spa.c revision 290745
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30/*
31 * SPA: Storage Pool Allocator
32 *
33 * This file contains all the routines used when modifying on-disk SPA state.
34 * This includes opening, importing, destroying, exporting a pool, and syncing a
35 * pool.
36 */
37
38#include <sys/zfs_context.h>
39#include <sys/fm/fs/zfs.h>
40#include <sys/spa_impl.h>
41#include <sys/zio.h>
42#include <sys/zio_checksum.h>
43#include <sys/dmu.h>
44#include <sys/dmu_tx.h>
45#include <sys/zap.h>
46#include <sys/zil.h>
47#include <sys/ddt.h>
48#include <sys/vdev_impl.h>
49#include <sys/metaslab.h>
50#include <sys/metaslab_impl.h>
51#include <sys/uberblock_impl.h>
52#include <sys/txg.h>
53#include <sys/avl.h>
54#include <sys/dmu_traverse.h>
55#include <sys/dmu_objset.h>
56#include <sys/unique.h>
57#include <sys/dsl_pool.h>
58#include <sys/dsl_dataset.h>
59#include <sys/dsl_dir.h>
60#include <sys/dsl_prop.h>
61#include <sys/dsl_synctask.h>
62#include <sys/fs/zfs.h>
63#include <sys/arc.h>
64#include <sys/callb.h>
65#include <sys/spa_boot.h>
66#include <sys/zfs_ioctl.h>
67#include <sys/dsl_scan.h>
68#include <sys/dmu_send.h>
69#include <sys/dsl_destroy.h>
70#include <sys/dsl_userhold.h>
71#include <sys/zfeature.h>
72#include <sys/zvol.h>
73#include <sys/trim_map.h>
74
75#ifdef	_KERNEL
76#include <sys/callb.h>
77#include <sys/cpupart.h>
78#include <sys/zone.h>
79#endif	/* _KERNEL */
80
81#include "zfs_prop.h"
82#include "zfs_comutil.h"
83
84/* Check hostid on import? */
85static int check_hostid = 1;
86
87SYSCTL_DECL(_vfs_zfs);
88TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
89SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
90    "Check hostid on import?");
91
92/*
93 * The interval, in seconds, at which failed configuration cache file writes
94 * should be retried.
95 */
96static int zfs_ccw_retry_interval = 300;
97
98typedef enum zti_modes {
99	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
100	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
101	ZTI_MODE_NULL,			/* don't create a taskq */
102	ZTI_NMODES
103} zti_modes_t;
104
105#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
106#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
107#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
108
109#define	ZTI_N(n)	ZTI_P(n, 1)
110#define	ZTI_ONE		ZTI_N(1)
111
112typedef struct zio_taskq_info {
113	zti_modes_t zti_mode;
114	uint_t zti_value;
115	uint_t zti_count;
116} zio_taskq_info_t;
117
118static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
119	"issue", "issue_high", "intr", "intr_high"
120};
121
122/*
123 * This table defines the taskq settings for each ZFS I/O type. When
124 * initializing a pool, we use this table to create an appropriately sized
125 * taskq. Some operations are low volume and therefore have a small, static
126 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
127 * macros. Other operations process a large amount of data; the ZTI_BATCH
128 * macro causes us to create a taskq oriented for throughput. Some operations
129 * are so high frequency and short-lived that the taskq itself can become a a
130 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
131 * additional degree of parallelism specified by the number of threads per-
132 * taskq and the number of taskqs; when dispatching an event in this case, the
133 * particular taskq is chosen at random.
134 *
135 * The different taskq priorities are to handle the different contexts (issue
136 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
137 * need to be handled with minimum delay.
138 */
139const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
140	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
141	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
142	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
143	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
144	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
147};
148
149static void spa_sync_version(void *arg, dmu_tx_t *tx);
150static void spa_sync_props(void *arg, dmu_tx_t *tx);
151static boolean_t spa_has_active_shared_spare(spa_t *spa);
152static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
153    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
154    char **ereport);
155static void spa_vdev_resilver_done(spa_t *spa);
156
157uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
158#ifdef PSRSET_BIND
159id_t		zio_taskq_psrset_bind = PS_NONE;
160#endif
161#ifdef SYSDC
162boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
163#endif
164uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
165
166boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
167extern int	zfs_sync_pass_deferred_free;
168
169#ifndef illumos
170extern void spa_deadman(void *arg);
171#endif
172
173/*
174 * This (illegal) pool name is used when temporarily importing a spa_t in order
175 * to get the vdev stats associated with the imported devices.
176 */
177#define	TRYIMPORT_NAME	"$import"
178
179/*
180 * ==========================================================================
181 * SPA properties routines
182 * ==========================================================================
183 */
184
185/*
186 * Add a (source=src, propname=propval) list to an nvlist.
187 */
188static void
189spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
190    uint64_t intval, zprop_source_t src)
191{
192	const char *propname = zpool_prop_to_name(prop);
193	nvlist_t *propval;
194
195	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
197
198	if (strval != NULL)
199		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
200	else
201		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
202
203	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
204	nvlist_free(propval);
205}
206
207/*
208 * Get property values from the spa configuration.
209 */
210static void
211spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
212{
213	vdev_t *rvd = spa->spa_root_vdev;
214	dsl_pool_t *pool = spa->spa_dsl_pool;
215	uint64_t size, alloc, cap, version;
216	zprop_source_t src = ZPROP_SRC_NONE;
217	spa_config_dirent_t *dp;
218	metaslab_class_t *mc = spa_normal_class(spa);
219
220	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
221
222	if (rvd != NULL) {
223		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
224		size = metaslab_class_get_space(spa_normal_class(spa));
225		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
226		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
229		    size - alloc, src);
230
231		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
232		    metaslab_class_fragmentation(mc), src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
234		    metaslab_class_expandable_space(mc), src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
236		    (spa_mode(spa) == FREAD), src);
237
238		cap = (size == 0) ? 0 : (alloc * 100 / size);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
240
241		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
242		    ddt_get_pool_dedup_ratio(spa), src);
243
244		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
245		    rvd->vdev_state, src);
246
247		version = spa_version(spa);
248		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
249			src = ZPROP_SRC_DEFAULT;
250		else
251			src = ZPROP_SRC_LOCAL;
252		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
253	}
254
255	if (pool != NULL) {
256		/*
257		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258		 * when opening pools before this version freedir will be NULL.
259		 */
260		if (pool->dp_free_dir != NULL) {
261			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263			    src);
264		} else {
265			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266			    NULL, 0, src);
267		}
268
269		if (pool->dp_leak_dir != NULL) {
270			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272			    src);
273		} else {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275			    NULL, 0, src);
276		}
277	}
278
279	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281	if (spa->spa_comment != NULL) {
282		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283		    0, ZPROP_SRC_LOCAL);
284	}
285
286	if (spa->spa_root != NULL)
287		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288		    0, ZPROP_SRC_LOCAL);
289
290	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293	} else {
294		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296	}
297
298	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
299		if (dp->scd_path == NULL) {
300			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
301			    "none", 0, ZPROP_SRC_LOCAL);
302		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
303			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
304			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
305		}
306	}
307}
308
309/*
310 * Get zpool property values.
311 */
312int
313spa_prop_get(spa_t *spa, nvlist_t **nvp)
314{
315	objset_t *mos = spa->spa_meta_objset;
316	zap_cursor_t zc;
317	zap_attribute_t za;
318	int err;
319
320	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
321
322	mutex_enter(&spa->spa_props_lock);
323
324	/*
325	 * Get properties from the spa config.
326	 */
327	spa_prop_get_config(spa, nvp);
328
329	/* If no pool property object, no more prop to get. */
330	if (mos == NULL || spa->spa_pool_props_object == 0) {
331		mutex_exit(&spa->spa_props_lock);
332		return (0);
333	}
334
335	/*
336	 * Get properties from the MOS pool property object.
337	 */
338	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
339	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
340	    zap_cursor_advance(&zc)) {
341		uint64_t intval = 0;
342		char *strval = NULL;
343		zprop_source_t src = ZPROP_SRC_DEFAULT;
344		zpool_prop_t prop;
345
346		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
347			continue;
348
349		switch (za.za_integer_length) {
350		case 8:
351			/* integer property */
352			if (za.za_first_integer !=
353			    zpool_prop_default_numeric(prop))
354				src = ZPROP_SRC_LOCAL;
355
356			if (prop == ZPOOL_PROP_BOOTFS) {
357				dsl_pool_t *dp;
358				dsl_dataset_t *ds = NULL;
359
360				dp = spa_get_dsl(spa);
361				dsl_pool_config_enter(dp, FTAG);
362				if (err = dsl_dataset_hold_obj(dp,
363				    za.za_first_integer, FTAG, &ds)) {
364					dsl_pool_config_exit(dp, FTAG);
365					break;
366				}
367
368				strval = kmem_alloc(
369				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
370				    KM_SLEEP);
371				dsl_dataset_name(ds, strval);
372				dsl_dataset_rele(ds, FTAG);
373				dsl_pool_config_exit(dp, FTAG);
374			} else {
375				strval = NULL;
376				intval = za.za_first_integer;
377			}
378
379			spa_prop_add_list(*nvp, prop, strval, intval, src);
380
381			if (strval != NULL)
382				kmem_free(strval,
383				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
384
385			break;
386
387		case 1:
388			/* string property */
389			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
390			err = zap_lookup(mos, spa->spa_pool_props_object,
391			    za.za_name, 1, za.za_num_integers, strval);
392			if (err) {
393				kmem_free(strval, za.za_num_integers);
394				break;
395			}
396			spa_prop_add_list(*nvp, prop, strval, 0, src);
397			kmem_free(strval, za.za_num_integers);
398			break;
399
400		default:
401			break;
402		}
403	}
404	zap_cursor_fini(&zc);
405	mutex_exit(&spa->spa_props_lock);
406out:
407	if (err && err != ENOENT) {
408		nvlist_free(*nvp);
409		*nvp = NULL;
410		return (err);
411	}
412
413	return (0);
414}
415
416/*
417 * Validate the given pool properties nvlist and modify the list
418 * for the property values to be set.
419 */
420static int
421spa_prop_validate(spa_t *spa, nvlist_t *props)
422{
423	nvpair_t *elem;
424	int error = 0, reset_bootfs = 0;
425	uint64_t objnum = 0;
426	boolean_t has_feature = B_FALSE;
427
428	elem = NULL;
429	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
430		uint64_t intval;
431		char *strval, *slash, *check, *fname;
432		const char *propname = nvpair_name(elem);
433		zpool_prop_t prop = zpool_name_to_prop(propname);
434
435		switch (prop) {
436		case ZPROP_INVAL:
437			if (!zpool_prop_feature(propname)) {
438				error = SET_ERROR(EINVAL);
439				break;
440			}
441
442			/*
443			 * Sanitize the input.
444			 */
445			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
446				error = SET_ERROR(EINVAL);
447				break;
448			}
449
450			if (nvpair_value_uint64(elem, &intval) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (intval != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			fname = strchr(propname, '@') + 1;
461			if (zfeature_lookup_name(fname, NULL) != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			has_feature = B_TRUE;
467			break;
468
469		case ZPOOL_PROP_VERSION:
470			error = nvpair_value_uint64(elem, &intval);
471			if (!error &&
472			    (intval < spa_version(spa) ||
473			    intval > SPA_VERSION_BEFORE_FEATURES ||
474			    has_feature))
475				error = SET_ERROR(EINVAL);
476			break;
477
478		case ZPOOL_PROP_DELEGATION:
479		case ZPOOL_PROP_AUTOREPLACE:
480		case ZPOOL_PROP_LISTSNAPS:
481		case ZPOOL_PROP_AUTOEXPAND:
482			error = nvpair_value_uint64(elem, &intval);
483			if (!error && intval > 1)
484				error = SET_ERROR(EINVAL);
485			break;
486
487		case ZPOOL_PROP_BOOTFS:
488			/*
489			 * If the pool version is less than SPA_VERSION_BOOTFS,
490			 * or the pool is still being created (version == 0),
491			 * the bootfs property cannot be set.
492			 */
493			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
494				error = SET_ERROR(ENOTSUP);
495				break;
496			}
497
498			/*
499			 * Make sure the vdev config is bootable
500			 */
501			if (!vdev_is_bootable(spa->spa_root_vdev)) {
502				error = SET_ERROR(ENOTSUP);
503				break;
504			}
505
506			reset_bootfs = 1;
507
508			error = nvpair_value_string(elem, &strval);
509
510			if (!error) {
511				objset_t *os;
512				uint64_t propval;
513
514				if (strval == NULL || strval[0] == '\0') {
515					objnum = zpool_prop_default_numeric(
516					    ZPOOL_PROP_BOOTFS);
517					break;
518				}
519
520				if (error = dmu_objset_hold(strval, FTAG, &os))
521					break;
522
523				/*
524				 * Must be ZPL, and its property settings
525				 * must be supported by GRUB (compression
526				 * is not gzip, and large blocks are not used).
527				 */
528
529				if (dmu_objset_type(os) != DMU_OST_ZFS) {
530					error = SET_ERROR(ENOTSUP);
531				} else if ((error =
532				    dsl_prop_get_int_ds(dmu_objset_ds(os),
533				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
534				    &propval)) == 0 &&
535				    !BOOTFS_COMPRESS_VALID(propval)) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
540				    &propval)) == 0 &&
541				    propval > SPA_OLD_MAXBLOCKSIZE) {
542					error = SET_ERROR(ENOTSUP);
543				} else {
544					objnum = dmu_objset_id(os);
545				}
546				dmu_objset_rele(os, FTAG);
547			}
548			break;
549
550		case ZPOOL_PROP_FAILUREMODE:
551			error = nvpair_value_uint64(elem, &intval);
552			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
553			    intval > ZIO_FAILURE_MODE_PANIC))
554				error = SET_ERROR(EINVAL);
555
556			/*
557			 * This is a special case which only occurs when
558			 * the pool has completely failed. This allows
559			 * the user to change the in-core failmode property
560			 * without syncing it out to disk (I/Os might
561			 * currently be blocked). We do this by returning
562			 * EIO to the caller (spa_prop_set) to trick it
563			 * into thinking we encountered a property validation
564			 * error.
565			 */
566			if (!error && spa_suspended(spa)) {
567				spa->spa_failmode = intval;
568				error = SET_ERROR(EIO);
569			}
570			break;
571
572		case ZPOOL_PROP_CACHEFILE:
573			if ((error = nvpair_value_string(elem, &strval)) != 0)
574				break;
575
576			if (strval[0] == '\0')
577				break;
578
579			if (strcmp(strval, "none") == 0)
580				break;
581
582			if (strval[0] != '/') {
583				error = SET_ERROR(EINVAL);
584				break;
585			}
586
587			slash = strrchr(strval, '/');
588			ASSERT(slash != NULL);
589
590			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
591			    strcmp(slash, "/..") == 0)
592				error = SET_ERROR(EINVAL);
593			break;
594
595		case ZPOOL_PROP_COMMENT:
596			if ((error = nvpair_value_string(elem, &strval)) != 0)
597				break;
598			for (check = strval; *check != '\0'; check++) {
599				/*
600				 * The kernel doesn't have an easy isprint()
601				 * check.  For this kernel check, we merely
602				 * check ASCII apart from DEL.  Fix this if
603				 * there is an easy-to-use kernel isprint().
604				 */
605				if (*check >= 0x7f) {
606					error = SET_ERROR(EINVAL);
607					break;
608				}
609				check++;
610			}
611			if (strlen(strval) > ZPROP_MAX_COMMENT)
612				error = E2BIG;
613			break;
614
615		case ZPOOL_PROP_DEDUPDITTO:
616			if (spa_version(spa) < SPA_VERSION_DEDUP)
617				error = SET_ERROR(ENOTSUP);
618			else
619				error = nvpair_value_uint64(elem, &intval);
620			if (error == 0 &&
621			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
622				error = SET_ERROR(EINVAL);
623			break;
624		}
625
626		if (error)
627			break;
628	}
629
630	if (!error && reset_bootfs) {
631		error = nvlist_remove(props,
632		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
633
634		if (!error) {
635			error = nvlist_add_uint64(props,
636			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
637		}
638	}
639
640	return (error);
641}
642
643void
644spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
645{
646	char *cachefile;
647	spa_config_dirent_t *dp;
648
649	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
650	    &cachefile) != 0)
651		return;
652
653	dp = kmem_alloc(sizeof (spa_config_dirent_t),
654	    KM_SLEEP);
655
656	if (cachefile[0] == '\0')
657		dp->scd_path = spa_strdup(spa_config_path);
658	else if (strcmp(cachefile, "none") == 0)
659		dp->scd_path = NULL;
660	else
661		dp->scd_path = spa_strdup(cachefile);
662
663	list_insert_head(&spa->spa_config_list, dp);
664	if (need_sync)
665		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
666}
667
668int
669spa_prop_set(spa_t *spa, nvlist_t *nvp)
670{
671	int error;
672	nvpair_t *elem = NULL;
673	boolean_t need_sync = B_FALSE;
674
675	if ((error = spa_prop_validate(spa, nvp)) != 0)
676		return (error);
677
678	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
679		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
680
681		if (prop == ZPOOL_PROP_CACHEFILE ||
682		    prop == ZPOOL_PROP_ALTROOT ||
683		    prop == ZPOOL_PROP_READONLY)
684			continue;
685
686		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
687			uint64_t ver;
688
689			if (prop == ZPOOL_PROP_VERSION) {
690				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
691			} else {
692				ASSERT(zpool_prop_feature(nvpair_name(elem)));
693				ver = SPA_VERSION_FEATURES;
694				need_sync = B_TRUE;
695			}
696
697			/* Save time if the version is already set. */
698			if (ver == spa_version(spa))
699				continue;
700
701			/*
702			 * In addition to the pool directory object, we might
703			 * create the pool properties object, the features for
704			 * read object, the features for write object, or the
705			 * feature descriptions object.
706			 */
707			error = dsl_sync_task(spa->spa_name, NULL,
708			    spa_sync_version, &ver,
709			    6, ZFS_SPACE_CHECK_RESERVED);
710			if (error)
711				return (error);
712			continue;
713		}
714
715		need_sync = B_TRUE;
716		break;
717	}
718
719	if (need_sync) {
720		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
721		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
722	}
723
724	return (0);
725}
726
727/*
728 * If the bootfs property value is dsobj, clear it.
729 */
730void
731spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
732{
733	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
734		VERIFY(zap_remove(spa->spa_meta_objset,
735		    spa->spa_pool_props_object,
736		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
737		spa->spa_bootfs = 0;
738	}
739}
740
741/*ARGSUSED*/
742static int
743spa_change_guid_check(void *arg, dmu_tx_t *tx)
744{
745	uint64_t *newguid = arg;
746	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
747	vdev_t *rvd = spa->spa_root_vdev;
748	uint64_t vdev_state;
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	vdev_state = rvd->vdev_state;
752	spa_config_exit(spa, SCL_STATE, FTAG);
753
754	if (vdev_state != VDEV_STATE_HEALTHY)
755		return (SET_ERROR(ENXIO));
756
757	ASSERT3U(spa_guid(spa), !=, *newguid);
758
759	return (0);
760}
761
762static void
763spa_change_guid_sync(void *arg, dmu_tx_t *tx)
764{
765	uint64_t *newguid = arg;
766	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
767	uint64_t oldguid;
768	vdev_t *rvd = spa->spa_root_vdev;
769
770	oldguid = spa_guid(spa);
771
772	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
773	rvd->vdev_guid = *newguid;
774	rvd->vdev_guid_sum += (*newguid - oldguid);
775	vdev_config_dirty(rvd);
776	spa_config_exit(spa, SCL_STATE, FTAG);
777
778	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
779	    oldguid, *newguid);
780}
781
782/*
783 * Change the GUID for the pool.  This is done so that we can later
784 * re-import a pool built from a clone of our own vdevs.  We will modify
785 * the root vdev's guid, our own pool guid, and then mark all of our
786 * vdevs dirty.  Note that we must make sure that all our vdevs are
787 * online when we do this, or else any vdevs that weren't present
788 * would be orphaned from our pool.  We are also going to issue a
789 * sysevent to update any watchers.
790 */
791int
792spa_change_guid(spa_t *spa)
793{
794	int error;
795	uint64_t guid;
796
797	mutex_enter(&spa->spa_vdev_top_lock);
798	mutex_enter(&spa_namespace_lock);
799	guid = spa_generate_guid(NULL);
800
801	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
802	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
803
804	if (error == 0) {
805		spa_config_sync(spa, B_FALSE, B_TRUE);
806		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
807	}
808
809	mutex_exit(&spa_namespace_lock);
810	mutex_exit(&spa->spa_vdev_top_lock);
811
812	return (error);
813}
814
815/*
816 * ==========================================================================
817 * SPA state manipulation (open/create/destroy/import/export)
818 * ==========================================================================
819 */
820
821static int
822spa_error_entry_compare(const void *a, const void *b)
823{
824	spa_error_entry_t *sa = (spa_error_entry_t *)a;
825	spa_error_entry_t *sb = (spa_error_entry_t *)b;
826	int ret;
827
828	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
829	    sizeof (zbookmark_phys_t));
830
831	if (ret < 0)
832		return (-1);
833	else if (ret > 0)
834		return (1);
835	else
836		return (0);
837}
838
839/*
840 * Utility function which retrieves copies of the current logs and
841 * re-initializes them in the process.
842 */
843void
844spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
845{
846	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
847
848	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
849	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
850
851	avl_create(&spa->spa_errlist_scrub,
852	    spa_error_entry_compare, sizeof (spa_error_entry_t),
853	    offsetof(spa_error_entry_t, se_avl));
854	avl_create(&spa->spa_errlist_last,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857}
858
859static void
860spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
861{
862	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
863	enum zti_modes mode = ztip->zti_mode;
864	uint_t value = ztip->zti_value;
865	uint_t count = ztip->zti_count;
866	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
867	char name[32];
868	uint_t flags = 0;
869	boolean_t batch = B_FALSE;
870
871	if (mode == ZTI_MODE_NULL) {
872		tqs->stqs_count = 0;
873		tqs->stqs_taskq = NULL;
874		return;
875	}
876
877	ASSERT3U(count, >, 0);
878
879	tqs->stqs_count = count;
880	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
881
882	switch (mode) {
883	case ZTI_MODE_FIXED:
884		ASSERT3U(value, >=, 1);
885		value = MAX(value, 1);
886		break;
887
888	case ZTI_MODE_BATCH:
889		batch = B_TRUE;
890		flags |= TASKQ_THREADS_CPU_PCT;
891		value = zio_taskq_batch_pct;
892		break;
893
894	default:
895		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
896		    "spa_activate()",
897		    zio_type_name[t], zio_taskq_types[q], mode, value);
898		break;
899	}
900
901	for (uint_t i = 0; i < count; i++) {
902		taskq_t *tq;
903
904		if (count > 1) {
905			(void) snprintf(name, sizeof (name), "%s_%s_%u",
906			    zio_type_name[t], zio_taskq_types[q], i);
907		} else {
908			(void) snprintf(name, sizeof (name), "%s_%s",
909			    zio_type_name[t], zio_taskq_types[q]);
910		}
911
912#ifdef SYSDC
913		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
914			if (batch)
915				flags |= TASKQ_DC_BATCH;
916
917			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
918			    spa->spa_proc, zio_taskq_basedc, flags);
919		} else {
920#endif
921			pri_t pri = maxclsyspri;
922			/*
923			 * The write issue taskq can be extremely CPU
924			 * intensive.  Run it at slightly lower priority
925			 * than the other taskqs.
926			 */
927			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
928				pri--;
929
930			tq = taskq_create_proc(name, value, pri, 50,
931			    INT_MAX, spa->spa_proc, flags);
932#ifdef SYSDC
933		}
934#endif
935
936		tqs->stqs_taskq[i] = tq;
937	}
938}
939
940static void
941spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
942{
943	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
944
945	if (tqs->stqs_taskq == NULL) {
946		ASSERT0(tqs->stqs_count);
947		return;
948	}
949
950	for (uint_t i = 0; i < tqs->stqs_count; i++) {
951		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
952		taskq_destroy(tqs->stqs_taskq[i]);
953	}
954
955	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
956	tqs->stqs_taskq = NULL;
957}
958
959/*
960 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
961 * Note that a type may have multiple discrete taskqs to avoid lock contention
962 * on the taskq itself. In that case we choose which taskq at random by using
963 * the low bits of gethrtime().
