ops &&
5061	    vd->vdev_id == 0 &&
5062	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5063		unspare = B_TRUE;
5064
5065	/*
5066	 * Erase the disk labels so the disk can be used for other things.
5067	 * This must be done after all other error cases are handled,
5068	 * but before we disembowel vd (so we can still do I/O to it).
5069	 * But if we can't do it, don't treat the error as fatal --
5070	 * it may be that the unwritability of the disk is the reason
5071	 * it's being detached!
5072	 */
5073	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5074
5075	/*
5076	 * Remove vd from its parent and compact the parent's children.
5077	 */
5078	vdev_remove_child(pvd, vd);
5079	vdev_compact_children(pvd);
5080
5081	/*
5082	 * Remember one of the remaining children so we can get tvd below.
5083	 */
5084	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5085
5086	/*
5087	 * If we need to remove the remaining child from the list of hot spares,
5088	 * do it now, marking the vdev as no longer a spare in the process.
5089	 * We must do this before vdev_remove_parent(), because that can
5090	 * change the GUID if it creates a new toplevel GUID.  For a similar
5091	 * reason, we must remove the spare now, in the same txg as the detach;
5092	 * otherwise someone could attach a new sibling, change the GUID, and
5093	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5094	 */
5095	if (unspare) {
5096		ASSERT(cvd->vdev_isspare);
5097		spa_spare_remove(cvd);
5098		unspare_guid = cvd->vdev_guid;
5099		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5100		cvd->vdev_unspare = B_TRUE;
5101	}
5102
5103	/*
5104	 * If the parent mirror/replacing vdev only has one child,
5105	 * the parent is no longer needed.  Remove it from the tree.
5106	 */
5107	if (pvd->vdev_children == 1) {
5108		if (pvd->vdev_ops == &vdev_spare_ops)
5109			cvd->vdev_unspare = B_FALSE;
5110		vdev_remove_parent(cvd);
5111	}
5112
5113
5114	/*
5115	 * We don't set tvd until now because the parent we just removed
5116	 * may have been the previous top-level vdev.
5117	 */
5118	tvd = cvd->vdev_top;
5119	ASSERT(tvd->vdev_parent == rvd);
5120
5121	/*
5122	 * Reevaluate the parent vdev state.
5123	 */
5124	vdev_propagate_state(cvd);
5125
5126	/*
5127	 * If the 'autoexpand' property is set on the pool then automatically
5128	 * try to expand the size of the pool. For example if the device we
5129	 * just detached was smaller than the others, it may be possible to
5130	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5131	 * first so that we can obtain the updated sizes of the leaf vdevs.
5132	 */
5133	if (spa->spa_autoexpand) {
5134		vdev_reopen(tvd);
5135		vdev_expand(tvd, txg);
5136	}
5137
5138	vdev_config_dirty(tvd);
5139
5140	/*
5141	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5142	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5143	 * But first make sure we're not on any *other* txg's DTL list, to
5144	 * prevent vd from being accessed after it's freed.
5145	 */
5146	vdpath = spa_strdup(vd->vdev_path);
5147	for (int t = 0; t < TXG_SIZE; t++)
5148		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5149	vd->vdev_detached = B_TRUE;
5150	vdev_dirty(tvd, VDD_DTL, vd, txg);
5151
5152	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5153
5154	/* hang on to the spa before we release the lock */
5155	spa_open_ref(spa, FTAG);
5156
5157	error = spa_vdev_exit(spa, vd, txg, 0);
5158
5159	spa_history_log_internal(spa, "detach", NULL,
5160	    "vdev=%s", vdpath);
5161	spa_strfree(vdpath);
5162
5163	/*
5164	 * If this was the removal of the original device in a hot spare vdev,
5165	 * then we want to go through and remove the device from the hot spare
5166	 * list of every other pool.
5167	 */
5168	if (unspare) {
5169		spa_t *altspa = NULL;
5170
5171		mutex_enter(&spa_namespace_lock);
5172		while ((altspa = spa_next(altspa)) != NULL) {
5173			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5174			    altspa == spa)
5175				continue;
5176
5177			spa_open_ref(altspa, FTAG);
5178			mutex_exit(&spa_namespace_lock);
5179			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5180			mutex_enter(&spa_namespace_lock);
5181			spa_close(altspa, FTAG);
5182		}
5183		mutex_exit(&spa_namespace_lock);
5184
5185		/* search the rest of the vdevs for spares to remove */
5186		spa_vdev_resilver_done(spa);
5187	}
5188
5189	/* all done with the spa; OK to release */
5190	mutex_enter(&spa_namespace_lock);
5191	spa_close(spa, FTAG);
5192	mutex_exit(&spa_namespace_lock);
5193
5194	return (error);
5195}
5196
5197/*
5198 * Split a set of devices from their mirrors, and create a new pool from them.
5199 */
5200int
5201spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5202    nvlist_t *props, boolean_t exp)
5203{
5204	int error = 0;
5205	uint64_t txg, *glist;
5206	spa_t *newspa;
5207	uint_t c, children, lastlog;
5208	nvlist_t **child, *nvl, *tmp;
5209	dmu_tx_t *tx;
5210	char *altroot = NULL;
5211	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5212	boolean_t activate_slog;
5213
5214	ASSERT(spa_writeable(spa));
5215
5216	txg = spa_vdev_enter(spa);
5217
5218	/* clear the log and flush everything up to now */
5219	activate_slog = spa_passivate_log(spa);
5220	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5221	error = spa_offline_log(spa);
5222	txg = spa_vdev_config_enter(spa);
5223
5224	if (activate_slog)
5225		spa_activate_log(spa);
5226
5227	if (error != 0)
5228		return (spa_vdev_exit(spa, NULL, txg, error));
5229
5230	/* check new spa name before going any further */
5231	if (spa_lookup(newname) != NULL)
5232		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5233
5234	/*
5235	 * scan through all the children to ensure they're all mirrors
5236	 */
5237	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5238	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5239	    &children) != 0)
5240		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5241
5242	/* first, check to ensure we've got the right child count */
5243	rvd = spa->spa_root_vdev;
5244	lastlog = 0;
5245	for (c = 0; c < rvd->vdev_children; c++) {
5246		vdev_t *vd = rvd->vdev_child[c];
5247
5248		/* don't count the holes & logs as children */
5249		if (vd->vdev_islog || vd->vdev_ishole) {
5250			if (lastlog == 0)
5251				lastlog = c;
5252			continue;
5253		}
5254
5255		lastlog = 0;
5256	}
5257	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5258		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5259
5260	/* next, ensure no spare or cache devices are part of the split */
5261	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5262	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5263		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5264
5265	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5266	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5267
5268	/* then, loop over each vdev and validate it */
5269	for (c = 0; c < children; c++) {
5270		uint64_t is_hole = 0;
5271
5272		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5273		    &is_hole);
5274
5275		if (is_hole != 0) {
5276			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5277			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5278				continue;
5279			} else {
5280				error = SET_ERROR(EINVAL);
5281				break;
5282			}
5283		}
5284
5285		/* which disk is going to be split? */
5286		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5287		    &glist[c]) != 0) {
5288			error = SET_ERROR(EINVAL);
5289			break;
5290		}
5291
5292		/* look it up in the spa */
5293		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5294		if (vml[c] == NULL) {
5295			error = SET_ERROR(ENODEV);
5296			break;
5297		}
5298
5299		/* make sure there's nothing stopping the split */
5300		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5301		    vml[c]->vdev_islog ||
5302		    vml[c]->vdev_ishole ||
5303		    vml[c]->vdev_isspare ||
5304		    vml[c]->vdev_isl2cache ||
5305		    !vdev_writeable(vml[c]) ||
5306		    vml[c]->vdev_children != 0 ||
5307		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5308		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5309			error = SET_ERROR(EINVAL);
5310			break;
5311		}
5312
5313		if (vdev_dtl_required(vml[c])) {
5314			error = SET_ERROR(EBUSY);
5315			break;
5316		}
5317
5318		/* we need certain info from the top level */
5319		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5320		    vml[c]->vdev_top->vdev_ms_array) == 0);
5321		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5322		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5323		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5324		    vml[c]->vdev_top->vdev_asize) == 0);
5325		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5326		    vml[c]->vdev_top->vdev_ashift) == 0);
5327	}
5328
5329	if (error != 0) {
5330		kmem_free(vml, children * sizeof (vdev_t *));
5331		kmem_free(glist, children * sizeof (uint64_t));
5332		return (spa_vdev_exit(spa, NULL, txg, error));
5333	}
5334
5335	/* stop writers from using the disks */
5336	for (c = 0; c < children; c++) {
5337		if (vml[c] != NULL)
5338			vml[c]->vdev_offline = B_TRUE;
5339	}
5340	vdev_reopen(spa->spa_root_vdev);
5341
5342	/*
5343	 * Temporarily record the splitting vdevs in the spa config.  This
5344	 * will disappear once the config is regenerated.
