spa.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size, alloc, cap, version;
215	zprop_source_t src = ZPROP_SRC_NONE;
216	spa_config_dirent_t *dp;
217	metaslab_class_t *mc = spa_normal_class(spa);
218
219	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
220
221	if (rvd != NULL) {
222		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
223		size = metaslab_class_get_space(spa_normal_class(spa));
224		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
225		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
226		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
228		    size - alloc, src);
229
230		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
231		    metaslab_class_fragmentation(mc), src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
233		    metaslab_class_expandable_space(mc), src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
235		    (spa_mode(spa) == FREAD), src);
236
237		cap = (size == 0) ? 0 : (alloc * 100 / size);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
241		    ddt_get_pool_dedup_ratio(spa), src);
242
243		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
244		    rvd->vdev_state, src);
245
246		version = spa_version(spa);
247		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
248			src = ZPROP_SRC_DEFAULT;
249		else
250			src = ZPROP_SRC_LOCAL;
251		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
252	}
253
254	if (pool != NULL) {
255		/*
256		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
257		 * when opening pools before this version freedir will be NULL.
258		 */
259		if (pool->dp_free_dir != NULL) {
260			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
261			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
262		} else {
263			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
264			    NULL, 0, src);
265		}
266
267		if (pool->dp_leak_dir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
269			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
288		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
289		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
290	} else {
291		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
293	}
294
295	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
296		if (dp->scd_path == NULL) {
297			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298			    "none", 0, ZPROP_SRC_LOCAL);
299		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
300			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
301			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
302		}
303	}
304}
305
306/*
307 * Get zpool property values.
308 */
309int
310spa_prop_get(spa_t *spa, nvlist_t **nvp)
311{
312	objset_t *mos = spa->spa_meta_objset;
313	zap_cursor_t zc;
314	zap_attribute_t za;
315	int err;
316
317	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
318
319	mutex_enter(&spa->spa_props_lock);
320
321	/*
322	 * Get properties from the spa config.
323	 */
324	spa_prop_get_config(spa, nvp);
325
326	/* If no pool property object, no more prop to get. */
327	if (mos == NULL || spa->spa_pool_props_object == 0) {
328		mutex_exit(&spa->spa_props_lock);
329		return (0);
330	}
331
332	/*
333	 * Get properties from the MOS pool property object.
334	 */
335	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
336	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
337	    zap_cursor_advance(&zc)) {
338		uint64_t intval = 0;
339		char *strval = NULL;
340		zprop_source_t src = ZPROP_SRC_DEFAULT;
341		zpool_prop_t prop;
342
343		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
344			continue;
345
346		switch (za.za_integer_length) {
347		case 8:
348			/* integer property */
349			if (za.za_first_integer !=
350			    zpool_prop_default_numeric(prop))
351				src = ZPROP_SRC_LOCAL;
352
353			if (prop == ZPOOL_PROP_BOOTFS) {
354				dsl_pool_t *dp;
355				dsl_dataset_t *ds = NULL;
356
357				dp = spa_get_dsl(spa);
358				dsl_pool_config_enter(dp, FTAG);
359				if (err = dsl_dataset_hold_obj(dp,
360				    za.za_first_integer, FTAG, &ds)) {
361					dsl_pool_config_exit(dp, FTAG);
362					break;
363				}
364
365				strval = kmem_alloc(
366				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
367				    KM_SLEEP);
368				dsl_dataset_name(ds, strval);
369				dsl_dataset_rele(ds, FTAG);
370				dsl_pool_config_exit(dp, FTAG);
371			} else {
372				strval = NULL;
373				intval = za.za_first_integer;
374			}
375
376			spa_prop_add_list(*nvp, prop, strval, intval, src);
377
378			if (strval != NULL)
379				kmem_free(strval,
380				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
381
382			break;
383
384		case 1:
385			/* string property */
386			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
387			err = zap_lookup(mos, spa->spa_pool_props_object,
388			    za.za_name, 1, za.za_num_integers, strval);
389			if (err) {
390				kmem_free(strval, za.za_num_integers);
391				break;
392			}
393			spa_prop_add_list(*nvp, prop, strval, 0, src);
394			kmem_free(strval, za.za_num_integers);
395			break;
396
397		default:
398			break;
399		}
400	}
401	zap_cursor_fini(&zc);
402	mutex_exit(&spa->spa_props_lock);
403out:
404	if (err && err != ENOENT) {
405		nvlist_free(*nvp);
406		*nvp = NULL;
407		return (err);
408	}
409
410	return (0);
411}
412
413/*
414 * Validate the given pool properties nvlist and modify the list
415 * for the property values to be set.
416 */
417static int
418spa_prop_validate(spa_t *spa, nvlist_t *props)
419{
420	nvpair_t *elem;
421	int error = 0, reset_bootfs = 0;
422	uint64_t objnum = 0;
423	boolean_t has_feature = B_FALSE;
424
425	elem = NULL;
426	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
427		uint64_t intval;
428		char *strval, *slash, *check, *fname;
429		const char *propname = nvpair_name(elem);
430		zpool_prop_t prop = zpool_name_to_prop(propname);
431
432		switch (prop) {
433		case ZPROP_INVAL:
434			if (!zpool_prop_feature(propname)) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			/*
440			 * Sanitize the input.
441			 */
442			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			if (nvpair_value_uint64(elem, &intval) != 0) {
448				error = SET_ERROR(EINVAL);
449				break;
450			}
451
452			if (intval != 0) {
453				error = SET_ERROR(EINVAL);
454				break;
455			}
456
457			fname = strchr(propname, '@') + 1;
458			if (zfeature_lookup_name(fname, NULL) != 0) {
459				error = SET_ERROR(EINVAL);
460				break;
461			}
462
463			has_feature = B_TRUE;
464			break;
465
466		case ZPOOL_PROP_VERSION:
467			error = nvpair_value_uint64(elem, &intval);
468			if (!error &&
469			    (intval < spa_version(spa) ||
470			    intval > SPA_VERSION_BEFORE_FEATURES ||
471			    has_feature))
472				error = SET_ERROR(EINVAL);
473			break;
474
475		case ZPOOL_PROP_DELEGATION:
476		case ZPOOL_PROP_AUTOREPLACE:
477		case ZPOOL_PROP_LISTSNAPS:
478		case ZPOOL_PROP_AUTOEXPAND:
479			error = nvpair_value_uint64(elem, &intval);
480			if (!error && intval > 1)
481				error = SET_ERROR(EINVAL);
482			break;
483
484		case ZPOOL_PROP_BOOTFS:
485			/*
486			 * If the pool version is less than SPA_VERSION_BOOTFS,
487			 * or the pool is still being created (version == 0),
488			 * the bootfs property cannot be set.