964 */
965void
966spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
967    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
968{
969	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970	taskq_t *tq;
971
972	ASSERT3P(tqs->stqs_taskq, !=, NULL);
973	ASSERT3U(tqs->stqs_count, !=, 0);
974
975	if (tqs->stqs_count == 1) {
976		tq = tqs->stqs_taskq[0];
977	} else {
978#ifdef _KERNEL
979		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
980#else
981		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
982#endif
983	}
984
985	taskq_dispatch_ent(tq, func, arg, flags, ent);
986}
987
988static void
989spa_create_zio_taskqs(spa_t *spa)
990{
991	for (int t = 0; t < ZIO_TYPES; t++) {
992		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
993			spa_taskqs_init(spa, t, q);
994		}
995	}
996}
997
998#ifdef _KERNEL
999#ifdef SPA_PROCESS
1000static void
1001spa_thread(void *arg)
1002{
1003	callb_cpr_t cprinfo;
1004
1005	spa_t *spa = arg;
1006	user_t *pu = PTOU(curproc);
1007
1008	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1009	    spa->spa_name);
1010
1011	ASSERT(curproc != &p0);
1012	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1013	    "zpool-%s", spa->spa_name);
1014	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1015
1016#ifdef PSRSET_BIND
1017	/* bind this thread to the requested psrset */
1018	if (zio_taskq_psrset_bind != PS_NONE) {
1019		pool_lock();
1020		mutex_enter(&cpu_lock);
1021		mutex_enter(&pidlock);
1022		mutex_enter(&curproc->p_lock);
1023
1024		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1025		    0, NULL, NULL) == 0)  {
1026			curthread->t_bind_pset = zio_taskq_psrset_bind;
1027		} else {
1028			cmn_err(CE_WARN,
1029			    "Couldn't bind process for zfs pool \"%s\" to "
1030			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1031		}
1032
1033		mutex_exit(&curproc->p_lock);
1034		mutex_exit(&pidlock);
1035		mutex_exit(&cpu_lock);
1036		pool_unlock();
1037	}
1038#endif
1039
1040#ifdef SYSDC
1041	if (zio_taskq_sysdc) {
1042		sysdc_thread_enter(curthread, 100, 0);
1043	}
1044#endif
1045
1046	spa->spa_proc = curproc;
1047	spa->spa_did = curthread->t_did;
1048
1049	spa_create_zio_taskqs(spa);
1050
1051	mutex_enter(&spa->spa_proc_lock);
1052	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1053
1054	spa->spa_proc_state = SPA_PROC_ACTIVE;
1055	cv_broadcast(&spa->spa_proc_cv);
1056
1057	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1058	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1059		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1060	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1061
1062	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1063	spa->spa_proc_state = SPA_PROC_GONE;
1064	spa->spa_proc = &p0;
1065	cv_broadcast(&spa->spa_proc_cv);
1066	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1067
1068	mutex_enter(&curproc->p_lock);
1069	lwp_exit();
1070}
1071#endif	/* SPA_PROCESS */
1072#endif
1073
1074/*
1075 * Activate an uninitialized pool.
1076 */
1077static void
1078spa_activate(spa_t *spa, int mode)
1079{
1080	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1081
1082	spa->spa_state = POOL_STATE_ACTIVE;
1083	spa->spa_mode = mode;
1084
1085	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1086	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1087
1088	/* Try to create a covering process */
1089	mutex_enter(&spa->spa_proc_lock);
1090	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1091	ASSERT(spa->spa_proc == &p0);
1092	spa->spa_did = 0;
1093
1094#ifdef SPA_PROCESS
1095	/* Only create a process if we're going to be around a while. */
1096	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1097		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1098		    NULL, 0) == 0) {
1099			spa->spa_proc_state = SPA_PROC_CREATED;
1100			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1101				cv_wait(&spa->spa_proc_cv,
1102				    &spa->spa_proc_lock);
1103			}
1104			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1105			ASSERT(spa->spa_proc != &p0);
1106			ASSERT(spa->spa_did != 0);
1107		} else {
1108#ifdef _KERNEL
1109			cmn_err(CE_WARN,
1110			    "Couldn't create process for zfs pool \"%s\"\n",
1111			    spa->spa_name);
1112#endif
1113		}
1114	}
1115#endif	/* SPA_PROCESS */
1116	mutex_exit(&spa->spa_proc_lock);
1117
1118	/* If we didn't create a process, we need to create our taskqs. */
1119	ASSERT(spa->spa_proc == &p0);
1120	if (spa->spa_proc == &p0) {
1121		spa_create_zio_taskqs(spa);
1122	}
1123
1124	/*
1125	 * Start TRIM thread.
1126	 */
1127	trim_thread_create(spa);
1128
1129	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1130	    offsetof(vdev_t, vdev_config_dirty_node));
1131	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1132	    offsetof(objset_t, os_evicting_node));
1133	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_state_dirty_node));
1135
1136	txg_list_create(&spa->spa_vdev_txg_list,
1137	    offsetof(struct vdev, vdev_txg_node));
1138
1139	avl_create(&spa->spa_errlist_scrub,
1140	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1141	    offsetof(spa_error_entry_t, se_avl));
1142	avl_create(&spa->spa_errlist_last,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145}
1146
1147/*
1148 * Opposite of spa_activate().
1149 */
1150static void
1151spa_deactivate(spa_t *spa)
1152{
1153	ASSERT(spa->spa_sync_on == B_FALSE);
1154	ASSERT(spa->spa_dsl_pool == NULL);
1155	ASSERT(spa->spa_root_vdev == NULL);
1156	ASSERT(spa->spa_async_zio_root == NULL);
1157	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1158
1159	/*
1160	 * Stop TRIM thread in case spa_unload() wasn't called directly
1161	 * before spa_deactivate().
1162	 */
1163	trim_thread_destroy(spa);
1164
1165	spa_evicting_os_wait(spa);
1166
1167	txg_list_destroy(&spa->spa_vdev_txg_list);
1168
1169	list_destroy(&spa->spa_config_dirty_list);
1170	list_destroy(&spa->spa_evicting_os_list);
1171	list_destroy(&spa->spa_state_dirty_list);
1172
1173	for (int t = 0; t < ZIO_TYPES; t++) {
1174		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1175			spa_taskqs_fini(spa, t, q);
1176		}
1177	}
1178
1179	metaslab_class_destroy(spa->spa_normal_class);
1180	spa->spa_normal_class = NULL;
1181
1182	metaslab_class_destroy(spa->spa_log_class);
1183	spa->spa_log_class = NULL;
1184
1185	/*
1186	 * If this was part of an import or the open otherwise failed, we may
1187	 * still have errors left in the queues.  Empty them just in case.
1188	 */
1189	spa_errlog_drain(spa);
1190
1191	avl_destroy(&spa->spa_errlist_scrub);
1192	avl_destroy(&spa->spa_errlist_last);
1193
1194	spa->spa_state = POOL_STATE_UNINITIALIZED;
1195
1196	mutex_enter(&spa->spa_proc_lock);
1197	if (spa->spa_proc_state != SPA_PROC_NONE) {
1198		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1199		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1200		cv_broadcast(&spa->spa_proc_cv);
1201		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1202			ASSERT(spa->spa_proc != &p0);
1203			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1204		}
1205		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1206		spa->spa_proc_state = SPA_PROC_NONE;
1207	}
1208	ASSERT(spa->spa_proc == &p0);
1209	mutex_exit(&spa->spa_proc_lock);
1210
1211#ifdef SPA_PROCESS
1212	/*
1213	 * We want to make sure spa_thread() has actually exited the ZFS
1214	 * module, so that the module can't be unloaded out from underneath
1215	 * it.
1216	 */
1217	if (spa->spa_did != 0) {
1218		thread_join(spa->spa_did);
1219		spa->spa_did = 0;
1220	}
1221#endif	/* SPA_PROCESS */
1222}
1223
1224/*
1225 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1226 * will create all the necessary vdevs in the appropriate layout, with each vdev
1227 * in the CLOSED state.  This will prep the pool before open/creation/import.
1228 * All vdev validation is done by the vdev_alloc() routine.
1229 */
1230static int
1231spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1232    uint_t id, int atype)
1233{
1234	nvlist_t **child;
1235	uint_t children;
1236	int error;
1237
1238	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1239		return (error);
1240
1241	if ((*vdp)->vdev_ops->vdev_op_leaf)
1242		return (0);
1243
1244	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1245	    &child, &children);
1246
1247	if (error == ENOENT)
1248		return (0);
1249
1250	if (error) {
1251		vdev_free(*vdp);
1252		*vdp = NULL;
1253		return (SET_ERROR(EINVAL));
1254	}
1255
1256	for (int c = 0; c < children; c++) {
1257		vdev_t *vd;
1258		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1259		    atype)) != 0) {
1260			vdev_free(*vdp);
1261			*vdp = NULL;
1262			return (error);
1263		}
1264	}
1265
1266	ASSERT(*vdp != NULL);
1267
1268	return (0);
1269}
1270
1271/*
1272 * Opposite of spa_load().
1273 */
1274static void
1275spa_unload(spa_t *spa)
1276{
1277	int i;
1278
1279	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1280
1281	/*
1282	 * Stop TRIM thread.
1283	 */
1284	trim_thread_destroy(spa);
1285
1286	/*
1287	 * Stop async tasks.
1288	 */
1289	spa_async_suspend(spa);
1290
1291	/*
1292	 * Stop syncing.
1293	 */
1294	if (spa->spa_sync_on) {
1295		txg_sync_stop(spa->spa_dsl_pool);
1296		spa->spa_sync_on = B_FALSE;
1297	}
1298
1299	/*
1300	 * Wait for any outstanding async I/O to complete.
1301	 */
1302	if (spa->spa_async_zio_root != NULL) {
1303		for (int i = 0; i < max_ncpus; i++)
1304			(void) zio_wait(spa->spa_async_zio_root[i]);
1305		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1306		spa->spa_async_zio_root = NULL;
1307	}
1308
1309	bpobj_close(&spa->spa_deferred_bpobj);
1310
1311	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1312
1313	/*
1314	 * Close all vdevs.
1315	 */
1316	if (spa->spa_root_vdev)
1317		vdev_free(spa->spa_root_vdev);
1318	ASSERT(spa->spa_root_vdev == NULL);
1319
1320	/*
1321	 * Close the dsl pool.
1322	 */
1323	if (spa->spa_dsl_pool) {
1324		dsl_pool_close(spa->spa_dsl_pool);
1325		spa->spa_dsl_pool = NULL;
1326		spa->spa_meta_objset = NULL;
1327	}
1328
1329	ddt_unload(spa);
1330
1331
1332	/*
1333	 * Drop and purge level 2 cache
1334	 */
1335	spa_l2cache_drop(spa);
1336
1337	for (i = 0; i < spa->spa_spares.sav_count; i++)
1338		vdev_free(spa->spa_spares.sav_vdevs[i]);
1339	if (spa->spa_spares.sav_vdevs) {
1340		kmem_free(spa->spa_spares.sav_vdevs,
1341		    spa->spa_spares.sav_count * sizeof (void *));
1342		spa->spa_spares.sav_vdevs = NULL;
1343	}
1344	if (spa->spa_spares.sav_config) {
1345		nvlist_free(spa->spa_spares.sav_config);
1346		spa->spa_spares.sav_config = NULL;
1347	}
1348	spa->spa_spares.sav_count = 0;
1349
1350	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1351		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1352		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1353	}
1354	if (spa->spa_l2cache.sav_vdevs) {
1355		kmem_free(spa->spa_l2cache.sav_vdevs,
1356		    spa->spa_l2cache.sav_count * sizeof (void *));
1357		spa->spa_l2cache.sav_vdevs = NULL;
1358	}
1359	if (spa->spa_l2cache.sav_config) {
1360		nvlist_free(spa->spa_l2cache.sav_config);
1361		spa->spa_l2cache.sav_config = NULL;
1362	}
1363	spa->spa_l2cache.sav_count = 0;
1364
1365	spa->spa_async_suspended = 0;
1366
1367	if (spa->spa_comment != NULL) {
1368		spa_strfree(spa->spa_comment);
1369		spa->spa_comment = NULL;
1370	}
1371
1372	spa_config_exit(spa, SCL_ALL, FTAG);
1373}
1374
1375/*
1376 * Load (or re-load) the current list of vdevs describing the active spares for
1377 * this pool.  When this is called, we have some form of basic information in
1378 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1379 * then re-generate a more complete list including status information.
1380 */
1381static void
1382spa_load_spares(spa_t *spa)
1383{
1384	nvlist_t **spares;
1385	uint_t nspares;
1386	int i;
1387	vdev_t *vd, *tvd;
1388
1389	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1390
1391	/*
1392	 * First, close and free any existing spare vdevs.
1393	 */
1394	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1395		vd = spa->spa_spares.sav_vdevs[i];
1396
1397		/* Undo the call to spa_activate() below */
1398		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1399		    B_FALSE)) != NULL && tvd->vdev_isspare)
1400			spa_spare_remove(tvd);
1401		vdev_close(vd);
1402		vdev_free(vd);
1403	}
1404
1405	if (spa->spa_spares.sav_vdevs)
1406		kmem_free(spa->spa_spares.sav_vdevs,
1407		    spa->spa_spares.sav_count * sizeof (void *));
1408
1409	if (spa->spa_spares.sav_config == NULL)
1410		nspares = 0;
1411	else
1412		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1413		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1414
1415	spa->spa_spares.sav_count = (int)nspares;
1416	spa->spa_spares.sav_vdevs = NULL;
1417
1418	if (nspares == 0)
1419		return;
1420
1421	/*
1422	 * Construct the array of vdevs, opening them to get status in the
1423	 * process.   For each spare, there is potentially two different vdev_t
1424	 * structures associated with it: one in the list of spares (used only
1425	 * for basic validation purposes) and one in the active vdev
1426	 * configuration (if it's spared in).  During this phase we open and
1427	 * validate each vdev on the spare list.  If the vdev also exists in the
1428	 * active configuration, then we also mark this vdev as an active spare.
1429	 */
1430	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1431	    KM_SLEEP);
1432	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1433		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1434		    VDEV_ALLOC_SPARE) == 0);
1435		ASSERT(vd != NULL);
1436
1437		spa->spa_spares.sav_vdevs[i] = vd;
1438
1439		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1440		    B_FALSE)) != NULL) {
1441			if (!tvd->vdev_isspare)
1442				spa_spare_add(tvd);
1443
1444			/*
1445			 * We only mark the spare active if we were successfully
1446			 * able to load the vdev.  Otherwise, importing a pool
1447			 * with a bad active spare would result in strange
1448			 * behavior, because multiple pool would think the spare
1449			 * is actively in use.
1450			 *
1451			 * There is a vulnerability here to an equally bizarre
1452			 * circumstance, where a dead active spare is later
1453			 * brought back to life (onlined or otherwise).  Given
1454			 * the rarity of this scenario, and the extra complexity
1455			 * it adds, we ignore the possibility.
1456			 */
1457			if (!vdev_is_dead(tvd))
1458				spa_spare_activate(tvd);
1459		}
1460
1461		vd->vdev_top = vd;
1462		vd->vdev_aux = &spa->spa_spares;
1463
1464		if (vdev_open(vd) != 0)
1465			continue;
1466
1467		if (vdev_validate_aux(vd) == 0)
1468			spa_spare_add(vd);
1469	}
1470
1471	/*
1472	 * Recompute the stashed list of spares, with status information
1473	 * this time.
1474	 */
1475	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1476	    DATA_TYPE_NVLIST_ARRAY) == 0);
1477
1478	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1479	    KM_SLEEP);
1480	for (i = 0; i < spa->spa_spares.sav_count; i++)
1481		spares[i] = vdev_config_generate(spa,
1482		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1483	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1484	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		nvlist_free(spares[i]);
1487	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1488}
1489
1490/*
1491 * Load (or re-load) the current list of vdevs describing the active l2cache for
1492 * this pool.  When this is called, we have some form of basic information in
1493 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1494 * then re-generate a more complete list including status information.
1495 * Devices which are already active have their details maintained, and are
1496 * not re-opened.
1497 */
1498static void
1499spa_load_l2cache(spa_t *spa)
1500{
1501	nvlist_t **l2cache;
1502	uint_t nl2cache;
1503	int i, j, oldnvdevs;
1504	uint64_t guid;
1505	vdev_t *vd, **oldvdevs, **newvdevs;
1506	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1507
1508	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1509
1510	if (sav->sav_config != NULL) {
1511		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1512		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1513		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1514	} else {
1515		nl2cache = 0;
1516		newvdevs = NULL;
1517	}
1518
1519	oldvdevs = sav->sav_vdevs;
1520	oldnvdevs = sav->sav_count;
1521	sav->sav_vdevs = NULL;
1522	sav->sav_count = 0;
1523
1524	/*
1525	 * Process new nvlist of vdevs.
1526	 */
1527	for (i = 0; i < nl2cache; i++) {
1528		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1529		    &guid) == 0);
1530
1531		newvdevs[i] = NULL;
1532		for (j = 0; j < oldnvdevs; j++) {
1533			vd = oldvdevs[j];
1534			if (vd != NULL && guid == vd->vdev_guid) {
1535				/*
1536				 * Retain previous vdev for add/remove ops.
1537				 */
1538				newvdevs[i] = vd;
1539				oldvdevs[j] = NULL;
1540				break;
1541			}
1542		}
1543
1544		if (newvdevs[i] == NULL) {
1545			/*
1546			 * Create new vdev
1547			 */
1548			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1549			    VDEV_ALLOC_L2CACHE) == 0);
1550			ASSERT(vd != NULL);
1551			newvdevs[i] = vd;
1552
1553			/*
1554			 * Commit this vdev as an l2cache device,
1555			 * even if it fails to open.
1556			 */
1557			spa_l2cache_add(vd);
1558
1559			vd->vdev_top = vd;
1560			vd->vdev_aux = sav;
1561
1562			spa_l2cache_activate(vd);
1563
1564			if (vdev_open(vd) != 0)
1565				continue;
1566
1567			(void) vdev_validate_aux(vd);
1568
1569			if (!vdev_is_dead(vd))
1570				l2arc_add_vdev(spa, vd);
1571		}
1572	}
1573
1574	/*
1575	 * Purge vdevs that were dropped
1576	 */
1577	for (i = 0; i < oldnvdevs; i++) {
1578		uint64_t pool;
1579
1580		vd = oldvdevs[i];
1581		if (vd != NULL) {
1582			ASSERT(vd->vdev_isl2cache);
1583
1584			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1585			    pool != 0ULL && l2arc_vdev_present(vd))
1586				l2arc_remove_vdev(vd);
1587			vdev_clear_stats(vd);
1588			vdev_free(vd);
1589		}
1590	}
1591
1592	if (oldvdevs)
1593		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1594
1595	if (sav->sav_config == NULL)
1596		goto out;
1597
1598	sav->sav_vdevs = newvdevs;
1599	sav->sav_count = (int)nl2cache;
1600
1601	/*
1602	 * Recompute the stashed list of l2cache devices, with status
1603	 * information this time.
1604	 */
1605	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1606	    DATA_TYPE_NVLIST_ARRAY) == 0);
1607
1608	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1609	for (i = 0; i < sav->sav_count; i++)
1610		l2cache[i] = vdev_config_generate(spa,
1611		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1612	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1613	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1614out:
1615	for (i = 0; i < sav->sav_count; i++)
1616		nvlist_free(l2cache[i]);
1617	if (sav->sav_count)
1618		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1619}
1620
1621static int
1622load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1623{
1624	dmu_buf_t *db;
1625	char *packed = NULL;
1626	size_t nvsize = 0;
1627	int error;
1628	*value = NULL;
1629
1630	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1631	if (error != 0)
1632		return (error);
1633
1634	nvsize = *(uint64_t *)db->db_data;
1635	dmu_buf_rele(db, FTAG);
1636
1637	packed = kmem_alloc(nvsize, KM_SLEEP);
1638	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1639	    DMU_READ_PREFETCH);
1640	if (error == 0)
1641		error = nvlist_unpack(packed, nvsize, value, 0);
1642	kmem_free(packed, nvsize);
1643
1644	return (error);
1645}
1646
1647/*
1648 * Checks to see if the given vdev could not be opened, in which case we post a
1649 * sysevent to notify the autoreplace code that the device has been removed.
1650 */
1651static void
1652spa_check_removed(vdev_t *vd)
1653{
1654	for (int c = 0; c < vd->vdev_children; c++)
1655		spa_check_removed(vd->vdev_child[c]);
1656
1657	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1658	    !vd->vdev_ishole) {
1659		zfs_post_autoreplace(vd->vdev_spa, vd);
1660		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1661	}
1662}
1663
1664/*
1665 * Validate the current config against the MOS config
1666 */
1667static boolean_t
1668spa_config_valid(spa_t *spa, nvlist_t *config)
1669{
1670	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1671	nvlist_t *nv;
1672
1673	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1674
1675	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1676	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1677
1678	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1679
1680	/*
1681	 * If we're doing a normal import, then build up any additional
1682	 * diagnostic information about missing devices in this config.
1683	 * We'll pass this up to the user for further processing.
1684	 */
1685	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1686		nvlist_t **child, *nv;
1687		uint64_t idx = 0;
1688
1689		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1690		    KM_SLEEP);
1691		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1692
1693		for (int c = 0; c < rvd->vdev_children; c++) {
1694			vdev_t *tvd = rvd->vdev_child[c];
1695			vdev_t *mtvd  = mrvd->vdev_child[c];
1696
1697			if (tvd->vdev_ops == &vdev_missing_ops &&
1698			    mtvd->vdev_ops != &vdev_missing_ops &&
1699			    mtvd->vdev_islog)
1700				child[idx++] = vdev_config_generate(spa, mtvd,
1701				    B_FALSE, 0);
1702		}
1703
1704		if (idx) {
1705			VERIFY(nvlist_add_nvlist_array(nv,
1706			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1707			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1708			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1709
1710			for (int i = 0; i < idx; i++)
1711				nvlist_free(child[i]);
1712		}
1713		nvlist_free(nv);
1714		kmem_free(child, rvd->vdev_children * sizeof (char **));
1715	}
1716
1717	/*
1718	 * Compare the root vdev tree with the information we have
1719	 * from the MOS config (mrvd). Check each top-level vdev
1720	 * with the corresponding MOS config top-level (mtvd).
1721	 */
1722	for (int c = 0; c < rvd->vdev_children; c++) {
1723		vdev_t *tvd = rvd->vdev_child[c];
1724		vdev_t *mtvd  = mrvd->vdev_child[c];
1725
1726		/*
1727		 * Resolve any "missing" vdevs in the current configuration.
1728		 * If we find that the MOS config has more accurate information
1729		 * about the top-level vdev then use that vdev instead.
1730		 */
1731		if (tvd->vdev_ops == &vdev_missing_ops &&
1732		    mtvd->vdev_ops != &vdev_missing_ops) {
1733
1734			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1735				continue;
1736
1737			/*
1738			 * Device specific actions.
1739			 */
1740			if (mtvd->vdev_islog) {
1741				spa_set_log_state(spa, SPA_LOG_CLEAR);
1742			} else {
1743				/*
1744				 * XXX - once we have 'readonly' pool
1745				 * support we should be able to handle
1746				 * missing data devices by transitioning
1747				 * the pool to readonly.
1748				 */
1749				continue;
1750			}
1751
1752			/*
1753			 * Swap the missing vdev with the data we were
1754			 * able to obtain from the MOS config.
1755			 */
1756			vdev_remove_child(rvd, tvd);
1757			vdev_remove_child(mrvd, mtvd);
1758
1759			vdev_add_child(rvd, mtvd);
1760			vdev_add_child(mrvd, tvd);
1761
1762			spa_config_exit(spa, SCL_ALL, FTAG);
1763			vdev_load(mtvd);
1764			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1765
1766			vdev_reopen(rvd);
1767		} else if (mtvd->vdev_islog) {
1768			/*
1769			 * Load the slog device's state from the MOS config
1770			 * since it's possible that the label does not
1771			 * contain the most up-to-date information.
1772			 */
1773			vdev_load_log_state(tvd, mtvd);
1774			vdev_reopen(tvd);
1775		}
1776	}
1777	vdev_free(mrvd);
1778	spa_config_exit(spa, SCL_ALL, FTAG);
1779
1780	/*
1781	 * Ensure we were able to validate the config.
1782	 */
1783	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1784}
1785
1786/*
1787 * Check for missing log devices
1788 */
1789static boolean_t
1790spa_check_logs(spa_t *spa)
1791{
1792	boolean_t rv = B_FALSE;
1793	dsl_pool_t *dp = spa_get_dsl(spa);
1794
1795	switch (spa->spa_log_state) {
1796	case SPA_LOG_MISSING:
1797		/* need to recheck in case slog has been restored */
1798	case SPA_LOG_UNKNOWN:
1799		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1800		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1801		if (rv)
1802			spa_set_log_state(spa, SPA_LOG_MISSING);
1803		break;
1804	}
1805	return (rv);
1806}
1807
1808static boolean_t
1809spa_passivate_log(spa_t *spa)
1810{
1811	vdev_t *rvd = spa->spa_root_vdev;
1812	boolean_t slog_found = B_FALSE;
1813
1814	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1815
1816	if (!spa_has_slogs(spa))
1817		return (B_FALSE);
1818
1819	for (int c = 0; c < rvd->vdev_children; c++) {
1820		vdev_t *tvd = rvd->vdev_child[c];
1821		metaslab_group_t *mg = tvd->vdev_mg;
1822
1823		if (tvd->vdev_islog) {
1824			metaslab_group_passivate(mg);
1825			slog_found = B_TRUE;
1826		}
1827	}
1828
1829	return (slog_found);
1830}
1831
1832static void
1833spa_activate_log(spa_t *spa)
1834{
1835	vdev_t *rvd = spa->spa_root_vdev;
1836
1837	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1838
1839	for (int c = 0; c < rvd->vdev_children; c++) {
1840		vdev_t *tvd = rvd->vdev_child[c];
1841		metaslab_group_t *mg = tvd->vdev_mg;
1842
1843		if (tvd->vdev_islog)
1844			metaslab_group_activate(mg);
1845	}
1846}
1847
1848int
1849spa_offline_log(spa_t *spa)
1850{
1851	int error;
1852
1853	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1854	    NULL, DS_FIND_CHILDREN);
1855	if (error == 0) {
1856		/*
1857		 * We successfully offlined the log device, sync out the
1858		 * current txg so that the "stubby" block can be removed
1859		 * by zil_sync().