5345	 */
5346	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5347	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5348	    glist, children) == 0);
5349	kmem_free(glist, children * sizeof (uint64_t));
5350
5351	mutex_enter(&spa->spa_props_lock);
5352	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5353	    nvl) == 0);
5354	mutex_exit(&spa->spa_props_lock);
5355	spa->spa_config_splitting = nvl;
5356	vdev_config_dirty(spa->spa_root_vdev);
5357
5358	/* configure and create the new pool */
5359	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5360	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5361	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5362	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5363	    spa_version(spa)) == 0);
5364	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5365	    spa->spa_config_txg) == 0);
5366	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5367	    spa_generate_guid(NULL)) == 0);
5368	(void) nvlist_lookup_string(props,
5369	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5370
5371	/* add the new pool to the namespace */
5372	newspa = spa_add(newname, config, altroot);
5373	newspa->spa_config_txg = spa->spa_config_txg;
5374	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5375
5376	/* release the spa config lock, retaining the namespace lock */
5377	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5378
5379	if (zio_injection_enabled)
5380		zio_handle_panic_injection(spa, FTAG, 1);
5381
5382	spa_activate(newspa, spa_mode_global);
5383	spa_async_suspend(newspa);
5384
5385#ifndef sun
5386	/* mark that we are creating new spa by splitting */
5387	newspa->spa_splitting_newspa = B_TRUE;
5388#endif
5389	/* create the new pool from the disks of the original pool */
5390	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5391#ifndef sun
5392	newspa->spa_splitting_newspa = B_FALSE;
5393#endif
5394	if (error)
5395		goto out;
5396
5397	/* if that worked, generate a real config for the new pool */
5398	if (newspa->spa_root_vdev != NULL) {
5399		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5400		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5401		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5402		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5403		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5404		    B_TRUE));
5405	}
5406
5407	/* set the props */
5408	if (props != NULL) {
5409		spa_configfile_set(newspa, props, B_FALSE);
5410		error = spa_prop_set(newspa, props);
5411		if (error)
5412			goto out;
5413	}
5414
5415	/* flush everything */
5416	txg = spa_vdev_config_enter(newspa);
5417	vdev_config_dirty(newspa->spa_root_vdev);
5418	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5419
5420	if (zio_injection_enabled)
5421		zio_handle_panic_injection(spa, FTAG, 2);
5422
5423	spa_async_resume(newspa);
5424
5425	/* finally, update the original pool's config */
5426	txg = spa_vdev_config_enter(spa);
5427	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5428	error = dmu_tx_assign(tx, TXG_WAIT);
5429	if (error != 0)
5430		dmu_tx_abort(tx);
5431	for (c = 0; c < children; c++) {
5432		if (vml[c] != NULL) {
5433			vdev_split(vml[c]);
5434			if (error == 0)
5435				spa_history_log_internal(spa, "detach", tx,
5436				    "vdev=%s", vml[c]->vdev_path);
5437			vdev_free(vml[c]);
5438		}
5439	}
5440	vdev_config_dirty(spa->spa_root_vdev);
5441	spa->spa_config_splitting = NULL;
5442	nvlist_free(nvl);
5443	if (error == 0)
5444		dmu_tx_commit(tx);
5445	(void) spa_vdev_exit(spa, NULL, txg, 0);
5446
5447	if (zio_injection_enabled)
5448		zio_handle_panic_injection(spa, FTAG, 3);
5449
5450	/* split is complete; log a history record */
5451	spa_history_log_internal(newspa, "split", NULL,
5452	    "from pool %s", spa_name(spa));
5453
5454	kmem_free(vml, children * sizeof (vdev_t *));
5455
5456	/* if we're not going to mount the filesystems in userland, export */
5457	if (exp)
5458		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5459		    B_FALSE, B_FALSE);
5460
5461	return (error);
5462
5463out:
5464	spa_unload(newspa);
5465	spa_deactivate(newspa);
5466	spa_remove(newspa);
5467
5468	txg = spa_vdev_config_enter(spa);
5469
5470	/* re-online all offlined disks */
5471	for (c = 0; c < children; c++) {
5472		if (vml[c] != NULL)
5473			vml[c]->vdev_offline = B_FALSE;
5474	}
5475	vdev_reopen(spa->spa_root_vdev);
5476
5477	nvlist_free(spa->spa_config_splitting);
5478	spa->spa_config_splitting = NULL;
5479	(void) spa_vdev_exit(spa, NULL, txg, error);
5480
5481	kmem_free(vml, children * sizeof (vdev_t *));
5482	return (error);
5483}
5484
5485static nvlist_t *
5486spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5487{
5488	for (int i = 0; i < count; i++) {
5489		uint64_t guid;
5490
5491		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5492		    &guid) == 0);
5493
5494		if (guid == target_guid)
5495			return (nvpp[i]);
5496	}
5497
5498	return (NULL);
5499}
5500
5501static void
5502spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5503	nvlist_t *dev_to_remove)
5504{
5505	nvlist_t **newdev = NULL;
5506
5507	if (count > 1)
5508		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5509
5510	for (int i = 0, j = 0; i < count; i++) {
5511		if (dev[i] == dev_to_remove)
5512			continue;
5513		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5514	}
5515
5516	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5517	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5518
5519	for (int i = 0; i < count - 1; i++)
5520		nvlist_free(newdev[i]);
5521
5522	if (count > 1)
5523		kmem_free(newdev, (count - 1) * sizeof (void *));
5524}
5525
5526/*
5527 * Evacuate the device.
5528 */
5529static int
5530spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5531{
5532	uint64_t txg;
5533	int error = 0;
5534
5535	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5536	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5537	ASSERT(vd == vd->vdev_top);
5538
5539	/*
5540	 * Evacuate the device.  We don't hold the config lock as writer
5541	 * since we need to do I/O but we do keep the
5542	 * spa_namespace_lock held.  Once this completes the device
5543	 * should no longer have any blocks allocated on it.
