spa.c revision 285001
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size, alloc, cap, version;
215	zprop_source_t src = ZPROP_SRC_NONE;
216	spa_config_dirent_t *dp;
217	metaslab_class_t *mc = spa_normal_class(spa);
218
219	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
220
221	if (rvd != NULL) {
222		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
223		size = metaslab_class_get_space(spa_normal_class(spa));
224		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
225		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
226		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
228		    size - alloc, src);
229
230		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
231		    metaslab_class_fragmentation(mc), src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
233		    metaslab_class_expandable_space(mc), src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
235		    (spa_mode(spa) == FREAD), src);
236
237		cap = (size == 0) ? 0 : (alloc * 100 / size);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
241		    ddt_get_pool_dedup_ratio(spa), src);
242
243		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
244		    rvd->vdev_state, src);
245
246		version = spa_version(spa);
247		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
248			src = ZPROP_SRC_DEFAULT;
249		else
250			src = ZPROP_SRC_LOCAL;
251		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
252	}
253
254	if (pool != NULL) {
255		/*
256		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
257		 * when opening pools before this version freedir will be NULL.
258		 */
259		if (pool->dp_free_dir != NULL) {
260			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
261			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
262			    src);
263		} else {
264			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
265			    NULL, 0, src);
266		}
267
268		if (pool->dp_leak_dir != NULL) {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
270			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
271			    src);
272		} else {
273			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
274			    NULL, 0, src);
275		}
276	}
277
278	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
279
280	if (spa->spa_comment != NULL) {
281		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
282		    0, ZPROP_SRC_LOCAL);
283	}
284
285	if (spa->spa_root != NULL)
286		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
287		    0, ZPROP_SRC_LOCAL);
288
289	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
290		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
291		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
292	} else {
293		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
294		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
295	}
296
297	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
298		if (dp->scd_path == NULL) {
299			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
300			    "none", 0, ZPROP_SRC_LOCAL);
301		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
302			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
303			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
304		}
305	}
306}
307
308/*
309 * Get zpool property values.
310 */
311int
312spa_prop_get(spa_t *spa, nvlist_t **nvp)
313{
314	objset_t *mos = spa->spa_meta_objset;
315	zap_cursor_t zc;
316	zap_attribute_t za;
317	int err;
318
319	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
320
321	mutex_enter(&spa->spa_props_lock);
322
323	/*
324	 * Get properties from the spa config.
325	 */
326	spa_prop_get_config(spa, nvp);
327
328	/* If no pool property object, no more prop to get. */
329	if (mos == NULL || spa->spa_pool_props_object == 0) {
330		mutex_exit(&spa->spa_props_lock);
331		return (0);
332	}
333
334	/*
335	 * Get properties from the MOS pool property object.
336	 */
337	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
338	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
339	    zap_cursor_advance(&zc)) {
340		uint64_t intval = 0;
341		char *strval = NULL;
342		zprop_source_t src = ZPROP_SRC_DEFAULT;
343		zpool_prop_t prop;
344
345		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
346			continue;
347
348		switch (za.za_integer_length) {
349		case 8:
350			/* integer property */
351			if (za.za_first_integer !=
352			    zpool_prop_default_numeric(prop))
353				src = ZPROP_SRC_LOCAL;
354
355			if (prop == ZPOOL_PROP_BOOTFS) {
356				dsl_pool_t *dp;
357				dsl_dataset_t *ds = NULL;
358
359				dp = spa_get_dsl(spa);
360				dsl_pool_config_enter(dp, FTAG);
361				if (err = dsl_dataset_hold_obj(dp,
362				    za.za_first_integer, FTAG, &ds)) {
363					dsl_pool_config_exit(dp, FTAG);
364					break;
365				}
366
367				strval = kmem_alloc(
368				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
369				    KM_SLEEP);
370				dsl_dataset_name(ds, strval);
371				dsl_dataset_rele(ds, FTAG);
372				dsl_pool_config_exit(dp, FTAG);
373			} else {
374				strval = NULL;
375				intval = za.za_first_integer;
376			}
377
378			spa_prop_add_list(*nvp, prop, strval, intval, src);
379
380			if (strval != NULL)
381				kmem_free(strval,
382				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
383
384			break;
385
386		case 1:
387			/* string property */
388			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
389			err = zap_lookup(mos, spa->spa_pool_props_object,
390			    za.za_name, 1, za.za_num_integers, strval);
391			if (err) {
392				kmem_free(strval, za.za_num_integers);
393				break;
394			}
395			spa_prop_add_list(*nvp, prop, strval, 0, src);
396			kmem_free(strval, za.za_num_integers);
397			break;
398
399		default:
400			break;
401		}
402	}
403	zap_cursor_fini(&zc);
404	mutex_exit(&spa->spa_props_lock);
405out:
406	if (err && err != ENOENT) {
407		nvlist_free(*nvp);
408		*nvp = NULL;
409		return (err);
410	}
411
412	return (0);
413}
414
415/*
416 * Validate the given pool properties nvlist and modify the list
417 * for the property values to be set.
418 */
419static int
420spa_prop_validate(spa_t *spa, nvlist_t *props)
421{
422	nvpair_t *elem;
423	int error = 0, reset_bootfs = 0;
424	uint64_t objnum = 0;
425	boolean_t has_feature = B_FALSE;
426
427	elem = NULL;
428	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
429		uint64_t intval;
430		char *strval, *slash, *check, *fname;
431		const char *propname = nvpair_name(elem);
432		zpool_prop_t prop = zpool_name_to_prop(propname);
433
434		switch (prop) {
435		case ZPROP_INVAL:
436			if (!zpool_prop_feature(propname)) {
437				error = SET_ERROR(EINVAL);
438				break;
439			}
440
441			/*
442			 * Sanitize the input.
443			 */
444			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			if (nvpair_value_uint64(elem, &intval) != 0) {
450				error = SET_ERROR(EINVAL);
451				break;
452			}
453
454			if (intval != 0) {
455				error = SET_ERROR(EINVAL);
456				break;
457			}
458
459			fname = strchr(propname, '@') + 1;
460			if (zfeature_lookup_name(fname, NULL) != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			has_feature = B_TRUE;
466			break;
467
468		case ZPOOL_PROP_VERSION:
469			error = nvpair_value_uint64(elem, &intval);
470			if (!error &&
471			    (intval < spa_version(spa) ||
472			    intval > SPA_VERSION_BEFORE_FEATURES ||
473			    has_feature))
474				error = SET_ERROR(EINVAL);
475			break;
476
477		case ZPOOL_PROP_DELEGATION:
478		case ZPOOL_PROP_AUTOREPLACE:
479		case ZPOOL_PROP_LISTSNAPS:
480		case ZPOOL_PROP_AUTOEXPAND:
481			error = nvpair_value_uint64(elem, &intval);
482			if (!error && intval > 1)
483				error = SET_ERROR(EINVAL);
484			break;
485
486		case ZPOOL_PROP_BOOTFS:
487			/*
488			 * If the pool version is less than SPA_VERSION_BOOTFS,
489			 * or the pool is still being created (version == 0),
490			 * the bootfs property cannot be set.
491			 */
492			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
493				error = SET_ERROR(ENOTSUP);
494				break;
495			}
496
497			/*
498			 * Make sure the vdev config is bootable
499			 */
500			if (!vdev_is_bootable(spa->spa_root_vdev)) {
501				error = SET_ERROR(ENOTSUP);
502				break;
503			}
504
505			reset_bootfs = 1;
506
507			error = nvpair_value_string(elem, &strval);
508
509			if (!error) {
510				objset_t *os;
511				uint64_t propval;
512
513				if (strval == NULL || strval[0] == '\0') {
514					objnum = zpool_prop_default_numeric(
515					    ZPOOL_PROP_BOOTFS);
516					break;
517				}
518
519				if (error = dmu_objset_hold(strval, FTAG, &os))
520					break;
521
522				/*
523				 * Must be ZPL, and its property settings
524				 * must be supported by GRUB (compression
525				 * is not gzip, and large blocks are not used).
526				 */
527
528				if (dmu_objset_type(os) != DMU_OST_ZFS) {
529					error = SET_ERROR(ENOTSUP);
530				} else if ((error =
531				    dsl_prop_get_int_ds(dmu_objset_ds(os),
532				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
533				    &propval)) == 0 &&
534				    !BOOTFS_COMPRESS_VALID(propval)) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
539				    &propval)) == 0 &&
540				    propval > SPA_OLD_MAXBLOCKSIZE) {
541					error = SET_ERROR(ENOTSUP);
542				} else {
543					objnum = dmu_objset_id(os);
544				}
545				dmu_objset_rele(os, FTAG);
546			}
547			break;
548
549		case ZPOOL_PROP_FAILUREMODE:
550			error = nvpair_value_uint64(elem, &intval);
551			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
552			    intval > ZIO_FAILURE_MODE_PANIC))
553				error = SET_ERROR(EINVAL);
554
555			/*
556			 * This is a special case which only occurs when
557			 * the pool has completely failed. This allows
558			 * the user to change the in-core failmode property
559			 * without syncing it out to disk (I/Os might
560			 * currently be blocked). We do this by returning
561			 * EIO to the caller (spa_prop_set) to trick it
562			 * into thinking we encountered a property validation
563			 * error.
564			 */
565			if (!error && spa_suspended(spa)) {
566				spa->spa_failmode = intval;
567				error = SET_ERROR(EIO);
568			}
569			break;
570
571		case ZPOOL_PROP_CACHEFILE:
572			if ((error = nvpair_value_string(elem, &strval)) != 0)
573				break;
574
575			if (strval[0] == '\0')
576				break;
577
578			if (strcmp(strval, "none") == 0)
579				break;
580
581			if (strval[0] != '/') {
582				error = SET_ERROR(EINVAL);
583				break;
584			}
585
586			slash = strrchr(strval, '/');
587			ASSERT(slash != NULL);
588
589			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
590			    strcmp(slash, "/..") == 0)
591				error = SET_ERROR(EINVAL);
592			break;
593
594		case ZPOOL_PROP_COMMENT:
595			if ((error = nvpair_value_string(elem, &strval)) != 0)
596				break;
597			for (check = strval; *check != '\0'; check++) {
598				/*
599				 * The kernel doesn't have an easy isprint()
600				 * check.  For this kernel check, we merely
601				 * check ASCII apart from DEL.  Fix this if
602				 * there is an easy-to-use kernel isprint().
603				 */
604				if (*check >= 0x7f) {
605					error = SET_ERROR(EINVAL);
606					break;
607				}
608				check++;
609			}
610			if (strlen(strval) > ZPROP_MAX_COMMENT)
611				error = E2BIG;
612			break;
613
614		case ZPOOL_PROP_DEDUPDITTO:
615			if (spa_version(spa) < SPA_VERSION_DEDUP)
616				error = SET_ERROR(ENOTSUP);
617			else
618				error = nvpair_value_uint64(elem, &intval);
619			if (error == 0 &&
620			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
621				error = SET_ERROR(EINVAL);
622			break;
623		}
624
625		if (error)
626			break;
627	}
628
629	if (!error && reset_bootfs) {
630		error = nvlist_remove(props,
631		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
632
633		if (!error) {
634			error = nvlist_add_uint64(props,
635			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
636		}
637	}
638
639	return (error);
640}
641
642void
643spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
644{
645	char *cachefile;
646	spa_config_dirent_t *dp;
647
648	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
649	    &cachefile) != 0)
650		return;
651
652	dp = kmem_alloc(sizeof (spa_config_dirent_t),
653	    KM_SLEEP);
654
655	if (cachefile[0] == '\0')
656		dp->scd_path = spa_strdup(spa_config_path);
657	else if (strcmp(cachefile, "none") == 0)
658		dp->scd_path = NULL;
659	else
660		dp->scd_path = spa_strdup(cachefile);
661
662	list_insert_head(&spa->spa_config_list, dp);
663	if (need_sync)
664		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
665}
666
667int
668spa_prop_set(spa_t *spa, nvlist_t *nvp)
669{
670	int error;
671	nvpair_t *elem = NULL;
672	boolean_t need_sync = B_FALSE;
673
674	if ((error = spa_prop_validate(spa, nvp)) != 0)
675		return (error);
676
677	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
678		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
679
680		if (prop == ZPOOL_PROP_CACHEFILE ||
681		    prop == ZPOOL_PROP_ALTROOT ||
682		    prop == ZPOOL_PROP_READONLY)
683			continue;
684
685		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
686			uint64_t ver;
687
688			if (prop == ZPOOL_PROP_VERSION) {
689				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
690			} else {
691				ASSERT(zpool_prop_feature(nvpair_name(elem)));
692				ver = SPA_VERSION_FEATURES;
693				need_sync = B_TRUE;
694			}
695
696			/* Save time if the version is already set. */
697			if (ver == spa_version(spa))
698				continue;
699
700			/*
701			 * In addition to the pool directory object, we might
702			 * create the pool properties object, the features for
703			 * read object, the features for write object, or the
704			 * feature descriptions object.
705			 */
706			error = dsl_sync_task(spa->spa_name, NULL,
707			    spa_sync_version, &ver,
708			    6, ZFS_SPACE_CHECK_RESERVED);
709			if (error)
710				return (error);
711			continue;
712		}
713
714		need_sync = B_TRUE;
715		break;
716	}
717
718	if (need_sync) {
719		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
720		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
721	}
722
723	return (0);
724}
725
726/*
727 * If the bootfs property value is dsobj, clear it.
728 */
729void
730spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
731{
732	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
733		VERIFY(zap_remove(spa->spa_meta_objset,
734		    spa->spa_pool_props_object,
735		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
736		spa->spa_bootfs = 0;
737	}
738}
739
740/*ARGSUSED*/
741static int
742spa_change_guid_check(void *arg, dmu_tx_t *tx)
743{
744	uint64_t *newguid = arg;
745	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
746	vdev_t *rvd = spa->spa_root_vdev;
747	uint64_t vdev_state;
748
749	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
750	vdev_state = rvd->vdev_state;
751	spa_config_exit(spa, SCL_STATE, FTAG);
752
753	if (vdev_state != VDEV_STATE_HEALTHY)
754		return (SET_ERROR(ENXIO));
755
756	ASSERT3U(spa_guid(spa), !=, *newguid);
757
758	return (0);
759}
760
761static void
762spa_change_guid_sync(void *arg, dmu_tx_t *tx)
763{
764	uint64_t *newguid = arg;
765	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
766	uint64_t oldguid;
767	vdev_t *rvd = spa->spa_root_vdev;
768
769	oldguid = spa_guid(spa);
770
771	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
772	rvd->vdev_guid = *newguid;
773	rvd->vdev_guid_sum += (*newguid - oldguid);
774	vdev_config_dirty(rvd);
775	spa_config_exit(spa, SCL_STATE, FTAG);
776
777	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
778	    oldguid, *newguid);
779}
780
781/*
782 * Change the GUID for the pool.  This is done so that we can later
783 * re-import a pool built from a clone of our own vdevs.  We will modify
784 * the root vdev's guid, our own pool guid, and then mark all of our
785 * vdevs dirty.  Note that we must make sure that all our vdevs are
786 * online when we do this, or else any vdevs that weren't present
787 * would be orphaned from our pool.  We are also going to issue a
788 * sysevent to update any watchers.
789 */
790int
791spa_change_guid(spa_t *spa)
792{
793	int error;
794	uint64_t guid;
795
796	mutex_enter(&spa->spa_vdev_top_lock);
797	mutex_enter(&spa_namespace_lock);
798	guid = spa_generate_guid(NULL);
799
800	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
801	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
802
803	if (error == 0) {
804		spa_config_sync(spa, B_FALSE, B_TRUE);
805		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
806	}
807
808	mutex_exit(&spa_namespace_lock);
809	mutex_exit(&spa->spa_vdev_top_lock);
810
811	return (error);
812}
813
814/*
815 * ==========================================================================
816 * SPA state manipulation (open/create/destroy/import/export)
817 * ==========================================================================
818 */
819
820static int
821spa_error_entry_compare(const void *a, const void *b)
822{
823	spa_error_entry_t *sa = (spa_error_entry_t *)a;
824	spa_error_entry_t *sb = (spa_error_entry_t *)b;
825	int ret;
826
827	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
828	    sizeof (zbookmark_phys_t));
829
830	if (ret < 0)
831		return (-1);
832	else if (ret > 0)
833		return (1);
834	else
835		return (0);
836}
837
838/*
839 * Utility function which retrieves copies of the current logs and
840 * re-initializes them in the process.
841 */
842void
843spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
844{
845	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
846
847	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
848	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
849
850	avl_create(&spa->spa_errlist_scrub,
851	    spa_error_entry_compare, sizeof (spa_error_entry_t),
852	    offsetof(spa_error_entry_t, se_avl));
853	avl_create(&spa->spa_errlist_last,
854	    spa_error_entry_compare, sizeof (spa_error_entry_t),
855	    offsetof(spa_error_entry_t, se_avl));
856}
857
858static void
859spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
860{
861	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
862	enum zti_modes mode = ztip->zti_mode;
863	uint_t value = ztip->zti_value;
864	uint_t count = ztip->zti_count;
865	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
866	char name[32];
867	uint_t flags = 0;
868	boolean_t batch = B_FALSE;
869
870	if (mode == ZTI_MODE_NULL) {
871		tqs->stqs_count = 0;
872		tqs->stqs_taskq = NULL;
873		return;
874	}
875
876	ASSERT3U(count, >, 0);
877
878	tqs->stqs_count = count;
879	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
880
881	switch (mode) {
882	case ZTI_MODE_FIXED:
883		ASSERT3U(value, >=, 1);
884		value = MAX(value, 1);
885		break;
886
887	case ZTI_MODE_BATCH:
888		batch = B_TRUE;
889		flags |= TASKQ_THREADS_CPU_PCT;
890		value = zio_taskq_batch_pct;
891		break;
892
893	default:
894		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
895		    "spa_activate()",
896		    zio_type_name[t], zio_taskq_types[q], mode, value);
897		break;
898	}
899
900	for (uint_t i = 0; i < count; i++) {
901		taskq_t *tq;
902
903		if (count > 1) {
904			(void) snprintf(name, sizeof (name), "%s_%s_%u",
905			    zio_type_name[t], zio_taskq_types[q], i);
906		} else {
907			(void) snprintf(name, sizeof (name), "%s_%s",
908			    zio_type_name[t], zio_taskq_types[q]);
909		}
910
911#ifdef SYSDC
912		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
913			if (batch)
914				flags |= TASKQ_DC_BATCH;
915
916			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
917			    spa->spa_proc, zio_taskq_basedc, flags);
918		} else {
919#endif
920			pri_t pri = maxclsyspri;
921			/*
922			 * The write issue taskq can be extremely CPU
923			 * intensive.  Run it at slightly lower priority
924			 * than the other taskqs.
925			 */
926			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
927				pri--;
928
929			tq = taskq_create_proc(name, value, pri, 50,
930			    INT_MAX, spa->spa_proc, flags);
931#ifdef SYSDC
932		}
933#endif
934
935		tqs->stqs_taskq[i] = tq;
936	}
937}
938
939static void
940spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
941{
942	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
943
944	if (tqs->stqs_taskq == NULL) {
945		ASSERT0(tqs->stqs_count);
946		return;
947	}
948
949	for (uint_t i = 0; i < tqs->stqs_count; i++) {
950		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
951		taskq_destroy(tqs->stqs_taskq[i]);
952	}
953
954	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
955	tqs->stqs_taskq = NULL;
956}
957
958/*
959 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
960 * Note that a type may have multiple discrete taskqs to avoid lock contention
961 * on the taskq itself. In that case we choose which taskq at random by using
962 * the low bits of gethrtime().
963 */
964void
965spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
966    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
967{
968	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
969	taskq_t *tq;
970
971	ASSERT3P(tqs->stqs_taskq, !=, NULL);
972	ASSERT3U(tqs->stqs_count, !=, 0);
973
974	if (tqs->stqs_count == 1) {
975		tq = tqs->stqs_taskq[0];
976	} else {
977#ifdef _KERNEL
978		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
979#else
980		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
981#endif
982	}
983
984	taskq_dispatch_ent(tq, func, arg, flags, ent);
985}
986
987static void
988spa_create_zio_taskqs(spa_t *spa)
989{
990	for (int t = 0; t < ZIO_TYPES; t++) {
991		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
992			spa_taskqs_init(spa, t, q);
993		}
994	}
995}
996
997#ifdef _KERNEL
998#ifdef SPA_PROCESS
999static void
1000spa_thread(void *arg)
1001{
1002	callb_cpr_t cprinfo;
1003
1004	spa_t *spa = arg;
1005	user_t *pu = PTOU(curproc);
1006
1007	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1008	    spa->spa_name);
1009
1010	ASSERT(curproc != &p0);
1011	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1012	    "zpool-%s", spa->spa_name);
1013	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1014
1015#ifdef PSRSET_BIND
1016	/* bind this thread to the requested psrset */
1017	if (zio_taskq_psrset_bind != PS_NONE) {
1018		pool_lock();
1019		mutex_enter(&cpu_lock);
1020		mutex_enter(&pidlock);
1021		mutex_enter(&curproc->p_lock);
1022
1023		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1024		    0, NULL, NULL) == 0)  {
1025			curthread->t_bind_pset = zio_taskq_psrset_bind;
1026		} else {
1027			cmn_err(CE_WARN,
1028			    "Couldn't bind process for zfs pool \"%s\" to "
1029			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1030		}
1031
1032		mutex_exit(&curproc->p_lock);
1033		mutex_exit(&pidlock);
1034		mutex_exit(&cpu_lock);
1035		pool_unlock();
1036	}
1037#endif
1038
1039#ifdef SYSDC
1040	if (zio_taskq_sysdc) {
1041		sysdc_thread_enter(curthread, 100, 0);
1042	}
1043#endif
1044
1045	spa->spa_proc = curproc;
1046	spa->spa_did = curthread->t_did;
1047
1048	spa_create_zio_taskqs(spa);
1049
1050	mutex_enter(&spa->spa_proc_lock);
1051	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1052
1053	spa->spa_proc_state = SPA_PROC_ACTIVE;
1054	cv_broadcast(&spa->spa_proc_cv);
1055
1056	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1057	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1058		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1059	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1060
1061	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1062	spa->spa_proc_state = SPA_PROC_GONE;
1063	spa->spa_proc = &p0;
1064	cv_broadcast(&spa->spa_proc_cv);
1065	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1066
1067	mutex_enter(&curproc->p_lock);
1068	lwp_exit();
1069}
1070#endif	/* SPA_PROCESS */
1071#endif
1072
1073/*
1074 * Activate an uninitialized pool.
1075 */
1076static void
1077spa_activate(spa_t *spa, int mode)
1078{
1079	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1080
1081	spa->spa_state = POOL_STATE_ACTIVE;
1082	spa->spa_mode = mode;
1083
1084	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1085	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1086
1087	/* Try to create a covering process */
1088	mutex_enter(&spa->spa_proc_lock);
1089	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1090	ASSERT(spa->spa_proc == &p0);
1091	spa->spa_did = 0;
1092
1093#ifdef SPA_PROCESS
1094	/* Only create a process if we're going to be around a while. */
1095	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1096		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1097		    NULL, 0) == 0) {
1098			spa->spa_proc_state = SPA_PROC_CREATED;
1099			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1100				cv_wait(&spa->spa_proc_cv,
1101				    &spa->spa_proc_lock);
1102			}
1103			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1104			ASSERT(spa->spa_proc != &p0);
1105			ASSERT(spa->spa_did != 0);
1106		} else {
1107#ifdef _KERNEL
1108			cmn_err(CE_WARN,
1109			    "Couldn't create process for zfs pool \"%s\"\n",
1110			    spa->spa_name);
1111#endif
1112		}
1113	}
1114#endif	/* SPA_PROCESS */
1115	mutex_exit(&spa->spa_proc_lock);
1116
1117	/* If we didn't create a process, we need to create our taskqs. */
1118	ASSERT(spa->spa_proc == &p0);
1119	if (spa->spa_proc == &p0) {
1120		spa_create_zio_taskqs(spa);
1121	}
1122
1123	/*
1124	 * Start TRIM thread.