1860		 */
1861		txg_wait_synced(spa->spa_dsl_pool, 0);
1862	}
1863	return (error);
1864}
1865
1866static void
1867spa_aux_check_removed(spa_aux_vdev_t *sav)
1868{
1869	int i;
1870
1871	for (i = 0; i < sav->sav_count; i++)
1872		spa_check_removed(sav->sav_vdevs[i]);
1873}
1874
1875void
1876spa_claim_notify(zio_t *zio)
1877{
1878	spa_t *spa = zio->io_spa;
1879
1880	if (zio->io_error)
1881		return;
1882
1883	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1884	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1885		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1886	mutex_exit(&spa->spa_props_lock);
1887}
1888
1889typedef struct spa_load_error {
1890	uint64_t	sle_meta_count;
1891	uint64_t	sle_data_count;
1892} spa_load_error_t;
1893
1894static void
1895spa_load_verify_done(zio_t *zio)
1896{
1897	blkptr_t *bp = zio->io_bp;
1898	spa_load_error_t *sle = zio->io_private;
1899	dmu_object_type_t type = BP_GET_TYPE(bp);
1900	int error = zio->io_error;
1901	spa_t *spa = zio->io_spa;
1902
1903	if (error) {
1904		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1905		    type != DMU_OT_INTENT_LOG)
1906			atomic_inc_64(&sle->sle_meta_count);
1907		else
1908			atomic_inc_64(&sle->sle_data_count);
1909	}
1910	zio_data_buf_free(zio->io_data, zio->io_size);
1911
1912	mutex_enter(&spa->spa_scrub_lock);
1913	spa->spa_scrub_inflight--;
1914	cv_broadcast(&spa->spa_scrub_io_cv);
1915	mutex_exit(&spa->spa_scrub_lock);
1916}
1917
1918/*
1919 * Maximum number of concurrent scrub i/os to create while verifying
1920 * a pool while importing it.
1921 */
1922int spa_load_verify_maxinflight = 10000;
1923boolean_t spa_load_verify_metadata = B_TRUE;
1924boolean_t spa_load_verify_data = B_TRUE;
1925
1926SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1927    &spa_load_verify_maxinflight, 0,
1928    "Maximum number of concurrent scrub I/Os to create while verifying a "
1929    "pool while importing it");
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1932    &spa_load_verify_metadata, 0,
1933    "Check metadata on import?");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1936    &spa_load_verify_data, 0,
1937    "Check user data on import?");
1938
1939/*ARGSUSED*/
1940static int
1941spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1942    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1943{
1944	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1945		return (0);
1946	/*
1947	 * Note: normally this routine will not be called if
1948	 * spa_load_verify_metadata is not set.  However, it may be useful
1949	 * to manually set the flag after the traversal has begun.
1950	 */
1951	if (!spa_load_verify_metadata)
1952		return (0);
1953	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1954		return (0);
1955
1956	zio_t *rio = arg;
1957	size_t size = BP_GET_PSIZE(bp);
1958	void *data = zio_data_buf_alloc(size);
1959
1960	mutex_enter(&spa->spa_scrub_lock);
1961	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1962		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1963	spa->spa_scrub_inflight++;
1964	mutex_exit(&spa->spa_scrub_lock);
1965
1966	zio_nowait(zio_read(rio, spa, bp, data, size,
1967	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1968	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1969	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1970	return (0);
1971}
1972
1973static int
1974spa_load_verify(spa_t *spa)
1975{
1976	zio_t *rio;
1977	spa_load_error_t sle = { 0 };
1978	zpool_rewind_policy_t policy;
1979	boolean_t verify_ok = B_FALSE;
1980	int error = 0;
1981
1982	zpool_get_rewind_policy(spa->spa_config, &policy);
1983
1984	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1985		return (0);
1986
1987	rio = zio_root(spa, NULL, &sle,
1988	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1989
1990	if (spa_load_verify_metadata) {
1991		error = traverse_pool(spa, spa->spa_verify_min_txg,
1992		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1993		    spa_load_verify_cb, rio);
1994	}
1995
1996	(void) zio_wait(rio);
1997
1998	spa->spa_load_meta_errors = sle.sle_meta_count;
1999	spa->spa_load_data_errors = sle.sle_data_count;
2000
2001	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2002	    sle.sle_data_count <= policy.zrp_maxdata) {
2003		int64_t loss = 0;
2004
2005		verify_ok = B_TRUE;
2006		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2007		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2008
2009		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2010		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2011		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2012		VERIFY(nvlist_add_int64(spa->spa_load_info,
2013		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2014		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2016	} else {
2017		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2018	}
2019
2020	if (error) {
2021		if (error != ENXIO && error != EIO)
2022			error = SET_ERROR(EIO);
2023		return (error);
2024	}
2025
2026	return (verify_ok ? 0 : EIO);
2027}
2028
2029/*
2030 * Find a value in the pool props object.
2031 */
2032static void
2033spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2034{
2035	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2036	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2037}
2038
2039/*
2040 * Find a value in the pool directory object.
2041 */
2042static int
2043spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2044{
2045	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2046	    name, sizeof (uint64_t), 1, val));
2047}
2048
2049static int
2050spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2051{
2052	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2053	return (err);
2054}
2055
2056/*
2057 * Fix up config after a partly-completed split.  This is done with the
2058 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2059 * pool have that entry in their config, but only the splitting one contains
2060 * a list of all the guids of the vdevs that are being split off.
2061 *
2062 * This function determines what to do with that list: either rejoin
2063 * all the disks to the pool, or complete the splitting process.  To attempt
2064 * the rejoin, each disk that is offlined is marked online again, and
2065 * we do a reopen() call.  If the vdev label for every disk that was
2066 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2067 * then we call vdev_split() on each disk, and complete the split.
2068 *
2069 * Otherwise we leave the config alone, with all the vdevs in place in
2070 * the original pool.
2071 */
2072static void
2073spa_try_repair(spa_t *spa, nvlist_t *config)
2074{
2075	uint_t extracted;
2076	uint64_t *glist;
2077	uint_t i, gcount;
2078	nvlist_t *nvl;
2079	vdev_t **vd;
2080	boolean_t attempt_reopen;
2081
2082	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2083		return;
2084
2085	/* check that the config is complete */
2086	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2087	    &glist, &gcount) != 0)
2088		return;
2089
2090	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2091
2092	/* attempt to online all the vdevs & validate */
2093	attempt_reopen = B_TRUE;
2094	for (i = 0; i < gcount; i++) {
2095		if (glist[i] == 0)	/* vdev is hole */
2096			continue;
2097
2098		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2099		if (vd[i] == NULL) {
2100			/*
2101			 * Don't bother attempting to reopen the disks;
2102			 * just do the split.
2103			 */
2104			attempt_reopen = B_FALSE;
2105		} else {
2106			/* attempt to re-online it */
2107			vd[i]->vdev_offline = B_FALSE;
2108		}
2109	}
2110
2111	if (attempt_reopen) {
2112		vdev_reopen(spa->spa_root_vdev);
2113
2114		/* check each device to see what state it's in */
2115		for (extracted = 0, i = 0; i < gcount; i++) {
2116			if (vd[i] != NULL &&
2117			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2118				break;
2119			++extracted;
2120		}
2121	}
2122
2123	/*
2124	 * If every disk has been moved to the new pool, or if we never
2125	 * even attempted to look at them, then we split them off for
2126	 * good.
2127	 */
2128	if (!attempt_reopen || gcount == extracted) {
2129		for (i = 0; i < gcount; i++)
2130			if (vd[i] != NULL)
2131				vdev_split(vd[i]);
2132		vdev_reopen(spa->spa_root_vdev);
2133	}
2134
2135	kmem_free(vd, gcount * sizeof (vdev_t *));
2136}
2137
2138static int
2139spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2140    boolean_t mosconfig)
2141{
2142	nvlist_t *config = spa->spa_config;
2143	char *ereport = FM_EREPORT_ZFS_POOL;
2144	char *comment;
2145	int error;
2146	uint64_t pool_guid;
2147	nvlist_t *nvl;
2148
2149	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2150		return (SET_ERROR(EINVAL));
2151
2152	ASSERT(spa->spa_comment == NULL);
2153	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2154		spa->spa_comment = spa_strdup(comment);
2155
2156	/*
2157	 * Versioning wasn't explicitly added to the label until later, so if
2158	 * it's not present treat it as the initial version.
2159	 */
2160	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2161	    &spa->spa_ubsync.ub_version) != 0)
2162		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2163
2164	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2165	    &spa->spa_config_txg);
2166
2167	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2168	    spa_guid_exists(pool_guid, 0)) {
2169		error = SET_ERROR(EEXIST);
2170	} else {
2171		spa->spa_config_guid = pool_guid;
2172
2173		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2174		    &nvl) == 0) {
2175			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2176			    KM_SLEEP) == 0);
2177		}
2178
2179		nvlist_free(spa->spa_load_info);
2180		spa->spa_load_info = fnvlist_alloc();
2181
2182		gethrestime(&spa->spa_loaded_ts);
2183		error = spa_load_impl(spa, pool_guid, config, state, type,
2184		    mosconfig, &ereport);
2185	}
2186
2187	/*
2188	 * Don't count references from objsets that are already closed
2189	 * and are making their way through the eviction process.
2190	 */
2191	spa_evicting_os_wait(spa);
2192	spa->spa_minref = refcount_count(&spa->spa_refcount);
2193	if (error) {
2194		if (error != EEXIST) {
2195			spa->spa_loaded_ts.tv_sec = 0;
2196			spa->spa_loaded_ts.tv_nsec = 0;
2197		}
2198		if (error != EBADF) {
2199			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2200		}
2201	}
2202	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2203	spa->spa_ena = 0;
2204
2205	return (error);
2206}
2207
2208/*
2209 * Load an existing storage pool, using the pool's builtin spa_config as a
2210 * source of configuration information.
2211 */
2212static int
2213spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2214    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2215    char **ereport)
2216{
2217	int error = 0;
2218	nvlist_t *nvroot = NULL;
2219	nvlist_t *label;
2220	vdev_t *rvd;
2221	uberblock_t *ub = &spa->spa_uberblock;
2222	uint64_t children, config_cache_txg = spa->spa_config_txg;
2223	int orig_mode = spa->spa_mode;
2224	int parse;
2225	uint64_t obj;
2226	boolean_t missing_feat_write = B_FALSE;
2227
2228	/*
2229	 * If this is an untrusted config, access the pool in read-only mode.
2230	 * This prevents things like resilvering recently removed devices.
2231	 */
2232	if (!mosconfig)
2233		spa->spa_mode = FREAD;
2234
2235	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2236
2237	spa->spa_load_state = state;
2238
2239	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2240		return (SET_ERROR(EINVAL));
2241
2242	parse = (type == SPA_IMPORT_EXISTING ?
2243	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2244
2245	/*
2246	 * Create "The Godfather" zio to hold all async IOs
2247	 */
2248	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2249	    KM_SLEEP);
2250	for (int i = 0; i < max_ncpus; i++) {
2251		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2252		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2253		    ZIO_FLAG_GODFATHER);
2254	}
2255
2256	/*
2257	 * Parse the configuration into a vdev tree.  We explicitly set the
2258	 * value that will be returned by spa_version() since parsing the
2259	 * configuration requires knowing the version number.
2260	 */
2261	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2262	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2263	spa_config_exit(spa, SCL_ALL, FTAG);
2264
2265	if (error != 0)
2266		return (error);
2267
2268	ASSERT(spa->spa_root_vdev == rvd);
2269	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2270	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2271
2272	if (type != SPA_IMPORT_ASSEMBLE) {
2273		ASSERT(spa_guid(spa) == pool_guid);
2274	}
2275
2276	/*
2277	 * Try to open all vdevs, loading each label in the process.
2278	 */
2279	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2280	error = vdev_open(rvd);
2281	spa_config_exit(spa, SCL_ALL, FTAG);
2282	if (error != 0)
2283		return (error);
2284
2285	/*
2286	 * We need to validate the vdev labels against the configuration that
2287	 * we have in hand, which is dependent on the setting of mosconfig. If
2288	 * mosconfig is true then we're validating the vdev labels based on
2289	 * that config.  Otherwise, we're validating against the cached config
2290	 * (zpool.cache) that was read when we loaded the zfs module, and then
2291	 * later we will recursively call spa_load() and validate against
2292	 * the vdev config.
2293	 *
2294	 * If we're assembling a new pool that's been split off from an
2295	 * existing pool, the labels haven't yet been updated so we skip
2296	 * validation for now.
2297	 */
2298	if (type != SPA_IMPORT_ASSEMBLE) {
2299		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2300		error = vdev_validate(rvd, mosconfig);
2301		spa_config_exit(spa, SCL_ALL, FTAG);
2302
2303		if (error != 0)
2304			return (error);
2305
2306		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2307			return (SET_ERROR(ENXIO));
2308	}
2309
2310	/*
2311	 * Find the best uberblock.
2312	 */
2313	vdev_uberblock_load(rvd, ub, &label);
2314
2315	/*
2316	 * If we weren't able to find a single valid uberblock, return failure.
2317	 */
2318	if (ub->ub_txg == 0) {
2319		nvlist_free(label);
2320		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2321	}
2322
2323	/*
2324	 * If the pool has an unsupported version we can't open it.
2325	 */
2326	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2327		nvlist_free(label);
2328		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2329	}
2330
2331	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2332		nvlist_t *features;
2333
2334		/*
2335		 * If we weren't able to find what's necessary for reading the
2336		 * MOS in the label, return failure.
2337		 */
2338		if (label == NULL || nvlist_lookup_nvlist(label,
2339		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2340			nvlist_free(label);
2341			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2342			    ENXIO));
2343		}
2344
2345		/*
2346		 * Update our in-core representation with the definitive values
2347		 * from the label.
2348		 */
2349		nvlist_free(spa->spa_label_features);
2350		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2351	}
2352
2353	nvlist_free(label);
2354
2355	/*
2356	 * Look through entries in the label nvlist's features_for_read. If
2357	 * there is a feature listed there which we don't understand then we
2358	 * cannot open a pool.
2359	 */
2360	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2361		nvlist_t *unsup_feat;
2362
2363		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2364		    0);
2365
2366		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2367		    NULL); nvp != NULL;
2368		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2369			if (!zfeature_is_supported(nvpair_name(nvp))) {
2370				VERIFY(nvlist_add_string(unsup_feat,
2371				    nvpair_name(nvp), "") == 0);
2372			}
2373		}
2374
2375		if (!nvlist_empty(unsup_feat)) {
2376			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2377			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2378			nvlist_free(unsup_feat);
2379			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2380			    ENOTSUP));
2381		}
2382
2383		nvlist_free(unsup_feat);
2384	}
2385
2386	/*
2387	 * If the vdev guid sum doesn't match the uberblock, we have an
2388	 * incomplete configuration.  We first check to see if the pool
2389	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2390	 * If it is, defer the vdev_guid_sum check till later so we
2391	 * can handle missing vdevs.
2392	 */
2393	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2394	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2395	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2396		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2397
2398	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2399		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2400		spa_try_repair(spa, config);
2401		spa_config_exit(spa, SCL_ALL, FTAG);
2402		nvlist_free(spa->spa_config_splitting);
2403		spa->spa_config_splitting = NULL;
2404	}
2405
2406	/*
2407	 * Initialize internal SPA structures.
2408	 */
2409	spa->spa_state = POOL_STATE_ACTIVE;
2410	spa->spa_ubsync = spa->spa_uberblock;
2411	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2412	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2413	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2414	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2415	spa->spa_claim_max_txg = spa->spa_first_txg;
2416	spa->spa_prev_software_version = ub->ub_software_version;
2417
2418	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2419	if (error)
2420		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2422
2423	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2424		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425
2426	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2427		boolean_t missing_feat_read = B_FALSE;
2428		nvlist_t *unsup_feat, *enabled_feat;
2429
2430		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2431		    &spa->spa_feat_for_read_obj) != 0) {
2432			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433		}
2434
2435		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2436		    &spa->spa_feat_for_write_obj) != 0) {
2437			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438		}
2439
2440		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2441		    &spa->spa_feat_desc_obj) != 0) {
2442			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443		}
2444
2445		enabled_feat = fnvlist_alloc();
2446		unsup_feat = fnvlist_alloc();
2447
2448		if (!spa_features_check(spa, B_FALSE,
2449		    unsup_feat, enabled_feat))
2450			missing_feat_read = B_TRUE;
2451
2452		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2453			if (!spa_features_check(spa, B_TRUE,
2454			    unsup_feat, enabled_feat)) {
2455				missing_feat_write = B_TRUE;
2456			}
2457		}
2458
2459		fnvlist_add_nvlist(spa->spa_load_info,
2460		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2461
2462		if (!nvlist_empty(unsup_feat)) {
2463			fnvlist_add_nvlist(spa->spa_load_info,
2464			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2465		}
2466
2467		fnvlist_free(enabled_feat);
2468		fnvlist_free(unsup_feat);
2469
2470		if (!missing_feat_read) {
2471			fnvlist_add_boolean(spa->spa_load_info,
2472			    ZPOOL_CONFIG_CAN_RDONLY);
2473		}
2474
2475		/*
2476		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2477		 * twofold: to determine whether the pool is available for
2478		 * import in read-write mode and (if it is not) whether the
2479		 * pool is available for import in read-only mode. If the pool
2480		 * is available for import in read-write mode, it is displayed
2481		 * as available in userland; if it is not available for import
2482		 * in read-only mode, it is displayed as unavailable in
2483		 * userland. If the pool is available for import in read-only
2484		 * mode but not read-write mode, it is displayed as unavailable
2485		 * in userland with a special note that the pool is actually
2486		 * available for open in read-only mode.
2487		 *
2488		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2489		 * missing a feature for write, we must first determine whether
2490		 * the pool can be opened read-only before returning to
2491		 * userland in order to know whether to display the
2492		 * abovementioned note.
2493		 */
2494		if (missing_feat_read || (missing_feat_write &&
2495		    spa_writeable(spa))) {
2496			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2497			    ENOTSUP));
2498		}
2499
2500		/*
2501		 * Load refcounts for ZFS features from disk into an in-memory
2502		 * cache during SPA initialization.
2503		 */
2504		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2505			uint64_t refcount;
2506
2507			error = feature_get_refcount_from_disk(spa,
2508			    &spa_feature_table[i], &refcount);
2509			if (error == 0) {
2510				spa->spa_feat_refcount_cache[i] = refcount;
2511			} else if (error == ENOTSUP) {
2512				spa->spa_feat_refcount_cache[i] =
2513				    SPA_FEATURE_DISABLED;
2514			} else {
2515				return (spa_vdev_err(rvd,
2516				    VDEV_AUX_CORRUPT_DATA, EIO));
2517			}
2518		}
2519	}
2520
2521	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2522		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2523		    &spa->spa_feat_enabled_txg_obj) != 0)
2524			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525	}
2526
2527	spa->spa_is_initializing = B_TRUE;
2528	error = dsl_pool_open(spa->spa_dsl_pool);
2529	spa->spa_is_initializing = B_FALSE;
2530	if (error != 0)
2531		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532
2533	if (!mosconfig) {
2534		uint64_t hostid;
2535		nvlist_t *policy = NULL, *nvconfig;
2536
2537		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2538			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539
2540		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2541		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2542			char *hostname;
2543			unsigned long myhostid = 0;
2544
2545			VERIFY(nvlist_lookup_string(nvconfig,
2546			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2547
2548#ifdef	_KERNEL
2549			myhostid = zone_get_hostid(NULL);
2550#else	/* _KERNEL */
2551			/*
2552			 * We're emulating the system's hostid in userland, so
2553			 * we can't use zone_get_hostid().
2554			 */
2555			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2556#endif	/* _KERNEL */
2557			if (check_hostid && hostid != 0 && myhostid != 0 &&
2558			    hostid != myhostid) {
2559				nvlist_free(nvconfig);
2560				cmn_err(CE_WARN, "pool '%s' could not be "
2561				    "loaded as it was last accessed by "
2562				    "another system (host: %s hostid: 0x%lx). "
2563				    "See: http://illumos.org/msg/ZFS-8000-EY",
2564				    spa_name(spa), hostname,
2565				    (unsigned long)hostid);
2566				return (SET_ERROR(EBADF));
2567			}
2568		}
2569		if (nvlist_lookup_nvlist(spa->spa_config,
2570		    ZPOOL_REWIND_POLICY, &policy) == 0)
2571			VERIFY(nvlist_add_nvlist(nvconfig,
2572			    ZPOOL_REWIND_POLICY, policy) == 0);
2573
2574		spa_config_set(spa, nvconfig);
2575		spa_unload(spa);
2576		spa_deactivate(spa);
2577		spa_activate(spa, orig_mode);
2578
2579		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2580	}
2581
2582	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2583		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2585	if (error != 0)
2586		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587
2588	/*
2589	 * Load the bit that tells us to use the new accounting function
2590	 * (raid-z deflation).  If we have an older pool, this will not
2591	 * be present.
2592	 */
2593	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2594	if (error != 0 && error != ENOENT)
2595		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596
2597	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2598	    &spa->spa_creation_version);
2599	if (error != 0 && error != ENOENT)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601
2602	/*
2603	 * Load the persistent error log.  If we have an older pool, this will
2604	 * not be present.
2605	 */
2606	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2607	if (error != 0 && error != ENOENT)
2608		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609
2610	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2611	    &spa->spa_errlog_scrub);
2612	if (error != 0 && error != ENOENT)
2613		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614
2615	/*
2616	 * Load the history object.  If we have an older pool, this
2617	 * will not be present.
2618	 */
2619	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2620	if (error != 0 && error != ENOENT)
2621		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622
2623	/*
2624	 * If we're assembling the pool from the split-off vdevs of
2625	 * an existing pool, we don't want to attach the spares & cache
2626	 * devices.
2627	 */
2628
2629	/*
2630	 * Load any hot spares for this pool.
2631	 */
2632	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2636		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2637		if (load_nvlist(spa, spa->spa_spares.sav_object,
2638		    &spa->spa_spares.sav_config) != 0)
2639			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640
2641		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2642		spa_load_spares(spa);
2643		spa_config_exit(spa, SCL_ALL, FTAG);
2644	} else if (error == 0) {
2645		spa->spa_spares.sav_sync = B_TRUE;
2646	}
2647
2648	/*
2649	 * Load any level 2 ARC devices for this pool.
2650	 */
2651	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2652	    &spa->spa_l2cache.sav_object);
2653	if (error != 0 && error != ENOENT)
2654		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2655	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2656		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2657		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2658		    &spa->spa_l2cache.sav_config) != 0)
2659			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2660
2661		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2662		spa_load_l2cache(spa);
2663		spa_config_exit(spa, SCL_ALL, FTAG);
2664	} else if (error == 0) {
2665		spa->spa_l2cache.sav_sync = B_TRUE;
2666	}
2667
2668	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2669
2670	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2671	if (error && error != ENOENT)
2672		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2673
2674	if (error == 0) {
2675		uint64_t autoreplace;
2676
2677		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2678		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2679		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2680		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2681		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2682		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2683		    &spa->spa_dedup_ditto);
2684
2685		spa->spa_autoreplace = (autoreplace != 0);
2686	}
2687
2688	/*
2689	 * If the 'autoreplace' property is set, then post a resource notifying
2690	 * the ZFS DE that it should not issue any faults for unopenable
2691	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2692	 * unopenable vdevs so that the normal autoreplace handler can take
2693	 * over.
2694	 */
2695	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2696		spa_check_removed(spa->spa_root_vdev);
2697		/*
2698		 * For the import case, this is done in spa_import(), because
2699		 * at this point we're using the spare definitions from
2700		 * the MOS config, not necessarily from the userland config.
2701		 */
2702		if (state != SPA_LOAD_IMPORT) {
2703			spa_aux_check_removed(&spa->spa_spares);
2704			spa_aux_check_removed(&spa->spa_l2cache);
2705		}
2706	}
2707
2708	/*
2709	 * Load the vdev state for all toplevel vdevs.
2710	 */
2711	vdev_load(rvd);
2712
2713	/*
2714	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2715	 */
2716	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2717	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2718	spa_config_exit(spa, SCL_ALL, FTAG);
2719
2720	/*
2721	 * Load the DDTs (dedup tables).