5544	 */
5545	if (vd->vdev_islog) {
5546		if (vd->vdev_stat.vs_alloc != 0)
5547			error = spa_offline_log(spa);
5548	} else {
5549		error = SET_ERROR(ENOTSUP);
5550	}
5551
5552	if (error)
5553		return (error);
5554
5555	/*
5556	 * The evacuation succeeded.  Remove any remaining MOS metadata
5557	 * associated with this vdev, and wait for these changes to sync.
5558	 */
5559	ASSERT0(vd->vdev_stat.vs_alloc);
5560	txg = spa_vdev_config_enter(spa);
5561	vd->vdev_removing = B_TRUE;
5562	vdev_dirty_leaves(vd, VDD_DTL, txg);
5563	vdev_config_dirty(vd);
5564	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5565
5566	return (0);
5567}
5568
5569/*
5570 * Complete the removal by cleaning up the namespace.
5571 */
5572static void
5573spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5574{
5575	vdev_t *rvd = spa->spa_root_vdev;
5576	uint64_t id = vd->vdev_id;
5577	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5578
5579	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5580	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5581	ASSERT(vd == vd->vdev_top);
5582
5583	/*
5584	 * Only remove any devices which are empty.
5585	 */
5586	if (vd->vdev_stat.vs_alloc != 0)
5587		return;
5588
5589	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5590
5591	if (list_link_active(&vd->vdev_state_dirty_node))
5592		vdev_state_clean(vd);
5593	if (list_link_active(&vd->vdev_config_dirty_node))
5594		vdev_config_clean(vd);
5595
5596	vdev_free(vd);
5597
5598	if (last_vdev) {
5599		vdev_compact_children(rvd);
5600	} else {
5601		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5602		vdev_add_child(rvd, vd);
5603	}
5604	vdev_config_dirty(rvd);
5605
5606	/*
5607	 * Reassess the health of our root vdev.
5608	 */
5609	vdev_reopen(rvd);
5610}
5611
5612/*
5613 * Remove a device from the pool -
5614 *
5615 * Removing a device from the vdev namespace requires several steps
5616 * and can take a significant amount of time.  As a result we use
5617 * the spa_vdev_config_[enter/exit] functions which allow us to
5618 * grab and release the spa_config_lock while still holding the namespace
5619 * lock.  During each step the configuration is synced out.
5620 *
5621 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5622 * devices.
5623 */
5624int
5625spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5626{
5627	vdev_t *vd;
5628	metaslab_group_t *mg;
5629	nvlist_t **spares, **l2cache, *nv;
5630	uint64_t txg = 0;
5631	uint_t nspares, nl2cache;
5632	int error = 0;
5633	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5634
5635	ASSERT(spa_writeable(spa));
5636
5637	if (!locked)
5638		txg = spa_vdev_enter(spa);
5639
5640	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5641
5642	if (spa->spa_spares.sav_vdevs != NULL &&
5643	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5644	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5645	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5646		/*
5647		 * Only remove the hot spare if it's not currently in use
5648		 * in this pool.
5649		 */
5650		if (vd == NULL || unspare) {
5651			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5652			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5653			spa_load_spares(spa);
5654			spa->spa_spares.sav_sync = B_TRUE;
5655		} else {
5656			error = SET_ERROR(EBUSY);
5657		}
5658	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5659	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5660	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5661	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5662		/*
5663		 * Cache devices can always be removed.
5664		 */
5665		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5666		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5667		spa_load_l2cache(spa);
5668		spa->spa_l2cache.sav_sync = B_TRUE;
5669	} else if (vd != NULL && vd->vdev_islog) {
5670		ASSERT(!locked);
5671		ASSERT(vd == vd->vdev_top);
5672
5673		mg = vd->vdev_mg;
5674
5675		/*
5676		 * Stop allocating from this vdev.
5677		 */
5678		metaslab_group_passivate(mg);
5679
5680		/*
5681		 * Wait for the youngest allocations and frees to sync,
5682		 * and then wait for the deferral of those frees to finish.
5683		 */
5684		spa_vdev_config_exit(spa, NULL,
5685		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5686
5687		/*
5688		 * Attempt to evacuate the vdev.
5689		 */
5690		error = spa_vdev_remove_evacuate(spa, vd);
5691
5692		txg = spa_vdev_config_enter(spa);
5693
5694		/*
5695		 * If we couldn't evacuate the vdev, unwind.
5696		 */
5697		if (error) {
5698			metaslab_group_activate(mg);
5699			return (spa_vdev_exit(spa, NULL, txg, error));
5700		}
5701
5702		/*
5703		 * Clean up the vdev namespace.
5704		 */
5705		spa_vdev_remove_from_namespace(spa, vd);
5706
5707	} else if (vd != NULL) {
5708		/*
5709		 * Normal vdevs cannot be removed (yet).
5710		 */
5711		error = SET_ERROR(ENOTSUP);
5712	} else {
5713		/*
5714		 * There is no vdev of any kind with the specified guid.
5715		 */
5716		error = SET_ERROR(ENOENT);
5717	}
5718
5719	if (!locked)
5720		return (spa_vdev_exit(spa, NULL, txg, error));
5721
5722	return (error);
5723}
5724
5725/*
5726 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5727 * currently spared, so we can detach it.
5728 */
5729static vdev_t *
5730spa_vdev_resilver_done_hunt(vdev_t *vd)
5731{
5732	vdev_t *newvd, *oldvd;
5733
5734	for (int c = 0; c < vd->vdev_children; c++) {
5735		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5736		if (oldvd != NULL)
5737			return (oldvd);
5738	}
5739
5740	/*
5741	 * Check for a completed replacement.  We always consider the first
5742	 * vdev in the list to be the oldest vdev, and the last one to be
5743	 * the newest (see spa_vdev_attach() for how that works).  In
5744	 * the case where the newest vdev is faulted, we will not automatically
5745	 * remove it after a resilver completes.  This is OK as it will require
5746	 * user intervention to determine which disk the admin wishes to keep.
5747	 */
5748	if (vd->vdev_ops == &vdev_replacing_ops) {
5749		ASSERT(vd->vdev_children > 1);
5750
5751		newvd = vd->vdev_child[vd->vdev_children - 1];
5752		oldvd = vd->vdev_child[0];
5753
5754		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5755		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5756		    !vdev_dtl_required(oldvd))
5757			return (oldvd);
5758	}
5759
5760	/*
5761	 * Check for a completed resilver with the 'unspare' flag set.
5762	 */
5763	if (vd->vdev_ops == &vdev_spare_ops) {
5764		vdev_t *first = vd->vdev_child[0];
5765		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5766
5767		if (last->vdev_unspare) {
5768			oldvd = first;
5769			newvd = last;
5770		} else if (first->vdev_unspare) {
5771			oldvd = last;
5772			newvd = first;
5773		} else {
5774			oldvd = NULL;
5775		}
5776
5777		if (oldvd != NULL &&
5778		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5779		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5780		    !vdev_dtl_required(oldvd))
5781			return (oldvd);
5782
5783		/*
5784		 * If there are more than two spares attached to a disk,
5785		 * and those spares are not required, then we want to
5786		 * attempt to free them up now so that they can be used
5787		 * by other pools.  Once we're back down to a single
5788		 * disk+spare, we stop removing them.
