spa.c revision 288597
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30/*
31 * SPA: Storage Pool Allocator
32 *
33 * This file contains all the routines used when modifying on-disk SPA state.
34 * This includes opening, importing, destroying, exporting a pool, and syncing a
35 * pool.
36 */
37
38#include <sys/zfs_context.h>
39#include <sys/fm/fs/zfs.h>
40#include <sys/spa_impl.h>
41#include <sys/zio.h>
42#include <sys/zio_checksum.h>
43#include <sys/dmu.h>
44#include <sys/dmu_tx.h>
45#include <sys/zap.h>
46#include <sys/zil.h>
47#include <sys/ddt.h>
48#include <sys/vdev_impl.h>
49#include <sys/metaslab.h>
50#include <sys/metaslab_impl.h>
51#include <sys/uberblock_impl.h>
52#include <sys/txg.h>
53#include <sys/avl.h>
54#include <sys/dmu_traverse.h>
55#include <sys/dmu_objset.h>
56#include <sys/unique.h>
57#include <sys/dsl_pool.h>
58#include <sys/dsl_dataset.h>
59#include <sys/dsl_dir.h>
60#include <sys/dsl_prop.h>
61#include <sys/dsl_synctask.h>
62#include <sys/fs/zfs.h>
63#include <sys/arc.h>
64#include <sys/callb.h>
65#include <sys/spa_boot.h>
66#include <sys/zfs_ioctl.h>
67#include <sys/dsl_scan.h>
68#include <sys/dmu_send.h>
69#include <sys/dsl_destroy.h>
70#include <sys/dsl_userhold.h>
71#include <sys/zfeature.h>
72#include <sys/zvol.h>
73#include <sys/trim_map.h>
74
75#ifdef	_KERNEL
76#include <sys/callb.h>
77#include <sys/cpupart.h>
78#include <sys/zone.h>
79#endif	/* _KERNEL */
80
81#include "zfs_prop.h"
82#include "zfs_comutil.h"
83
84/* Check hostid on import? */
85static int check_hostid = 1;
86
87SYSCTL_DECL(_vfs_zfs);
88TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
89SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
90    "Check hostid on import?");
91
92/*
93 * The interval, in seconds, at which failed configuration cache file writes
94 * should be retried.
95 */
96static int zfs_ccw_retry_interval = 300;
97
98typedef enum zti_modes {
99	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
100	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
101	ZTI_MODE_NULL,			/* don't create a taskq */
102	ZTI_NMODES
103} zti_modes_t;
104
105#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
106#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
107#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
108
109#define	ZTI_N(n)	ZTI_P(n, 1)
110#define	ZTI_ONE		ZTI_N(1)
111
112typedef struct zio_taskq_info {
113	zti_modes_t zti_mode;
114	uint_t zti_value;
115	uint_t zti_count;
116} zio_taskq_info_t;
117
118static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
119	"issue", "issue_high", "intr", "intr_high"
120};
121
122/*
123 * This table defines the taskq settings for each ZFS I/O type. When
124 * initializing a pool, we use this table to create an appropriately sized
125 * taskq. Some operations are low volume and therefore have a small, static
126 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
127 * macros. Other operations process a large amount of data; the ZTI_BATCH
128 * macro causes us to create a taskq oriented for throughput. Some operations
129 * are so high frequency and short-lived that the taskq itself can become a a
130 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
131 * additional degree of parallelism specified by the number of threads per-
132 * taskq and the number of taskqs; when dispatching an event in this case, the
133 * particular taskq is chosen at random.
134 *
135 * The different taskq priorities are to handle the different contexts (issue
136 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
137 * need to be handled with minimum delay.
138 */
139const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
140	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
141	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
142	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
143	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
144	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
147};
148
149static void spa_sync_version(void *arg, dmu_tx_t *tx);
150static void spa_sync_props(void *arg, dmu_tx_t *tx);
151static boolean_t spa_has_active_shared_spare(spa_t *spa);
152static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
153    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
154    char **ereport);
155static void spa_vdev_resilver_done(spa_t *spa);
156
157uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
158#ifdef PSRSET_BIND
159id_t		zio_taskq_psrset_bind = PS_NONE;
160#endif
161#ifdef SYSDC
162boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
163#endif
164uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
165
166boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
167extern int	zfs_sync_pass_deferred_free;
168
169#ifndef illumos
170extern void spa_deadman(void *arg);
171#endif
172
173/*
174 * This (illegal) pool name is used when temporarily importing a spa_t in order
175 * to get the vdev stats associated with the imported devices.
176 */
177#define	TRYIMPORT_NAME	"$import"
178
179/*
180 * ==========================================================================
181 * SPA properties routines
182 * ==========================================================================
183 */
184
185/*
186 * Add a (source=src, propname=propval) list to an nvlist.
187 */
188static void
189spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
190    uint64_t intval, zprop_source_t src)
191{
192	const char *propname = zpool_prop_to_name(prop);
193	nvlist_t *propval;
194
195	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
197
198	if (strval != NULL)
199		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
200	else
201		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
202
203	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
204	nvlist_free(propval);
205}
206
207/*
208 * Get property values from the spa configuration.
209 */
210static void
211spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
212{
213	vdev_t *rvd = spa->spa_root_vdev;
214	dsl_pool_t *pool = spa->spa_dsl_pool;
215	uint64_t size, alloc, cap, version;
216	zprop_source_t src = ZPROP_SRC_NONE;
217	spa_config_dirent_t *dp;
218	metaslab_class_t *mc = spa_normal_class(spa);
219
220	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
221
222	if (rvd != NULL) {
223		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
224		size = metaslab_class_get_space(spa_normal_class(spa));
225		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
226		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
229		    size - alloc, src);
230
231		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
232		    metaslab_class_fragmentation(mc), src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
234		    metaslab_class_expandable_space(mc), src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
236		    (spa_mode(spa) == FREAD), src);
237
238		cap = (size == 0) ? 0 : (alloc * 100 / size);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
240
241		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
242		    ddt_get_pool_dedup_ratio(spa), src);
243
244		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
245		    rvd->vdev_state, src);
246
247		version = spa_version(spa);
248		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
249			src = ZPROP_SRC_DEFAULT;
250		else
251			src = ZPROP_SRC_LOCAL;
252		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
253	}
254
255	if (pool != NULL) {
256		/*
257		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258		 * when opening pools before this version freedir will be NULL.
259		 */
260		if (pool->dp_free_dir != NULL) {
261			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263			    src);
264		} else {
265			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266			    NULL, 0, src);
267		}
268
269		if (pool->dp_leak_dir != NULL) {
270			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272			    src);
273		} else {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275			    NULL, 0, src);
276		}
277	}
278
279	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280
281	if (spa->spa_comment != NULL) {
282		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283		    0, ZPROP_SRC_LOCAL);
284	}
285
286	if (spa->spa_root != NULL)
287		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288		    0, ZPROP_SRC_LOCAL);
289
290	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293	} else {
294		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296	}
297
298	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
299		if (dp->scd_path == NULL) {
300			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
301			    "none", 0, ZPROP_SRC_LOCAL);
302		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
303			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
304			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
305		}
306	}
307}
308
309/*
310 * Get zpool property values.
311 */
312int
313spa_prop_get(spa_t *spa, nvlist_t **nvp)
314{
315	objset_t *mos = spa->spa_meta_objset;
316	zap_cursor_t zc;
317	zap_attribute_t za;
318	int err;
319
320	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
321
322	mutex_enter(&spa->spa_props_lock);
323
324	/*
325	 * Get properties from the spa config.
326	 */
327	spa_prop_get_config(spa, nvp);
328
329	/* If no pool property object, no more prop to get. */
330	if (mos == NULL || spa->spa_pool_props_object == 0) {
331		mutex_exit(&spa->spa_props_lock);
332		return (0);
333	}
334
335	/*
336	 * Get properties from the MOS pool property object.
337	 */
338	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
339	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
340	    zap_cursor_advance(&zc)) {
341		uint64_t intval = 0;
342		char *strval = NULL;
343		zprop_source_t src = ZPROP_SRC_DEFAULT;
344		zpool_prop_t prop;
345
346		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
347			continue;
348
349		switch (za.za_integer_length) {
350		case 8:
351			/* integer property */
352			if (za.za_first_integer !=
353			    zpool_prop_default_numeric(prop))
354				src = ZPROP_SRC_LOCAL;
355
356			if (prop == ZPOOL_PROP_BOOTFS) {
357				dsl_pool_t *dp;
358				dsl_dataset_t *ds = NULL;
359
360				dp = spa_get_dsl(spa);
361				dsl_pool_config_enter(dp, FTAG);
362				if (err = dsl_dataset_hold_obj(dp,
363				    za.za_first_integer, FTAG, &ds)) {
364					dsl_pool_config_exit(dp, FTAG);
365					break;
366				}
367
368				strval = kmem_alloc(
369				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
370				    KM_SLEEP);
371				dsl_dataset_name(ds, strval);
372				dsl_dataset_rele(ds, FTAG);
373				dsl_pool_config_exit(dp, FTAG);
374			} else {
375				strval = NULL;
376				intval = za.za_first_integer;
377			}
378
379			spa_prop_add_list(*nvp, prop, strval, intval, src);
380
381			if (strval != NULL)
382				kmem_free(strval,
383				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
384
385			break;
386
387		case 1:
388			/* string property */
389			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
390			err = zap_lookup(mos, spa->spa_pool_props_object,
391			    za.za_name, 1, za.za_num_integers, strval);
392			if (err) {
393				kmem_free(strval, za.za_num_integers);
394				break;
395			}
396			spa_prop_add_list(*nvp, prop, strval, 0, src);
397			kmem_free(strval, za.za_num_integers);
398			break;
399
400		default:
401			break;
402		}
403	}
404	zap_cursor_fini(&zc);
405	mutex_exit(&spa->spa_props_lock);
406out:
407	if (err && err != ENOENT) {
408		nvlist_free(*nvp);
409		*nvp = NULL;
410		return (err);
411	}
412
413	return (0);
414}
415
416/*
417 * Validate the given pool properties nvlist and modify the list
418 * for the property values to be set.
419 */
420static int
421spa_prop_validate(spa_t *spa, nvlist_t *props)
422{
423	nvpair_t *elem;
424	int error = 0, reset_bootfs = 0;
425	uint64_t objnum = 0;
426	boolean_t has_feature = B_FALSE;
427
428	elem = NULL;
429	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
430		uint64_t intval;
431		char *strval, *slash, *check, *fname;
432		const char *propname = nvpair_name(elem);
433		zpool_prop_t prop = zpool_name_to_prop(propname);
434
435		switch (prop) {
436		case ZPROP_INVAL:
437			if (!zpool_prop_feature(propname)) {
438				error = SET_ERROR(EINVAL);
439				break;
440			}
441
442			/*
443			 * Sanitize the input.
444			 */
445			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
446				error = SET_ERROR(EINVAL);
447				break;
448			}
449
450			if (nvpair_value_uint64(elem, &intval) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (intval != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			fname = strchr(propname, '@') + 1;
461			if (zfeature_lookup_name(fname, NULL) != 0) {
462				error = SET_ERROR(EINVAL);
463				break;
464			}
465
466			has_feature = B_TRUE;
467			break;
468
469		case ZPOOL_PROP_VERSION:
470			error = nvpair_value_uint64(elem, &intval);
471			if (!error &&
472			    (intval < spa_version(spa) ||
473			    intval > SPA_VERSION_BEFORE_FEATURES ||
474			    has_feature))
475				error = SET_ERROR(EINVAL);
476			break;
477
478		case ZPOOL_PROP_DELEGATION:
479		case ZPOOL_PROP_AUTOREPLACE:
480		case ZPOOL_PROP_LISTSNAPS:
481		case ZPOOL_PROP_AUTOEXPAND:
482			error = nvpair_value_uint64(elem, &intval);
483			if (!error && intval > 1)
484				error = SET_ERROR(EINVAL);
485			break;
486
487		case ZPOOL_PROP_BOOTFS:
488			/*
489			 * If the pool version is less than SPA_VERSION_BOOTFS,
490			 * or the pool is still being created (version == 0),
491			 * the bootfs property cannot be set.
492			 */
493			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
494				error = SET_ERROR(ENOTSUP);
495				break;
496			}
497
498			/*
499			 * Make sure the vdev config is bootable
500			 */
501			if (!vdev_is_bootable(spa->spa_root_vdev)) {
502				error = SET_ERROR(ENOTSUP);
503				break;
504			}
505
506			reset_bootfs = 1;
507
508			error = nvpair_value_string(elem, &strval);
509
510			if (!error) {
511				objset_t *os;
512				uint64_t propval;
513
514				if (strval == NULL || strval[0] == '\0') {
515					objnum = zpool_prop_default_numeric(
516					    ZPOOL_PROP_BOOTFS);
517					break;
518				}
519
520				if (error = dmu_objset_hold(strval, FTAG, &os))
521					break;
522
523				/*
524				 * Must be ZPL, and its property settings
525				 * must be supported by GRUB (compression
526				 * is not gzip, and large blocks are not used).
527				 */
528
529				if (dmu_objset_type(os) != DMU_OST_ZFS) {
530					error = SET_ERROR(ENOTSUP);
531				} else if ((error =
532				    dsl_prop_get_int_ds(dmu_objset_ds(os),
533				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
534				    &propval)) == 0 &&
535				    !BOOTFS_COMPRESS_VALID(propval)) {
536					error = SET_ERROR(ENOTSUP);
537				} else if ((error =
538				    dsl_prop_get_int_ds(dmu_objset_ds(os),
539				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
540				    &propval)) == 0 &&
541				    propval > SPA_OLD_MAXBLOCKSIZE) {
542					error = SET_ERROR(ENOTSUP);
543				} else {
544					objnum = dmu_objset_id(os);
545				}
546				dmu_objset_rele(os, FTAG);
547			}
548			break;
549
550		case ZPOOL_PROP_FAILUREMODE:
551			error = nvpair_value_uint64(elem, &intval);
552			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
553			    intval > ZIO_FAILURE_MODE_PANIC))
554				error = SET_ERROR(EINVAL);
555
556			/*
557			 * This is a special case which only occurs when
558			 * the pool has completely failed. This allows
559			 * the user to change the in-core failmode property
560			 * without syncing it out to disk (I/Os might
561			 * currently be blocked). We do this by returning
562			 * EIO to the caller (spa_prop_set) to trick it
563			 * into thinking we encountered a property validation
564			 * error.
565			 */
566			if (!error && spa_suspended(spa)) {
567				spa->spa_failmode = intval;
568				error = SET_ERROR(EIO);
569			}
570			break;
571
572		case ZPOOL_PROP_CACHEFILE:
573			if ((error = nvpair_value_string(elem, &strval)) != 0)
574				break;
575
576			if (strval[0] == '\0')
577				break;
578
579			if (strcmp(strval, "none") == 0)
580				break;
581
582			if (strval[0] != '/') {
583				error = SET_ERROR(EINVAL);
584				break;
585			}
586
587			slash = strrchr(strval, '/');
588			ASSERT(slash != NULL);
589
590			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
591			    strcmp(slash, "/..") == 0)
592				error = SET_ERROR(EINVAL);
593			break;
594
595		case ZPOOL_PROP_COMMENT:
596			if ((error = nvpair_value_string(elem, &strval)) != 0)
597				break;
598			for (check = strval; *check != '\0'; check++) {
599				/*
600				 * The kernel doesn't have an easy isprint()
601				 * check.  For this kernel check, we merely
602				 * check ASCII apart from DEL.  Fix this if
603				 * there is an easy-to-use kernel isprint().
604				 */
605				if (*check >= 0x7f) {
606					error = SET_ERROR(EINVAL);
607					break;
608				}
609				check++;
610			}
611			if (strlen(strval) > ZPROP_MAX_COMMENT)
612				error = E2BIG;
613			break;
614
615		case ZPOOL_PROP_DEDUPDITTO:
616			if (spa_version(spa) < SPA_VERSION_DEDUP)
617				error = SET_ERROR(ENOTSUP);
618			else
619				error = nvpair_value_uint64(elem, &intval);
620			if (error == 0 &&
621			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
622				error = SET_ERROR(EINVAL);
623			break;
624		}
625
626		if (error)
627			break;
628	}
629
630	if (!error && reset_bootfs) {
631		error = nvlist_remove(props,
632		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
633
634		if (!error) {
635			error = nvlist_add_uint64(props,
636			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
637		}
638	}
639
640	return (error);
641}
642
643void
644spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
645{
646	char *cachefile;
647	spa_config_dirent_t *dp;
648
649	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
650	    &cachefile) != 0)
651		return;
652
653	dp = kmem_alloc(sizeof (spa_config_dirent_t),
654	    KM_SLEEP);
655
656	if (cachefile[0] == '\0')
657		dp->scd_path = spa_strdup(spa_config_path);
658	else if (strcmp(cachefile, "none") == 0)
659		dp->scd_path = NULL;
660	else
661		dp->scd_path = spa_strdup(cachefile);
662
663	list_insert_head(&spa->spa_config_list, dp);
664	if (need_sync)
665		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
666}
667
668int
669spa_prop_set(spa_t *spa, nvlist_t *nvp)
670{
671	int error;
672	nvpair_t *elem = NULL;
673	boolean_t need_sync = B_FALSE;
674
675	if ((error = spa_prop_validate(spa, nvp)) != 0)
676		return (error);
677
678	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
679		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
680
681		if (prop == ZPOOL_PROP_CACHEFILE ||
682		    prop == ZPOOL_PROP_ALTROOT ||
683		    prop == ZPOOL_PROP_READONLY)
684			continue;
685
686		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
687			uint64_t ver;
688
689			if (prop == ZPOOL_PROP_VERSION) {
690				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
691			} else {
692				ASSERT(zpool_prop_feature(nvpair_name(elem)));
693				ver = SPA_VERSION_FEATURES;
694				need_sync = B_TRUE;
695			}
696
697			/* Save time if the version is already set. */
698			if (ver == spa_version(spa))
699				continue;
700
701			/*
702			 * In addition to the pool directory object, we might
703			 * create the pool properties object, the features for
704			 * read object, the features for write object, or the
705			 * feature descriptions object.
706			 */
707			error = dsl_sync_task(spa->spa_name, NULL,
708			    spa_sync_version, &ver,
709			    6, ZFS_SPACE_CHECK_RESERVED);
710			if (error)
711				return (error);
712			continue;
713		}
714
715		need_sync = B_TRUE;
716		break;
717	}
718
719	if (need_sync) {
720		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
721		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
722	}
723
724	return (0);
725}
726
727/*
728 * If the bootfs property value is dsobj, clear it.
729 */
730void
731spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
732{
733	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
734		VERIFY(zap_remove(spa->spa_meta_objset,
735		    spa->spa_pool_props_object,
736		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
737		spa->spa_bootfs = 0;
738	}
739}
740
741/*ARGSUSED*/
742static int
743spa_change_guid_check(void *arg, dmu_tx_t *tx)
744{
745	uint64_t *newguid = arg;
746	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
747	vdev_t *rvd = spa->spa_root_vdev;
748	uint64_t vdev_state;
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	vdev_state = rvd->vdev_state;
752	spa_config_exit(spa, SCL_STATE, FTAG);
753
754	if (vdev_state != VDEV_STATE_HEALTHY)
755		return (SET_ERROR(ENXIO));
756
757	ASSERT3U(spa_guid(spa), !=, *newguid);
758
759	return (0);
760}
761
762static void
763spa_change_guid_sync(void *arg, dmu_tx_t *tx)
764{
765	uint64_t *newguid = arg;
766	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
767	uint64_t oldguid;
768	vdev_t *rvd = spa->spa_root_vdev;
769
770	oldguid = spa_guid(spa);
771
772	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
773	rvd->vdev_guid = *newguid;
774	rvd->vdev_guid_sum += (*newguid - oldguid);
775	vdev_config_dirty(rvd);
776	spa_config_exit(spa, SCL_STATE, FTAG);
777
778	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
779	    oldguid, *newguid);
780}
781
782/*
783 * Change the GUID for the pool.  This is done so that we can later
784 * re-import a pool built from a clone of our own vdevs.  We will modify
785 * the root vdev's guid, our own pool guid, and then mark all of our
786 * vdevs dirty.  Note that we must make sure that all our vdevs are
787 * online when we do this, or else any vdevs that weren't present
788 * would be orphaned from our pool.  We are also going to issue a
789 * sysevent to update any watchers.
790 */
791int
792spa_change_guid(spa_t *spa)
793{
794	int error;
795	uint64_t guid;
796
797	mutex_enter(&spa->spa_vdev_top_lock);
798	mutex_enter(&spa_namespace_lock);
799	guid = spa_generate_guid(NULL);
800
801	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
802	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
803
804	if (error == 0) {
805		spa_config_sync(spa, B_FALSE, B_TRUE);
806		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
807	}
808
809	mutex_exit(&spa_namespace_lock);
810	mutex_exit(&spa->spa_vdev_top_lock);
811
812	return (error);
813}
814
815/*
816 * ==========================================================================
817 * SPA state manipulation (open/create/destroy/import/export)
818 * ==========================================================================
819 */
820
821static int
822spa_error_entry_compare(const void *a, const void *b)
823{
824	spa_error_entry_t *sa = (spa_error_entry_t *)a;
825	spa_error_entry_t *sb = (spa_error_entry_t *)b;
826	int ret;
827
828	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
829	    sizeof (zbookmark_phys_t));
830
831	if (ret < 0)
832		return (-1);
833	else if (ret > 0)
834		return (1);
835	else
836		return (0);
837}
838
839/*
840 * Utility function which retrieves copies of the current logs and
841 * re-initializes them in the process.
842 */
843void
844spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
845{
846	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
847
848	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
849	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
850
851	avl_create(&spa->spa_errlist_scrub,
852	    spa_error_entry_compare, sizeof (spa_error_entry_t),
853	    offsetof(spa_error_entry_t, se_avl));
854	avl_create(&spa->spa_errlist_last,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857}
858
859static void
860spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
861{
862	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
863	enum zti_modes mode = ztip->zti_mode;
864	uint_t value = ztip->zti_value;
865	uint_t count = ztip->zti_count;
866	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
867	char name[32];
868	uint_t flags = 0;
869	boolean_t batch = B_FALSE;
870
871	if (mode == ZTI_MODE_NULL) {
872		tqs->stqs_count = 0;
873		tqs->stqs_taskq = NULL;
874		return;
875	}
876
877	ASSERT3U(count, >, 0);
878
879	tqs->stqs_count = count;
880	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
881
882	switch (mode) {
883	case ZTI_MODE_FIXED:
884		ASSERT3U(value, >=, 1);
885		value = MAX(value, 1);
886		break;
887
888	case ZTI_MODE_BATCH:
889		batch = B_TRUE;
890		flags |= TASKQ_THREADS_CPU_PCT;
891		value = zio_taskq_batch_pct;
892		break;
893
894	default:
895		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
896		    "spa_activate()",
897		    zio_type_name[t], zio_taskq_types[q], mode, value);
898		break;
899	}
900
901	for (uint_t i = 0; i < count; i++) {
902		taskq_t *tq;
903
904		if (count > 1) {
905			(void) snprintf(name, sizeof (name), "%s_%s_%u",
906			    zio_type_name[t], zio_taskq_types[q], i);
907		} else {
908			(void) snprintf(name, sizeof (name), "%s_%s",
909			    zio_type_name[t], zio_taskq_types[q]);
910		}
911
912#ifdef SYSDC
913		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
914			if (batch)
915				flags |= TASKQ_DC_BATCH;
916
917			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
918			    spa->spa_proc, zio_taskq_basedc, flags);
919		} else {
920#endif
921			pri_t pri = maxclsyspri;
922			/*
923			 * The write issue taskq can be extremely CPU
924			 * intensive.  Run it at slightly lower priority
925			 * than the other taskqs.
926			 */
927			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
928				pri--;
929
930			tq = taskq_create_proc(name, value, pri, 50,
931			    INT_MAX, spa->spa_proc, flags);
932#ifdef SYSDC
933		}
934#endif
935
936		tqs->stqs_taskq[i] = tq;
937	}
938}
939
940static void
941spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
942{
943	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
944
945	if (tqs->stqs_taskq == NULL) {
946		ASSERT0(tqs->stqs_count);
947		return;
948	}
949
950	for (uint_t i = 0; i < tqs->stqs_count; i++) {
951		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
952		taskq_destroy(tqs->stqs_taskq[i]);
953	}
954
955	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
956	tqs->stqs_taskq = NULL;
957}
958
959/*
960 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
961 * Note that a type may have multiple discrete taskqs to avoid lock contention
962 * on the taskq itself. In that case we choose which taskq at random by using
963 * the low bits of gethrtime().