1125	 */
1126	trim_thread_create(spa);
1127
1128	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1129	    offsetof(vdev_t, vdev_config_dirty_node));
1130	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1131	    offsetof(vdev_t, vdev_state_dirty_node));
1132
1133	txg_list_create(&spa->spa_vdev_txg_list,
1134	    offsetof(struct vdev, vdev_txg_node));
1135
1136	avl_create(&spa->spa_errlist_scrub,
1137	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1138	    offsetof(spa_error_entry_t, se_avl));
1139	avl_create(&spa->spa_errlist_last,
1140	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1141	    offsetof(spa_error_entry_t, se_avl));
1142}
1143
1144/*
1145 * Opposite of spa_activate().
1146 */
1147static void
1148spa_deactivate(spa_t *spa)
1149{
1150	ASSERT(spa->spa_sync_on == B_FALSE);
1151	ASSERT(spa->spa_dsl_pool == NULL);
1152	ASSERT(spa->spa_root_vdev == NULL);
1153	ASSERT(spa->spa_async_zio_root == NULL);
1154	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1155
1156	/*
1157	 * Stop TRIM thread in case spa_unload() wasn't called directly
1158	 * before spa_deactivate().
1159	 */
1160	trim_thread_destroy(spa);
1161
1162	txg_list_destroy(&spa->spa_vdev_txg_list);
1163
1164	list_destroy(&spa->spa_config_dirty_list);
1165	list_destroy(&spa->spa_state_dirty_list);
1166
1167	for (int t = 0; t < ZIO_TYPES; t++) {
1168		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1169			spa_taskqs_fini(spa, t, q);
1170		}
1171	}
1172
1173	metaslab_class_destroy(spa->spa_normal_class);
1174	spa->spa_normal_class = NULL;
1175
1176	metaslab_class_destroy(spa->spa_log_class);
1177	spa->spa_log_class = NULL;
1178
1179	/*
1180	 * If this was part of an import or the open otherwise failed, we may
1181	 * still have errors left in the queues.  Empty them just in case.
1182	 */
1183	spa_errlog_drain(spa);
1184
1185	avl_destroy(&spa->spa_errlist_scrub);
1186	avl_destroy(&spa->spa_errlist_last);
1187
1188	spa->spa_state = POOL_STATE_UNINITIALIZED;
1189
1190	mutex_enter(&spa->spa_proc_lock);
1191	if (spa->spa_proc_state != SPA_PROC_NONE) {
1192		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1193		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1194		cv_broadcast(&spa->spa_proc_cv);
1195		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1196			ASSERT(spa->spa_proc != &p0);
1197			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1198		}
1199		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1200		spa->spa_proc_state = SPA_PROC_NONE;
1201	}
1202	ASSERT(spa->spa_proc == &p0);
1203	mutex_exit(&spa->spa_proc_lock);
1204
1205#ifdef SPA_PROCESS
1206	/*
1207	 * We want to make sure spa_thread() has actually exited the ZFS
1208	 * module, so that the module can't be unloaded out from underneath
1209	 * it.
1210	 */
1211	if (spa->spa_did != 0) {
1212		thread_join(spa->spa_did);
1213		spa->spa_did = 0;
1214	}
1215#endif	/* SPA_PROCESS */
1216}
1217
1218/*
1219 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1220 * will create all the necessary vdevs in the appropriate layout, with each vdev
1221 * in the CLOSED state.  This will prep the pool before open/creation/import.
1222 * All vdev validation is done by the vdev_alloc() routine.
1223 */
1224static int
1225spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1226    uint_t id, int atype)
1227{
1228	nvlist_t **child;
1229	uint_t children;
1230	int error;
1231
1232	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1233		return (error);
1234
1235	if ((*vdp)->vdev_ops->vdev_op_leaf)
1236		return (0);
1237
1238	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1239	    &child, &children);
1240
1241	if (error == ENOENT)
1242		return (0);
1243
1244	if (error) {
1245		vdev_free(*vdp);
1246		*vdp = NULL;
1247		return (SET_ERROR(EINVAL));
1248	}
1249
1250	for (int c = 0; c < children; c++) {
1251		vdev_t *vd;
1252		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1253		    atype)) != 0) {
1254			vdev_free(*vdp);
1255			*vdp = NULL;
1256			return (error);
1257		}
1258	}
1259
1260	ASSERT(*vdp != NULL);
1261
1262	return (0);
1263}
1264
1265/*
1266 * Opposite of spa_load().
1267 */
1268static void
1269spa_unload(spa_t *spa)
1270{
1271	int i;
1272
1273	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1274
1275	/*
1276	 * Stop TRIM thread.
1277	 */
1278	trim_thread_destroy(spa);
1279
1280	/*
1281	 * Stop async tasks.
1282	 */
1283	spa_async_suspend(spa);
1284
1285	/*
1286	 * Stop syncing.
1287	 */
1288	if (spa->spa_sync_on) {
1289		txg_sync_stop(spa->spa_dsl_pool);
1290		spa->spa_sync_on = B_FALSE;
1291	}
1292
1293	/*
1294	 * Wait for any outstanding async I/O to complete.
1295	 */
1296	if (spa->spa_async_zio_root != NULL) {
1297		for (int i = 0; i < max_ncpus; i++)
1298			(void) zio_wait(spa->spa_async_zio_root[i]);
1299		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1300		spa->spa_async_zio_root = NULL;
1301	}
1302
1303	bpobj_close(&spa->spa_deferred_bpobj);
1304
1305	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1306
1307	/*
1308	 * Close all vdevs.
1309	 */
1310	if (spa->spa_root_vdev)
1311		vdev_free(spa->spa_root_vdev);
1312	ASSERT(spa->spa_root_vdev == NULL);
1313
1314	/*
1315	 * Close the dsl pool.
1316	 */
1317	if (spa->spa_dsl_pool) {
1318		dsl_pool_close(spa->spa_dsl_pool);
1319		spa->spa_dsl_pool = NULL;
1320		spa->spa_meta_objset = NULL;
1321	}
1322
1323	ddt_unload(spa);
1324
1325
1326	/*
1327	 * Drop and purge level 2 cache
1328	 */
1329	spa_l2cache_drop(spa);
1330
1331	for (i = 0; i < spa->spa_spares.sav_count; i++)
1332		vdev_free(spa->spa_spares.sav_vdevs[i]);
1333	if (spa->spa_spares.sav_vdevs) {
1334		kmem_free(spa->spa_spares.sav_vdevs,
1335		    spa->spa_spares.sav_count * sizeof (void *));
1336		spa->spa_spares.sav_vdevs = NULL;
1337	}
1338	if (spa->spa_spares.sav_config) {
1339		nvlist_free(spa->spa_spares.sav_config);
1340		spa->spa_spares.sav_config = NULL;
1341	}
1342	spa->spa_spares.sav_count = 0;
1343
1344	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1345		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1346		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1347	}
1348	if (spa->spa_l2cache.sav_vdevs) {
1349		kmem_free(spa->spa_l2cache.sav_vdevs,
1350		    spa->spa_l2cache.sav_count * sizeof (void *));
1351		spa->spa_l2cache.sav_vdevs = NULL;
1352	}
1353	if (spa->spa_l2cache.sav_config) {
1354		nvlist_free(spa->spa_l2cache.sav_config);
1355		spa->spa_l2cache.sav_config = NULL;
1356	}
1357	spa->spa_l2cache.sav_count = 0;
1358
1359	spa->spa_async_suspended = 0;
1360
1361	if (spa->spa_comment != NULL) {
1362		spa_strfree(spa->spa_comment);
1363		spa->spa_comment = NULL;
1364	}
1365
1366	spa_config_exit(spa, SCL_ALL, FTAG);
1367}
1368
1369/*
1370 * Load (or re-load) the current list of vdevs describing the active spares for
1371 * this pool.  When this is called, we have some form of basic information in
1372 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1373 * then re-generate a more complete list including status information.
1374 */
1375static void
1376spa_load_spares(spa_t *spa)
1377{
1378	nvlist_t **spares;
1379	uint_t nspares;
1380	int i;
1381	vdev_t *vd, *tvd;
1382
1383	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1384
1385	/*
1386	 * First, close and free any existing spare vdevs.
1387	 */
1388	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1389		vd = spa->spa_spares.sav_vdevs[i];
1390
1391		/* Undo the call to spa_activate() below */
1392		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1393		    B_FALSE)) != NULL && tvd->vdev_isspare)
1394			spa_spare_remove(tvd);
1395		vdev_close(vd);
1396		vdev_free(vd);
1397	}
1398
1399	if (spa->spa_spares.sav_vdevs)
1400		kmem_free(spa->spa_spares.sav_vdevs,
1401		    spa->spa_spares.sav_count * sizeof (void *));
1402
1403	if (spa->spa_spares.sav_config == NULL)
1404		nspares = 0;
1405	else
1406		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1407		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1408
1409	spa->spa_spares.sav_count = (int)nspares;
1410	spa->spa_spares.sav_vdevs = NULL;
1411
1412	if (nspares == 0)
1413		return;
1414
1415	/*
1416	 * Construct the array of vdevs, opening them to get status in the
1417	 * process.   For each spare, there is potentially two different vdev_t
1418	 * structures associated with it: one in the list of spares (used only
1419	 * for basic validation purposes) and one in the active vdev
1420	 * configuration (if it's spared in).  During this phase we open and
1421	 * validate each vdev on the spare list.  If the vdev also exists in the
1422	 * active configuration, then we also mark this vdev as an active spare.
1423	 */
1424	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1425	    KM_SLEEP);
1426	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1427		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1428		    VDEV_ALLOC_SPARE) == 0);
1429		ASSERT(vd != NULL);
1430
1431		spa->spa_spares.sav_vdevs[i] = vd;
1432
1433		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1434		    B_FALSE)) != NULL) {
1435			if (!tvd->vdev_isspare)
1436				spa_spare_add(tvd);
1437
1438			/*
1439			 * We only mark the spare active if we were successfully
1440			 * able to load the vdev.  Otherwise, importing a pool
1441			 * with a bad active spare would result in strange
1442			 * behavior, because multiple pool would think the spare
1443			 * is actively in use.
1444			 *
1445			 * There is a vulnerability here to an equally bizarre
1446			 * circumstance, where a dead active spare is later
1447			 * brought back to life (onlined or otherwise).  Given
1448			 * the rarity of this scenario, and the extra complexity
1449			 * it adds, we ignore the possibility.
1450			 */
1451			if (!vdev_is_dead(tvd))
1452				spa_spare_activate(tvd);
1453		}
1454
1455		vd->vdev_top = vd;
1456		vd->vdev_aux = &spa->spa_spares;
1457
1458		if (vdev_open(vd) != 0)
1459			continue;
1460
1461		if (vdev_validate_aux(vd) == 0)
1462			spa_spare_add(vd);
1463	}
1464
1465	/*
1466	 * Recompute the stashed list of spares, with status information
1467	 * this time.
1468	 */
1469	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1470	    DATA_TYPE_NVLIST_ARRAY) == 0);
1471
1472	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1473	    KM_SLEEP);
1474	for (i = 0; i < spa->spa_spares.sav_count; i++)
1475		spares[i] = vdev_config_generate(spa,
1476		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1477	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1478	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1479	for (i = 0; i < spa->spa_spares.sav_count; i++)
1480		nvlist_free(spares[i]);
1481	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1482}
1483
1484/*
1485 * Load (or re-load) the current list of vdevs describing the active l2cache for
1486 * this pool.  When this is called, we have some form of basic information in
1487 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1488 * then re-generate a more complete list including status information.
1489 * Devices which are already active have their details maintained, and are
1490 * not re-opened.
1491 */
1492static void
1493spa_load_l2cache(spa_t *spa)
1494{
1495	nvlist_t **l2cache;
1496	uint_t nl2cache;
1497	int i, j, oldnvdevs;
1498	uint64_t guid;
1499	vdev_t *vd, **oldvdevs, **newvdevs;
1500	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1501
1502	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1503
1504	if (sav->sav_config != NULL) {
1505		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1506		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1507		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1508	} else {
1509		nl2cache = 0;
1510		newvdevs = NULL;
1511	}
1512
1513	oldvdevs = sav->sav_vdevs;
1514	oldnvdevs = sav->sav_count;
1515	sav->sav_vdevs = NULL;
1516	sav->sav_count = 0;
1517
1518	/*
1519	 * Process new nvlist of vdevs.
1520	 */
1521	for (i = 0; i < nl2cache; i++) {
1522		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1523		    &guid) == 0);
1524
1525		newvdevs[i] = NULL;
1526		for (j = 0; j < oldnvdevs; j++) {
1527			vd = oldvdevs[j];
1528			if (vd != NULL && guid == vd->vdev_guid) {
1529				/*
1530				 * Retain previous vdev for add/remove ops.
1531				 */
1532				newvdevs[i] = vd;
1533				oldvdevs[j] = NULL;
1534				break;
1535			}
1536		}
1537
1538		if (newvdevs[i] == NULL) {
1539			/*
1540			 * Create new vdev
1541			 */
1542			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1543			    VDEV_ALLOC_L2CACHE) == 0);
1544			ASSERT(vd != NULL);
1545			newvdevs[i] = vd;
1546
1547			/*
1548			 * Commit this vdev as an l2cache device,
1549			 * even if it fails to open.
1550			 */
1551			spa_l2cache_add(vd);
1552
1553			vd->vdev_top = vd;
1554			vd->vdev_aux = sav;
1555
1556			spa_l2cache_activate(vd);
1557
1558			if (vdev_open(vd) != 0)
1559				continue;
1560
1561			(void) vdev_validate_aux(vd);
1562
1563			if (!vdev_is_dead(vd))
1564				l2arc_add_vdev(spa, vd);
1565		}
1566	}
1567
1568	/*
1569	 * Purge vdevs that were dropped
1570	 */
1571	for (i = 0; i < oldnvdevs; i++) {
1572		uint64_t pool;
1573
1574		vd = oldvdevs[i];
1575		if (vd != NULL) {
1576			ASSERT(vd->vdev_isl2cache);
1577
1578			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1579			    pool != 0ULL && l2arc_vdev_present(vd))
1580				l2arc_remove_vdev(vd);
1581			vdev_clear_stats(vd);
1582			vdev_free(vd);
1583		}
1584	}
1585
1586	if (oldvdevs)
1587		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1588
1589	if (sav->sav_config == NULL)
1590		goto out;
1591
1592	sav->sav_vdevs = newvdevs;
1593	sav->sav_count = (int)nl2cache;
1594
1595	/*
1596	 * Recompute the stashed list of l2cache devices, with status
1597	 * information this time.
1598	 */
1599	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1600	    DATA_TYPE_NVLIST_ARRAY) == 0);
1601
1602	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1603	for (i = 0; i < sav->sav_count; i++)
1604		l2cache[i] = vdev_config_generate(spa,
1605		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1606	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1607	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1608out:
1609	for (i = 0; i < sav->sav_count; i++)
1610		nvlist_free(l2cache[i]);
1611	if (sav->sav_count)
1612		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1613}
1614
1615static int
1616load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1617{
1618	dmu_buf_t *db;
1619	char *packed = NULL;
1620	size_t nvsize = 0;
1621	int error;
1622	*value = NULL;
1623
1624	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1625	if (error != 0)
1626		return (error);
1627	nvsize = *(uint64_t *)db->db_data;
1628	dmu_buf_rele(db, FTAG);
1629
1630	packed = kmem_alloc(nvsize, KM_SLEEP);
1631	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1632	    DMU_READ_PREFETCH);
1633	if (error == 0)
1634		error = nvlist_unpack(packed, nvsize, value, 0);
1635	kmem_free(packed, nvsize);
1636
1637	return (error);
1638}
1639
1640/*
1641 * Checks to see if the given vdev could not be opened, in which case we post a
1642 * sysevent to notify the autoreplace code that the device has been removed.
1643 */
1644static void
1645spa_check_removed(vdev_t *vd)
1646{
1647	for (int c = 0; c < vd->vdev_children; c++)
1648		spa_check_removed(vd->vdev_child[c]);
1649
1650	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1651	    !vd->vdev_ishole) {
1652		zfs_post_autoreplace(vd->vdev_spa, vd);
1653		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1654	}
1655}
1656
1657/*
1658 * Validate the current config against the MOS config
1659 */
1660static boolean_t
1661spa_config_valid(spa_t *spa, nvlist_t *config)
1662{
1663	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1664	nvlist_t *nv;
1665
1666	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1667
1668	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1669	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1670
1671	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1672
1673	/*
1674	 * If we're doing a normal import, then build up any additional
1675	 * diagnostic information about missing devices in this config.
1676	 * We'll pass this up to the user for further processing.
1677	 */
1678	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1679		nvlist_t **child, *nv;
1680		uint64_t idx = 0;
1681
1682		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1683		    KM_SLEEP);
1684		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1685
1686		for (int c = 0; c < rvd->vdev_children; c++) {
1687			vdev_t *tvd = rvd->vdev_child[c];
1688			vdev_t *mtvd  = mrvd->vdev_child[c];
1689
1690			if (tvd->vdev_ops == &vdev_missing_ops &&
1691			    mtvd->vdev_ops != &vdev_missing_ops &&
1692			    mtvd->vdev_islog)
1693				child[idx++] = vdev_config_generate(spa, mtvd,
1694				    B_FALSE, 0);
1695		}
1696
1697		if (idx) {
1698			VERIFY(nvlist_add_nvlist_array(nv,
1699			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1700			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1701			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1702
1703			for (int i = 0; i < idx; i++)
1704				nvlist_free(child[i]);
1705		}
1706		nvlist_free(nv);
1707		kmem_free(child, rvd->vdev_children * sizeof (char **));
1708	}
1709
1710	/*
1711	 * Compare the root vdev tree with the information we have
1712	 * from the MOS config (mrvd). Check each top-level vdev
1713	 * with the corresponding MOS config top-level (mtvd).
1714	 */
1715	for (int c = 0; c < rvd->vdev_children; c++) {
1716		vdev_t *tvd = rvd->vdev_child[c];
1717		vdev_t *mtvd  = mrvd->vdev_child[c];
1718
1719		/*
1720		 * Resolve any "missing" vdevs in the current configuration.
1721		 * If we find that the MOS config has more accurate information
1722		 * about the top-level vdev then use that vdev instead.
1723		 */
1724		if (tvd->vdev_ops == &vdev_missing_ops &&
1725		    mtvd->vdev_ops != &vdev_missing_ops) {
1726
1727			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1728				continue;
1729
1730			/*
1731			 * Device specific actions.
1732			 */
1733			if (mtvd->vdev_islog) {
1734				spa_set_log_state(spa, SPA_LOG_CLEAR);
1735			} else {
1736				/*
1737				 * XXX - once we have 'readonly' pool
1738				 * support we should be able to handle
1739				 * missing data devices by transitioning
1740				 * the pool to readonly.
1741				 */
1742				continue;
1743			}
1744
1745			/*
1746			 * Swap the missing vdev with the data we were
1747			 * able to obtain from the MOS config.
1748			 */
1749			vdev_remove_child(rvd, tvd);
1750			vdev_remove_child(mrvd, mtvd);
1751
1752			vdev_add_child(rvd, mtvd);
1753			vdev_add_child(mrvd, tvd);
1754
1755			spa_config_exit(spa, SCL_ALL, FTAG);
1756			vdev_load(mtvd);
1757			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1758
1759			vdev_reopen(rvd);
1760		} else if (mtvd->vdev_islog) {
1761			/*
1762			 * Load the slog device's state from the MOS config
1763			 * since it's possible that the label does not
1764			 * contain the most up-to-date information.
1765			 */
1766			vdev_load_log_state(tvd, mtvd);
1767			vdev_reopen(tvd);
1768		}
1769	}
1770	vdev_free(mrvd);
1771	spa_config_exit(spa, SCL_ALL, FTAG);
1772
1773	/*
1774	 * Ensure we were able to validate the config.
1775	 */
1776	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1777}
1778
1779/*
1780 * Check for missing log devices
1781 */
1782static boolean_t
1783spa_check_logs(spa_t *spa)
1784{
1785	boolean_t rv = B_FALSE;
1786
1787	switch (spa->spa_log_state) {
1788	case SPA_LOG_MISSING:
1789		/* need to recheck in case slog has been restored */
1790	case SPA_LOG_UNKNOWN:
1791		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1792		    NULL, DS_FIND_CHILDREN) != 0);
1793		if (rv)
1794			spa_set_log_state(spa, SPA_LOG_MISSING);
1795		break;
1796	}
1797	return (rv);
1798}
1799
1800static boolean_t
1801spa_passivate_log(spa_t *spa)
1802{
1803	vdev_t *rvd = spa->spa_root_vdev;
1804	boolean_t slog_found = B_FALSE;
1805
1806	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1807
1808	if (!spa_has_slogs(spa))
1809		return (B_FALSE);
1810
1811	for (int c = 0; c < rvd->vdev_children; c++) {
1812		vdev_t *tvd = rvd->vdev_child[c];
1813		metaslab_group_t *mg = tvd->vdev_mg;
1814
1815		if (tvd->vdev_islog) {
1816			metaslab_group_passivate(mg);
1817			slog_found = B_TRUE;
1818		}
1819	}
1820
1821	return (slog_found);
1822}
1823
1824static void
1825spa_activate_log(spa_t *spa)
1826{
1827	vdev_t *rvd = spa->spa_root_vdev;
1828
1829	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1830
1831	for (int c = 0; c < rvd->vdev_children; c++) {
1832		vdev_t *tvd = rvd->vdev_child[c];
1833		metaslab_group_t *mg = tvd->vdev_mg;
1834
1835		if (tvd->vdev_islog)
1836			metaslab_group_activate(mg);
1837	}
1838}
1839
1840int
1841spa_offline_log(spa_t *spa)
1842{
1843	int error;
1844
1845	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1846	    NULL, DS_FIND_CHILDREN);
1847	if (error == 0) {
1848		/*
1849		 * We successfully offlined the log device, sync out the
1850		 * current txg so that the "stubby" block can be removed
1851		 * by zil_sync().
1852		 */
1853		txg_wait_synced(spa->spa_dsl_pool, 0);
1854	}
1855	return (error);
1856}
1857
1858static void
1859spa_aux_check_removed(spa_aux_vdev_t *sav)
1860{
1861	int i;
1862
1863	for (i = 0; i < sav->sav_count; i++)
1864		spa_check_removed(sav->sav_vdevs[i]);
1865}
1866
1867void
1868spa_claim_notify(zio_t *zio)
1869{
1870	spa_t *spa = zio->io_spa;
1871
1872	if (zio->io_error)
1873		return;
1874
1875	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1876	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1877		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1878	mutex_exit(&spa->spa_props_lock);
1879}
1880
1881typedef struct spa_load_error {
1882	uint64_t	sle_meta_count;
1883	uint64_t	sle_data_count;
1884} spa_load_error_t;
1885
1886static void
1887spa_load_verify_done(zio_t *zio)
1888{
1889	blkptr_t *bp = zio->io_bp;
1890	spa_load_error_t *sle = zio->io_private;
1891	dmu_object_type_t type = BP_GET_TYPE(bp);
1892	int error = zio->io_error;
1893	spa_t *spa = zio->io_spa;
1894
1895	if (error) {
1896		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1897		    type != DMU_OT_INTENT_LOG)
1898			atomic_inc_64(&sle->sle_meta_count);
1899		else
1900			atomic_inc_64(&sle->sle_data_count);
1901	}
1902	zio_data_buf_free(zio->io_data, zio->io_size);
1903
1904	mutex_enter(&spa->spa_scrub_lock);
1905	spa->spa_scrub_inflight--;
1906	cv_broadcast(&spa->spa_scrub_io_cv);
1907	mutex_exit(&spa->spa_scrub_lock);
1908}
1909
1910/*
1911 * Maximum number of concurrent scrub i/os to create while verifying
1912 * a pool while importing it.
1913 */
1914int spa_load_verify_maxinflight = 10000;
1915boolean_t spa_load_verify_metadata = B_TRUE;
1916boolean_t spa_load_verify_data = B_TRUE;
1917
1918SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1919    &spa_load_verify_maxinflight, 0,
1920    "Maximum number of concurrent scrub I/Os to create while verifying a "
1921    "pool while importing it");
1922
1923SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1924    &spa_load_verify_metadata, 0,
1925    "Check metadata on import?");
1926
1927SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1928    &spa_load_verify_data, 0,
1929    "Check user data on import?");
1930
1931/*ARGSUSED*/
1932static int
1933spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1934    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1935{
1936	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1937		return (0);
1938	/*
1939	 * Note: normally this routine will not be called if
1940	 * spa_load_verify_metadata is not set.  However, it may be useful
1941	 * to manually set the flag after the traversal has begun.