2722	 */
2723	error = ddt_load(spa);
2724	if (error != 0)
2725		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2726
2727	spa_update_dspace(spa);
2728
2729	/*
2730	 * Validate the config, using the MOS config to fill in any
2731	 * information which might be missing.  If we fail to validate
2732	 * the config then declare the pool unfit for use. If we're
2733	 * assembling a pool from a split, the log is not transferred
2734	 * over.
2735	 */
2736	if (type != SPA_IMPORT_ASSEMBLE) {
2737		nvlist_t *nvconfig;
2738
2739		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2740			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2741
2742		if (!spa_config_valid(spa, nvconfig)) {
2743			nvlist_free(nvconfig);
2744			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2745			    ENXIO));
2746		}
2747		nvlist_free(nvconfig);
2748
2749		/*
2750		 * Now that we've validated the config, check the state of the
2751		 * root vdev.  If it can't be opened, it indicates one or
2752		 * more toplevel vdevs are faulted.
2753		 */
2754		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2755			return (SET_ERROR(ENXIO));
2756
2757		if (spa_writeable(spa) && spa_check_logs(spa)) {
2758			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2759			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2760		}
2761	}
2762
2763	if (missing_feat_write) {
2764		ASSERT(state == SPA_LOAD_TRYIMPORT);
2765
2766		/*
2767		 * At this point, we know that we can open the pool in
2768		 * read-only mode but not read-write mode. We now have enough
2769		 * information and can return to userland.
2770		 */
2771		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2772	}
2773
2774	/*
2775	 * We've successfully opened the pool, verify that we're ready
2776	 * to start pushing transactions.
2777	 */
2778	if (state != SPA_LOAD_TRYIMPORT) {
2779		if (error = spa_load_verify(spa))
2780			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2781			    error));
2782	}
2783
2784	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2785	    spa->spa_load_max_txg == UINT64_MAX)) {
2786		dmu_tx_t *tx;
2787		int need_update = B_FALSE;
2788		dsl_pool_t *dp = spa_get_dsl(spa);
2789
2790		ASSERT(state != SPA_LOAD_TRYIMPORT);
2791
2792		/*
2793		 * Claim log blocks that haven't been committed yet.
2794		 * This must all happen in a single txg.
2795		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2796		 * invoked from zil_claim_log_block()'s i/o done callback.
2797		 * Price of rollback is that we abandon the log.
2798		 */
2799		spa->spa_claiming = B_TRUE;
2800
2801		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2802		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2803		    zil_claim, tx, DS_FIND_CHILDREN);
2804		dmu_tx_commit(tx);
2805
2806		spa->spa_claiming = B_FALSE;
2807
2808		spa_set_log_state(spa, SPA_LOG_GOOD);
2809		spa->spa_sync_on = B_TRUE;
2810		txg_sync_start(spa->spa_dsl_pool);
2811
2812		/*
2813		 * Wait for all claims to sync.  We sync up to the highest
2814		 * claimed log block birth time so that claimed log blocks
2815		 * don't appear to be from the future.  spa_claim_max_txg
2816		 * will have been set for us by either zil_check_log_chain()
2817		 * (invoked from spa_check_logs()) or zil_claim() above.
2818		 */
2819		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2820
2821		/*
2822		 * If the config cache is stale, or we have uninitialized
2823		 * metaslabs (see spa_vdev_add()), then update the config.
2824		 *
2825		 * If this is a verbatim import, trust the current
2826		 * in-core spa_config and update the disk labels.
2827		 */
2828		if (config_cache_txg != spa->spa_config_txg ||
2829		    state == SPA_LOAD_IMPORT ||
2830		    state == SPA_LOAD_RECOVER ||
2831		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2832			need_update = B_TRUE;
2833
2834		for (int c = 0; c < rvd->vdev_children; c++)
2835			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2836				need_update = B_TRUE;
2837
2838		/*
2839		 * Update the config cache asychronously in case we're the
2840		 * root pool, in which case the config cache isn't writable yet.
2841		 */
2842		if (need_update)
2843			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2844
2845		/*
2846		 * Check all DTLs to see if anything needs resilvering.
2847		 */
2848		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2849		    vdev_resilver_needed(rvd, NULL, NULL))
2850			spa_async_request(spa, SPA_ASYNC_RESILVER);
2851
2852		/*
2853		 * Log the fact that we booted up (so that we can detect if
2854		 * we rebooted in the middle of an operation).
2855		 */
2856		spa_history_log_version(spa, "open");
2857
2858		/*
2859		 * Delete any inconsistent datasets.
2860		 */
2861		(void) dmu_objset_find(spa_name(spa),
2862		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2863
2864		/*
2865		 * Clean up any stale temporary dataset userrefs.
2866		 */
2867		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2868	}
2869
2870	return (0);
2871}
2872
2873static int
2874spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2875{
2876	int mode = spa->spa_mode;
2877
2878	spa_unload(spa);
2879	spa_deactivate(spa);
2880
2881	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2882
2883	spa_activate(spa, mode);
2884	spa_async_suspend(spa);
2885
2886	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2887}
2888
2889/*
2890 * If spa_load() fails this function will try loading prior txg's. If
2891 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2892 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2893 * function will not rewind the pool and will return the same error as
2894 * spa_load().
2895 */
2896static int
2897spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2898    uint64_t max_request, int rewind_flags)
2899{
2900	nvlist_t *loadinfo = NULL;
2901	nvlist_t *config = NULL;
2902	int load_error, rewind_error;
2903	uint64_t safe_rewind_txg;
2904	uint64_t min_txg;
2905
2906	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2907		spa->spa_load_max_txg = spa->spa_load_txg;
2908		spa_set_log_state(spa, SPA_LOG_CLEAR);
2909	} else {
2910		spa->spa_load_max_txg = max_request;
2911		if (max_request != UINT64_MAX)
2912			spa->spa_extreme_rewind = B_TRUE;
2913	}
2914
2915	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2916	    mosconfig);
2917	if (load_error == 0)
2918		return (0);
2919
2920	if (spa->spa_root_vdev != NULL)
2921		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2922
2923	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2924	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2925
2926	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2927		nvlist_free(config);
2928		return (load_error);
2929	}
2930
2931	if (state == SPA_LOAD_RECOVER) {
2932		/* Price of rolling back is discarding txgs, including log */
2933		spa_set_log_state(spa, SPA_LOG_CLEAR);
2934	} else {
2935		/*
2936		 * If we aren't rolling back save the load info from our first
2937		 * import attempt so that we can restore it after attempting
2938		 * to rewind.
2939		 */
2940		loadinfo = spa->spa_load_info;
2941		spa->spa_load_info = fnvlist_alloc();
2942	}
2943
2944	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2945	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2946	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2947	    TXG_INITIAL : safe_rewind_txg;
2948
2949	/*
2950	 * Continue as long as we're finding errors, we're still within
2951	 * the acceptable rewind range, and we're still finding uberblocks
2952	 */
2953	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2954	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2955		if (spa->spa_load_max_txg < safe_rewind_txg)
2956			spa->spa_extreme_rewind = B_TRUE;
2957		rewind_error = spa_load_retry(spa, state, mosconfig);
2958	}
2959
2960	spa->spa_extreme_rewind = B_FALSE;
2961	spa->spa_load_max_txg = UINT64_MAX;
2962
2963	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2964		spa_config_set(spa, config);
2965
2966	if (state == SPA_LOAD_RECOVER) {
2967		ASSERT3P(loadinfo, ==, NULL);
2968		return (rewind_error);
2969	} else {
2970		/* Store the rewind info as part of the initial load info */
2971		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2972		    spa->spa_load_info);
2973
2974		/* Restore the initial load info */
2975		fnvlist_free(spa->spa_load_info);
2976		spa->spa_load_info = loadinfo;
2977
2978		return (load_error);
2979	}
2980}
2981
2982/*
2983 * Pool Open/Import
2984 *
2985 * The import case is identical to an open except that the configuration is sent
2986 * down from userland, instead of grabbed from the configuration cache.  For the
2987 * case of an open, the pool configuration will exist in the
2988 * POOL_STATE_UNINITIALIZED state.
2989 *
2990 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2991 * the same time open the pool, without having to keep around the spa_t in some
2992 * ambiguous state.
2993 */
2994static int
2995spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2996    nvlist_t **config)
2997{
2998	spa_t *spa;
2999	spa_load_state_t state = SPA_LOAD_OPEN;
3000	int error;
3001	int locked = B_FALSE;
3002	int firstopen = B_FALSE;
3003
3004	*spapp = NULL;
3005
3006	/*
3007	 * As disgusting as this is, we need to support recursive calls to this
3008	 * function because dsl_dir_open() is called during spa_load(), and ends
3009	 * up calling spa_open() again.  The real fix is to figure out how to
3010	 * avoid dsl_dir_open() calling this in the first place.
3011	 */
3012	if (mutex_owner(&spa_namespace_lock) != curthread) {
3013		mutex_enter(&spa_namespace_lock);
3014		locked = B_TRUE;
3015	}
3016
3017	if ((spa = spa_lookup(pool)) == NULL) {
3018		if (locked)
3019			mutex_exit(&spa_namespace_lock);
3020		return (SET_ERROR(ENOENT));
3021	}
3022
3023	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3024		zpool_rewind_policy_t policy;
3025
3026		firstopen = B_TRUE;
3027
3028		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3029		    &policy);
3030		if (policy.zrp_request & ZPOOL_DO_REWIND)
3031			state = SPA_LOAD_RECOVER;
3032
3033		spa_activate(spa, spa_mode_global);
3034
3035		if (state != SPA_LOAD_RECOVER)
3036			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3037
3038		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3039		    policy.zrp_request);
3040
3041		if (error == EBADF) {
3042			/*
3043			 * If vdev_validate() returns failure (indicated by
3044			 * EBADF), it indicates that one of the vdevs indicates
3045			 * that the pool has been exported or destroyed.  If
3046			 * this is the case, the config cache is out of sync and
3047			 * we should remove the pool from the namespace.
3048			 */
3049			spa_unload(spa);
3050			spa_deactivate(spa);
3051			spa_config_sync(spa, B_TRUE, B_TRUE);
3052			spa_remove(spa);
3053			if (locked)
3054				mutex_exit(&spa_namespace_lock);
3055			return (SET_ERROR(ENOENT));
3056		}
3057
3058		if (error) {
3059			/*
3060			 * We can't open the pool, but we still have useful
3061			 * information: the state of each vdev after the
3062			 * attempted vdev_open().  Return this to the user.
3063			 */
3064			if (config != NULL && spa->spa_config) {
3065				VERIFY(nvlist_dup(spa->spa_config, config,
3066				    KM_SLEEP) == 0);
3067				VERIFY(nvlist_add_nvlist(*config,
3068				    ZPOOL_CONFIG_LOAD_INFO,
3069				    spa->spa_load_info) == 0);
3070			}
3071			spa_unload(spa);
3072			spa_deactivate(spa);
3073			spa->spa_last_open_failed = error;
3074			if (locked)
3075				mutex_exit(&spa_namespace_lock);
3076			*spapp = NULL;
3077			return (error);
3078		}
3079	}
3080
3081	spa_open_ref(spa, tag);
3082
3083	if (config != NULL)
3084		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3085
3086	/*
3087	 * If we've recovered the pool, pass back any information we
3088	 * gathered while doing the load.
3089	 */
3090	if (state == SPA_LOAD_RECOVER) {
3091		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3092		    spa->spa_load_info) == 0);
3093	}
3094
3095	if (locked) {
3096		spa->spa_last_open_failed = 0;
3097		spa->spa_last_ubsync_txg = 0;
3098		spa->spa_load_txg = 0;
3099		mutex_exit(&spa_namespace_lock);
3100#ifdef __FreeBSD__
3101#ifdef _KERNEL
3102		if (firstopen)
3103			zvol_create_minors(spa->spa_name);
3104#endif
3105#endif
3106	}
3107
3108	*spapp = spa;
3109
3110	return (0);
3111}
3112
3113int
3114spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3115    nvlist_t **config)
3116{
3117	return (spa_open_common(name, spapp, tag, policy, config));
3118}
3119
3120int
3121spa_open(const char *name, spa_t **spapp, void *tag)
3122{
3123	return (spa_open_common(name, spapp, tag, NULL, NULL));
3124}
3125
3126/*
3127 * Lookup the given spa_t, incrementing the inject count in the process,
3128 * preventing it from being exported or destroyed.
3129 */
3130spa_t *
3131spa_inject_addref(char *name)
3132{
3133	spa_t *spa;
3134
3135	mutex_enter(&spa_namespace_lock);
3136	if ((spa = spa_lookup(name)) == NULL) {
3137		mutex_exit(&spa_namespace_lock);
3138		return (NULL);
3139	}
3140	spa->spa_inject_ref++;
3141	mutex_exit(&spa_namespace_lock);
3142
3143	return (spa);
3144}
3145
3146void
3147spa_inject_delref(spa_t *spa)
3148{
3149	mutex_enter(&spa_namespace_lock);
3150	spa->spa_inject_ref--;
3151	mutex_exit(&spa_namespace_lock);
3152}
3153
3154/*
3155 * Add spares device information to the nvlist.
3156 */
3157static void
3158spa_add_spares(spa_t *spa, nvlist_t *config)
3159{
3160	nvlist_t **spares;
3161	uint_t i, nspares;
3162	nvlist_t *nvroot;
3163	uint64_t guid;
3164	vdev_stat_t *vs;
3165	uint_t vsc;
3166	uint64_t pool;
3167
3168	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3169
3170	if (spa->spa_spares.sav_count == 0)
3171		return;
3172
3173	VERIFY(nvlist_lookup_nvlist(config,
3174	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3175	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3176	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3177	if (nspares != 0) {
3178		VERIFY(nvlist_add_nvlist_array(nvroot,
3179		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3180		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3181		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3182
3183		/*
3184		 * Go through and find any spares which have since been
3185		 * repurposed as an active spare.  If this is the case, update
3186		 * their status appropriately.
3187		 */
3188		for (i = 0; i < nspares; i++) {
3189			VERIFY(nvlist_lookup_uint64(spares[i],
3190			    ZPOOL_CONFIG_GUID, &guid) == 0);
3191			if (spa_spare_exists(guid, &pool, NULL) &&
3192			    pool != 0ULL) {
3193				VERIFY(nvlist_lookup_uint64_array(
3194				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3195				    (uint64_t **)&vs, &vsc) == 0);
3196				vs->vs_state = VDEV_STATE_CANT_OPEN;
3197				vs->vs_aux = VDEV_AUX_SPARED;
3198			}
3199		}
3200	}
3201}
3202
3203/*
3204 * Add l2cache device information to the nvlist, including vdev stats.
3205 */
3206static void
3207spa_add_l2cache(spa_t *spa, nvlist_t *config)
3208{
3209	nvlist_t **l2cache;
3210	uint_t i, j, nl2cache;
3211	nvlist_t *nvroot;
3212	uint64_t guid;
3213	vdev_t *vd;
3214	vdev_stat_t *vs;
3215	uint_t vsc;
3216
3217	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3218
3219	if (spa->spa_l2cache.sav_count == 0)
3220		return;
3221
3222	VERIFY(nvlist_lookup_nvlist(config,
3223	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3224	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3225	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3226	if (nl2cache != 0) {
3227		VERIFY(nvlist_add_nvlist_array(nvroot,
3228		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3229		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3230		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3231
3232		/*
3233		 * Update level 2 cache device stats.
3234		 */
3235
3236		for (i = 0; i < nl2cache; i++) {
3237			VERIFY(nvlist_lookup_uint64(l2cache[i],
3238			    ZPOOL_CONFIG_GUID, &guid) == 0);
3239
3240			vd = NULL;
3241			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3242				if (guid ==
3243				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3244					vd = spa->spa_l2cache.sav_vdevs[j];
3245					break;
3246				}
3247			}
3248			ASSERT(vd != NULL);
3249
3250			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3251			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3252			    == 0);
3253			vdev_get_stats(vd, vs);
3254		}
3255	}
3256}
3257
3258static void
3259spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3260{
3261	nvlist_t *features;
3262	zap_cursor_t zc;
3263	zap_attribute_t za;
3264
3265	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3266	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3267
3268	/* We may be unable to read features if pool is suspended. */
3269	if (spa_suspended(spa))
3270		goto out;
3271
3272	if (spa->spa_feat_for_read_obj != 0) {
3273		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3274		    spa->spa_feat_for_read_obj);
3275		    zap_cursor_retrieve(&zc, &za) == 0;
3276		    zap_cursor_advance(&zc)) {
3277			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3278			    za.za_num_integers == 1);
3279			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3280			    za.za_first_integer));
3281		}
3282		zap_cursor_fini(&zc);
3283	}
3284
3285	if (spa->spa_feat_for_write_obj != 0) {
3286		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3287		    spa->spa_feat_for_write_obj);
3288		    zap_cursor_retrieve(&zc, &za) == 0;
3289		    zap_cursor_advance(&zc)) {
3290			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3291			    za.za_num_integers == 1);
3292			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3293			    za.za_first_integer));
3294		}
3295		zap_cursor_fini(&zc);
3296	}
3297
3298out:
3299	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3300	    features) == 0);
3301	nvlist_free(features);
3302}
3303
3304int
3305spa_get_stats(const char *name, nvlist_t **config,
3306    char *altroot, size_t buflen)
3307{
3308	int error;
3309	spa_t *spa;
3310
3311	*config = NULL;
3312	error = spa_open_common(name, &spa, FTAG, NULL, config);
3313
3314	if (spa != NULL) {
3315		/*
3316		 * This still leaves a window of inconsistency where the spares
3317		 * or l2cache devices could change and the config would be
3318		 * self-inconsistent.
3319		 */
3320		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3321
3322		if (*config != NULL) {
3323			uint64_t loadtimes[2];
3324
3325			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3326			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3327			VERIFY(nvlist_add_uint64_array(*config,
3328			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3329
3330			VERIFY(nvlist_add_uint64(*config,
3331			    ZPOOL_CONFIG_ERRCOUNT,
3332			    spa_get_errlog_size(spa)) == 0);
3333
3334			if (spa_suspended(spa))
3335				VERIFY(nvlist_add_uint64(*config,
3336				    ZPOOL_CONFIG_SUSPENDED,
3337				    spa->spa_failmode) == 0);
3338
3339			spa_add_spares(spa, *config);
3340			spa_add_l2cache(spa, *config);
3341			spa_add_feature_stats(spa, *config);
3342		}
3343	}
3344
3345	/*
3346	 * We want to get the alternate root even for faulted pools, so we cheat
3347	 * and call spa_lookup() directly.
3348	 */
3349	if (altroot) {
3350		if (spa == NULL) {
3351			mutex_enter(&spa_namespace_lock);
3352			spa = spa_lookup(name);
3353			if (spa)
3354				spa_altroot(spa, altroot, buflen);
3355			else
3356				altroot[0] = '\0';
3357			spa = NULL;
3358			mutex_exit(&spa_namespace_lock);
3359		} else {
3360			spa_altroot(spa, altroot, buflen);
3361		}
3362	}
3363
3364	if (spa != NULL) {
3365		spa_config_exit(spa, SCL_CONFIG, FTAG);
3366		spa_close(spa, FTAG);
3367	}
3368
3369	return (error);
3370}
3371
3372/*
3373 * Validate that the auxiliary device array is well formed.  We must have an
3374 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3375 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3376 * specified, as long as they are well-formed.
3377 */
3378static int
3379spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3380    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3381    vdev_labeltype_t label)
3382{
3383	nvlist_t **dev;
3384	uint_t i, ndev;
3385	vdev_t *vd;
3386	int error;
3387
3388	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3389
3390	/*
3391	 * It's acceptable to have no devs specified.
3392	 */
3393	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3394		return (0);
3395
3396	if (ndev == 0)
3397		return (SET_ERROR(EINVAL));
3398
3399	/*
3400	 * Make sure the pool is formatted with a version that supports this
3401	 * device type.
3402	 */
3403	if (spa_version(spa) < version)
3404		return (SET_ERROR(ENOTSUP));
3405
3406	/*
3407	 * Set the pending device list so we correctly handle device in-use
3408	 * checking.
3409	 */
3410	sav->sav_pending = dev;
3411	sav->sav_npending = ndev;
3412
3413	for (i = 0; i < ndev; i++) {
3414		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3415		    mode)) != 0)
3416			goto out;
3417
3418		if (!vd->vdev_ops->vdev_op_leaf) {
3419			vdev_free(vd);
3420			error = SET_ERROR(EINVAL);
3421			goto out;
3422		}
3423
3424		/*
3425		 * The L2ARC currently only supports disk devices in
3426		 * kernel context.  For user-level testing, we allow it.
3427		 */
3428#ifdef _KERNEL
3429		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3430		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3431			error = SET_ERROR(ENOTBLK);
3432			vdev_free(vd);
3433			goto out;
3434		}
3435#endif
3436		vd->vdev_top = vd;
3437
3438		if ((error = vdev_open(vd)) == 0 &&
3439		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3440			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3441			    vd->vdev_guid) == 0);
3442		}
3443
3444		vdev_free(vd);
3445
3446		if (error &&
3447		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3448			goto out;
3449		else
3450			error = 0;
3451	}
3452
3453out:
3454	sav->sav_pending = NULL;
3455	sav->sav_npending = 0;
3456	return (error);
3457}
3458
3459static int
3460spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3461{
3462	int error;
3463
3464	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3465
3466	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3467	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3468	    VDEV_LABEL_SPARE)) != 0) {
3469		return (error);
3470	}
3471
3472	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3473	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3474	    VDEV_LABEL_L2CACHE));
3475}
3476
3477static void
3478spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3479    const char *config)
3480{
3481	int i;
3482
3483	if (sav->sav_config != NULL) {
3484		nvlist_t **olddevs;
3485		uint_t oldndevs;
3486		nvlist_t **newdevs;
3487
3488		/*
3489		 * Generate new dev list by concatentating with the
3490		 * current dev list.
3491		 */
3492		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3493		    &olddevs, &oldndevs) == 0);
3494
3495		newdevs = kmem_alloc(sizeof (void *) *
3496		    (ndevs + oldndevs), KM_SLEEP);
3497		for (i = 0; i < oldndevs; i++)
3498			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3499			    KM_SLEEP) == 0);
3500		for (i = 0; i < ndevs; i++)
3501			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3502			    KM_SLEEP) == 0);
3503
3504		VERIFY(nvlist_remove(sav->sav_config, config,
3505		    DATA_TYPE_NVLIST_ARRAY) == 0);
3506
3507		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3508		    config, newdevs, ndevs + oldndevs) == 0);
3509		for (i = 0; i < oldndevs + ndevs; i++)
3510			nvlist_free(newdevs[i]);
3511		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3512	} else {
3513		/*
3514		 * Generate a new dev list.
3515		 */
3516		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3517		    KM_SLEEP) == 0);
3518		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3519		    devs, ndevs) == 0);
3520	}
3521}
3522
3523/*
3524 * Stop and drop level 2 ARC devices
3525 */
3526void
3527spa_l2cache_drop(spa_t *spa)
3528{
3529	vdev_t *vd;
3530	int i;
3531	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3532
3533	for (i = 0; i < sav->sav_count; i++) {
3534		uint64_t pool;
3535
3536		vd = sav->sav_vdevs[i];
3537		ASSERT(vd != NULL);
3538
3539		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3540		    pool != 0ULL && l2arc_vdev_present(vd))
3541			l2arc_remove_vdev(vd);
3542	}
3543}
3544
3545/*
3546 * Pool Creation
3547 */
3548int
3549spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3550    nvlist_t *zplprops)
3551{
3552	spa_t *spa;
3553	char *altroot = NULL;
3554	vdev_t *rvd;
3555	dsl_pool_t *dp;
3556	dmu_tx_t *tx;
3557	int error = 0;
3558	uint64_t txg = TXG_INITIAL;
3559	nvlist_t **spares, **l2cache;
3560	uint_t nspares, nl2cache;
3561	uint64_t version, obj;
3562	boolean_t has_features;
3563
3564	/*
3565	 * If this pool already exists, return failure.
3566	 */
3567	mutex_enter(&spa_namespace_lock);
3568	if (spa_lookup(pool) != NULL) {
3569		mutex_exit(&spa_namespace_lock);
3570		return (SET_ERROR(EEXIST));
3571	}
3572
3573	/*
3574	 * Allocate a new spa_t structure.