489			 */
490			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			/*
496			 * Make sure the vdev config is bootable
497			 */
498			if (!vdev_is_bootable(spa->spa_root_vdev)) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			reset_bootfs = 1;
504
505			error = nvpair_value_string(elem, &strval);
506
507			if (!error) {
508				objset_t *os;
509				uint64_t propval;
510
511				if (strval == NULL || strval[0] == '\0') {
512					objnum = zpool_prop_default_numeric(
513					    ZPOOL_PROP_BOOTFS);
514					break;
515				}
516
517				if (error = dmu_objset_hold(strval, FTAG, &os))
518					break;
519
520				/*
521				 * Must be ZPL, and its property settings
522				 * must be supported by GRUB (compression
523				 * is not gzip, and large blocks are not used).
524				 */
525
526				if (dmu_objset_type(os) != DMU_OST_ZFS) {
527					error = SET_ERROR(ENOTSUP);
528				} else if ((error =
529				    dsl_prop_get_int_ds(dmu_objset_ds(os),
530				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
531				    &propval)) == 0 &&
532				    !BOOTFS_COMPRESS_VALID(propval)) {
533					error = SET_ERROR(ENOTSUP);
534				} else if ((error =
535				    dsl_prop_get_int_ds(dmu_objset_ds(os),
536				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
537				    &propval)) == 0 &&
538				    propval > SPA_OLD_MAXBLOCKSIZE) {
539					error = SET_ERROR(ENOTSUP);
540				} else {
541					objnum = dmu_objset_id(os);
542				}
543				dmu_objset_rele(os, FTAG);
544			}
545			break;
546
547		case ZPOOL_PROP_FAILUREMODE:
548			error = nvpair_value_uint64(elem, &intval);
549			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
550			    intval > ZIO_FAILURE_MODE_PANIC))
551				error = SET_ERROR(EINVAL);
552
553			/*
554			 * This is a special case which only occurs when
555			 * the pool has completely failed. This allows
556			 * the user to change the in-core failmode property
557			 * without syncing it out to disk (I/Os might
558			 * currently be blocked). We do this by returning
559			 * EIO to the caller (spa_prop_set) to trick it
560			 * into thinking we encountered a property validation
561			 * error.
562			 */
563			if (!error && spa_suspended(spa)) {
564				spa->spa_failmode = intval;
565				error = SET_ERROR(EIO);
566			}
567			break;
568
569		case ZPOOL_PROP_CACHEFILE:
570			if ((error = nvpair_value_string(elem, &strval)) != 0)
571				break;
572
573			if (strval[0] == '\0')
574				break;
575
576			if (strcmp(strval, "none") == 0)
577				break;
578
579			if (strval[0] != '/') {
580				error = SET_ERROR(EINVAL);
581				break;
582			}
583
584			slash = strrchr(strval, '/');
585			ASSERT(slash != NULL);
586
587			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
588			    strcmp(slash, "/..") == 0)
589				error = SET_ERROR(EINVAL);
590			break;
591
592		case ZPOOL_PROP_COMMENT:
593			if ((error = nvpair_value_string(elem, &strval)) != 0)
594				break;
595			for (check = strval; *check != '\0'; check++) {
596				/*
597				 * The kernel doesn't have an easy isprint()
598				 * check.  For this kernel check, we merely
599				 * check ASCII apart from DEL.  Fix this if
600				 * there is an easy-to-use kernel isprint().
601				 */
602				if (*check >= 0x7f) {
603					error = SET_ERROR(EINVAL);
604					break;
605				}
606				check++;
607			}
608			if (strlen(strval) > ZPROP_MAX_COMMENT)
609				error = E2BIG;
610			break;
611
612		case ZPOOL_PROP_DEDUPDITTO:
613			if (spa_version(spa) < SPA_VERSION_DEDUP)
614				error = SET_ERROR(ENOTSUP);
615			else
616				error = nvpair_value_uint64(elem, &intval);
617			if (error == 0 &&
618			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
619				error = SET_ERROR(EINVAL);
620			break;
621		}
622
623		if (error)
624			break;
625	}
626
627	if (!error && reset_bootfs) {
628		error = nvlist_remove(props,
629		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
630
631		if (!error) {
632			error = nvlist_add_uint64(props,
633			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
634		}
635	}
636
637	return (error);
638}
639
640void
641spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
642{
643	char *cachefile;
644	spa_config_dirent_t *dp;
645
646	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
647	    &cachefile) != 0)
648		return;
649
650	dp = kmem_alloc(sizeof (spa_config_dirent_t),
651	    KM_SLEEP);
652
653	if (cachefile[0] == '\0')
654		dp->scd_path = spa_strdup(spa_config_path);
655	else if (strcmp(cachefile, "none") == 0)
656		dp->scd_path = NULL;
657	else
658		dp->scd_path = spa_strdup(cachefile);
659
660	list_insert_head(&spa->spa_config_list, dp);
661	if (need_sync)
662		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
663}
664
665int
666spa_prop_set(spa_t *spa, nvlist_t *nvp)
667{
668	int error;
669	nvpair_t *elem = NULL;
670	boolean_t need_sync = B_FALSE;
671
672	if ((error = spa_prop_validate(spa, nvp)) != 0)
673		return (error);
674
675	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
676		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
677
678		if (prop == ZPOOL_PROP_CACHEFILE ||
679		    prop == ZPOOL_PROP_ALTROOT ||
680		    prop == ZPOOL_PROP_READONLY)
681			continue;
682
683		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
684			uint64_t ver;
685
686			if (prop == ZPOOL_PROP_VERSION) {
687				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
688			} else {
689				ASSERT(zpool_prop_feature(nvpair_name(elem)));
690				ver = SPA_VERSION_FEATURES;
691				need_sync = B_TRUE;
692			}
693
694			/* Save time if the version is already set. */
695			if (ver == spa_version(spa))
696				continue;
697
698			/*
699			 * In addition to the pool directory object, we might
700			 * create the pool properties object, the features for
701			 * read object, the features for write object, or the
702			 * feature descriptions object.