1942	 */
1943	if (!spa_load_verify_metadata)
1944		return (0);
1945	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1946		return (0);
1947
1948	zio_t *rio = arg;
1949	size_t size = BP_GET_PSIZE(bp);
1950	void *data = zio_data_buf_alloc(size);
1951
1952	mutex_enter(&spa->spa_scrub_lock);
1953	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1954		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1955	spa->spa_scrub_inflight++;
1956	mutex_exit(&spa->spa_scrub_lock);
1957
1958	zio_nowait(zio_read(rio, spa, bp, data, size,
1959	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1960	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1961	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1962	return (0);
1963}
1964
1965static int
1966spa_load_verify(spa_t *spa)
1967{
1968	zio_t *rio;
1969	spa_load_error_t sle = { 0 };
1970	zpool_rewind_policy_t policy;
1971	boolean_t verify_ok = B_FALSE;
1972	int error = 0;
1973
1974	zpool_get_rewind_policy(spa->spa_config, &policy);
1975
1976	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1977		return (0);
1978
1979	rio = zio_root(spa, NULL, &sle,
1980	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1981
1982	if (spa_load_verify_metadata) {
1983		error = traverse_pool(spa, spa->spa_verify_min_txg,
1984		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1985		    spa_load_verify_cb, rio);
1986	}
1987
1988	(void) zio_wait(rio);
1989
1990	spa->spa_load_meta_errors = sle.sle_meta_count;
1991	spa->spa_load_data_errors = sle.sle_data_count;
1992
1993	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1994	    sle.sle_data_count <= policy.zrp_maxdata) {
1995		int64_t loss = 0;
1996
1997		verify_ok = B_TRUE;
1998		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1999		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2000
2001		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2002		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2003		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2004		VERIFY(nvlist_add_int64(spa->spa_load_info,
2005		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2006		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2007		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2008	} else {
2009		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2010	}
2011
2012	if (error) {
2013		if (error != ENXIO && error != EIO)
2014			error = SET_ERROR(EIO);
2015		return (error);
2016	}
2017
2018	return (verify_ok ? 0 : EIO);
2019}
2020
2021/*
2022 * Find a value in the pool props object.
2023 */
2024static void
2025spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2026{
2027	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2028	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2029}
2030
2031/*
2032 * Find a value in the pool directory object.
2033 */
2034static int
2035spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2036{
2037	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2038	    name, sizeof (uint64_t), 1, val));
2039}
2040
2041static int
2042spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2043{
2044	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2045	return (err);
2046}
2047
2048/*
2049 * Fix up config after a partly-completed split.  This is done with the
2050 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2051 * pool have that entry in their config, but only the splitting one contains
2052 * a list of all the guids of the vdevs that are being split off.
2053 *
2054 * This function determines what to do with that list: either rejoin
2055 * all the disks to the pool, or complete the splitting process.  To attempt
2056 * the rejoin, each disk that is offlined is marked online again, and
2057 * we do a reopen() call.  If the vdev label for every disk that was
2058 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2059 * then we call vdev_split() on each disk, and complete the split.
2060 *
2061 * Otherwise we leave the config alone, with all the vdevs in place in
2062 * the original pool.
2063 */
2064static void
2065spa_try_repair(spa_t *spa, nvlist_t *config)
2066{
2067	uint_t extracted;
2068	uint64_t *glist;
2069	uint_t i, gcount;
2070	nvlist_t *nvl;
2071	vdev_t **vd;
2072	boolean_t attempt_reopen;
2073
2074	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2075		return;
2076
2077	/* check that the config is complete */
2078	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2079	    &glist, &gcount) != 0)
2080		return;
2081
2082	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2083
2084	/* attempt to online all the vdevs & validate */
2085	attempt_reopen = B_TRUE;
2086	for (i = 0; i < gcount; i++) {
2087		if (glist[i] == 0)	/* vdev is hole */
2088			continue;
2089
2090		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2091		if (vd[i] == NULL) {
2092			/*
2093			 * Don't bother attempting to reopen the disks;
2094			 * just do the split.
2095			 */
2096			attempt_reopen = B_FALSE;
2097		} else {
2098			/* attempt to re-online it */
2099			vd[i]->vdev_offline = B_FALSE;
2100		}
2101	}
2102
2103	if (attempt_reopen) {
2104		vdev_reopen(spa->spa_root_vdev);
2105
2106		/* check each device to see what state it's in */
2107		for (extracted = 0, i = 0; i < gcount; i++) {
2108			if (vd[i] != NULL &&
2109			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2110				break;
2111			++extracted;
2112		}
2113	}
2114
2115	/*
2116	 * If every disk has been moved to the new pool, or if we never
2117	 * even attempted to look at them, then we split them off for
2118	 * good.
2119	 */
2120	if (!attempt_reopen || gcount == extracted) {
2121		for (i = 0; i < gcount; i++)
2122			if (vd[i] != NULL)
2123				vdev_split(vd[i]);
2124		vdev_reopen(spa->spa_root_vdev);
2125	}
2126
2127	kmem_free(vd, gcount * sizeof (vdev_t *));
2128}
2129
2130static int
2131spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2132    boolean_t mosconfig)
2133{
2134	nvlist_t *config = spa->spa_config;
2135	char *ereport = FM_EREPORT_ZFS_POOL;
2136	char *comment;
2137	int error;
2138	uint64_t pool_guid;
2139	nvlist_t *nvl;
2140
2141	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2142		return (SET_ERROR(EINVAL));
2143
2144	ASSERT(spa->spa_comment == NULL);
2145	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2146		spa->spa_comment = spa_strdup(comment);
2147
2148	/*
2149	 * Versioning wasn't explicitly added to the label until later, so if
2150	 * it's not present treat it as the initial version.
2151	 */
2152	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2153	    &spa->spa_ubsync.ub_version) != 0)
2154		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2155
2156	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2157	    &spa->spa_config_txg);
2158
2159	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2160	    spa_guid_exists(pool_guid, 0)) {
2161		error = SET_ERROR(EEXIST);
2162	} else {
2163		spa->spa_config_guid = pool_guid;
2164
2165		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2166		    &nvl) == 0) {
2167			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2168			    KM_SLEEP) == 0);
2169		}
2170
2171		nvlist_free(spa->spa_load_info);
2172		spa->spa_load_info = fnvlist_alloc();
2173
2174		gethrestime(&spa->spa_loaded_ts);
2175		error = spa_load_impl(spa, pool_guid, config, state, type,
2176		    mosconfig, &ereport);
2177	}
2178
2179	spa->spa_minref = refcount_count(&spa->spa_refcount);
2180	if (error) {
2181		if (error != EEXIST) {
2182			spa->spa_loaded_ts.tv_sec = 0;
2183			spa->spa_loaded_ts.tv_nsec = 0;
2184		}
2185		if (error != EBADF) {
2186			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2187		}
2188	}
2189	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2190	spa->spa_ena = 0;
2191
2192	return (error);
2193}
2194
2195/*
2196 * Load an existing storage pool, using the pool's builtin spa_config as a
2197 * source of configuration information.
2198 */
2199static int
2200spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2201    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2202    char **ereport)
2203{
2204	int error = 0;
2205	nvlist_t *nvroot = NULL;
2206	nvlist_t *label;
2207	vdev_t *rvd;
2208	uberblock_t *ub = &spa->spa_uberblock;
2209	uint64_t children, config_cache_txg = spa->spa_config_txg;
2210	int orig_mode = spa->spa_mode;
2211	int parse;
2212	uint64_t obj;
2213	boolean_t missing_feat_write = B_FALSE;
2214
2215	/*
2216	 * If this is an untrusted config, access the pool in read-only mode.
2217	 * This prevents things like resilvering recently removed devices.
2218	 */
2219	if (!mosconfig)
2220		spa->spa_mode = FREAD;
2221
2222	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2223
2224	spa->spa_load_state = state;
2225
2226	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2227		return (SET_ERROR(EINVAL));
2228
2229	parse = (type == SPA_IMPORT_EXISTING ?
2230	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2231
2232	/*
2233	 * Create "The Godfather" zio to hold all async IOs
2234	 */
2235	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2236	    KM_SLEEP);
2237	for (int i = 0; i < max_ncpus; i++) {
2238		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2239		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2240		    ZIO_FLAG_GODFATHER);
2241	}
2242
2243	/*
2244	 * Parse the configuration into a vdev tree.  We explicitly set the
2245	 * value that will be returned by spa_version() since parsing the
2246	 * configuration requires knowing the version number.
2247	 */
2248	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2249	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2250	spa_config_exit(spa, SCL_ALL, FTAG);
2251
2252	if (error != 0)
2253		return (error);
2254
2255	ASSERT(spa->spa_root_vdev == rvd);
2256	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2257	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2258
2259	if (type != SPA_IMPORT_ASSEMBLE) {
2260		ASSERT(spa_guid(spa) == pool_guid);
2261	}
2262
2263	/*
2264	 * Try to open all vdevs, loading each label in the process.
2265	 */
2266	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2267	error = vdev_open(rvd);
2268	spa_config_exit(spa, SCL_ALL, FTAG);
2269	if (error != 0)
2270		return (error);
2271
2272	/*
2273	 * We need to validate the vdev labels against the configuration that
2274	 * we have in hand, which is dependent on the setting of mosconfig. If
2275	 * mosconfig is true then we're validating the vdev labels based on
2276	 * that config.  Otherwise, we're validating against the cached config
2277	 * (zpool.cache) that was read when we loaded the zfs module, and then
2278	 * later we will recursively call spa_load() and validate against
2279	 * the vdev config.
2280	 *
2281	 * If we're assembling a new pool that's been split off from an
2282	 * existing pool, the labels haven't yet been updated so we skip
2283	 * validation for now.
2284	 */
2285	if (type != SPA_IMPORT_ASSEMBLE) {
2286		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2287		error = vdev_validate(rvd, mosconfig);
2288		spa_config_exit(spa, SCL_ALL, FTAG);
2289
2290		if (error != 0)
2291			return (error);
2292
2293		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2294			return (SET_ERROR(ENXIO));
2295	}
2296
2297	/*
2298	 * Find the best uberblock.
2299	 */
2300	vdev_uberblock_load(rvd, ub, &label);
2301
2302	/*
2303	 * If we weren't able to find a single valid uberblock, return failure.
2304	 */
2305	if (ub->ub_txg == 0) {
2306		nvlist_free(label);
2307		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2308	}
2309
2310	/*
2311	 * If the pool has an unsupported version we can't open it.
2312	 */
2313	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2314		nvlist_free(label);
2315		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2316	}
2317
2318	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2319		nvlist_t *features;
2320
2321		/*
2322		 * If we weren't able to find what's necessary for reading the
2323		 * MOS in the label, return failure.
2324		 */
2325		if (label == NULL || nvlist_lookup_nvlist(label,
2326		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2327			nvlist_free(label);
2328			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2329			    ENXIO));
2330		}
2331
2332		/*
2333		 * Update our in-core representation with the definitive values
2334		 * from the label.
2335		 */
2336		nvlist_free(spa->spa_label_features);
2337		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2338	}
2339
2340	nvlist_free(label);
2341
2342	/*
2343	 * Look through entries in the label nvlist's features_for_read. If
2344	 * there is a feature listed there which we don't understand then we
2345	 * cannot open a pool.
2346	 */
2347	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2348		nvlist_t *unsup_feat;
2349
2350		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2351		    0);
2352
2353		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2354		    NULL); nvp != NULL;
2355		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2356			if (!zfeature_is_supported(nvpair_name(nvp))) {
2357				VERIFY(nvlist_add_string(unsup_feat,
2358				    nvpair_name(nvp), "") == 0);
2359			}
2360		}
2361
2362		if (!nvlist_empty(unsup_feat)) {
2363			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2364			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2365			nvlist_free(unsup_feat);
2366			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2367			    ENOTSUP));
2368		}
2369
2370		nvlist_free(unsup_feat);
2371	}
2372
2373	/*
2374	 * If the vdev guid sum doesn't match the uberblock, we have an
2375	 * incomplete configuration.  We first check to see if the pool
2376	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2377	 * If it is, defer the vdev_guid_sum check till later so we
2378	 * can handle missing vdevs.
2379	 */
2380	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2381	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2382	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2383		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2384
2385	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2386		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2387		spa_try_repair(spa, config);
2388		spa_config_exit(spa, SCL_ALL, FTAG);
2389		nvlist_free(spa->spa_config_splitting);
2390		spa->spa_config_splitting = NULL;
2391	}
2392
2393	/*
2394	 * Initialize internal SPA structures.
2395	 */
2396	spa->spa_state = POOL_STATE_ACTIVE;
2397	spa->spa_ubsync = spa->spa_uberblock;
2398	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2399	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2400	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2401	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2402	spa->spa_claim_max_txg = spa->spa_first_txg;
2403	spa->spa_prev_software_version = ub->ub_software_version;
2404
2405	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2406	if (error)
2407		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2408	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2409
2410	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2411		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2412
2413	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2414		boolean_t missing_feat_read = B_FALSE;
2415		nvlist_t *unsup_feat, *enabled_feat;
2416
2417		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2418		    &spa->spa_feat_for_read_obj) != 0) {
2419			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420		}
2421
2422		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2423		    &spa->spa_feat_for_write_obj) != 0) {
2424			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425		}
2426
2427		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2428		    &spa->spa_feat_desc_obj) != 0) {
2429			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2430		}
2431
2432		enabled_feat = fnvlist_alloc();
2433		unsup_feat = fnvlist_alloc();
2434
2435		if (!spa_features_check(spa, B_FALSE,
2436		    unsup_feat, enabled_feat))
2437			missing_feat_read = B_TRUE;
2438
2439		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2440			if (!spa_features_check(spa, B_TRUE,
2441			    unsup_feat, enabled_feat)) {
2442				missing_feat_write = B_TRUE;
2443			}
2444		}
2445
2446		fnvlist_add_nvlist(spa->spa_load_info,
2447		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2448
2449		if (!nvlist_empty(unsup_feat)) {
2450			fnvlist_add_nvlist(spa->spa_load_info,
2451			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2452		}
2453
2454		fnvlist_free(enabled_feat);
2455		fnvlist_free(unsup_feat);
2456
2457		if (!missing_feat_read) {
2458			fnvlist_add_boolean(spa->spa_load_info,
2459			    ZPOOL_CONFIG_CAN_RDONLY);
2460		}
2461
2462		/*
2463		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2464		 * twofold: to determine whether the pool is available for
2465		 * import in read-write mode and (if it is not) whether the
2466		 * pool is available for import in read-only mode. If the pool
2467		 * is available for import in read-write mode, it is displayed
2468		 * as available in userland; if it is not available for import
2469		 * in read-only mode, it is displayed as unavailable in
2470		 * userland. If the pool is available for import in read-only
2471		 * mode but not read-write mode, it is displayed as unavailable
2472		 * in userland with a special note that the pool is actually
2473		 * available for open in read-only mode.
2474		 *
2475		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2476		 * missing a feature for write, we must first determine whether
2477		 * the pool can be opened read-only before returning to
2478		 * userland in order to know whether to display the
2479		 * abovementioned note.
2480		 */
2481		if (missing_feat_read || (missing_feat_write &&
2482		    spa_writeable(spa))) {
2483			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2484			    ENOTSUP));
2485		}
2486
2487		/*
2488		 * Load refcounts for ZFS features from disk into an in-memory
2489		 * cache during SPA initialization.
2490		 */
2491		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2492			uint64_t refcount;
2493
2494			error = feature_get_refcount_from_disk(spa,
2495			    &spa_feature_table[i], &refcount);
2496			if (error == 0) {
2497				spa->spa_feat_refcount_cache[i] = refcount;
2498			} else if (error == ENOTSUP) {
2499				spa->spa_feat_refcount_cache[i] =
2500				    SPA_FEATURE_DISABLED;
2501			} else {
2502				return (spa_vdev_err(rvd,
2503				    VDEV_AUX_CORRUPT_DATA, EIO));
2504			}
2505		}
2506	}
2507
2508	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2509		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2510		    &spa->spa_feat_enabled_txg_obj) != 0)
2511			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512	}
2513
2514	spa->spa_is_initializing = B_TRUE;
2515	error = dsl_pool_open(spa->spa_dsl_pool);
2516	spa->spa_is_initializing = B_FALSE;
2517	if (error != 0)
2518		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2519
2520	if (!mosconfig) {
2521		uint64_t hostid;
2522		nvlist_t *policy = NULL, *nvconfig;
2523
2524		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2525			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526
2527		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2528		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2529			char *hostname;
2530			unsigned long myhostid = 0;
2531
2532			VERIFY(nvlist_lookup_string(nvconfig,
2533			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2534
2535#ifdef	_KERNEL
2536			myhostid = zone_get_hostid(NULL);
2537#else	/* _KERNEL */
2538			/*
2539			 * We're emulating the system's hostid in userland, so
2540			 * we can't use zone_get_hostid().
2541			 */
2542			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2543#endif	/* _KERNEL */
2544			if (check_hostid && hostid != 0 && myhostid != 0 &&
2545			    hostid != myhostid) {
2546				nvlist_free(nvconfig);
2547				cmn_err(CE_WARN, "pool '%s' could not be "
2548				    "loaded as it was last accessed by "
2549				    "another system (host: %s hostid: 0x%lx). "
2550				    "See: http://illumos.org/msg/ZFS-8000-EY",
2551				    spa_name(spa), hostname,
2552				    (unsigned long)hostid);
2553				return (SET_ERROR(EBADF));
2554			}
2555		}
2556		if (nvlist_lookup_nvlist(spa->spa_config,
2557		    ZPOOL_REWIND_POLICY, &policy) == 0)
2558			VERIFY(nvlist_add_nvlist(nvconfig,
2559			    ZPOOL_REWIND_POLICY, policy) == 0);
2560
2561		spa_config_set(spa, nvconfig);
2562		spa_unload(spa);
2563		spa_deactivate(spa);
2564		spa_activate(spa, orig_mode);
2565
2566		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2567	}
2568
2569	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2570		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2572	if (error != 0)
2573		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2574
2575	/*
2576	 * Load the bit that tells us to use the new accounting function
2577	 * (raid-z deflation).  If we have an older pool, this will not
2578	 * be present.
2579	 */
2580	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2581	if (error != 0 && error != ENOENT)
2582		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2583
2584	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2585	    &spa->spa_creation_version);
2586	if (error != 0 && error != ENOENT)
2587		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2588
2589	/*
2590	 * Load the persistent error log.  If we have an older pool, this will
2591	 * not be present.
2592	 */
2593	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2594	if (error != 0 && error != ENOENT)
2595		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596
2597	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2598	    &spa->spa_errlog_scrub);
2599	if (error != 0 && error != ENOENT)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601
2602	/*
2603	 * Load the history object.  If we have an older pool, this
2604	 * will not be present.
2605	 */
2606	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2607	if (error != 0 && error != ENOENT)
2608		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609
2610	/*
2611	 * If we're assembling the pool from the split-off vdevs of
2612	 * an existing pool, we don't want to attach the spares & cache
2613	 * devices.
2614	 */
2615
2616	/*
2617	 * Load any hot spares for this pool.
2618	 */
2619	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2620	if (error != 0 && error != ENOENT)
2621		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2622	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2623		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2624		if (load_nvlist(spa, spa->spa_spares.sav_object,
2625		    &spa->spa_spares.sav_config) != 0)
2626			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2627
2628		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2629		spa_load_spares(spa);
2630		spa_config_exit(spa, SCL_ALL, FTAG);
2631	} else if (error == 0) {
2632		spa->spa_spares.sav_sync = B_TRUE;
2633	}
2634
2635	/*
2636	 * Load any level 2 ARC devices for this pool.
2637	 */
2638	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2639	    &spa->spa_l2cache.sav_object);
2640	if (error != 0 && error != ENOENT)
2641		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2642	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2643		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2644		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2645		    &spa->spa_l2cache.sav_config) != 0)
2646			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2647
2648		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2649		spa_load_l2cache(spa);
2650		spa_config_exit(spa, SCL_ALL, FTAG);
2651	} else if (error == 0) {
2652		spa->spa_l2cache.sav_sync = B_TRUE;
2653	}
2654
2655	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2656
2657	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2658	if (error && error != ENOENT)
2659		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2660
2661	if (error == 0) {
2662		uint64_t autoreplace;
2663
2664		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2665		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2666		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2667		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2668		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2669		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2670		    &spa->spa_dedup_ditto);
2671
2672		spa->spa_autoreplace = (autoreplace != 0);
2673	}
2674
2675	/*
2676	 * If the 'autoreplace' property is set, then post a resource notifying
2677	 * the ZFS DE that it should not issue any faults for unopenable
2678	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2679	 * unopenable vdevs so that the normal autoreplace handler can take
2680	 * over.
2681	 */
2682	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2683		spa_check_removed(spa->spa_root_vdev);
2684		/*
2685		 * For the import case, this is done in spa_import(), because
2686		 * at this point we're using the spare definitions from
2687		 * the MOS config, not necessarily from the userland config.
2688		 */
2689		if (state != SPA_LOAD_IMPORT) {
2690			spa_aux_check_removed(&spa->spa_spares);
2691			spa_aux_check_removed(&spa->spa_l2cache);
2692		}
2693	}
2694
2695	/*
2696	 * Load the vdev state for all toplevel vdevs.
2697	 */
2698	vdev_load(rvd);
2699
2700	/*
2701	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2702	 */
2703	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2704	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2705	spa_config_exit(spa, SCL_ALL, FTAG);
2706
2707	/*
2708	 * Load the DDTs (dedup tables).
2709	 */
2710	error = ddt_load(spa);
2711	if (error != 0)
2712		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2713
2714	spa_update_dspace(spa);
2715
2716	/*
2717	 * Validate the config, using the MOS config to fill in any
2718	 * information which might be missing.  If we fail to validate
2719	 * the config then declare the pool unfit for use. If we're
2720	 * assembling a pool from a split, the log is not transferred
2721	 * over.
2722	 */
2723	if (type != SPA_IMPORT_ASSEMBLE) {
2724		nvlist_t *nvconfig;
2725
2726		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2727			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2728
2729		if (!spa_config_valid(spa, nvconfig)) {
2730			nvlist_free(nvconfig);
2731			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2732			    ENXIO));
2733		}
2734		nvlist_free(nvconfig);
2735
2736		/*
2737		 * Now that we've validated the config, check the state of the
2738		 * root vdev.  If it can't be opened, it indicates one or
2739		 * more toplevel vdevs are faulted.
2740		 */
2741		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2742			return (SET_ERROR(ENXIO));
2743
2744		if (spa_check_logs(spa)) {
2745			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2746			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2747		}
2748	}
2749
2750	if (missing_feat_write) {
2751		ASSERT(state == SPA_LOAD_TRYIMPORT);
2752
2753		/*
2754		 * At this point, we know that we can open the pool in
2755		 * read-only mode but not read-write mode. We now have enough
2756		 * information and can return to userland.
2757		 */
2758		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2759	}
2760
2761	/*
2762	 * We've successfully opened the pool, verify that we're ready
2763	 * to start pushing transactions.
2764	 */
2765	if (state != SPA_LOAD_TRYIMPORT) {
2766		if (error = spa_load_verify(spa))
2767			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2768			    error));
2769	}
2770
2771	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2772	    spa->spa_load_max_txg == UINT64_MAX)) {
2773		dmu_tx_t *tx;
2774		int need_update = B_FALSE;
2775
2776		ASSERT(state != SPA_LOAD_TRYIMPORT);
2777
2778		/*
2779		 * Claim log blocks that haven't been committed yet.
2780		 * This must all happen in a single txg.
2781		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2782		 * invoked from zil_claim_log_block()'s i/o done callback.
2783		 * Price of rollback is that we abandon the log.
2784		 */
2785		spa->spa_claiming = B_TRUE;
2786
2787		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2788		    spa_first_txg(spa));
2789		(void) dmu_objset_find(spa_name(spa),
2790		    zil_claim, tx, DS_FIND_CHILDREN);
2791		dmu_tx_commit(tx);
2792
2793		spa->spa_claiming = B_FALSE;
2794
2795		spa_set_log_state(spa, SPA_LOG_GOOD);
2796		spa->spa_sync_on = B_TRUE;
2797		txg_sync_start(spa->spa_dsl_pool);
2798
2799		/*
2800		 * Wait for all claims to sync.  We sync up to the highest
2801		 * claimed log block birth time so that claimed log blocks
2802		 * don't appear to be from the future.  spa_claim_max_txg
2803		 * will have been set for us by either zil_check_log_chain()
2804		 * (invoked from spa_check_logs()) or zil_claim() above.