3575	 */
3576	(void) nvlist_lookup_string(props,
3577	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3578	spa = spa_add(pool, NULL, altroot);
3579	spa_activate(spa, spa_mode_global);
3580
3581	if (props && (error = spa_prop_validate(spa, props))) {
3582		spa_deactivate(spa);
3583		spa_remove(spa);
3584		mutex_exit(&spa_namespace_lock);
3585		return (error);
3586	}
3587
3588	has_features = B_FALSE;
3589	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3590	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3591		if (zpool_prop_feature(nvpair_name(elem)))
3592			has_features = B_TRUE;
3593	}
3594
3595	if (has_features || nvlist_lookup_uint64(props,
3596	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3597		version = SPA_VERSION;
3598	}
3599	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3600
3601	spa->spa_first_txg = txg;
3602	spa->spa_uberblock.ub_txg = txg - 1;
3603	spa->spa_uberblock.ub_version = version;
3604	spa->spa_ubsync = spa->spa_uberblock;
3605
3606	/*
3607	 * Create "The Godfather" zio to hold all async IOs
3608	 */
3609	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3610	    KM_SLEEP);
3611	for (int i = 0; i < max_ncpus; i++) {
3612		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3613		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3614		    ZIO_FLAG_GODFATHER);
3615	}
3616
3617	/*
3618	 * Create the root vdev.
3619	 */
3620	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3621
3622	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3623
3624	ASSERT(error != 0 || rvd != NULL);
3625	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3626
3627	if (error == 0 && !zfs_allocatable_devs(nvroot))
3628		error = SET_ERROR(EINVAL);
3629
3630	if (error == 0 &&
3631	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3632	    (error = spa_validate_aux(spa, nvroot, txg,
3633	    VDEV_ALLOC_ADD)) == 0) {
3634		for (int c = 0; c < rvd->vdev_children; c++) {
3635			vdev_ashift_optimize(rvd->vdev_child[c]);
3636			vdev_metaslab_set_size(rvd->vdev_child[c]);
3637			vdev_expand(rvd->vdev_child[c], txg);
3638		}
3639	}
3640
3641	spa_config_exit(spa, SCL_ALL, FTAG);
3642
3643	if (error != 0) {
3644		spa_unload(spa);
3645		spa_deactivate(spa);
3646		spa_remove(spa);
3647		mutex_exit(&spa_namespace_lock);
3648		return (error);
3649	}
3650
3651	/*
3652	 * Get the list of spares, if specified.
3653	 */
3654	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3655	    &spares, &nspares) == 0) {
3656		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3657		    KM_SLEEP) == 0);
3658		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3659		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3660		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3661		spa_load_spares(spa);
3662		spa_config_exit(spa, SCL_ALL, FTAG);
3663		spa->spa_spares.sav_sync = B_TRUE;
3664	}
3665
3666	/*
3667	 * Get the list of level 2 cache devices, if specified.
3668	 */
3669	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3670	    &l2cache, &nl2cache) == 0) {
3671		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3672		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3673		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3674		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3675		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3676		spa_load_l2cache(spa);
3677		spa_config_exit(spa, SCL_ALL, FTAG);
3678		spa->spa_l2cache.sav_sync = B_TRUE;
3679	}
3680
3681	spa->spa_is_initializing = B_TRUE;
3682	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3683	spa->spa_meta_objset = dp->dp_meta_objset;
3684	spa->spa_is_initializing = B_FALSE;
3685
3686	/*
3687	 * Create DDTs (dedup tables).
3688	 */
3689	ddt_create(spa);
3690
3691	spa_update_dspace(spa);
3692
3693	tx = dmu_tx_create_assigned(dp, txg);
3694
3695	/*
3696	 * Create the pool config object.
3697	 */
3698	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3699	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3700	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3701
3702	if (zap_add(spa->spa_meta_objset,
3703	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3704	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3705		cmn_err(CE_PANIC, "failed to add pool config");
3706	}
3707
3708	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3709		spa_feature_create_zap_objects(spa, tx);
3710
3711	if (zap_add(spa->spa_meta_objset,
3712	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3713	    sizeof (uint64_t), 1, &version, tx) != 0) {
3714		cmn_err(CE_PANIC, "failed to add pool version");
3715	}
3716
3717	/* Newly created pools with the right version are always deflated. */
3718	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3719		spa->spa_deflate = TRUE;
3720		if (zap_add(spa->spa_meta_objset,
3721		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3722		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3723			cmn_err(CE_PANIC, "failed to add deflate");
3724		}
3725	}
3726
3727	/*
3728	 * Create the deferred-free bpobj.  Turn off compression
3729	 * because sync-to-convergence takes longer if the blocksize
3730	 * keeps changing.
3731	 */
3732	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3733	dmu_object_set_compress(spa->spa_meta_objset, obj,
3734	    ZIO_COMPRESS_OFF, tx);
3735	if (zap_add(spa->spa_meta_objset,
3736	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3737	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3738		cmn_err(CE_PANIC, "failed to add bpobj");
3739	}
3740	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3741	    spa->spa_meta_objset, obj));
3742
3743	/*
3744	 * Create the pool's history object.
3745	 */
3746	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3747		spa_history_create_obj(spa, tx);
3748
3749	/*
3750	 * Set pool properties.
3751	 */
3752	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3753	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3754	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3755	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3756
3757	if (props != NULL) {
3758		spa_configfile_set(spa, props, B_FALSE);
3759		spa_sync_props(props, tx);
3760	}
3761
3762	dmu_tx_commit(tx);
3763
3764	spa->spa_sync_on = B_TRUE;
3765	txg_sync_start(spa->spa_dsl_pool);
3766
3767	/*
3768	 * We explicitly wait for the first transaction to complete so that our
3769	 * bean counters are appropriately updated.
3770	 */
3771	txg_wait_synced(spa->spa_dsl_pool, txg);
3772
3773	spa_config_sync(spa, B_FALSE, B_TRUE);
3774	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3775
3776	spa_history_log_version(spa, "create");
3777
3778	/*
3779	 * Don't count references from objsets that are already closed
3780	 * and are making their way through the eviction process.
3781	 */
3782	spa_evicting_os_wait(spa);
3783	spa->spa_minref = refcount_count(&spa->spa_refcount);
3784
3785	mutex_exit(&spa_namespace_lock);
3786
3787	return (0);
3788}
3789
3790#ifdef _KERNEL
3791#if defined(sun)
3792/*
3793 * Get the root pool information from the root disk, then import the root pool
3794 * during the system boot up time.
3795 */
3796extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3797
3798static nvlist_t *
3799spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3800{
3801	nvlist_t *config;
3802	nvlist_t *nvtop, *nvroot;
3803	uint64_t pgid;
3804
3805	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3806		return (NULL);
3807
3808	/*
3809	 * Add this top-level vdev to the child array.
3810	 */
3811	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3812	    &nvtop) == 0);
3813	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3814	    &pgid) == 0);
3815	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3816
3817	/*
3818	 * Put this pool's top-level vdevs into a root vdev.
3819	 */
3820	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3821	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3822	    VDEV_TYPE_ROOT) == 0);
3823	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3824	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3825	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3826	    &nvtop, 1) == 0);
3827
3828	/*
3829	 * Replace the existing vdev_tree with the new root vdev in
3830	 * this pool's configuration (remove the old, add the new).
3831	 */
3832	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3833	nvlist_free(nvroot);
3834	return (config);
3835}
3836
3837/*
3838 * Walk the vdev tree and see if we can find a device with "better"
3839 * configuration. A configuration is "better" if the label on that
3840 * device has a more recent txg.
3841 */
3842static void
3843spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3844{
3845	for (int c = 0; c < vd->vdev_children; c++)
3846		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3847
3848	if (vd->vdev_ops->vdev_op_leaf) {
3849		nvlist_t *label;
3850		uint64_t label_txg;
3851
3852		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3853		    &label) != 0)
3854			return;
3855
3856		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3857		    &label_txg) == 0);
3858
3859		/*
3860		 * Do we have a better boot device?
3861		 */
3862		if (label_txg > *txg) {
3863			*txg = label_txg;
3864			*avd = vd;
3865		}
3866		nvlist_free(label);
3867	}
3868}
3869
3870/*
3871 * Import a root pool.
3872 *
3873 * For x86. devpath_list will consist of devid and/or physpath name of
3874 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3875 * The GRUB "findroot" command will return the vdev we should boot.
3876 *
3877 * For Sparc, devpath_list consists the physpath name of the booting device
3878 * no matter the rootpool is a single device pool or a mirrored pool.
3879 * e.g.
3880 *	"/pci@1f,0/ide@d/disk@0,0:a"
3881 */
3882int
3883spa_import_rootpool(char *devpath, char *devid)
3884{
3885	spa_t *spa;
3886	vdev_t *rvd, *bvd, *avd = NULL;
3887	nvlist_t *config, *nvtop;
3888	uint64_t guid, txg;
3889	char *pname;
3890	int error;
3891
3892	/*
3893	 * Read the label from the boot device and generate a configuration.
3894	 */
3895	config = spa_generate_rootconf(devpath, devid, &guid);
3896#if defined(_OBP) && defined(_KERNEL)
3897	if (config == NULL) {
3898		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3899			/* iscsi boot */
3900			get_iscsi_bootpath_phy(devpath);
3901			config = spa_generate_rootconf(devpath, devid, &guid);
3902		}
3903	}
3904#endif
3905	if (config == NULL) {
3906		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3907		    devpath);
3908		return (SET_ERROR(EIO));
3909	}
3910
3911	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3912	    &pname) == 0);
3913	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3914
3915	mutex_enter(&spa_namespace_lock);
3916	if ((spa = spa_lookup(pname)) != NULL) {
3917		/*
3918		 * Remove the existing root pool from the namespace so that we
3919		 * can replace it with the correct config we just read in.
3920		 */
3921		spa_remove(spa);
3922	}
3923
3924	spa = spa_add(pname, config, NULL);
3925	spa->spa_is_root = B_TRUE;
3926	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3927
3928	/*
3929	 * Build up a vdev tree based on the boot device's label config.
3930	 */
3931	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3932	    &nvtop) == 0);
3933	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3934	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3935	    VDEV_ALLOC_ROOTPOOL);
3936	spa_config_exit(spa, SCL_ALL, FTAG);
3937	if (error) {
3938		mutex_exit(&spa_namespace_lock);
3939		nvlist_free(config);
3940		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3941		    pname);
3942		return (error);
3943	}
3944
3945	/*
3946	 * Get the boot vdev.
3947	 */
3948	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3949		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3950		    (u_longlong_t)guid);
3951		error = SET_ERROR(ENOENT);
3952		goto out;
3953	}
3954
3955	/*
3956	 * Determine if there is a better boot device.
3957	 */
3958	avd = bvd;
3959	spa_alt_rootvdev(rvd, &avd, &txg);
3960	if (avd != bvd) {
3961		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3962		    "try booting from '%s'", avd->vdev_path);
3963		error = SET_ERROR(EINVAL);
3964		goto out;
3965	}
3966
3967	/*
3968	 * If the boot device is part of a spare vdev then ensure that
3969	 * we're booting off the active spare.
3970	 */
3971	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3972	    !bvd->vdev_isspare) {
3973		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3974		    "try booting from '%s'",
3975		    bvd->vdev_parent->
3976		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3977		error = SET_ERROR(EINVAL);
3978		goto out;
3979	}
3980
3981	error = 0;
3982out:
3983	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3984	vdev_free(rvd);
3985	spa_config_exit(spa, SCL_ALL, FTAG);
3986	mutex_exit(&spa_namespace_lock);
3987
3988	nvlist_free(config);
3989	return (error);
3990}
3991
3992#else
3993
3994extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3995    uint64_t *count);
3996
3997static nvlist_t *
3998spa_generate_rootconf(const char *name)
3999{
4000	nvlist_t **configs, **tops;
4001	nvlist_t *config;
4002	nvlist_t *best_cfg, *nvtop, *nvroot;
4003	uint64_t *holes;
4004	uint64_t best_txg;
4005	uint64_t nchildren;
4006	uint64_t pgid;
4007	uint64_t count;
4008	uint64_t i;
4009	uint_t   nholes;
4010
4011	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4012		return (NULL);
4013
4014	ASSERT3U(count, !=, 0);
4015	best_txg = 0;
4016	for (i = 0; i < count; i++) {
4017		uint64_t txg;
4018
4019		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4020		    &txg) == 0);
4021		if (txg > best_txg) {
4022			best_txg = txg;
4023			best_cfg = configs[i];
4024		}
4025	}
4026
4027	/*
4028	 * Multi-vdev root pool configuration discovery is not supported yet.
4029	 */
4030	nchildren = 1;
4031	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4032	holes = NULL;
4033	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4034	    &holes, &nholes);
4035
4036	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4037	for (i = 0; i < nchildren; i++) {
4038		if (i >= count)
4039			break;
4040		if (configs[i] == NULL)
4041			continue;
4042		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4043		    &nvtop) == 0);
4044		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4045	}
4046	for (i = 0; holes != NULL && i < nholes; i++) {
4047		if (i >= nchildren)
4048			continue;
4049		if (tops[holes[i]] != NULL)
4050			continue;
4051		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4052		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4053		    VDEV_TYPE_HOLE) == 0);
4054		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4055		    holes[i]) == 0);
4056		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4057		    0) == 0);
4058	}
4059	for (i = 0; i < nchildren; i++) {
4060		if (tops[i] != NULL)
4061			continue;
4062		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4063		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4064		    VDEV_TYPE_MISSING) == 0);
4065		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4066		    i) == 0);
4067		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4068		    0) == 0);
4069	}
4070
4071	/*
4072	 * Create pool config based on the best vdev config.
4073	 */
4074	nvlist_dup(best_cfg, &config, KM_SLEEP);
4075
4076	/*
4077	 * Put this pool's top-level vdevs into a root vdev.
4078	 */
4079	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4080	    &pgid) == 0);
4081	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4082	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4083	    VDEV_TYPE_ROOT) == 0);
4084	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4085	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4086	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4087	    tops, nchildren) == 0);
4088
4089	/*
4090	 * Replace the existing vdev_tree with the new root vdev in
4091	 * this pool's configuration (remove the old, add the new).
4092	 */
4093	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4094
4095	/*
4096	 * Drop vdev config elements that should not be present at pool level.
4097	 */
4098	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4099	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4100
4101	for (i = 0; i < count; i++)
4102		nvlist_free(configs[i]);
4103	kmem_free(configs, count * sizeof(void *));
4104	for (i = 0; i < nchildren; i++)
4105		nvlist_free(tops[i]);
4106	kmem_free(tops, nchildren * sizeof(void *));
4107	nvlist_free(nvroot);
4108	return (config);
4109}
4110
4111int
4112spa_import_rootpool(const char *name)
4113{
4114	spa_t *spa;
4115	vdev_t *rvd, *bvd, *avd = NULL;
4116	nvlist_t *config, *nvtop;
4117	uint64_t txg;
4118	char *pname;
4119	int error;
4120
4121	/*
4122	 * Read the label from the boot device and generate a configuration.
4123	 */
4124	config = spa_generate_rootconf(name);
4125
4126	mutex_enter(&spa_namespace_lock);
4127	if (config != NULL) {
4128		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4129		    &pname) == 0 && strcmp(name, pname) == 0);
4130		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4131		    == 0);
4132
4133		if ((spa = spa_lookup(pname)) != NULL) {
4134			/*
4135			 * Remove the existing root pool from the namespace so
4136			 * that we can replace it with the correct config
4137			 * we just read in.
4138			 */
4139			spa_remove(spa);
4140		}
4141		spa = spa_add(pname, config, NULL);
4142
4143		/*
4144		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4145		 * via spa_version().
4146		 */
4147		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4148		    &spa->spa_ubsync.ub_version) != 0)
4149			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4150	} else if ((spa = spa_lookup(name)) == NULL) {
4151		mutex_exit(&spa_namespace_lock);
4152		nvlist_free(config);
4153		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4154		    name);
4155		return (EIO);
4156	} else {
4157		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4158	}
4159	spa->spa_is_root = B_TRUE;
4160	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4161
4162	/*
4163	 * Build up a vdev tree based on the boot device's label config.
4164	 */
4165	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4166	    &nvtop) == 0);
4167	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4168	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4169	    VDEV_ALLOC_ROOTPOOL);
4170	spa_config_exit(spa, SCL_ALL, FTAG);
4171	if (error) {
4172		mutex_exit(&spa_namespace_lock);
4173		nvlist_free(config);
4174		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4175		    pname);
4176		return (error);
4177	}
4178
4179	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4180	vdev_free(rvd);
4181	spa_config_exit(spa, SCL_ALL, FTAG);
4182	mutex_exit(&spa_namespace_lock);
4183
4184	nvlist_free(config);
4185	return (0);
4186}
4187
4188#endif	/* sun */
4189#endif
4190
4191/*
4192 * Import a non-root pool into the system.
4193 */
4194int
4195spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4196{
4197	spa_t *spa;
4198	char *altroot = NULL;
4199	spa_load_state_t state = SPA_LOAD_IMPORT;
4200	zpool_rewind_policy_t policy;
4201	uint64_t mode = spa_mode_global;
4202	uint64_t readonly = B_FALSE;
4203	int error;
4204	nvlist_t *nvroot;
4205	nvlist_t **spares, **l2cache;
4206	uint_t nspares, nl2cache;
4207
4208	/*
4209	 * If a pool with this name exists, return failure.
4210	 */
4211	mutex_enter(&spa_namespace_lock);
4212	if (spa_lookup(pool) != NULL) {
4213		mutex_exit(&spa_namespace_lock);
4214		return (SET_ERROR(EEXIST));
4215	}
4216
4217	/*
4218	 * Create and initialize the spa structure.
4219	 */
4220	(void) nvlist_lookup_string(props,
4221	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4222	(void) nvlist_lookup_uint64(props,
4223	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4224	if (readonly)
4225		mode = FREAD;
4226	spa = spa_add(pool, config, altroot);
4227	spa->spa_import_flags = flags;
4228
4229	/*
4230	 * Verbatim import - Take a pool and insert it into the namespace
4231	 * as if it had been loaded at boot.
4232	 */
4233	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4234		if (props != NULL)
4235			spa_configfile_set(spa, props, B_FALSE);
4236
4237		spa_config_sync(spa, B_FALSE, B_TRUE);
4238		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4239
4240		mutex_exit(&spa_namespace_lock);
4241		return (0);
4242	}
4243
4244	spa_activate(spa, mode);
4245
4246	/*
4247	 * Don't start async tasks until we know everything is healthy.
4248	 */
4249	spa_async_suspend(spa);
4250
4251	zpool_get_rewind_policy(config, &policy);
4252	if (policy.zrp_request & ZPOOL_DO_REWIND)
4253		state = SPA_LOAD_RECOVER;
4254
4255	/*
4256	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4257	 * because the user-supplied config is actually the one to trust when
4258	 * doing an import.
4259	 */
4260	if (state != SPA_LOAD_RECOVER)
4261		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4262
4263	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4264	    policy.zrp_request);
4265
4266	/*
4267	 * Propagate anything learned while loading the pool and pass it
4268	 * back to caller (i.e. rewind info, missing devices, etc).
4269	 */
4270	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4271	    spa->spa_load_info) == 0);
4272
4273	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4274	/*
4275	 * Toss any existing sparelist, as it doesn't have any validity
4276	 * anymore, and conflicts with spa_has_spare().
4277	 */
4278	if (spa->spa_spares.sav_config) {
4279		nvlist_free(spa->spa_spares.sav_config);
4280		spa->spa_spares.sav_config = NULL;
4281		spa_load_spares(spa);
4282	}
4283	if (spa->spa_l2cache.sav_config) {
4284		nvlist_free(spa->spa_l2cache.sav_config);
4285		spa->spa_l2cache.sav_config = NULL;
4286		spa_load_l2cache(spa);
4287	}
4288
4289	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4290	    &nvroot) == 0);
4291	if (error == 0)
4292		error = spa_validate_aux(spa, nvroot, -1ULL,
4293		    VDEV_ALLOC_SPARE);
4294	if (error == 0)
4295		error = spa_validate_aux(spa, nvroot, -1ULL,
4296		    VDEV_ALLOC_L2CACHE);
4297	spa_config_exit(spa, SCL_ALL, FTAG);
4298
4299	if (props != NULL)
4300		spa_configfile_set(spa, props, B_FALSE);
4301
4302	if (error != 0 || (props && spa_writeable(spa) &&
4303	    (error = spa_prop_set(spa, props)))) {
4304		spa_unload(spa);
4305		spa_deactivate(spa);
4306		spa_remove(spa);
4307		mutex_exit(&spa_namespace_lock);
4308		return (error);
4309	}
4310
4311	spa_async_resume(spa);
4312
4313	/*
4314	 * Override any spares and level 2 cache devices as specified by
4315	 * the user, as these may have correct device names/devids, etc.
4316	 */
4317	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4318	    &spares, &nspares) == 0) {
4319		if (spa->spa_spares.sav_config)
4320			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4321			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4322		else
4323			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4324			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4325		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4326		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4327		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4328		spa_load_spares(spa);
4329		spa_config_exit(spa, SCL_ALL, FTAG);
4330		spa->spa_spares.sav_sync = B_TRUE;
4331	}
4332	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4333	    &l2cache, &nl2cache) == 0) {
4334		if (spa->spa_l2cache.sav_config)
4335			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4336			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4337		else
4338			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4339			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4340		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4341		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4342		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4343		spa_load_l2cache(spa);
4344		spa_config_exit(spa, SCL_ALL, FTAG);
4345		spa->spa_l2cache.sav_sync = B_TRUE;
4346	}
4347
4348	/*
4349	 * Check for any removed devices.
4350	 */
4351	if (spa->spa_autoreplace) {
4352		spa_aux_check_removed(&spa->spa_spares);
4353		spa_aux_check_removed(&spa->spa_l2cache);
4354	}
4355
4356	if (spa_writeable(spa)) {
4357		/*
4358		 * Update the config cache to include the newly-imported pool.
4359		 */
4360		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4361	}
4362
4363	/*
4364	 * It's possible that the pool was expanded while it was exported.
4365	 * We kick off an async task to handle this for us.
4366	 */
4367	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4368
4369	spa_history_log_version(spa, "import");
4370
4371	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4372
4373	mutex_exit(&spa_namespace_lock);
4374
4375#ifdef __FreeBSD__
4376#ifdef _KERNEL
4377	zvol_create_minors(pool);
4378#endif
4379#endif
4380	return (0);
4381}
4382
4383nvlist_t *
4384spa_tryimport(nvlist_t *tryconfig)
4385{
4386	nvlist_t *config = NULL;
4387	char *poolname;
4388	spa_t *spa;
4389	uint64_t state;
4390	int error;
4391
4392	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4393		return (NULL);
4394
4395	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4396		return (NULL);
4397
4398	/*
4399	 * Create and initialize the spa structure.
4400	 */
4401	mutex_enter(&spa_namespace_lock);
4402	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4403	spa_activate(spa, FREAD);
4404
4405	/*
4406	 * Pass off the heavy lifting to spa_load().
4407	 * Pass TRUE for mosconfig because the user-supplied config
4408	 * is actually the one to trust when doing an import.
4409	 */
4410	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4411
4412	/*
4413	 * If 'tryconfig' was at least parsable, return the current config.
4414	 */
4415	if (spa->spa_root_vdev != NULL) {
4416		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4417		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4418		    poolname) == 0);
4419		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4420		    state) == 0);
4421		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4422		    spa->spa_uberblock.ub_timestamp) == 0);
4423		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4424		    spa->spa_load_info) == 0);
4425
4426		/*
4427		 * If the bootfs property exists on this pool then we
4428		 * copy it out so that external consumers can tell which
4429		 * pools are bootable.
4430		 */
4431		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4432			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4433
4434			/*
4435			 * We have to play games with the name since the
4436			 * pool was opened as TRYIMPORT_NAME.
4437			 */
4438			if (dsl_dsobj_to_dsname(spa_name(spa),
4439			    spa->spa_bootfs, tmpname) == 0) {
4440				char *cp;
4441				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4442
4443				cp = strchr(tmpname, '/');
4444				if (cp == NULL) {
4445					(void) strlcpy(dsname, tmpname,
4446					    MAXPATHLEN);
4447				} else {
4448					(void) snprintf(dsname, MAXPATHLEN,
4449					    "%s/%s", poolname, ++cp);
4450				}
4451				VERIFY(nvlist_add_string(config,
4452				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4453				kmem_free(dsname, MAXPATHLEN);
4454			}
4455			kmem_free(tmpname, MAXPATHLEN);
4456		}
4457
4458		/*
4459		 * Add the list of hot spares and level 2 cache devices.
4460		 */
4461		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4462		spa_add_spares(spa, config);
4463		spa_add_l2cache(spa, config);
4464		spa_config_exit(spa, SCL_CONFIG, FTAG);
4465	}
4466
4467	spa_unload(spa);
4468	spa_deactivate(spa);
4469	spa_remove(spa);
4470	mutex_exit(&spa_namespace_lock);
4471
4472	return (config);
4473}
4474
4475/*
4476 * Pool export/destroy
4477 *
4478 * The act of destroying or exporting a pool is very simple.  We make sure there
4479 * is no more pending I/O and any references to the pool are gone.  Then, we
4480 * update the pool state and sync all the labels to disk, removing the
4481 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4482 * we don't sync the labels or remove the configuration cache.