5789		 */
5790		if (vd->vdev_children > 2) {
5791			newvd = vd->vdev_child[1];
5792
5793			if (newvd->vdev_isspare && last->vdev_isspare &&
5794			    vdev_dtl_empty(last, DTL_MISSING) &&
5795			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5796			    !vdev_dtl_required(newvd))
5797				return (newvd);
5798		}
5799	}
5800
5801	return (NULL);
5802}
5803
5804static void
5805spa_vdev_resilver_done(spa_t *spa)
5806{
5807	vdev_t *vd, *pvd, *ppvd;
5808	uint64_t guid, sguid, pguid, ppguid;
5809
5810	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5811
5812	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5813		pvd = vd->vdev_parent;
5814		ppvd = pvd->vdev_parent;
5815		guid = vd->vdev_guid;
5816		pguid = pvd->vdev_guid;
5817		ppguid = ppvd->vdev_guid;
5818		sguid = 0;
5819		/*
5820		 * If we have just finished replacing a hot spared device, then
5821		 * we need to detach the parent's first child (the original hot
5822		 * spare) as well.
5823		 */
5824		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5825		    ppvd->vdev_children == 2) {
5826			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5827			sguid = ppvd->vdev_child[1]->vdev_guid;
5828		}
5829		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5830
5831		spa_config_exit(spa, SCL_ALL, FTAG);
5832		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5833			return;
5834		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5835			return;
5836		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5837	}
5838
5839	spa_config_exit(spa, SCL_ALL, FTAG);
5840}
5841
5842/*
5843 * Update the stored path or FRU for this vdev.
5844 */
5845int
5846spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5847    boolean_t ispath)
5848{
5849	vdev_t *vd;
5850	boolean_t sync = B_FALSE;
5851
5852	ASSERT(spa_writeable(spa));
5853
5854	spa_vdev_state_enter(spa, SCL_ALL);
5855
5856	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5857		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5858
5859	if (!vd->vdev_ops->vdev_op_leaf)
5860		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5861
5862	if (ispath) {
5863		if (strcmp(value, vd->vdev_path) != 0) {
5864			spa_strfree(vd->vdev_path);
5865			vd->vdev_path = spa_strdup(value);
5866			sync = B_TRUE;
5867		}
5868	} else {
5869		if (vd->vdev_fru == NULL) {
5870			vd->vdev_fru = spa_strdup(value);
5871			sync = B_TRUE;
5872		} else if (strcmp(value, vd->vdev_fru) != 0) {
5873			spa_strfree(vd->vdev_fru);
5874			vd->vdev_fru = spa_strdup(value);
5875			sync = B_TRUE;
5876		}
5877	}
5878
5879	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5880}
5881
5882int
5883spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5884{
5885	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5886}
5887
5888int
5889spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5890{
5891	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5892}
5893
5894/*
5895 * ==========================================================================
5896 * SPA Scanning
5897 * ==========================================================================
5898 */
5899
5900int
5901spa_scan_stop(spa_t *spa)
5902{
5903	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5904	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5905		return (SET_ERROR(EBUSY));
5906	return (dsl_scan_cancel(spa->spa_dsl_pool));
5907}
5908
5909int
5910spa_scan(spa_t *spa, pool_scan_func_t func)
5911{
5912	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5913
5914	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5915		return (SET_ERROR(ENOTSUP));
5916
5917	/*
5918	 * If a resilver was requested, but there is no DTL on a
5919	 * writeable leaf device, we have nothing to do.
5920	 */
5921	if (func == POOL_SCAN_RESILVER &&
5922	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5923		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5924		return (0);
5925	}
5926
5927	return (dsl_scan(spa->spa_dsl_pool, func));
5928}
5929
5930/*
5931 * ==========================================================================
5932 * SPA async task processing
5933 * ==========================================================================
5934 */
5935
5936static void
5937spa_async_remove(spa_t *spa, vdev_t *vd)
5938{
5939	if (vd->vdev_remove_wanted) {
5940		vd->vdev_remove_wanted = B_FALSE;
5941		vd->vdev_delayed_close = B_FALSE;
5942		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5943
5944		/*
5945		 * We want to clear the stats, but we don't want to do a full
5946		 * vdev_clear() as that will cause us to throw away
5947		 * degraded/faulted state as well as attempt to reopen the
5948		 * device, all of which is a waste.
5949		 */
5950		vd->vdev_stat.vs_read_errors = 0;
5951		vd->vdev_stat.vs_write_errors = 0;
5952		vd->vdev_stat.vs_checksum_errors = 0;
5953
5954		vdev_state_dirty(vd->vdev_top);
5955	}
5956
5957	for (int c = 0; c < vd->vdev_children; c++)
5958		spa_async_remove(spa, vd->vdev_child[c]);
5959}
5960
5961static void
5962spa_async_probe(spa_t *spa, vdev_t *vd)
5963{
5964	if (vd->vdev_probe_wanted) {
5965		vd->vdev_probe_wanted = B_FALSE;
5966		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5967	}
5968
5969	for (int c = 0; c < vd->vdev_children; c++)
5970		spa_async_probe(spa, vd->vdev_child[c]);
5971}
5972
5973static void
5974spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5975{
5976	sysevent_id_t eid;
5977	nvlist_t *attr;
5978	char *physpath;
5979
5980	if (!spa->spa_autoexpand)
5981		return;
5982
5983	for (int c = 0; c < vd->vdev_children; c++) {
5984		vdev_t *cvd = vd->vdev_child[c];
5985		spa_async_autoexpand(spa, cvd);
5986	}
5987
5988	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5989		return;
5990
5991	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5992	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5993
5994	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5995	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5996
5997	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5998	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5999
6000	nvlist_free(attr);
6001	kmem_free(physpath, MAXPATHLEN);
6002}
6003
6004static void
6005spa_async_thread(void *arg)
6006{
6007	spa_t *spa = arg;
6008	int tasks;
6009
6010	ASSERT(spa->spa_sync_on);
6011
6012	mutex_enter(&spa->spa_async_lock);
6013	tasks = spa->spa_async_tasks;
6014	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6015	mutex_exit(&spa->spa_async_lock);
6016
6017	/*
6018	 * See if the config needs to be updated.
6019	 */
6020	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6021		uint64_t old_space, new_space;
6022
6023		mutex_enter(&spa_namespace_lock);
6024		old_space = metaslab_class_get_space(spa_normal_class(spa));
6025		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6026		new_space = metaslab_class_get_space(spa_normal_class(spa));
6027		mutex_exit(&spa_namespace_lock);
6028
6029		/*
6030		 * If the pool grew as a result of the config update,
6031		 * then log an internal history event.
6032		 */
6033		if (new_space != old_space) {
6034			spa_history_log_internal(spa, "vdev online", NULL,
6035			    "pool '%s' size: %llu(+%llu)",
6036			    spa_name(spa), new_space, new_space - old_space);
6037		}
6038	}
6039
6040	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6041		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6042		spa_async_autoexpand(spa, spa->spa_root_vdev);
6043		spa_config_exit(spa, SCL_CONFIG, FTAG);
6044	}
6045
6046	/*
6047	 * See if any devices need to be probed.
6048	 */
6049	if (tasks & SPA_ASYNC_PROBE) {
6050		spa_vdev_state_enter(spa, SCL_NONE);
6051		spa_async_probe(spa, spa->spa_root_vdev);
6052		(void) spa_vdev_state_exit(spa, NULL, 0);
6053	}
6054
6055	/*
6056	 * If any devices are done replacing, detach them.
6057	 */
6058	if (tasks & SPA_ASYNC_RESILVER_DONE)
6059		spa_vdev_resilver_done(spa);
6060
6061	/*
6062	 * Kick off a resilver.
6063	 */
6064	if (tasks & SPA_ASYNC_RESILVER)
6065		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6066
6067	/*
6068	 * Let the world know that we're done.