964 */
965void
966spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
967    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
968{
969	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970	taskq_t *tq;
971
972	ASSERT3P(tqs->stqs_taskq, !=, NULL);
973	ASSERT3U(tqs->stqs_count, !=, 0);
974
975	if (tqs->stqs_count == 1) {
976		tq = tqs->stqs_taskq[0];
977	} else {
978#ifdef _KERNEL
979		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
980#else
981		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
982#endif
983	}
984
985	taskq_dispatch_ent(tq, func, arg, flags, ent);
986}
987
988static void
989spa_create_zio_taskqs(spa_t *spa)
990{
991	for (int t = 0; t < ZIO_TYPES; t++) {
992		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
993			spa_taskqs_init(spa, t, q);
994		}
995	}
996}
997
998#ifdef _KERNEL
999#ifdef SPA_PROCESS
1000static void
1001spa_thread(void *arg)
1002{
1003	callb_cpr_t cprinfo;
1004
1005	spa_t *spa = arg;
1006	user_t *pu = PTOU(curproc);
1007
1008	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1009	    spa->spa_name);
1010
1011	ASSERT(curproc != &p0);
1012	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1013	    "zpool-%s", spa->spa_name);
1014	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1015
1016#ifdef PSRSET_BIND
1017	/* bind this thread to the requested psrset */
1018	if (zio_taskq_psrset_bind != PS_NONE) {
1019		pool_lock();
1020		mutex_enter(&cpu_lock);
1021		mutex_enter(&pidlock);
1022		mutex_enter(&curproc->p_lock);
1023
1024		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1025		    0, NULL, NULL) == 0)  {
1026			curthread->t_bind_pset = zio_taskq_psrset_bind;
1027		} else {
1028			cmn_err(CE_WARN,
1029			    "Couldn't bind process for zfs pool \"%s\" to "
1030			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1031		}
1032
1033		mutex_exit(&curproc->p_lock);
1034		mutex_exit(&pidlock);
1035		mutex_exit(&cpu_lock);
1036		pool_unlock();
1037	}
1038#endif
1039
1040#ifdef SYSDC
1041	if (zio_taskq_sysdc) {
1042		sysdc_thread_enter(curthread, 100, 0);
1043	}
1044#endif
1045
1046	spa->spa_proc = curproc;
1047	spa->spa_did = curthread->t_did;
1048
1049	spa_create_zio_taskqs(spa);
1050
1051	mutex_enter(&spa->spa_proc_lock);
1052	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1053
1054	spa->spa_proc_state = SPA_PROC_ACTIVE;
1055	cv_broadcast(&spa->spa_proc_cv);
1056
1057	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1058	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1059		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1060	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1061
1062	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1063	spa->spa_proc_state = SPA_PROC_GONE;
1064	spa->spa_proc = &p0;
1065	cv_broadcast(&spa->spa_proc_cv);
1066	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1067
1068	mutex_enter(&curproc->p_lock);
1069	lwp_exit();
1070}
1071#endif	/* SPA_PROCESS */
1072#endif
1073
1074/*
1075 * Activate an uninitialized pool.
1076 */
1077static void
1078spa_activate(spa_t *spa, int mode)
1079{
1080	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1081
1082	spa->spa_state = POOL_STATE_ACTIVE;
1083	spa->spa_mode = mode;
1084
1085	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1086	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1087
1088	/* Try to create a covering process */
1089	mutex_enter(&spa->spa_proc_lock);
1090	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1091	ASSERT(spa->spa_proc == &p0);
1092	spa->spa_did = 0;
1093
1094#ifdef SPA_PROCESS
1095	/* Only create a process if we're going to be around a while. */
1096	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1097		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1098		    NULL, 0) == 0) {
1099			spa->spa_proc_state = SPA_PROC_CREATED;
1100			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1101				cv_wait(&spa->spa_proc_cv,
1102				    &spa->spa_proc_lock);
1103			}
1104			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1105			ASSERT(spa->spa_proc != &p0);
1106			ASSERT(spa->spa_did != 0);
1107		} else {
1108#ifdef _KERNEL
1109			cmn_err(CE_WARN,
1110			    "Couldn't create process for zfs pool \"%s\"\n",
1111			    spa->spa_name);
1112#endif
1113		}
1114	}
1115#endif	/* SPA_PROCESS */
1116	mutex_exit(&spa->spa_proc_lock);
1117
1118	/* If we didn't create a process, we need to create our taskqs. */
1119	ASSERT(spa->spa_proc == &p0);
1120	if (spa->spa_proc == &p0) {
1121		spa_create_zio_taskqs(spa);
1122	}
1123
1124	/*
1125	 * Start TRIM thread.
1126	 */
1127	trim_thread_create(spa);
1128
1129	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1130	    offsetof(vdev_t, vdev_config_dirty_node));
1131	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1132	    offsetof(objset_t, os_evicting_node));
1133	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_state_dirty_node));
1135
1136	txg_list_create(&spa->spa_vdev_txg_list,
1137	    offsetof(struct vdev, vdev_txg_node));
1138
1139	avl_create(&spa->spa_errlist_scrub,
1140	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1141	    offsetof(spa_error_entry_t, se_avl));
1142	avl_create(&spa->spa_errlist_last,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145}
1146
1147/*
1148 * Opposite of spa_activate().
1149 */
1150static void
1151spa_deactivate(spa_t *spa)
1152{
1153	ASSERT(spa->spa_sync_on == B_FALSE);
1154	ASSERT(spa->spa_dsl_pool == NULL);
1155	ASSERT(spa->spa_root_vdev == NULL);
1156	ASSERT(spa->spa_async_zio_root == NULL);
1157	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1158
1159	/*
1160	 * Stop TRIM thread in case spa_unload() wasn't called directly
1161	 * before spa_deactivate().
1162	 */
1163	trim_thread_destroy(spa);
1164
1165	spa_evicting_os_wait(spa);
1166
1167	txg_list_destroy(&spa->spa_vdev_txg_list);
1168
1169	list_destroy(&spa->spa_config_dirty_list);
1170	list_destroy(&spa->spa_evicting_os_list);
1171	list_destroy(&spa->spa_state_dirty_list);
1172
1173	for (int t = 0; t < ZIO_TYPES; t++) {
1174		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1175			spa_taskqs_fini(spa, t, q);
1176		}
1177	}
1178
1179	metaslab_class_destroy(spa->spa_normal_class);
1180	spa->spa_normal_class = NULL;
1181
1182	metaslab_class_destroy(spa->spa_log_class);
1183	spa->spa_log_class = NULL;
1184
1185	/*
1186	 * If this was part of an import or the open otherwise failed, we may
1187	 * still have errors left in the queues.  Empty them just in case.
1188	 */
1189	spa_errlog_drain(spa);
1190
1191	avl_destroy(&spa->spa_errlist_scrub);
1192	avl_destroy(&spa->spa_errlist_last);
1193
1194	spa->spa_state = POOL_STATE_UNINITIALIZED;
1195
1196	mutex_enter(&spa->spa_proc_lock);
1197	if (spa->spa_proc_state != SPA_PROC_NONE) {
1198		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1199		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1200		cv_broadcast(&spa->spa_proc_cv);
1201		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1202			ASSERT(spa->spa_proc != &p0);
1203			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1204		}
1205		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1206		spa->spa_proc_state = SPA_PROC_NONE;
1207	}
1208	ASSERT(spa->spa_proc == &p0);
1209	mutex_exit(&spa->spa_proc_lock);
1210
1211#ifdef SPA_PROCESS
1212	/*
1213	 * We want to make sure spa_thread() has actually exited the ZFS
1214	 * module, so that the module can't be unloaded out from underneath
1215	 * it.
1216	 */
1217	if (spa->spa_did != 0) {
1218		thread_join(spa->spa_did);
1219		spa->spa_did = 0;
1220	}
1221#endif	/* SPA_PROCESS */
1222}
1223
1224/*
1225 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1226 * will create all the necessary vdevs in the appropriate layout, with each vdev
1227 * in the CLOSED state.  This will prep the pool before open/creation/import.
1228 * All vdev validation is done by the vdev_alloc() routine.
1229 */
1230static int
1231spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1232    uint_t id, int atype)
1233{
1234	nvlist_t **child;
1235	uint_t children;
1236	int error;
1237
1238	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1239		return (error);
1240
1241	if ((*vdp)->vdev_ops->vdev_op_leaf)
1242		return (0);
1243
1244	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1245	    &child, &children);
1246
1247	if (error == ENOENT)
1248		return (0);
1249
1250	if (error) {
1251		vdev_free(*vdp);
1252		*vdp = NULL;
1253		return (SET_ERROR(EINVAL));
1254	}
1255
1256	for (int c = 0; c < children; c++) {
1257		vdev_t *vd;
1258		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1259		    atype)) != 0) {
1260			vdev_free(*vdp);
1261			*vdp = NULL;
1262			return (error);
1263		}
1264	}
1265
1266	ASSERT(*vdp != NULL);
1267
1268	return (0);
1269}
1270
1271/*
1272 * Opposite of spa_load().
1273 */
1274static void
1275spa_unload(spa_t *spa)
1276{
1277	int i;
1278
1279	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1280
1281	/*
1282	 * Stop TRIM thread.
1283	 */
1284	trim_thread_destroy(spa);
1285
1286	/*
1287	 * Stop async tasks.
1288	 */
1289	spa_async_suspend(spa);
1290
1291	/*
1292	 * Stop syncing.
1293	 */
1294	if (spa->spa_sync_on) {
1295		txg_sync_stop(spa->spa_dsl_pool);
1296		spa->spa_sync_on = B_FALSE;
1297	}
1298
1299	/*
1300	 * Wait for any outstanding async I/O to complete.
1301	 */
1302	if (spa->spa_async_zio_root != NULL) {
1303		for (int i = 0; i < max_ncpus; i++)
1304			(void) zio_wait(spa->spa_async_zio_root[i]);
1305		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1306		spa->spa_async_zio_root = NULL;
1307	}
1308
1309	bpobj_close(&spa->spa_deferred_bpobj);
1310
1311	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1312
1313	/*
1314	 * Close all vdevs.
1315	 */
1316	if (spa->spa_root_vdev)
1317		vdev_free(spa->spa_root_vdev);
1318	ASSERT(spa->spa_root_vdev == NULL);
1319
1320	/*
1321	 * Close the dsl pool.
1322	 */
1323	if (spa->spa_dsl_pool) {
1324		dsl_pool_close(spa->spa_dsl_pool);
1325		spa->spa_dsl_pool = NULL;
1326		spa->spa_meta_objset = NULL;
1327	}
1328
1329	ddt_unload(spa);
1330
1331
1332	/*
1333	 * Drop and purge level 2 cache
1334	 */
1335	spa_l2cache_drop(spa);
1336
1337	for (i = 0; i < spa->spa_spares.sav_count; i++)
1338		vdev_free(spa->spa_spares.sav_vdevs[i]);
1339	if (spa->spa_spares.sav_vdevs) {
1340		kmem_free(spa->spa_spares.sav_vdevs,
1341		    spa->spa_spares.sav_count * sizeof (void *));
1342		spa->spa_spares.sav_vdevs = NULL;
1343	}
1344	if (spa->spa_spares.sav_config) {
1345		nvlist_free(spa->spa_spares.sav_config);
1346		spa->spa_spares.sav_config = NULL;
1347	}
1348	spa->spa_spares.sav_count = 0;
1349
1350	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1351		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1352		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1353	}
1354	if (spa->spa_l2cache.sav_vdevs) {
1355		kmem_free(spa->spa_l2cache.sav_vdevs,
1356		    spa->spa_l2cache.sav_count * sizeof (void *));
1357		spa->spa_l2cache.sav_vdevs = NULL;
1358	}
1359	if (spa->spa_l2cache.sav_config) {
1360		nvlist_free(spa->spa_l2cache.sav_config);
1361		spa->spa_l2cache.sav_config = NULL;
1362	}
1363	spa->spa_l2cache.sav_count = 0;
1364
1365	spa->spa_async_suspended = 0;
1366
1367	if (spa->spa_comment != NULL) {
1368		spa_strfree(spa->spa_comment);
1369		spa->spa_comment = NULL;
1370	}
1371
1372	spa_config_exit(spa, SCL_ALL, FTAG);
1373}
1374
1375/*
1376 * Load (or re-load) the current list of vdevs describing the active spares for
1377 * this pool.  When this is called, we have some form of basic information in
1378 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1379 * then re-generate a more complete list including status information.
1380 */
1381static void
1382spa_load_spares(spa_t *spa)
1383{
1384	nvlist_t **spares;
1385	uint_t nspares;
1386	int i;
1387	vdev_t *vd, *tvd;
1388
1389	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1390
1391	/*
1392	 * First, close and free any existing spare vdevs.
1393	 */
1394	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1395		vd = spa->spa_spares.sav_vdevs[i];
1396
1397		/* Undo the call to spa_activate() below */
1398		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1399		    B_FALSE)) != NULL && tvd->vdev_isspare)
1400			spa_spare_remove(tvd);
1401		vdev_close(vd);
1402		vdev_free(vd);
1403	}
1404
1405	if (spa->spa_spares.sav_vdevs)
1406		kmem_free(spa->spa_spares.sav_vdevs,
1407		    spa->spa_spares.sav_count * sizeof (void *));
1408
1409	if (spa->spa_spares.sav_config == NULL)
1410		nspares = 0;
1411	else
1412		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1413		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1414
1415	spa->spa_spares.sav_count = (int)nspares;
1416	spa->spa_spares.sav_vdevs = NULL;
1417
1418	if (nspares == 0)
1419		return;
1420
1421	/*
1422	 * Construct the array of vdevs, opening them to get status in the
1423	 * process.   For each spare, there is potentially two different vdev_t
1424	 * structures associated with it: one in the list of spares (used only
1425	 * for basic validation purposes) and one in the active vdev
1426	 * configuration (if it's spared in).  During this phase we open and
1427	 * validate each vdev on the spare list.  If the vdev also exists in the
1428	 * active configuration, then we also mark this vdev as an active spare.
1429	 */
1430	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1431	    KM_SLEEP);
1432	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1433		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1434		    VDEV_ALLOC_SPARE) == 0);
1435		ASSERT(vd != NULL);
1436
1437		spa->spa_spares.sav_vdevs[i] = vd;
1438
1439		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1440		    B_FALSE)) != NULL) {
1441			if (!tvd->vdev_isspare)
1442				spa_spare_add(tvd);
1443
1444			/*
1445			 * We only mark the spare active if we were successfully
1446			 * able to load the vdev.  Otherwise, importing a pool
1447			 * with a bad active spare would result in strange
1448			 * behavior, because multiple pool would think the spare
1449			 * is actively in use.
1450			 *
1451			 * There is a vulnerability here to an equally bizarre
1452			 * circumstance, where a dead active spare is later
1453			 * brought back to life (onlined or otherwise).  Given
1454			 * the rarity of this scenario, and the extra complexity
1455			 * it adds, we ignore the possibility.
1456			 */
1457			if (!vdev_is_dead(tvd))
1458				spa_spare_activate(tvd);
1459		}
1460
1461		vd->vdev_top = vd;
1462		vd->vdev_aux = &spa->spa_spares;
1463
1464		if (vdev_open(vd) != 0)
1465			continue;
1466
1467		if (vdev_validate_aux(vd) == 0)
1468			spa_spare_add(vd);
1469	}
1470
1471	/*
1472	 * Recompute the stashed list of spares, with status information
1473	 * this time.
1474	 */
1475	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1476	    DATA_TYPE_NVLIST_ARRAY) == 0);
1477
1478	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1479	    KM_SLEEP);
1480	for (i = 0; i < spa->spa_spares.sav_count; i++)
1481		spares[i] = vdev_config_generate(spa,
1482		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1483	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1484	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1485	for (i = 0; i < spa->spa_spares.sav_count; i++)
1486		nvlist_free(spares[i]);
1487	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1488}
1489
1490/*
1491 * Load (or re-load) the current list of vdevs describing the active l2cache for
1492 * this pool.  When this is called, we have some form of basic information in
1493 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1494 * then re-generate a more complete list including status information.
1495 * Devices which are already active have their details maintained, and are
1496 * not re-opened.
1497 */
1498static void
1499spa_load_l2cache(spa_t *spa)
1500{
1501	nvlist_t **l2cache;
1502	uint_t nl2cache;
1503	int i, j, oldnvdevs;
1504	uint64_t guid;
1505	vdev_t *vd, **oldvdevs, **newvdevs;
1506	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1507
1508	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1509
1510	if (sav->sav_config != NULL) {
1511		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1512		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1513		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1514	} else {
1515		nl2cache = 0;
1516		newvdevs = NULL;
1517	}
1518
1519	oldvdevs = sav->sav_vdevs;
1520	oldnvdevs = sav->sav_count;
1521	sav->sav_vdevs = NULL;
1522	sav->sav_count = 0;
1523
1524	/*
1525	 * Process new nvlist of vdevs.
1526	 */
1527	for (i = 0; i < nl2cache; i++) {
1528		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1529		    &guid) == 0);
1530
1531		newvdevs[i] = NULL;
1532		for (j = 0; j < oldnvdevs; j++) {
1533			vd = oldvdevs[j];
1534			if (vd != NULL && guid == vd->vdev_guid) {
1535				/*
1536				 * Retain previous vdev for add/remove ops.
1537				 */
1538				newvdevs[i] = vd;
1539				oldvdevs[j] = NULL;
1540				break;
1541			}
1542		}
1543
1544		if (newvdevs[i] == NULL) {
1545			/*
1546			 * Create new vdev
1547			 */
1548			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1549			    VDEV_ALLOC_L2CACHE) == 0);
1550			ASSERT(vd != NULL);
1551			newvdevs[i] = vd;
1552
1553			/*
1554			 * Commit this vdev as an l2cache device,
1555			 * even if it fails to open.
1556			 */
1557			spa_l2cache_add(vd);
1558
1559			vd->vdev_top = vd;
1560			vd->vdev_aux = sav;
1561
1562			spa_l2cache_activate(vd);
1563
1564			if (vdev_open(vd) != 0)
1565				continue;
1566
1567			(void) vdev_validate_aux(vd);
1568
1569			if (!vdev_is_dead(vd))
1570				l2arc_add_vdev(spa, vd);
1571		}
1572	}
1573
1574	/*
1575	 * Purge vdevs that were dropped
1576	 */
1577	for (i = 0; i < oldnvdevs; i++) {
1578		uint64_t pool;
1579
1580		vd = oldvdevs[i];
1581		if (vd != NULL) {
1582			ASSERT(vd->vdev_isl2cache);
1583
1584			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1585			    pool != 0ULL && l2arc_vdev_present(vd))
1586				l2arc_remove_vdev(vd);
1587			vdev_clear_stats(vd);
1588			vdev_free(vd);
1589		}
1590	}
1591
1592	if (oldvdevs)
1593		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1594
1595	if (sav->sav_config == NULL)
1596		goto out;
1597
1598	sav->sav_vdevs = newvdevs;
1599	sav->sav_count = (int)nl2cache;
1600
1601	/*
1602	 * Recompute the stashed list of l2cache devices, with status
1603	 * information this time.
1604	 */
1605	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1606	    DATA_TYPE_NVLIST_ARRAY) == 0);
1607
1608	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1609	for (i = 0; i < sav->sav_count; i++)
1610		l2cache[i] = vdev_config_generate(spa,
1611		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1612	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1613	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1614out:
1615	for (i = 0; i < sav->sav_count; i++)
1616		nvlist_free(l2cache[i]);
1617	if (sav->sav_count)
1618		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1619}
1620
1621static int
1622load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1623{
1624	dmu_buf_t *db;
1625	char *packed = NULL;
1626	size_t nvsize = 0;
1627	int error;
1628	*value = NULL;
1629
1630	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1631	if (error != 0)
1632		return (error);
1633
1634	nvsize = *(uint64_t *)db->db_data;
1635	dmu_buf_rele(db, FTAG);
1636
1637	packed = kmem_alloc(nvsize, KM_SLEEP);
1638	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1639	    DMU_READ_PREFETCH);
1640	if (error == 0)
1641		error = nvlist_unpack(packed, nvsize, value, 0);
1642	kmem_free(packed, nvsize);
1643
1644	return (error);
1645}
1646
1647/*
1648 * Checks to see if the given vdev could not be opened, in which case we post a
1649 * sysevent to notify the autoreplace code that the device has been removed.
1650 */
1651static void
1652spa_check_removed(vdev_t *vd)
1653{
1654	for (int c = 0; c < vd->vdev_children; c++)
1655		spa_check_removed(vd->vdev_child[c]);
1656
1657	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1658	    !vd->vdev_ishole) {
1659		zfs_post_autoreplace(vd->vdev_spa, vd);
1660		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1661	}
1662}
1663
1664/*
1665 * Validate the current config against the MOS config
1666 */
1667static boolean_t
1668spa_config_valid(spa_t *spa, nvlist_t *config)
1669{
1670	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1671	nvlist_t *nv;
1672
1673	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1674
1675	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1676	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1677
1678	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1679
1680	/*
1681	 * If we're doing a normal import, then build up any additional
1682	 * diagnostic information about missing devices in this config.
1683	 * We'll pass this up to the user for further processing.
1684	 */
1685	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1686		nvlist_t **child, *nv;
1687		uint64_t idx = 0;
1688
1689		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1690		    KM_SLEEP);
1691		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1692
1693		for (int c = 0; c < rvd->vdev_children; c++) {
1694			vdev_t *tvd = rvd->vdev_child[c];
1695			vdev_t *mtvd  = mrvd->vdev_child[c];
1696
1697			if (tvd->vdev_ops == &vdev_missing_ops &&
1698			    mtvd->vdev_ops != &vdev_missing_ops &&
1699			    mtvd->vdev_islog)
1700				child[idx++] = vdev_config_generate(spa, mtvd,
1701				    B_FALSE, 0);
1702		}
1703
1704		if (idx) {
1705			VERIFY(nvlist_add_nvlist_array(nv,
1706			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1707			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1708			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1709
1710			for (int i = 0; i < idx; i++)
1711				nvlist_free(child[i]);
1712		}
1713		nvlist_free(nv);
1714		kmem_free(child, rvd->vdev_children * sizeof (char **));
1715	}
1716
1717	/*
1718	 * Compare the root vdev tree with the information we have
1719	 * from the MOS config (mrvd). Check each top-level vdev
1720	 * with the corresponding MOS config top-level (mtvd).
1721	 */
1722	for (int c = 0; c < rvd->vdev_children; c++) {
1723		vdev_t *tvd = rvd->vdev_child[c];
1724		vdev_t *mtvd  = mrvd->vdev_child[c];
1725
1726		/*
1727		 * Resolve any "missing" vdevs in the current configuration.
1728		 * If we find that the MOS config has more accurate information
1729		 * about the top-level vdev then use that vdev instead.
1730		 */
1731		if (tvd->vdev_ops == &vdev_missing_ops &&
1732		    mtvd->vdev_ops != &vdev_missing_ops) {
1733
1734			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1735				continue;
1736
1737			/*
1738			 * Device specific actions.
1739			 */
1740			if (mtvd->vdev_islog) {
1741				spa_set_log_state(spa, SPA_LOG_CLEAR);
1742			} else {
1743				/*
1744				 * XXX - once we have 'readonly' pool
1745				 * support we should be able to handle
1746				 * missing data devices by transitioning
1747				 * the pool to readonly.
1748				 */
1749				continue;
1750			}
1751
1752			/*
1753			 * Swap the missing vdev with the data we were
1754			 * able to obtain from the MOS config.
1755			 */
1756			vdev_remove_child(rvd, tvd);
1757			vdev_remove_child(mrvd, mtvd);
1758
1759			vdev_add_child(rvd, mtvd);
1760			vdev_add_child(mrvd, tvd);
1761
1762			spa_config_exit(spa, SCL_ALL, FTAG);
1763			vdev_load(mtvd);
1764			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1765
1766			vdev_reopen(rvd);
1767		} else if (mtvd->vdev_islog) {
1768			/*
1769			 * Load the slog device's state from the MOS config
1770			 * since it's possible that the label does not
1771			 * contain the most up-to-date information.
1772			 */
1773			vdev_load_log_state(tvd, mtvd);
1774			vdev_reopen(tvd);
1775		}
1776	}
1777	vdev_free(mrvd);
1778	spa_config_exit(spa, SCL_ALL, FTAG);
1779
1780	/*
1781	 * Ensure we were able to validate the config.