703			 */
704			error = dsl_sync_task(spa->spa_name, NULL,
705			    spa_sync_version, &ver,
706			    6, ZFS_SPACE_CHECK_RESERVED);
707			if (error)
708				return (error);
709			continue;
710		}
711
712		need_sync = B_TRUE;
713		break;
714	}
715
716	if (need_sync) {
717		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
718		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
719	}
720
721	return (0);
722}
723
724/*
725 * If the bootfs property value is dsobj, clear it.
726 */
727void
728spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
729{
730	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
731		VERIFY(zap_remove(spa->spa_meta_objset,
732		    spa->spa_pool_props_object,
733		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
734		spa->spa_bootfs = 0;
735	}
736}
737
738/*ARGSUSED*/
739static int
740spa_change_guid_check(void *arg, dmu_tx_t *tx)
741{
742	uint64_t *newguid = arg;
743	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
744	vdev_t *rvd = spa->spa_root_vdev;
745	uint64_t vdev_state;
746
747	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
748	vdev_state = rvd->vdev_state;
749	spa_config_exit(spa, SCL_STATE, FTAG);
750
751	if (vdev_state != VDEV_STATE_HEALTHY)
752		return (SET_ERROR(ENXIO));
753
754	ASSERT3U(spa_guid(spa), !=, *newguid);
755
756	return (0);
757}
758
759static void
760spa_change_guid_sync(void *arg, dmu_tx_t *tx)
761{
762	uint64_t *newguid = arg;
763	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
764	uint64_t oldguid;
765	vdev_t *rvd = spa->spa_root_vdev;
766
767	oldguid = spa_guid(spa);
768
769	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
770	rvd->vdev_guid = *newguid;
771	rvd->vdev_guid_sum += (*newguid - oldguid);
772	vdev_config_dirty(rvd);
773	spa_config_exit(spa, SCL_STATE, FTAG);
774
775	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
776	    oldguid, *newguid);
777}
778
779/*
780 * Change the GUID for the pool.  This is done so that we can later
781 * re-import a pool built from a clone of our own vdevs.  We will modify
782 * the root vdev's guid, our own pool guid, and then mark all of our
783 * vdevs dirty.  Note that we must make sure that all our vdevs are
784 * online when we do this, or else any vdevs that weren't present
785 * would be orphaned from our pool.  We are also going to issue a
786 * sysevent to update any watchers.
787 */
788int
789spa_change_guid(spa_t *spa)
790{
791	int error;
792	uint64_t guid;
793
794	mutex_enter(&spa->spa_vdev_top_lock);
795	mutex_enter(&spa_namespace_lock);
796	guid = spa_generate_guid(NULL);
797
798	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
799	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
800
801	if (error == 0) {
802		spa_config_sync(spa, B_FALSE, B_TRUE);
803		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
804	}
805
806	mutex_exit(&spa_namespace_lock);
807	mutex_exit(&spa->spa_vdev_top_lock);
808
809	return (error);
810}
811
812/*
813 * ==========================================================================
814 * SPA state manipulation (open/create/destroy/import/export)
815 * ==========================================================================
816 */
817
818static int
819spa_error_entry_compare(const void *a, const void *b)
820{
821	spa_error_entry_t *sa = (spa_error_entry_t *)a;
822	spa_error_entry_t *sb = (spa_error_entry_t *)b;
823	int ret;
824
825	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
826	    sizeof (zbookmark_phys_t));
827
828	if (ret < 0)
829		return (-1);
830	else if (ret > 0)
831		return (1);
832	else
833		return (0);
834}
835
836/*
837 * Utility function which retrieves copies of the current logs and
838 * re-initializes them in the process.
839 */
840void
841spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
842{
843	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
844
845	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
846	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
847
848	avl_create(&spa->spa_errlist_scrub,
849	    spa_error_entry_compare, sizeof (spa_error_entry_t),
850	    offsetof(spa_error_entry_t, se_avl));
851	avl_create(&spa->spa_errlist_last,
852	    spa_error_entry_compare, sizeof (spa_error_entry_t),
853	    offsetof(spa_error_entry_t, se_avl));
854}
855
856static void
857spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
858{
859	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
860	enum zti_modes mode = ztip->zti_mode;
861	uint_t value = ztip->zti_value;
862	uint_t count = ztip->zti_count;
863	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
864	char name[32];
865	uint_t flags = 0;
866	boolean_t batch = B_FALSE;
867
868	if (mode == ZTI_MODE_NULL) {
869		tqs->stqs_count = 0;
870		tqs->stqs_taskq = NULL;
871		return;
872	}
873
874	ASSERT3U(count, >, 0);
875
876	tqs->stqs_count = count;
877	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
878
879	switch (mode) {
880	case ZTI_MODE_FIXED:
881		ASSERT3U(value, >=, 1);
882		value = MAX(value, 1);
883		break;
884
885	case ZTI_MODE_BATCH:
886		batch = B_TRUE;
887		flags |= TASKQ_THREADS_CPU_PCT;
888		value = zio_taskq_batch_pct;
889		break;
890
891	default:
892		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
893		    "spa_activate()",
894		    zio_type_name[t], zio_taskq_types[q], mode, value);
895		break;
896	}
897
898	for (uint_t i = 0; i < count; i++) {
899		taskq_t *tq;
900
901		if (count > 1) {
902			(void) snprintf(name, sizeof (name), "%s_%s_%u",
903			    zio_type_name[t], zio_taskq_types[q], i);
904		} else {
905			(void) snprintf(name, sizeof (name), "%s_%s",
906			    zio_type_name[t], zio_taskq_types[q]);
907		}
908
909#ifdef SYSDC
910		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
911			if (batch)
912				flags |= TASKQ_DC_BATCH;
913
914			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
915			    spa->spa_proc, zio_taskq_basedc, flags);
916		} else {
917#endif
918			pri_t pri = maxclsyspri;
919			/*
920			 * The write issue taskq can be extremely CPU
921			 * intensive.  Run it at slightly lower priority
922			 * than the other taskqs.