6069	 */
6070	mutex_enter(&spa->spa_async_lock);
6071	spa->spa_async_thread = NULL;
6072	cv_broadcast(&spa->spa_async_cv);
6073	mutex_exit(&spa->spa_async_lock);
6074	thread_exit();
6075}
6076
6077static void
6078spa_async_thread_vd(void *arg)
6079{
6080	spa_t *spa = arg;
6081	int tasks;
6082
6083	ASSERT(spa->spa_sync_on);
6084
6085	mutex_enter(&spa->spa_async_lock);
6086	tasks = spa->spa_async_tasks;
6087retry:
6088	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6089	mutex_exit(&spa->spa_async_lock);
6090
6091	/*
6092	 * See if any devices need to be marked REMOVED.
6093	 */
6094	if (tasks & SPA_ASYNC_REMOVE) {
6095		spa_vdev_state_enter(spa, SCL_NONE);
6096		spa_async_remove(spa, spa->spa_root_vdev);
6097		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6098			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6099		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6100			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6101		(void) spa_vdev_state_exit(spa, NULL, 0);
6102	}
6103
6104	/*
6105	 * Let the world know that we're done.
6106	 */
6107	mutex_enter(&spa->spa_async_lock);
6108	tasks = spa->spa_async_tasks;
6109	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6110		goto retry;
6111	spa->spa_async_thread_vd = NULL;
6112	cv_broadcast(&spa->spa_async_cv);
6113	mutex_exit(&spa->spa_async_lock);
6114	thread_exit();
6115}
6116
6117void
6118spa_async_suspend(spa_t *spa)
6119{
6120	mutex_enter(&spa->spa_async_lock);
6121	spa->spa_async_suspended++;
6122	while (spa->spa_async_thread != NULL &&
6123	    spa->spa_async_thread_vd != NULL)
6124		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6125	mutex_exit(&spa->spa_async_lock);
6126}
6127
6128void
6129spa_async_resume(spa_t *spa)
6130{
6131	mutex_enter(&spa->spa_async_lock);
6132	ASSERT(spa->spa_async_suspended != 0);
6133	spa->spa_async_suspended--;
6134	mutex_exit(&spa->spa_async_lock);
6135}
6136
6137static boolean_t
6138spa_async_tasks_pending(spa_t *spa)
6139{
6140	uint_t non_config_tasks;
6141	uint_t config_task;
6142	boolean_t config_task_suspended;
6143
6144	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6145	    SPA_ASYNC_REMOVE);
6146	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6147	if (spa->spa_ccw_fail_time == 0) {
6148		config_task_suspended = B_FALSE;
6149	} else {
6150		config_task_suspended =
6151		    (gethrtime() - spa->spa_ccw_fail_time) <
6152		    (zfs_ccw_retry_interval * NANOSEC);
6153	}
6154
6155	return (non_config_tasks || (config_task && !config_task_suspended));
6156}
6157
6158static void
6159spa_async_dispatch(spa_t *spa)
6160{
6161	mutex_enter(&spa->spa_async_lock);
6162	if (spa_async_tasks_pending(spa) &&
6163	    !spa->spa_async_suspended &&
6164	    spa->spa_async_thread == NULL &&
6165	    rootdir != NULL)
6166		spa->spa_async_thread = thread_create(NULL, 0,
6167		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6168	mutex_exit(&spa->spa_async_lock);
6169}
6170
6171static void
6172spa_async_dispatch_vd(spa_t *spa)
6173{
6174	mutex_enter(&spa->spa_async_lock);
6175	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6176	    !spa->spa_async_suspended &&
6177	    spa->spa_async_thread_vd == NULL &&
6178	    rootdir != NULL)
6179		spa->spa_async_thread_vd = thread_create(NULL, 0,
6180		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6181	mutex_exit(&spa->spa_async_lock);
6182}
6183
6184void
6185spa_async_request(spa_t *spa, int task)
6186{
6187	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6188	mutex_enter(&spa->spa_async_lock);
6189	spa->spa_async_tasks |= task;
6190	mutex_exit(&spa->spa_async_lock);
6191	spa_async_dispatch_vd(spa);
6192}
6193
6194/*
6195 * ==========================================================================
6196 * SPA syncing routines
6197 * ==========================================================================
6198 */
6199
6200static int
6201bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6202{
6203	bpobj_t *bpo = arg;
6204	bpobj_enqueue(bpo, bp, tx);
6205	return (0);
6206}
6207
6208static int
6209spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6210{
6211	zio_t *zio = arg;
6212
6213	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6214	    BP_GET_PSIZE(bp), zio->io_flags));
6215	return (0);
6216}
6217
6218/*
6219 * Note: this simple function is not inlined to make it easier to dtrace the
6220 * amount of time spent syncing frees.
6221 */
6222static void
6223spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6224{
6225	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6226	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6227	VERIFY(zio_wait(zio) == 0);
6228}
6229
6230/*
6231 * Note: this simple function is not inlined to make it easier to dtrace the
6232 * amount of time spent syncing deferred frees.
6233 */
6234static void
6235spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6236{
6237	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6238	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6239	    spa_free_sync_cb, zio, tx), ==, 0);
6240	VERIFY0(zio_wait(zio));
6241}
6242
6243
6244static void
6245spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6246{
6247	char *packed = NULL;
6248	size_t bufsize;
6249	size_t nvsize = 0;
6250	dmu_buf_t *db;
6251
6252	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6253
6254	/*
6255	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6256	 * information.  This avoids the dmu_buf_will_dirty() path and
6257	 * saves us a pre-read to get data we don't actually care about.
6258	 */
6259	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6260	packed = kmem_alloc(bufsize, KM_SLEEP);
6261
6262	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6263	    KM_SLEEP) == 0);
6264	bzero(packed + nvsize, bufsize - nvsize);
6265
6266	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6267
6268	kmem_free(packed, bufsize);
6269
6270	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6271	dmu_buf_will_dirty(db, tx);
6272	*(uint64_t *)db->db_data = nvsize;
6273	dmu_buf_rele(db, FTAG);
6274}
6275
6276static void
6277spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6278    const char *config, const char *entry)
6279{
6280	nvlist_t *nvroot;
6281	nvlist_t **list;
6282	int i;
6283
6284	if (!sav->sav_sync)
6285		return;
6286
6287	/*
6288	 * Update the MOS nvlist describing the list of available devices.
6289	 * spa_validate_aux() will have already made sure this nvlist is
6290	 * valid and the vdevs are labeled appropriately.
6291	 */
6292	if (sav->sav_object == 0) {
6293		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6294		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6295		    sizeof (uint64_t), tx);
6296		VERIFY(zap_update(spa->spa_meta_objset,
6297		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6298		    &sav->sav_object, tx) == 0);
6299	}
6300
6301	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6302	if (sav->sav_count == 0) {
6303		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6304	} else {
6305		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6306		for (i = 0; i < sav->sav_count; i++)
6307			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6308			    B_FALSE, VDEV_CONFIG_L2CACHE);
6309		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6310		    sav->sav_count) == 0);
6311		for (i = 0; i < sav->sav_count; i++)
6312			nvlist_free(list[i]);
6313		kmem_free(list, sav->sav_count * sizeof (void *));
6314	}
6315
6316	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6317	nvlist_free(nvroot);
6318
6319	sav->sav_sync = B_FALSE;
6320}
6321
6322static void
6323spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6324{
6325	nvlist_t *config;
6326
6327	if (list_is_empty(&spa->spa_config_dirty_list))
6328		return;
6329
6330	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6331
6332	config = spa_config_generate(spa, spa->spa_root_vdev,
6333	    dmu_tx_get_txg(tx), B_FALSE);
6334
6335	/*
6336	 * If we're upgrading the spa version then make sure that
6337	 * the config object gets updated with the correct version.