1782	 */
1783	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1784}
1785
1786/*
1787 * Check for missing log devices
1788 */
1789static boolean_t
1790spa_check_logs(spa_t *spa)
1791{
1792	boolean_t rv = B_FALSE;
1793	dsl_pool_t *dp = spa_get_dsl(spa);
1794
1795	switch (spa->spa_log_state) {
1796	case SPA_LOG_MISSING:
1797		/* need to recheck in case slog has been restored */
1798	case SPA_LOG_UNKNOWN:
1799		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1800		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1801		if (rv)
1802			spa_set_log_state(spa, SPA_LOG_MISSING);
1803		break;
1804	}
1805	return (rv);
1806}
1807
1808static boolean_t
1809spa_passivate_log(spa_t *spa)
1810{
1811	vdev_t *rvd = spa->spa_root_vdev;
1812	boolean_t slog_found = B_FALSE;
1813
1814	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1815
1816	if (!spa_has_slogs(spa))
1817		return (B_FALSE);
1818
1819	for (int c = 0; c < rvd->vdev_children; c++) {
1820		vdev_t *tvd = rvd->vdev_child[c];
1821		metaslab_group_t *mg = tvd->vdev_mg;
1822
1823		if (tvd->vdev_islog) {
1824			metaslab_group_passivate(mg);
1825			slog_found = B_TRUE;
1826		}
1827	}
1828
1829	return (slog_found);
1830}
1831
1832static void
1833spa_activate_log(spa_t *spa)
1834{
1835	vdev_t *rvd = spa->spa_root_vdev;
1836
1837	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1838
1839	for (int c = 0; c < rvd->vdev_children; c++) {
1840		vdev_t *tvd = rvd->vdev_child[c];
1841		metaslab_group_t *mg = tvd->vdev_mg;
1842
1843		if (tvd->vdev_islog)
1844			metaslab_group_activate(mg);
1845	}
1846}
1847
1848int
1849spa_offline_log(spa_t *spa)
1850{
1851	int error;
1852
1853	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1854	    NULL, DS_FIND_CHILDREN);
1855	if (error == 0) {
1856		/*
1857		 * We successfully offlined the log device, sync out the
1858		 * current txg so that the "stubby" block can be removed
1859		 * by zil_sync().
1860		 */
1861		txg_wait_synced(spa->spa_dsl_pool, 0);
1862	}
1863	return (error);
1864}
1865
1866static void
1867spa_aux_check_removed(spa_aux_vdev_t *sav)
1868{
1869	int i;
1870
1871	for (i = 0; i < sav->sav_count; i++)
1872		spa_check_removed(sav->sav_vdevs[i]);
1873}
1874
1875void
1876spa_claim_notify(zio_t *zio)
1877{
1878	spa_t *spa = zio->io_spa;
1879
1880	if (zio->io_error)
1881		return;
1882
1883	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1884	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1885		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1886	mutex_exit(&spa->spa_props_lock);
1887}
1888
1889typedef struct spa_load_error {
1890	uint64_t	sle_meta_count;
1891	uint64_t	sle_data_count;
1892} spa_load_error_t;
1893
1894static void
1895spa_load_verify_done(zio_t *zio)
1896{
1897	blkptr_t *bp = zio->io_bp;
1898	spa_load_error_t *sle = zio->io_private;
1899	dmu_object_type_t type = BP_GET_TYPE(bp);
1900	int error = zio->io_error;
1901	spa_t *spa = zio->io_spa;
1902
1903	if (error) {
1904		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1905		    type != DMU_OT_INTENT_LOG)
1906			atomic_inc_64(&sle->sle_meta_count);
1907		else
1908			atomic_inc_64(&sle->sle_data_count);
1909	}
1910	zio_data_buf_free(zio->io_data, zio->io_size);
1911
1912	mutex_enter(&spa->spa_scrub_lock);
1913	spa->spa_scrub_inflight--;
1914	cv_broadcast(&spa->spa_scrub_io_cv);
1915	mutex_exit(&spa->spa_scrub_lock);
1916}
1917
1918/*
1919 * Maximum number of concurrent scrub i/os to create while verifying
1920 * a pool while importing it.
1921 */
1922int spa_load_verify_maxinflight = 10000;
1923boolean_t spa_load_verify_metadata = B_TRUE;
1924boolean_t spa_load_verify_data = B_TRUE;
1925
1926SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1927    &spa_load_verify_maxinflight, 0,
1928    "Maximum number of concurrent scrub I/Os to create while verifying a "
1929    "pool while importing it");
1930
1931SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1932    &spa_load_verify_metadata, 0,
1933    "Check metadata on import?");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1936    &spa_load_verify_data, 0,
1937    "Check user data on import?");
1938
1939/*ARGSUSED*/
1940static int
1941spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1942    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1943{
1944	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1945		return (0);
1946	/*
1947	 * Note: normally this routine will not be called if
1948	 * spa_load_verify_metadata is not set.  However, it may be useful
1949	 * to manually set the flag after the traversal has begun.
1950	 */
1951	if (!spa_load_verify_metadata)
1952		return (0);
1953	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1954		return (0);
1955
1956	zio_t *rio = arg;
1957	size_t size = BP_GET_PSIZE(bp);
1958	void *data = zio_data_buf_alloc(size);
1959
1960	mutex_enter(&spa->spa_scrub_lock);
1961	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1962		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1963	spa->spa_scrub_inflight++;
1964	mutex_exit(&spa->spa_scrub_lock);
1965
1966	zio_nowait(zio_read(rio, spa, bp, data, size,
1967	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1968	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1969	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1970	return (0);
1971}
1972
1973static int
1974spa_load_verify(spa_t *spa)
1975{
1976	zio_t *rio;
1977	spa_load_error_t sle = { 0 };
1978	zpool_rewind_policy_t policy;
1979	boolean_t verify_ok = B_FALSE;
1980	int error = 0;
1981
1982	zpool_get_rewind_policy(spa->spa_config, &policy);
1983
1984	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1985		return (0);
1986
1987	rio = zio_root(spa, NULL, &sle,
1988	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1989
1990	if (spa_load_verify_metadata) {
1991		error = traverse_pool(spa, spa->spa_verify_min_txg,
1992		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1993		    spa_load_verify_cb, rio);
1994	}
1995
1996	(void) zio_wait(rio);
1997
1998	spa->spa_load_meta_errors = sle.sle_meta_count;
1999	spa->spa_load_data_errors = sle.sle_data_count;
2000
2001	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2002	    sle.sle_data_count <= policy.zrp_maxdata) {
2003		int64_t loss = 0;
2004
2005		verify_ok = B_TRUE;
2006		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2007		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2008
2009		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2010		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2011		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2012		VERIFY(nvlist_add_int64(spa->spa_load_info,
2013		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2014		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2016	} else {
2017		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2018	}
2019
2020	if (error) {
2021		if (error != ENXIO && error != EIO)
2022			error = SET_ERROR(EIO);
2023		return (error);
2024	}
2025
2026	return (verify_ok ? 0 : EIO);
2027}
2028
2029/*
2030 * Find a value in the pool props object.
2031 */
2032static void
2033spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2034{
2035	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2036	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2037}
2038
2039/*
2040 * Find a value in the pool directory object.
2041 */
2042static int
2043spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2044{
2045	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2046	    name, sizeof (uint64_t), 1, val));
2047}
2048
2049static int
2050spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2051{
2052	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2053	return (err);
2054}
2055
2056/*
2057 * Fix up config after a partly-completed split.  This is done with the
2058 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2059 * pool have that entry in their config, but only the splitting one contains
2060 * a list of all the guids of the vdevs that are being split off.
2061 *
2062 * This function determines what to do with that list: either rejoin
2063 * all the disks to the pool, or complete the splitting process.  To attempt
2064 * the rejoin, each disk that is offlined is marked online again, and
2065 * we do a reopen() call.  If the vdev label for every disk that was
2066 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2067 * then we call vdev_split() on each disk, and complete the split.
2068 *
2069 * Otherwise we leave the config alone, with all the vdevs in place in
2070 * the original pool.
2071 */
2072static void
2073spa_try_repair(spa_t *spa, nvlist_t *config)
2074{
2075	uint_t extracted;
2076	uint64_t *glist;
2077	uint_t i, gcount;
2078	nvlist_t *nvl;
2079	vdev_t **vd;
2080	boolean_t attempt_reopen;
2081
2082	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2083		return;
2084
2085	/* check that the config is complete */
2086	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2087	    &glist, &gcount) != 0)
2088		return;
2089
2090	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2091
2092	/* attempt to online all the vdevs & validate */
2093	attempt_reopen = B_TRUE;
2094	for (i = 0; i < gcount; i++) {
2095		if (glist[i] == 0)	/* vdev is hole */
2096			continue;
2097
2098		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2099		if (vd[i] == NULL) {
2100			/*
2101			 * Don't bother attempting to reopen the disks;
2102			 * just do the split.
2103			 */
2104			attempt_reopen = B_FALSE;
2105		} else {
2106			/* attempt to re-online it */
2107			vd[i]->vdev_offline = B_FALSE;
2108		}
2109	}
2110
2111	if (attempt_reopen) {
2112		vdev_reopen(spa->spa_root_vdev);
2113
2114		/* check each device to see what state it's in */
2115		for (extracted = 0, i = 0; i < gcount; i++) {
2116			if (vd[i] != NULL &&
2117			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2118				break;
2119			++extracted;
2120		}
2121	}
2122
2123	/*
2124	 * If every disk has been moved to the new pool, or if we never
2125	 * even attempted to look at them, then we split them off for
2126	 * good.
2127	 */
2128	if (!attempt_reopen || gcount == extracted) {
2129		for (i = 0; i < gcount; i++)
2130			if (vd[i] != NULL)
2131				vdev_split(vd[i]);
2132		vdev_reopen(spa->spa_root_vdev);
2133	}
2134
2135	kmem_free(vd, gcount * sizeof (vdev_t *));
2136}
2137
2138static int
2139spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2140    boolean_t mosconfig)
2141{
2142	nvlist_t *config = spa->spa_config;
2143	char *ereport = FM_EREPORT_ZFS_POOL;
2144	char *comment;
2145	int error;
2146	uint64_t pool_guid;
2147	nvlist_t *nvl;
2148
2149	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2150		return (SET_ERROR(EINVAL));
2151
2152	ASSERT(spa->spa_comment == NULL);
2153	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2154		spa->spa_comment = spa_strdup(comment);
2155
2156	/*
2157	 * Versioning wasn't explicitly added to the label until later, so if
2158	 * it's not present treat it as the initial version.
2159	 */
2160	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2161	    &spa->spa_ubsync.ub_version) != 0)
2162		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2163
2164	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2165	    &spa->spa_config_txg);
2166
2167	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2168	    spa_guid_exists(pool_guid, 0)) {
2169		error = SET_ERROR(EEXIST);
2170	} else {
2171		spa->spa_config_guid = pool_guid;
2172
2173		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2174		    &nvl) == 0) {
2175			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2176			    KM_SLEEP) == 0);
2177		}
2178
2179		nvlist_free(spa->spa_load_info);
2180		spa->spa_load_info = fnvlist_alloc();
2181
2182		gethrestime(&spa->spa_loaded_ts);
2183		error = spa_load_impl(spa, pool_guid, config, state, type,
2184		    mosconfig, &ereport);
2185	}
2186
2187	/*
2188	 * Don't count references from objsets that are already closed
2189	 * and are making their way through the eviction process.
2190	 */
2191	spa_evicting_os_wait(spa);
2192	spa->spa_minref = refcount_count(&spa->spa_refcount);
2193	if (error) {
2194		if (error != EEXIST) {
2195			spa->spa_loaded_ts.tv_sec = 0;
2196			spa->spa_loaded_ts.tv_nsec = 0;
2197		}
2198		if (error != EBADF) {
2199			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2200		}
2201	}
2202	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2203	spa->spa_ena = 0;
2204
2205	return (error);
2206}
2207
2208/*
2209 * Load an existing storage pool, using the pool's builtin spa_config as a
2210 * source of configuration information.
2211 */
2212static int
2213spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2214    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2215    char **ereport)
2216{
2217	int error = 0;
2218	nvlist_t *nvroot = NULL;
2219	nvlist_t *label;
2220	vdev_t *rvd;
2221	uberblock_t *ub = &spa->spa_uberblock;
2222	uint64_t children, config_cache_txg = spa->spa_config_txg;
2223	int orig_mode = spa->spa_mode;
2224	int parse;
2225	uint64_t obj;
2226	boolean_t missing_feat_write = B_FALSE;
2227
2228	/*
2229	 * If this is an untrusted config, access the pool in read-only mode.
2230	 * This prevents things like resilvering recently removed devices.
2231	 */
2232	if (!mosconfig)
2233		spa->spa_mode = FREAD;
2234
2235	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2236
2237	spa->spa_load_state = state;
2238
2239	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2240		return (SET_ERROR(EINVAL));
2241
2242	parse = (type == SPA_IMPORT_EXISTING ?
2243	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2244
2245	/*
2246	 * Create "The Godfather" zio to hold all async IOs
2247	 */
2248	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2249	    KM_SLEEP);
2250	for (int i = 0; i < max_ncpus; i++) {
2251		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2252		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2253		    ZIO_FLAG_GODFATHER);
2254	}
2255
2256	/*
2257	 * Parse the configuration into a vdev tree.  We explicitly set the
2258	 * value that will be returned by spa_version() since parsing the
2259	 * configuration requires knowing the version number.
2260	 */
2261	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2262	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2263	spa_config_exit(spa, SCL_ALL, FTAG);
2264
2265	if (error != 0)
2266		return (error);
2267
2268	ASSERT(spa->spa_root_vdev == rvd);
2269	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2270	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2271
2272	if (type != SPA_IMPORT_ASSEMBLE) {
2273		ASSERT(spa_guid(spa) == pool_guid);
2274	}
2275
2276	/*
2277	 * Try to open all vdevs, loading each label in the process.
2278	 */
2279	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2280	error = vdev_open(rvd);
2281	spa_config_exit(spa, SCL_ALL, FTAG);
2282	if (error != 0)
2283		return (error);
2284
2285	/*
2286	 * We need to validate the vdev labels against the configuration that
2287	 * we have in hand, which is dependent on the setting of mosconfig. If
2288	 * mosconfig is true then we're validating the vdev labels based on
2289	 * that config.  Otherwise, we're validating against the cached config
2290	 * (zpool.cache) that was read when we loaded the zfs module, and then
2291	 * later we will recursively call spa_load() and validate against
2292	 * the vdev config.
2293	 *
2294	 * If we're assembling a new pool that's been split off from an
2295	 * existing pool, the labels haven't yet been updated so we skip
2296	 * validation for now.
2297	 */
2298	if (type != SPA_IMPORT_ASSEMBLE) {
2299		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2300		error = vdev_validate(rvd, mosconfig);
2301		spa_config_exit(spa, SCL_ALL, FTAG);
2302
2303		if (error != 0)
2304			return (error);
2305
2306		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2307			return (SET_ERROR(ENXIO));
2308	}
2309
2310	/*
2311	 * Find the best uberblock.
2312	 */
2313	vdev_uberblock_load(rvd, ub, &label);
2314
2315	/*
2316	 * If we weren't able to find a single valid uberblock, return failure.
2317	 */
2318	if (ub->ub_txg == 0) {
2319		nvlist_free(label);
2320		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2321	}
2322
2323	/*
2324	 * If the pool has an unsupported version we can't open it.
2325	 */
2326	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2327		nvlist_free(label);
2328		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2329	}
2330
2331	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2332		nvlist_t *features;
2333
2334		/*
2335		 * If we weren't able to find what's necessary for reading the
2336		 * MOS in the label, return failure.
2337		 */
2338		if (label == NULL || nvlist_lookup_nvlist(label,
2339		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2340			nvlist_free(label);
2341			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2342			    ENXIO));
2343		}
2344
2345		/*
2346		 * Update our in-core representation with the definitive values
2347		 * from the label.
2348		 */
2349		nvlist_free(spa->spa_label_features);
2350		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2351	}
2352
2353	nvlist_free(label);
2354
2355	/*
2356	 * Look through entries in the label nvlist's features_for_read. If
2357	 * there is a feature listed there which we don't understand then we
2358	 * cannot open a pool.
2359	 */
2360	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2361		nvlist_t *unsup_feat;
2362
2363		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2364		    0);
2365
2366		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2367		    NULL); nvp != NULL;
2368		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2369			if (!zfeature_is_supported(nvpair_name(nvp))) {
2370				VERIFY(nvlist_add_string(unsup_feat,
2371				    nvpair_name(nvp), "") == 0);
2372			}
2373		}
2374
2375		if (!nvlist_empty(unsup_feat)) {
2376			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2377			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2378			nvlist_free(unsup_feat);
2379			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2380			    ENOTSUP));
2381		}
2382
2383		nvlist_free(unsup_feat);
2384	}
2385
2386	/*
2387	 * If the vdev guid sum doesn't match the uberblock, we have an
2388	 * incomplete configuration.  We first check to see if the pool
2389	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2390	 * If it is, defer the vdev_guid_sum check till later so we
2391	 * can handle missing vdevs.
2392	 */
2393	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2394	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2395	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2396		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2397
2398	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2399		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2400		spa_try_repair(spa, config);
2401		spa_config_exit(spa, SCL_ALL, FTAG);
2402		nvlist_free(spa->spa_config_splitting);
2403		spa->spa_config_splitting = NULL;
2404	}
2405
2406	/*
2407	 * Initialize internal SPA structures.
2408	 */
2409	spa->spa_state = POOL_STATE_ACTIVE;
2410	spa->spa_ubsync = spa->spa_uberblock;
2411	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2412	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2413	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2414	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2415	spa->spa_claim_max_txg = spa->spa_first_txg;
2416	spa->spa_prev_software_version = ub->ub_software_version;
2417
2418	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2419	if (error)
2420		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2422
2423	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2424		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425
2426	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2427		boolean_t missing_feat_read = B_FALSE;
2428		nvlist_t *unsup_feat, *enabled_feat;
2429
2430		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2431		    &spa->spa_feat_for_read_obj) != 0) {
2432			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2433		}
2434
2435		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2436		    &spa->spa_feat_for_write_obj) != 0) {
2437			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438		}
2439
2440		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2441		    &spa->spa_feat_desc_obj) != 0) {
2442			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443		}
2444
2445		enabled_feat = fnvlist_alloc();
2446		unsup_feat = fnvlist_alloc();
2447
2448		if (!spa_features_check(spa, B_FALSE,
2449		    unsup_feat, enabled_feat))
2450			missing_feat_read = B_TRUE;
2451
2452		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2453			if (!spa_features_check(spa, B_TRUE,
2454			    unsup_feat, enabled_feat)) {
2455				missing_feat_write = B_TRUE;
2456			}
2457		}
2458
2459		fnvlist_add_nvlist(spa->spa_load_info,
2460		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2461
2462		if (!nvlist_empty(unsup_feat)) {
2463			fnvlist_add_nvlist(spa->spa_load_info,
2464			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2465		}
2466
2467		fnvlist_free(enabled_feat);
2468		fnvlist_free(unsup_feat);
2469
2470		if (!missing_feat_read) {
2471			fnvlist_add_boolean(spa->spa_load_info,
2472			    ZPOOL_CONFIG_CAN_RDONLY);
2473		}
2474
2475		/*
2476		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2477		 * twofold: to determine whether the pool is available for
2478		 * import in read-write mode and (if it is not) whether the
2479		 * pool is available for import in read-only mode. If the pool
2480		 * is available for import in read-write mode, it is displayed
2481		 * as available in userland; if it is not available for import
2482		 * in read-only mode, it is displayed as unavailable in
2483		 * userland. If the pool is available for import in read-only
2484		 * mode but not read-write mode, it is displayed as unavailable
2485		 * in userland with a special note that the pool is actually
2486		 * available for open in read-only mode.
2487		 *
2488		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2489		 * missing a feature for write, we must first determine whether
2490		 * the pool can be opened read-only before returning to
2491		 * userland in order to know whether to display the
2492		 * abovementioned note.
2493		 */
2494		if (missing_feat_read || (missing_feat_write &&
2495		    spa_writeable(spa))) {
2496			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2497			    ENOTSUP));
2498		}
2499
2500		/*
2501		 * Load refcounts for ZFS features from disk into an in-memory
2502		 * cache during SPA initialization.
2503		 */
2504		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2505			uint64_t refcount;
2506
2507			error = feature_get_refcount_from_disk(spa,
2508			    &spa_feature_table[i], &refcount);
2509			if (error == 0) {
2510				spa->spa_feat_refcount_cache[i] = refcount;
2511			} else if (error == ENOTSUP) {
2512				spa->spa_feat_refcount_cache[i] =
2513				    SPA_FEATURE_DISABLED;
2514			} else {
2515				return (spa_vdev_err(rvd,
2516				    VDEV_AUX_CORRUPT_DATA, EIO));
2517			}
2518		}
2519	}
2520
2521	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2522		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2523		    &spa->spa_feat_enabled_txg_obj) != 0)
2524			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525	}
2526
2527	spa->spa_is_initializing = B_TRUE;
2528	error = dsl_pool_open(spa->spa_dsl_pool);
2529	spa->spa_is_initializing = B_FALSE;
2530	if (error != 0)
2531		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2532
2533	if (!mosconfig) {
2534		uint64_t hostid;
2535		nvlist_t *policy = NULL, *nvconfig;
2536
2537		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2538			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539
2540		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2541		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2542			char *hostname;
2543			unsigned long myhostid = 0;
2544
2545			VERIFY(nvlist_lookup_string(nvconfig,
2546			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2547
2548#ifdef	_KERNEL
2549			myhostid = zone_get_hostid(NULL);
2550#else	/* _KERNEL */
2551			/*
2552			 * We're emulating the system's hostid in userland, so
2553			 * we can't use zone_get_hostid().
2554			 */
2555			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2556#endif	/* _KERNEL */
2557			if (check_hostid && hostid != 0 && myhostid != 0 &&
2558			    hostid != myhostid) {
2559				nvlist_free(nvconfig);
2560				cmn_err(CE_WARN, "pool '%s' could not be "
2561				    "loaded as it was last accessed by "
2562				    "another system (host: %s hostid: 0x%lx). "
2563				    "See: http://illumos.org/msg/ZFS-8000-EY",
2564				    spa_name(spa), hostname,
2565				    (unsigned long)hostid);
2566				return (SET_ERROR(EBADF));
2567			}
2568		}
2569		if (nvlist_lookup_nvlist(spa->spa_config,
2570		    ZPOOL_REWIND_POLICY, &policy) == 0)
2571			VERIFY(nvlist_add_nvlist(nvconfig,
2572			    ZPOOL_REWIND_POLICY, policy) == 0);
2573
2574		spa_config_set(spa, nvconfig);
2575		spa_unload(spa);
2576		spa_deactivate(spa);
2577		spa_activate(spa, orig_mode);
2578
2579		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2580	}
2581
2582	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2583		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2585	if (error != 0)
2586		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587
2588	/*
2589	 * Load the bit that tells us to use the new accounting function
2590	 * (raid-z deflation).  If we have an older pool, this will not
2591	 * be present.
2592	 */
2593	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2594	if (error != 0 && error != ENOENT)
2595		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596
2597	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2598	    &spa->spa_creation_version);
2599	if (error != 0 && error != ENOENT)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601
2602	/*
2603	 * Load the persistent error log.  If we have an older pool, this will
2604	 * not be present.
2605	 */
2606	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2607	if (error != 0 && error != ENOENT)
2608		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609
2610	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2611	    &spa->spa_errlog_scrub);
2612	if (error != 0 && error != ENOENT)
2613		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614
2615	/*
2616	 * Load the history object.  If we have an older pool, this
2617	 * will not be present.
2618	 */
2619	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2620	if (error != 0 && error != ENOENT)
2621		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622
2623	/*
2624	 * If we're assembling the pool from the split-off vdevs of
2625	 * an existing pool, we don't want to attach the spares & cache
2626	 * devices.
2627	 */
2628
2629	/*
2630	 * Load any hot spares for this pool.
2631	 */
2632	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2633	if (error != 0 && error != ENOENT)
2634		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2635	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2636		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2637		if (load_nvlist(spa, spa->spa_spares.sav_object,
2638		    &spa->spa_spares.sav_config) != 0)
2639			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640
2641		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2642		spa_load_spares(spa);
2643		spa_config_exit(spa, SCL_ALL, FTAG);
2644	} else if (error == 0) {
2645		spa->spa_spares.sav_sync = B_TRUE;
2646	}
2647
2648	/*
2649	 * Load any level 2 ARC devices for this pool.
2650	 */
2651	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2652	    &spa->spa_l2cache.sav_object);
2653	if (error != 0 && error != ENOENT)
2654		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2655	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2656		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2657		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2658		    &spa->spa_l2cache.sav_config) != 0)
2659			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2660
2661		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2662		spa_load_l2cache(spa);
2663		spa_config_exit(spa, SCL_ALL, FTAG);
2664	} else if (error == 0) {
2665		spa->spa_l2cache.sav_sync = B_TRUE;
2666	}
2667
2668	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2669
2670	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2671	if (error && error != ENOENT)
2672		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2673
2674	if (error == 0) {
2675		uint64_t autoreplace;
2676
2677		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2678		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2679		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2680		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2681		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2682		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2683		    &spa->spa_dedup_ditto);
2684
2685		spa->spa_autoreplace = (autoreplace != 0);
2686	}
2687
2688	/*
2689	 * If the 'autoreplace' property is set, then post a resource notifying
2690	 * the ZFS DE that it should not issue any faults for unopenable
2691	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2692	 * unopenable vdevs so that the normal autoreplace handler can take
2693	 * over.
2694	 */
2695	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2696		spa_check_removed(spa->spa_root_vdev);
2697		/*
2698		 * For the import case, this is done in spa_import(), because
2699		 * at this point we're using the spare definitions from
2700		 * the MOS config, not necessarily from the userland config.
2701		 */
2702		if (state != SPA_LOAD_IMPORT) {
2703			spa_aux_check_removed(&spa->spa_spares);
2704			spa_aux_check_removed(&spa->spa_l2cache);
2705		}
2706	}
2707
2708	/*
2709	 * Load the vdev state for all toplevel vdevs.