4483 */
4484static int
4485spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4486    boolean_t force, boolean_t hardforce)
4487{
4488	spa_t *spa;
4489
4490	if (oldconfig)
4491		*oldconfig = NULL;
4492
4493	if (!(spa_mode_global & FWRITE))
4494		return (SET_ERROR(EROFS));
4495
4496	mutex_enter(&spa_namespace_lock);
4497	if ((spa = spa_lookup(pool)) == NULL) {
4498		mutex_exit(&spa_namespace_lock);
4499		return (SET_ERROR(ENOENT));
4500	}
4501
4502	/*
4503	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4504	 * reacquire the namespace lock, and see if we can export.
4505	 */
4506	spa_open_ref(spa, FTAG);
4507	mutex_exit(&spa_namespace_lock);
4508	spa_async_suspend(spa);
4509	mutex_enter(&spa_namespace_lock);
4510	spa_close(spa, FTAG);
4511
4512	/*
4513	 * The pool will be in core if it's openable,
4514	 * in which case we can modify its state.
4515	 */
4516	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4517		/*
4518		 * Objsets may be open only because they're dirty, so we
4519		 * have to force it to sync before checking spa_refcnt.
4520		 */
4521		txg_wait_synced(spa->spa_dsl_pool, 0);
4522		spa_evicting_os_wait(spa);
4523
4524		/*
4525		 * A pool cannot be exported or destroyed if there are active
4526		 * references.  If we are resetting a pool, allow references by
4527		 * fault injection handlers.
4528		 */
4529		if (!spa_refcount_zero(spa) ||
4530		    (spa->spa_inject_ref != 0 &&
4531		    new_state != POOL_STATE_UNINITIALIZED)) {
4532			spa_async_resume(spa);
4533			mutex_exit(&spa_namespace_lock);
4534			return (SET_ERROR(EBUSY));
4535		}
4536
4537		/*
4538		 * A pool cannot be exported if it has an active shared spare.
4539		 * This is to prevent other pools stealing the active spare
4540		 * from an exported pool. At user's own will, such pool can
4541		 * be forcedly exported.
4542		 */
4543		if (!force && new_state == POOL_STATE_EXPORTED &&
4544		    spa_has_active_shared_spare(spa)) {
4545			spa_async_resume(spa);
4546			mutex_exit(&spa_namespace_lock);
4547			return (SET_ERROR(EXDEV));
4548		}
4549
4550		/*
4551		 * We want this to be reflected on every label,
4552		 * so mark them all dirty.  spa_unload() will do the
4553		 * final sync that pushes these changes out.
4554		 */
4555		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4556			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4557			spa->spa_state = new_state;
4558			spa->spa_final_txg = spa_last_synced_txg(spa) +
4559			    TXG_DEFER_SIZE + 1;
4560			vdev_config_dirty(spa->spa_root_vdev);
4561			spa_config_exit(spa, SCL_ALL, FTAG);
4562		}
4563	}
4564
4565	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4566
4567	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4568		spa_unload(spa);
4569		spa_deactivate(spa);
4570	}
4571
4572	if (oldconfig && spa->spa_config)
4573		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4574
4575	if (new_state != POOL_STATE_UNINITIALIZED) {
4576		if (!hardforce)
4577			spa_config_sync(spa, B_TRUE, B_TRUE);
4578		spa_remove(spa);
4579	}
4580	mutex_exit(&spa_namespace_lock);
4581
4582	return (0);
4583}
4584
4585/*
4586 * Destroy a storage pool.
4587 */
4588int
4589spa_destroy(char *pool)
4590{
4591	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4592	    B_FALSE, B_FALSE));
4593}
4594
4595/*
4596 * Export a storage pool.
4597 */
4598int
4599spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4600    boolean_t hardforce)
4601{
4602	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4603	    force, hardforce));
4604}
4605
4606/*
4607 * Similar to spa_export(), this unloads the spa_t without actually removing it
4608 * from the namespace in any way.
4609 */
4610int
4611spa_reset(char *pool)
4612{
4613	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4614	    B_FALSE, B_FALSE));
4615}
4616
4617/*
4618 * ==========================================================================
4619 * Device manipulation
4620 * ==========================================================================
4621 */
4622
4623/*
4624 * Add a device to a storage pool.
4625 */
4626int
4627spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4628{
4629	uint64_t txg, id;
4630	int error;
4631	vdev_t *rvd = spa->spa_root_vdev;
4632	vdev_t *vd, *tvd;
4633	nvlist_t **spares, **l2cache;
4634	uint_t nspares, nl2cache;
4635
4636	ASSERT(spa_writeable(spa));
4637
4638	txg = spa_vdev_enter(spa);
4639
4640	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4641	    VDEV_ALLOC_ADD)) != 0)
4642		return (spa_vdev_exit(spa, NULL, txg, error));
4643
4644	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4645
4646	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4647	    &nspares) != 0)
4648		nspares = 0;
4649
4650	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4651	    &nl2cache) != 0)
4652		nl2cache = 0;
4653
4654	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4655		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4656
4657	if (vd->vdev_children != 0 &&
4658	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4659		return (spa_vdev_exit(spa, vd, txg, error));
4660
4661	/*
4662	 * We must validate the spares and l2cache devices after checking the
4663	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4664	 */
4665	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4666		return (spa_vdev_exit(spa, vd, txg, error));
4667
4668	/*
4669	 * Transfer each new top-level vdev from vd to rvd.
4670	 */
4671	for (int c = 0; c < vd->vdev_children; c++) {
4672
4673		/*
4674		 * Set the vdev id to the first hole, if one exists.
4675		 */
4676		for (id = 0; id < rvd->vdev_children; id++) {
4677			if (rvd->vdev_child[id]->vdev_ishole) {
4678				vdev_free(rvd->vdev_child[id]);
4679				break;
4680			}
4681		}
4682		tvd = vd->vdev_child[c];
4683		vdev_remove_child(vd, tvd);
4684		tvd->vdev_id = id;
4685		vdev_add_child(rvd, tvd);
4686		vdev_config_dirty(tvd);
4687	}
4688
4689	if (nspares != 0) {
4690		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4691		    ZPOOL_CONFIG_SPARES);
4692		spa_load_spares(spa);
4693		spa->spa_spares.sav_sync = B_TRUE;
4694	}
4695
4696	if (nl2cache != 0) {
4697		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4698		    ZPOOL_CONFIG_L2CACHE);
4699		spa_load_l2cache(spa);
4700		spa->spa_l2cache.sav_sync = B_TRUE;
4701	}
4702
4703	/*
4704	 * We have to be careful when adding new vdevs to an existing pool.
4705	 * If other threads start allocating from these vdevs before we
4706	 * sync the config cache, and we lose power, then upon reboot we may
4707	 * fail to open the pool because there are DVAs that the config cache
4708	 * can't translate.  Therefore, we first add the vdevs without
4709	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4710	 * and then let spa_config_update() initialize the new metaslabs.
4711	 *
4712	 * spa_load() checks for added-but-not-initialized vdevs, so that
4713	 * if we lose power at any point in this sequence, the remaining
4714	 * steps will be completed the next time we load the pool.
4715	 */
4716	(void) spa_vdev_exit(spa, vd, txg, 0);
4717
4718	mutex_enter(&spa_namespace_lock);
4719	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4720	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4721	mutex_exit(&spa_namespace_lock);
4722
4723	return (0);
4724}
4725
4726/*
4727 * Attach a device to a mirror.  The arguments are the path to any device
4728 * in the mirror, and the nvroot for the new device.  If the path specifies
4729 * a device that is not mirrored, we automatically insert the mirror vdev.
4730 *
4731 * If 'replacing' is specified, the new device is intended to replace the
4732 * existing device; in this case the two devices are made into their own
4733 * mirror using the 'replacing' vdev, which is functionally identical to
4734 * the mirror vdev (it actually reuses all the same ops) but has a few
4735 * extra rules: you can't attach to it after it's been created, and upon
4736 * completion of resilvering, the first disk (the one being replaced)
4737 * is automatically detached.
4738 */
4739int
4740spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4741{
4742	uint64_t txg, dtl_max_txg;
4743	vdev_t *rvd = spa->spa_root_vdev;
4744	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4745	vdev_ops_t *pvops;
4746	char *oldvdpath, *newvdpath;
4747	int newvd_isspare;
4748	int error;
4749
4750	ASSERT(spa_writeable(spa));
4751
4752	txg = spa_vdev_enter(spa);
4753
4754	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4755
4756	if (oldvd == NULL)
4757		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4758
4759	if (!oldvd->vdev_ops->vdev_op_leaf)
4760		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4761
4762	pvd = oldvd->vdev_parent;
4763
4764	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4765	    VDEV_ALLOC_ATTACH)) != 0)
4766		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4767
4768	if (newrootvd->vdev_children != 1)
4769		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4770
4771	newvd = newrootvd->vdev_child[0];
4772
4773	if (!newvd->vdev_ops->vdev_op_leaf)
4774		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4775
4776	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4777		return (spa_vdev_exit(spa, newrootvd, txg, error));
4778
4779	/*
4780	 * Spares can't replace logs
4781	 */
4782	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4783		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4784
4785	if (!replacing) {
4786		/*
4787		 * For attach, the only allowable parent is a mirror or the root
4788		 * vdev.
4789		 */
4790		if (pvd->vdev_ops != &vdev_mirror_ops &&
4791		    pvd->vdev_ops != &vdev_root_ops)
4792			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4793
4794		pvops = &vdev_mirror_ops;
4795	} else {
4796		/*
4797		 * Active hot spares can only be replaced by inactive hot
4798		 * spares.
4799		 */
4800		if (pvd->vdev_ops == &vdev_spare_ops &&
4801		    oldvd->vdev_isspare &&
4802		    !spa_has_spare(spa, newvd->vdev_guid))
4803			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4804
4805		/*
4806		 * If the source is a hot spare, and the parent isn't already a
4807		 * spare, then we want to create a new hot spare.  Otherwise, we
4808		 * want to create a replacing vdev.  The user is not allowed to
4809		 * attach to a spared vdev child unless the 'isspare' state is
4810		 * the same (spare replaces spare, non-spare replaces
4811		 * non-spare).
4812		 */
4813		if (pvd->vdev_ops == &vdev_replacing_ops &&
4814		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4815			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4816		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4817		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4818			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4819		}
4820
4821		if (newvd->vdev_isspare)
4822			pvops = &vdev_spare_ops;
4823		else
4824			pvops = &vdev_replacing_ops;
4825	}
4826
4827	/*
4828	 * Make sure the new device is big enough.
4829	 */
4830	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4831		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4832
4833	/*
4834	 * The new device cannot have a higher alignment requirement
4835	 * than the top-level vdev.
4836	 */
4837	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4838		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4839
4840	/*
4841	 * If this is an in-place replacement, update oldvd's path and devid
4842	 * to make it distinguishable from newvd, and unopenable from now on.
4843	 */
4844	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4845		spa_strfree(oldvd->vdev_path);
4846		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4847		    KM_SLEEP);
4848		(void) sprintf(oldvd->vdev_path, "%s/%s",
4849		    newvd->vdev_path, "old");
4850		if (oldvd->vdev_devid != NULL) {
4851			spa_strfree(oldvd->vdev_devid);
4852			oldvd->vdev_devid = NULL;
4853		}
4854	}
4855
4856	/* mark the device being resilvered */
4857	newvd->vdev_resilver_txg = txg;
4858
4859	/*
4860	 * If the parent is not a mirror, or if we're replacing, insert the new
4861	 * mirror/replacing/spare vdev above oldvd.
4862	 */
4863	if (pvd->vdev_ops != pvops)
4864		pvd = vdev_add_parent(oldvd, pvops);
4865
4866	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4867	ASSERT(pvd->vdev_ops == pvops);
4868	ASSERT(oldvd->vdev_parent == pvd);
4869
4870	/*
4871	 * Extract the new device from its root and add it to pvd.
4872	 */
4873	vdev_remove_child(newrootvd, newvd);
4874	newvd->vdev_id = pvd->vdev_children;
4875	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4876	vdev_add_child(pvd, newvd);
4877
4878	tvd = newvd->vdev_top;
4879	ASSERT(pvd->vdev_top == tvd);
4880	ASSERT(tvd->vdev_parent == rvd);
4881
4882	vdev_config_dirty(tvd);
4883
4884	/*
4885	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4886	 * for any dmu_sync-ed blocks.  It will propagate upward when
4887	 * spa_vdev_exit() calls vdev_dtl_reassess().
4888	 */
4889	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4890
4891	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4892	    dtl_max_txg - TXG_INITIAL);
4893
4894	if (newvd->vdev_isspare) {
4895		spa_spare_activate(newvd);
4896		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4897	}
4898
4899	oldvdpath = spa_strdup(oldvd->vdev_path);
4900	newvdpath = spa_strdup(newvd->vdev_path);
4901	newvd_isspare = newvd->vdev_isspare;
4902
4903	/*
4904	 * Mark newvd's DTL dirty in this txg.
4905	 */
4906	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4907
4908	/*
4909	 * Schedule the resilver to restart in the future. We do this to
4910	 * ensure that dmu_sync-ed blocks have been stitched into the
4911	 * respective datasets.
4912	 */
4913	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4914
4915	if (spa->spa_bootfs)
4916		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4917
4918	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4919
4920	/*
4921	 * Commit the config
4922	 */
4923	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4924
4925	spa_history_log_internal(spa, "vdev attach", NULL,
4926	    "%s vdev=%s %s vdev=%s",
4927	    replacing && newvd_isspare ? "spare in" :
4928	    replacing ? "replace" : "attach", newvdpath,
4929	    replacing ? "for" : "to", oldvdpath);
4930
4931	spa_strfree(oldvdpath);
4932	spa_strfree(newvdpath);
4933
4934	return (0);
4935}
4936
4937/*
4938 * Detach a device from a mirror or replacing vdev.
4939 *
4940 * If 'replace_done' is specified, only detach if the parent
4941 * is a replacing vdev.
4942 */
4943int
4944spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4945{
4946	uint64_t txg;
4947	int error;
4948	vdev_t *rvd = spa->spa_root_vdev;
4949	vdev_t *vd, *pvd, *cvd, *tvd;
4950	boolean_t unspare = B_FALSE;
4951	uint64_t unspare_guid = 0;
4952	char *vdpath;
4953
4954	ASSERT(spa_writeable(spa));
4955
4956	txg = spa_vdev_enter(spa);
4957
4958	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4959
4960	if (vd == NULL)
4961		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4962
4963	if (!vd->vdev_ops->vdev_op_leaf)
4964		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4965
4966	pvd = vd->vdev_parent;
4967
4968	/*
4969	 * If the parent/child relationship is not as expected, don't do it.
4970	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4971	 * vdev that's replacing B with C.  The user's intent in replacing
4972	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4973	 * the replace by detaching C, the expected behavior is to end up
4974	 * M(A,B).  But suppose that right after deciding to detach C,
4975	 * the replacement of B completes.  We would have M(A,C), and then
4976	 * ask to detach C, which would leave us with just A -- not what
4977	 * the user wanted.  To prevent this, we make sure that the
4978	 * parent/child relationship hasn't changed -- in this example,
4979	 * that C's parent is still the replacing vdev R.
4980	 */
4981	if (pvd->vdev_guid != pguid && pguid != 0)
4982		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4983
4984	/*
4985	 * Only 'replacing' or 'spare' vdevs can be replaced.
4986	 */
4987	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4988	    pvd->vdev_ops != &vdev_spare_ops)
4989		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4990
4991	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4992	    spa_version(spa) >= SPA_VERSION_SPARES);
4993
4994	/*
4995	 * Only mirror, replacing, and spare vdevs support detach.
4996	 */
4997	if (pvd->vdev_ops != &vdev_replacing_ops &&
4998	    pvd->vdev_ops != &vdev_mirror_ops &&
4999	    pvd->vdev_ops != &vdev_spare_ops)
5000		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5001
5002	/*
5003	 * If this device has the only valid copy of some data,
5004	 * we cannot safely detach it.
5005	 */
5006	if (vdev_dtl_required(vd))
5007		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5008
5009	ASSERT(pvd->vdev_children >= 2);
5010
5011	/*
5012	 * If we are detaching the second disk from a replacing vdev, then
5013	 * check to see if we changed the original vdev's path to have "/old"
5014	 * at the end in spa_vdev_attach().  If so, undo that change now.
5015	 */
5016	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5017	    vd->vdev_path != NULL) {
5018		size_t len = strlen(vd->vdev_path);
5019
5020		for (int c = 0; c < pvd->vdev_children; c++) {
5021			cvd = pvd->vdev_child[c];
5022
5023			if (cvd == vd || cvd->vdev_path == NULL)
5024				continue;
5025
5026			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5027			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5028				spa_strfree(cvd->vdev_path);
5029				cvd->vdev_path = spa_strdup(vd->vdev_path);
5030				break;
5031			}
5032		}
5033	}
5034
5035	/*
5036	 * If we are detaching the original disk from a spare, then it implies
5037	 * that the spare should become a real disk, and be removed from the
5038	 * active spare list for the pool.
5039	 */
5040	if (pvd->vdev_ops == &vdev_spare_ops &&
5041	    vd->vdev_id == 0 &&
5042	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5043		unspare = B_TRUE;
5044
5045	/*
5046	 * Erase the disk labels so the disk can be used for other things.
5047	 * This must be done after all other error cases are handled,
5048	 * but before we disembowel vd (so we can still do I/O to it).
5049	 * But if we can't do it, don't treat the error as fatal --
5050	 * it may be that the unwritability of the disk is the reason
5051	 * it's being detached!
5052	 */
5053	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5054
5055	/*
5056	 * Remove vd from its parent and compact the parent's children.
5057	 */
5058	vdev_remove_child(pvd, vd);
5059	vdev_compact_children(pvd);
5060
5061	/*
5062	 * Remember one of the remaining children so we can get tvd below.
5063	 */
5064	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5065
5066	/*
5067	 * If we need to remove the remaining child from the list of hot spares,
5068	 * do it now, marking the vdev as no longer a spare in the process.
5069	 * We must do this before vdev_remove_parent(), because that can
5070	 * change the GUID if it creates a new toplevel GUID.  For a similar
5071	 * reason, we must remove the spare now, in the same txg as the detach;
5072	 * otherwise someone could attach a new sibling, change the GUID, and
5073	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5074	 */
5075	if (unspare) {
5076		ASSERT(cvd->vdev_isspare);
5077		spa_spare_remove(cvd);
5078		unspare_guid = cvd->vdev_guid;
5079		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5080		cvd->vdev_unspare = B_TRUE;
5081	}
5082
5083	/*
5084	 * If the parent mirror/replacing vdev only has one child,
5085	 * the parent is no longer needed.  Remove it from the tree.
5086	 */
5087	if (pvd->vdev_children == 1) {
5088		if (pvd->vdev_ops == &vdev_spare_ops)
5089			cvd->vdev_unspare = B_FALSE;
5090		vdev_remove_parent(cvd);
5091	}
5092
5093
5094	/*
5095	 * We don't set tvd until now because the parent we just removed
5096	 * may have been the previous top-level vdev.
5097	 */
5098	tvd = cvd->vdev_top;
5099	ASSERT(tvd->vdev_parent == rvd);
5100
5101	/*
5102	 * Reevaluate the parent vdev state.
5103	 */
5104	vdev_propagate_state(cvd);
5105
5106	/*
5107	 * If the 'autoexpand' property is set on the pool then automatically
5108	 * try to expand the size of the pool. For example if the device we
5109	 * just detached was smaller than the others, it may be possible to
5110	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5111	 * first so that we can obtain the updated sizes of the leaf vdevs.
5112	 */
5113	if (spa->spa_autoexpand) {
5114		vdev_reopen(tvd);
5115		vdev_expand(tvd, txg);
5116	}
5117
5118	vdev_config_dirty(tvd);
5119
5120	/*
5121	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5122	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5123	 * But first make sure we're not on any *other* txg's DTL list, to
5124	 * prevent vd from being accessed after it's freed.
5125	 */
5126	vdpath = spa_strdup(vd->vdev_path);
5127	for (int t = 0; t < TXG_SIZE; t++)
5128		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5129	vd->vdev_detached = B_TRUE;
5130	vdev_dirty(tvd, VDD_DTL, vd, txg);
5131
5132	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5133
5134	/* hang on to the spa before we release the lock */
5135	spa_open_ref(spa, FTAG);
5136
5137	error = spa_vdev_exit(spa, vd, txg, 0);
5138
5139	spa_history_log_internal(spa, "detach", NULL,
5140	    "vdev=%s", vdpath);
5141	spa_strfree(vdpath);
5142
5143	/*
5144	 * If this was the removal of the original device in a hot spare vdev,
5145	 * then we want to go through and remove the device from the hot spare
5146	 * list of every other pool.
5147	 */
5148	if (unspare) {
5149		spa_t *altspa = NULL;
5150
5151		mutex_enter(&spa_namespace_lock);
5152		while ((altspa = spa_next(altspa)) != NULL) {
5153			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5154			    altspa == spa)
5155				continue;
5156
5157			spa_open_ref(altspa, FTAG);
5158			mutex_exit(&spa_namespace_lock);
5159			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5160			mutex_enter(&spa_namespace_lock);
5161			spa_close(altspa, FTAG);
5162		}
5163		mutex_exit(&spa_namespace_lock);
5164
5165		/* search the rest of the vdevs for spares to remove */
5166		spa_vdev_resilver_done(spa);
5167	}
5168
5169	/* all done with the spa; OK to release */
5170	mutex_enter(&spa_namespace_lock);
5171	spa_close(spa, FTAG);
5172	mutex_exit(&spa_namespace_lock);
5173
5174	return (error);
5175}
5176
5177/*
5178 * Split a set of devices from their mirrors, and create a new pool from them.
5179 */
5180int
5181spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5182    nvlist_t *props, boolean_t exp)
5183{
5184	int error = 0;
5185	uint64_t txg, *glist;
5186	spa_t *newspa;
5187	uint_t c, children, lastlog;
5188	nvlist_t **child, *nvl, *tmp;
5189	dmu_tx_t *tx;
5190	char *altroot = NULL;
5191	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5192	boolean_t activate_slog;
5193
5194	ASSERT(spa_writeable(spa));
5195
5196	txg = spa_vdev_enter(spa);
5197
5198	/* clear the log and flush everything up to now */
5199	activate_slog = spa_passivate_log(spa);
5200	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5201	error = spa_offline_log(spa);
5202	txg = spa_vdev_config_enter(spa);
5203
5204	if (activate_slog)
5205		spa_activate_log(spa);
5206
5207	if (error != 0)
5208		return (spa_vdev_exit(spa, NULL, txg, error));
5209
5210	/* check new spa name before going any further */
5211	if (spa_lookup(newname) != NULL)
5212		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5213
5214	/*
5215	 * scan through all the children to ensure they're all mirrors
5216	 */
5217	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5218	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5219	    &children) != 0)
5220		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5221
5222	/* first, check to ensure we've got the right child count */
5223	rvd = spa->spa_root_vdev;
5224	lastlog = 0;
5225	for (c = 0; c < rvd->vdev_children; c++) {
5226		vdev_t *vd = rvd->vdev_child[c];
5227
5228		/* don't count the holes & logs as children */
5229		if (vd->vdev_islog || vd->vdev_ishole) {
5230			if (lastlog == 0)
5231				lastlog = c;
5232			continue;
5233		}
5234
5235		lastlog = 0;
5236	}
5237	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5238		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5239
5240	/* next, ensure no spare or cache devices are part of the split */
5241	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5242	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5243		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5244
5245	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5246	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5247
5248	/* then, loop over each vdev and validate it */
5249	for (c = 0; c < children; c++) {
5250		uint64_t is_hole = 0;
5251
5252		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5253		    &is_hole);
5254
5255		if (is_hole != 0) {
5256			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5257			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5258				continue;
5259			} else {
5260				error = SET_ERROR(EINVAL);
5261				break;
5262			}
5263		}
5264
5265		/* which disk is going to be split? */
5266		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5267		    &glist[c]) != 0) {
5268			error = SET_ERROR(EINVAL);
5269			break;
5270		}
5271
5272		/* look it up in the spa */
5273		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5274		if (vml[c] == NULL) {
5275			error = SET_ERROR(ENODEV);
5276			break;
5277		}
5278
5279		/* make sure there's nothing stopping the split */
5280		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5281		    vml[c]->vdev_islog ||
5282		    vml[c]->vdev_ishole ||
5283		    vml[c]->vdev_isspare ||
5284		    vml[c]->vdev_isl2cache ||
5285		    !vdev_writeable(vml[c]) ||
5286		    vml[c]->vdev_children != 0 ||
5287		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5288		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5289			error = SET_ERROR(EINVAL);
5290			break;
5291		}
5292
5293		if (vdev_dtl_required(vml[c])) {
5294			error = SET_ERROR(EBUSY);
5295			break;
5296		}
5297
5298		/* we need certain info from the top level */
5299		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5300		    vml[c]->vdev_top->vdev_ms_array) == 0);
5301		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5302		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5303		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5304		    vml[c]->vdev_top->vdev_asize) == 0);
5305		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5306		    vml[c]->vdev_top->vdev_ashift) == 0);
5307	}
5308
5309	if (error != 0) {
5310		kmem_free(vml, children * sizeof (vdev_t *));
5311		kmem_free(glist, children * sizeof (uint64_t));
5312		return (spa_vdev_exit(spa, NULL, txg, error));
5313	}
5314
5315	/* stop writers from using the disks */
5316	for (c = 0; c < children; c++) {
5317		if (vml[c] != NULL)
5318			vml[c]->vdev_offline = B_TRUE;
5319	}
5320	vdev_reopen(spa->spa_root_vdev);
5321
5322	/*
5323	 * Temporarily record the splitting vdevs in the spa config.  This
5324	 * will disappear once the config is regenerated.