2805		 */
2806		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2807
2808		/*
2809		 * If the config cache is stale, or we have uninitialized
2810		 * metaslabs (see spa_vdev_add()), then update the config.
2811		 *
2812		 * If this is a verbatim import, trust the current
2813		 * in-core spa_config and update the disk labels.
2814		 */
2815		if (config_cache_txg != spa->spa_config_txg ||
2816		    state == SPA_LOAD_IMPORT ||
2817		    state == SPA_LOAD_RECOVER ||
2818		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2819			need_update = B_TRUE;
2820
2821		for (int c = 0; c < rvd->vdev_children; c++)
2822			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2823				need_update = B_TRUE;
2824
2825		/*
2826		 * Update the config cache asychronously in case we're the
2827		 * root pool, in which case the config cache isn't writable yet.
2828		 */
2829		if (need_update)
2830			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2831
2832		/*
2833		 * Check all DTLs to see if anything needs resilvering.
2834		 */
2835		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2836		    vdev_resilver_needed(rvd, NULL, NULL))
2837			spa_async_request(spa, SPA_ASYNC_RESILVER);
2838
2839		/*
2840		 * Log the fact that we booted up (so that we can detect if
2841		 * we rebooted in the middle of an operation).
2842		 */
2843		spa_history_log_version(spa, "open");
2844
2845		/*
2846		 * Delete any inconsistent datasets.
2847		 */
2848		(void) dmu_objset_find(spa_name(spa),
2849		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2850
2851		/*
2852		 * Clean up any stale temporary dataset userrefs.
2853		 */
2854		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2855	}
2856
2857	return (0);
2858}
2859
2860static int
2861spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2862{
2863	int mode = spa->spa_mode;
2864
2865	spa_unload(spa);
2866	spa_deactivate(spa);
2867
2868	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2869
2870	spa_activate(spa, mode);
2871	spa_async_suspend(spa);
2872
2873	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2874}
2875
2876/*
2877 * If spa_load() fails this function will try loading prior txg's. If
2878 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2879 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2880 * function will not rewind the pool and will return the same error as
2881 * spa_load().
2882 */
2883static int
2884spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2885    uint64_t max_request, int rewind_flags)
2886{
2887	nvlist_t *loadinfo = NULL;
2888	nvlist_t *config = NULL;
2889	int load_error, rewind_error;
2890	uint64_t safe_rewind_txg;
2891	uint64_t min_txg;
2892
2893	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2894		spa->spa_load_max_txg = spa->spa_load_txg;
2895		spa_set_log_state(spa, SPA_LOG_CLEAR);
2896	} else {
2897		spa->spa_load_max_txg = max_request;
2898		if (max_request != UINT64_MAX)
2899			spa->spa_extreme_rewind = B_TRUE;
2900	}
2901
2902	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2903	    mosconfig);
2904	if (load_error == 0)
2905		return (0);
2906
2907	if (spa->spa_root_vdev != NULL)
2908		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2909
2910	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2911	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2912
2913	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2914		nvlist_free(config);
2915		return (load_error);
2916	}
2917
2918	if (state == SPA_LOAD_RECOVER) {
2919		/* Price of rolling back is discarding txgs, including log */
2920		spa_set_log_state(spa, SPA_LOG_CLEAR);
2921	} else {
2922		/*
2923		 * If we aren't rolling back save the load info from our first
2924		 * import attempt so that we can restore it after attempting
2925		 * to rewind.
2926		 */
2927		loadinfo = spa->spa_load_info;
2928		spa->spa_load_info = fnvlist_alloc();
2929	}
2930
2931	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2932	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2933	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2934	    TXG_INITIAL : safe_rewind_txg;
2935
2936	/*
2937	 * Continue as long as we're finding errors, we're still within
2938	 * the acceptable rewind range, and we're still finding uberblocks
2939	 */
2940	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2941	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2942		if (spa->spa_load_max_txg < safe_rewind_txg)
2943			spa->spa_extreme_rewind = B_TRUE;
2944		rewind_error = spa_load_retry(spa, state, mosconfig);
2945	}
2946
2947	spa->spa_extreme_rewind = B_FALSE;
2948	spa->spa_load_max_txg = UINT64_MAX;
2949
2950	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2951		spa_config_set(spa, config);
2952
2953	if (state == SPA_LOAD_RECOVER) {
2954		ASSERT3P(loadinfo, ==, NULL);
2955		return (rewind_error);
2956	} else {
2957		/* Store the rewind info as part of the initial load info */
2958		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2959		    spa->spa_load_info);
2960
2961		/* Restore the initial load info */
2962		fnvlist_free(spa->spa_load_info);
2963		spa->spa_load_info = loadinfo;
2964
2965		return (load_error);
2966	}
2967}
2968
2969/*
2970 * Pool Open/Import
2971 *
2972 * The import case is identical to an open except that the configuration is sent
2973 * down from userland, instead of grabbed from the configuration cache.  For the
2974 * case of an open, the pool configuration will exist in the
2975 * POOL_STATE_UNINITIALIZED state.
2976 *
2977 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2978 * the same time open the pool, without having to keep around the spa_t in some
2979 * ambiguous state.
2980 */
2981static int
2982spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2983    nvlist_t **config)
2984{
2985	spa_t *spa;
2986	spa_load_state_t state = SPA_LOAD_OPEN;
2987	int error;
2988	int locked = B_FALSE;
2989	int firstopen = B_FALSE;
2990
2991	*spapp = NULL;
2992
2993	/*
2994	 * As disgusting as this is, we need to support recursive calls to this
2995	 * function because dsl_dir_open() is called during spa_load(), and ends
2996	 * up calling spa_open() again.  The real fix is to figure out how to
2997	 * avoid dsl_dir_open() calling this in the first place.
2998	 */
2999	if (mutex_owner(&spa_namespace_lock) != curthread) {
3000		mutex_enter(&spa_namespace_lock);
3001		locked = B_TRUE;
3002	}
3003
3004	if ((spa = spa_lookup(pool)) == NULL) {
3005		if (locked)
3006			mutex_exit(&spa_namespace_lock);
3007		return (SET_ERROR(ENOENT));
3008	}
3009
3010	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3011		zpool_rewind_policy_t policy;
3012
3013		firstopen = B_TRUE;
3014
3015		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3016		    &policy);
3017		if (policy.zrp_request & ZPOOL_DO_REWIND)
3018			state = SPA_LOAD_RECOVER;
3019
3020		spa_activate(spa, spa_mode_global);
3021
3022		if (state != SPA_LOAD_RECOVER)
3023			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3024
3025		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3026		    policy.zrp_request);
3027
3028		if (error == EBADF) {
3029			/*
3030			 * If vdev_validate() returns failure (indicated by
3031			 * EBADF), it indicates that one of the vdevs indicates
3032			 * that the pool has been exported or destroyed.  If
3033			 * this is the case, the config cache is out of sync and
3034			 * we should remove the pool from the namespace.
3035			 */
3036			spa_unload(spa);
3037			spa_deactivate(spa);
3038			spa_config_sync(spa, B_TRUE, B_TRUE);
3039			spa_remove(spa);
3040			if (locked)
3041				mutex_exit(&spa_namespace_lock);
3042			return (SET_ERROR(ENOENT));
3043		}
3044
3045		if (error) {
3046			/*
3047			 * We can't open the pool, but we still have useful
3048			 * information: the state of each vdev after the
3049			 * attempted vdev_open().  Return this to the user.
3050			 */
3051			if (config != NULL && spa->spa_config) {
3052				VERIFY(nvlist_dup(spa->spa_config, config,
3053				    KM_SLEEP) == 0);
3054				VERIFY(nvlist_add_nvlist(*config,
3055				    ZPOOL_CONFIG_LOAD_INFO,
3056				    spa->spa_load_info) == 0);
3057			}
3058			spa_unload(spa);
3059			spa_deactivate(spa);
3060			spa->spa_last_open_failed = error;
3061			if (locked)
3062				mutex_exit(&spa_namespace_lock);
3063			*spapp = NULL;
3064			return (error);
3065		}
3066	}
3067
3068	spa_open_ref(spa, tag);
3069
3070	if (config != NULL)
3071		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3072
3073	/*
3074	 * If we've recovered the pool, pass back any information we
3075	 * gathered while doing the load.
3076	 */
3077	if (state == SPA_LOAD_RECOVER) {
3078		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3079		    spa->spa_load_info) == 0);
3080	}
3081
3082	if (locked) {
3083		spa->spa_last_open_failed = 0;
3084		spa->spa_last_ubsync_txg = 0;
3085		spa->spa_load_txg = 0;
3086		mutex_exit(&spa_namespace_lock);
3087#ifdef __FreeBSD__
3088#ifdef _KERNEL
3089		if (firstopen)
3090			zvol_create_minors(spa->spa_name);
3091#endif
3092#endif
3093	}
3094
3095	*spapp = spa;
3096
3097	return (0);
3098}
3099
3100int
3101spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3102    nvlist_t **config)
3103{
3104	return (spa_open_common(name, spapp, tag, policy, config));
3105}
3106
3107int
3108spa_open(const char *name, spa_t **spapp, void *tag)
3109{
3110	return (spa_open_common(name, spapp, tag, NULL, NULL));
3111}
3112
3113/*
3114 * Lookup the given spa_t, incrementing the inject count in the process,
3115 * preventing it from being exported or destroyed.
3116 */
3117spa_t *
3118spa_inject_addref(char *name)
3119{
3120	spa_t *spa;
3121
3122	mutex_enter(&spa_namespace_lock);
3123	if ((spa = spa_lookup(name)) == NULL) {
3124		mutex_exit(&spa_namespace_lock);
3125		return (NULL);
3126	}
3127	spa->spa_inject_ref++;
3128	mutex_exit(&spa_namespace_lock);
3129
3130	return (spa);
3131}
3132
3133void
3134spa_inject_delref(spa_t *spa)
3135{
3136	mutex_enter(&spa_namespace_lock);
3137	spa->spa_inject_ref--;
3138	mutex_exit(&spa_namespace_lock);
3139}
3140
3141/*
3142 * Add spares device information to the nvlist.
3143 */
3144static void
3145spa_add_spares(spa_t *spa, nvlist_t *config)
3146{
3147	nvlist_t **spares;
3148	uint_t i, nspares;
3149	nvlist_t *nvroot;
3150	uint64_t guid;
3151	vdev_stat_t *vs;
3152	uint_t vsc;
3153	uint64_t pool;
3154
3155	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3156
3157	if (spa->spa_spares.sav_count == 0)
3158		return;
3159
3160	VERIFY(nvlist_lookup_nvlist(config,
3161	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3162	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3163	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3164	if (nspares != 0) {
3165		VERIFY(nvlist_add_nvlist_array(nvroot,
3166		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3167		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3168		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3169
3170		/*
3171		 * Go through and find any spares which have since been
3172		 * repurposed as an active spare.  If this is the case, update
3173		 * their status appropriately.
3174		 */
3175		for (i = 0; i < nspares; i++) {
3176			VERIFY(nvlist_lookup_uint64(spares[i],
3177			    ZPOOL_CONFIG_GUID, &guid) == 0);
3178			if (spa_spare_exists(guid, &pool, NULL) &&
3179			    pool != 0ULL) {
3180				VERIFY(nvlist_lookup_uint64_array(
3181				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3182				    (uint64_t **)&vs, &vsc) == 0);
3183				vs->vs_state = VDEV_STATE_CANT_OPEN;
3184				vs->vs_aux = VDEV_AUX_SPARED;
3185			}
3186		}
3187	}
3188}
3189
3190/*
3191 * Add l2cache device information to the nvlist, including vdev stats.
3192 */
3193static void
3194spa_add_l2cache(spa_t *spa, nvlist_t *config)
3195{
3196	nvlist_t **l2cache;
3197	uint_t i, j, nl2cache;
3198	nvlist_t *nvroot;
3199	uint64_t guid;
3200	vdev_t *vd;
3201	vdev_stat_t *vs;
3202	uint_t vsc;
3203
3204	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3205
3206	if (spa->spa_l2cache.sav_count == 0)
3207		return;
3208
3209	VERIFY(nvlist_lookup_nvlist(config,
3210	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3211	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3212	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3213	if (nl2cache != 0) {
3214		VERIFY(nvlist_add_nvlist_array(nvroot,
3215		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3216		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3217		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3218
3219		/*
3220		 * Update level 2 cache device stats.
3221		 */
3222
3223		for (i = 0; i < nl2cache; i++) {
3224			VERIFY(nvlist_lookup_uint64(l2cache[i],
3225			    ZPOOL_CONFIG_GUID, &guid) == 0);
3226
3227			vd = NULL;
3228			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3229				if (guid ==
3230				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3231					vd = spa->spa_l2cache.sav_vdevs[j];
3232					break;
3233				}
3234			}
3235			ASSERT(vd != NULL);
3236
3237			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3238			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3239			    == 0);
3240			vdev_get_stats(vd, vs);
3241		}
3242	}
3243}
3244
3245static void
3246spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3247{
3248	nvlist_t *features;
3249	zap_cursor_t zc;
3250	zap_attribute_t za;
3251
3252	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3253	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3254
3255	/* We may be unable to read features if pool is suspended. */
3256	if (spa_suspended(spa))
3257		goto out;
3258
3259	if (spa->spa_feat_for_read_obj != 0) {
3260		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3261		    spa->spa_feat_for_read_obj);
3262		    zap_cursor_retrieve(&zc, &za) == 0;
3263		    zap_cursor_advance(&zc)) {
3264			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3265			    za.za_num_integers == 1);
3266			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3267			    za.za_first_integer));
3268		}
3269		zap_cursor_fini(&zc);
3270	}
3271
3272	if (spa->spa_feat_for_write_obj != 0) {
3273		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3274		    spa->spa_feat_for_write_obj);
3275		    zap_cursor_retrieve(&zc, &za) == 0;
3276		    zap_cursor_advance(&zc)) {
3277			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3278			    za.za_num_integers == 1);
3279			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3280			    za.za_first_integer));
3281		}
3282		zap_cursor_fini(&zc);
3283	}
3284
3285out:
3286	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3287	    features) == 0);
3288	nvlist_free(features);
3289}
3290
3291int
3292spa_get_stats(const char *name, nvlist_t **config,
3293    char *altroot, size_t buflen)
3294{
3295	int error;
3296	spa_t *spa;
3297
3298	*config = NULL;
3299	error = spa_open_common(name, &spa, FTAG, NULL, config);
3300
3301	if (spa != NULL) {
3302		/*
3303		 * This still leaves a window of inconsistency where the spares
3304		 * or l2cache devices could change and the config would be
3305		 * self-inconsistent.
3306		 */
3307		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3308
3309		if (*config != NULL) {
3310			uint64_t loadtimes[2];
3311
3312			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3313			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3314			VERIFY(nvlist_add_uint64_array(*config,
3315			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3316
3317			VERIFY(nvlist_add_uint64(*config,
3318			    ZPOOL_CONFIG_ERRCOUNT,
3319			    spa_get_errlog_size(spa)) == 0);
3320
3321			if (spa_suspended(spa))
3322				VERIFY(nvlist_add_uint64(*config,
3323				    ZPOOL_CONFIG_SUSPENDED,
3324				    spa->spa_failmode) == 0);
3325
3326			spa_add_spares(spa, *config);
3327			spa_add_l2cache(spa, *config);
3328			spa_add_feature_stats(spa, *config);
3329		}
3330	}
3331
3332	/*
3333	 * We want to get the alternate root even for faulted pools, so we cheat
3334	 * and call spa_lookup() directly.
3335	 */
3336	if (altroot) {
3337		if (spa == NULL) {
3338			mutex_enter(&spa_namespace_lock);
3339			spa = spa_lookup(name);
3340			if (spa)
3341				spa_altroot(spa, altroot, buflen);
3342			else
3343				altroot[0] = '\0';
3344			spa = NULL;
3345			mutex_exit(&spa_namespace_lock);
3346		} else {
3347			spa_altroot(spa, altroot, buflen);
3348		}
3349	}
3350
3351	if (spa != NULL) {
3352		spa_config_exit(spa, SCL_CONFIG, FTAG);
3353		spa_close(spa, FTAG);
3354	}
3355
3356	return (error);
3357}
3358
3359/*
3360 * Validate that the auxiliary device array is well formed.  We must have an
3361 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3362 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3363 * specified, as long as they are well-formed.
3364 */
3365static int
3366spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3367    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3368    vdev_labeltype_t label)
3369{
3370	nvlist_t **dev;
3371	uint_t i, ndev;
3372	vdev_t *vd;
3373	int error;
3374
3375	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3376
3377	/*
3378	 * It's acceptable to have no devs specified.
3379	 */
3380	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3381		return (0);
3382
3383	if (ndev == 0)
3384		return (SET_ERROR(EINVAL));
3385
3386	/*
3387	 * Make sure the pool is formatted with a version that supports this
3388	 * device type.
3389	 */
3390	if (spa_version(spa) < version)
3391		return (SET_ERROR(ENOTSUP));
3392
3393	/*
3394	 * Set the pending device list so we correctly handle device in-use
3395	 * checking.
3396	 */
3397	sav->sav_pending = dev;
3398	sav->sav_npending = ndev;
3399
3400	for (i = 0; i < ndev; i++) {
3401		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3402		    mode)) != 0)
3403			goto out;
3404
3405		if (!vd->vdev_ops->vdev_op_leaf) {
3406			vdev_free(vd);
3407			error = SET_ERROR(EINVAL);
3408			goto out;
3409		}
3410
3411		/*
3412		 * The L2ARC currently only supports disk devices in
3413		 * kernel context.  For user-level testing, we allow it.
3414		 */
3415#ifdef _KERNEL
3416		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3417		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3418			error = SET_ERROR(ENOTBLK);
3419			vdev_free(vd);
3420			goto out;
3421		}
3422#endif
3423		vd->vdev_top = vd;
3424
3425		if ((error = vdev_open(vd)) == 0 &&
3426		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3427			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3428			    vd->vdev_guid) == 0);
3429		}
3430
3431		vdev_free(vd);
3432
3433		if (error &&
3434		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3435			goto out;
3436		else
3437			error = 0;
3438	}
3439
3440out:
3441	sav->sav_pending = NULL;
3442	sav->sav_npending = 0;
3443	return (error);
3444}
3445
3446static int
3447spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3448{
3449	int error;
3450
3451	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3452
3453	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3454	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3455	    VDEV_LABEL_SPARE)) != 0) {
3456		return (error);
3457	}
3458
3459	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3460	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3461	    VDEV_LABEL_L2CACHE));
3462}
3463
3464static void
3465spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3466    const char *config)
3467{
3468	int i;
3469
3470	if (sav->sav_config != NULL) {
3471		nvlist_t **olddevs;
3472		uint_t oldndevs;
3473		nvlist_t **newdevs;
3474
3475		/*
3476		 * Generate new dev list by concatentating with the
3477		 * current dev list.
3478		 */
3479		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3480		    &olddevs, &oldndevs) == 0);
3481
3482		newdevs = kmem_alloc(sizeof (void *) *
3483		    (ndevs + oldndevs), KM_SLEEP);
3484		for (i = 0; i < oldndevs; i++)
3485			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3486			    KM_SLEEP) == 0);
3487		for (i = 0; i < ndevs; i++)
3488			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3489			    KM_SLEEP) == 0);
3490
3491		VERIFY(nvlist_remove(sav->sav_config, config,
3492		    DATA_TYPE_NVLIST_ARRAY) == 0);
3493
3494		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3495		    config, newdevs, ndevs + oldndevs) == 0);
3496		for (i = 0; i < oldndevs + ndevs; i++)
3497			nvlist_free(newdevs[i]);
3498		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3499	} else {
3500		/*
3501		 * Generate a new dev list.
3502		 */
3503		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3504		    KM_SLEEP) == 0);
3505		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3506		    devs, ndevs) == 0);
3507	}
3508}
3509
3510/*
3511 * Stop and drop level 2 ARC devices
3512 */
3513void
3514spa_l2cache_drop(spa_t *spa)
3515{
3516	vdev_t *vd;
3517	int i;
3518	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3519
3520	for (i = 0; i < sav->sav_count; i++) {
3521		uint64_t pool;
3522
3523		vd = sav->sav_vdevs[i];
3524		ASSERT(vd != NULL);
3525
3526		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3527		    pool != 0ULL && l2arc_vdev_present(vd))
3528			l2arc_remove_vdev(vd);
3529	}
3530}
3531
3532/*
3533 * Pool Creation
3534 */
3535int
3536spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3537    nvlist_t *zplprops)
3538{
3539	spa_t *spa;
3540	char *altroot = NULL;
3541	vdev_t *rvd;
3542	dsl_pool_t *dp;
3543	dmu_tx_t *tx;
3544	int error = 0;
3545	uint64_t txg = TXG_INITIAL;
3546	nvlist_t **spares, **l2cache;
3547	uint_t nspares, nl2cache;
3548	uint64_t version, obj;
3549	boolean_t has_features;
3550
3551	/*
3552	 * If this pool already exists, return failure.
3553	 */
3554	mutex_enter(&spa_namespace_lock);
3555	if (spa_lookup(pool) != NULL) {
3556		mutex_exit(&spa_namespace_lock);
3557		return (SET_ERROR(EEXIST));
3558	}
3559
3560	/*
3561	 * Allocate a new spa_t structure.
3562	 */
3563	(void) nvlist_lookup_string(props,
3564	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3565	spa = spa_add(pool, NULL, altroot);
3566	spa_activate(spa, spa_mode_global);
3567
3568	if (props && (error = spa_prop_validate(spa, props))) {
3569		spa_deactivate(spa);
3570		spa_remove(spa);
3571		mutex_exit(&spa_namespace_lock);
3572		return (error);
3573	}
3574
3575	has_features = B_FALSE;
3576	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3577	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3578		if (zpool_prop_feature(nvpair_name(elem)))
3579			has_features = B_TRUE;
3580	}
3581
3582	if (has_features || nvlist_lookup_uint64(props,
3583	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3584		version = SPA_VERSION;
3585	}
3586	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3587
3588	spa->spa_first_txg = txg;
3589	spa->spa_uberblock.ub_txg = txg - 1;
3590	spa->spa_uberblock.ub_version = version;
3591	spa->spa_ubsync = spa->spa_uberblock;
3592
3593	/*
3594	 * Create "The Godfather" zio to hold all async IOs
3595	 */
3596	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3597	    KM_SLEEP);
3598	for (int i = 0; i < max_ncpus; i++) {
3599		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3600		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3601		    ZIO_FLAG_GODFATHER);
3602	}
3603
3604	/*
3605	 * Create the root vdev.
3606	 */
3607	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3608
3609	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3610
3611	ASSERT(error != 0 || rvd != NULL);
3612	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3613
3614	if (error == 0 && !zfs_allocatable_devs(nvroot))
3615		error = SET_ERROR(EINVAL);
3616
3617	if (error == 0 &&
3618	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3619	    (error = spa_validate_aux(spa, nvroot, txg,
3620	    VDEV_ALLOC_ADD)) == 0) {
3621		for (int c = 0; c < rvd->vdev_children; c++) {
3622			vdev_ashift_optimize(rvd->vdev_child[c]);
3623			vdev_metaslab_set_size(rvd->vdev_child[c]);
3624			vdev_expand(rvd->vdev_child[c], txg);
3625		}
3626	}
3627
3628	spa_config_exit(spa, SCL_ALL, FTAG);
3629
3630	if (error != 0) {
3631		spa_unload(spa);
3632		spa_deactivate(spa);
3633		spa_remove(spa);
3634		mutex_exit(&spa_namespace_lock);
3635		return (error);
3636	}
3637
3638	/*
3639	 * Get the list of spares, if specified.
3640	 */
3641	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3642	    &spares, &nspares) == 0) {
3643		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3644		    KM_SLEEP) == 0);
3645		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3646		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3647		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3648		spa_load_spares(spa);
3649		spa_config_exit(spa, SCL_ALL, FTAG);
3650		spa->spa_spares.sav_sync = B_TRUE;
3651	}
3652
3653	/*
3654	 * Get the list of level 2 cache devices, if specified.