2710	 */
2711	vdev_load(rvd);
2712
2713	/*
2714	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2715	 */
2716	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2717	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2718	spa_config_exit(spa, SCL_ALL, FTAG);
2719
2720	/*
2721	 * Load the DDTs (dedup tables).
2722	 */
2723	error = ddt_load(spa);
2724	if (error != 0)
2725		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2726
2727	spa_update_dspace(spa);
2728
2729	/*
2730	 * Validate the config, using the MOS config to fill in any
2731	 * information which might be missing.  If we fail to validate
2732	 * the config then declare the pool unfit for use. If we're
2733	 * assembling a pool from a split, the log is not transferred
2734	 * over.
2735	 */
2736	if (type != SPA_IMPORT_ASSEMBLE) {
2737		nvlist_t *nvconfig;
2738
2739		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2740			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2741
2742		if (!spa_config_valid(spa, nvconfig)) {
2743			nvlist_free(nvconfig);
2744			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2745			    ENXIO));
2746		}
2747		nvlist_free(nvconfig);
2748
2749		/*
2750		 * Now that we've validated the config, check the state of the
2751		 * root vdev.  If it can't be opened, it indicates one or
2752		 * more toplevel vdevs are faulted.
2753		 */
2754		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2755			return (SET_ERROR(ENXIO));
2756
2757		if (spa_writeable(spa) && spa_check_logs(spa)) {
2758			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2759			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2760		}
2761	}
2762
2763	if (missing_feat_write) {
2764		ASSERT(state == SPA_LOAD_TRYIMPORT);
2765
2766		/*
2767		 * At this point, we know that we can open the pool in
2768		 * read-only mode but not read-write mode. We now have enough
2769		 * information and can return to userland.
2770		 */
2771		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2772	}
2773
2774	/*
2775	 * We've successfully opened the pool, verify that we're ready
2776	 * to start pushing transactions.
2777	 */
2778	if (state != SPA_LOAD_TRYIMPORT) {
2779		if (error = spa_load_verify(spa))
2780			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2781			    error));
2782	}
2783
2784	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2785	    spa->spa_load_max_txg == UINT64_MAX)) {
2786		dmu_tx_t *tx;
2787		int need_update = B_FALSE;
2788		dsl_pool_t *dp = spa_get_dsl(spa);
2789
2790		ASSERT(state != SPA_LOAD_TRYIMPORT);
2791
2792		/*
2793		 * Claim log blocks that haven't been committed yet.
2794		 * This must all happen in a single txg.
2795		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2796		 * invoked from zil_claim_log_block()'s i/o done callback.
2797		 * Price of rollback is that we abandon the log.
2798		 */
2799		spa->spa_claiming = B_TRUE;
2800
2801		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2802		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2803		    zil_claim, tx, DS_FIND_CHILDREN);
2804		dmu_tx_commit(tx);
2805
2806		spa->spa_claiming = B_FALSE;
2807
2808		spa_set_log_state(spa, SPA_LOG_GOOD);
2809		spa->spa_sync_on = B_TRUE;
2810		txg_sync_start(spa->spa_dsl_pool);
2811
2812		/*
2813		 * Wait for all claims to sync.  We sync up to the highest
2814		 * claimed log block birth time so that claimed log blocks
2815		 * don't appear to be from the future.  spa_claim_max_txg
2816		 * will have been set for us by either zil_check_log_chain()
2817		 * (invoked from spa_check_logs()) or zil_claim() above.
2818		 */
2819		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2820
2821		/*
2822		 * If the config cache is stale, or we have uninitialized
2823		 * metaslabs (see spa_vdev_add()), then update the config.
2824		 *
2825		 * If this is a verbatim import, trust the current
2826		 * in-core spa_config and update the disk labels.
2827		 */
2828		if (config_cache_txg != spa->spa_config_txg ||
2829		    state == SPA_LOAD_IMPORT ||
2830		    state == SPA_LOAD_RECOVER ||
2831		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2832			need_update = B_TRUE;
2833
2834		for (int c = 0; c < rvd->vdev_children; c++)
2835			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2836				need_update = B_TRUE;
2837
2838		/*
2839		 * Update the config cache asychronously in case we're the
2840		 * root pool, in which case the config cache isn't writable yet.
2841		 */
2842		if (need_update)
2843			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2844
2845		/*
2846		 * Check all DTLs to see if anything needs resilvering.
2847		 */
2848		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2849		    vdev_resilver_needed(rvd, NULL, NULL))
2850			spa_async_request(spa, SPA_ASYNC_RESILVER);
2851
2852		/*
2853		 * Log the fact that we booted up (so that we can detect if
2854		 * we rebooted in the middle of an operation).
2855		 */
2856		spa_history_log_version(spa, "open");
2857
2858		/*
2859		 * Delete any inconsistent datasets.
2860		 */
2861		(void) dmu_objset_find(spa_name(spa),
2862		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2863
2864		/*
2865		 * Clean up any stale temporary dataset userrefs.
2866		 */
2867		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2868	}
2869
2870	return (0);
2871}
2872
2873static int
2874spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2875{
2876	int mode = spa->spa_mode;
2877
2878	spa_unload(spa);
2879	spa_deactivate(spa);
2880
2881	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2882
2883	spa_activate(spa, mode);
2884	spa_async_suspend(spa);
2885
2886	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2887}
2888
2889/*
2890 * If spa_load() fails this function will try loading prior txg's. If
2891 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2892 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2893 * function will not rewind the pool and will return the same error as
2894 * spa_load().
2895 */
2896static int
2897spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2898    uint64_t max_request, int rewind_flags)
2899{
2900	nvlist_t *loadinfo = NULL;
2901	nvlist_t *config = NULL;
2902	int load_error, rewind_error;
2903	uint64_t safe_rewind_txg;
2904	uint64_t min_txg;
2905
2906	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2907		spa->spa_load_max_txg = spa->spa_load_txg;
2908		spa_set_log_state(spa, SPA_LOG_CLEAR);
2909	} else {
2910		spa->spa_load_max_txg = max_request;
2911		if (max_request != UINT64_MAX)
2912			spa->spa_extreme_rewind = B_TRUE;
2913	}
2914
2915	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2916	    mosconfig);
2917	if (load_error == 0)
2918		return (0);
2919
2920	if (spa->spa_root_vdev != NULL)
2921		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2922
2923	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2924	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2925
2926	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2927		nvlist_free(config);
2928		return (load_error);
2929	}
2930
2931	if (state == SPA_LOAD_RECOVER) {
2932		/* Price of rolling back is discarding txgs, including log */
2933		spa_set_log_state(spa, SPA_LOG_CLEAR);
2934	} else {
2935		/*
2936		 * If we aren't rolling back save the load info from our first
2937		 * import attempt so that we can restore it after attempting
2938		 * to rewind.
2939		 */
2940		loadinfo = spa->spa_load_info;
2941		spa->spa_load_info = fnvlist_alloc();
2942	}
2943
2944	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2945	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2946	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2947	    TXG_INITIAL : safe_rewind_txg;
2948
2949	/*
2950	 * Continue as long as we're finding errors, we're still within
2951	 * the acceptable rewind range, and we're still finding uberblocks
2952	 */
2953	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2954	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2955		if (spa->spa_load_max_txg < safe_rewind_txg)
2956			spa->spa_extreme_rewind = B_TRUE;
2957		rewind_error = spa_load_retry(spa, state, mosconfig);
2958	}
2959
2960	spa->spa_extreme_rewind = B_FALSE;
2961	spa->spa_load_max_txg = UINT64_MAX;
2962
2963	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2964		spa_config_set(spa, config);
2965
2966	if (state == SPA_LOAD_RECOVER) {
2967		ASSERT3P(loadinfo, ==, NULL);
2968		return (rewind_error);
2969	} else {
2970		/* Store the rewind info as part of the initial load info */
2971		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2972		    spa->spa_load_info);
2973
2974		/* Restore the initial load info */
2975		fnvlist_free(spa->spa_load_info);
2976		spa->spa_load_info = loadinfo;
2977
2978		return (load_error);
2979	}
2980}
2981
2982/*
2983 * Pool Open/Import
2984 *
2985 * The import case is identical to an open except that the configuration is sent
2986 * down from userland, instead of grabbed from the configuration cache.  For the
2987 * case of an open, the pool configuration will exist in the
2988 * POOL_STATE_UNINITIALIZED state.
2989 *
2990 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2991 * the same time open the pool, without having to keep around the spa_t in some
2992 * ambiguous state.
2993 */
2994static int
2995spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2996    nvlist_t **config)
2997{
2998	spa_t *spa;
2999	spa_load_state_t state = SPA_LOAD_OPEN;
3000	int error;
3001	int locked = B_FALSE;
3002	int firstopen = B_FALSE;
3003
3004	*spapp = NULL;
3005
3006	/*
3007	 * As disgusting as this is, we need to support recursive calls to this
3008	 * function because dsl_dir_open() is called during spa_load(), and ends
3009	 * up calling spa_open() again.  The real fix is to figure out how to
3010	 * avoid dsl_dir_open() calling this in the first place.
3011	 */
3012	if (mutex_owner(&spa_namespace_lock) != curthread) {
3013		mutex_enter(&spa_namespace_lock);
3014		locked = B_TRUE;
3015	}
3016
3017	if ((spa = spa_lookup(pool)) == NULL) {
3018		if (locked)
3019			mutex_exit(&spa_namespace_lock);
3020		return (SET_ERROR(ENOENT));
3021	}
3022
3023	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3024		zpool_rewind_policy_t policy;
3025
3026		firstopen = B_TRUE;
3027
3028		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3029		    &policy);
3030		if (policy.zrp_request & ZPOOL_DO_REWIND)
3031			state = SPA_LOAD_RECOVER;
3032
3033		spa_activate(spa, spa_mode_global);
3034
3035		if (state != SPA_LOAD_RECOVER)
3036			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3037
3038		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3039		    policy.zrp_request);
3040
3041		if (error == EBADF) {
3042			/*
3043			 * If vdev_validate() returns failure (indicated by
3044			 * EBADF), it indicates that one of the vdevs indicates
3045			 * that the pool has been exported or destroyed.  If
3046			 * this is the case, the config cache is out of sync and
3047			 * we should remove the pool from the namespace.
3048			 */
3049			spa_unload(spa);
3050			spa_deactivate(spa);
3051			spa_config_sync(spa, B_TRUE, B_TRUE);
3052			spa_remove(spa);
3053			if (locked)
3054				mutex_exit(&spa_namespace_lock);
3055			return (SET_ERROR(ENOENT));
3056		}
3057
3058		if (error) {
3059			/*
3060			 * We can't open the pool, but we still have useful
3061			 * information: the state of each vdev after the
3062			 * attempted vdev_open().  Return this to the user.
3063			 */
3064			if (config != NULL && spa->spa_config) {
3065				VERIFY(nvlist_dup(spa->spa_config, config,
3066				    KM_SLEEP) == 0);
3067				VERIFY(nvlist_add_nvlist(*config,
3068				    ZPOOL_CONFIG_LOAD_INFO,
3069				    spa->spa_load_info) == 0);
3070			}
3071			spa_unload(spa);
3072			spa_deactivate(spa);
3073			spa->spa_last_open_failed = error;
3074			if (locked)
3075				mutex_exit(&spa_namespace_lock);
3076			*spapp = NULL;
3077			return (error);
3078		}
3079	}
3080
3081	spa_open_ref(spa, tag);
3082
3083	if (config != NULL)
3084		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3085
3086	/*
3087	 * If we've recovered the pool, pass back any information we
3088	 * gathered while doing the load.
3089	 */
3090	if (state == SPA_LOAD_RECOVER) {
3091		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3092		    spa->spa_load_info) == 0);
3093	}
3094
3095	if (locked) {
3096		spa->spa_last_open_failed = 0;
3097		spa->spa_last_ubsync_txg = 0;
3098		spa->spa_load_txg = 0;
3099		mutex_exit(&spa_namespace_lock);
3100#ifdef __FreeBSD__
3101#ifdef _KERNEL
3102		if (firstopen)
3103			zvol_create_minors(spa->spa_name);
3104#endif
3105#endif
3106	}
3107
3108	*spapp = spa;
3109
3110	return (0);
3111}
3112
3113int
3114spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3115    nvlist_t **config)
3116{
3117	return (spa_open_common(name, spapp, tag, policy, config));
3118}
3119
3120int
3121spa_open(const char *name, spa_t **spapp, void *tag)
3122{
3123	return (spa_open_common(name, spapp, tag, NULL, NULL));
3124}
3125
3126/*
3127 * Lookup the given spa_t, incrementing the inject count in the process,
3128 * preventing it from being exported or destroyed.
3129 */
3130spa_t *
3131spa_inject_addref(char *name)
3132{
3133	spa_t *spa;
3134
3135	mutex_enter(&spa_namespace_lock);
3136	if ((spa = spa_lookup(name)) == NULL) {
3137		mutex_exit(&spa_namespace_lock);
3138		return (NULL);
3139	}
3140	spa->spa_inject_ref++;
3141	mutex_exit(&spa_namespace_lock);
3142
3143	return (spa);
3144}
3145
3146void
3147spa_inject_delref(spa_t *spa)
3148{
3149	mutex_enter(&spa_namespace_lock);
3150	spa->spa_inject_ref--;
3151	mutex_exit(&spa_namespace_lock);
3152}
3153
3154/*
3155 * Add spares device information to the nvlist.
3156 */
3157static void
3158spa_add_spares(spa_t *spa, nvlist_t *config)
3159{
3160	nvlist_t **spares;
3161	uint_t i, nspares;
3162	nvlist_t *nvroot;
3163	uint64_t guid;
3164	vdev_stat_t *vs;
3165	uint_t vsc;
3166	uint64_t pool;
3167
3168	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3169
3170	if (spa->spa_spares.sav_count == 0)
3171		return;
3172
3173	VERIFY(nvlist_lookup_nvlist(config,
3174	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3175	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3176	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3177	if (nspares != 0) {
3178		VERIFY(nvlist_add_nvlist_array(nvroot,
3179		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3180		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3181		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3182
3183		/*
3184		 * Go through and find any spares which have since been
3185		 * repurposed as an active spare.  If this is the case, update
3186		 * their status appropriately.
3187		 */
3188		for (i = 0; i < nspares; i++) {
3189			VERIFY(nvlist_lookup_uint64(spares[i],
3190			    ZPOOL_CONFIG_GUID, &guid) == 0);
3191			if (spa_spare_exists(guid, &pool, NULL) &&
3192			    pool != 0ULL) {
3193				VERIFY(nvlist_lookup_uint64_array(
3194				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3195				    (uint64_t **)&vs, &vsc) == 0);
3196				vs->vs_state = VDEV_STATE_CANT_OPEN;
3197				vs->vs_aux = VDEV_AUX_SPARED;
3198			}
3199		}
3200	}
3201}
3202
3203/*
3204 * Add l2cache device information to the nvlist, including vdev stats.
3205 */
3206static void
3207spa_add_l2cache(spa_t *spa, nvlist_t *config)
3208{
3209	nvlist_t **l2cache;
3210	uint_t i, j, nl2cache;
3211	nvlist_t *nvroot;
3212	uint64_t guid;
3213	vdev_t *vd;
3214	vdev_stat_t *vs;
3215	uint_t vsc;
3216
3217	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3218
3219	if (spa->spa_l2cache.sav_count == 0)
3220		return;
3221
3222	VERIFY(nvlist_lookup_nvlist(config,
3223	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3224	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3225	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3226	if (nl2cache != 0) {
3227		VERIFY(nvlist_add_nvlist_array(nvroot,
3228		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3229		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3230		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3231
3232		/*
3233		 * Update level 2 cache device stats.
3234		 */
3235
3236		for (i = 0; i < nl2cache; i++) {
3237			VERIFY(nvlist_lookup_uint64(l2cache[i],
3238			    ZPOOL_CONFIG_GUID, &guid) == 0);
3239
3240			vd = NULL;
3241			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3242				if (guid ==
3243				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3244					vd = spa->spa_l2cache.sav_vdevs[j];
3245					break;
3246				}
3247			}
3248			ASSERT(vd != NULL);
3249
3250			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3251			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3252			    == 0);
3253			vdev_get_stats(vd, vs);
3254		}
3255	}
3256}
3257
3258static void
3259spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3260{
3261	nvlist_t *features;
3262	zap_cursor_t zc;
3263	zap_attribute_t za;
3264
3265	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3266	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3267
3268	/* We may be unable to read features if pool is suspended. */
3269	if (spa_suspended(spa))
3270		goto out;
3271
3272	if (spa->spa_feat_for_read_obj != 0) {
3273		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3274		    spa->spa_feat_for_read_obj);
3275		    zap_cursor_retrieve(&zc, &za) == 0;
3276		    zap_cursor_advance(&zc)) {
3277			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3278			    za.za_num_integers == 1);
3279			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3280			    za.za_first_integer));
3281		}
3282		zap_cursor_fini(&zc);
3283	}
3284
3285	if (spa->spa_feat_for_write_obj != 0) {
3286		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3287		    spa->spa_feat_for_write_obj);
3288		    zap_cursor_retrieve(&zc, &za) == 0;
3289		    zap_cursor_advance(&zc)) {
3290			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3291			    za.za_num_integers == 1);
3292			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3293			    za.za_first_integer));
3294		}
3295		zap_cursor_fini(&zc);
3296	}
3297
3298out:
3299	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3300	    features) == 0);
3301	nvlist_free(features);
3302}
3303
3304int
3305spa_get_stats(const char *name, nvlist_t **config,
3306    char *altroot, size_t buflen)
3307{
3308	int error;
3309	spa_t *spa;
3310
3311	*config = NULL;
3312	error = spa_open_common(name, &spa, FTAG, NULL, config);
3313
3314	if (spa != NULL) {
3315		/*
3316		 * This still leaves a window of inconsistency where the spares
3317		 * or l2cache devices could change and the config would be
3318		 * self-inconsistent.
3319		 */
3320		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3321
3322		if (*config != NULL) {
3323			uint64_t loadtimes[2];
3324
3325			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3326			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3327			VERIFY(nvlist_add_uint64_array(*config,
3328			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3329
3330			VERIFY(nvlist_add_uint64(*config,
3331			    ZPOOL_CONFIG_ERRCOUNT,
3332			    spa_get_errlog_size(spa)) == 0);
3333
3334			if (spa_suspended(spa))
3335				VERIFY(nvlist_add_uint64(*config,
3336				    ZPOOL_CONFIG_SUSPENDED,
3337				    spa->spa_failmode) == 0);
3338
3339			spa_add_spares(spa, *config);
3340			spa_add_l2cache(spa, *config);
3341			spa_add_feature_stats(spa, *config);
3342		}
3343	}
3344
3345	/*
3346	 * We want to get the alternate root even for faulted pools, so we cheat
3347	 * and call spa_lookup() directly.
3348	 */
3349	if (altroot) {
3350		if (spa == NULL) {
3351			mutex_enter(&spa_namespace_lock);
3352			spa = spa_lookup(name);
3353			if (spa)
3354				spa_altroot(spa, altroot, buflen);
3355			else
3356				altroot[0] = '\0';
3357			spa = NULL;
3358			mutex_exit(&spa_namespace_lock);
3359		} else {
3360			spa_altroot(spa, altroot, buflen);
3361		}
3362	}
3363
3364	if (spa != NULL) {
3365		spa_config_exit(spa, SCL_CONFIG, FTAG);
3366		spa_close(spa, FTAG);
3367	}
3368
3369	return (error);
3370}
3371
3372/*
3373 * Validate that the auxiliary device array is well formed.  We must have an
3374 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3375 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3376 * specified, as long as they are well-formed.
3377 */
3378static int
3379spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3380    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3381    vdev_labeltype_t label)
3382{
3383	nvlist_t **dev;
3384	uint_t i, ndev;
3385	vdev_t *vd;
3386	int error;
3387
3388	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3389
3390	/*
3391	 * It's acceptable to have no devs specified.
3392	 */
3393	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3394		return (0);
3395
3396	if (ndev == 0)
3397		return (SET_ERROR(EINVAL));
3398
3399	/*
3400	 * Make sure the pool is formatted with a version that supports this
3401	 * device type.
3402	 */
3403	if (spa_version(spa) < version)
3404		return (SET_ERROR(ENOTSUP));
3405
3406	/*
3407	 * Set the pending device list so we correctly handle device in-use
3408	 * checking.
3409	 */
3410	sav->sav_pending = dev;
3411	sav->sav_npending = ndev;
3412
3413	for (i = 0; i < ndev; i++) {
3414		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3415		    mode)) != 0)
3416			goto out;
3417
3418		if (!vd->vdev_ops->vdev_op_leaf) {
3419			vdev_free(vd);
3420			error = SET_ERROR(EINVAL);
3421			goto out;
3422		}
3423
3424		/*
3425		 * The L2ARC currently only supports disk devices in
3426		 * kernel context.  For user-level testing, we allow it.
3427		 */
3428#ifdef _KERNEL
3429		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3430		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3431			error = SET_ERROR(ENOTBLK);
3432			vdev_free(vd);
3433			goto out;
3434		}
3435#endif
3436		vd->vdev_top = vd;
3437
3438		if ((error = vdev_open(vd)) == 0 &&
3439		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3440			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3441			    vd->vdev_guid) == 0);
3442		}
3443
3444		vdev_free(vd);
3445
3446		if (error &&
3447		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3448			goto out;
3449		else
3450			error = 0;
3451	}
3452
3453out:
3454	sav->sav_pending = NULL;
3455	sav->sav_npending = 0;
3456	return (error);
3457}
3458
3459static int
3460spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3461{
3462	int error;
3463
3464	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3465
3466	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3467	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3468	    VDEV_LABEL_SPARE)) != 0) {
3469		return (error);
3470	}
3471
3472	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3473	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3474	    VDEV_LABEL_L2CACHE));
3475}
3476
3477static void
3478spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3479    const char *config)
3480{
3481	int i;
3482
3483	if (sav->sav_config != NULL) {
3484		nvlist_t **olddevs;
3485		uint_t oldndevs;
3486		nvlist_t **newdevs;
3487
3488		/*
3489		 * Generate new dev list by concatentating with the
3490		 * current dev list.
3491		 */
3492		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3493		    &olddevs, &oldndevs) == 0);
3494
3495		newdevs = kmem_alloc(sizeof (void *) *
3496		    (ndevs + oldndevs), KM_SLEEP);
3497		for (i = 0; i < oldndevs; i++)
3498			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3499			    KM_SLEEP) == 0);
3500		for (i = 0; i < ndevs; i++)
3501			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3502			    KM_SLEEP) == 0);
3503
3504		VERIFY(nvlist_remove(sav->sav_config, config,
3505		    DATA_TYPE_NVLIST_ARRAY) == 0);
3506
3507		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3508		    config, newdevs, ndevs + oldndevs) == 0);
3509		for (i = 0; i < oldndevs + ndevs; i++)
3510			nvlist_free(newdevs[i]);
3511		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3512	} else {
3513		/*
3514		 * Generate a new dev list.
3515		 */
3516		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3517		    KM_SLEEP) == 0);
3518		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3519		    devs, ndevs) == 0);
3520	}
3521}
3522
3523/*
3524 * Stop and drop level 2 ARC devices
3525 */
3526void
3527spa_l2cache_drop(spa_t *spa)
3528{
3529	vdev_t *vd;
3530	int i;
3531	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3532
3533	for (i = 0; i < sav->sav_count; i++) {
3534		uint64_t pool;
3535
3536		vd = sav->sav_vdevs[i];
3537		ASSERT(vd != NULL);
3538
3539		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3540		    pool != 0ULL && l2arc_vdev_present(vd))
3541			l2arc_remove_vdev(vd);
3542	}
3543}
3544
3545/*
3546 * Pool Creation
3547 */
3548int
3549spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3550    nvlist_t *zplprops)
3551{
3552	spa_t *spa;
3553	char *altroot = NULL;
3554	vdev_t *rvd;
3555	dsl_pool_t *dp;
3556	dmu_tx_t *tx;
3557	int error = 0;
3558	uint64_t txg = TXG_INITIAL;
3559	nvlist_t **spares, **l2cache;
3560	uint_t nspares, nl2cache;
3561	uint64_t version, obj;
3562	boolean_t has_features;
3563
3564	/*
3565	 * If this pool already exists, return failure.
3566	 */
3567	mutex_enter(&spa_namespace_lock);
3568	if (spa_lookup(pool) != NULL) {
3569		mutex_exit(&spa_namespace_lock);
3570		return (SET_ERROR(EEXIST));
3571	}
3572
3573	/*
3574	 * Allocate a new spa_t structure.