5325	 */
5326	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5327	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5328	    glist, children) == 0);
5329	kmem_free(glist, children * sizeof (uint64_t));
5330
5331	mutex_enter(&spa->spa_props_lock);
5332	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5333	    nvl) == 0);
5334	mutex_exit(&spa->spa_props_lock);
5335	spa->spa_config_splitting = nvl;
5336	vdev_config_dirty(spa->spa_root_vdev);
5337
5338	/* configure and create the new pool */
5339	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5340	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5341	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5342	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5343	    spa_version(spa)) == 0);
5344	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5345	    spa->spa_config_txg) == 0);
5346	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5347	    spa_generate_guid(NULL)) == 0);
5348	(void) nvlist_lookup_string(props,
5349	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5350
5351	/* add the new pool to the namespace */
5352	newspa = spa_add(newname, config, altroot);
5353	newspa->spa_config_txg = spa->spa_config_txg;
5354	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5355
5356	/* release the spa config lock, retaining the namespace lock */
5357	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5358
5359	if (zio_injection_enabled)
5360		zio_handle_panic_injection(spa, FTAG, 1);
5361
5362	spa_activate(newspa, spa_mode_global);
5363	spa_async_suspend(newspa);
5364
5365#ifndef sun
5366	/* mark that we are creating new spa by splitting */
5367	newspa->spa_splitting_newspa = B_TRUE;
5368#endif
5369	/* create the new pool from the disks of the original pool */
5370	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5371#ifndef sun
5372	newspa->spa_splitting_newspa = B_FALSE;
5373#endif
5374	if (error)
5375		goto out;
5376
5377	/* if that worked, generate a real config for the new pool */
5378	if (newspa->spa_root_vdev != NULL) {
5379		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5380		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5381		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5382		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5383		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5384		    B_TRUE));
5385	}
5386
5387	/* set the props */
5388	if (props != NULL) {
5389		spa_configfile_set(newspa, props, B_FALSE);
5390		error = spa_prop_set(newspa, props);
5391		if (error)
5392			goto out;
5393	}
5394
5395	/* flush everything */
5396	txg = spa_vdev_config_enter(newspa);
5397	vdev_config_dirty(newspa->spa_root_vdev);
5398	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5399
5400	if (zio_injection_enabled)
5401		zio_handle_panic_injection(spa, FTAG, 2);
5402
5403	spa_async_resume(newspa);
5404
5405	/* finally, update the original pool's config */
5406	txg = spa_vdev_config_enter(spa);
5407	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5408	error = dmu_tx_assign(tx, TXG_WAIT);
5409	if (error != 0)
5410		dmu_tx_abort(tx);
5411	for (c = 0; c < children; c++) {
5412		if (vml[c] != NULL) {
5413			vdev_split(vml[c]);
5414			if (error == 0)
5415				spa_history_log_internal(spa, "detach", tx,
5416				    "vdev=%s", vml[c]->vdev_path);
5417			vdev_free(vml[c]);
5418		}
5419	}
5420	vdev_config_dirty(spa->spa_root_vdev);
5421	spa->spa_config_splitting = NULL;
5422	nvlist_free(nvl);
5423	if (error == 0)
5424		dmu_tx_commit(tx);
5425	(void) spa_vdev_exit(spa, NULL, txg, 0);
5426
5427	if (zio_injection_enabled)
5428		zio_handle_panic_injection(spa, FTAG, 3);
5429
5430	/* split is complete; log a history record */
5431	spa_history_log_internal(newspa, "split", NULL,
5432	    "from pool %s", spa_name(spa));
5433
5434	kmem_free(vml, children * sizeof (vdev_t *));
5435
5436	/* if we're not going to mount the filesystems in userland, export */
5437	if (exp)
5438		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5439		    B_FALSE, B_FALSE);
5440
5441	return (error);
5442
5443out:
5444	spa_unload(newspa);
5445	spa_deactivate(newspa);
5446	spa_remove(newspa);
5447
5448	txg = spa_vdev_config_enter(spa);
5449
5450	/* re-online all offlined disks */
5451	for (c = 0; c < children; c++) {
5452		if (vml[c] != NULL)
5453			vml[c]->vdev_offline = B_FALSE;
5454	}
5455	vdev_reopen(spa->spa_root_vdev);
5456
5457	nvlist_free(spa->spa_config_splitting);
5458	spa->spa_config_splitting = NULL;
5459	(void) spa_vdev_exit(spa, NULL, txg, error);
5460
5461	kmem_free(vml, children * sizeof (vdev_t *));
5462	return (error);
5463}
5464
5465static nvlist_t *
5466spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5467{
5468	for (int i = 0; i < count; i++) {
5469		uint64_t guid;
5470
5471		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5472		    &guid) == 0);
5473
5474		if (guid == target_guid)
5475			return (nvpp[i]);
5476	}
5477
5478	return (NULL);
5479}
5480
5481static void
5482spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5483	nvlist_t *dev_to_remove)
5484{
5485	nvlist_t **newdev = NULL;
5486
5487	if (count > 1)
5488		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5489
5490	for (int i = 0, j = 0; i < count; i++) {
5491		if (dev[i] == dev_to_remove)
5492			continue;
5493		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5494	}
5495
5496	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5497	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5498
5499	for (int i = 0; i < count - 1; i++)
5500		nvlist_free(newdev[i]);
5501
5502	if (count > 1)
5503		kmem_free(newdev, (count - 1) * sizeof (void *));
5504}
5505
5506/*
5507 * Evacuate the device.
5508 */
5509static int
5510spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5511{
5512	uint64_t txg;
5513	int error = 0;
5514
5515	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5516	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5517	ASSERT(vd == vd->vdev_top);
5518
5519	/*
5520	 * Evacuate the device.  We don't hold the config lock as writer
5521	 * since we need to do I/O but we do keep the
5522	 * spa_namespace_lock held.  Once this completes the device
5523	 * should no longer have any blocks allocated on it.
5524	 */
5525	if (vd->vdev_islog) {
5526		if (vd->vdev_stat.vs_alloc != 0)
5527			error = spa_offline_log(spa);
5528	} else {
5529		error = SET_ERROR(ENOTSUP);
5530	}
5531
5532	if (error)
5533		return (error);
5534
5535	/*
5536	 * The evacuation succeeded.  Remove any remaining MOS metadata
5537	 * associated with this vdev, and wait for these changes to sync.
5538	 */
5539	ASSERT0(vd->vdev_stat.vs_alloc);
5540	txg = spa_vdev_config_enter(spa);
5541	vd->vdev_removing = B_TRUE;
5542	vdev_dirty_leaves(vd, VDD_DTL, txg);
5543	vdev_config_dirty(vd);
5544	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5545
5546	return (0);
5547}
5548
5549/*
5550 * Complete the removal by cleaning up the namespace.
5551 */
5552static void
5553spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5554{
5555	vdev_t *rvd = spa->spa_root_vdev;
5556	uint64_t id = vd->vdev_id;
5557	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5558
5559	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5560	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5561	ASSERT(vd == vd->vdev_top);
5562
5563	/*
5564	 * Only remove any devices which are empty.
5565	 */
5566	if (vd->vdev_stat.vs_alloc != 0)
5567		return;
5568
5569	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5570
5571	if (list_link_active(&vd->vdev_state_dirty_node))
5572		vdev_state_clean(vd);
5573	if (list_link_active(&vd->vdev_config_dirty_node))
5574		vdev_config_clean(vd);
5575
5576	vdev_free(vd);
5577
5578	if (last_vdev) {
5579		vdev_compact_children(rvd);
5580	} else {
5581		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5582		vdev_add_child(rvd, vd);
5583	}
5584	vdev_config_dirty(rvd);
5585
5586	/*
5587	 * Reassess the health of our root vdev.
5588	 */
5589	vdev_reopen(rvd);
5590}
5591
5592/*
5593 * Remove a device from the pool -
5594 *
5595 * Removing a device from the vdev namespace requires several steps
5596 * and can take a significant amount of time.  As a result we use
5597 * the spa_vdev_config_[enter/exit] functions which allow us to
5598 * grab and release the spa_config_lock while still holding the namespace
5599 * lock.  During each step the configuration is synced out.
5600 *
5601 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5602 * devices.
5603 */
5604int
5605spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5606{
5607	vdev_t *vd;
5608	metaslab_group_t *mg;
5609	nvlist_t **spares, **l2cache, *nv;
5610	uint64_t txg = 0;
5611	uint_t nspares, nl2cache;
5612	int error = 0;
5613	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5614
5615	ASSERT(spa_writeable(spa));
5616
5617	if (!locked)
5618		txg = spa_vdev_enter(spa);
5619
5620	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5621
5622	if (spa->spa_spares.sav_vdevs != NULL &&
5623	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5624	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5625	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5626		/*
5627		 * Only remove the hot spare if it's not currently in use
5628		 * in this pool.
5629		 */
5630		if (vd == NULL || unspare) {
5631			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5632			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5633			spa_load_spares(spa);
5634			spa->spa_spares.sav_sync = B_TRUE;
5635		} else {
5636			error = SET_ERROR(EBUSY);
5637		}
5638	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5639	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5640	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5641	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5642		/*
5643		 * Cache devices can always be removed.
5644		 */
5645		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5646		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5647		spa_load_l2cache(spa);
5648		spa->spa_l2cache.sav_sync = B_TRUE;
5649	} else if (vd != NULL && vd->vdev_islog) {
5650		ASSERT(!locked);
5651		ASSERT(vd == vd->vdev_top);
5652
5653		mg = vd->vdev_mg;
5654
5655		/*
5656		 * Stop allocating from this vdev.
5657		 */
5658		metaslab_group_passivate(mg);
5659
5660		/*
5661		 * Wait for the youngest allocations and frees to sync,
5662		 * and then wait for the deferral of those frees to finish.
5663		 */
5664		spa_vdev_config_exit(spa, NULL,
5665		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5666
5667		/*
5668		 * Attempt to evacuate the vdev.
5669		 */
5670		error = spa_vdev_remove_evacuate(spa, vd);
5671
5672		txg = spa_vdev_config_enter(spa);
5673
5674		/*
5675		 * If we couldn't evacuate the vdev, unwind.
5676		 */
5677		if (error) {
5678			metaslab_group_activate(mg);
5679			return (spa_vdev_exit(spa, NULL, txg, error));
5680		}
5681
5682		/*
5683		 * Clean up the vdev namespace.
5684		 */
5685		spa_vdev_remove_from_namespace(spa, vd);
5686
5687	} else if (vd != NULL) {
5688		/*
5689		 * Normal vdevs cannot be removed (yet).
5690		 */
5691		error = SET_ERROR(ENOTSUP);
5692	} else {
5693		/*
5694		 * There is no vdev of any kind with the specified guid.
5695		 */
5696		error = SET_ERROR(ENOENT);
5697	}
5698
5699	if (!locked)
5700		return (spa_vdev_exit(spa, NULL, txg, error));
5701
5702	return (error);
5703}
5704
5705/*
5706 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5707 * currently spared, so we can detach it.
5708 */
5709static vdev_t *
5710spa_vdev_resilver_done_hunt(vdev_t *vd)
5711{
5712	vdev_t *newvd, *oldvd;
5713
5714	for (int c = 0; c < vd->vdev_children; c++) {
5715		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5716		if (oldvd != NULL)
5717			return (oldvd);
5718	}
5719
5720	/*
5721	 * Check for a completed replacement.  We always consider the first
5722	 * vdev in the list to be the oldest vdev, and the last one to be
5723	 * the newest (see spa_vdev_attach() for how that works).  In
5724	 * the case where the newest vdev is faulted, we will not automatically
5725	 * remove it after a resilver completes.  This is OK as it will require
5726	 * user intervention to determine which disk the admin wishes to keep.
5727	 */
5728	if (vd->vdev_ops == &vdev_replacing_ops) {
5729		ASSERT(vd->vdev_children > 1);
5730
5731		newvd = vd->vdev_child[vd->vdev_children - 1];
5732		oldvd = vd->vdev_child[0];
5733
5734		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5735		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5736		    !vdev_dtl_required(oldvd))
5737			return (oldvd);
5738	}
5739
5740	/*
5741	 * Check for a completed resilver with the 'unspare' flag set.
5742	 */
5743	if (vd->vdev_ops == &vdev_spare_ops) {
5744		vdev_t *first = vd->vdev_child[0];
5745		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5746
5747		if (last->vdev_unspare) {
5748			oldvd = first;
5749			newvd = last;
5750		} else if (first->vdev_unspare) {
5751			oldvd = last;
5752			newvd = first;
5753		} else {
5754			oldvd = NULL;
5755		}
5756
5757		if (oldvd != NULL &&
5758		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5759		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5760		    !vdev_dtl_required(oldvd))
5761			return (oldvd);
5762
5763		/*
5764		 * If there are more than two spares attached to a disk,
5765		 * and those spares are not required, then we want to
5766		 * attempt to free them up now so that they can be used
5767		 * by other pools.  Once we're back down to a single
5768		 * disk+spare, we stop removing them.
5769		 */
5770		if (vd->vdev_children > 2) {
5771			newvd = vd->vdev_child[1];
5772
5773			if (newvd->vdev_isspare && last->vdev_isspare &&
5774			    vdev_dtl_empty(last, DTL_MISSING) &&
5775			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5776			    !vdev_dtl_required(newvd))
5777				return (newvd);
5778		}
5779	}
5780
5781	return (NULL);
5782}
5783
5784static void
5785spa_vdev_resilver_done(spa_t *spa)
5786{
5787	vdev_t *vd, *pvd, *ppvd;
5788	uint64_t guid, sguid, pguid, ppguid;
5789
5790	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5791
5792	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5793		pvd = vd->vdev_parent;
5794		ppvd = pvd->vdev_parent;
5795		guid = vd->vdev_guid;
5796		pguid = pvd->vdev_guid;
5797		ppguid = ppvd->vdev_guid;
5798		sguid = 0;
5799		/*
5800		 * If we have just finished replacing a hot spared device, then
5801		 * we need to detach the parent's first child (the original hot
5802		 * spare) as well.
5803		 */
5804		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5805		    ppvd->vdev_children == 2) {
5806			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5807			sguid = ppvd->vdev_child[1]->vdev_guid;
5808		}
5809		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5810
5811		spa_config_exit(spa, SCL_ALL, FTAG);
5812		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5813			return;
5814		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5815			return;
5816		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5817	}
5818
5819	spa_config_exit(spa, SCL_ALL, FTAG);
5820}
5821
5822/*
5823 * Update the stored path or FRU for this vdev.
5824 */
5825int
5826spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5827    boolean_t ispath)
5828{
5829	vdev_t *vd;
5830	boolean_t sync = B_FALSE;
5831
5832	ASSERT(spa_writeable(spa));
5833
5834	spa_vdev_state_enter(spa, SCL_ALL);
5835
5836	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5837		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5838
5839	if (!vd->vdev_ops->vdev_op_leaf)
5840		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5841
5842	if (ispath) {
5843		if (strcmp(value, vd->vdev_path) != 0) {
5844			spa_strfree(vd->vdev_path);
5845			vd->vdev_path = spa_strdup(value);
5846			sync = B_TRUE;
5847		}
5848	} else {
5849		if (vd->vdev_fru == NULL) {
5850			vd->vdev_fru = spa_strdup(value);
5851			sync = B_TRUE;
5852		} else if (strcmp(value, vd->vdev_fru) != 0) {
5853			spa_strfree(vd->vdev_fru);
5854			vd->vdev_fru = spa_strdup(value);
5855			sync = B_TRUE;
5856		}
5857	}
5858
5859	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5860}
5861
5862int
5863spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5864{
5865	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5866}
5867
5868int
5869spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5870{
5871	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5872}
5873
5874/*
5875 * ==========================================================================
5876 * SPA Scanning
5877 * ==========================================================================
5878 */
5879
5880int
5881spa_scan_stop(spa_t *spa)
5882{
5883	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5884	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5885		return (SET_ERROR(EBUSY));
5886	return (dsl_scan_cancel(spa->spa_dsl_pool));
5887}
5888
5889int
5890spa_scan(spa_t *spa, pool_scan_func_t func)
5891{
5892	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5893
5894	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5895		return (SET_ERROR(ENOTSUP));
5896
5897	/*
5898	 * If a resilver was requested, but there is no DTL on a
5899	 * writeable leaf device, we have nothing to do.
5900	 */
5901	if (func == POOL_SCAN_RESILVER &&
5902	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5903		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5904		return (0);
5905	}
5906
5907	return (dsl_scan(spa->spa_dsl_pool, func));
5908}
5909
5910/*
5911 * ==========================================================================
5912 * SPA async task processing
5913 * ==========================================================================
5914 */
5915
5916static void
5917spa_async_remove(spa_t *spa, vdev_t *vd)
5918{
5919	if (vd->vdev_remove_wanted) {
5920		vd->vdev_remove_wanted = B_FALSE;
5921		vd->vdev_delayed_close = B_FALSE;
5922		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5923
5924		/*
5925		 * We want to clear the stats, but we don't want to do a full
5926		 * vdev_clear() as that will cause us to throw away
5927		 * degraded/faulted state as well as attempt to reopen the
5928		 * device, all of which is a waste.
5929		 */
5930		vd->vdev_stat.vs_read_errors = 0;
5931		vd->vdev_stat.vs_write_errors = 0;
5932		vd->vdev_stat.vs_checksum_errors = 0;
5933
5934		vdev_state_dirty(vd->vdev_top);
5935	}
5936
5937	for (int c = 0; c < vd->vdev_children; c++)
5938		spa_async_remove(spa, vd->vdev_child[c]);
5939}
5940
5941static void
5942spa_async_probe(spa_t *spa, vdev_t *vd)
5943{
5944	if (vd->vdev_probe_wanted) {
5945		vd->vdev_probe_wanted = B_FALSE;
5946		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5947	}
5948
5949	for (int c = 0; c < vd->vdev_children; c++)
5950		spa_async_probe(spa, vd->vdev_child[c]);
5951}
5952
5953static void
5954spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5955{
5956	sysevent_id_t eid;
5957	nvlist_t *attr;
5958	char *physpath;
5959
5960	if (!spa->spa_autoexpand)
5961		return;
5962
5963	for (int c = 0; c < vd->vdev_children; c++) {
5964		vdev_t *cvd = vd->vdev_child[c];
5965		spa_async_autoexpand(spa, cvd);
5966	}
5967
5968	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5969		return;
5970
5971	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5972	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5973
5974	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5975	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5976
5977	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5978	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5979
5980	nvlist_free(attr);
5981	kmem_free(physpath, MAXPATHLEN);
5982}
5983
5984static void
5985spa_async_thread(void *arg)
5986{
5987	spa_t *spa = arg;
5988	int tasks;
5989
5990	ASSERT(spa->spa_sync_on);
5991
5992	mutex_enter(&spa->spa_async_lock);
5993	tasks = spa->spa_async_tasks;
5994	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5995	mutex_exit(&spa->spa_async_lock);
5996
5997	/*
5998	 * See if the config needs to be updated.
5999	 */
6000	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6001		uint64_t old_space, new_space;
6002
6003		mutex_enter(&spa_namespace_lock);
6004		old_space = metaslab_class_get_space(spa_normal_class(spa));
6005		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6006		new_space = metaslab_class_get_space(spa_normal_class(spa));
6007		mutex_exit(&spa_namespace_lock);
6008
6009		/*
6010		 * If the pool grew as a result of the config update,
6011		 * then log an internal history event.
6012		 */
6013		if (new_space != old_space) {
6014			spa_history_log_internal(spa, "vdev online", NULL,
6015			    "pool '%s' size: %llu(+%llu)",
6016			    spa_name(spa), new_space, new_space - old_space);
6017		}
6018	}
6019
6020	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6021		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6022		spa_async_autoexpand(spa, spa->spa_root_vdev);
6023		spa_config_exit(spa, SCL_CONFIG, FTAG);
6024	}
6025
6026	/*
6027	 * See if any devices need to be probed.
6028	 */
6029	if (tasks & SPA_ASYNC_PROBE) {
6030		spa_vdev_state_enter(spa, SCL_NONE);
6031		spa_async_probe(spa, spa->spa_root_vdev);
6032		(void) spa_vdev_state_exit(spa, NULL, 0);
6033	}
6034
6035	/*
6036	 * If any devices are done replacing, detach them.
6037	 */
6038	if (tasks & SPA_ASYNC_RESILVER_DONE)
6039		spa_vdev_resilver_done(spa);
6040
6041	/*
6042	 * Kick off a resilver.
6043	 */
6044	if (tasks & SPA_ASYNC_RESILVER)
6045		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6046
6047	/*
6048	 * Let the world know that we're done.
6049	 */
6050	mutex_enter(&spa->spa_async_lock);
6051	spa->spa_async_thread = NULL;
6052	cv_broadcast(&spa->spa_async_cv);
6053	mutex_exit(&spa->spa_async_lock);
6054	thread_exit();
6055}
6056
6057static void
6058spa_async_thread_vd(void *arg)
6059{
6060	spa_t *spa = arg;
6061	int tasks;
6062
6063	ASSERT(spa->spa_sync_on);
6064
6065	mutex_enter(&spa->spa_async_lock);
6066	tasks = spa->spa_async_tasks;
6067retry:
6068	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6069	mutex_exit(&spa->spa_async_lock);
6070
6071	/*
6072	 * See if any devices need to be marked REMOVED.
6073	 */
6074	if (tasks & SPA_ASYNC_REMOVE) {
6075		spa_vdev_state_enter(spa, SCL_NONE);
6076		spa_async_remove(spa, spa->spa_root_vdev);
6077		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6078			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6079		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6080			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6081		(void) spa_vdev_state_exit(spa, NULL, 0);
6082	}
6083
6084	/*
6085	 * Let the world know that we're done.
6086	 */
6087	mutex_enter(&spa->spa_async_lock);
6088	tasks = spa->spa_async_tasks;
6089	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6090		goto retry;
6091	spa->spa_async_thread_vd = NULL;
6092	cv_broadcast(&spa->spa_async_cv);
6093	mutex_exit(&spa->spa_async_lock);
6094	thread_exit();
6095}
6096
6097void
6098spa_async_suspend(spa_t *spa)
6099{
6100	mutex_enter(&spa->spa_async_lock);
6101	spa->spa_async_suspended++;
6102	while (spa->spa_async_thread != NULL &&
6103	    spa->spa_async_thread_vd != NULL)
6104		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6105	mutex_exit(&spa->spa_async_lock);
6106}
6107
6108void
6109spa_async_resume(spa_t *spa)
6110{
6111	mutex_enter(&spa->spa_async_lock);
6112	ASSERT(spa->spa_async_suspended != 0);
6113	spa->spa_async_suspended--;
6114	mutex_exit(&spa->spa_async_lock);
6115}
6116
6117static boolean_t
6118spa_async_tasks_pending(spa_t *spa)
6119{
6120	uint_t non_config_tasks;
6121	uint_t config_task;
6122	boolean_t config_task_suspended;
6123
6124	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6125	    SPA_ASYNC_REMOVE);
6126	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6127	if (spa->spa_ccw_fail_time == 0) {
6128		config_task_suspended = B_FALSE;
6129	} else {
6130		config_task_suspended =
6131		    (gethrtime() - spa->spa_ccw_fail_time) <
6132		    (zfs_ccw_retry_interval * NANOSEC);
6133	}
6134
6135	return (non_config_tasks || (config_task && !config_task_suspended));
6136}
6137
6138static void
6139spa_async_dispatch(spa_t *spa)
6140{
6141	mutex_enter(&spa->spa_async_lock);
6142	if (spa_async_tasks_pending(spa) &&
6143	    !spa->spa_async_suspended &&
6144	    spa->spa_async_thread == NULL &&
6145	    rootdir != NULL)
6146		spa->spa_async_thread = thread_create(NULL, 0,
6147		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6148	mutex_exit(&spa->spa_async_lock);
6149}
6150
6151static void
6152spa_async_dispatch_vd(spa_t *spa)
6153{
6154	mutex_enter(&spa->spa_async_lock);
6155	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6156	    !spa->spa_async_suspended &&
6157	    spa->spa_async_thread_vd == NULL &&
6158	    rootdir != NULL)
6159		spa->spa_async_thread_vd = thread_create(NULL, 0,
6160		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6161	mutex_exit(&spa->spa_async_lock);
6162}
6163
6164void
6165spa_async_request(spa_t *spa, int task)
6166{
6167	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6168	mutex_enter(&spa->spa_async_lock);
6169	spa->spa_async_tasks |= task;
6170	mutex_exit(&spa->spa_async_lock);
6171	spa_async_dispatch_vd(spa);
6172}
6173
6174/*
6175 * ==========================================================================
6176 * SPA syncing routines
6177 * ==========================================================================
6178 */
6179
6180static int
6181bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6182{
6183	bpobj_t *bpo = arg;
6184	bpobj_enqueue(bpo, bp, tx);
6185	return (0);
6186}
6187
6188static int
6189spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6190{
6191	zio_t *zio = arg;
6192
6193	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6194	    BP_GET_PSIZE(bp), zio->io_flags));
6195	return (0);
6196}
6197
6198/*
6199 * Note: this simple function is not inlined to make it easier to dtrace the
6200 * amount of time spent syncing frees.