3655	 */
3656	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3657	    &l2cache, &nl2cache) == 0) {
3658		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3659		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3660		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3661		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3662		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3663		spa_load_l2cache(spa);
3664		spa_config_exit(spa, SCL_ALL, FTAG);
3665		spa->spa_l2cache.sav_sync = B_TRUE;
3666	}
3667
3668	spa->spa_is_initializing = B_TRUE;
3669	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3670	spa->spa_meta_objset = dp->dp_meta_objset;
3671	spa->spa_is_initializing = B_FALSE;
3672
3673	/*
3674	 * Create DDTs (dedup tables).
3675	 */
3676	ddt_create(spa);
3677
3678	spa_update_dspace(spa);
3679
3680	tx = dmu_tx_create_assigned(dp, txg);
3681
3682	/*
3683	 * Create the pool config object.
3684	 */
3685	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3686	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3687	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3688
3689	if (zap_add(spa->spa_meta_objset,
3690	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3691	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3692		cmn_err(CE_PANIC, "failed to add pool config");
3693	}
3694
3695	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3696		spa_feature_create_zap_objects(spa, tx);
3697
3698	if (zap_add(spa->spa_meta_objset,
3699	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3700	    sizeof (uint64_t), 1, &version, tx) != 0) {
3701		cmn_err(CE_PANIC, "failed to add pool version");
3702	}
3703
3704	/* Newly created pools with the right version are always deflated. */
3705	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3706		spa->spa_deflate = TRUE;
3707		if (zap_add(spa->spa_meta_objset,
3708		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3709		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3710			cmn_err(CE_PANIC, "failed to add deflate");
3711		}
3712	}
3713
3714	/*
3715	 * Create the deferred-free bpobj.  Turn off compression
3716	 * because sync-to-convergence takes longer if the blocksize
3717	 * keeps changing.
3718	 */
3719	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3720	dmu_object_set_compress(spa->spa_meta_objset, obj,
3721	    ZIO_COMPRESS_OFF, tx);
3722	if (zap_add(spa->spa_meta_objset,
3723	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3724	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3725		cmn_err(CE_PANIC, "failed to add bpobj");
3726	}
3727	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3728	    spa->spa_meta_objset, obj));
3729
3730	/*
3731	 * Create the pool's history object.
3732	 */
3733	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3734		spa_history_create_obj(spa, tx);
3735
3736	/*
3737	 * Set pool properties.
3738	 */
3739	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3740	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3741	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3742	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3743
3744	if (props != NULL) {
3745		spa_configfile_set(spa, props, B_FALSE);
3746		spa_sync_props(props, tx);
3747	}
3748
3749	dmu_tx_commit(tx);
3750
3751	spa->spa_sync_on = B_TRUE;
3752	txg_sync_start(spa->spa_dsl_pool);
3753
3754	/*
3755	 * We explicitly wait for the first transaction to complete so that our
3756	 * bean counters are appropriately updated.
3757	 */
3758	txg_wait_synced(spa->spa_dsl_pool, txg);
3759
3760	spa_config_sync(spa, B_FALSE, B_TRUE);
3761
3762	spa_history_log_version(spa, "create");
3763
3764	spa->spa_minref = refcount_count(&spa->spa_refcount);
3765
3766	mutex_exit(&spa_namespace_lock);
3767
3768	return (0);
3769}
3770
3771#ifdef _KERNEL
3772#if defined(sun)
3773/*
3774 * Get the root pool information from the root disk, then import the root pool
3775 * during the system boot up time.
3776 */
3777extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3778
3779static nvlist_t *
3780spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3781{
3782	nvlist_t *config;
3783	nvlist_t *nvtop, *nvroot;
3784	uint64_t pgid;
3785
3786	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3787		return (NULL);
3788
3789	/*
3790	 * Add this top-level vdev to the child array.
3791	 */
3792	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3793	    &nvtop) == 0);
3794	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3795	    &pgid) == 0);
3796	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3797
3798	/*
3799	 * Put this pool's top-level vdevs into a root vdev.
3800	 */
3801	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3802	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3803	    VDEV_TYPE_ROOT) == 0);
3804	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3805	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3806	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3807	    &nvtop, 1) == 0);
3808
3809	/*
3810	 * Replace the existing vdev_tree with the new root vdev in
3811	 * this pool's configuration (remove the old, add the new).
3812	 */
3813	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3814	nvlist_free(nvroot);
3815	return (config);
3816}
3817
3818/*
3819 * Walk the vdev tree and see if we can find a device with "better"
3820 * configuration. A configuration is "better" if the label on that
3821 * device has a more recent txg.
3822 */
3823static void
3824spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3825{
3826	for (int c = 0; c < vd->vdev_children; c++)
3827		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3828
3829	if (vd->vdev_ops->vdev_op_leaf) {
3830		nvlist_t *label;
3831		uint64_t label_txg;
3832
3833		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3834		    &label) != 0)
3835			return;
3836
3837		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3838		    &label_txg) == 0);
3839
3840		/*
3841		 * Do we have a better boot device?
3842		 */
3843		if (label_txg > *txg) {
3844			*txg = label_txg;
3845			*avd = vd;
3846		}
3847		nvlist_free(label);
3848	}
3849}
3850
3851/*
3852 * Import a root pool.
3853 *
3854 * For x86. devpath_list will consist of devid and/or physpath name of
3855 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3856 * The GRUB "findroot" command will return the vdev we should boot.
3857 *
3858 * For Sparc, devpath_list consists the physpath name of the booting device
3859 * no matter the rootpool is a single device pool or a mirrored pool.
3860 * e.g.
3861 *	"/pci@1f,0/ide@d/disk@0,0:a"
3862 */
3863int
3864spa_import_rootpool(char *devpath, char *devid)
3865{
3866	spa_t *spa;
3867	vdev_t *rvd, *bvd, *avd = NULL;
3868	nvlist_t *config, *nvtop;
3869	uint64_t guid, txg;
3870	char *pname;
3871	int error;
3872
3873	/*
3874	 * Read the label from the boot device and generate a configuration.
3875	 */
3876	config = spa_generate_rootconf(devpath, devid, &guid);
3877#if defined(_OBP) && defined(_KERNEL)
3878	if (config == NULL) {
3879		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3880			/* iscsi boot */
3881			get_iscsi_bootpath_phy(devpath);
3882			config = spa_generate_rootconf(devpath, devid, &guid);
3883		}
3884	}
3885#endif
3886	if (config == NULL) {
3887		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3888		    devpath);
3889		return (SET_ERROR(EIO));
3890	}
3891
3892	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3893	    &pname) == 0);
3894	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3895
3896	mutex_enter(&spa_namespace_lock);
3897	if ((spa = spa_lookup(pname)) != NULL) {
3898		/*
3899		 * Remove the existing root pool from the namespace so that we
3900		 * can replace it with the correct config we just read in.
3901		 */
3902		spa_remove(spa);
3903	}
3904
3905	spa = spa_add(pname, config, NULL);
3906	spa->spa_is_root = B_TRUE;
3907	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3908
3909	/*
3910	 * Build up a vdev tree based on the boot device's label config.
3911	 */
3912	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3913	    &nvtop) == 0);
3914	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3915	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3916	    VDEV_ALLOC_ROOTPOOL);
3917	spa_config_exit(spa, SCL_ALL, FTAG);
3918	if (error) {
3919		mutex_exit(&spa_namespace_lock);
3920		nvlist_free(config);
3921		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3922		    pname);
3923		return (error);
3924	}
3925
3926	/*
3927	 * Get the boot vdev.
3928	 */
3929	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3930		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3931		    (u_longlong_t)guid);
3932		error = SET_ERROR(ENOENT);
3933		goto out;
3934	}
3935
3936	/*
3937	 * Determine if there is a better boot device.
3938	 */
3939	avd = bvd;
3940	spa_alt_rootvdev(rvd, &avd, &txg);
3941	if (avd != bvd) {
3942		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3943		    "try booting from '%s'", avd->vdev_path);
3944		error = SET_ERROR(EINVAL);
3945		goto out;
3946	}
3947
3948	/*
3949	 * If the boot device is part of a spare vdev then ensure that
3950	 * we're booting off the active spare.
3951	 */
3952	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3953	    !bvd->vdev_isspare) {
3954		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3955		    "try booting from '%s'",
3956		    bvd->vdev_parent->
3957		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3958		error = SET_ERROR(EINVAL);
3959		goto out;
3960	}
3961
3962	error = 0;
3963out:
3964	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3965	vdev_free(rvd);
3966	spa_config_exit(spa, SCL_ALL, FTAG);
3967	mutex_exit(&spa_namespace_lock);
3968
3969	nvlist_free(config);
3970	return (error);
3971}
3972
3973#else
3974
3975extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3976    uint64_t *count);
3977
3978static nvlist_t *
3979spa_generate_rootconf(const char *name)
3980{
3981	nvlist_t **configs, **tops;
3982	nvlist_t *config;
3983	nvlist_t *best_cfg, *nvtop, *nvroot;
3984	uint64_t *holes;
3985	uint64_t best_txg;
3986	uint64_t nchildren;
3987	uint64_t pgid;
3988	uint64_t count;
3989	uint64_t i;
3990	uint_t   nholes;
3991
3992	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3993		return (NULL);
3994
3995	ASSERT3U(count, !=, 0);
3996	best_txg = 0;
3997	for (i = 0; i < count; i++) {
3998		uint64_t txg;
3999
4000		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4001		    &txg) == 0);
4002		if (txg > best_txg) {
4003			best_txg = txg;
4004			best_cfg = configs[i];
4005		}
4006	}
4007
4008	/*
4009	 * Multi-vdev root pool configuration discovery is not supported yet.
4010	 */
4011	nchildren = 1;
4012	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4013	holes = NULL;
4014	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4015	    &holes, &nholes);
4016
4017	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4018	for (i = 0; i < nchildren; i++) {
4019		if (i >= count)
4020			break;
4021		if (configs[i] == NULL)
4022			continue;
4023		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4024		    &nvtop) == 0);
4025		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4026	}
4027	for (i = 0; holes != NULL && i < nholes; i++) {
4028		if (i >= nchildren)
4029			continue;
4030		if (tops[holes[i]] != NULL)
4031			continue;
4032		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4033		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4034		    VDEV_TYPE_HOLE) == 0);
4035		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4036		    holes[i]) == 0);
4037		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4038		    0) == 0);
4039	}
4040	for (i = 0; i < nchildren; i++) {
4041		if (tops[i] != NULL)
4042			continue;
4043		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4044		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4045		    VDEV_TYPE_MISSING) == 0);
4046		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4047		    i) == 0);
4048		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4049		    0) == 0);
4050	}
4051
4052	/*
4053	 * Create pool config based on the best vdev config.
4054	 */
4055	nvlist_dup(best_cfg, &config, KM_SLEEP);
4056
4057	/*
4058	 * Put this pool's top-level vdevs into a root vdev.
4059	 */
4060	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4061	    &pgid) == 0);
4062	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4063	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4064	    VDEV_TYPE_ROOT) == 0);
4065	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4066	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4067	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4068	    tops, nchildren) == 0);
4069
4070	/*
4071	 * Replace the existing vdev_tree with the new root vdev in
4072	 * this pool's configuration (remove the old, add the new).
4073	 */
4074	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4075
4076	/*
4077	 * Drop vdev config elements that should not be present at pool level.
4078	 */
4079	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4080	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4081
4082	for (i = 0; i < count; i++)
4083		nvlist_free(configs[i]);
4084	kmem_free(configs, count * sizeof(void *));
4085	for (i = 0; i < nchildren; i++)
4086		nvlist_free(tops[i]);
4087	kmem_free(tops, nchildren * sizeof(void *));
4088	nvlist_free(nvroot);
4089	return (config);
4090}
4091
4092int
4093spa_import_rootpool(const char *name)
4094{
4095	spa_t *spa;
4096	vdev_t *rvd, *bvd, *avd = NULL;
4097	nvlist_t *config, *nvtop;
4098	uint64_t txg;
4099	char *pname;
4100	int error;
4101
4102	/*
4103	 * Read the label from the boot device and generate a configuration.
4104	 */
4105	config = spa_generate_rootconf(name);
4106
4107	mutex_enter(&spa_namespace_lock);
4108	if (config != NULL) {
4109		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4110		    &pname) == 0 && strcmp(name, pname) == 0);
4111		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4112		    == 0);
4113
4114		if ((spa = spa_lookup(pname)) != NULL) {
4115			/*
4116			 * Remove the existing root pool from the namespace so
4117			 * that we can replace it with the correct config
4118			 * we just read in.
4119			 */
4120			spa_remove(spa);
4121		}
4122		spa = spa_add(pname, config, NULL);
4123
4124		/*
4125		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4126		 * via spa_version().
4127		 */
4128		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4129		    &spa->spa_ubsync.ub_version) != 0)
4130			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4131	} else if ((spa = spa_lookup(name)) == NULL) {
4132		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4133		    name);
4134		return (EIO);
4135	} else {
4136		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4137	}
4138	spa->spa_is_root = B_TRUE;
4139	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4140
4141	/*
4142	 * Build up a vdev tree based on the boot device's label config.
4143	 */
4144	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4145	    &nvtop) == 0);
4146	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4147	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4148	    VDEV_ALLOC_ROOTPOOL);
4149	spa_config_exit(spa, SCL_ALL, FTAG);
4150	if (error) {
4151		mutex_exit(&spa_namespace_lock);
4152		nvlist_free(config);
4153		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4154		    pname);
4155		return (error);
4156	}
4157
4158	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4159	vdev_free(rvd);
4160	spa_config_exit(spa, SCL_ALL, FTAG);
4161	mutex_exit(&spa_namespace_lock);
4162
4163	nvlist_free(config);
4164	return (0);
4165}
4166
4167#endif	/* sun */
4168#endif
4169
4170/*
4171 * Import a non-root pool into the system.
4172 */
4173int
4174spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4175{
4176	spa_t *spa;
4177	char *altroot = NULL;
4178	spa_load_state_t state = SPA_LOAD_IMPORT;
4179	zpool_rewind_policy_t policy;
4180	uint64_t mode = spa_mode_global;
4181	uint64_t readonly = B_FALSE;
4182	int error;
4183	nvlist_t *nvroot;
4184	nvlist_t **spares, **l2cache;
4185	uint_t nspares, nl2cache;
4186
4187	/*
4188	 * If a pool with this name exists, return failure.
4189	 */
4190	mutex_enter(&spa_namespace_lock);
4191	if (spa_lookup(pool) != NULL) {
4192		mutex_exit(&spa_namespace_lock);
4193		return (SET_ERROR(EEXIST));
4194	}
4195
4196	/*
4197	 * Create and initialize the spa structure.
4198	 */
4199	(void) nvlist_lookup_string(props,
4200	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4201	(void) nvlist_lookup_uint64(props,
4202	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4203	if (readonly)
4204		mode = FREAD;
4205	spa = spa_add(pool, config, altroot);
4206	spa->spa_import_flags = flags;
4207
4208	/*
4209	 * Verbatim import - Take a pool and insert it into the namespace
4210	 * as if it had been loaded at boot.
4211	 */
4212	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4213		if (props != NULL)
4214			spa_configfile_set(spa, props, B_FALSE);
4215
4216		spa_config_sync(spa, B_FALSE, B_TRUE);
4217
4218		mutex_exit(&spa_namespace_lock);
4219		return (0);
4220	}
4221
4222	spa_activate(spa, mode);
4223
4224	/*
4225	 * Don't start async tasks until we know everything is healthy.
4226	 */
4227	spa_async_suspend(spa);
4228
4229	zpool_get_rewind_policy(config, &policy);
4230	if (policy.zrp_request & ZPOOL_DO_REWIND)
4231		state = SPA_LOAD_RECOVER;
4232
4233	/*
4234	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4235	 * because the user-supplied config is actually the one to trust when
4236	 * doing an import.
4237	 */
4238	if (state != SPA_LOAD_RECOVER)
4239		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4240
4241	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4242	    policy.zrp_request);
4243
4244	/*
4245	 * Propagate anything learned while loading the pool and pass it
4246	 * back to caller (i.e. rewind info, missing devices, etc).
4247	 */
4248	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4249	    spa->spa_load_info) == 0);
4250
4251	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4252	/*
4253	 * Toss any existing sparelist, as it doesn't have any validity
4254	 * anymore, and conflicts with spa_has_spare().
4255	 */
4256	if (spa->spa_spares.sav_config) {
4257		nvlist_free(spa->spa_spares.sav_config);
4258		spa->spa_spares.sav_config = NULL;
4259		spa_load_spares(spa);
4260	}
4261	if (spa->spa_l2cache.sav_config) {
4262		nvlist_free(spa->spa_l2cache.sav_config);
4263		spa->spa_l2cache.sav_config = NULL;
4264		spa_load_l2cache(spa);
4265	}
4266
4267	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4268	    &nvroot) == 0);
4269	if (error == 0)
4270		error = spa_validate_aux(spa, nvroot, -1ULL,
4271		    VDEV_ALLOC_SPARE);
4272	if (error == 0)
4273		error = spa_validate_aux(spa, nvroot, -1ULL,
4274		    VDEV_ALLOC_L2CACHE);
4275	spa_config_exit(spa, SCL_ALL, FTAG);
4276
4277	if (props != NULL)
4278		spa_configfile_set(spa, props, B_FALSE);
4279
4280	if (error != 0 || (props && spa_writeable(spa) &&
4281	    (error = spa_prop_set(spa, props)))) {
4282		spa_unload(spa);
4283		spa_deactivate(spa);
4284		spa_remove(spa);
4285		mutex_exit(&spa_namespace_lock);
4286		return (error);
4287	}
4288
4289	spa_async_resume(spa);
4290
4291	/*
4292	 * Override any spares and level 2 cache devices as specified by
4293	 * the user, as these may have correct device names/devids, etc.
4294	 */
4295	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4296	    &spares, &nspares) == 0) {
4297		if (spa->spa_spares.sav_config)
4298			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4299			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4300		else
4301			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4302			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4303		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4304		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4305		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4306		spa_load_spares(spa);
4307		spa_config_exit(spa, SCL_ALL, FTAG);
4308		spa->spa_spares.sav_sync = B_TRUE;
4309	}
4310	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4311	    &l2cache, &nl2cache) == 0) {
4312		if (spa->spa_l2cache.sav_config)
4313			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4314			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4315		else
4316			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4317			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4318		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4319		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4320		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4321		spa_load_l2cache(spa);
4322		spa_config_exit(spa, SCL_ALL, FTAG);
4323		spa->spa_l2cache.sav_sync = B_TRUE;
4324	}
4325
4326	/*
4327	 * Check for any removed devices.
4328	 */
4329	if (spa->spa_autoreplace) {
4330		spa_aux_check_removed(&spa->spa_spares);
4331		spa_aux_check_removed(&spa->spa_l2cache);
4332	}
4333
4334	if (spa_writeable(spa)) {
4335		/*
4336		 * Update the config cache to include the newly-imported pool.
4337		 */
4338		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4339	}
4340
4341	/*
4342	 * It's possible that the pool was expanded while it was exported.
4343	 * We kick off an async task to handle this for us.
4344	 */
4345	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4346
4347	mutex_exit(&spa_namespace_lock);
4348	spa_history_log_version(spa, "import");
4349
4350#ifdef __FreeBSD__
4351#ifdef _KERNEL
4352	zvol_create_minors(pool);
4353#endif
4354#endif
4355	return (0);
4356}
4357
4358nvlist_t *
4359spa_tryimport(nvlist_t *tryconfig)
4360{
4361	nvlist_t *config = NULL;
4362	char *poolname;
4363	spa_t *spa;
4364	uint64_t state;
4365	int error;
4366
4367	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4368		return (NULL);
4369
4370	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4371		return (NULL);
4372
4373	/*
4374	 * Create and initialize the spa structure.
4375	 */
4376	mutex_enter(&spa_namespace_lock);
4377	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4378	spa_activate(spa, FREAD);
4379
4380	/*
4381	 * Pass off the heavy lifting to spa_load().
4382	 * Pass TRUE for mosconfig because the user-supplied config
4383	 * is actually the one to trust when doing an import.
4384	 */
4385	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4386
4387	/*
4388	 * If 'tryconfig' was at least parsable, return the current config.
4389	 */
4390	if (spa->spa_root_vdev != NULL) {
4391		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4392		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4393		    poolname) == 0);
4394		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4395		    state) == 0);
4396		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4397		    spa->spa_uberblock.ub_timestamp) == 0);
4398		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4399		    spa->spa_load_info) == 0);
4400
4401		/*
4402		 * If the bootfs property exists on this pool then we
4403		 * copy it out so that external consumers can tell which
4404		 * pools are bootable.
4405		 */
4406		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4407			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4408
4409			/*
4410			 * We have to play games with the name since the
4411			 * pool was opened as TRYIMPORT_NAME.
4412			 */
4413			if (dsl_dsobj_to_dsname(spa_name(spa),
4414			    spa->spa_bootfs, tmpname) == 0) {
4415				char *cp;
4416				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4417
4418				cp = strchr(tmpname, '/');
4419				if (cp == NULL) {
4420					(void) strlcpy(dsname, tmpname,
4421					    MAXPATHLEN);
4422				} else {
4423					(void) snprintf(dsname, MAXPATHLEN,
4424					    "%s/%s", poolname, ++cp);
4425				}
4426				VERIFY(nvlist_add_string(config,
4427				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4428				kmem_free(dsname, MAXPATHLEN);
4429			}
4430			kmem_free(tmpname, MAXPATHLEN);
4431		}
4432
4433		/*
4434		 * Add the list of hot spares and level 2 cache devices.
4435		 */
4436		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4437		spa_add_spares(spa, config);
4438		spa_add_l2cache(spa, config);
4439		spa_config_exit(spa, SCL_CONFIG, FTAG);
4440	}
4441
4442	spa_unload(spa);
4443	spa_deactivate(spa);
4444	spa_remove(spa);
4445	mutex_exit(&spa_namespace_lock);
4446
4447	return (config);
4448}
4449
4450/*
4451 * Pool export/destroy
4452 *
4453 * The act of destroying or exporting a pool is very simple.  We make sure there
4454 * is no more pending I/O and any references to the pool are gone.  Then, we
4455 * update the pool state and sync all the labels to disk, removing the
4456 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4457 * we don't sync the labels or remove the configuration cache.
4458 */
4459static int
4460spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4461    boolean_t force, boolean_t hardforce)
4462{
4463	spa_t *spa;
4464
4465	if (oldconfig)
4466		*oldconfig = NULL;
4467
4468	if (!(spa_mode_global & FWRITE))
4469		return (SET_ERROR(EROFS));
4470
4471	mutex_enter(&spa_namespace_lock);
4472	if ((spa = spa_lookup(pool)) == NULL) {
4473		mutex_exit(&spa_namespace_lock);
4474		return (SET_ERROR(ENOENT));
4475	}
4476
4477	/*
4478	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4479	 * reacquire the namespace lock, and see if we can export.
4480	 */
4481	spa_open_ref(spa, FTAG);
4482	mutex_exit(&spa_namespace_lock);
4483	spa_async_suspend(spa);
4484	mutex_enter(&spa_namespace_lock);
4485	spa_close(spa, FTAG);
4486
4487	/*
4488	 * The pool will be in core if it's openable,
4489	 * in which case we can modify its state.
4490	 */
4491	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4492		/*
4493		 * Objsets may be open only because they're dirty, so we
4494		 * have to force it to sync before checking spa_refcnt.
4495		 */
4496		txg_wait_synced(spa->spa_dsl_pool, 0);
4497
4498		/*
4499		 * A pool cannot be exported or destroyed if there are active
4500		 * references.  If we are resetting a pool, allow references by
4501		 * fault injection handlers.
4502		 */
4503		if (!spa_refcount_zero(spa) ||
4504		    (spa->spa_inject_ref != 0 &&
4505		    new_state != POOL_STATE_UNINITIALIZED)) {
4506			spa_async_resume(spa);
4507			mutex_exit(&spa_namespace_lock);
4508			return (SET_ERROR(EBUSY));
4509		}
4510
4511		/*
4512		 * A pool cannot be exported if it has an active shared spare.
4513		 * This is to prevent other pools stealing the active spare
4514		 * from an exported pool. At user's own will, such pool can
4515		 * be forcedly exported.