3575	 */
3576	(void) nvlist_lookup_string(props,
3577	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3578	spa = spa_add(pool, NULL, altroot);
3579	spa_activate(spa, spa_mode_global);
3580
3581	if (props && (error = spa_prop_validate(spa, props))) {
3582		spa_deactivate(spa);
3583		spa_remove(spa);
3584		mutex_exit(&spa_namespace_lock);
3585		return (error);
3586	}
3587
3588	has_features = B_FALSE;
3589	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3590	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3591		if (zpool_prop_feature(nvpair_name(elem)))
3592			has_features = B_TRUE;
3593	}
3594
3595	if (has_features || nvlist_lookup_uint64(props,
3596	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3597		version = SPA_VERSION;
3598	}
3599	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3600
3601	spa->spa_first_txg = txg;
3602	spa->spa_uberblock.ub_txg = txg - 1;
3603	spa->spa_uberblock.ub_version = version;
3604	spa->spa_ubsync = spa->spa_uberblock;
3605
3606	/*
3607	 * Create "The Godfather" zio to hold all async IOs
3608	 */
3609	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3610	    KM_SLEEP);
3611	for (int i = 0; i < max_ncpus; i++) {
3612		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3613		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3614		    ZIO_FLAG_GODFATHER);
3615	}
3616
3617	/*
3618	 * Create the root vdev.
3619	 */
3620	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3621
3622	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3623
3624	ASSERT(error != 0 || rvd != NULL);
3625	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3626
3627	if (error == 0 && !zfs_allocatable_devs(nvroot))
3628		error = SET_ERROR(EINVAL);
3629
3630	if (error == 0 &&
3631	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3632	    (error = spa_validate_aux(spa, nvroot, txg,
3633	    VDEV_ALLOC_ADD)) == 0) {
3634		for (int c = 0; c < rvd->vdev_children; c++) {
3635			vdev_ashift_optimize(rvd->vdev_child[c]);
3636			vdev_metaslab_set_size(rvd->vdev_child[c]);
3637			vdev_expand(rvd->vdev_child[c], txg);
3638		}
3639	}
3640
3641	spa_config_exit(spa, SCL_ALL, FTAG);
3642
3643	if (error != 0) {
3644		spa_unload(spa);
3645		spa_deactivate(spa);
3646		spa_remove(spa);
3647		mutex_exit(&spa_namespace_lock);
3648		return (error);
3649	}
3650
3651	/*
3652	 * Get the list of spares, if specified.
3653	 */
3654	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3655	    &spares, &nspares) == 0) {
3656		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3657		    KM_SLEEP) == 0);
3658		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3659		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3660		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3661		spa_load_spares(spa);
3662		spa_config_exit(spa, SCL_ALL, FTAG);
3663		spa->spa_spares.sav_sync = B_TRUE;
3664	}
3665
3666	/*
3667	 * Get the list of level 2 cache devices, if specified.
3668	 */
3669	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3670	    &l2cache, &nl2cache) == 0) {
3671		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3672		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3673		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3674		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3675		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3676		spa_load_l2cache(spa);
3677		spa_config_exit(spa, SCL_ALL, FTAG);
3678		spa->spa_l2cache.sav_sync = B_TRUE;
3679	}
3680
3681	spa->spa_is_initializing = B_TRUE;
3682	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3683	spa->spa_meta_objset = dp->dp_meta_objset;
3684	spa->spa_is_initializing = B_FALSE;
3685
3686	/*
3687	 * Create DDTs (dedup tables).
3688	 */
3689	ddt_create(spa);
3690
3691	spa_update_dspace(spa);
3692
3693	tx = dmu_tx_create_assigned(dp, txg);
3694
3695	/*
3696	 * Create the pool config object.
3697	 */
3698	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3699	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3700	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3701
3702	if (zap_add(spa->spa_meta_objset,
3703	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3704	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3705		cmn_err(CE_PANIC, "failed to add pool config");
3706	}
3707
3708	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3709		spa_feature_create_zap_objects(spa, tx);
3710
3711	if (zap_add(spa->spa_meta_objset,
3712	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3713	    sizeof (uint64_t), 1, &version, tx) != 0) {
3714		cmn_err(CE_PANIC, "failed to add pool version");
3715	}
3716
3717	/* Newly created pools with the right version are always deflated. */
3718	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3719		spa->spa_deflate = TRUE;
3720		if (zap_add(spa->spa_meta_objset,
3721		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3722		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3723			cmn_err(CE_PANIC, "failed to add deflate");
3724		}
3725	}
3726
3727	/*
3728	 * Create the deferred-free bpobj.  Turn off compression
3729	 * because sync-to-convergence takes longer if the blocksize
3730	 * keeps changing.
3731	 */
3732	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3733	dmu_object_set_compress(spa->spa_meta_objset, obj,
3734	    ZIO_COMPRESS_OFF, tx);
3735	if (zap_add(spa->spa_meta_objset,
3736	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3737	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3738		cmn_err(CE_PANIC, "failed to add bpobj");
3739	}
3740	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3741	    spa->spa_meta_objset, obj));
3742
3743	/*
3744	 * Create the pool's history object.
3745	 */
3746	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3747		spa_history_create_obj(spa, tx);
3748
3749	/*
3750	 * Set pool properties.
3751	 */
3752	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3753	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3754	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3755	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3756
3757	if (props != NULL) {
3758		spa_configfile_set(spa, props, B_FALSE);
3759		spa_sync_props(props, tx);
3760	}
3761
3762	dmu_tx_commit(tx);
3763
3764	spa->spa_sync_on = B_TRUE;
3765	txg_sync_start(spa->spa_dsl_pool);
3766
3767	/*
3768	 * We explicitly wait for the first transaction to complete so that our
3769	 * bean counters are appropriately updated.
3770	 */
3771	txg_wait_synced(spa->spa_dsl_pool, txg);
3772
3773	spa_config_sync(spa, B_FALSE, B_TRUE);
3774
3775	spa_history_log_version(spa, "create");
3776
3777	/*
3778	 * Don't count references from objsets that are already closed
3779	 * and are making their way through the eviction process.
3780	 */
3781	spa_evicting_os_wait(spa);
3782	spa->spa_minref = refcount_count(&spa->spa_refcount);
3783
3784	mutex_exit(&spa_namespace_lock);
3785
3786	return (0);
3787}
3788
3789#ifdef _KERNEL
3790#if defined(sun)
3791/*
3792 * Get the root pool information from the root disk, then import the root pool
3793 * during the system boot up time.
3794 */
3795extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3796
3797static nvlist_t *
3798spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3799{
3800	nvlist_t *config;
3801	nvlist_t *nvtop, *nvroot;
3802	uint64_t pgid;
3803
3804	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3805		return (NULL);
3806
3807	/*
3808	 * Add this top-level vdev to the child array.
3809	 */
3810	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3811	    &nvtop) == 0);
3812	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3813	    &pgid) == 0);
3814	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3815
3816	/*
3817	 * Put this pool's top-level vdevs into a root vdev.
3818	 */
3819	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3820	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3821	    VDEV_TYPE_ROOT) == 0);
3822	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3823	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3824	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3825	    &nvtop, 1) == 0);
3826
3827	/*
3828	 * Replace the existing vdev_tree with the new root vdev in
3829	 * this pool's configuration (remove the old, add the new).
3830	 */
3831	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3832	nvlist_free(nvroot);
3833	return (config);
3834}
3835
3836/*
3837 * Walk the vdev tree and see if we can find a device with "better"
3838 * configuration. A configuration is "better" if the label on that
3839 * device has a more recent txg.
3840 */
3841static void
3842spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3843{
3844	for (int c = 0; c < vd->vdev_children; c++)
3845		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3846
3847	if (vd->vdev_ops->vdev_op_leaf) {
3848		nvlist_t *label;
3849		uint64_t label_txg;
3850
3851		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3852		    &label) != 0)
3853			return;
3854
3855		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3856		    &label_txg) == 0);
3857
3858		/*
3859		 * Do we have a better boot device?
3860		 */
3861		if (label_txg > *txg) {
3862			*txg = label_txg;
3863			*avd = vd;
3864		}
3865		nvlist_free(label);
3866	}
3867}
3868
3869/*
3870 * Import a root pool.
3871 *
3872 * For x86. devpath_list will consist of devid and/or physpath name of
3873 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3874 * The GRUB "findroot" command will return the vdev we should boot.
3875 *
3876 * For Sparc, devpath_list consists the physpath name of the booting device
3877 * no matter the rootpool is a single device pool or a mirrored pool.
3878 * e.g.
3879 *	"/pci@1f,0/ide@d/disk@0,0:a"
3880 */
3881int
3882spa_import_rootpool(char *devpath, char *devid)
3883{
3884	spa_t *spa;
3885	vdev_t *rvd, *bvd, *avd = NULL;
3886	nvlist_t *config, *nvtop;
3887	uint64_t guid, txg;
3888	char *pname;
3889	int error;
3890
3891	/*
3892	 * Read the label from the boot device and generate a configuration.
3893	 */
3894	config = spa_generate_rootconf(devpath, devid, &guid);
3895#if defined(_OBP) && defined(_KERNEL)
3896	if (config == NULL) {
3897		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3898			/* iscsi boot */
3899			get_iscsi_bootpath_phy(devpath);
3900			config = spa_generate_rootconf(devpath, devid, &guid);
3901		}
3902	}
3903#endif
3904	if (config == NULL) {
3905		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3906		    devpath);
3907		return (SET_ERROR(EIO));
3908	}
3909
3910	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3911	    &pname) == 0);
3912	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3913
3914	mutex_enter(&spa_namespace_lock);
3915	if ((spa = spa_lookup(pname)) != NULL) {
3916		/*
3917		 * Remove the existing root pool from the namespace so that we
3918		 * can replace it with the correct config we just read in.
3919		 */
3920		spa_remove(spa);
3921	}
3922
3923	spa = spa_add(pname, config, NULL);
3924	spa->spa_is_root = B_TRUE;
3925	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3926
3927	/*
3928	 * Build up a vdev tree based on the boot device's label config.
3929	 */
3930	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3931	    &nvtop) == 0);
3932	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3933	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3934	    VDEV_ALLOC_ROOTPOOL);
3935	spa_config_exit(spa, SCL_ALL, FTAG);
3936	if (error) {
3937		mutex_exit(&spa_namespace_lock);
3938		nvlist_free(config);
3939		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3940		    pname);
3941		return (error);
3942	}
3943
3944	/*
3945	 * Get the boot vdev.
3946	 */
3947	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3948		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3949		    (u_longlong_t)guid);
3950		error = SET_ERROR(ENOENT);
3951		goto out;
3952	}
3953
3954	/*
3955	 * Determine if there is a better boot device.
3956	 */
3957	avd = bvd;
3958	spa_alt_rootvdev(rvd, &avd, &txg);
3959	if (avd != bvd) {
3960		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3961		    "try booting from '%s'", avd->vdev_path);
3962		error = SET_ERROR(EINVAL);
3963		goto out;
3964	}
3965
3966	/*
3967	 * If the boot device is part of a spare vdev then ensure that
3968	 * we're booting off the active spare.
3969	 */
3970	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3971	    !bvd->vdev_isspare) {
3972		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3973		    "try booting from '%s'",
3974		    bvd->vdev_parent->
3975		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3976		error = SET_ERROR(EINVAL);
3977		goto out;
3978	}
3979
3980	error = 0;
3981out:
3982	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3983	vdev_free(rvd);
3984	spa_config_exit(spa, SCL_ALL, FTAG);
3985	mutex_exit(&spa_namespace_lock);
3986
3987	nvlist_free(config);
3988	return (error);
3989}
3990
3991#else
3992
3993extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3994    uint64_t *count);
3995
3996static nvlist_t *
3997spa_generate_rootconf(const char *name)
3998{
3999	nvlist_t **configs, **tops;
4000	nvlist_t *config;
4001	nvlist_t *best_cfg, *nvtop, *nvroot;
4002	uint64_t *holes;
4003	uint64_t best_txg;
4004	uint64_t nchildren;
4005	uint64_t pgid;
4006	uint64_t count;
4007	uint64_t i;
4008	uint_t   nholes;
4009
4010	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4011		return (NULL);
4012
4013	ASSERT3U(count, !=, 0);
4014	best_txg = 0;
4015	for (i = 0; i < count; i++) {
4016		uint64_t txg;
4017
4018		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4019		    &txg) == 0);
4020		if (txg > best_txg) {
4021			best_txg = txg;
4022			best_cfg = configs[i];
4023		}
4024	}
4025
4026	/*
4027	 * Multi-vdev root pool configuration discovery is not supported yet.
4028	 */
4029	nchildren = 1;
4030	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4031	holes = NULL;
4032	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4033	    &holes, &nholes);
4034
4035	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4036	for (i = 0; i < nchildren; i++) {
4037		if (i >= count)
4038			break;
4039		if (configs[i] == NULL)
4040			continue;
4041		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4042		    &nvtop) == 0);
4043		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4044	}
4045	for (i = 0; holes != NULL && i < nholes; i++) {
4046		if (i >= nchildren)
4047			continue;
4048		if (tops[holes[i]] != NULL)
4049			continue;
4050		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4051		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4052		    VDEV_TYPE_HOLE) == 0);
4053		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4054		    holes[i]) == 0);
4055		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4056		    0) == 0);
4057	}
4058	for (i = 0; i < nchildren; i++) {
4059		if (tops[i] != NULL)
4060			continue;
4061		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4062		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4063		    VDEV_TYPE_MISSING) == 0);
4064		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4065		    i) == 0);
4066		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4067		    0) == 0);
4068	}
4069
4070	/*
4071	 * Create pool config based on the best vdev config.
4072	 */
4073	nvlist_dup(best_cfg, &config, KM_SLEEP);
4074
4075	/*
4076	 * Put this pool's top-level vdevs into a root vdev.
4077	 */
4078	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4079	    &pgid) == 0);
4080	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4081	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4082	    VDEV_TYPE_ROOT) == 0);
4083	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4084	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4085	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4086	    tops, nchildren) == 0);
4087
4088	/*
4089	 * Replace the existing vdev_tree with the new root vdev in
4090	 * this pool's configuration (remove the old, add the new).
4091	 */
4092	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4093
4094	/*
4095	 * Drop vdev config elements that should not be present at pool level.
4096	 */
4097	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4098	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4099
4100	for (i = 0; i < count; i++)
4101		nvlist_free(configs[i]);
4102	kmem_free(configs, count * sizeof(void *));
4103	for (i = 0; i < nchildren; i++)
4104		nvlist_free(tops[i]);
4105	kmem_free(tops, nchildren * sizeof(void *));
4106	nvlist_free(nvroot);
4107	return (config);
4108}
4109
4110int
4111spa_import_rootpool(const char *name)
4112{
4113	spa_t *spa;
4114	vdev_t *rvd, *bvd, *avd = NULL;
4115	nvlist_t *config, *nvtop;
4116	uint64_t txg;
4117	char *pname;
4118	int error;
4119
4120	/*
4121	 * Read the label from the boot device and generate a configuration.
4122	 */
4123	config = spa_generate_rootconf(name);
4124
4125	mutex_enter(&spa_namespace_lock);
4126	if (config != NULL) {
4127		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4128		    &pname) == 0 && strcmp(name, pname) == 0);
4129		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4130		    == 0);
4131
4132		if ((spa = spa_lookup(pname)) != NULL) {
4133			/*
4134			 * Remove the existing root pool from the namespace so
4135			 * that we can replace it with the correct config
4136			 * we just read in.
4137			 */
4138			spa_remove(spa);
4139		}
4140		spa = spa_add(pname, config, NULL);
4141
4142		/*
4143		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4144		 * via spa_version().
4145		 */
4146		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4147		    &spa->spa_ubsync.ub_version) != 0)
4148			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4149	} else if ((spa = spa_lookup(name)) == NULL) {
4150		mutex_exit(&spa_namespace_lock);
4151		nvlist_free(config);
4152		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4153		    name);
4154		return (EIO);
4155	} else {
4156		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4157	}
4158	spa->spa_is_root = B_TRUE;
4159	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4160
4161	/*
4162	 * Build up a vdev tree based on the boot device's label config.
4163	 */
4164	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4165	    &nvtop) == 0);
4166	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4167	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4168	    VDEV_ALLOC_ROOTPOOL);
4169	spa_config_exit(spa, SCL_ALL, FTAG);
4170	if (error) {
4171		mutex_exit(&spa_namespace_lock);
4172		nvlist_free(config);
4173		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4174		    pname);
4175		return (error);
4176	}
4177
4178	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4179	vdev_free(rvd);
4180	spa_config_exit(spa, SCL_ALL, FTAG);
4181	mutex_exit(&spa_namespace_lock);
4182
4183	nvlist_free(config);
4184	return (0);
4185}
4186
4187#endif	/* sun */
4188#endif
4189
4190/*
4191 * Import a non-root pool into the system.
4192 */
4193int
4194spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4195{
4196	spa_t *spa;
4197	char *altroot = NULL;
4198	spa_load_state_t state = SPA_LOAD_IMPORT;
4199	zpool_rewind_policy_t policy;
4200	uint64_t mode = spa_mode_global;
4201	uint64_t readonly = B_FALSE;
4202	int error;
4203	nvlist_t *nvroot;
4204	nvlist_t **spares, **l2cache;
4205	uint_t nspares, nl2cache;
4206
4207	/*
4208	 * If a pool with this name exists, return failure.
4209	 */
4210	mutex_enter(&spa_namespace_lock);
4211	if (spa_lookup(pool) != NULL) {
4212		mutex_exit(&spa_namespace_lock);
4213		return (SET_ERROR(EEXIST));
4214	}
4215
4216	/*
4217	 * Create and initialize the spa structure.
4218	 */
4219	(void) nvlist_lookup_string(props,
4220	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4221	(void) nvlist_lookup_uint64(props,
4222	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4223	if (readonly)
4224		mode = FREAD;
4225	spa = spa_add(pool, config, altroot);
4226	spa->spa_import_flags = flags;
4227
4228	/*
4229	 * Verbatim import - Take a pool and insert it into the namespace
4230	 * as if it had been loaded at boot.
4231	 */
4232	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4233		if (props != NULL)
4234			spa_configfile_set(spa, props, B_FALSE);
4235
4236		spa_config_sync(spa, B_FALSE, B_TRUE);
4237
4238		mutex_exit(&spa_namespace_lock);
4239		return (0);
4240	}
4241
4242	spa_activate(spa, mode);
4243
4244	/*
4245	 * Don't start async tasks until we know everything is healthy.
4246	 */
4247	spa_async_suspend(spa);
4248
4249	zpool_get_rewind_policy(config, &policy);
4250	if (policy.zrp_request & ZPOOL_DO_REWIND)
4251		state = SPA_LOAD_RECOVER;
4252
4253	/*
4254	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4255	 * because the user-supplied config is actually the one to trust when
4256	 * doing an import.
4257	 */
4258	if (state != SPA_LOAD_RECOVER)
4259		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4260
4261	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4262	    policy.zrp_request);
4263
4264	/*
4265	 * Propagate anything learned while loading the pool and pass it
4266	 * back to caller (i.e. rewind info, missing devices, etc).
4267	 */
4268	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4269	    spa->spa_load_info) == 0);
4270
4271	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4272	/*
4273	 * Toss any existing sparelist, as it doesn't have any validity
4274	 * anymore, and conflicts with spa_has_spare().
4275	 */
4276	if (spa->spa_spares.sav_config) {
4277		nvlist_free(spa->spa_spares.sav_config);
4278		spa->spa_spares.sav_config = NULL;
4279		spa_load_spares(spa);
4280	}
4281	if (spa->spa_l2cache.sav_config) {
4282		nvlist_free(spa->spa_l2cache.sav_config);
4283		spa->spa_l2cache.sav_config = NULL;
4284		spa_load_l2cache(spa);
4285	}
4286
4287	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4288	    &nvroot) == 0);
4289	if (error == 0)
4290		error = spa_validate_aux(spa, nvroot, -1ULL,
4291		    VDEV_ALLOC_SPARE);
4292	if (error == 0)
4293		error = spa_validate_aux(spa, nvroot, -1ULL,
4294		    VDEV_ALLOC_L2CACHE);
4295	spa_config_exit(spa, SCL_ALL, FTAG);
4296
4297	if (props != NULL)
4298		spa_configfile_set(spa, props, B_FALSE);
4299
4300	if (error != 0 || (props && spa_writeable(spa) &&
4301	    (error = spa_prop_set(spa, props)))) {
4302		spa_unload(spa);
4303		spa_deactivate(spa);
4304		spa_remove(spa);
4305		mutex_exit(&spa_namespace_lock);
4306		return (error);
4307	}
4308
4309	spa_async_resume(spa);
4310
4311	/*
4312	 * Override any spares and level 2 cache devices as specified by
4313	 * the user, as these may have correct device names/devids, etc.
4314	 */
4315	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4316	    &spares, &nspares) == 0) {
4317		if (spa->spa_spares.sav_config)
4318			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4319			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4320		else
4321			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4322			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4323		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4324		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4325		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4326		spa_load_spares(spa);
4327		spa_config_exit(spa, SCL_ALL, FTAG);
4328		spa->spa_spares.sav_sync = B_TRUE;
4329	}
4330	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4331	    &l2cache, &nl2cache) == 0) {
4332		if (spa->spa_l2cache.sav_config)
4333			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4334			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4335		else
4336			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4337			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4338		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4339		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4340		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4341		spa_load_l2cache(spa);
4342		spa_config_exit(spa, SCL_ALL, FTAG);
4343		spa->spa_l2cache.sav_sync = B_TRUE;
4344	}
4345
4346	/*
4347	 * Check for any removed devices.
4348	 */
4349	if (spa->spa_autoreplace) {
4350		spa_aux_check_removed(&spa->spa_spares);
4351		spa_aux_check_removed(&spa->spa_l2cache);
4352	}
4353
4354	if (spa_writeable(spa)) {
4355		/*
4356		 * Update the config cache to include the newly-imported pool.
4357		 */
4358		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4359	}
4360
4361	/*
4362	 * It's possible that the pool was expanded while it was exported.
4363	 * We kick off an async task to handle this for us.
4364	 */
4365	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4366
4367	mutex_exit(&spa_namespace_lock);
4368	spa_history_log_version(spa, "import");
4369
4370#ifdef __FreeBSD__
4371#ifdef _KERNEL
4372	zvol_create_minors(pool);
4373#endif
4374#endif
4375	return (0);
4376}
4377
4378nvlist_t *
4379spa_tryimport(nvlist_t *tryconfig)
4380{
4381	nvlist_t *config = NULL;
4382	char *poolname;
4383	spa_t *spa;
4384	uint64_t state;
4385	int error;
4386
4387	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4388		return (NULL);
4389
4390	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4391		return (NULL);
4392
4393	/*
4394	 * Create and initialize the spa structure.
4395	 */
4396	mutex_enter(&spa_namespace_lock);
4397	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4398	spa_activate(spa, FREAD);
4399
4400	/*
4401	 * Pass off the heavy lifting to spa_load().
4402	 * Pass TRUE for mosconfig because the user-supplied config
4403	 * is actually the one to trust when doing an import.
4404	 */
4405	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4406
4407	/*
4408	 * If 'tryconfig' was at least parsable, return the current config.
4409	 */
4410	if (spa->spa_root_vdev != NULL) {
4411		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4412		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4413		    poolname) == 0);
4414		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4415		    state) == 0);
4416		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4417		    spa->spa_uberblock.ub_timestamp) == 0);
4418		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4419		    spa->spa_load_info) == 0);
4420
4421		/*
4422		 * If the bootfs property exists on this pool then we
4423		 * copy it out so that external consumers can tell which
4424		 * pools are bootable.
4425		 */
4426		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4427			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4428
4429			/*
4430			 * We have to play games with the name since the
4431			 * pool was opened as TRYIMPORT_NAME.
4432			 */
4433			if (dsl_dsobj_to_dsname(spa_name(spa),
4434			    spa->spa_bootfs, tmpname) == 0) {
4435				char *cp;
4436				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4437
4438				cp = strchr(tmpname, '/');
4439				if (cp == NULL) {
4440					(void) strlcpy(dsname, tmpname,
4441					    MAXPATHLEN);
4442				} else {
4443					(void) snprintf(dsname, MAXPATHLEN,
4444					    "%s/%s", poolname, ++cp);
4445				}
4446				VERIFY(nvlist_add_string(config,
4447				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4448				kmem_free(dsname, MAXPATHLEN);
4449			}
4450			kmem_free(tmpname, MAXPATHLEN);
4451		}
4452
4453		/*
4454		 * Add the list of hot spares and level 2 cache devices.
4455		 */
4456		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4457		spa_add_spares(spa, config);
4458		spa_add_l2cache(spa, config);
4459		spa_config_exit(spa, SCL_CONFIG, FTAG);
4460	}
4461
4462	spa_unload(spa);
4463	spa_deactivate(spa);
4464	spa_remove(spa);
4465	mutex_exit(&spa_namespace_lock);
4466
4467	return (config);
4468}
4469
4470/*
4471 * Pool export/destroy
4472 *
4473 * The act of destroying or exporting a pool is very simple.  We make sure there
4474 * is no more pending I/O and any references to the pool are gone.  Then, we
4475 * update the pool state and sync all the labels to disk, removing the
4476 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4477 * we don't sync the labels or remove the configuration cache.