923			 */
924			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
925				pri--;
926
927			tq = taskq_create_proc(name, value, pri, 50,
928			    INT_MAX, spa->spa_proc, flags);
929#ifdef SYSDC
930		}
931#endif
932
933		tqs->stqs_taskq[i] = tq;
934	}
935}
936
937static void
938spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
939{
940	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
941
942	if (tqs->stqs_taskq == NULL) {
943		ASSERT0(tqs->stqs_count);
944		return;
945	}
946
947	for (uint_t i = 0; i < tqs->stqs_count; i++) {
948		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
949		taskq_destroy(tqs->stqs_taskq[i]);
950	}
951
952	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
953	tqs->stqs_taskq = NULL;
954}
955
956/*
957 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
958 * Note that a type may have multiple discrete taskqs to avoid lock contention
959 * on the taskq itself. In that case we choose which taskq at random by using
960 * the low bits of gethrtime().
961 */
962void
963spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
964    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
965{
966	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
967	taskq_t *tq;
968
969	ASSERT3P(tqs->stqs_taskq, !=, NULL);
970	ASSERT3U(tqs->stqs_count, !=, 0);
971
972	if (tqs->stqs_count == 1) {
973		tq = tqs->stqs_taskq[0];
974	} else {
975#ifdef _KERNEL
976		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
977#else
978		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
979#endif
980	}
981
982	taskq_dispatch_ent(tq, func, arg, flags, ent);
983}
984
985static void
986spa_create_zio_taskqs(spa_t *spa)
987{
988	for (int t = 0; t < ZIO_TYPES; t++) {
989		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
990			spa_taskqs_init(spa, t, q);
991		}
992	}
993}
994
995#ifdef _KERNEL
996#ifdef SPA_PROCESS
997static void
998spa_thread(void *arg)
999{
1000	callb_cpr_t cprinfo;
1001
1002	spa_t *spa = arg;
1003	user_t *pu = PTOU(curproc);
1004
1005	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1006	    spa->spa_name);
1007
1008	ASSERT(curproc != &p0);
1009	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1010	    "zpool-%s", spa->spa_name);
1011	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1012
1013#ifdef PSRSET_BIND
1014	/* bind this thread to the requested psrset */
1015	if (zio_taskq_psrset_bind != PS_NONE) {
1016		pool_lock();
1017		mutex_enter(&cpu_lock);
1018		mutex_enter(&pidlock);
1019		mutex_enter(&curproc->p_lock);
1020
1021		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1022		    0, NULL, NULL) == 0)  {
1023			curthread->t_bind_pset = zio_taskq_psrset_bind;
1024		} else {
1025			cmn_err(CE_WARN,
1026			    "Couldn't bind process for zfs pool \"%s\" to "
1027			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1028		}
1029
1030		mutex_exit(&curproc->p_lock);
1031		mutex_exit(&pidlock);
1032		mutex_exit(&cpu_lock);
1033		pool_unlock();
1034	}
1035#endif
1036
1037#ifdef SYSDC
1038	if (zio_taskq_sysdc) {
1039		sysdc_thread_enter(curthread, 100, 0);
1040	}
1041#endif
1042
1043	spa->spa_proc = curproc;
1044	spa->spa_did = curthread->t_did;
1045
1046	spa_create_zio_taskqs(spa);
1047
1048	mutex_enter(&spa->spa_proc_lock);
1049	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1050
1051	spa->spa_proc_state = SPA_PROC_ACTIVE;
1052	cv_broadcast(&spa->spa_proc_cv);
1053
1054	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1055	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1056		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1057	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1058
1059	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1060	spa->spa_proc_state = SPA_PROC_GONE;
1061	spa->spa_proc = &p0;
1062	cv_broadcast(&spa->spa_proc_cv);
1063	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1064
1065	mutex_enter(&curproc->p_lock);
1066	lwp_exit();
1067}
1068#endif	/* SPA_PROCESS */
1069#endif
1070
1071/*
1072 * Activate an uninitialized pool.
1073 */
1074static void
1075spa_activate(spa_t *spa, int mode)
1076{
1077	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1078
1079	spa->spa_state = POOL_STATE_ACTIVE;
1080	spa->spa_mode = mode;
1081
1082	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1083	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1084
1085	/* Try to create a covering process */
1086	mutex_enter(&spa->spa_proc_lock);
1087	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1088	ASSERT(spa->spa_proc == &p0);
1089	spa->spa_did = 0;
1090
1091#ifdef SPA_PROCESS
1092	/* Only create a process if we're going to be around a while. */
1093	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1094		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1095		    NULL, 0) == 0) {
1096			spa->spa_proc_state = SPA_PROC_CREATED;
1097			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1098				cv_wait(&spa->spa_proc_cv,
1099				    &spa->spa_proc_lock);
1100			}
1101			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1102			ASSERT(spa->spa_proc != &p0);
1103			ASSERT(spa->spa_did != 0);
1104		} else {
1105#ifdef _KERNEL
1106			cmn_err(CE_WARN,
1107			    "Couldn't create process for zfs pool \"%s\"\n",
1108			    spa->spa_name);
1109#endif
1110		}
1111	}
1112#endif	/* SPA_PROCESS */
1113	mutex_exit(&spa->spa_proc_lock);
1114
1115	/* If we didn't create a process, we need to create our taskqs. */
1116	ASSERT(spa->spa_proc == &p0);
1117	if (spa->spa_proc == &p0) {
1118		spa_create_zio_taskqs(spa);
1119	}
1120
1121	/*
1122	 * Start TRIM thread.