4516		 */
4517		if (!force && new_state == POOL_STATE_EXPORTED &&
4518		    spa_has_active_shared_spare(spa)) {
4519			spa_async_resume(spa);
4520			mutex_exit(&spa_namespace_lock);
4521			return (SET_ERROR(EXDEV));
4522		}
4523
4524		/*
4525		 * We want this to be reflected on every label,
4526		 * so mark them all dirty.  spa_unload() will do the
4527		 * final sync that pushes these changes out.
4528		 */
4529		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4530			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4531			spa->spa_state = new_state;
4532			spa->spa_final_txg = spa_last_synced_txg(spa) +
4533			    TXG_DEFER_SIZE + 1;
4534			vdev_config_dirty(spa->spa_root_vdev);
4535			spa_config_exit(spa, SCL_ALL, FTAG);
4536		}
4537	}
4538
4539	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4540
4541	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4542		spa_unload(spa);
4543		spa_deactivate(spa);
4544	}
4545
4546	if (oldconfig && spa->spa_config)
4547		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4548
4549	if (new_state != POOL_STATE_UNINITIALIZED) {
4550		if (!hardforce)
4551			spa_config_sync(spa, B_TRUE, B_TRUE);
4552		spa_remove(spa);
4553	}
4554	mutex_exit(&spa_namespace_lock);
4555
4556	return (0);
4557}
4558
4559/*
4560 * Destroy a storage pool.
4561 */
4562int
4563spa_destroy(char *pool)
4564{
4565	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4566	    B_FALSE, B_FALSE));
4567}
4568
4569/*
4570 * Export a storage pool.
4571 */
4572int
4573spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4574    boolean_t hardforce)
4575{
4576	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4577	    force, hardforce));
4578}
4579
4580/*
4581 * Similar to spa_export(), this unloads the spa_t without actually removing it
4582 * from the namespace in any way.
4583 */
4584int
4585spa_reset(char *pool)
4586{
4587	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4588	    B_FALSE, B_FALSE));
4589}
4590
4591/*
4592 * ==========================================================================
4593 * Device manipulation
4594 * ==========================================================================
4595 */
4596
4597/*
4598 * Add a device to a storage pool.
4599 */
4600int
4601spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4602{
4603	uint64_t txg, id;
4604	int error;
4605	vdev_t *rvd = spa->spa_root_vdev;
4606	vdev_t *vd, *tvd;
4607	nvlist_t **spares, **l2cache;
4608	uint_t nspares, nl2cache;
4609
4610	ASSERT(spa_writeable(spa));
4611
4612	txg = spa_vdev_enter(spa);
4613
4614	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4615	    VDEV_ALLOC_ADD)) != 0)
4616		return (spa_vdev_exit(spa, NULL, txg, error));
4617
4618	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4619
4620	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4621	    &nspares) != 0)
4622		nspares = 0;
4623
4624	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4625	    &nl2cache) != 0)
4626		nl2cache = 0;
4627
4628	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4629		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4630
4631	if (vd->vdev_children != 0 &&
4632	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4633		return (spa_vdev_exit(spa, vd, txg, error));
4634
4635	/*
4636	 * We must validate the spares and l2cache devices after checking the
4637	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4638	 */
4639	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4640		return (spa_vdev_exit(spa, vd, txg, error));
4641
4642	/*
4643	 * Transfer each new top-level vdev from vd to rvd.
4644	 */
4645	for (int c = 0; c < vd->vdev_children; c++) {
4646
4647		/*
4648		 * Set the vdev id to the first hole, if one exists.
4649		 */
4650		for (id = 0; id < rvd->vdev_children; id++) {
4651			if (rvd->vdev_child[id]->vdev_ishole) {
4652				vdev_free(rvd->vdev_child[id]);
4653				break;
4654			}
4655		}
4656		tvd = vd->vdev_child[c];
4657		vdev_remove_child(vd, tvd);
4658		tvd->vdev_id = id;
4659		vdev_add_child(rvd, tvd);
4660		vdev_config_dirty(tvd);
4661	}
4662
4663	if (nspares != 0) {
4664		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4665		    ZPOOL_CONFIG_SPARES);
4666		spa_load_spares(spa);
4667		spa->spa_spares.sav_sync = B_TRUE;
4668	}
4669
4670	if (nl2cache != 0) {
4671		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4672		    ZPOOL_CONFIG_L2CACHE);
4673		spa_load_l2cache(spa);
4674		spa->spa_l2cache.sav_sync = B_TRUE;
4675	}
4676
4677	/*
4678	 * We have to be careful when adding new vdevs to an existing pool.
4679	 * If other threads start allocating from these vdevs before we
4680	 * sync the config cache, and we lose power, then upon reboot we may
4681	 * fail to open the pool because there are DVAs that the config cache
4682	 * can't translate.  Therefore, we first add the vdevs without
4683	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4684	 * and then let spa_config_update() initialize the new metaslabs.
4685	 *
4686	 * spa_load() checks for added-but-not-initialized vdevs, so that
4687	 * if we lose power at any point in this sequence, the remaining
4688	 * steps will be completed the next time we load the pool.
4689	 */
4690	(void) spa_vdev_exit(spa, vd, txg, 0);
4691
4692	mutex_enter(&spa_namespace_lock);
4693	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4694	mutex_exit(&spa_namespace_lock);
4695
4696	return (0);
4697}
4698
4699/*
4700 * Attach a device to a mirror.  The arguments are the path to any device
4701 * in the mirror, and the nvroot for the new device.  If the path specifies
4702 * a device that is not mirrored, we automatically insert the mirror vdev.
4703 *
4704 * If 'replacing' is specified, the new device is intended to replace the
4705 * existing device; in this case the two devices are made into their own
4706 * mirror using the 'replacing' vdev, which is functionally identical to
4707 * the mirror vdev (it actually reuses all the same ops) but has a few
4708 * extra rules: you can't attach to it after it's been created, and upon
4709 * completion of resilvering, the first disk (the one being replaced)
4710 * is automatically detached.
4711 */
4712int
4713spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4714{
4715	uint64_t txg, dtl_max_txg;
4716	vdev_t *rvd = spa->spa_root_vdev;
4717	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4718	vdev_ops_t *pvops;
4719	char *oldvdpath, *newvdpath;
4720	int newvd_isspare;
4721	int error;
4722
4723	ASSERT(spa_writeable(spa));
4724
4725	txg = spa_vdev_enter(spa);
4726
4727	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4728
4729	if (oldvd == NULL)
4730		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4731
4732	if (!oldvd->vdev_ops->vdev_op_leaf)
4733		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4734
4735	pvd = oldvd->vdev_parent;
4736
4737	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4738	    VDEV_ALLOC_ATTACH)) != 0)
4739		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4740
4741	if (newrootvd->vdev_children != 1)
4742		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4743
4744	newvd = newrootvd->vdev_child[0];
4745
4746	if (!newvd->vdev_ops->vdev_op_leaf)
4747		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4748
4749	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4750		return (spa_vdev_exit(spa, newrootvd, txg, error));
4751
4752	/*
4753	 * Spares can't replace logs
4754	 */
4755	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4756		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4757
4758	if (!replacing) {
4759		/*
4760		 * For attach, the only allowable parent is a mirror or the root
4761		 * vdev.
4762		 */
4763		if (pvd->vdev_ops != &vdev_mirror_ops &&
4764		    pvd->vdev_ops != &vdev_root_ops)
4765			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4766
4767		pvops = &vdev_mirror_ops;
4768	} else {
4769		/*
4770		 * Active hot spares can only be replaced by inactive hot
4771		 * spares.
4772		 */
4773		if (pvd->vdev_ops == &vdev_spare_ops &&
4774		    oldvd->vdev_isspare &&
4775		    !spa_has_spare(spa, newvd->vdev_guid))
4776			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4777
4778		/*
4779		 * If the source is a hot spare, and the parent isn't already a
4780		 * spare, then we want to create a new hot spare.  Otherwise, we
4781		 * want to create a replacing vdev.  The user is not allowed to
4782		 * attach to a spared vdev child unless the 'isspare' state is
4783		 * the same (spare replaces spare, non-spare replaces
4784		 * non-spare).
4785		 */
4786		if (pvd->vdev_ops == &vdev_replacing_ops &&
4787		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4788			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4789		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4790		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4791			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4792		}
4793
4794		if (newvd->vdev_isspare)
4795			pvops = &vdev_spare_ops;
4796		else
4797			pvops = &vdev_replacing_ops;
4798	}
4799
4800	/*
4801	 * Make sure the new device is big enough.
4802	 */
4803	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4804		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4805
4806	/*
4807	 * The new device cannot have a higher alignment requirement
4808	 * than the top-level vdev.
4809	 */
4810	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4811		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4812
4813	/*
4814	 * If this is an in-place replacement, update oldvd's path and devid
4815	 * to make it distinguishable from newvd, and unopenable from now on.
4816	 */
4817	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4818		spa_strfree(oldvd->vdev_path);
4819		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4820		    KM_SLEEP);
4821		(void) sprintf(oldvd->vdev_path, "%s/%s",
4822		    newvd->vdev_path, "old");
4823		if (oldvd->vdev_devid != NULL) {
4824			spa_strfree(oldvd->vdev_devid);
4825			oldvd->vdev_devid = NULL;
4826		}
4827	}
4828
4829	/* mark the device being resilvered */
4830	newvd->vdev_resilver_txg = txg;
4831
4832	/*
4833	 * If the parent is not a mirror, or if we're replacing, insert the new
4834	 * mirror/replacing/spare vdev above oldvd.
4835	 */
4836	if (pvd->vdev_ops != pvops)
4837		pvd = vdev_add_parent(oldvd, pvops);
4838
4839	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4840	ASSERT(pvd->vdev_ops == pvops);
4841	ASSERT(oldvd->vdev_parent == pvd);
4842
4843	/*
4844	 * Extract the new device from its root and add it to pvd.
4845	 */
4846	vdev_remove_child(newrootvd, newvd);
4847	newvd->vdev_id = pvd->vdev_children;
4848	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4849	vdev_add_child(pvd, newvd);
4850
4851	tvd = newvd->vdev_top;
4852	ASSERT(pvd->vdev_top == tvd);
4853	ASSERT(tvd->vdev_parent == rvd);
4854
4855	vdev_config_dirty(tvd);
4856
4857	/*
4858	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4859	 * for any dmu_sync-ed blocks.  It will propagate upward when
4860	 * spa_vdev_exit() calls vdev_dtl_reassess().
4861	 */
4862	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4863
4864	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4865	    dtl_max_txg - TXG_INITIAL);
4866
4867	if (newvd->vdev_isspare) {
4868		spa_spare_activate(newvd);
4869		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4870	}
4871
4872	oldvdpath = spa_strdup(oldvd->vdev_path);
4873	newvdpath = spa_strdup(newvd->vdev_path);
4874	newvd_isspare = newvd->vdev_isspare;
4875
4876	/*
4877	 * Mark newvd's DTL dirty in this txg.
4878	 */
4879	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4880
4881	/*
4882	 * Schedule the resilver to restart in the future. We do this to
4883	 * ensure that dmu_sync-ed blocks have been stitched into the
4884	 * respective datasets.
4885	 */
4886	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4887
4888	/*
4889	 * Commit the config
4890	 */
4891	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4892
4893	spa_history_log_internal(spa, "vdev attach", NULL,
4894	    "%s vdev=%s %s vdev=%s",
4895	    replacing && newvd_isspare ? "spare in" :
4896	    replacing ? "replace" : "attach", newvdpath,
4897	    replacing ? "for" : "to", oldvdpath);
4898
4899	spa_strfree(oldvdpath);
4900	spa_strfree(newvdpath);
4901
4902	if (spa->spa_bootfs)
4903		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4904
4905	return (0);
4906}
4907
4908/*
4909 * Detach a device from a mirror or replacing vdev.
4910 *
4911 * If 'replace_done' is specified, only detach if the parent
4912 * is a replacing vdev.
4913 */
4914int
4915spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4916{
4917	uint64_t txg;
4918	int error;
4919	vdev_t *rvd = spa->spa_root_vdev;
4920	vdev_t *vd, *pvd, *cvd, *tvd;
4921	boolean_t unspare = B_FALSE;
4922	uint64_t unspare_guid = 0;
4923	char *vdpath;
4924
4925	ASSERT(spa_writeable(spa));
4926
4927	txg = spa_vdev_enter(spa);
4928
4929	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4930
4931	if (vd == NULL)
4932		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4933
4934	if (!vd->vdev_ops->vdev_op_leaf)
4935		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4936
4937	pvd = vd->vdev_parent;
4938
4939	/*
4940	 * If the parent/child relationship is not as expected, don't do it.
4941	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4942	 * vdev that's replacing B with C.  The user's intent in replacing
4943	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4944	 * the replace by detaching C, the expected behavior is to end up
4945	 * M(A,B).  But suppose that right after deciding to detach C,
4946	 * the replacement of B completes.  We would have M(A,C), and then
4947	 * ask to detach C, which would leave us with just A -- not what
4948	 * the user wanted.  To prevent this, we make sure that the
4949	 * parent/child relationship hasn't changed -- in this example,
4950	 * that C's parent is still the replacing vdev R.
4951	 */
4952	if (pvd->vdev_guid != pguid && pguid != 0)
4953		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4954
4955	/*
4956	 * Only 'replacing' or 'spare' vdevs can be replaced.
4957	 */
4958	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4959	    pvd->vdev_ops != &vdev_spare_ops)
4960		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4961
4962	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4963	    spa_version(spa) >= SPA_VERSION_SPARES);
4964
4965	/*
4966	 * Only mirror, replacing, and spare vdevs support detach.
4967	 */
4968	if (pvd->vdev_ops != &vdev_replacing_ops &&
4969	    pvd->vdev_ops != &vdev_mirror_ops &&
4970	    pvd->vdev_ops != &vdev_spare_ops)
4971		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4972
4973	/*
4974	 * If this device has the only valid copy of some data,
4975	 * we cannot safely detach it.
4976	 */
4977	if (vdev_dtl_required(vd))
4978		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4979
4980	ASSERT(pvd->vdev_children >= 2);
4981
4982	/*
4983	 * If we are detaching the second disk from a replacing vdev, then
4984	 * check to see if we changed the original vdev's path to have "/old"
4985	 * at the end in spa_vdev_attach().  If so, undo that change now.
4986	 */
4987	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4988	    vd->vdev_path != NULL) {
4989		size_t len = strlen(vd->vdev_path);
4990
4991		for (int c = 0; c < pvd->vdev_children; c++) {
4992			cvd = pvd->vdev_child[c];
4993
4994			if (cvd == vd || cvd->vdev_path == NULL)
4995				continue;
4996
4997			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4998			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4999				spa_strfree(cvd->vdev_path);
5000				cvd->vdev_path = spa_strdup(vd->vdev_path);
5001				break;
5002			}
5003		}
5004	}
5005
5006	/*
5007	 * If we are detaching the original disk from a spare, then it implies
5008	 * that the spare should become a real disk, and be removed from the
5009	 * active spare list for the pool.
5010	 */
5011	if (pvd->vdev_ops == &vdev_spare_ops &&
5012	    vd->vdev_id == 0 &&
5013	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5014		unspare = B_TRUE;
5015
5016	/*
5017	 * Erase the disk labels so the disk can be used for other things.
5018	 * This must be done after all other error cases are handled,
5019	 * but before we disembowel vd (so we can still do I/O to it).
5020	 * But if we can't do it, don't treat the error as fatal --
5021	 * it may be that the unwritability of the disk is the reason
5022	 * it's being detached!
5023	 */
5024	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5025
5026	/*
5027	 * Remove vd from its parent and compact the parent's children.
5028	 */
5029	vdev_remove_child(pvd, vd);
5030	vdev_compact_children(pvd);
5031
5032	/*
5033	 * Remember one of the remaining children so we can get tvd below.
5034	 */
5035	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5036
5037	/*
5038	 * If we need to remove the remaining child from the list of hot spares,
5039	 * do it now, marking the vdev as no longer a spare in the process.
5040	 * We must do this before vdev_remove_parent(), because that can
5041	 * change the GUID if it creates a new toplevel GUID.  For a similar
5042	 * reason, we must remove the spare now, in the same txg as the detach;
5043	 * otherwise someone could attach a new sibling, change the GUID, and
5044	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5045	 */
5046	if (unspare) {
5047		ASSERT(cvd->vdev_isspare);
5048		spa_spare_remove(cvd);
5049		unspare_guid = cvd->vdev_guid;
5050		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5051		cvd->vdev_unspare = B_TRUE;
5052	}
5053
5054	/*
5055	 * If the parent mirror/replacing vdev only has one child,
5056	 * the parent is no longer needed.  Remove it from the tree.
5057	 */
5058	if (pvd->vdev_children == 1) {
5059		if (pvd->vdev_ops == &vdev_spare_ops)
5060			cvd->vdev_unspare = B_FALSE;
5061		vdev_remove_parent(cvd);
5062	}
5063
5064
5065	/*
5066	 * We don't set tvd until now because the parent we just removed
5067	 * may have been the previous top-level vdev.
5068	 */
5069	tvd = cvd->vdev_top;
5070	ASSERT(tvd->vdev_parent == rvd);
5071
5072	/*
5073	 * Reevaluate the parent vdev state.
5074	 */
5075	vdev_propagate_state(cvd);
5076
5077	/*
5078	 * If the 'autoexpand' property is set on the pool then automatically
5079	 * try to expand the size of the pool. For example if the device we
5080	 * just detached was smaller than the others, it may be possible to
5081	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5082	 * first so that we can obtain the updated sizes of the leaf vdevs.
5083	 */
5084	if (spa->spa_autoexpand) {
5085		vdev_reopen(tvd);
5086		vdev_expand(tvd, txg);
5087	}
5088
5089	vdev_config_dirty(tvd);
5090
5091	/*
5092	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5093	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5094	 * But first make sure we're not on any *other* txg's DTL list, to
5095	 * prevent vd from being accessed after it's freed.
5096	 */
5097	vdpath = spa_strdup(vd->vdev_path);
5098	for (int t = 0; t < TXG_SIZE; t++)
5099		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5100	vd->vdev_detached = B_TRUE;
5101	vdev_dirty(tvd, VDD_DTL, vd, txg);
5102
5103	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5104
5105	/* hang on to the spa before we release the lock */
5106	spa_open_ref(spa, FTAG);
5107
5108	error = spa_vdev_exit(spa, vd, txg, 0);
5109
5110	spa_history_log_internal(spa, "detach", NULL,
5111	    "vdev=%s", vdpath);
5112	spa_strfree(vdpath);
5113
5114	/*
5115	 * If this was the removal of the original device in a hot spare vdev,
5116	 * then we want to go through and remove the device from the hot spare
5117	 * list of every other pool.
5118	 */
5119	if (unspare) {
5120		spa_t *altspa = NULL;
5121
5122		mutex_enter(&spa_namespace_lock);
5123		while ((altspa = spa_next(altspa)) != NULL) {
5124			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5125			    altspa == spa)
5126				continue;
5127
5128			spa_open_ref(altspa, FTAG);
5129			mutex_exit(&spa_namespace_lock);
5130			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5131			mutex_enter(&spa_namespace_lock);
5132			spa_close(altspa, FTAG);
5133		}
5134		mutex_exit(&spa_namespace_lock);
5135
5136		/* search the rest of the vdevs for spares to remove */
5137		spa_vdev_resilver_done(spa);
5138	}
5139
5140	/* all done with the spa; OK to release */
5141	mutex_enter(&spa_namespace_lock);
5142	spa_close(spa, FTAG);
5143	mutex_exit(&spa_namespace_lock);
5144
5145	return (error);
5146}
5147
5148/*
5149 * Split a set of devices from their mirrors, and create a new pool from them.
5150 */
5151int
5152spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5153    nvlist_t *props, boolean_t exp)
5154{
5155	int error = 0;
5156	uint64_t txg, *glist;
5157	spa_t *newspa;
5158	uint_t c, children, lastlog;
5159	nvlist_t **child, *nvl, *tmp;
5160	dmu_tx_t *tx;
5161	char *altroot = NULL;
5162	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5163	boolean_t activate_slog;
5164
5165	ASSERT(spa_writeable(spa));
5166
5167	txg = spa_vdev_enter(spa);
5168
5169	/* clear the log and flush everything up to now */
5170	activate_slog = spa_passivate_log(spa);
5171	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5172	error = spa_offline_log(spa);
5173	txg = spa_vdev_config_enter(spa);
5174
5175	if (activate_slog)
5176		spa_activate_log(spa);
5177
5178	if (error != 0)
5179		return (spa_vdev_exit(spa, NULL, txg, error));
5180
5181	/* check new spa name before going any further */
5182	if (spa_lookup(newname) != NULL)
5183		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5184
5185	/*
5186	 * scan through all the children to ensure they're all mirrors
5187	 */
5188	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5189	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5190	    &children) != 0)
5191		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5192
5193	/* first, check to ensure we've got the right child count */
5194	rvd = spa->spa_root_vdev;
5195	lastlog = 0;
5196	for (c = 0; c < rvd->vdev_children; c++) {
5197		vdev_t *vd = rvd->vdev_child[c];
5198
5199		/* don't count the holes & logs as children */
5200		if (vd->vdev_islog || vd->vdev_ishole) {
5201			if (lastlog == 0)
5202				lastlog = c;
5203			continue;
5204		}
5205
5206		lastlog = 0;
5207	}
5208	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5209		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5210
5211	/* next, ensure no spare or cache devices are part of the split */
5212	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5213	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5214		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5215
5216	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5217	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5218
5219	/* then, loop over each vdev and validate it */
5220	for (c = 0; c < children; c++) {
5221		uint64_t is_hole = 0;
5222
5223		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5224		    &is_hole);
5225
5226		if (is_hole != 0) {
5227			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5228			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5229				continue;
5230			} else {
5231				error = SET_ERROR(EINVAL);
5232				break;
5233			}
5234		}
5235
5236		/* which disk is going to be split? */
5237		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5238		    &glist[c]) != 0) {
5239			error = SET_ERROR(EINVAL);
5240			break;
5241		}
5242
5243		/* look it up in the spa */
5244		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5245		if (vml[c] == NULL) {
5246			error = SET_ERROR(ENODEV);
5247			break;
5248		}
5249
5250		/* make sure there's nothing stopping the split */
5251		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5252		    vml[c]->vdev_islog ||
5253		    vml[c]->vdev_ishole ||
5254		    vml[c]->vdev_isspare ||
5255		    vml[c]->vdev_isl2cache ||
5256		    !vdev_writeable(vml[c]) ||
5257		    vml[c]->vdev_children != 0 ||
5258		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5259		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5260			error = SET_ERROR(EINVAL);
5261			break;
5262		}
5263
5264		if (vdev_dtl_required(vml[c])) {
5265			error = SET_ERROR(EBUSY);
5266			break;
5267		}
5268
5269		/* we need certain info from the top level */
5270		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5271		    vml[c]->vdev_top->vdev_ms_array) == 0);
5272		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5273		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5274		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5275		    vml[c]->vdev_top->vdev_asize) == 0);
5276		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5277		    vml[c]->vdev_top->vdev_ashift) == 0);
5278	}
5279
5280	if (error != 0) {
5281		kmem_free(vml, children * sizeof (vdev_t *));
5282		kmem_free(glist, children * sizeof (uint64_t));
5283		return (spa_vdev_exit(spa, NULL, txg, error));
5284	}
5285
5286	/* stop writers from using the disks */
5287	for (c = 0; c < children; c++) {
5288		if (vml[c] != NULL)
5289			vml[c]->vdev_offline = B_TRUE;
5290	}
5291	vdev_reopen(spa->spa_root_vdev);
5292
5293	/*
5294	 * Temporarily record the splitting vdevs in the spa config.  This
5295	 * will disappear once the config is regenerated.