6201 */
6202static void
6203spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6204{
6205	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6206	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6207	VERIFY(zio_wait(zio) == 0);
6208}
6209
6210/*
6211 * Note: this simple function is not inlined to make it easier to dtrace the
6212 * amount of time spent syncing deferred frees.
6213 */
6214static void
6215spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6216{
6217	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6218	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6219	    spa_free_sync_cb, zio, tx), ==, 0);
6220	VERIFY0(zio_wait(zio));
6221}
6222
6223
6224static void
6225spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6226{
6227	char *packed = NULL;
6228	size_t bufsize;
6229	size_t nvsize = 0;
6230	dmu_buf_t *db;
6231
6232	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6233
6234	/*
6235	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6236	 * information.  This avoids the dmu_buf_will_dirty() path and
6237	 * saves us a pre-read to get data we don't actually care about.
6238	 */
6239	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6240	packed = kmem_alloc(bufsize, KM_SLEEP);
6241
6242	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6243	    KM_SLEEP) == 0);
6244	bzero(packed + nvsize, bufsize - nvsize);
6245
6246	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6247
6248	kmem_free(packed, bufsize);
6249
6250	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6251	dmu_buf_will_dirty(db, tx);
6252	*(uint64_t *)db->db_data = nvsize;
6253	dmu_buf_rele(db, FTAG);
6254}
6255
6256static void
6257spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6258    const char *config, const char *entry)
6259{
6260	nvlist_t *nvroot;
6261	nvlist_t **list;
6262	int i;
6263
6264	if (!sav->sav_sync)
6265		return;
6266
6267	/*
6268	 * Update the MOS nvlist describing the list of available devices.
6269	 * spa_validate_aux() will have already made sure this nvlist is
6270	 * valid and the vdevs are labeled appropriately.
6271	 */
6272	if (sav->sav_object == 0) {
6273		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6274		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6275		    sizeof (uint64_t), tx);
6276		VERIFY(zap_update(spa->spa_meta_objset,
6277		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6278		    &sav->sav_object, tx) == 0);
6279	}
6280
6281	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6282	if (sav->sav_count == 0) {
6283		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6284	} else {
6285		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6286		for (i = 0; i < sav->sav_count; i++)
6287			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6288			    B_FALSE, VDEV_CONFIG_L2CACHE);
6289		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6290		    sav->sav_count) == 0);
6291		for (i = 0; i < sav->sav_count; i++)
6292			nvlist_free(list[i]);
6293		kmem_free(list, sav->sav_count * sizeof (void *));
6294	}
6295
6296	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6297	nvlist_free(nvroot);
6298
6299	sav->sav_sync = B_FALSE;
6300}
6301
6302static void
6303spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6304{
6305	nvlist_t *config;
6306
6307	if (list_is_empty(&spa->spa_config_dirty_list))
6308		return;
6309
6310	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6311
6312	config = spa_config_generate(spa, spa->spa_root_vdev,
6313	    dmu_tx_get_txg(tx), B_FALSE);
6314
6315	/*
6316	 * If we're upgrading the spa version then make sure that
6317	 * the config object gets updated with the correct version.
6318	 */
6319	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6320		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6321		    spa->spa_uberblock.ub_version);
6322
6323	spa_config_exit(spa, SCL_STATE, FTAG);
6324
6325	if (spa->spa_config_syncing)
6326		nvlist_free(spa->spa_config_syncing);
6327	spa->spa_config_syncing = config;
6328
6329	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6330}
6331
6332static void
6333spa_sync_version(void *arg, dmu_tx_t *tx)
6334{
6335	uint64_t *versionp = arg;
6336	uint64_t version = *versionp;
6337	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6338
6339	/*
6340	 * Setting the version is special cased when first creating the pool.
6341	 */
6342	ASSERT(tx->tx_txg != TXG_INITIAL);
6343
6344	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6345	ASSERT(version >= spa_version(spa));
6346
6347	spa->spa_uberblock.ub_version = version;
6348	vdev_config_dirty(spa->spa_root_vdev);
6349	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6350}
6351
6352/*
6353 * Set zpool properties.
6354 */
6355static void
6356spa_sync_props(void *arg, dmu_tx_t *tx)
6357{
6358	nvlist_t *nvp = arg;
6359	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6360	objset_t *mos = spa->spa_meta_objset;
6361	nvpair_t *elem = NULL;
6362
6363	mutex_enter(&spa->spa_props_lock);
6364
6365	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6366		uint64_t intval;
6367		char *strval, *fname;
6368		zpool_prop_t prop;
6369		const char *propname;
6370		zprop_type_t proptype;
6371		spa_feature_t fid;
6372
6373		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6374		case ZPROP_INVAL:
6375			/*
6376			 * We checked this earlier in spa_prop_validate().
6377			 */
6378			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6379
6380			fname = strchr(nvpair_name(elem), '@') + 1;
6381			VERIFY0(zfeature_lookup_name(fname, &fid));
6382
6383			spa_feature_enable(spa, fid, tx);
6384			spa_history_log_internal(spa, "set", tx,
6385			    "%s=enabled", nvpair_name(elem));
6386			break;
6387
6388		case ZPOOL_PROP_VERSION:
6389			intval = fnvpair_value_uint64(elem);
6390			/*
6391			 * The version is synced seperatly before other
6392			 * properties and should be correct by now.
6393			 */
6394			ASSERT3U(spa_version(spa), >=, intval);
6395			break;
6396
6397		case ZPOOL_PROP_ALTROOT:
6398			/*
6399			 * 'altroot' is a non-persistent property. It should
6400			 * have been set temporarily at creation or import time.
6401			 */
6402			ASSERT(spa->spa_root != NULL);
6403			break;
6404
6405		case ZPOOL_PROP_READONLY:
6406		case ZPOOL_PROP_CACHEFILE:
6407			/*
6408			 * 'readonly' and 'cachefile' are also non-persisitent
6409			 * properties.
6410			 */
6411			break;
6412		case ZPOOL_PROP_COMMENT:
6413			strval = fnvpair_value_string(elem);
6414			if (spa->spa_comment != NULL)
6415				spa_strfree(spa->spa_comment);
6416			spa->spa_comment = spa_strdup(strval);
6417			/*
6418			 * We need to dirty the configuration on all the vdevs
6419			 * so that their labels get updated.  It's unnecessary
6420			 * to do this for pool creation since the vdev's
6421			 * configuratoin has already been dirtied.
6422			 */
6423			if (tx->tx_txg != TXG_INITIAL)
6424				vdev_config_dirty(spa->spa_root_vdev);
6425			spa_history_log_internal(spa, "set", tx,
6426			    "%s=%s", nvpair_name(elem), strval);
6427			break;
6428		default:
6429			/*
6430			 * Set pool property values in the poolprops mos object.
6431			 */
6432			if (spa->spa_pool_props_object == 0) {
6433				spa->spa_pool_props_object =
6434				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6435				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6436				    tx);
6437			}
6438
6439			/* normalize the property name */
6440			propname = zpool_prop_to_name(prop);
6441			proptype = zpool_prop_get_type(prop);
6442
6443			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6444				ASSERT(proptype == PROP_TYPE_STRING);
6445				strval = fnvpair_value_string(elem);
6446				VERIFY0(zap_update(mos,
6447				    spa->spa_pool_props_object, propname,
6448				    1, strlen(strval) + 1, strval, tx));
6449				spa_history_log_internal(spa, "set", tx,
6450				    "%s=%s", nvpair_name(elem), strval);
6451			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6452				intval = fnvpair_value_uint64(elem);
6453
6454				if (proptype == PROP_TYPE_INDEX) {
6455					const char *unused;
6456					VERIFY0(zpool_prop_index_to_string(
6457					    prop, intval, &unused));
6458				}
6459				VERIFY0(zap_update(mos,
6460				    spa->spa_pool_props_object, propname,
6461				    8, 1, &intval, tx));
6462				spa_history_log_internal(spa, "set", tx,
6463				    "%s=%lld", nvpair_name(elem), intval);
6464			} else {
6465				ASSERT(0); /* not allowed */
6466			}
6467
6468			switch (prop) {
6469			case ZPOOL_PROP_DELEGATION:
6470				spa->spa_delegation = intval;
6471				break;
6472			case ZPOOL_PROP_BOOTFS:
6473				spa->spa_bootfs = intval;
6474				break;
6475			case ZPOOL_PROP_FAILUREMODE:
6476				spa->spa_failmode = intval;
6477				break;
6478			case ZPOOL_PROP_AUTOEXPAND:
6479				spa->spa_autoexpand = intval;
6480				if (tx->tx_txg != TXG_INITIAL)
6481					spa_async_request(spa,
6482					    SPA_ASYNC_AUTOEXPAND);
6483				break;
6484			case ZPOOL_PROP_DEDUPDITTO:
6485				spa->spa_dedup_ditto = intval;
6486				break;
6487			default:
6488				break;
6489			}
6490		}
6491
6492	}
6493
6494	mutex_exit(&spa->spa_props_lock);
6495}
6496
6497/*
6498 * Perform one-time upgrade on-disk changes.  spa_version() does not
6499 * reflect the new version this txg, so there must be no changes this
6500 * txg to anything that the upgrade code depends on after it executes.
6501 * Therefore this must be called after dsl_pool_sync() does the sync
6502 * tasks.
6503 */
6504static void
6505spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6506{
6507	dsl_pool_t *dp = spa->spa_dsl_pool;
6508
6509	ASSERT(spa->spa_sync_pass == 1);
6510
6511	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6512
6513	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6514	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6515		dsl_pool_create_origin(dp, tx);
6516
6517		/* Keeping the origin open increases spa_minref */
6518		spa->spa_minref += 3;
6519	}
6520
6521	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6522	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6523		dsl_pool_upgrade_clones(dp, tx);
6524	}
6525
6526	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6527	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6528		dsl_pool_upgrade_dir_clones(dp, tx);
6529
6530		/* Keeping the freedir open increases spa_minref */
6531		spa->spa_minref += 3;
6532	}
6533
6534	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6535	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6536		spa_feature_create_zap_objects(spa, tx);
6537	}
6538
6539	/*
6540	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6541	 * when possibility to use lz4 compression for metadata was added
6542	 * Old pools that have this feature enabled must be upgraded to have
6543	 * this feature active
6544	 */
6545	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6546		boolean_t lz4_en = spa_feature_is_enabled(spa,
6547		    SPA_FEATURE_LZ4_COMPRESS);
6548		boolean_t lz4_ac = spa_feature_is_active(spa,
6549		    SPA_FEATURE_LZ4_COMPRESS);
6550
6551		if (lz4_en && !lz4_ac)
6552			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6553	}
6554	rrw_exit(&dp->dp_config_rwlock, FTAG);
6555}
6556
6557/*
6558 * Sync the specified transaction group.  New blocks may be dirtied as
6559 * part of the process, so we iterate until it converges.
6560 */
6561void
6562spa_sync(spa_t *spa, uint64_t txg)
6563{
6564	dsl_pool_t *dp = spa->spa_dsl_pool;
6565	objset_t *mos = spa->spa_meta_objset;
6566	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6567	vdev_t *rvd = spa->spa_root_vdev;
6568	vdev_t *vd;
6569	dmu_tx_t *tx;
6570	int error;
6571
6572	VERIFY(spa_writeable(spa));
6573
6574	/*
6575	 * Lock out configuration changes.
6576	 */
6577	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6578
6579	spa->spa_syncing_txg = txg;
6580	spa->spa_sync_pass = 0;
6581
6582	/*
6583	 * If there are any pending vdev state changes, convert them
6584	 * into config changes that go out with this transaction group.
6585	 */
6586	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6587	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6588		/*
6589		 * We need the write lock here because, for aux vdevs,
6590		 * calling vdev_config_dirty() modifies sav_config.
6591		 * This is ugly and will become unnecessary when we
6592		 * eliminate the aux vdev wart by integrating all vdevs
6593		 * into the root vdev tree.
6594		 */
6595		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6596		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6597		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6598			vdev_state_clean(vd);
6599			vdev_config_dirty(vd);
6600		}
6601		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6602		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6603	}
6604	spa_config_exit(spa, SCL_STATE, FTAG);
6605
6606	tx = dmu_tx_create_assigned(dp, txg);
6607
6608	spa->spa_sync_starttime = gethrtime();
6609#ifdef illumos
6610	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6611	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6612#else	/* FreeBSD */
6613#ifdef _KERNEL
6614	callout_reset(&spa->spa_deadman_cycid,
6615	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6616#endif
6617#endif
6618
6619	/*
6620	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6621	 * set spa_deflate if we have no raid-z vdevs.
6622	 */
6623	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6624	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6625		int i;
6626
6627		for (i = 0; i < rvd->vdev_children; i++) {
6628			vd = rvd->vdev_child[i];
6629			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6630				break;
6631		}
6632		if (i == rvd->vdev_children) {
6633			spa->spa_deflate = TRUE;
6634			VERIFY(0 == zap_add(spa->spa_meta_objset,
6635			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6636			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6637		}
6638	}
6639
6640	/*
6641	 * Iterate to convergence.
6642	 */
6643	do {
6644		int pass = ++spa->spa_sync_pass;
6645
6646		spa_sync_config_object(spa, tx);
6647		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6648		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6649		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6650		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6651		spa_errlog_sync(spa, txg);
6652		dsl_pool_sync(dp, txg);
6653
6654		if (pass < zfs_sync_pass_deferred_free) {
6655			spa_sync_frees(spa, free_bpl, tx);
6656		} else {
6657			/*
6658			 * We can not defer frees in pass 1, because
6659			 * we sync the deferred frees later in pass 1.
6660			 */
6661			ASSERT3U(pass, >, 1);
6662			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6663			    &spa->spa_deferred_bpobj, tx);
6664		}
6665
6666		ddt_sync(spa, txg);
6667		dsl_scan_sync(dp, tx);
6668
6669		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6670			vdev_sync(vd, txg);
6671
6672		if (pass == 1) {
6673			spa_sync_upgrades(spa, tx);
6674			ASSERT3U(txg, >=,
6675			    spa->spa_uberblock.ub_rootbp.blk_birth);
6676			/*
6677			 * Note: We need to check if the MOS is dirty
6678			 * because we could have marked the MOS dirty
6679			 * without updating the uberblock (e.g. if we
6680			 * have sync tasks but no dirty user data).  We
6681			 * need to check the uberblock's rootbp because
6682			 * it is updated if we have synced out dirty
6683			 * data (though in this case the MOS will most
6684			 * likely also be dirty due to second order
6685			 * effects, we don't want to rely on that here).
6686			 */
6687			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6688			    !dmu_objset_is_dirty(mos, txg)) {
6689				/*
6690				 * Nothing changed on the first pass,
6691				 * therefore this TXG is a no-op.  Avoid
6692				 * syncing deferred frees, so that we
6693				 * can keep this TXG as a no-op.
6694				 */
6695				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6696				    txg));
6697				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6698				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6699				break;
6700			}
6701			spa_sync_deferred_frees(spa, tx);
6702		}
6703
6704	} while (dmu_objset_is_dirty(mos, txg));
6705
6706	/*
6707	 * Rewrite the vdev configuration (which includes the uberblock)
6708	 * to commit the transaction group.
6709	 *
6710	 * If there are no dirty vdevs, we sync the uberblock to a few
6711	 * random top-level vdevs that are known to be visible in the
6712	 * config cache (see spa_vdev_add() for a complete description).
6713	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6714	 */
6715	for (;;) {
6716		/*
6717		 * We hold SCL_STATE to prevent vdev open/close/etc.
6718		 * while we're attempting to write the vdev labels.
6719		 */
6720		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6721
6722		if (list_is_empty(&spa->spa_config_dirty_list)) {
6723			vdev_t *svd[SPA_DVAS_PER_BP];
6724			int svdcount = 0;
6725			int children = rvd->vdev_children;
6726			int c0 = spa_get_random(children);
6727
6728			for (int c = 0; c < children; c++) {
6729				vd = rvd->vdev_child[(c0 + c) % children];
6730				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6731					continue;
6732				svd[svdcount++] = vd;
6733				if (svdcount == SPA_DVAS_PER_BP)
6734					break;
6735			}
6736			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6737			if (error != 0)
6738				error = vdev_config_sync(svd, svdcount, txg,
6739				    B_TRUE);
6740		} else {
6741			error = vdev_config_sync(rvd->vdev_child,
6742			    rvd->vdev_children, txg, B_FALSE);
6743			if (error != 0)
6744				error = vdev_config_sync(rvd->vdev_child,
6745				    rvd->vdev_children, txg, B_TRUE);
6746		}
6747
6748		if (error == 0)
6749			spa->spa_last_synced_guid = rvd->vdev_guid;
6750
6751		spa_config_exit(spa, SCL_STATE, FTAG);
6752
6753		if (error == 0)
6754			break;
6755		zio_suspend(spa, NULL);
6756		zio_resume_wait(spa);
6757	}
6758	dmu_tx_commit(tx);
6759
6760#ifdef illumos
6761	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6762#else	/* FreeBSD */
6763#ifdef _KERNEL
6764	callout_drain(&spa->spa_deadman_cycid);
6765#endif
6766#endif
6767
6768	/*
6769	 * Clear the dirty config list.
6770	 */
6771	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6772		vdev_config_clean(vd);
6773
6774	/*
6775	 * Now that the new config has synced transactionally,
6776	 * let it become visible to the config cache.
6777	 */
6778	if (spa->spa_config_syncing != NULL) {
6779		spa_config_set(spa, spa->spa_config_syncing);
6780		spa->spa_config_txg = txg;
6781		spa->spa_config_syncing = NULL;
6782	}
6783
6784	spa->spa_ubsync = spa->spa_uberblock;
6785
6786	dsl_pool_sync_done(dp, txg);
6787
6788	/*
6789	 * Update usable space statistics.
6790	 */
6791	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6792		vdev_sync_done(vd, txg);
6793
6794	spa_update_dspace(spa);
6795
6796	/*
6797	 * It had better be the case that we didn't dirty anything
6798	 * since vdev_config_sync().
6799	 */
6800	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6801	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6802	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6803
6804	spa->spa_sync_pass = 0;
6805
6806	spa_config_exit(spa, SCL_CONFIG, FTAG);
6807
6808	spa_handle_ignored_writes(spa);
6809
6810	/*
6811	 * If any async tasks have been requested, kick them off.
6812	 */
6813	spa_async_dispatch(spa);
6814	spa_async_dispatch_vd(spa);
6815}
6816
6817/*
6818 * Sync all pools.  We don't want to hold the namespace lock across these
6819 * operations, so we take a reference on the spa_t and drop the lock during the
6820 * sync.
6821 */
6822void
6823spa_sync_allpools(void)
6824{
6825	spa_t *spa = NULL;
6826	mutex_enter(&spa_namespace_lock);
6827	while ((spa = spa_next(spa)) != NULL) {
6828		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6829		    !spa_writeable(spa) || spa_suspended(spa))
6830			continue;
6831		spa_open_ref(spa, FTAG);
6832		mutex_exit(&spa_namespace_lock);
6833		txg_wait_synced(spa_get_dsl(spa), 0);
6834		mutex_enter(&spa_namespace_lock);
6835		spa_close(spa, FTAG);
6836	}
6837	mutex_exit(&spa_namespace_lock);
6838}
6839
6840/*
6841 * ==========================================================================
6842 * Miscellaneous routines
6843 * ==========================================================================
6844 */
6845
6846/*
6847 * Remove all pools in the system.
6848 */
6849void
6850spa_evict_all(void)
6851{
6852	spa_t *spa;
6853
6854	/*
6855	 * Remove all cached state.  All pools should be closed now,
6856	 * so every spa in the AVL tree should be unreferenced.
6857	 */
6858	mutex_enter(&spa_namespace_lock);
6859	while ((spa = spa_next(NULL)) != NULL) {
6860		/*
6861		 * Stop async tasks.  The async thread may need to detach
6862		 * a device that's been replaced, which requires grabbing
6863		 * spa_namespace_lock, so we must drop it here.
6864		 */
6865		spa_open_ref(spa, FTAG);
6866		mutex_exit(&spa_namespace_lock);
6867		spa_async_suspend(spa);
6868		mutex_enter(&spa_namespace_lock);
6869		spa_close(spa, FTAG);
6870
6871		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6872			spa_unload(spa);
6873			spa_deactivate(spa);
6874		}
6875		spa_remove(spa);
6876	}
6877	mutex_exit(&spa_namespace_lock);
6878}
6879
6880vdev_t *
6881spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6882{
6883	vdev_t *vd;
6884	int i;
6885
6886	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6887		return (vd);
6888
6889	if (aux) {
6890		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6891			vd = spa->spa_l2cache.sav_vdevs[i];
6892			if (vd->vdev_guid == guid)
6893				return (vd);
6894		}
6895
6896		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6897			vd = spa->spa_spares.sav_vdevs[i];
6898			if (vd->vdev_guid == guid)
6899				return (vd);
6900		}
6901	}
6902
6903	return (NULL);
6904}
6905
6906void
6907spa_upgrade(spa_t *spa, uint64_t version)
6908{
6909	ASSERT(spa_writeable(spa));
6910
6911	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6912
6913	/*
6914	 * This should only be called for a non-faulted pool, and since a
6915	 * future version would result in an unopenable pool, this shouldn't be
6916	 * possible.
6917	 */
6918	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6919	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6920
6921	spa->spa_uberblock.ub_version = version;
6922	vdev_config_dirty(spa->spa_root_vdev);
6923
6924	spa_config_exit(spa, SCL_ALL, FTAG);
6925
6926	txg_wait_synced(spa_get_dsl(spa), 0);
6927}
6928
6929boolean_t
6930spa_has_spare(spa_t *spa, uint64_t guid)
6931{
6932	int i;
6933	uint64_t spareguid;
6934	spa_aux_vdev_t *sav = &spa->spa_spares;
6935
6936	for (i = 0; i < sav->sav_count; i++)
6937		if (sav->sav_vdevs[i]->vdev_guid == guid)
6938			return (B_TRUE);
6939
6940	for (i = 0; i < sav->sav_npending; i++) {
6941		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6942		    &spareguid) == 0 && spareguid == guid)
6943			return (B_TRUE);
6944	}
6945
6946	return (B_FALSE);
6947}
6948
6949/*
6950 * Check if a pool has an active shared spare device.
6951 * Note: reference count of an active spare is 2, as a spare and as a replace
6952 */
6953static boolean_t
6954spa_has_active_shared_spare(spa_t *spa)
6955{
6956	int i, refcnt;
6957	uint64_t pool;
6958	spa_aux_vdev_t *sav = &spa->spa_spares;
6959
6960	for (i = 0; i < sav->sav_count; i++) {
6961		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6962		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6963		    refcnt > 2)
6964			return (B_TRUE);
6965	}
6966
6967	return (B_FALSE);
6968}
6969
6970/*
6971 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6972 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6973 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6974 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6975 * or zdb as real changes.
6976 */
6977void
6978spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6979{
6980#ifdef _KERNEL
6981	sysevent_t		*ev;
6982	sysevent_attr_list_t	*attr = NULL;
6983	sysevent_value_t	value;
6984	sysevent_id_t		eid;
6985
6986	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6987	    SE_SLEEP);
6988
6989	value.value_type = SE_DATA_TYPE_STRING;
6990	value.value.sv_string = spa_name(spa);
6991	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6992		goto done;
6993
6994	value.value_type = SE_DATA_TYPE_UINT64;
6995	value.value.sv_uint64 = spa_guid(spa);
6996	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6997		goto done;
6998
6999	if (vd) {
7000		value.value_type = SE_DATA_TYPE_UINT64;
7001		value.value.sv_uint64 = vd->vdev_guid;
7002		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7003		    SE_SLEEP) != 0)
7004			goto done;
7005
7006		if (vd->vdev_path) {
7007			value.value_type = SE_DATA_TYPE_STRING;
7008			value.value.sv_string = vd->vdev_path;
7009			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7010			    &value, SE_SLEEP) != 0)
7011				goto done;
7012		}
7013	}
7014
7015	if (sysevent_attach_attributes(ev, attr) != 0)
7016		goto done;
7017	attr = NULL;
7018
7019	(void) log_sysevent(ev, SE_SLEEP, &eid);
7020
7021done:
7022	if (attr)
7023		sysevent_free_attr(attr);
7024	sysevent_free(ev);
7025#endif
7026}
7027