1123	 */
1124	trim_thread_create(spa);
1125
1126	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1127	    offsetof(vdev_t, vdev_config_dirty_node));
1128	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1129	    offsetof(vdev_t, vdev_state_dirty_node));
1130
1131	txg_list_create(&spa->spa_vdev_txg_list,
1132	    offsetof(struct vdev, vdev_txg_node));
1133
1134	avl_create(&spa->spa_errlist_scrub,
1135	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1136	    offsetof(spa_error_entry_t, se_avl));
1137	avl_create(&spa->spa_errlist_last,
1138	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1139	    offsetof(spa_error_entry_t, se_avl));
1140}
1141
1142/*
1143 * Opposite of spa_activate().
1144 */
1145static void
1146spa_deactivate(spa_t *spa)
1147{
1148	ASSERT(spa->spa_sync_on == B_FALSE);
1149	ASSERT(spa->spa_dsl_pool == NULL);
1150	ASSERT(spa->spa_root_vdev == NULL);
1151	ASSERT(spa->spa_async_zio_root == NULL);
1152	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1153
1154	/*
1155	 * Stop TRIM thread in case spa_unload() wasn't called directly
1156	 * before spa_deactivate().
1157	 */
1158	trim_thread_destroy(spa);
1159
1160	txg_list_destroy(&spa->spa_vdev_txg_list);
1161
1162	list_destroy(&spa->spa_config_dirty_list);
1163	list_destroy(&spa->spa_state_dirty_list);
1164
1165	for (int t = 0; t < ZIO_TYPES; t++) {
1166		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1167			spa_taskqs_fini(spa, t, q);
1168		}
1169	}
1170
1171	metaslab_class_destroy(spa->spa_normal_class);
1172	spa->spa_normal_class = NULL;
1173
1174	metaslab_class_destroy(spa->spa_log_class);
1175	spa->spa_log_class = NULL;
1176
1177	/*
1178	 * If this was part of an import or the open otherwise failed, we may
1179	 * still have errors left in the queues.  Empty them just in case.
1180	 */
1181	spa_errlog_drain(spa);
1182
1183	avl_destroy(&spa->spa_errlist_scrub);
1184	avl_destroy(&spa->spa_errlist_last);
1185
1186	spa->spa_state = POOL_STATE_UNINITIALIZED;
1187
1188	mutex_enter(&spa->spa_proc_lock);
1189	if (spa->spa_proc_state != SPA_PROC_NONE) {
1190		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1191		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1192		cv_broadcast(&spa->spa_proc_cv);
1193		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1194			ASSERT(spa->spa_proc != &p0);
1195			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1196		}
1197		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1198		spa->spa_proc_state = SPA_PROC_NONE;
1199	}
1200	ASSERT(spa->spa_proc == &p0);
1201	mutex_exit(&spa->spa_proc_lock);
1202
1203#ifdef SPA_PROCESS
1204	/*
1205	 * We want to make sure spa_thread() has actually exited the ZFS
1206	 * module, so that the module can't be unloaded out from underneath
1207	 * it.
1208	 */
1209	if (spa->spa_did != 0) {
1210		thread_join(spa->spa_did);
1211		spa->spa_did = 0;
1212	}
1213#endif	/* SPA_PROCESS */
1214}
1215
1216/*
1217 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1218 * will create all the necessary vdevs in the appropriate layout, with each vdev
1219 * in the CLOSED state.  This will prep the pool before open/creation/import.
1220 * All vdev validation is done by the vdev_alloc() routine.
1221 */
1222static int
1223spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1224    uint_t id, int atype)
1225{
1226	nvlist_t **child;
1227	uint_t children;
1228	int error;
1229
1230	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1231		return (error);
1232
1233	if ((*vdp)->vdev_ops->vdev_op_leaf)
1234		return (0);
1235
1236	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1237	    &child, &children);
1238
1239	if (error == ENOENT)
1240		return (0);
1241
1242	if (error) {
1243		vdev_free(*vdp);
1244		*vdp = NULL;
1245		return (SET_ERROR(EINVAL));
1246	}
1247
1248	for (int c = 0; c < children; c++) {
1249		vdev_t *vd;
1250		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1251		    atype)) != 0) {
1252			vdev_free(*vdp);
1253			*vdp = NULL;
1254			return (error);
1255		}
1256	}
1257
1258	ASSERT(*vdp != NULL);
1259
1260	return (0);
1261}
1262
1263/*
1264 * Opposite of spa_load().
1265 */
1266static void
1267spa_unload(spa_t *spa)
1268{
1269	int i;
1270
1271	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1272
1273	/*
1274	 * Stop TRIM thread.
1275	 */
1276	trim_thread_destroy(spa);
1277
1278	/*
1279	 * Stop async tasks.
1280	 */
1281	spa_async_suspend(spa);
1282
1283	/*
1284	 * Stop syncing.
1285	 */
1286	if (spa->spa_sync_on) {
1287		txg_sync_stop(spa->spa_dsl_pool);
1288		spa->spa_sync_on = B_FALSE;
1289	}
1290
1291	/*
1292	 * Wait for any outstanding async I/O to complete.
1293	 */
1294	if (spa->spa_async_zio_root != NULL) {
1295		for (int i = 0; i < max_ncpus; i++)
1296			(void) zio_wait(spa->spa_async_zio_root[i]);
1297		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1298		spa->spa_async_zio_root = NULL;
1299	}
1300
1301	bpobj_close(&spa->spa_deferred_bpobj);
1302
1303	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1304
1305	/*
1306	 * Close all vdevs.
1307	 */
1308	if (spa->spa_root_vdev)
1309		vdev_free(spa->spa_root_vdev);
1310	ASSERT(spa->spa_root_vdev == NULL);
1311
1312	/*
1313	 * Close the dsl pool.