5296	 */
5297	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5298	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5299	    glist, children) == 0);
5300	kmem_free(glist, children * sizeof (uint64_t));
5301
5302	mutex_enter(&spa->spa_props_lock);
5303	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5304	    nvl) == 0);
5305	mutex_exit(&spa->spa_props_lock);
5306	spa->spa_config_splitting = nvl;
5307	vdev_config_dirty(spa->spa_root_vdev);
5308
5309	/* configure and create the new pool */
5310	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5311	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5312	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5313	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5314	    spa_version(spa)) == 0);
5315	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5316	    spa->spa_config_txg) == 0);
5317	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5318	    spa_generate_guid(NULL)) == 0);
5319	(void) nvlist_lookup_string(props,
5320	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5321
5322	/* add the new pool to the namespace */
5323	newspa = spa_add(newname, config, altroot);
5324	newspa->spa_config_txg = spa->spa_config_txg;
5325	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5326
5327	/* release the spa config lock, retaining the namespace lock */
5328	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5329
5330	if (zio_injection_enabled)
5331		zio_handle_panic_injection(spa, FTAG, 1);
5332
5333	spa_activate(newspa, spa_mode_global);
5334	spa_async_suspend(newspa);
5335
5336#ifndef sun
5337	/* mark that we are creating new spa by splitting */
5338	newspa->spa_splitting_newspa = B_TRUE;
5339#endif
5340	/* create the new pool from the disks of the original pool */
5341	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5342#ifndef sun
5343	newspa->spa_splitting_newspa = B_FALSE;
5344#endif
5345	if (error)
5346		goto out;
5347
5348	/* if that worked, generate a real config for the new pool */
5349	if (newspa->spa_root_vdev != NULL) {
5350		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5351		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5352		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5353		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5354		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5355		    B_TRUE));
5356	}
5357
5358	/* set the props */
5359	if (props != NULL) {
5360		spa_configfile_set(newspa, props, B_FALSE);
5361		error = spa_prop_set(newspa, props);
5362		if (error)
5363			goto out;
5364	}
5365
5366	/* flush everything */
5367	txg = spa_vdev_config_enter(newspa);
5368	vdev_config_dirty(newspa->spa_root_vdev);
5369	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5370
5371	if (zio_injection_enabled)
5372		zio_handle_panic_injection(spa, FTAG, 2);
5373
5374	spa_async_resume(newspa);
5375
5376	/* finally, update the original pool's config */
5377	txg = spa_vdev_config_enter(spa);
5378	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5379	error = dmu_tx_assign(tx, TXG_WAIT);
5380	if (error != 0)
5381		dmu_tx_abort(tx);
5382	for (c = 0; c < children; c++) {
5383		if (vml[c] != NULL) {
5384			vdev_split(vml[c]);
5385			if (error == 0)
5386				spa_history_log_internal(spa, "detach", tx,
5387				    "vdev=%s", vml[c]->vdev_path);
5388			vdev_free(vml[c]);
5389		}
5390	}
5391	vdev_config_dirty(spa->spa_root_vdev);
5392	spa->spa_config_splitting = NULL;
5393	nvlist_free(nvl);
5394	if (error == 0)
5395		dmu_tx_commit(tx);
5396	(void) spa_vdev_exit(spa, NULL, txg, 0);
5397
5398	if (zio_injection_enabled)
5399		zio_handle_panic_injection(spa, FTAG, 3);
5400
5401	/* split is complete; log a history record */
5402	spa_history_log_internal(newspa, "split", NULL,
5403	    "from pool %s", spa_name(spa));
5404
5405	kmem_free(vml, children * sizeof (vdev_t *));
5406
5407	/* if we're not going to mount the filesystems in userland, export */
5408	if (exp)
5409		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5410		    B_FALSE, B_FALSE);
5411
5412	return (error);
5413
5414out:
5415	spa_unload(newspa);
5416	spa_deactivate(newspa);
5417	spa_remove(newspa);
5418
5419	txg = spa_vdev_config_enter(spa);
5420
5421	/* re-online all offlined disks */
5422	for (c = 0; c < children; c++) {
5423		if (vml[c] != NULL)
5424			vml[c]->vdev_offline = B_FALSE;
5425	}
5426	vdev_reopen(spa->spa_root_vdev);
5427
5428	nvlist_free(spa->spa_config_splitting);
5429	spa->spa_config_splitting = NULL;
5430	(void) spa_vdev_exit(spa, NULL, txg, error);
5431
5432	kmem_free(vml, children * sizeof (vdev_t *));
5433	return (error);
5434}
5435
5436static nvlist_t *
5437spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5438{
5439	for (int i = 0; i < count; i++) {
5440		uint64_t guid;
5441
5442		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5443		    &guid) == 0);
5444
5445		if (guid == target_guid)
5446			return (nvpp[i]);
5447	}
5448
5449	return (NULL);
5450}
5451
5452static void
5453spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5454	nvlist_t *dev_to_remove)
5455{
5456	nvlist_t **newdev = NULL;
5457
5458	if (count > 1)
5459		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5460
5461	for (int i = 0, j = 0; i < count; i++) {
5462		if (dev[i] == dev_to_remove)
5463			continue;
5464		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5465	}
5466
5467	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5468	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5469
5470	for (int i = 0; i < count - 1; i++)
5471		nvlist_free(newdev[i]);
5472
5473	if (count > 1)
5474		kmem_free(newdev, (count - 1) * sizeof (void *));
5475}
5476
5477/*
5478 * Evacuate the device.
5479 */
5480static int
5481spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5482{
5483	uint64_t txg;
5484	int error = 0;
5485
5486	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5487	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5488	ASSERT(vd == vd->vdev_top);
5489
5490	/*
5491	 * Evacuate the device.  We don't hold the config lock as writer
5492	 * since we need to do I/O but we do keep the
5493	 * spa_namespace_lock held.  Once this completes the device
5494	 * should no longer have any blocks allocated on it.
5495	 */
5496	if (vd->vdev_islog) {
5497		if (vd->vdev_stat.vs_alloc != 0)
5498			error = spa_offline_log(spa);
5499	} else {
5500		error = SET_ERROR(ENOTSUP);
5501	}
5502
5503	if (error)
5504		return (error);
5505
5506	/*
5507	 * The evacuation succeeded.  Remove any remaining MOS metadata
5508	 * associated with this vdev, and wait for these changes to sync.
5509	 */
5510	ASSERT0(vd->vdev_stat.vs_alloc);
5511	txg = spa_vdev_config_enter(spa);
5512	vd->vdev_removing = B_TRUE;
5513	vdev_dirty_leaves(vd, VDD_DTL, txg);
5514	vdev_config_dirty(vd);
5515	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5516
5517	return (0);
5518}
5519
5520/*
5521 * Complete the removal by cleaning up the namespace.
5522 */
5523static void
5524spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5525{
5526	vdev_t *rvd = spa->spa_root_vdev;
5527	uint64_t id = vd->vdev_id;
5528	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5529
5530	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5531	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5532	ASSERT(vd == vd->vdev_top);
5533
5534	/*
5535	 * Only remove any devices which are empty.
5536	 */
5537	if (vd->vdev_stat.vs_alloc != 0)
5538		return;
5539
5540	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5541
5542	if (list_link_active(&vd->vdev_state_dirty_node))
5543		vdev_state_clean(vd);
5544	if (list_link_active(&vd->vdev_config_dirty_node))
5545		vdev_config_clean(vd);
5546
5547	vdev_free(vd);
5548
5549	if (last_vdev) {
5550		vdev_compact_children(rvd);
5551	} else {
5552		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5553		vdev_add_child(rvd, vd);
5554	}
5555	vdev_config_dirty(rvd);
5556
5557	/*
5558	 * Reassess the health of our root vdev.
5559	 */
5560	vdev_reopen(rvd);
5561}
5562
5563/*
5564 * Remove a device from the pool -
5565 *
5566 * Removing a device from the vdev namespace requires several steps
5567 * and can take a significant amount of time.  As a result we use
5568 * the spa_vdev_config_[enter/exit] functions which allow us to
5569 * grab and release the spa_config_lock while still holding the namespace
5570 * lock.  During each step the configuration is synced out.
5571 *
5572 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5573 * devices.
5574 */
5575int
5576spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5577{
5578	vdev_t *vd;
5579	metaslab_group_t *mg;
5580	nvlist_t **spares, **l2cache, *nv;
5581	uint64_t txg = 0;
5582	uint_t nspares, nl2cache;
5583	int error = 0;
5584	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5585
5586	ASSERT(spa_writeable(spa));
5587
5588	if (!locked)
5589		txg = spa_vdev_enter(spa);
5590
5591	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5592
5593	if (spa->spa_spares.sav_vdevs != NULL &&
5594	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5595	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5596	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5597		/*
5598		 * Only remove the hot spare if it's not currently in use
5599		 * in this pool.
5600		 */
5601		if (vd == NULL || unspare) {
5602			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5603			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5604			spa_load_spares(spa);
5605			spa->spa_spares.sav_sync = B_TRUE;
5606		} else {
5607			error = SET_ERROR(EBUSY);
5608		}
5609	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5610	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5611	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5612	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5613		/*
5614		 * Cache devices can always be removed.
5615		 */
5616		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5617		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5618		spa_load_l2cache(spa);
5619		spa->spa_l2cache.sav_sync = B_TRUE;
5620	} else if (vd != NULL && vd->vdev_islog) {
5621		ASSERT(!locked);
5622		ASSERT(vd == vd->vdev_top);
5623
5624		mg = vd->vdev_mg;
5625
5626		/*
5627		 * Stop allocating from this vdev.
5628		 */
5629		metaslab_group_passivate(mg);
5630
5631		/*
5632		 * Wait for the youngest allocations and frees to sync,
5633		 * and then wait for the deferral of those frees to finish.
5634		 */
5635		spa_vdev_config_exit(spa, NULL,
5636		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5637
5638		/*
5639		 * Attempt to evacuate the vdev.
5640		 */
5641		error = spa_vdev_remove_evacuate(spa, vd);
5642
5643		txg = spa_vdev_config_enter(spa);
5644
5645		/*
5646		 * If we couldn't evacuate the vdev, unwind.
5647		 */
5648		if (error) {
5649			metaslab_group_activate(mg);
5650			return (spa_vdev_exit(spa, NULL, txg, error));
5651		}
5652
5653		/*
5654		 * Clean up the vdev namespace.
5655		 */
5656		spa_vdev_remove_from_namespace(spa, vd);
5657
5658	} else if (vd != NULL) {
5659		/*
5660		 * Normal vdevs cannot be removed (yet).
5661		 */
5662		error = SET_ERROR(ENOTSUP);
5663	} else {
5664		/*
5665		 * There is no vdev of any kind with the specified guid.
5666		 */
5667		error = SET_ERROR(ENOENT);
5668	}
5669
5670	if (!locked)
5671		return (spa_vdev_exit(spa, NULL, txg, error));
5672
5673	return (error);
5674}
5675
5676/*
5677 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5678 * currently spared, so we can detach it.
5679 */
5680static vdev_t *
5681spa_vdev_resilver_done_hunt(vdev_t *vd)
5682{
5683	vdev_t *newvd, *oldvd;
5684
5685	for (int c = 0; c < vd->vdev_children; c++) {
5686		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5687		if (oldvd != NULL)
5688			return (oldvd);
5689	}
5690
5691	/*
5692	 * Check for a completed replacement.  We always consider the first
5693	 * vdev in the list to be the oldest vdev, and the last one to be
5694	 * the newest (see spa_vdev_attach() for how that works).  In
5695	 * the case where the newest vdev is faulted, we will not automatically
5696	 * remove it after a resilver completes.  This is OK as it will require
5697	 * user intervention to determine which disk the admin wishes to keep.
5698	 */
5699	if (vd->vdev_ops == &vdev_replacing_ops) {
5700		ASSERT(vd->vdev_children > 1);
5701
5702		newvd = vd->vdev_child[vd->vdev_children - 1];
5703		oldvd = vd->vdev_child[0];
5704
5705		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5706		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5707		    !vdev_dtl_required(oldvd))
5708			return (oldvd);
5709	}
5710
5711	/*
5712	 * Check for a completed resilver with the 'unspare' flag set.
5713	 */
5714	if (vd->vdev_ops == &vdev_spare_ops) {
5715		vdev_t *first = vd->vdev_child[0];
5716		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5717
5718		if (last->vdev_unspare) {
5719			oldvd = first;
5720			newvd = last;
5721		} else if (first->vdev_unspare) {
5722			oldvd = last;
5723			newvd = first;
5724		} else {
5725			oldvd = NULL;
5726		}
5727
5728		if (oldvd != NULL &&
5729		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5730		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5731		    !vdev_dtl_required(oldvd))
5732			return (oldvd);
5733
5734		/*
5735		 * If there are more than two spares attached to a disk,
5736		 * and those spares are not required, then we want to
5737		 * attempt to free them up now so that they can be used
5738		 * by other pools.  Once we're back down to a single
5739		 * disk+spare, we stop removing them.
5740		 */
5741		if (vd->vdev_children > 2) {
5742			newvd = vd->vdev_child[1];
5743
5744			if (newvd->vdev_isspare && last->vdev_isspare &&
5745			    vdev_dtl_empty(last, DTL_MISSING) &&
5746			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5747			    !vdev_dtl_required(newvd))
5748				return (newvd);
5749		}
5750	}
5751
5752	return (NULL);
5753}
5754
5755static void
5756spa_vdev_resilver_done(spa_t *spa)
5757{
5758	vdev_t *vd, *pvd, *ppvd;
5759	uint64_t guid, sguid, pguid, ppguid;
5760
5761	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5762
5763	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5764		pvd = vd->vdev_parent;
5765		ppvd = pvd->vdev_parent;
5766		guid = vd->vdev_guid;
5767		pguid = pvd->vdev_guid;
5768		ppguid = ppvd->vdev_guid;
5769		sguid = 0;
5770		/*
5771		 * If we have just finished replacing a hot spared device, then
5772		 * we need to detach the parent's first child (the original hot
5773		 * spare) as well.
5774		 */
5775		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5776		    ppvd->vdev_children == 2) {
5777			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5778			sguid = ppvd->vdev_child[1]->vdev_guid;
5779		}
5780		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5781
5782		spa_config_exit(spa, SCL_ALL, FTAG);
5783		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5784			return;
5785		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5786			return;
5787		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5788	}
5789
5790	spa_config_exit(spa, SCL_ALL, FTAG);
5791}
5792
5793/*
5794 * Update the stored path or FRU for this vdev.
5795 */
5796int
5797spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5798    boolean_t ispath)
5799{
5800	vdev_t *vd;
5801	boolean_t sync = B_FALSE;
5802
5803	ASSERT(spa_writeable(spa));
5804
5805	spa_vdev_state_enter(spa, SCL_ALL);
5806
5807	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5808		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5809
5810	if (!vd->vdev_ops->vdev_op_leaf)
5811		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5812
5813	if (ispath) {
5814		if (strcmp(value, vd->vdev_path) != 0) {
5815			spa_strfree(vd->vdev_path);
5816			vd->vdev_path = spa_strdup(value);
5817			sync = B_TRUE;
5818		}
5819	} else {
5820		if (vd->vdev_fru == NULL) {
5821			vd->vdev_fru = spa_strdup(value);
5822			sync = B_TRUE;
5823		} else if (strcmp(value, vd->vdev_fru) != 0) {
5824			spa_strfree(vd->vdev_fru);
5825			vd->vdev_fru = spa_strdup(value);
5826			sync = B_TRUE;
5827		}
5828	}
5829
5830	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5831}
5832
5833int
5834spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5835{
5836	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5837}
5838
5839int
5840spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5841{
5842	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5843}
5844
5845/*
5846 * ==========================================================================
5847 * SPA Scanning
5848 * ==========================================================================
5849 */
5850
5851int
5852spa_scan_stop(spa_t *spa)
5853{
5854	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5855	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5856		return (SET_ERROR(EBUSY));
5857	return (dsl_scan_cancel(spa->spa_dsl_pool));
5858}
5859
5860int
5861spa_scan(spa_t *spa, pool_scan_func_t func)
5862{
5863	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5864
5865	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5866		return (SET_ERROR(ENOTSUP));
5867
5868	/*
5869	 * If a resilver was requested, but there is no DTL on a
5870	 * writeable leaf device, we have nothing to do.
5871	 */
5872	if (func == POOL_SCAN_RESILVER &&
5873	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5874		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5875		return (0);
5876	}
5877
5878	return (dsl_scan(spa->spa_dsl_pool, func));
5879}
5880
5881/*
5882 * ==========================================================================
5883 * SPA async task processing
5884 * ==========================================================================
5885 */
5886
5887static void
5888spa_async_remove(spa_t *spa, vdev_t *vd)
5889{
5890	if (vd->vdev_remove_wanted) {
5891		vd->vdev_remove_wanted = B_FALSE;
5892		vd->vdev_delayed_close = B_FALSE;
5893		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5894
5895		/*
5896		 * We want to clear the stats, but we don't want to do a full
5897		 * vdev_clear() as that will cause us to throw away
5898		 * degraded/faulted state as well as attempt to reopen the
5899		 * device, all of which is a waste.
5900		 */
5901		vd->vdev_stat.vs_read_errors = 0;
5902		vd->vdev_stat.vs_write_errors = 0;
5903		vd->vdev_stat.vs_checksum_errors = 0;
5904
5905		vdev_state_dirty(vd->vdev_top);
5906	}
5907
5908	for (int c = 0; c < vd->vdev_children; c++)
5909		spa_async_remove(spa, vd->vdev_child[c]);
5910}
5911
5912static void
5913spa_async_probe(spa_t *spa, vdev_t *vd)
5914{
5915	if (vd->vdev_probe_wanted) {
5916		vd->vdev_probe_wanted = B_FALSE;
5917		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5918	}
5919
5920	for (int c = 0; c < vd->vdev_children; c++)
5921		spa_async_probe(spa, vd->vdev_child[c]);
5922}
5923
5924static void
5925spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5926{
5927	sysevent_id_t eid;
5928	nvlist_t *attr;
5929	char *physpath;
5930
5931	if (!spa->spa_autoexpand)
5932		return;
5933
5934	for (int c = 0; c < vd->vdev_children; c++) {
5935		vdev_t *cvd = vd->vdev_child[c];
5936		spa_async_autoexpand(spa, cvd);
5937	}
5938
5939	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5940		return;
5941
5942	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5943	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5944
5945	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5946	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5947
5948	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5949	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5950
5951	nvlist_free(attr);
5952	kmem_free(physpath, MAXPATHLEN);
5953}
5954
5955static void
5956spa_async_thread(void *arg)
5957{
5958	spa_t *spa = arg;
5959	int tasks;
5960
5961	ASSERT(spa->spa_sync_on);
5962
5963	mutex_enter(&spa->spa_async_lock);
5964	tasks = spa->spa_async_tasks;
5965	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5966	mutex_exit(&spa->spa_async_lock);
5967
5968	/*
5969	 * See if the config needs to be updated.
5970	 */
5971	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5972		uint64_t old_space, new_space;
5973
5974		mutex_enter(&spa_namespace_lock);
5975		old_space = metaslab_class_get_space(spa_normal_class(spa));
5976		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5977		new_space = metaslab_class_get_space(spa_normal_class(spa));
5978		mutex_exit(&spa_namespace_lock);
5979
5980		/*
5981		 * If the pool grew as a result of the config update,
5982		 * then log an internal history event.
5983		 */
5984		if (new_space != old_space) {
5985			spa_history_log_internal(spa, "vdev online", NULL,
5986			    "pool '%s' size: %llu(+%llu)",
5987			    spa_name(spa), new_space, new_space - old_space);
5988		}
5989	}
5990
5991	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5992		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5993		spa_async_autoexpand(spa, spa->spa_root_vdev);
5994		spa_config_exit(spa, SCL_CONFIG, FTAG);
5995	}
5996
5997	/*
5998	 * See if any devices need to be probed.
5999	 */
6000	if (tasks & SPA_ASYNC_PROBE) {
6001		spa_vdev_state_enter(spa, SCL_NONE);
6002		spa_async_probe(spa, spa->spa_root_vdev);
6003		(void) spa_vdev_state_exit(spa, NULL, 0);
6004	}
6005
6006	/*
6007	 * If any devices are done replacing, detach them.
6008	 */
6009	if (tasks & SPA_ASYNC_RESILVER_DONE)
6010		spa_vdev_resilver_done(spa);
6011
6012	/*
6013	 * Kick off a resilver.
6014	 */
6015	if (tasks & SPA_ASYNC_RESILVER)
6016		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6017
6018	/*
6019	 * Let the world know that we're done.
6020	 */
6021	mutex_enter(&spa->spa_async_lock);
6022	spa->spa_async_thread = NULL;
6023	cv_broadcast(&spa->spa_async_cv);
6024	mutex_exit(&spa->spa_async_lock);
6025	thread_exit();
6026}
6027
6028static void
6029spa_async_thread_vd(void *arg)
6030{
6031	spa_t *spa = arg;
6032	int tasks;
6033
6034	ASSERT(spa->spa_sync_on);
6035
6036	mutex_enter(&spa->spa_async_lock);
6037	tasks = spa->spa_async_tasks;
6038retry:
6039	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6040	mutex_exit(&spa->spa_async_lock);
6041
6042	/*
6043	 * See if any devices need to be marked REMOVED.
6044	 */
6045	if (tasks & SPA_ASYNC_REMOVE) {
6046		spa_vdev_state_enter(spa, SCL_NONE);
6047		spa_async_remove(spa, spa->spa_root_vdev);
6048		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6049			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6050		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6051			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6052		(void) spa_vdev_state_exit(spa, NULL, 0);
6053	}
6054
6055	/*
6056	 * Let the world know that we're done.
6057	 */
6058	mutex_enter(&spa->spa_async_lock);
6059	tasks = spa->spa_async_tasks;
6060	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6061		goto retry;
6062	spa->spa_async_thread_vd = NULL;
6063	cv_broadcast(&spa->spa_async_cv);
6064	mutex_exit(&spa->spa_async_lock);
6065	thread_exit();
6066}
6067
6068void
6069spa_async_suspend(spa_t *spa)
6070{
6071	mutex_enter(&spa->spa_async_lock);
6072	spa->spa_async_suspended++;
6073	while (spa->spa_async_thread != NULL &&
6074	    spa->spa_async_thread_vd != NULL)
6075		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6076	mutex_exit(&spa->spa_async_lock);
6077}
6078
6079void
6080spa_async_resume(spa_t *spa)
6081{
6082	mutex_enter(&spa->spa_async_lock);
6083	ASSERT(spa->spa_async_suspended != 0);
6084	spa->spa_async_suspended--;
6085	mutex_exit(&spa->spa_async_lock);
6086}
6087
6088static boolean_t
6089spa_async_tasks_pending(spa_t *spa)
6090{
6091	uint_t non_config_tasks;
6092	uint_t config_task;
6093	boolean_t config_task_suspended;
6094
6095	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6096	    SPA_ASYNC_REMOVE);
6097	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6098	if (spa->spa_ccw_fail_time == 0) {
6099		config_task_suspended = B_FALSE;
6100	} else {
6101		config_task_suspended =
6102		    (gethrtime() - spa->spa_ccw_fail_time) <
6103		    (zfs_ccw_retry_interval * NANOSEC);
6104	}
6105
6106	return (non_config_tasks || (config_task && !config_task_suspended));
6107}
6108
6109static void
6110spa_async_dispatch(spa_t *spa)
6111{
6112	mutex_enter(&spa->spa_async_lock);
6113	if (spa_async_tasks_pending(spa) &&
6114	    !spa->spa_async_suspended &&
6115	    spa->spa_async_thread == NULL &&
6116	    rootdir != NULL)
6117		spa->spa_async_thread = thread_create(NULL, 0,
6118		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6119	mutex_exit(&spa->spa_async_lock);
6120}
6121
6122static void
6123spa_async_dispatch_vd(spa_t *spa)
6124{
6125	mutex_enter(&spa->spa_async_lock);
6126	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6127	    !spa->spa_async_suspended &&
6128	    spa->spa_async_thread_vd == NULL &&
6129	    rootdir != NULL)
6130		spa->spa_async_thread_vd = thread_create(NULL, 0,
6131		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6132	mutex_exit(&spa->spa_async_lock);
6133}
6134
6135void
6136spa_async_request(spa_t *spa, int task)
6137{
6138	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6139	mutex_enter(&spa->spa_async_lock);
6140	spa->spa_async_tasks |= task;
6141	mutex_exit(&spa->spa_async_lock);
6142	spa_async_dispatch_vd(spa);
6143}
6144
6145/*
6146 * ==========================================================================
6147 * SPA syncing routines
6148 * ==========================================================================
6149 */
6150
6151static int
6152bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6153{
6154	bpobj_t *bpo = arg;
6155	bpobj_enqueue(bpo, bp, tx);
6156	return (0);
6157}
6158
6159static int
6160spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6161{
6162	zio_t *zio = arg;
6163
6164	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6165	    BP_GET_PSIZE(bp), zio->io_flags));
6166	return (0);
6167}
6168
6169/*
6170 * Note: this simple function is not inlined to make it easier to dtrace the
6171 * amount of time spent syncing frees.