6338	 */
6339	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6340		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6341		    spa->spa_uberblock.ub_version);
6342
6343	spa_config_exit(spa, SCL_STATE, FTAG);
6344
6345	if (spa->spa_config_syncing)
6346		nvlist_free(spa->spa_config_syncing);
6347	spa->spa_config_syncing = config;
6348
6349	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6350}
6351
6352static void
6353spa_sync_version(void *arg, dmu_tx_t *tx)
6354{
6355	uint64_t *versionp = arg;
6356	uint64_t version = *versionp;
6357	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6358
6359	/*
6360	 * Setting the version is special cased when first creating the pool.
6361	 */
6362	ASSERT(tx->tx_txg != TXG_INITIAL);
6363
6364	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6365	ASSERT(version >= spa_version(spa));
6366
6367	spa->spa_uberblock.ub_version = version;
6368	vdev_config_dirty(spa->spa_root_vdev);
6369	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6370}
6371
6372/*
6373 * Set zpool properties.
6374 */
6375static void
6376spa_sync_props(void *arg, dmu_tx_t *tx)
6377{
6378	nvlist_t *nvp = arg;
6379	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6380	objset_t *mos = spa->spa_meta_objset;
6381	nvpair_t *elem = NULL;
6382
6383	mutex_enter(&spa->spa_props_lock);
6384
6385	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6386		uint64_t intval;
6387		char *strval, *fname;
6388		zpool_prop_t prop;
6389		const char *propname;
6390		zprop_type_t proptype;
6391		spa_feature_t fid;
6392
6393		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6394		case ZPROP_INVAL:
6395			/*
6396			 * We checked this earlier in spa_prop_validate().
6397			 */
6398			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6399
6400			fname = strchr(nvpair_name(elem), '@') + 1;
6401			VERIFY0(zfeature_lookup_name(fname, &fid));
6402
6403			spa_feature_enable(spa, fid, tx);
6404			spa_history_log_internal(spa, "set", tx,
6405			    "%s=enabled", nvpair_name(elem));
6406			break;
6407
6408		case ZPOOL_PROP_VERSION:
6409			intval = fnvpair_value_uint64(elem);
6410			/*
6411			 * The version is synced seperatly before other
6412			 * properties and should be correct by now.
6413			 */
6414			ASSERT3U(spa_version(spa), >=, intval);
6415			break;
6416
6417		case ZPOOL_PROP_ALTROOT:
6418			/*
6419			 * 'altroot' is a non-persistent property. It should
6420			 * have been set temporarily at creation or import time.
6421			 */
6422			ASSERT(spa->spa_root != NULL);
6423			break;
6424
6425		case ZPOOL_PROP_READONLY:
6426		case ZPOOL_PROP_CACHEFILE:
6427			/*
6428			 * 'readonly' and 'cachefile' are also non-persisitent
6429			 * properties.
6430			 */
6431			break;
6432		case ZPOOL_PROP_COMMENT:
6433			strval = fnvpair_value_string(elem);
6434			if (spa->spa_comment != NULL)
6435				spa_strfree(spa->spa_comment);
6436			spa->spa_comment = spa_strdup(strval);
6437			/*
6438			 * We need to dirty the configuration on all the vdevs
6439			 * so that their labels get updated.  It's unnecessary
6440			 * to do this for pool creation since the vdev's
6441			 * configuratoin has already been dirtied.
6442			 */
6443			if (tx->tx_txg != TXG_INITIAL)
6444				vdev_config_dirty(spa->spa_root_vdev);
6445			spa_history_log_internal(spa, "set", tx,
6446			    "%s=%s", nvpair_name(elem), strval);
6447			break;
6448		default:
6449			/*
6450			 * Set pool property values in the poolprops mos object.
6451			 */
6452			if (spa->spa_pool_props_object == 0) {
6453				spa->spa_pool_props_object =
6454				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6455				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6456				    tx);
6457			}
6458
6459			/* normalize the property name */
6460			propname = zpool_prop_to_name(prop);
6461			proptype = zpool_prop_get_type(prop);
6462
6463			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6464				ASSERT(proptype == PROP_TYPE_STRING);
6465				strval = fnvpair_value_string(elem);
6466				VERIFY0(zap_update(mos,
6467				    spa->spa_pool_props_object, propname,
6468				    1, strlen(strval) + 1, strval, tx));
6469				spa_history_log_internal(spa, "set", tx,
6470				    "%s=%s", nvpair_name(elem), strval);
6471			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6472				intval = fnvpair_value_uint64(elem);
6473
6474				if (proptype == PROP_TYPE_INDEX) {
6475					const char *unused;
6476					VERIFY0(zpool_prop_index_to_string(
6477					    prop, intval, &unused));
6478				}
6479				VERIFY0(zap_update(mos,
6480				    spa->spa_pool_props_object, propname,
6481				    8, 1, &intval, tx));
6482				spa_history_log_internal(spa, "set", tx,
6483				    "%s=%lld", nvpair_name(elem), intval);
6484			} else {
6485				ASSERT(0); /* not allowed */
6486			}
6487
6488			switch (prop) {
6489			case ZPOOL_PROP_DELEGATION:
6490				spa->spa_delegation = intval;
6491				break;
6492			case ZPOOL_PROP_BOOTFS:
6493				spa->spa_bootfs = intval;
6494				break;
6495			case ZPOOL_PROP_FAILUREMODE:
6496				spa->spa_failmode = intval;
6497				break;
6498			case ZPOOL_PROP_AUTOEXPAND:
6499				spa->spa_autoexpand = intval;
6500				if (tx->tx_txg != TXG_INITIAL)
6501					spa_async_request(spa,
6502					    SPA_ASYNC_AUTOEXPAND);
6503				break;
6504			case ZPOOL_PROP_DEDUPDITTO:
6505				spa->spa_dedup_ditto = intval;
6506				break;
6507			default:
6508				break;
6509			}
6510		}
6511
6512	}
6513
6514	mutex_exit(&spa->spa_props_lock);
6515}
6516
6517/*
6518 * Perform one-time upgrade on-disk changes.  spa_version() does not
6519 * reflect the new version this txg, so there must be no changes this
6520 * txg to anything that the upgrade code depends on after it executes.
6521 * Therefore this must be called after dsl_pool_sync() does the sync
6522 * tasks.
6523 */
6524static void
6525spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6526{
6527	dsl_pool_t *dp = spa->spa_dsl_pool;
6528
6529	ASSERT(spa->spa_sync_pass == 1);
6530
6531	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6532
6533	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6534	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6535		dsl_pool_create_origin(dp, tx);
6536
6537		/* Keeping the origin open increases spa_minref */
6538		spa->spa_minref += 3;
6539	}
6540
6541	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6542	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6543		dsl_pool_upgrade_clones(dp, tx);
6544	}
6545
6546	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6547	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6548		dsl_pool_upgrade_dir_clones(dp, tx);
6549
6550		/* Keeping the freedir open increases spa_minref */
6551		spa->spa_minref += 3;
6552	}
6553
6554	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6555	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6556		spa_feature_create_zap_objects(spa, tx);
6557	}
6558
6559	/*
6560	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6561	 * when possibility to use lz4 compression for metadata was added
6562	 * Old pools that have this feature enabled must be upgraded to have
6563	 * this feature active
6564	 */
6565	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6566		boolean_t lz4_en = spa_feature_is_enabled(spa,
6567		    SPA_FEATURE_LZ4_COMPRESS);
6568		boolean_t lz4_ac = spa_feature_is_active(spa,
6569		    SPA_FEATURE_LZ4_COMPRESS);
6570
6571		if (lz4_en && !lz4_ac)
6572			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6573	}
6574
6575	/*
6576	 * If we haven't written the salt, do so now.  Note that the
6577	 * feature may not be activated yet, but that's fine since
6578	 * the presence of this ZAP entry is backwards compatible.