4478 */
4479static int
4480spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4481    boolean_t force, boolean_t hardforce)
4482{
4483	spa_t *spa;
4484
4485	if (oldconfig)
4486		*oldconfig = NULL;
4487
4488	if (!(spa_mode_global & FWRITE))
4489		return (SET_ERROR(EROFS));
4490
4491	mutex_enter(&spa_namespace_lock);
4492	if ((spa = spa_lookup(pool)) == NULL) {
4493		mutex_exit(&spa_namespace_lock);
4494		return (SET_ERROR(ENOENT));
4495	}
4496
4497	/*
4498	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4499	 * reacquire the namespace lock, and see if we can export.
4500	 */
4501	spa_open_ref(spa, FTAG);
4502	mutex_exit(&spa_namespace_lock);
4503	spa_async_suspend(spa);
4504	mutex_enter(&spa_namespace_lock);
4505	spa_close(spa, FTAG);
4506
4507	/*
4508	 * The pool will be in core if it's openable,
4509	 * in which case we can modify its state.
4510	 */
4511	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4512		/*
4513		 * Objsets may be open only because they're dirty, so we
4514		 * have to force it to sync before checking spa_refcnt.
4515		 */
4516		txg_wait_synced(spa->spa_dsl_pool, 0);
4517		spa_evicting_os_wait(spa);
4518
4519		/*
4520		 * A pool cannot be exported or destroyed if there are active
4521		 * references.  If we are resetting a pool, allow references by
4522		 * fault injection handlers.
4523		 */
4524		if (!spa_refcount_zero(spa) ||
4525		    (spa->spa_inject_ref != 0 &&
4526		    new_state != POOL_STATE_UNINITIALIZED)) {
4527			spa_async_resume(spa);
4528			mutex_exit(&spa_namespace_lock);
4529			return (SET_ERROR(EBUSY));
4530		}
4531
4532		/*
4533		 * A pool cannot be exported if it has an active shared spare.
4534		 * This is to prevent other pools stealing the active spare
4535		 * from an exported pool. At user's own will, such pool can
4536		 * be forcedly exported.
4537		 */
4538		if (!force && new_state == POOL_STATE_EXPORTED &&
4539		    spa_has_active_shared_spare(spa)) {
4540			spa_async_resume(spa);
4541			mutex_exit(&spa_namespace_lock);
4542			return (SET_ERROR(EXDEV));
4543		}
4544
4545		/*
4546		 * We want this to be reflected on every label,
4547		 * so mark them all dirty.  spa_unload() will do the
4548		 * final sync that pushes these changes out.
4549		 */
4550		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4551			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4552			spa->spa_state = new_state;
4553			spa->spa_final_txg = spa_last_synced_txg(spa) +
4554			    TXG_DEFER_SIZE + 1;
4555			vdev_config_dirty(spa->spa_root_vdev);
4556			spa_config_exit(spa, SCL_ALL, FTAG);
4557		}
4558	}
4559
4560	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4561
4562	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4563		spa_unload(spa);
4564		spa_deactivate(spa);
4565	}
4566
4567	if (oldconfig && spa->spa_config)
4568		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4569
4570	if (new_state != POOL_STATE_UNINITIALIZED) {
4571		if (!hardforce)
4572			spa_config_sync(spa, B_TRUE, B_TRUE);
4573		spa_remove(spa);
4574	}
4575	mutex_exit(&spa_namespace_lock);
4576
4577	return (0);
4578}
4579
4580/*
4581 * Destroy a storage pool.
4582 */
4583int
4584spa_destroy(char *pool)
4585{
4586	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4587	    B_FALSE, B_FALSE));
4588}
4589
4590/*
4591 * Export a storage pool.
4592 */
4593int
4594spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4595    boolean_t hardforce)
4596{
4597	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4598	    force, hardforce));
4599}
4600
4601/*
4602 * Similar to spa_export(), this unloads the spa_t without actually removing it
4603 * from the namespace in any way.
4604 */
4605int
4606spa_reset(char *pool)
4607{
4608	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4609	    B_FALSE, B_FALSE));
4610}
4611
4612/*
4613 * ==========================================================================
4614 * Device manipulation
4615 * ==========================================================================
4616 */
4617
4618/*
4619 * Add a device to a storage pool.
4620 */
4621int
4622spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4623{
4624	uint64_t txg, id;
4625	int error;
4626	vdev_t *rvd = spa->spa_root_vdev;
4627	vdev_t *vd, *tvd;
4628	nvlist_t **spares, **l2cache;
4629	uint_t nspares, nl2cache;
4630
4631	ASSERT(spa_writeable(spa));
4632
4633	txg = spa_vdev_enter(spa);
4634
4635	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4636	    VDEV_ALLOC_ADD)) != 0)
4637		return (spa_vdev_exit(spa, NULL, txg, error));
4638
4639	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4640
4641	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4642	    &nspares) != 0)
4643		nspares = 0;
4644
4645	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4646	    &nl2cache) != 0)
4647		nl2cache = 0;
4648
4649	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4650		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4651
4652	if (vd->vdev_children != 0 &&
4653	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4654		return (spa_vdev_exit(spa, vd, txg, error));
4655
4656	/*
4657	 * We must validate the spares and l2cache devices after checking the
4658	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4659	 */
4660	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4661		return (spa_vdev_exit(spa, vd, txg, error));
4662
4663	/*
4664	 * Transfer each new top-level vdev from vd to rvd.
4665	 */
4666	for (int c = 0; c < vd->vdev_children; c++) {
4667
4668		/*
4669		 * Set the vdev id to the first hole, if one exists.
4670		 */
4671		for (id = 0; id < rvd->vdev_children; id++) {
4672			if (rvd->vdev_child[id]->vdev_ishole) {
4673				vdev_free(rvd->vdev_child[id]);
4674				break;
4675			}
4676		}
4677		tvd = vd->vdev_child[c];
4678		vdev_remove_child(vd, tvd);
4679		tvd->vdev_id = id;
4680		vdev_add_child(rvd, tvd);
4681		vdev_config_dirty(tvd);
4682	}
4683
4684	if (nspares != 0) {
4685		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4686		    ZPOOL_CONFIG_SPARES);
4687		spa_load_spares(spa);
4688		spa->spa_spares.sav_sync = B_TRUE;
4689	}
4690
4691	if (nl2cache != 0) {
4692		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4693		    ZPOOL_CONFIG_L2CACHE);
4694		spa_load_l2cache(spa);
4695		spa->spa_l2cache.sav_sync = B_TRUE;
4696	}
4697
4698	/*
4699	 * We have to be careful when adding new vdevs to an existing pool.
4700	 * If other threads start allocating from these vdevs before we
4701	 * sync the config cache, and we lose power, then upon reboot we may
4702	 * fail to open the pool because there are DVAs that the config cache
4703	 * can't translate.  Therefore, we first add the vdevs without
4704	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4705	 * and then let spa_config_update() initialize the new metaslabs.
4706	 *
4707	 * spa_load() checks for added-but-not-initialized vdevs, so that
4708	 * if we lose power at any point in this sequence, the remaining
4709	 * steps will be completed the next time we load the pool.
4710	 */
4711	(void) spa_vdev_exit(spa, vd, txg, 0);
4712
4713	mutex_enter(&spa_namespace_lock);
4714	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4715	mutex_exit(&spa_namespace_lock);
4716
4717	return (0);
4718}
4719
4720/*
4721 * Attach a device to a mirror.  The arguments are the path to any device
4722 * in the mirror, and the nvroot for the new device.  If the path specifies
4723 * a device that is not mirrored, we automatically insert the mirror vdev.
4724 *
4725 * If 'replacing' is specified, the new device is intended to replace the
4726 * existing device; in this case the two devices are made into their own
4727 * mirror using the 'replacing' vdev, which is functionally identical to
4728 * the mirror vdev (it actually reuses all the same ops) but has a few
4729 * extra rules: you can't attach to it after it's been created, and upon
4730 * completion of resilvering, the first disk (the one being replaced)
4731 * is automatically detached.
4732 */
4733int
4734spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4735{
4736	uint64_t txg, dtl_max_txg;
4737	vdev_t *rvd = spa->spa_root_vdev;
4738	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4739	vdev_ops_t *pvops;
4740	char *oldvdpath, *newvdpath;
4741	int newvd_isspare;
4742	int error;
4743
4744	ASSERT(spa_writeable(spa));
4745
4746	txg = spa_vdev_enter(spa);
4747
4748	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4749
4750	if (oldvd == NULL)
4751		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4752
4753	if (!oldvd->vdev_ops->vdev_op_leaf)
4754		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4755
4756	pvd = oldvd->vdev_parent;
4757
4758	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4759	    VDEV_ALLOC_ATTACH)) != 0)
4760		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4761
4762	if (newrootvd->vdev_children != 1)
4763		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4764
4765	newvd = newrootvd->vdev_child[0];
4766
4767	if (!newvd->vdev_ops->vdev_op_leaf)
4768		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4769
4770	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4771		return (spa_vdev_exit(spa, newrootvd, txg, error));
4772
4773	/*
4774	 * Spares can't replace logs
4775	 */
4776	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4777		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4778
4779	if (!replacing) {
4780		/*
4781		 * For attach, the only allowable parent is a mirror or the root
4782		 * vdev.
4783		 */
4784		if (pvd->vdev_ops != &vdev_mirror_ops &&
4785		    pvd->vdev_ops != &vdev_root_ops)
4786			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4787
4788		pvops = &vdev_mirror_ops;
4789	} else {
4790		/*
4791		 * Active hot spares can only be replaced by inactive hot
4792		 * spares.
4793		 */
4794		if (pvd->vdev_ops == &vdev_spare_ops &&
4795		    oldvd->vdev_isspare &&
4796		    !spa_has_spare(spa, newvd->vdev_guid))
4797			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4798
4799		/*
4800		 * If the source is a hot spare, and the parent isn't already a
4801		 * spare, then we want to create a new hot spare.  Otherwise, we
4802		 * want to create a replacing vdev.  The user is not allowed to
4803		 * attach to a spared vdev child unless the 'isspare' state is
4804		 * the same (spare replaces spare, non-spare replaces
4805		 * non-spare).
4806		 */
4807		if (pvd->vdev_ops == &vdev_replacing_ops &&
4808		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4809			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4810		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4811		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4812			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4813		}
4814
4815		if (newvd->vdev_isspare)
4816			pvops = &vdev_spare_ops;
4817		else
4818			pvops = &vdev_replacing_ops;
4819	}
4820
4821	/*
4822	 * Make sure the new device is big enough.
4823	 */
4824	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4825		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4826
4827	/*
4828	 * The new device cannot have a higher alignment requirement
4829	 * than the top-level vdev.
4830	 */
4831	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4832		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4833
4834	/*
4835	 * If this is an in-place replacement, update oldvd's path and devid
4836	 * to make it distinguishable from newvd, and unopenable from now on.
4837	 */
4838	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4839		spa_strfree(oldvd->vdev_path);
4840		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4841		    KM_SLEEP);
4842		(void) sprintf(oldvd->vdev_path, "%s/%s",
4843		    newvd->vdev_path, "old");
4844		if (oldvd->vdev_devid != NULL) {
4845			spa_strfree(oldvd->vdev_devid);
4846			oldvd->vdev_devid = NULL;
4847		}
4848	}
4849
4850	/* mark the device being resilvered */
4851	newvd->vdev_resilver_txg = txg;
4852
4853	/*
4854	 * If the parent is not a mirror, or if we're replacing, insert the new
4855	 * mirror/replacing/spare vdev above oldvd.
4856	 */
4857	if (pvd->vdev_ops != pvops)
4858		pvd = vdev_add_parent(oldvd, pvops);
4859
4860	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4861	ASSERT(pvd->vdev_ops == pvops);
4862	ASSERT(oldvd->vdev_parent == pvd);
4863
4864	/*
4865	 * Extract the new device from its root and add it to pvd.
4866	 */
4867	vdev_remove_child(newrootvd, newvd);
4868	newvd->vdev_id = pvd->vdev_children;
4869	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4870	vdev_add_child(pvd, newvd);
4871
4872	tvd = newvd->vdev_top;
4873	ASSERT(pvd->vdev_top == tvd);
4874	ASSERT(tvd->vdev_parent == rvd);
4875
4876	vdev_config_dirty(tvd);
4877
4878	/*
4879	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4880	 * for any dmu_sync-ed blocks.  It will propagate upward when
4881	 * spa_vdev_exit() calls vdev_dtl_reassess().
4882	 */
4883	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4884
4885	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4886	    dtl_max_txg - TXG_INITIAL);
4887
4888	if (newvd->vdev_isspare) {
4889		spa_spare_activate(newvd);
4890		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4891	}
4892
4893	oldvdpath = spa_strdup(oldvd->vdev_path);
4894	newvdpath = spa_strdup(newvd->vdev_path);
4895	newvd_isspare = newvd->vdev_isspare;
4896
4897	/*
4898	 * Mark newvd's DTL dirty in this txg.
4899	 */
4900	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4901
4902	/*
4903	 * Schedule the resilver to restart in the future. We do this to
4904	 * ensure that dmu_sync-ed blocks have been stitched into the
4905	 * respective datasets.
4906	 */
4907	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4908
4909	/*
4910	 * Commit the config
4911	 */
4912	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4913
4914	spa_history_log_internal(spa, "vdev attach", NULL,
4915	    "%s vdev=%s %s vdev=%s",
4916	    replacing && newvd_isspare ? "spare in" :
4917	    replacing ? "replace" : "attach", newvdpath,
4918	    replacing ? "for" : "to", oldvdpath);
4919
4920	spa_strfree(oldvdpath);
4921	spa_strfree(newvdpath);
4922
4923	if (spa->spa_bootfs)
4924		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4925
4926	return (0);
4927}
4928
4929/*
4930 * Detach a device from a mirror or replacing vdev.
4931 *
4932 * If 'replace_done' is specified, only detach if the parent
4933 * is a replacing vdev.
4934 */
4935int
4936spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4937{
4938	uint64_t txg;
4939	int error;
4940	vdev_t *rvd = spa->spa_root_vdev;
4941	vdev_t *vd, *pvd, *cvd, *tvd;
4942	boolean_t unspare = B_FALSE;
4943	uint64_t unspare_guid = 0;
4944	char *vdpath;
4945
4946	ASSERT(spa_writeable(spa));
4947
4948	txg = spa_vdev_enter(spa);
4949
4950	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4951
4952	if (vd == NULL)
4953		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4954
4955	if (!vd->vdev_ops->vdev_op_leaf)
4956		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4957
4958	pvd = vd->vdev_parent;
4959
4960	/*
4961	 * If the parent/child relationship is not as expected, don't do it.
4962	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4963	 * vdev that's replacing B with C.  The user's intent in replacing
4964	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4965	 * the replace by detaching C, the expected behavior is to end up
4966	 * M(A,B).  But suppose that right after deciding to detach C,
4967	 * the replacement of B completes.  We would have M(A,C), and then
4968	 * ask to detach C, which would leave us with just A -- not what
4969	 * the user wanted.  To prevent this, we make sure that the
4970	 * parent/child relationship hasn't changed -- in this example,
4971	 * that C's parent is still the replacing vdev R.
4972	 */
4973	if (pvd->vdev_guid != pguid && pguid != 0)
4974		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4975
4976	/*
4977	 * Only 'replacing' or 'spare' vdevs can be replaced.
4978	 */
4979	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4980	    pvd->vdev_ops != &vdev_spare_ops)
4981		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4982
4983	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4984	    spa_version(spa) >= SPA_VERSION_SPARES);
4985
4986	/*
4987	 * Only mirror, replacing, and spare vdevs support detach.
4988	 */
4989	if (pvd->vdev_ops != &vdev_replacing_ops &&
4990	    pvd->vdev_ops != &vdev_mirror_ops &&
4991	    pvd->vdev_ops != &vdev_spare_ops)
4992		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4993
4994	/*
4995	 * If this device has the only valid copy of some data,
4996	 * we cannot safely detach it.
4997	 */
4998	if (vdev_dtl_required(vd))
4999		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5000
5001	ASSERT(pvd->vdev_children >= 2);
5002
5003	/*
5004	 * If we are detaching the second disk from a replacing vdev, then
5005	 * check to see if we changed the original vdev's path to have "/old"
5006	 * at the end in spa_vdev_attach().  If so, undo that change now.
5007	 */
5008	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5009	    vd->vdev_path != NULL) {
5010		size_t len = strlen(vd->vdev_path);
5011
5012		for (int c = 0; c < pvd->vdev_children; c++) {
5013			cvd = pvd->vdev_child[c];
5014
5015			if (cvd == vd || cvd->vdev_path == NULL)
5016				continue;
5017
5018			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5019			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5020				spa_strfree(cvd->vdev_path);
5021				cvd->vdev_path = spa_strdup(vd->vdev_path);
5022				break;
5023			}
5024		}
5025	}
5026
5027	/*
5028	 * If we are detaching the original disk from a spare, then it implies
5029	 * that the spare should become a real disk, and be removed from the
5030	 * active spare list for the pool.
5031	 */
5032	if (pvd->vdev_ops == &vdev_spare_ops &&
5033	    vd->vdev_id == 0 &&
5034	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5035		unspare = B_TRUE;
5036
5037	/*
5038	 * Erase the disk labels so the disk can be used for other things.
5039	 * This must be done after all other error cases are handled,
5040	 * but before we disembowel vd (so we can still do I/O to it).
5041	 * But if we can't do it, don't treat the error as fatal --
5042	 * it may be that the unwritability of the disk is the reason
5043	 * it's being detached!
5044	 */
5045	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5046
5047	/*
5048	 * Remove vd from its parent and compact the parent's children.
5049	 */
5050	vdev_remove_child(pvd, vd);
5051	vdev_compact_children(pvd);
5052
5053	/*
5054	 * Remember one of the remaining children so we can get tvd below.
5055	 */
5056	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5057
5058	/*
5059	 * If we need to remove the remaining child from the list of hot spares,
5060	 * do it now, marking the vdev as no longer a spare in the process.
5061	 * We must do this before vdev_remove_parent(), because that can
5062	 * change the GUID if it creates a new toplevel GUID.  For a similar
5063	 * reason, we must remove the spare now, in the same txg as the detach;
5064	 * otherwise someone could attach a new sibling, change the GUID, and
5065	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5066	 */
5067	if (unspare) {
5068		ASSERT(cvd->vdev_isspare);
5069		spa_spare_remove(cvd);
5070		unspare_guid = cvd->vdev_guid;
5071		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5072		cvd->vdev_unspare = B_TRUE;
5073	}
5074
5075	/*
5076	 * If the parent mirror/replacing vdev only has one child,
5077	 * the parent is no longer needed.  Remove it from the tree.
5078	 */
5079	if (pvd->vdev_children == 1) {
5080		if (pvd->vdev_ops == &vdev_spare_ops)
5081			cvd->vdev_unspare = B_FALSE;
5082		vdev_remove_parent(cvd);
5083	}
5084
5085
5086	/*
5087	 * We don't set tvd until now because the parent we just removed
5088	 * may have been the previous top-level vdev.
5089	 */
5090	tvd = cvd->vdev_top;
5091	ASSERT(tvd->vdev_parent == rvd);
5092
5093	/*
5094	 * Reevaluate the parent vdev state.
5095	 */
5096	vdev_propagate_state(cvd);
5097
5098	/*
5099	 * If the 'autoexpand' property is set on the pool then automatically
5100	 * try to expand the size of the pool. For example if the device we
5101	 * just detached was smaller than the others, it may be possible to
5102	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5103	 * first so that we can obtain the updated sizes of the leaf vdevs.
5104	 */
5105	if (spa->spa_autoexpand) {
5106		vdev_reopen(tvd);
5107		vdev_expand(tvd, txg);
5108	}
5109
5110	vdev_config_dirty(tvd);
5111
5112	/*
5113	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5114	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5115	 * But first make sure we're not on any *other* txg's DTL list, to
5116	 * prevent vd from being accessed after it's freed.
5117	 */
5118	vdpath = spa_strdup(vd->vdev_path);
5119	for (int t = 0; t < TXG_SIZE; t++)
5120		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5121	vd->vdev_detached = B_TRUE;
5122	vdev_dirty(tvd, VDD_DTL, vd, txg);
5123
5124	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5125
5126	/* hang on to the spa before we release the lock */
5127	spa_open_ref(spa, FTAG);
5128
5129	error = spa_vdev_exit(spa, vd, txg, 0);
5130
5131	spa_history_log_internal(spa, "detach", NULL,
5132	    "vdev=%s", vdpath);
5133	spa_strfree(vdpath);
5134
5135	/*
5136	 * If this was the removal of the original device in a hot spare vdev,
5137	 * then we want to go through and remove the device from the hot spare
5138	 * list of every other pool.
5139	 */
5140	if (unspare) {
5141		spa_t *altspa = NULL;
5142
5143		mutex_enter(&spa_namespace_lock);
5144		while ((altspa = spa_next(altspa)) != NULL) {
5145			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5146			    altspa == spa)
5147				continue;
5148
5149			spa_open_ref(altspa, FTAG);
5150			mutex_exit(&spa_namespace_lock);
5151			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5152			mutex_enter(&spa_namespace_lock);
5153			spa_close(altspa, FTAG);
5154		}
5155		mutex_exit(&spa_namespace_lock);
5156
5157		/* search the rest of the vdevs for spares to remove */
5158		spa_vdev_resilver_done(spa);
5159	}
5160
5161	/* all done with the spa; OK to release */
5162	mutex_enter(&spa_namespace_lock);
5163	spa_close(spa, FTAG);
5164	mutex_exit(&spa_namespace_lock);
5165
5166	return (error);
5167}
5168
5169/*
5170 * Split a set of devices from their mirrors, and create a new pool from them.
5171 */
5172int
5173spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5174    nvlist_t *props, boolean_t exp)
5175{
5176	int error = 0;
5177	uint64_t txg, *glist;
5178	spa_t *newspa;
5179	uint_t c, children, lastlog;
5180	nvlist_t **child, *nvl, *tmp;
5181	dmu_tx_t *tx;
5182	char *altroot = NULL;
5183	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5184	boolean_t activate_slog;
5185
5186	ASSERT(spa_writeable(spa));
5187
5188	txg = spa_vdev_enter(spa);
5189
5190	/* clear the log and flush everything up to now */
5191	activate_slog = spa_passivate_log(spa);
5192	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5193	error = spa_offline_log(spa);
5194	txg = spa_vdev_config_enter(spa);
5195
5196	if (activate_slog)
5197		spa_activate_log(spa);
5198
5199	if (error != 0)
5200		return (spa_vdev_exit(spa, NULL, txg, error));
5201
5202	/* check new spa name before going any further */
5203	if (spa_lookup(newname) != NULL)
5204		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5205
5206	/*
5207	 * scan through all the children to ensure they're all mirrors
5208	 */
5209	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5210	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5211	    &children) != 0)
5212		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5213
5214	/* first, check to ensure we've got the right child count */
5215	rvd = spa->spa_root_vdev;
5216	lastlog = 0;
5217	for (c = 0; c < rvd->vdev_children; c++) {
5218		vdev_t *vd = rvd->vdev_child[c];
5219
5220		/* don't count the holes & logs as children */
5221		if (vd->vdev_islog || vd->vdev_ishole) {
5222			if (lastlog == 0)
5223				lastlog = c;
5224			continue;
5225		}
5226
5227		lastlog = 0;
5228	}
5229	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5230		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5231
5232	/* next, ensure no spare or cache devices are part of the split */
5233	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5234	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5235		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5236
5237	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5238	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5239
5240	/* then, loop over each vdev and validate it */
5241	for (c = 0; c < children; c++) {
5242		uint64_t is_hole = 0;
5243
5244		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5245		    &is_hole);
5246
5247		if (is_hole != 0) {
5248			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5249			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5250				continue;
5251			} else {
5252				error = SET_ERROR(EINVAL);
5253				break;
5254			}
5255		}
5256
5257		/* which disk is going to be split? */
5258		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5259		    &glist[c]) != 0) {
5260			error = SET_ERROR(EINVAL);
5261			break;
5262		}
5263
5264		/* look it up in the spa */
5265		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5266		if (vml[c] == NULL) {
5267			error = SET_ERROR(ENODEV);
5268			break;
5269		}
5270
5271		/* make sure there's nothing stopping the split */
5272		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5273		    vml[c]->vdev_islog ||
5274		    vml[c]->vdev_ishole ||
5275		    vml[c]->vdev_isspare ||
5276		    vml[c]->vdev_isl2cache ||
5277		    !vdev_writeable(vml[c]) ||
5278		    vml[c]->vdev_children != 0 ||
5279		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5280		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5281			error = SET_ERROR(EINVAL);
5282			break;
5283		}
5284
5285		if (vdev_dtl_required(vml[c])) {
5286			error = SET_ERROR(EBUSY);
5287			break;
5288		}
5289
5290		/* we need certain info from the top level */
5291		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5292		    vml[c]->vdev_top->vdev_ms_array) == 0);
5293		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5294		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5295		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5296		    vml[c]->vdev_top->vdev_asize) == 0);
5297		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5298		    vml[c]->vdev_top->vdev_ashift) == 0);
5299	}
5300
5301	if (error != 0) {
5302		kmem_free(vml, children * sizeof (vdev_t *));
5303		kmem_free(glist, children * sizeof (uint64_t));
5304		return (spa_vdev_exit(spa, NULL, txg, error));
5305	}
5306
5307	/* stop writers from using the disks */
5308	for (c = 0; c < children; c++) {
5309		if (vml[c] != NULL)
5310			vml[c]->vdev_offline = B_TRUE;
5311	}
5312	vdev_reopen(spa->spa_root_vdev);
5313
5314	/*
5315	 * Temporarily record the splitting vdevs in the spa config.  This
5316	 * will disappear once the config is regenerated.