1314	 */
1315	if (spa->spa_dsl_pool) {
1316		dsl_pool_close(spa->spa_dsl_pool);
1317		spa->spa_dsl_pool = NULL;
1318		spa->spa_meta_objset = NULL;
1319	}
1320
1321	ddt_unload(spa);
1322
1323
1324	/*
1325	 * Drop and purge level 2 cache
1326	 */
1327	spa_l2cache_drop(spa);
1328
1329	for (i = 0; i < spa->spa_spares.sav_count; i++)
1330		vdev_free(spa->spa_spares.sav_vdevs[i]);
1331	if (spa->spa_spares.sav_vdevs) {
1332		kmem_free(spa->spa_spares.sav_vdevs,
1333		    spa->spa_spares.sav_count * sizeof (void *));
1334		spa->spa_spares.sav_vdevs = NULL;
1335	}
1336	if (spa->spa_spares.sav_config) {
1337		nvlist_free(spa->spa_spares.sav_config);
1338		spa->spa_spares.sav_config = NULL;
1339	}
1340	spa->spa_spares.sav_count = 0;
1341
1342	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1343		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1344		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1345	}
1346	if (spa->spa_l2cache.sav_vdevs) {
1347		kmem_free(spa->spa_l2cache.sav_vdevs,
1348		    spa->spa_l2cache.sav_count * sizeof (void *));
1349		spa->spa_l2cache.sav_vdevs = NULL;
1350	}
1351	if (spa->spa_l2cache.sav_config) {
1352		nvlist_free(spa->spa_l2cache.sav_config);
1353		spa->spa_l2cache.sav_config = NULL;
1354	}
1355	spa->spa_l2cache.sav_count = 0;
1356
1357	spa->spa_async_suspended = 0;
1358
1359	if (spa->spa_comment != NULL) {
1360		spa_strfree(spa->spa_comment);
1361		spa->spa_comment = NULL;
1362	}
1363
1364	spa_config_exit(spa, SCL_ALL, FTAG);
1365}
1366
1367/*
1368 * Load (or re-load) the current list of vdevs describing the active spares for
1369 * this pool.  When this is called, we have some form of basic information in
1370 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1371 * then re-generate a more complete list including status information.
1372 */
1373static void
1374spa_load_spares(spa_t *spa)
1375{
1376	nvlist_t **spares;
1377	uint_t nspares;
1378	int i;
1379	vdev_t *vd, *tvd;
1380
1381	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1382
1383	/*
1384	 * First, close and free any existing spare vdevs.
1385	 */
1386	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1387		vd = spa->spa_spares.sav_vdevs[i];
1388
1389		/* Undo the call to spa_activate() below */
1390		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1391		    B_FALSE)) != NULL && tvd->vdev_isspare)
1392			spa_spare_remove(tvd);
1393		vdev_close(vd);
1394		vdev_free(vd);
1395	}
1396
1397	if (spa->spa_spares.sav_vdevs)
1398		kmem_free(spa->spa_spares.sav_vdevs,
1399		    spa->spa_spares.sav_count * sizeof (void *));
1400
1401	if (spa->spa_spares.sav_config == NULL)
1402		nspares = 0;
1403	else
1404		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1405		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1406
1407	spa->spa_spares.sav_count = (int)nspares;
1408	spa->spa_spares.sav_vdevs = NULL;
1409
1410	if (nspares == 0)
1411		return;
1412
1413	/*
1414	 * Construct the array of vdevs, opening them to get status in the
1415	 * process.   For each spare, there is potentially two different vdev_t
1416	 * structures associated with it: one in the list of spares (used only
1417	 * for basic validation purposes) and one in the active vdev
1418	 * configuration (if it's spared in).  During this phase we open and
1419	 * validate each vdev on the spare list.  If the vdev also exists in the
1420	 * active configuration, then we also mark this vdev as an active spare.
1421	 */
1422	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1423	    KM_SLEEP);
1424	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1425		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1426		    VDEV_ALLOC_SPARE) == 0);
1427		ASSERT(vd != NULL);
1428
1429		spa->spa_spares.sav_vdevs[i] = vd;
1430
1431		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1432		    B_FALSE)) != NULL) {
1433			if (!tvd->vdev_isspare)
1434				spa_spare_add(tvd);
1435
1436			/*
1437			 * We only mark the spare active if we were successfully
1438			 * able to load the vdev.  Otherwise, importing a pool
1439			 * with a bad active spare would result in strange
1440			 * behavior, because multiple pool would think the spare
1441			 * is actively in use.
1442			 *
1443			 * There is a vulnerability here to an equally bizarre
1444			 * circumstance, where a dead active spare is later
1445			 * brought back to life (onlined or otherwise).  Given
1446			 * the rarity of this scenario, and the extra complexity
1447			 * it adds, we ignore the possibility.
1448			 */
1449			if (!vdev_is_dead(tvd))
1450				spa_spare_activate(tvd);
1451		}
1452
1453		vd->vdev_top = vd;
1454		vd->vdev_aux = &spa->spa_spares;
1455
1456		if (vdev_open(vd) != 0)
1457			continue;
1458
1459		if (vdev_validate_aux(vd) == 0)
1460			spa_spare_add(vd);
1461	}
1462
1463	/*
1464	 * Recompute the stashed list of spares, with status information
1465	 * this time.
1466	 */
1467	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1468	    DATA_TYPE_NVLIST_ARRAY) == 0);
1469
1470	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1471	    KM_SLEEP);
1472	for (i = 0; i < spa->spa_spares.sav_count; i++)
1473		spares[i] = vdev_config_generate(spa,
1474		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1475	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1476	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1477	for (i = 0; i < spa->spa_spares.sav_count; i++)
1478		nvlist_free(spares[i]);
1479	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1480}
1481
1482/*
1483 * Load (or re-load) the current list of vdevs describing the active l2cache for
1484 * this pool.  When this is called, we have some form of basic information in
1485 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1486 * then re-generate a more complete list including status information.
1487 * Devices which are already active have their details maintained, and are
1488 * not re-opened.