6579	 */
6580	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6581	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6582		VERIFY0(zap_add(spa->spa_meta_objset,
6583		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6584		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6585		    spa->spa_cksum_salt.zcs_bytes, tx));
6586	}
6587
6588	rrw_exit(&dp->dp_config_rwlock, FTAG);
6589}
6590
6591/*
6592 * Sync the specified transaction group.  New blocks may be dirtied as
6593 * part of the process, so we iterate until it converges.
6594 */
6595void
6596spa_sync(spa_t *spa, uint64_t txg)
6597{
6598	dsl_pool_t *dp = spa->spa_dsl_pool;
6599	objset_t *mos = spa->spa_meta_objset;
6600	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6601	vdev_t *rvd = spa->spa_root_vdev;
6602	vdev_t *vd;
6603	dmu_tx_t *tx;
6604	int error;
6605
6606	VERIFY(spa_writeable(spa));
6607
6608	/*
6609	 * Lock out configuration changes.
6610	 */
6611	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6612
6613	spa->spa_syncing_txg = txg;
6614	spa->spa_sync_pass = 0;
6615
6616	/*
6617	 * If there are any pending vdev state changes, convert them
6618	 * into config changes that go out with this transaction group.
6619	 */
6620	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6621	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6622		/*
6623		 * We need the write lock here because, for aux vdevs,
6624		 * calling vdev_config_dirty() modifies sav_config.
6625		 * This is ugly and will become unnecessary when we
6626		 * eliminate the aux vdev wart by integrating all vdevs
6627		 * into the root vdev tree.
6628		 */
6629		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6630		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6631		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6632			vdev_state_clean(vd);
6633			vdev_config_dirty(vd);
6634		}
6635		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6636		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6637	}
6638	spa_config_exit(spa, SCL_STATE, FTAG);
6639
6640	tx = dmu_tx_create_assigned(dp, txg);
6641
6642	spa->spa_sync_starttime = gethrtime();
6643#ifdef illumos
6644	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6645	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6646#else	/* FreeBSD */
6647#ifdef _KERNEL
6648	callout_reset(&spa->spa_deadman_cycid,
6649	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6650#endif
6651#endif
6652
6653	/*
6654	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6655	 * set spa_deflate if we have no raid-z vdevs.
6656	 */
6657	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6658	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6659		int i;
6660
6661		for (i = 0; i < rvd->vdev_children; i++) {
6662			vd = rvd->vdev_child[i];
6663			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6664				break;
6665		}
6666		if (i == rvd->vdev_children) {
6667			spa->spa_deflate = TRUE;
6668			VERIFY(0 == zap_add(spa->spa_meta_objset,
6669			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6670			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6671		}
6672	}
6673
6674	/*
6675	 * Iterate to convergence.
6676	 */
6677	do {
6678		int pass = ++spa->spa_sync_pass;
6679
6680		spa_sync_config_object(spa, tx);
6681		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6682		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6683		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6684		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6685		spa_errlog_sync(spa, txg);
6686		dsl_pool_sync(dp, txg);
6687
6688		if (pass < zfs_sync_pass_deferred_free) {
6689			spa_sync_frees(spa, free_bpl, tx);
6690		} else {
6691			/*
6692			 * We can not defer frees in pass 1, because
6693			 * we sync the deferred frees later in pass 1.
6694			 */
6695			ASSERT3U(pass, >, 1);
6696			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6697			    &spa->spa_deferred_bpobj, tx);
6698		}
6699
6700		ddt_sync(spa, txg);
6701		dsl_scan_sync(dp, tx);
6702
6703		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6704			vdev_sync(vd, txg);
6705
6706		if (pass == 1) {
6707			spa_sync_upgrades(spa, tx);
6708			ASSERT3U(txg, >=,
6709			    spa->spa_uberblock.ub_rootbp.blk_birth);
6710			/*
6711			 * Note: We need to check if the MOS is dirty
6712			 * because we could have marked the MOS dirty
6713			 * without updating the uberblock (e.g. if we
6714			 * have sync tasks but no dirty user data).  We
6715			 * need to check the uberblock's rootbp because
6716			 * it is updated if we have synced out dirty
6717			 * data (though in this case the MOS will most
6718			 * likely also be dirty due to second order
6719			 * effects, we don't want to rely on that here).
6720			 */
6721			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6722			    !dmu_objset_is_dirty(mos, txg)) {
6723				/*
6724				 * Nothing changed on the first pass,
6725				 * therefore this TXG is a no-op.  Avoid
6726				 * syncing deferred frees, so that we
6727				 * can keep this TXG as a no-op.
6728				 */
6729				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6730				    txg));
6731				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6732				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6733				break;
6734			}
6735			spa_sync_deferred_frees(spa, tx);
6736		}
6737
6738	} while (dmu_objset_is_dirty(mos, txg));
6739
6740	/*
6741	 * Rewrite the vdev configuration (which includes the uberblock)
6742	 * to commit the transaction group.
6743	 *
6744	 * If there are no dirty vdevs, we sync the uberblock to a few
6745	 * random top-level vdevs that are known to be visible in the
6746	 * config cache (see spa_vdev_add() for a complete description).
6747	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6748	 */
6749	for (;;) {
6750		/*
6751		 * We hold SCL_STATE to prevent vdev open/close/etc.
6752		 * while we're attempting to write the vdev labels.
6753		 */
6754		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6755
6756		if (list_is_empty(&spa->spa_config_dirty_list)) {
6757			vdev_t *svd[SPA_DVAS_PER_BP];
6758			int svdcount = 0;
6759			int children = rvd->vdev_children;
6760			int c0 = spa_get_random(children);
6761
6762			for (int c = 0; c < children; c++) {
6763				vd = rvd->vdev_child[(c0 + c) % children];
6764				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6765					continue;
6766				svd[svdcount++] = vd;
6767				if (svdcount == SPA_DVAS_PER_BP)
6768					break;
6769			}
6770			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6771			if (error != 0)
6772				error = vdev_config_sync(svd, svdcount, txg,
6773				    B_TRUE);
6774		} else {
6775			error = vdev_config_sync(rvd->vdev_child,
6776			    rvd->vdev_children, txg, B_FALSE);
6777			if (error != 0)
6778				error = vdev_config_sync(rvd->vdev_child,
6779				    rvd->vdev_children, txg, B_TRUE);
6780		}
6781
6782		if (error == 0)
6783			spa->spa_last_synced_guid = rvd->vdev_guid;
6784
6785		spa_config_exit(spa, SCL_STATE, FTAG);
6786
6787		if (error == 0)
6788			break;
6789		zio_suspend(spa, NULL);
6790		zio_resume_wait(spa);
6791	}
6792	dmu_tx_commit(tx);
6793
6794#ifdef illumos
6795	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6796#else	/* FreeBSD */
6797#ifdef _KERNEL
6798	callout_drain(&spa->spa_deadman_cycid);
6799#endif
6800#endif
6801
6802	/*
6803	 * Clear the dirty config list.