5317	 */
5318	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5319	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5320	    glist, children) == 0);
5321	kmem_free(glist, children * sizeof (uint64_t));
5322
5323	mutex_enter(&spa->spa_props_lock);
5324	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5325	    nvl) == 0);
5326	mutex_exit(&spa->spa_props_lock);
5327	spa->spa_config_splitting = nvl;
5328	vdev_config_dirty(spa->spa_root_vdev);
5329
5330	/* configure and create the new pool */
5331	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5332	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5333	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5334	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5335	    spa_version(spa)) == 0);
5336	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5337	    spa->spa_config_txg) == 0);
5338	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5339	    spa_generate_guid(NULL)) == 0);
5340	(void) nvlist_lookup_string(props,
5341	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5342
5343	/* add the new pool to the namespace */
5344	newspa = spa_add(newname, config, altroot);
5345	newspa->spa_config_txg = spa->spa_config_txg;
5346	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5347
5348	/* release the spa config lock, retaining the namespace lock */
5349	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5350
5351	if (zio_injection_enabled)
5352		zio_handle_panic_injection(spa, FTAG, 1);
5353
5354	spa_activate(newspa, spa_mode_global);
5355	spa_async_suspend(newspa);
5356
5357#ifndef sun
5358	/* mark that we are creating new spa by splitting */
5359	newspa->spa_splitting_newspa = B_TRUE;
5360#endif
5361	/* create the new pool from the disks of the original pool */
5362	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5363#ifndef sun
5364	newspa->spa_splitting_newspa = B_FALSE;
5365#endif
5366	if (error)
5367		goto out;
5368
5369	/* if that worked, generate a real config for the new pool */
5370	if (newspa->spa_root_vdev != NULL) {
5371		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5372		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5373		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5374		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5375		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5376		    B_TRUE));
5377	}
5378
5379	/* set the props */
5380	if (props != NULL) {
5381		spa_configfile_set(newspa, props, B_FALSE);
5382		error = spa_prop_set(newspa, props);
5383		if (error)
5384			goto out;
5385	}
5386
5387	/* flush everything */
5388	txg = spa_vdev_config_enter(newspa);
5389	vdev_config_dirty(newspa->spa_root_vdev);
5390	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5391
5392	if (zio_injection_enabled)
5393		zio_handle_panic_injection(spa, FTAG, 2);
5394
5395	spa_async_resume(newspa);
5396
5397	/* finally, update the original pool's config */
5398	txg = spa_vdev_config_enter(spa);
5399	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5400	error = dmu_tx_assign(tx, TXG_WAIT);
5401	if (error != 0)
5402		dmu_tx_abort(tx);
5403	for (c = 0; c < children; c++) {
5404		if (vml[c] != NULL) {
5405			vdev_split(vml[c]);
5406			if (error == 0)
5407				spa_history_log_internal(spa, "detach", tx,
5408				    "vdev=%s", vml[c]->vdev_path);
5409			vdev_free(vml[c]);
5410		}
5411	}
5412	vdev_config_dirty(spa->spa_root_vdev);
5413	spa->spa_config_splitting = NULL;
5414	nvlist_free(nvl);
5415	if (error == 0)
5416		dmu_tx_commit(tx);
5417	(void) spa_vdev_exit(spa, NULL, txg, 0);
5418
5419	if (zio_injection_enabled)
5420		zio_handle_panic_injection(spa, FTAG, 3);
5421
5422	/* split is complete; log a history record */
5423	spa_history_log_internal(newspa, "split", NULL,
5424	    "from pool %s", spa_name(spa));
5425
5426	kmem_free(vml, children * sizeof (vdev_t *));
5427
5428	/* if we're not going to mount the filesystems in userland, export */
5429	if (exp)
5430		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5431		    B_FALSE, B_FALSE);
5432
5433	return (error);
5434
5435out:
5436	spa_unload(newspa);
5437	spa_deactivate(newspa);
5438	spa_remove(newspa);
5439
5440	txg = spa_vdev_config_enter(spa);
5441
5442	/* re-online all offlined disks */
5443	for (c = 0; c < children; c++) {
5444		if (vml[c] != NULL)
5445			vml[c]->vdev_offline = B_FALSE;
5446	}
5447	vdev_reopen(spa->spa_root_vdev);
5448
5449	nvlist_free(spa->spa_config_splitting);
5450	spa->spa_config_splitting = NULL;
5451	(void) spa_vdev_exit(spa, NULL, txg, error);
5452
5453	kmem_free(vml, children * sizeof (vdev_t *));
5454	return (error);
5455}
5456
5457static nvlist_t *
5458spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5459{
5460	for (int i = 0; i < count; i++) {
5461		uint64_t guid;
5462
5463		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5464		    &guid) == 0);
5465
5466		if (guid == target_guid)
5467			return (nvpp[i]);
5468	}
5469
5470	return (NULL);
5471}
5472
5473static void
5474spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5475	nvlist_t *dev_to_remove)
5476{
5477	nvlist_t **newdev = NULL;
5478
5479	if (count > 1)
5480		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5481
5482	for (int i = 0, j = 0; i < count; i++) {
5483		if (dev[i] == dev_to_remove)
5484			continue;
5485		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5486	}
5487
5488	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5489	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5490
5491	for (int i = 0; i < count - 1; i++)
5492		nvlist_free(newdev[i]);
5493
5494	if (count > 1)
5495		kmem_free(newdev, (count - 1) * sizeof (void *));
5496}
5497
5498/*
5499 * Evacuate the device.
5500 */
5501static int
5502spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5503{
5504	uint64_t txg;
5505	int error = 0;
5506
5507	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5508	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5509	ASSERT(vd == vd->vdev_top);
5510
5511	/*
5512	 * Evacuate the device.  We don't hold the config lock as writer
5513	 * since we need to do I/O but we do keep the
5514	 * spa_namespace_lock held.  Once this completes the device
5515	 * should no longer have any blocks allocated on it.
5516	 */
5517	if (vd->vdev_islog) {
5518		if (vd->vdev_stat.vs_alloc != 0)
5519			error = spa_offline_log(spa);
5520	} else {
5521		error = SET_ERROR(ENOTSUP);
5522	}
5523
5524	if (error)
5525		return (error);
5526
5527	/*
5528	 * The evacuation succeeded.  Remove any remaining MOS metadata
5529	 * associated with this vdev, and wait for these changes to sync.
5530	 */
5531	ASSERT0(vd->vdev_stat.vs_alloc);
5532	txg = spa_vdev_config_enter(spa);
5533	vd->vdev_removing = B_TRUE;
5534	vdev_dirty_leaves(vd, VDD_DTL, txg);
5535	vdev_config_dirty(vd);
5536	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5537
5538	return (0);
5539}
5540
5541/*
5542 * Complete the removal by cleaning up the namespace.
5543 */
5544static void
5545spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5546{
5547	vdev_t *rvd = spa->spa_root_vdev;
5548	uint64_t id = vd->vdev_id;
5549	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5550
5551	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5552	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5553	ASSERT(vd == vd->vdev_top);
5554
5555	/*
5556	 * Only remove any devices which are empty.
5557	 */
5558	if (vd->vdev_stat.vs_alloc != 0)
5559		return;
5560
5561	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5562
5563	if (list_link_active(&vd->vdev_state_dirty_node))
5564		vdev_state_clean(vd);
5565	if (list_link_active(&vd->vdev_config_dirty_node))
5566		vdev_config_clean(vd);
5567
5568	vdev_free(vd);
5569
5570	if (last_vdev) {
5571		vdev_compact_children(rvd);
5572	} else {
5573		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5574		vdev_add_child(rvd, vd);
5575	}
5576	vdev_config_dirty(rvd);
5577
5578	/*
5579	 * Reassess the health of our root vdev.
5580	 */
5581	vdev_reopen(rvd);
5582}
5583
5584/*
5585 * Remove a device from the pool -
5586 *
5587 * Removing a device from the vdev namespace requires several steps
5588 * and can take a significant amount of time.  As a result we use
5589 * the spa_vdev_config_[enter/exit] functions which allow us to
5590 * grab and release the spa_config_lock while still holding the namespace
5591 * lock.  During each step the configuration is synced out.
5592 *
5593 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5594 * devices.
5595 */
5596int
5597spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5598{
5599	vdev_t *vd;
5600	metaslab_group_t *mg;
5601	nvlist_t **spares, **l2cache, *nv;
5602	uint64_t txg = 0;
5603	uint_t nspares, nl2cache;
5604	int error = 0;
5605	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5606
5607	ASSERT(spa_writeable(spa));
5608
5609	if (!locked)
5610		txg = spa_vdev_enter(spa);
5611
5612	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5613
5614	if (spa->spa_spares.sav_vdevs != NULL &&
5615	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5616	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5617	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5618		/*
5619		 * Only remove the hot spare if it's not currently in use
5620		 * in this pool.
5621		 */
5622		if (vd == NULL || unspare) {
5623			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5624			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5625			spa_load_spares(spa);
5626			spa->spa_spares.sav_sync = B_TRUE;
5627		} else {
5628			error = SET_ERROR(EBUSY);
5629		}
5630	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5631	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5632	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5633	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5634		/*
5635		 * Cache devices can always be removed.
5636		 */
5637		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5638		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5639		spa_load_l2cache(spa);
5640		spa->spa_l2cache.sav_sync = B_TRUE;
5641	} else if (vd != NULL && vd->vdev_islog) {
5642		ASSERT(!locked);
5643		ASSERT(vd == vd->vdev_top);
5644
5645		mg = vd->vdev_mg;
5646
5647		/*
5648		 * Stop allocating from this vdev.
5649		 */
5650		metaslab_group_passivate(mg);
5651
5652		/*
5653		 * Wait for the youngest allocations and frees to sync,
5654		 * and then wait for the deferral of those frees to finish.
5655		 */
5656		spa_vdev_config_exit(spa, NULL,
5657		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5658
5659		/*
5660		 * Attempt to evacuate the vdev.
5661		 */
5662		error = spa_vdev_remove_evacuate(spa, vd);
5663
5664		txg = spa_vdev_config_enter(spa);
5665
5666		/*
5667		 * If we couldn't evacuate the vdev, unwind.
5668		 */
5669		if (error) {
5670			metaslab_group_activate(mg);
5671			return (spa_vdev_exit(spa, NULL, txg, error));
5672		}
5673
5674		/*
5675		 * Clean up the vdev namespace.
5676		 */
5677		spa_vdev_remove_from_namespace(spa, vd);
5678
5679	} else if (vd != NULL) {
5680		/*
5681		 * Normal vdevs cannot be removed (yet).
5682		 */
5683		error = SET_ERROR(ENOTSUP);
5684	} else {
5685		/*
5686		 * There is no vdev of any kind with the specified guid.
5687		 */
5688		error = SET_ERROR(ENOENT);
5689	}
5690
5691	if (!locked)
5692		return (spa_vdev_exit(spa, NULL, txg, error));
5693
5694	return (error);
5695}
5696
5697/*
5698 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5699 * currently spared, so we can detach it.
5700 */
5701static vdev_t *
5702spa_vdev_resilver_done_hunt(vdev_t *vd)
5703{
5704	vdev_t *newvd, *oldvd;
5705
5706	for (int c = 0; c < vd->vdev_children; c++) {
5707		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5708		if (oldvd != NULL)
5709			return (oldvd);
5710	}
5711
5712	/*
5713	 * Check for a completed replacement.  We always consider the first
5714	 * vdev in the list to be the oldest vdev, and the last one to be
5715	 * the newest (see spa_vdev_attach() for how that works).  In
5716	 * the case where the newest vdev is faulted, we will not automatically
5717	 * remove it after a resilver completes.  This is OK as it will require
5718	 * user intervention to determine which disk the admin wishes to keep.
5719	 */
5720	if (vd->vdev_ops == &vdev_replacing_ops) {
5721		ASSERT(vd->vdev_children > 1);
5722
5723		newvd = vd->vdev_child[vd->vdev_children - 1];
5724		oldvd = vd->vdev_child[0];
5725
5726		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5727		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5728		    !vdev_dtl_required(oldvd))
5729			return (oldvd);
5730	}
5731
5732	/*
5733	 * Check for a completed resilver with the 'unspare' flag set.
5734	 */
5735	if (vd->vdev_ops == &vdev_spare_ops) {
5736		vdev_t *first = vd->vdev_child[0];
5737		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5738
5739		if (last->vdev_unspare) {
5740			oldvd = first;
5741			newvd = last;
5742		} else if (first->vdev_unspare) {
5743			oldvd = last;
5744			newvd = first;
5745		} else {
5746			oldvd = NULL;
5747		}
5748
5749		if (oldvd != NULL &&
5750		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5751		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5752		    !vdev_dtl_required(oldvd))
5753			return (oldvd);
5754
5755		/*
5756		 * If there are more than two spares attached to a disk,
5757		 * and those spares are not required, then we want to
5758		 * attempt to free them up now so that they can be used
5759		 * by other pools.  Once we're back down to a single
5760		 * disk+spare, we stop removing them.
5761		 */
5762		if (vd->vdev_children > 2) {
5763			newvd = vd->vdev_child[1];
5764
5765			if (newvd->vdev_isspare && last->vdev_isspare &&
5766			    vdev_dtl_empty(last, DTL_MISSING) &&
5767			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5768			    !vdev_dtl_required(newvd))
5769				return (newvd);
5770		}
5771	}
5772
5773	return (NULL);
5774}
5775
5776static void
5777spa_vdev_resilver_done(spa_t *spa)
5778{
5779	vdev_t *vd, *pvd, *ppvd;
5780	uint64_t guid, sguid, pguid, ppguid;
5781
5782	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5783
5784	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5785		pvd = vd->vdev_parent;
5786		ppvd = pvd->vdev_parent;
5787		guid = vd->vdev_guid;
5788		pguid = pvd->vdev_guid;
5789		ppguid = ppvd->vdev_guid;
5790		sguid = 0;
5791		/*
5792		 * If we have just finished replacing a hot spared device, then
5793		 * we need to detach the parent's first child (the original hot
5794		 * spare) as well.
5795		 */
5796		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5797		    ppvd->vdev_children == 2) {
5798			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5799			sguid = ppvd->vdev_child[1]->vdev_guid;
5800		}
5801		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5802
5803		spa_config_exit(spa, SCL_ALL, FTAG);
5804		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5805			return;
5806		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5807			return;
5808		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5809	}
5810
5811	spa_config_exit(spa, SCL_ALL, FTAG);
5812}
5813
5814/*
5815 * Update the stored path or FRU for this vdev.
5816 */
5817int
5818spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5819    boolean_t ispath)
5820{
5821	vdev_t *vd;
5822	boolean_t sync = B_FALSE;
5823
5824	ASSERT(spa_writeable(spa));
5825
5826	spa_vdev_state_enter(spa, SCL_ALL);
5827
5828	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5829		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5830
5831	if (!vd->vdev_ops->vdev_op_leaf)
5832		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5833
5834	if (ispath) {
5835		if (strcmp(value, vd->vdev_path) != 0) {
5836			spa_strfree(vd->vdev_path);
5837			vd->vdev_path = spa_strdup(value);
5838			sync = B_TRUE;
5839		}
5840	} else {
5841		if (vd->vdev_fru == NULL) {
5842			vd->vdev_fru = spa_strdup(value);
5843			sync = B_TRUE;
5844		} else if (strcmp(value, vd->vdev_fru) != 0) {
5845			spa_strfree(vd->vdev_fru);
5846			vd->vdev_fru = spa_strdup(value);
5847			sync = B_TRUE;
5848		}
5849	}
5850
5851	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5852}
5853
5854int
5855spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5856{
5857	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5858}
5859
5860int
5861spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5862{
5863	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5864}
5865
5866/*
5867 * ==========================================================================
5868 * SPA Scanning
5869 * ==========================================================================
5870 */
5871
5872int
5873spa_scan_stop(spa_t *spa)
5874{
5875	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5876	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5877		return (SET_ERROR(EBUSY));
5878	return (dsl_scan_cancel(spa->spa_dsl_pool));
5879}
5880
5881int
5882spa_scan(spa_t *spa, pool_scan_func_t func)
5883{
5884	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5885
5886	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5887		return (SET_ERROR(ENOTSUP));
5888
5889	/*
5890	 * If a resilver was requested, but there is no DTL on a
5891	 * writeable leaf device, we have nothing to do.
5892	 */
5893	if (func == POOL_SCAN_RESILVER &&
5894	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5895		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5896		return (0);
5897	}
5898
5899	return (dsl_scan(spa->spa_dsl_pool, func));
5900}
5901
5902/*
5903 * ==========================================================================
5904 * SPA async task processing
5905 * ==========================================================================
5906 */
5907
5908static void
5909spa_async_remove(spa_t *spa, vdev_t *vd)
5910{
5911	if (vd->vdev_remove_wanted) {
5912		vd->vdev_remove_wanted = B_FALSE;
5913		vd->vdev_delayed_close = B_FALSE;
5914		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5915
5916		/*
5917		 * We want to clear the stats, but we don't want to do a full
5918		 * vdev_clear() as that will cause us to throw away
5919		 * degraded/faulted state as well as attempt to reopen the
5920		 * device, all of which is a waste.
5921		 */
5922		vd->vdev_stat.vs_read_errors = 0;
5923		vd->vdev_stat.vs_write_errors = 0;
5924		vd->vdev_stat.vs_checksum_errors = 0;
5925
5926		vdev_state_dirty(vd->vdev_top);
5927	}
5928
5929	for (int c = 0; c < vd->vdev_children; c++)
5930		spa_async_remove(spa, vd->vdev_child[c]);
5931}
5932
5933static void
5934spa_async_probe(spa_t *spa, vdev_t *vd)
5935{
5936	if (vd->vdev_probe_wanted) {
5937		vd->vdev_probe_wanted = B_FALSE;
5938		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5939	}
5940
5941	for (int c = 0; c < vd->vdev_children; c++)
5942		spa_async_probe(spa, vd->vdev_child[c]);
5943}
5944
5945static void
5946spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5947{
5948	sysevent_id_t eid;
5949	nvlist_t *attr;
5950	char *physpath;
5951
5952	if (!spa->spa_autoexpand)
5953		return;
5954
5955	for (int c = 0; c < vd->vdev_children; c++) {
5956		vdev_t *cvd = vd->vdev_child[c];
5957		spa_async_autoexpand(spa, cvd);
5958	}
5959
5960	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5961		return;
5962
5963	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5964	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5965
5966	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5967	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5968
5969	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5970	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5971
5972	nvlist_free(attr);
5973	kmem_free(physpath, MAXPATHLEN);
5974}
5975
5976static void
5977spa_async_thread(void *arg)
5978{
5979	spa_t *spa = arg;
5980	int tasks;
5981
5982	ASSERT(spa->spa_sync_on);
5983
5984	mutex_enter(&spa->spa_async_lock);
5985	tasks = spa->spa_async_tasks;
5986	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5987	mutex_exit(&spa->spa_async_lock);
5988
5989	/*
5990	 * See if the config needs to be updated.
5991	 */
5992	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5993		uint64_t old_space, new_space;
5994
5995		mutex_enter(&spa_namespace_lock);
5996		old_space = metaslab_class_get_space(spa_normal_class(spa));
5997		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5998		new_space = metaslab_class_get_space(spa_normal_class(spa));
5999		mutex_exit(&spa_namespace_lock);
6000
6001		/*
6002		 * If the pool grew as a result of the config update,
6003		 * then log an internal history event.
6004		 */
6005		if (new_space != old_space) {
6006			spa_history_log_internal(spa, "vdev online", NULL,
6007			    "pool '%s' size: %llu(+%llu)",
6008			    spa_name(spa), new_space, new_space - old_space);
6009		}
6010	}
6011
6012	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6013		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6014		spa_async_autoexpand(spa, spa->spa_root_vdev);
6015		spa_config_exit(spa, SCL_CONFIG, FTAG);
6016	}
6017
6018	/*
6019	 * See if any devices need to be probed.
6020	 */
6021	if (tasks & SPA_ASYNC_PROBE) {
6022		spa_vdev_state_enter(spa, SCL_NONE);
6023		spa_async_probe(spa, spa->spa_root_vdev);
6024		(void) spa_vdev_state_exit(spa, NULL, 0);
6025	}
6026
6027	/*
6028	 * If any devices are done replacing, detach them.
6029	 */
6030	if (tasks & SPA_ASYNC_RESILVER_DONE)
6031		spa_vdev_resilver_done(spa);
6032
6033	/*
6034	 * Kick off a resilver.
6035	 */
6036	if (tasks & SPA_ASYNC_RESILVER)
6037		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6038
6039	/*
6040	 * Let the world know that we're done.
6041	 */
6042	mutex_enter(&spa->spa_async_lock);
6043	spa->spa_async_thread = NULL;
6044	cv_broadcast(&spa->spa_async_cv);
6045	mutex_exit(&spa->spa_async_lock);
6046	thread_exit();
6047}
6048
6049static void
6050spa_async_thread_vd(void *arg)
6051{
6052	spa_t *spa = arg;
6053	int tasks;
6054
6055	ASSERT(spa->spa_sync_on);
6056
6057	mutex_enter(&spa->spa_async_lock);
6058	tasks = spa->spa_async_tasks;
6059retry:
6060	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6061	mutex_exit(&spa->spa_async_lock);
6062
6063	/*
6064	 * See if any devices need to be marked REMOVED.
6065	 */
6066	if (tasks & SPA_ASYNC_REMOVE) {
6067		spa_vdev_state_enter(spa, SCL_NONE);
6068		spa_async_remove(spa, spa->spa_root_vdev);
6069		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6070			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6071		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6072			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6073		(void) spa_vdev_state_exit(spa, NULL, 0);
6074	}
6075
6076	/*
6077	 * Let the world know that we're done.
6078	 */
6079	mutex_enter(&spa->spa_async_lock);
6080	tasks = spa->spa_async_tasks;
6081	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6082		goto retry;
6083	spa->spa_async_thread_vd = NULL;
6084	cv_broadcast(&spa->spa_async_cv);
6085	mutex_exit(&spa->spa_async_lock);
6086	thread_exit();
6087}
6088
6089void
6090spa_async_suspend(spa_t *spa)
6091{
6092	mutex_enter(&spa->spa_async_lock);
6093	spa->spa_async_suspended++;
6094	while (spa->spa_async_thread != NULL &&
6095	    spa->spa_async_thread_vd != NULL)
6096		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6097	mutex_exit(&spa->spa_async_lock);
6098}
6099
6100void
6101spa_async_resume(spa_t *spa)
6102{
6103	mutex_enter(&spa->spa_async_lock);
6104	ASSERT(spa->spa_async_suspended != 0);
6105	spa->spa_async_suspended--;
6106	mutex_exit(&spa->spa_async_lock);
6107}
6108
6109static boolean_t
6110spa_async_tasks_pending(spa_t *spa)
6111{
6112	uint_t non_config_tasks;
6113	uint_t config_task;
6114	boolean_t config_task_suspended;
6115
6116	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6117	    SPA_ASYNC_REMOVE);
6118	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6119	if (spa->spa_ccw_fail_time == 0) {
6120		config_task_suspended = B_FALSE;
6121	} else {
6122		config_task_suspended =
6123		    (gethrtime() - spa->spa_ccw_fail_time) <
6124		    (zfs_ccw_retry_interval * NANOSEC);
6125	}
6126
6127	return (non_config_tasks || (config_task && !config_task_suspended));
6128}
6129
6130static void
6131spa_async_dispatch(spa_t *spa)
6132{
6133	mutex_enter(&spa->spa_async_lock);
6134	if (spa_async_tasks_pending(spa) &&
6135	    !spa->spa_async_suspended &&
6136	    spa->spa_async_thread == NULL &&
6137	    rootdir != NULL)
6138		spa->spa_async_thread = thread_create(NULL, 0,
6139		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6140	mutex_exit(&spa->spa_async_lock);
6141}
6142
6143static void
6144spa_async_dispatch_vd(spa_t *spa)
6145{
6146	mutex_enter(&spa->spa_async_lock);
6147	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6148	    !spa->spa_async_suspended &&
6149	    spa->spa_async_thread_vd == NULL &&
6150	    rootdir != NULL)
6151		spa->spa_async_thread_vd = thread_create(NULL, 0,
6152		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6153	mutex_exit(&spa->spa_async_lock);
6154}
6155
6156void
6157spa_async_request(spa_t *spa, int task)
6158{
6159	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6160	mutex_enter(&spa->spa_async_lock);
6161	spa->spa_async_tasks |= task;
6162	mutex_exit(&spa->spa_async_lock);
6163	spa_async_dispatch_vd(spa);
6164}
6165
6166/*
6167 * ==========================================================================
6168 * SPA syncing routines
6169 * ==========================================================================
6170 */
6171
6172static int
6173bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6174{
6175	bpobj_t *bpo = arg;
6176	bpobj_enqueue(bpo, bp, tx);
6177	return (0);
6178}
6179
6180static int
6181spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6182{
6183	zio_t *zio = arg;
6184
6185	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6186	    BP_GET_PSIZE(bp), zio->io_flags));
6187	return (0);
6188}
6189
6190/*
6191 * Note: this simple function is not inlined to make it easier to dtrace the
6192 * amount of time spent syncing frees.