6172 */
6173static void
6174spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6175{
6176	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6177	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6178	VERIFY(zio_wait(zio) == 0);
6179}
6180
6181/*
6182 * Note: this simple function is not inlined to make it easier to dtrace the
6183 * amount of time spent syncing deferred frees.
6184 */
6185static void
6186spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6187{
6188	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6189	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6190	    spa_free_sync_cb, zio, tx), ==, 0);
6191	VERIFY0(zio_wait(zio));
6192}
6193
6194
6195static void
6196spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6197{
6198	char *packed = NULL;
6199	size_t bufsize;
6200	size_t nvsize = 0;
6201	dmu_buf_t *db;
6202
6203	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6204
6205	/*
6206	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6207	 * information.  This avoids the dmu_buf_will_dirty() path and
6208	 * saves us a pre-read to get data we don't actually care about.
6209	 */
6210	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6211	packed = kmem_alloc(bufsize, KM_SLEEP);
6212
6213	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6214	    KM_SLEEP) == 0);
6215	bzero(packed + nvsize, bufsize - nvsize);
6216
6217	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6218
6219	kmem_free(packed, bufsize);
6220
6221	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6222	dmu_buf_will_dirty(db, tx);
6223	*(uint64_t *)db->db_data = nvsize;
6224	dmu_buf_rele(db, FTAG);
6225}
6226
6227static void
6228spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6229    const char *config, const char *entry)
6230{
6231	nvlist_t *nvroot;
6232	nvlist_t **list;
6233	int i;
6234
6235	if (!sav->sav_sync)
6236		return;
6237
6238	/*
6239	 * Update the MOS nvlist describing the list of available devices.
6240	 * spa_validate_aux() will have already made sure this nvlist is
6241	 * valid and the vdevs are labeled appropriately.
6242	 */
6243	if (sav->sav_object == 0) {
6244		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6245		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6246		    sizeof (uint64_t), tx);
6247		VERIFY(zap_update(spa->spa_meta_objset,
6248		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6249		    &sav->sav_object, tx) == 0);
6250	}
6251
6252	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6253	if (sav->sav_count == 0) {
6254		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6255	} else {
6256		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6257		for (i = 0; i < sav->sav_count; i++)
6258			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6259			    B_FALSE, VDEV_CONFIG_L2CACHE);
6260		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6261		    sav->sav_count) == 0);
6262		for (i = 0; i < sav->sav_count; i++)
6263			nvlist_free(list[i]);
6264		kmem_free(list, sav->sav_count * sizeof (void *));
6265	}
6266
6267	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6268	nvlist_free(nvroot);
6269
6270	sav->sav_sync = B_FALSE;
6271}
6272
6273static void
6274spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6275{
6276	nvlist_t *config;
6277
6278	if (list_is_empty(&spa->spa_config_dirty_list))
6279		return;
6280
6281	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6282
6283	config = spa_config_generate(spa, spa->spa_root_vdev,
6284	    dmu_tx_get_txg(tx), B_FALSE);
6285
6286	/*
6287	 * If we're upgrading the spa version then make sure that
6288	 * the config object gets updated with the correct version.
6289	 */
6290	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6291		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6292		    spa->spa_uberblock.ub_version);
6293
6294	spa_config_exit(spa, SCL_STATE, FTAG);
6295
6296	if (spa->spa_config_syncing)
6297		nvlist_free(spa->spa_config_syncing);
6298	spa->spa_config_syncing = config;
6299
6300	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6301}
6302
6303static void
6304spa_sync_version(void *arg, dmu_tx_t *tx)
6305{
6306	uint64_t *versionp = arg;
6307	uint64_t version = *versionp;
6308	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6309
6310	/*
6311	 * Setting the version is special cased when first creating the pool.
6312	 */
6313	ASSERT(tx->tx_txg != TXG_INITIAL);
6314
6315	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6316	ASSERT(version >= spa_version(spa));
6317
6318	spa->spa_uberblock.ub_version = version;
6319	vdev_config_dirty(spa->spa_root_vdev);
6320	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6321}
6322
6323/*
6324 * Set zpool properties.
6325 */
6326static void
6327spa_sync_props(void *arg, dmu_tx_t *tx)
6328{
6329	nvlist_t *nvp = arg;
6330	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6331	objset_t *mos = spa->spa_meta_objset;
6332	nvpair_t *elem = NULL;
6333
6334	mutex_enter(&spa->spa_props_lock);
6335
6336	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6337		uint64_t intval;
6338		char *strval, *fname;
6339		zpool_prop_t prop;
6340		const char *propname;
6341		zprop_type_t proptype;
6342		spa_feature_t fid;
6343
6344		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6345		case ZPROP_INVAL:
6346			/*
6347			 * We checked this earlier in spa_prop_validate().
6348			 */
6349			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6350
6351			fname = strchr(nvpair_name(elem), '@') + 1;
6352			VERIFY0(zfeature_lookup_name(fname, &fid));
6353
6354			spa_feature_enable(spa, fid, tx);
6355			spa_history_log_internal(spa, "set", tx,
6356			    "%s=enabled", nvpair_name(elem));
6357			break;
6358
6359		case ZPOOL_PROP_VERSION:
6360			intval = fnvpair_value_uint64(elem);
6361			/*
6362			 * The version is synced seperatly before other
6363			 * properties and should be correct by now.
6364			 */
6365			ASSERT3U(spa_version(spa), >=, intval);
6366			break;
6367
6368		case ZPOOL_PROP_ALTROOT:
6369			/*
6370			 * 'altroot' is a non-persistent property. It should
6371			 * have been set temporarily at creation or import time.
6372			 */
6373			ASSERT(spa->spa_root != NULL);
6374			break;
6375
6376		case ZPOOL_PROP_READONLY:
6377		case ZPOOL_PROP_CACHEFILE:
6378			/*
6379			 * 'readonly' and 'cachefile' are also non-persisitent
6380			 * properties.
6381			 */
6382			break;
6383		case ZPOOL_PROP_COMMENT:
6384			strval = fnvpair_value_string(elem);
6385			if (spa->spa_comment != NULL)
6386				spa_strfree(spa->spa_comment);
6387			spa->spa_comment = spa_strdup(strval);
6388			/*
6389			 * We need to dirty the configuration on all the vdevs
6390			 * so that their labels get updated.  It's unnecessary
6391			 * to do this for pool creation since the vdev's
6392			 * configuratoin has already been dirtied.
6393			 */
6394			if (tx->tx_txg != TXG_INITIAL)
6395				vdev_config_dirty(spa->spa_root_vdev);
6396			spa_history_log_internal(spa, "set", tx,
6397			    "%s=%s", nvpair_name(elem), strval);
6398			break;
6399		default:
6400			/*
6401			 * Set pool property values in the poolprops mos object.
6402			 */
6403			if (spa->spa_pool_props_object == 0) {
6404				spa->spa_pool_props_object =
6405				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6406				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6407				    tx);
6408			}
6409
6410			/* normalize the property name */
6411			propname = zpool_prop_to_name(prop);
6412			proptype = zpool_prop_get_type(prop);
6413
6414			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6415				ASSERT(proptype == PROP_TYPE_STRING);
6416				strval = fnvpair_value_string(elem);
6417				VERIFY0(zap_update(mos,
6418				    spa->spa_pool_props_object, propname,
6419				    1, strlen(strval) + 1, strval, tx));
6420				spa_history_log_internal(spa, "set", tx,
6421				    "%s=%s", nvpair_name(elem), strval);
6422			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6423				intval = fnvpair_value_uint64(elem);
6424
6425				if (proptype == PROP_TYPE_INDEX) {
6426					const char *unused;
6427					VERIFY0(zpool_prop_index_to_string(
6428					    prop, intval, &unused));
6429				}
6430				VERIFY0(zap_update(mos,
6431				    spa->spa_pool_props_object, propname,
6432				    8, 1, &intval, tx));
6433				spa_history_log_internal(spa, "set", tx,
6434				    "%s=%lld", nvpair_name(elem), intval);
6435			} else {
6436				ASSERT(0); /* not allowed */
6437			}
6438
6439			switch (prop) {
6440			case ZPOOL_PROP_DELEGATION:
6441				spa->spa_delegation = intval;
6442				break;
6443			case ZPOOL_PROP_BOOTFS:
6444				spa->spa_bootfs = intval;
6445				break;
6446			case ZPOOL_PROP_FAILUREMODE:
6447				spa->spa_failmode = intval;
6448				break;
6449			case ZPOOL_PROP_AUTOEXPAND:
6450				spa->spa_autoexpand = intval;
6451				if (tx->tx_txg != TXG_INITIAL)
6452					spa_async_request(spa,
6453					    SPA_ASYNC_AUTOEXPAND);
6454				break;
6455			case ZPOOL_PROP_DEDUPDITTO:
6456				spa->spa_dedup_ditto = intval;
6457				break;
6458			default:
6459				break;
6460			}
6461		}
6462
6463	}
6464
6465	mutex_exit(&spa->spa_props_lock);
6466}
6467
6468/*
6469 * Perform one-time upgrade on-disk changes.  spa_version() does not
6470 * reflect the new version this txg, so there must be no changes this
6471 * txg to anything that the upgrade code depends on after it executes.
6472 * Therefore this must be called after dsl_pool_sync() does the sync
6473 * tasks.
6474 */
6475static void
6476spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6477{
6478	dsl_pool_t *dp = spa->spa_dsl_pool;
6479
6480	ASSERT(spa->spa_sync_pass == 1);
6481
6482	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6483
6484	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6485	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6486		dsl_pool_create_origin(dp, tx);
6487
6488		/* Keeping the origin open increases spa_minref */
6489		spa->spa_minref += 3;
6490	}
6491
6492	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6493	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6494		dsl_pool_upgrade_clones(dp, tx);
6495	}
6496
6497	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6498	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6499		dsl_pool_upgrade_dir_clones(dp, tx);
6500
6501		/* Keeping the freedir open increases spa_minref */
6502		spa->spa_minref += 3;
6503	}
6504
6505	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6506	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6507		spa_feature_create_zap_objects(spa, tx);
6508	}
6509
6510	/*
6511	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6512	 * when possibility to use lz4 compression for metadata was added
6513	 * Old pools that have this feature enabled must be upgraded to have
6514	 * this feature active
6515	 */
6516	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6517		boolean_t lz4_en = spa_feature_is_enabled(spa,
6518		    SPA_FEATURE_LZ4_COMPRESS);
6519		boolean_t lz4_ac = spa_feature_is_active(spa,
6520		    SPA_FEATURE_LZ4_COMPRESS);
6521
6522		if (lz4_en && !lz4_ac)
6523			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6524	}
6525	rrw_exit(&dp->dp_config_rwlock, FTAG);
6526}
6527
6528/*
6529 * Sync the specified transaction group.  New blocks may be dirtied as
6530 * part of the process, so we iterate until it converges.
6531 */
6532void
6533spa_sync(spa_t *spa, uint64_t txg)
6534{
6535	dsl_pool_t *dp = spa->spa_dsl_pool;
6536	objset_t *mos = spa->spa_meta_objset;
6537	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6538	vdev_t *rvd = spa->spa_root_vdev;
6539	vdev_t *vd;
6540	dmu_tx_t *tx;
6541	int error;
6542
6543	VERIFY(spa_writeable(spa));
6544
6545	/*
6546	 * Lock out configuration changes.
6547	 */
6548	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6549
6550	spa->spa_syncing_txg = txg;
6551	spa->spa_sync_pass = 0;
6552
6553	/*
6554	 * If there are any pending vdev state changes, convert them
6555	 * into config changes that go out with this transaction group.
6556	 */
6557	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6558	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6559		/*
6560		 * We need the write lock here because, for aux vdevs,
6561		 * calling vdev_config_dirty() modifies sav_config.
6562		 * This is ugly and will become unnecessary when we
6563		 * eliminate the aux vdev wart by integrating all vdevs
6564		 * into the root vdev tree.
6565		 */
6566		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6567		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6568		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6569			vdev_state_clean(vd);
6570			vdev_config_dirty(vd);
6571		}
6572		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6573		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6574	}
6575	spa_config_exit(spa, SCL_STATE, FTAG);
6576
6577	tx = dmu_tx_create_assigned(dp, txg);
6578
6579	spa->spa_sync_starttime = gethrtime();
6580#ifdef illumos
6581	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6582	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6583#else	/* FreeBSD */
6584#ifdef _KERNEL
6585	callout_reset(&spa->spa_deadman_cycid,
6586	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6587#endif
6588#endif
6589
6590	/*
6591	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6592	 * set spa_deflate if we have no raid-z vdevs.
6593	 */
6594	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6595	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6596		int i;
6597
6598		for (i = 0; i < rvd->vdev_children; i++) {
6599			vd = rvd->vdev_child[i];
6600			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6601				break;
6602		}
6603		if (i == rvd->vdev_children) {
6604			spa->spa_deflate = TRUE;
6605			VERIFY(0 == zap_add(spa->spa_meta_objset,
6606			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6607			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6608		}
6609	}
6610
6611	/*
6612	 * Iterate to convergence.
6613	 */
6614	do {
6615		int pass = ++spa->spa_sync_pass;
6616
6617		spa_sync_config_object(spa, tx);
6618		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6619		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6620		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6621		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6622		spa_errlog_sync(spa, txg);
6623		dsl_pool_sync(dp, txg);
6624
6625		if (pass < zfs_sync_pass_deferred_free) {
6626			spa_sync_frees(spa, free_bpl, tx);
6627		} else {
6628			/*
6629			 * We can not defer frees in pass 1, because
6630			 * we sync the deferred frees later in pass 1.
6631			 */
6632			ASSERT3U(pass, >, 1);
6633			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6634			    &spa->spa_deferred_bpobj, tx);
6635		}
6636
6637		ddt_sync(spa, txg);
6638		dsl_scan_sync(dp, tx);
6639
6640		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6641			vdev_sync(vd, txg);
6642
6643		if (pass == 1) {
6644			spa_sync_upgrades(spa, tx);
6645			ASSERT3U(txg, >=,
6646			    spa->spa_uberblock.ub_rootbp.blk_birth);
6647			/*
6648			 * Note: We need to check if the MOS is dirty
6649			 * because we could have marked the MOS dirty
6650			 * without updating the uberblock (e.g. if we
6651			 * have sync tasks but no dirty user data).  We
6652			 * need to check the uberblock's rootbp because
6653			 * it is updated if we have synced out dirty
6654			 * data (though in this case the MOS will most
6655			 * likely also be dirty due to second order
6656			 * effects, we don't want to rely on that here).
6657			 */
6658			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6659			    !dmu_objset_is_dirty(mos, txg)) {
6660				/*
6661				 * Nothing changed on the first pass,
6662				 * therefore this TXG is a no-op.  Avoid
6663				 * syncing deferred frees, so that we
6664				 * can keep this TXG as a no-op.
6665				 */
6666				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6667				    txg));
6668				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6669				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6670				break;
6671			}
6672			spa_sync_deferred_frees(spa, tx);
6673		}
6674
6675	} while (dmu_objset_is_dirty(mos, txg));
6676
6677	/*
6678	 * Rewrite the vdev configuration (which includes the uberblock)
6679	 * to commit the transaction group.
6680	 *
6681	 * If there are no dirty vdevs, we sync the uberblock to a few
6682	 * random top-level vdevs that are known to be visible in the
6683	 * config cache (see spa_vdev_add() for a complete description).
6684	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6685	 */
6686	for (;;) {
6687		/*
6688		 * We hold SCL_STATE to prevent vdev open/close/etc.
6689		 * while we're attempting to write the vdev labels.
6690		 */
6691		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6692
6693		if (list_is_empty(&spa->spa_config_dirty_list)) {
6694			vdev_t *svd[SPA_DVAS_PER_BP];
6695			int svdcount = 0;
6696			int children = rvd->vdev_children;
6697			int c0 = spa_get_random(children);
6698
6699			for (int c = 0; c < children; c++) {
6700				vd = rvd->vdev_child[(c0 + c) % children];
6701				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6702					continue;
6703				svd[svdcount++] = vd;
6704				if (svdcount == SPA_DVAS_PER_BP)
6705					break;
6706			}
6707			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6708			if (error != 0)
6709				error = vdev_config_sync(svd, svdcount, txg,
6710				    B_TRUE);
6711		} else {
6712			error = vdev_config_sync(rvd->vdev_child,
6713			    rvd->vdev_children, txg, B_FALSE);
6714			if (error != 0)
6715				error = vdev_config_sync(rvd->vdev_child,
6716				    rvd->vdev_children, txg, B_TRUE);
6717		}
6718
6719		if (error == 0)
6720			spa->spa_last_synced_guid = rvd->vdev_guid;
6721
6722		spa_config_exit(spa, SCL_STATE, FTAG);
6723
6724		if (error == 0)
6725			break;
6726		zio_suspend(spa, NULL);
6727		zio_resume_wait(spa);
6728	}
6729	dmu_tx_commit(tx);
6730
6731#ifdef illumos
6732	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6733#else	/* FreeBSD */
6734#ifdef _KERNEL
6735	callout_drain(&spa->spa_deadman_cycid);
6736#endif
6737#endif
6738
6739	/*
6740	 * Clear the dirty config list.
6741	 */
6742	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6743		vdev_config_clean(vd);
6744
6745	/*
6746	 * Now that the new config has synced transactionally,
6747	 * let it become visible to the config cache.
6748	 */
6749	if (spa->spa_config_syncing != NULL) {
6750		spa_config_set(spa, spa->spa_config_syncing);
6751		spa->spa_config_txg = txg;
6752		spa->spa_config_syncing = NULL;
6753	}
6754
6755	spa->spa_ubsync = spa->spa_uberblock;
6756
6757	dsl_pool_sync_done(dp, txg);
6758
6759	/*
6760	 * Update usable space statistics.
6761	 */
6762	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6763		vdev_sync_done(vd, txg);
6764
6765	spa_update_dspace(spa);
6766
6767	/*
6768	 * It had better be the case that we didn't dirty anything
6769	 * since vdev_config_sync().
6770	 */
6771	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6772	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6773	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6774
6775	spa->spa_sync_pass = 0;
6776
6777	spa_config_exit(spa, SCL_CONFIG, FTAG);
6778
6779	spa_handle_ignored_writes(spa);
6780
6781	/*
6782	 * If any async tasks have been requested, kick them off.
6783	 */
6784	spa_async_dispatch(spa);
6785	spa_async_dispatch_vd(spa);
6786}
6787
6788/*
6789 * Sync all pools.  We don't want to hold the namespace lock across these
6790 * operations, so we take a reference on the spa_t and drop the lock during the
6791 * sync.
6792 */
6793void
6794spa_sync_allpools(void)
6795{
6796	spa_t *spa = NULL;
6797	mutex_enter(&spa_namespace_lock);
6798	while ((spa = spa_next(spa)) != NULL) {
6799		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6800		    !spa_writeable(spa) || spa_suspended(spa))
6801			continue;
6802		spa_open_ref(spa, FTAG);
6803		mutex_exit(&spa_namespace_lock);
6804		txg_wait_synced(spa_get_dsl(spa), 0);
6805		mutex_enter(&spa_namespace_lock);
6806		spa_close(spa, FTAG);
6807	}
6808	mutex_exit(&spa_namespace_lock);
6809}
6810
6811/*
6812 * ==========================================================================
6813 * Miscellaneous routines
6814 * ==========================================================================
6815 */
6816
6817/*
6818 * Remove all pools in the system.
6819 */
6820void
6821spa_evict_all(void)
6822{
6823	spa_t *spa;
6824
6825	/*
6826	 * Remove all cached state.  All pools should be closed now,
6827	 * so every spa in the AVL tree should be unreferenced.
6828	 */
6829	mutex_enter(&spa_namespace_lock);
6830	while ((spa = spa_next(NULL)) != NULL) {
6831		/*
6832		 * Stop async tasks.  The async thread may need to detach
6833		 * a device that's been replaced, which requires grabbing
6834		 * spa_namespace_lock, so we must drop it here.
6835		 */
6836		spa_open_ref(spa, FTAG);
6837		mutex_exit(&spa_namespace_lock);
6838		spa_async_suspend(spa);
6839		mutex_enter(&spa_namespace_lock);
6840		spa_close(spa, FTAG);
6841
6842		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6843			spa_unload(spa);
6844			spa_deactivate(spa);
6845		}
6846		spa_remove(spa);
6847	}
6848	mutex_exit(&spa_namespace_lock);
6849}
6850
6851vdev_t *
6852spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6853{
6854	vdev_t *vd;
6855	int i;
6856
6857	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6858		return (vd);
6859
6860	if (aux) {
6861		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6862			vd = spa->spa_l2cache.sav_vdevs[i];
6863			if (vd->vdev_guid == guid)
6864				return (vd);
6865		}
6866
6867		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6868			vd = spa->spa_spares.sav_vdevs[i];
6869			if (vd->vdev_guid == guid)
6870				return (vd);
6871		}
6872	}
6873
6874	return (NULL);
6875}
6876
6877void
6878spa_upgrade(spa_t *spa, uint64_t version)
6879{
6880	ASSERT(spa_writeable(spa));
6881
6882	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6883
6884	/*
6885	 * This should only be called for a non-faulted pool, and since a
6886	 * future version would result in an unopenable pool, this shouldn't be
6887	 * possible.
6888	 */
6889	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6890	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6891
6892	spa->spa_uberblock.ub_version = version;
6893	vdev_config_dirty(spa->spa_root_vdev);
6894
6895	spa_config_exit(spa, SCL_ALL, FTAG);
6896
6897	txg_wait_synced(spa_get_dsl(spa), 0);
6898}
6899
6900boolean_t
6901spa_has_spare(spa_t *spa, uint64_t guid)
6902{
6903	int i;
6904	uint64_t spareguid;
6905	spa_aux_vdev_t *sav = &spa->spa_spares;
6906
6907	for (i = 0; i < sav->sav_count; i++)
6908		if (sav->sav_vdevs[i]->vdev_guid == guid)
6909			return (B_TRUE);
6910
6911	for (i = 0; i < sav->sav_npending; i++) {
6912		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6913		    &spareguid) == 0 && spareguid == guid)
6914			return (B_TRUE);
6915	}
6916
6917	return (B_FALSE);
6918}
6919
6920/*
6921 * Check if a pool has an active shared spare device.
6922 * Note: reference count of an active spare is 2, as a spare and as a replace
6923 */
6924static boolean_t
6925spa_has_active_shared_spare(spa_t *spa)
6926{
6927	int i, refcnt;
6928	uint64_t pool;
6929	spa_aux_vdev_t *sav = &spa->spa_spares;
6930
6931	for (i = 0; i < sav->sav_count; i++) {
6932		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6933		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6934		    refcnt > 2)
6935			return (B_TRUE);
6936	}
6937
6938	return (B_FALSE);
6939}
6940
6941/*
6942 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6943 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6944 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6945 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6946 * or zdb as real changes.
6947 */
6948void
6949spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6950{
6951#ifdef _KERNEL
6952	sysevent_t		*ev;
6953	sysevent_attr_list_t	*attr = NULL;
6954	sysevent_value_t	value;
6955	sysevent_id_t		eid;
6956
6957	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6958	    SE_SLEEP);
6959
6960	value.value_type = SE_DATA_TYPE_STRING;
6961	value.value.sv_string = spa_name(spa);
6962	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6963		goto done;
6964
6965	value.value_type = SE_DATA_TYPE_UINT64;
6966	value.value.sv_uint64 = spa_guid(spa);
6967	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6968		goto done;
6969
6970	if (vd) {
6971		value.value_type = SE_DATA_TYPE_UINT64;
6972		value.value.sv_uint64 = vd->vdev_guid;
6973		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6974		    SE_SLEEP) != 0)
6975			goto done;
6976
6977		if (vd->vdev_path) {
6978			value.value_type = SE_DATA_TYPE_STRING;
6979			value.value.sv_string = vd->vdev_path;
6980			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6981			    &value, SE_SLEEP) != 0)
6982				goto done;
6983		}
6984	}
6985
6986	if (sysevent_attach_attributes(ev, attr) != 0)
6987		goto done;
6988	attr = NULL;
6989
6990	(void) log_sysevent(ev, SE_SLEEP, &eid);
6991
6992done:
6993	if (attr)
6994		sysevent_free_attr(attr);
6995	sysevent_free(ev);
6996#endif
6997}
6998