1489 */
1490static void
1491spa_load_l2cache(spa_t *spa)
1492{
1493	nvlist_t **l2cache;
1494	uint_t nl2cache;
1495	int i, j, oldnvdevs;
1496	uint64_t guid;
1497	vdev_t *vd, **oldvdevs, **newvdevs;
1498	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1499
1500	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1501
1502	if (sav->sav_config != NULL) {
1503		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1504		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1505		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1506	} else {
1507		nl2cache = 0;
1508		newvdevs = NULL;
1509	}
1510
1511	oldvdevs = sav->sav_vdevs;
1512	oldnvdevs = sav->sav_count;
1513	sav->sav_vdevs = NULL;
1514	sav->sav_count = 0;
1515
1516	/*
1517	 * Process new nvlist of vdevs.
1518	 */
1519	for (i = 0; i < nl2cache; i++) {
1520		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1521		    &guid) == 0);
1522
1523		newvdevs[i] = NULL;
1524		for (j = 0; j < oldnvdevs; j++) {
1525			vd = oldvdevs[j];
1526			if (vd != NULL && guid == vd->vdev_guid) {
1527				/*
1528				 * Retain previous vdev for add/remove ops.
1529				 */
1530				newvdevs[i] = vd;
1531				oldvdevs[j] = NULL;
1532				break;
1533			}
1534		}
1535
1536		if (newvdevs[i] == NULL) {
1537			/*
1538			 * Create new vdev
1539			 */
1540			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1541			    VDEV_ALLOC_L2CACHE) == 0);
1542			ASSERT(vd != NULL);
1543			newvdevs[i] = vd;
1544
1545			/*
1546			 * Commit this vdev as an l2cache device,
1547			 * even if it fails to open.
1548			 */
1549			spa_l2cache_add(vd);
1550
1551			vd->vdev_top = vd;
1552			vd->vdev_aux = sav;
1553
1554			spa_l2cache_activate(vd);
1555
1556			if (vdev_open(vd) != 0)
1557				continue;
1558
1559			(void) vdev_validate_aux(vd);
1560
1561			if (!vdev_is_dead(vd))
1562				l2arc_add_vdev(spa, vd);
1563		}
1564	}
1565
1566	/*
1567	 * Purge vdevs that were dropped
1568	 */
1569	for (i = 0; i < oldnvdevs; i++) {
1570		uint64_t pool;
1571
1572		vd = oldvdevs[i];
1573		if (vd != NULL) {
1574			ASSERT(vd->vdev_isl2cache);
1575
1576			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1577			    pool != 0ULL && l2arc_vdev_present(vd))
1578				l2arc_remove_vdev(vd);
1579			vdev_clear_stats(vd);
1580			vdev_free(vd);
1581		}
1582	}
1583
1584	if (oldvdevs)
1585		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1586
1587	if (sav->sav_config == NULL)
1588		goto out;
1589
1590	sav->sav_vdevs = newvdevs;
1591	sav->sav_count = (int)nl2cache;
1592
1593	/*
1594	 * Recompute the stashed list of l2cache devices, with status
1595	 * information this time.
1596	 */
1597	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1598	    DATA_TYPE_NVLIST_ARRAY) == 0);
1599
1600	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1601	for (i = 0; i < sav->sav_count; i++)
1602		l2cache[i] = vdev_config_generate(spa,
1603		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1604	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1605	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1606out:
1607	for (i = 0; i < sav->sav_count; i++)
1608		nvlist_free(l2cache[i]);
1609	if (sav->sav_count)
1610		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1611}
1612
1613static int
1614load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1615{
1616	dmu_buf_t *db;
1617	char *packed = NULL;
1618	size_t nvsize = 0;
1619	int error;
1620	*value = NULL;
1621
1622	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1623	if (error != 0)
1624		return (error);
1625	nvsize = *(uint64_t *)db->db_data;
1626	dmu_buf_rele(db, FTAG);
1627
1628	packed = kmem_alloc(nvsize, KM_SLEEP);
1629	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1630	    DMU_READ_PREFETCH);
1631	if (error == 0)
1632		error = nvlist_unpack(packed, nvsize, value, 0);
1633	kmem_free(packed, nvsize);
1634
1635	return (error);
1636}
1637
1638/*
1639 * Checks to see if the given vdev could not be opened, in which case we post a
1640 * sysevent to notify the autoreplace code that the device has been removed.
1641 */
1642static void
1643spa_check_removed(vdev_t *vd)
1644{
1645	for (int c = 0; c < vd->vdev_children; c++)
1646		spa_check_removed(vd->vdev_child[c]);
1647
1648	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1649	    !vd->vdev_ishole) {
1650		zfs_post_autoreplace(vd->vdev_spa, vd);
1651		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1652	}
1653}
1654
1655/*
1656 * Validate the current config against the MOS config
1657 */
1658static boolean_t
1659spa_config_valid(spa_t *spa, nvlist_t *config)
1660{
1661	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1662	nvlist_t *nv;
1663
1664	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1665
1666	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1667	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1668
1669	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1670
1671	/*
1672	 * If we're doing a normal import, then build up any additional
1673	 * diagnostic information about missing devices in this config.
1674	 * We'll pass this up to the user for further processing.
1675	 */
1676	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1677		nvlist_t **child, *nv;
1678		uint64_t idx = 0;
1679
1680		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1681		    KM_SLEEP);
1682		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1683
1684		for (int c = 0; c < rvd->vdev_children; c++) {
1685			vdev_t *tvd = rvd->vdev_child[c];
1686			vdev_t *mtvd  = mrvd->vdev_child[c];
1687
1688			if (tvd->vdev_ops == &vdev_missing_ops &&
1689			    mtvd->vdev_ops != &vdev_missing_ops &&
1690			    mtvd->vdev_islog)
1691				child[idx++] = vdev_config_generate(spa, mtvd,
1692				    B_FALSE, 0);
1693		}
1694
1695		if (idx) {
1696			VERIFY(nvlist_add_nvlist_array(nv,
1697			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1698			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1699			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1700
1701			for (int i = 0; i < idx; i++)
1702				nvlist_free(child[i]);
1703		}
1704		nvlist_free(nv);
1705		kmem_free(child, rvd->vdev_children * sizeof (char **));
1706	}
1707
1708	/*
1709	 * Compare the root vdev tree with the information we have
1710	 * from the MOS config (mrvd). Check each top-level vdev
1711	 * with the corresponding MOS config top-level (mtvd).