6193 */
6194static void
6195spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6196{
6197	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6198	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6199	VERIFY(zio_wait(zio) == 0);
6200}
6201
6202/*
6203 * Note: this simple function is not inlined to make it easier to dtrace the
6204 * amount of time spent syncing deferred frees.
6205 */
6206static void
6207spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6208{
6209	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6210	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6211	    spa_free_sync_cb, zio, tx), ==, 0);
6212	VERIFY0(zio_wait(zio));
6213}
6214
6215
6216static void
6217spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6218{
6219	char *packed = NULL;
6220	size_t bufsize;
6221	size_t nvsize = 0;
6222	dmu_buf_t *db;
6223
6224	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6225
6226	/*
6227	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6228	 * information.  This avoids the dmu_buf_will_dirty() path and
6229	 * saves us a pre-read to get data we don't actually care about.
6230	 */
6231	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6232	packed = kmem_alloc(bufsize, KM_SLEEP);
6233
6234	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6235	    KM_SLEEP) == 0);
6236	bzero(packed + nvsize, bufsize - nvsize);
6237
6238	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6239
6240	kmem_free(packed, bufsize);
6241
6242	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6243	dmu_buf_will_dirty(db, tx);
6244	*(uint64_t *)db->db_data = nvsize;
6245	dmu_buf_rele(db, FTAG);
6246}
6247
6248static void
6249spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6250    const char *config, const char *entry)
6251{
6252	nvlist_t *nvroot;
6253	nvlist_t **list;
6254	int i;
6255
6256	if (!sav->sav_sync)
6257		return;
6258
6259	/*
6260	 * Update the MOS nvlist describing the list of available devices.
6261	 * spa_validate_aux() will have already made sure this nvlist is
6262	 * valid and the vdevs are labeled appropriately.
6263	 */
6264	if (sav->sav_object == 0) {
6265		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6266		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6267		    sizeof (uint64_t), tx);
6268		VERIFY(zap_update(spa->spa_meta_objset,
6269		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6270		    &sav->sav_object, tx) == 0);
6271	}
6272
6273	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6274	if (sav->sav_count == 0) {
6275		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6276	} else {
6277		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6278		for (i = 0; i < sav->sav_count; i++)
6279			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6280			    B_FALSE, VDEV_CONFIG_L2CACHE);
6281		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6282		    sav->sav_count) == 0);
6283		for (i = 0; i < sav->sav_count; i++)
6284			nvlist_free(list[i]);
6285		kmem_free(list, sav->sav_count * sizeof (void *));
6286	}
6287
6288	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6289	nvlist_free(nvroot);
6290
6291	sav->sav_sync = B_FALSE;
6292}
6293
6294static void
6295spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6296{
6297	nvlist_t *config;
6298
6299	if (list_is_empty(&spa->spa_config_dirty_list))
6300		return;
6301
6302	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6303
6304	config = spa_config_generate(spa, spa->spa_root_vdev,
6305	    dmu_tx_get_txg(tx), B_FALSE);
6306
6307	/*
6308	 * If we're upgrading the spa version then make sure that
6309	 * the config object gets updated with the correct version.
6310	 */
6311	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6312		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6313		    spa->spa_uberblock.ub_version);
6314
6315	spa_config_exit(spa, SCL_STATE, FTAG);
6316
6317	if (spa->spa_config_syncing)
6318		nvlist_free(spa->spa_config_syncing);
6319	spa->spa_config_syncing = config;
6320
6321	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6322}
6323
6324static void
6325spa_sync_version(void *arg, dmu_tx_t *tx)
6326{
6327	uint64_t *versionp = arg;
6328	uint64_t version = *versionp;
6329	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6330
6331	/*
6332	 * Setting the version is special cased when first creating the pool.
6333	 */
6334	ASSERT(tx->tx_txg != TXG_INITIAL);
6335
6336	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6337	ASSERT(version >= spa_version(spa));
6338
6339	spa->spa_uberblock.ub_version = version;
6340	vdev_config_dirty(spa->spa_root_vdev);
6341	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6342}
6343
6344/*
6345 * Set zpool properties.
6346 */
6347static void
6348spa_sync_props(void *arg, dmu_tx_t *tx)
6349{
6350	nvlist_t *nvp = arg;
6351	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6352	objset_t *mos = spa->spa_meta_objset;
6353	nvpair_t *elem = NULL;
6354
6355	mutex_enter(&spa->spa_props_lock);
6356
6357	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6358		uint64_t intval;
6359		char *strval, *fname;
6360		zpool_prop_t prop;
6361		const char *propname;
6362		zprop_type_t proptype;
6363		spa_feature_t fid;
6364
6365		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6366		case ZPROP_INVAL:
6367			/*
6368			 * We checked this earlier in spa_prop_validate().
6369			 */
6370			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6371
6372			fname = strchr(nvpair_name(elem), '@') + 1;
6373			VERIFY0(zfeature_lookup_name(fname, &fid));
6374
6375			spa_feature_enable(spa, fid, tx);
6376			spa_history_log_internal(spa, "set", tx,
6377			    "%s=enabled", nvpair_name(elem));
6378			break;
6379
6380		case ZPOOL_PROP_VERSION:
6381			intval = fnvpair_value_uint64(elem);
6382			/*
6383			 * The version is synced seperatly before other
6384			 * properties and should be correct by now.
6385			 */
6386			ASSERT3U(spa_version(spa), >=, intval);
6387			break;
6388
6389		case ZPOOL_PROP_ALTROOT:
6390			/*
6391			 * 'altroot' is a non-persistent property. It should
6392			 * have been set temporarily at creation or import time.
6393			 */
6394			ASSERT(spa->spa_root != NULL);
6395			break;
6396
6397		case ZPOOL_PROP_READONLY:
6398		case ZPOOL_PROP_CACHEFILE:
6399			/*
6400			 * 'readonly' and 'cachefile' are also non-persisitent
6401			 * properties.
6402			 */
6403			break;
6404		case ZPOOL_PROP_COMMENT:
6405			strval = fnvpair_value_string(elem);
6406			if (spa->spa_comment != NULL)
6407				spa_strfree(spa->spa_comment);
6408			spa->spa_comment = spa_strdup(strval);
6409			/*
6410			 * We need to dirty the configuration on all the vdevs
6411			 * so that their labels get updated.  It's unnecessary
6412			 * to do this for pool creation since the vdev's
6413			 * configuratoin has already been dirtied.
6414			 */
6415			if (tx->tx_txg != TXG_INITIAL)
6416				vdev_config_dirty(spa->spa_root_vdev);
6417			spa_history_log_internal(spa, "set", tx,
6418			    "%s=%s", nvpair_name(elem), strval);
6419			break;
6420		default:
6421			/*
6422			 * Set pool property values in the poolprops mos object.
6423			 */
6424			if (spa->spa_pool_props_object == 0) {
6425				spa->spa_pool_props_object =
6426				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6427				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6428				    tx);
6429			}
6430
6431			/* normalize the property name */
6432			propname = zpool_prop_to_name(prop);
6433			proptype = zpool_prop_get_type(prop);
6434
6435			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6436				ASSERT(proptype == PROP_TYPE_STRING);
6437				strval = fnvpair_value_string(elem);
6438				VERIFY0(zap_update(mos,
6439				    spa->spa_pool_props_object, propname,
6440				    1, strlen(strval) + 1, strval, tx));
6441				spa_history_log_internal(spa, "set", tx,
6442				    "%s=%s", nvpair_name(elem), strval);
6443			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6444				intval = fnvpair_value_uint64(elem);
6445
6446				if (proptype == PROP_TYPE_INDEX) {
6447					const char *unused;
6448					VERIFY0(zpool_prop_index_to_string(
6449					    prop, intval, &unused));
6450				}
6451				VERIFY0(zap_update(mos,
6452				    spa->spa_pool_props_object, propname,
6453				    8, 1, &intval, tx));
6454				spa_history_log_internal(spa, "set", tx,
6455				    "%s=%lld", nvpair_name(elem), intval);
6456			} else {
6457				ASSERT(0); /* not allowed */
6458			}
6459
6460			switch (prop) {
6461			case ZPOOL_PROP_DELEGATION:
6462				spa->spa_delegation = intval;
6463				break;
6464			case ZPOOL_PROP_BOOTFS:
6465				spa->spa_bootfs = intval;
6466				break;
6467			case ZPOOL_PROP_FAILUREMODE:
6468				spa->spa_failmode = intval;
6469				break;
6470			case ZPOOL_PROP_AUTOEXPAND:
6471				spa->spa_autoexpand = intval;
6472				if (tx->tx_txg != TXG_INITIAL)
6473					spa_async_request(spa,
6474					    SPA_ASYNC_AUTOEXPAND);
6475				break;
6476			case ZPOOL_PROP_DEDUPDITTO:
6477				spa->spa_dedup_ditto = intval;
6478				break;
6479			default:
6480				break;
6481			}
6482		}
6483
6484	}
6485
6486	mutex_exit(&spa->spa_props_lock);
6487}
6488
6489/*
6490 * Perform one-time upgrade on-disk changes.  spa_version() does not
6491 * reflect the new version this txg, so there must be no changes this
6492 * txg to anything that the upgrade code depends on after it executes.
6493 * Therefore this must be called after dsl_pool_sync() does the sync
6494 * tasks.
6495 */
6496static void
6497spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6498{
6499	dsl_pool_t *dp = spa->spa_dsl_pool;
6500
6501	ASSERT(spa->spa_sync_pass == 1);
6502
6503	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6504
6505	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6506	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6507		dsl_pool_create_origin(dp, tx);
6508
6509		/* Keeping the origin open increases spa_minref */
6510		spa->spa_minref += 3;
6511	}
6512
6513	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6514	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6515		dsl_pool_upgrade_clones(dp, tx);
6516	}
6517
6518	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6519	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6520		dsl_pool_upgrade_dir_clones(dp, tx);
6521
6522		/* Keeping the freedir open increases spa_minref */
6523		spa->spa_minref += 3;
6524	}
6525
6526	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6527	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6528		spa_feature_create_zap_objects(spa, tx);
6529	}
6530
6531	/*
6532	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6533	 * when possibility to use lz4 compression for metadata was added
6534	 * Old pools that have this feature enabled must be upgraded to have
6535	 * this feature active
6536	 */
6537	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6538		boolean_t lz4_en = spa_feature_is_enabled(spa,
6539		    SPA_FEATURE_LZ4_COMPRESS);
6540		boolean_t lz4_ac = spa_feature_is_active(spa,
6541		    SPA_FEATURE_LZ4_COMPRESS);
6542
6543		if (lz4_en && !lz4_ac)
6544			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6545	}
6546	rrw_exit(&dp->dp_config_rwlock, FTAG);
6547}
6548
6549/*
6550 * Sync the specified transaction group.  New blocks may be dirtied as
6551 * part of the process, so we iterate until it converges.
6552 */
6553void
6554spa_sync(spa_t *spa, uint64_t txg)
6555{
6556	dsl_pool_t *dp = spa->spa_dsl_pool;
6557	objset_t *mos = spa->spa_meta_objset;
6558	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6559	vdev_t *rvd = spa->spa_root_vdev;
6560	vdev_t *vd;
6561	dmu_tx_t *tx;
6562	int error;
6563
6564	VERIFY(spa_writeable(spa));
6565
6566	/*
6567	 * Lock out configuration changes.
6568	 */
6569	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6570
6571	spa->spa_syncing_txg = txg;
6572	spa->spa_sync_pass = 0;
6573
6574	/*
6575	 * If there are any pending vdev state changes, convert them
6576	 * into config changes that go out with this transaction group.
6577	 */
6578	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6579	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6580		/*
6581		 * We need the write lock here because, for aux vdevs,
6582		 * calling vdev_config_dirty() modifies sav_config.
6583		 * This is ugly and will become unnecessary when we
6584		 * eliminate the aux vdev wart by integrating all vdevs
6585		 * into the root vdev tree.
6586		 */
6587		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6588		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6589		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6590			vdev_state_clean(vd);
6591			vdev_config_dirty(vd);
6592		}
6593		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6594		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6595	}
6596	spa_config_exit(spa, SCL_STATE, FTAG);
6597
6598	tx = dmu_tx_create_assigned(dp, txg);
6599
6600	spa->spa_sync_starttime = gethrtime();
6601#ifdef illumos
6602	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6603	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6604#else	/* FreeBSD */
6605#ifdef _KERNEL
6606	callout_reset(&spa->spa_deadman_cycid,
6607	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6608#endif
6609#endif
6610
6611	/*
6612	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6613	 * set spa_deflate if we have no raid-z vdevs.
6614	 */
6615	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6616	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6617		int i;
6618
6619		for (i = 0; i < rvd->vdev_children; i++) {
6620			vd = rvd->vdev_child[i];
6621			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6622				break;
6623		}
6624		if (i == rvd->vdev_children) {
6625			spa->spa_deflate = TRUE;
6626			VERIFY(0 == zap_add(spa->spa_meta_objset,
6627			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6628			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6629		}
6630	}
6631
6632	/*
6633	 * Iterate to convergence.
6634	 */
6635	do {
6636		int pass = ++spa->spa_sync_pass;
6637
6638		spa_sync_config_object(spa, tx);
6639		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6640		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6641		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6642		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6643		spa_errlog_sync(spa, txg);
6644		dsl_pool_sync(dp, txg);
6645
6646		if (pass < zfs_sync_pass_deferred_free) {
6647			spa_sync_frees(spa, free_bpl, tx);
6648		} else {
6649			/*
6650			 * We can not defer frees in pass 1, because
6651			 * we sync the deferred frees later in pass 1.
6652			 */
6653			ASSERT3U(pass, >, 1);
6654			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6655			    &spa->spa_deferred_bpobj, tx);
6656		}
6657
6658		ddt_sync(spa, txg);
6659		dsl_scan_sync(dp, tx);
6660
6661		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6662			vdev_sync(vd, txg);
6663
6664		if (pass == 1) {
6665			spa_sync_upgrades(spa, tx);
6666			ASSERT3U(txg, >=,
6667			    spa->spa_uberblock.ub_rootbp.blk_birth);
6668			/*
6669			 * Note: We need to check if the MOS is dirty
6670			 * because we could have marked the MOS dirty
6671			 * without updating the uberblock (e.g. if we
6672			 * have sync tasks but no dirty user data).  We
6673			 * need to check the uberblock's rootbp because
6674			 * it is updated if we have synced out dirty
6675			 * data (though in this case the MOS will most
6676			 * likely also be dirty due to second order
6677			 * effects, we don't want to rely on that here).
6678			 */
6679			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6680			    !dmu_objset_is_dirty(mos, txg)) {
6681				/*
6682				 * Nothing changed on the first pass,
6683				 * therefore this TXG is a no-op.  Avoid
6684				 * syncing deferred frees, so that we
6685				 * can keep this TXG as a no-op.
6686				 */
6687				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6688				    txg));
6689				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6690				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6691				break;
6692			}
6693			spa_sync_deferred_frees(spa, tx);
6694		}
6695
6696	} while (dmu_objset_is_dirty(mos, txg));
6697
6698	/*
6699	 * Rewrite the vdev configuration (which includes the uberblock)
6700	 * to commit the transaction group.
6701	 *
6702	 * If there are no dirty vdevs, we sync the uberblock to a few
6703	 * random top-level vdevs that are known to be visible in the
6704	 * config cache (see spa_vdev_add() for a complete description).
6705	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6706	 */
6707	for (;;) {
6708		/*
6709		 * We hold SCL_STATE to prevent vdev open/close/etc.
6710		 * while we're attempting to write the vdev labels.
6711		 */
6712		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6713
6714		if (list_is_empty(&spa->spa_config_dirty_list)) {
6715			vdev_t *svd[SPA_DVAS_PER_BP];
6716			int svdcount = 0;
6717			int children = rvd->vdev_children;
6718			int c0 = spa_get_random(children);
6719
6720			for (int c = 0; c < children; c++) {
6721				vd = rvd->vdev_child[(c0 + c) % children];
6722				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6723					continue;
6724				svd[svdcount++] = vd;
6725				if (svdcount == SPA_DVAS_PER_BP)
6726					break;
6727			}
6728			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6729			if (error != 0)
6730				error = vdev_config_sync(svd, svdcount, txg,
6731				    B_TRUE);
6732		} else {
6733			error = vdev_config_sync(rvd->vdev_child,
6734			    rvd->vdev_children, txg, B_FALSE);
6735			if (error != 0)
6736				error = vdev_config_sync(rvd->vdev_child,
6737				    rvd->vdev_children, txg, B_TRUE);
6738		}
6739
6740		if (error == 0)
6741			spa->spa_last_synced_guid = rvd->vdev_guid;
6742
6743		spa_config_exit(spa, SCL_STATE, FTAG);
6744
6745		if (error == 0)
6746			break;
6747		zio_suspend(spa, NULL);
6748		zio_resume_wait(spa);
6749	}
6750	dmu_tx_commit(tx);
6751
6752#ifdef illumos
6753	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6754#else	/* FreeBSD */
6755#ifdef _KERNEL
6756	callout_drain(&spa->spa_deadman_cycid);
6757#endif
6758#endif
6759
6760	/*
6761	 * Clear the dirty config list.
6762	 */
6763	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6764		vdev_config_clean(vd);
6765
6766	/*
6767	 * Now that the new config has synced transactionally,
6768	 * let it become visible to the config cache.
6769	 */
6770	if (spa->spa_config_syncing != NULL) {
6771		spa_config_set(spa, spa->spa_config_syncing);
6772		spa->spa_config_txg = txg;
6773		spa->spa_config_syncing = NULL;
6774	}
6775
6776	spa->spa_ubsync = spa->spa_uberblock;
6777
6778	dsl_pool_sync_done(dp, txg);
6779
6780	/*
6781	 * Update usable space statistics.
6782	 */
6783	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6784		vdev_sync_done(vd, txg);
6785
6786	spa_update_dspace(spa);
6787
6788	/*
6789	 * It had better be the case that we didn't dirty anything
6790	 * since vdev_config_sync().
6791	 */
6792	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6793	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6794	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6795
6796	spa->spa_sync_pass = 0;
6797
6798	spa_config_exit(spa, SCL_CONFIG, FTAG);
6799
6800	spa_handle_ignored_writes(spa);
6801
6802	/*
6803	 * If any async tasks have been requested, kick them off.
6804	 */
6805	spa_async_dispatch(spa);
6806	spa_async_dispatch_vd(spa);
6807}
6808
6809/*
6810 * Sync all pools.  We don't want to hold the namespace lock across these
6811 * operations, so we take a reference on the spa_t and drop the lock during the
6812 * sync.
6813 */
6814void
6815spa_sync_allpools(void)
6816{
6817	spa_t *spa = NULL;
6818	mutex_enter(&spa_namespace_lock);
6819	while ((spa = spa_next(spa)) != NULL) {
6820		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6821		    !spa_writeable(spa) || spa_suspended(spa))
6822			continue;
6823		spa_open_ref(spa, FTAG);
6824		mutex_exit(&spa_namespace_lock);
6825		txg_wait_synced(spa_get_dsl(spa), 0);
6826		mutex_enter(&spa_namespace_lock);
6827		spa_close(spa, FTAG);
6828	}
6829	mutex_exit(&spa_namespace_lock);
6830}
6831
6832/*
6833 * ==========================================================================
6834 * Miscellaneous routines
6835 * ==========================================================================
6836 */
6837
6838/*
6839 * Remove all pools in the system.
6840 */
6841void
6842spa_evict_all(void)
6843{
6844	spa_t *spa;
6845
6846	/*
6847	 * Remove all cached state.  All pools should be closed now,
6848	 * so every spa in the AVL tree should be unreferenced.
6849	 */
6850	mutex_enter(&spa_namespace_lock);
6851	while ((spa = spa_next(NULL)) != NULL) {
6852		/*
6853		 * Stop async tasks.  The async thread may need to detach
6854		 * a device that's been replaced, which requires grabbing
6855		 * spa_namespace_lock, so we must drop it here.
6856		 */
6857		spa_open_ref(spa, FTAG);
6858		mutex_exit(&spa_namespace_lock);
6859		spa_async_suspend(spa);
6860		mutex_enter(&spa_namespace_lock);
6861		spa_close(spa, FTAG);
6862
6863		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6864			spa_unload(spa);
6865			spa_deactivate(spa);
6866		}
6867		spa_remove(spa);
6868	}
6869	mutex_exit(&spa_namespace_lock);
6870}
6871
6872vdev_t *
6873spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6874{
6875	vdev_t *vd;
6876	int i;
6877
6878	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6879		return (vd);
6880
6881	if (aux) {
6882		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6883			vd = spa->spa_l2cache.sav_vdevs[i];
6884			if (vd->vdev_guid == guid)
6885				return (vd);
6886		}
6887
6888		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6889			vd = spa->spa_spares.sav_vdevs[i];
6890			if (vd->vdev_guid == guid)
6891				return (vd);
6892		}
6893	}
6894
6895	return (NULL);
6896}
6897
6898void
6899spa_upgrade(spa_t *spa, uint64_t version)
6900{
6901	ASSERT(spa_writeable(spa));
6902
6903	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6904
6905	/*
6906	 * This should only be called for a non-faulted pool, and since a
6907	 * future version would result in an unopenable pool, this shouldn't be
6908	 * possible.
6909	 */
6910	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6911	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6912
6913	spa->spa_uberblock.ub_version = version;
6914	vdev_config_dirty(spa->spa_root_vdev);
6915
6916	spa_config_exit(spa, SCL_ALL, FTAG);
6917
6918	txg_wait_synced(spa_get_dsl(spa), 0);
6919}
6920
6921boolean_t
6922spa_has_spare(spa_t *spa, uint64_t guid)
6923{
6924	int i;
6925	uint64_t spareguid;
6926	spa_aux_vdev_t *sav = &spa->spa_spares;
6927
6928	for (i = 0; i < sav->sav_count; i++)
6929		if (sav->sav_vdevs[i]->vdev_guid == guid)
6930			return (B_TRUE);
6931
6932	for (i = 0; i < sav->sav_npending; i++) {
6933		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6934		    &spareguid) == 0 && spareguid == guid)
6935			return (B_TRUE);
6936	}
6937
6938	return (B_FALSE);
6939}
6940
6941/*
6942 * Check if a pool has an active shared spare device.
6943 * Note: reference count of an active spare is 2, as a spare and as a replace
6944 */
6945static boolean_t
6946spa_has_active_shared_spare(spa_t *spa)
6947{
6948	int i, refcnt;
6949	uint64_t pool;
6950	spa_aux_vdev_t *sav = &spa->spa_spares;
6951
6952	for (i = 0; i < sav->sav_count; i++) {
6953		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6954		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6955		    refcnt > 2)
6956			return (B_TRUE);
6957	}
6958
6959	return (B_FALSE);
6960}
6961
6962/*
6963 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6964 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6965 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6966 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6967 * or zdb as real changes.
6968 */
6969void
6970spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6971{
6972#ifdef _KERNEL
6973	sysevent_t		*ev;
6974	sysevent_attr_list_t	*attr = NULL;
6975	sysevent_value_t	value;
6976	sysevent_id_t		eid;
6977
6978	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6979	    SE_SLEEP);
6980
6981	value.value_type = SE_DATA_TYPE_STRING;
6982	value.value.sv_string = spa_name(spa);
6983	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6984		goto done;
6985
6986	value.value_type = SE_DATA_TYPE_UINT64;
6987	value.value.sv_uint64 = spa_guid(spa);
6988	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6989		goto done;
6990
6991	if (vd) {
6992		value.value_type = SE_DATA_TYPE_UINT64;
6993		value.value.sv_uint64 = vd->vdev_guid;
6994		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6995		    SE_SLEEP) != 0)
6996			goto done;
6997
6998		if (vd->vdev_path) {
6999			value.value_type = SE_DATA_TYPE_STRING;
7000			value.value.sv_string = vd->vdev_path;
7001			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7002			    &value, SE_SLEEP) != 0)
7003				goto done;
7004		}
7005	}
7006
7007	if (sysevent_attach_attributes(ev, attr) != 0)
7008		goto done;
7009	attr = NULL;
7010
7011	(void) log_sysevent(ev, SE_SLEEP, &eid);
7012
7013done:
7014	if (attr)
7015		sysevent_free_attr(attr);
7016	sysevent_free(ev);
7017#endif
7018}
7019