6804	 */
6805	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6806		vdev_config_clean(vd);
6807
6808	/*
6809	 * Now that the new config has synced transactionally,
6810	 * let it become visible to the config cache.
6811	 */
6812	if (spa->spa_config_syncing != NULL) {
6813		spa_config_set(spa, spa->spa_config_syncing);
6814		spa->spa_config_txg = txg;
6815		spa->spa_config_syncing = NULL;
6816	}
6817
6818	spa->spa_ubsync = spa->spa_uberblock;
6819
6820	dsl_pool_sync_done(dp, txg);
6821
6822	/*
6823	 * Update usable space statistics.
6824	 */
6825	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6826		vdev_sync_done(vd, txg);
6827
6828	spa_update_dspace(spa);
6829
6830	/*
6831	 * It had better be the case that we didn't dirty anything
6832	 * since vdev_config_sync().
6833	 */
6834	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6835	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6836	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6837
6838	spa->spa_sync_pass = 0;
6839
6840	spa_config_exit(spa, SCL_CONFIG, FTAG);
6841
6842	spa_handle_ignored_writes(spa);
6843
6844	/*
6845	 * If any async tasks have been requested, kick them off.
6846	 */
6847	spa_async_dispatch(spa);
6848	spa_async_dispatch_vd(spa);
6849}
6850
6851/*
6852 * Sync all pools.  We don't want to hold the namespace lock across these
6853 * operations, so we take a reference on the spa_t and drop the lock during the
6854 * sync.
6855 */
6856void
6857spa_sync_allpools(void)
6858{
6859	spa_t *spa = NULL;
6860	mutex_enter(&spa_namespace_lock);
6861	while ((spa = spa_next(spa)) != NULL) {
6862		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6863		    !spa_writeable(spa) || spa_suspended(spa))
6864			continue;
6865		spa_open_ref(spa, FTAG);
6866		mutex_exit(&spa_namespace_lock);
6867		txg_wait_synced(spa_get_dsl(spa), 0);
6868		mutex_enter(&spa_namespace_lock);
6869		spa_close(spa, FTAG);
6870	}
6871	mutex_exit(&spa_namespace_lock);
6872}
6873
6874/*
6875 * ==========================================================================
6876 * Miscellaneous routines
6877 * ==========================================================================
6878 */
6879
6880/*
6881 * Remove all pools in the system.
6882 */
6883void
6884spa_evict_all(void)
6885{
6886	spa_t *spa;
6887
6888	/*
6889	 * Remove all cached state.  All pools should be closed now,
6890	 * so every spa in the AVL tree should be unreferenced.
6891	 */
6892	mutex_enter(&spa_namespace_lock);
6893	while ((spa = spa_next(NULL)) != NULL) {
6894		/*
6895		 * Stop async tasks.  The async thread may need to detach
6896		 * a device that's been replaced, which requires grabbing
6897		 * spa_namespace_lock, so we must drop it here.
6898		 */
6899		spa_open_ref(spa, FTAG);
6900		mutex_exit(&spa_namespace_lock);
6901		spa_async_suspend(spa);
6902		mutex_enter(&spa_namespace_lock);
6903		spa_close(spa, FTAG);
6904
6905		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6906			spa_unload(spa);
6907			spa_deactivate(spa);
6908		}
6909		spa_remove(spa);
6910	}
6911	mutex_exit(&spa_namespace_lock);
6912}
6913
6914vdev_t *
6915spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6916{
6917	vdev_t *vd;
6918	int i;
6919
6920	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6921		return (vd);
6922
6923	if (aux) {
6924		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6925			vd = spa->spa_l2cache.sav_vdevs[i];
6926			if (vd->vdev_guid == guid)
6927				return (vd);
6928		}
6929
6930		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6931			vd = spa->spa_spares.sav_vdevs[i];
6932			if (vd->vdev_guid == guid)
6933				return (vd);
6934		}
6935	}
6936
6937	return (NULL);
6938}
6939
6940void
6941spa_upgrade(spa_t *spa, uint64_t version)
6942{
6943	ASSERT(spa_writeable(spa));
6944
6945	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6946
6947	/*
6948	 * This should only be called for a non-faulted pool, and since a
6949	 * future version would result in an unopenable pool, this shouldn't be
6950	 * possible.
6951	 */
6952	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6953	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6954
6955	spa->spa_uberblock.ub_version = version;
6956	vdev_config_dirty(spa->spa_root_vdev);
6957
6958	spa_config_exit(spa, SCL_ALL, FTAG);
6959
6960	txg_wait_synced(spa_get_dsl(spa), 0);
6961}
6962
6963boolean_t
6964spa_has_spare(spa_t *spa, uint64_t guid)
6965{
6966	int i;
6967	uint64_t spareguid;
6968	spa_aux_vdev_t *sav = &spa->spa_spares;
6969
6970	for (i = 0; i < sav->sav_count; i++)
6971		if (sav->sav_vdevs[i]->vdev_guid == guid)
6972			return (B_TRUE);
6973
6974	for (i = 0; i < sav->sav_npending; i++) {
6975		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6976		    &spareguid) == 0 && spareguid == guid)
6977			return (B_TRUE);
6978	}
6979
6980	return (B_FALSE);
6981}
6982
6983/*
6984 * Check if a pool has an active shared spare device.
6985 * Note: reference count of an active spare is 2, as a spare and as a replace
6986 */
6987static boolean_t
6988spa_has_active_shared_spare(spa_t *spa)
6989{
6990	int i, refcnt;
6991	uint64_t pool;
6992	spa_aux_vdev_t *sav = &spa->spa_spares;
6993
6994	for (i = 0; i < sav->sav_count; i++) {
6995		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6996		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6997		    refcnt > 2)
6998			return (B_TRUE);
6999	}
7000
7001	return (B_FALSE);
7002}
7003
7004/*
7005 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7006 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7007 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7008 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7009 * or zdb as real changes.
7010 */
7011void
7012spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7013{
7014#ifdef _KERNEL
7015	sysevent_t		*ev;
7016	sysevent_attr_list_t	*attr = NULL;
7017	sysevent_value_t	value;
7018	sysevent_id_t		eid;
7019
7020	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7021	    SE_SLEEP);
7022
7023	value.value_type = SE_DATA_TYPE_STRING;
7024	value.value.sv_string = spa_name(spa);
7025	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7026		goto done;
7027
7028	value.value_type = SE_DATA_TYPE_UINT64;
7029	value.value.sv_uint64 = spa_guid(spa);
7030	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7031		goto done;
7032
7033	if (vd) {
7034		value.value_type = SE_DATA_TYPE_UINT64;
7035		value.value.sv_uint64 = vd->vdev_guid;
7036		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7037		    SE_SLEEP) != 0)
7038			goto done;
7039
7040		if (vd->vdev_path) {
7041			value.value_type = SE_DATA_TYPE_STRING;
7042			value.value.sv_string = vd->vdev_path;
7043			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7044			    &value, SE_SLEEP) != 0)
7045				goto done;
7046		}
7047	}
7048
7049	if (sysevent_attach_attributes(ev, attr) != 0)
7050		goto done;
7051	attr = NULL;
7052
7053	(void) log_sysevent(ev, SE_SLEEP, &eid);
7054
7055done:
7056	if (attr)
7057		sysevent_free_attr(attr);
7058	sysevent_free(ev);
7059#endif
7060}
7061