1712	 */
1713	for (int c = 0; c < rvd->vdev_children; c++) {
1714		vdev_t *tvd = rvd->vdev_child[c];
1715		vdev_t *mtvd  = mrvd->vdev_child[c];
1716
1717		/*
1718		 * Resolve any "missing" vdevs in the current configuration.
1719		 * If we find that the MOS config has more accurate information
1720		 * about the top-level vdev then use that vdev instead.
1721		 */
1722		if (tvd->vdev_ops == &vdev_missing_ops &&
1723		    mtvd->vdev_ops != &vdev_missing_ops) {
1724
1725			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1726				continue;
1727
1728			/*
1729			 * Device specific actions.
1730			 */
1731			if (mtvd->vdev_islog) {
1732				spa_set_log_state(spa, SPA_LOG_CLEAR);
1733			} else {
1734				/*
1735				 * XXX - once we have 'readonly' pool
1736				 * support we should be able to handle
1737				 * missing data devices by transitioning
1738				 * the pool to readonly.
1739				 */
1740				continue;
1741			}
1742
1743			/*
1744			 * Swap the missing vdev with the data we were
1745			 * able to obtain from the MOS config.
1746			 */
1747			vdev_remove_child(rvd, tvd);
1748			vdev_remove_child(mrvd, mtvd);
1749
1750			vdev_add_child(rvd, mtvd);
1751			vdev_add_child(mrvd, tvd);
1752
1753			spa_config_exit(spa, SCL_ALL, FTAG);
1754			vdev_load(mtvd);
1755			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1756
1757			vdev_reopen(rvd);
1758		} else if (mtvd->vdev_islog) {
1759			/*
1760			 * Load the slog device's state from the MOS config
1761			 * since it's possible that the label does not
1762			 * contain the most up-to-date information.
1763			 */
1764			vdev_load_log_state(tvd, mtvd);
1765			vdev_reopen(tvd);
1766		}
1767	}
1768	vdev_free(mrvd);
1769	spa_config_exit(spa, SCL_ALL, FTAG);
1770
1771	/*
1772	 * Ensure we were able to validate the config.
1773	 */
1774	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1775}
1776
1777/*
1778 * Check for missing log devices
1779 */
1780static boolean_t
1781spa_check_logs(spa_t *spa)
1782{
1783	boolean_t rv = B_FALSE;
1784
1785	switch (spa->spa_log_state) {
1786	case SPA_LOG_MISSING:
1787		/* need to recheck in case slog has been restored */
1788	case SPA_LOG_UNKNOWN:
1789		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1790		    NULL, DS_FIND_CHILDREN) != 0);
1791		if (rv)
1792			spa_set_log_state(spa, SPA_LOG_MISSING);
1793		break;
1794	}
1795	return (rv);
1796}
1797
1798static boolean_t
1799spa_passivate_log(spa_t *spa)
1800{
1801	vdev_t *rvd = spa->spa_root_vdev;
1802	boolean_t slog_found = B_FALSE;
1803
1804	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1805
1806	if (!spa_has_slogs(spa))
1807		return (B_FALSE);
1808
1809	for (int c = 0; c < rvd->vdev_children; c++) {
1810		vdev_t *tvd = rvd->vdev_child[c];
1811		metaslab_group_t *mg = tvd->vdev_mg;
1812
1813		if (tvd->vdev_islog) {
1814			metaslab_group_passivate(mg);
1815			slog_found = B_TRUE;
1816		}
1817	}
1818
1819	return (slog_found);
1820}
1821
1822static void
1823spa_activate_log(spa_t *spa)
1824{
1825	vdev_t *rvd = spa->spa_root_vdev;
1826
1827	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1828
1829	for (int c = 0; c < rvd->vdev_children; c++) {
1830		vdev_t *tvd = rvd->vdev_child[c];
1831		metaslab_group_t *mg = tvd->vdev_mg;
1832
1833		if (tvd->vdev_islog)
1834			metaslab_group_activate(mg);
1835	}
1836}
1837
1838int
1839spa_offline_log(spa_t *spa)
1840{
1841	int error;
1842
1843	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1844	    NULL, DS_FIND_CHILDREN);
1845	if (error == 0) {
1846		/*
1847		 * We successfully offlined the log device, sync out the
1848		 * current txg so that the "stubby" block can be removed
1849		 * by zil_sync().
1850		 */
1851		txg_wait_synced(spa->spa_dsl_pool, 0);
1852	}
1853	return (error);
1854}
1855
1856static void
1857spa_aux_check_removed(spa_aux_vdev_t *sav)
1858{
1859	int i;
1860
1861	for (i = 0; i < sav->sav_count; i++)
1862		spa_check_removed(sav->sav_vdevs[i]);
1863}
1864
1865void
1866spa_claim_notify(zio_t *zio)
1867{
1868	spa_t *spa = zio->io_spa;
1869
1870	if (zio->io_error)
1871		return;
1872
1873	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1874	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1875		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1876	mutex_exit(&spa->spa_props_lock);
1877}
1878
1879typedef struct spa_load_error {
1880	uint64_t	sle_meta_count;
1881	uint64_t	sle_data_count;
1882} spa_load_error_t;
1883
1884static void
1885spa_load_verify_done(zio_t *zio)
1886{
1887	blkptr_t *bp = zio->io_bp;
1888	spa_load_error_t *sle = zio->io_private;
1889	dmu_object_type_t type = BP_GET_TYPE(bp);
1890	int error = zio->io_error;
1891	spa_t *spa = zio->io_spa;
1892
1893	if (error) {
1894		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1895		    type != DMU_OT_INTENT_LOG)
1896			atomic_inc_64(&sle->sle_meta_count);
1897		else
1898			atomic_inc_64(&sle->sle_data_count);
1899	}
1900	zio_data_buf_free(zio->io_data, zio->io_size);
1901
1902	mutex_enter(&spa->spa_scrub_lock);
1903	spa->spa_scrub_inflight--;
1904	cv_broadcast(&spa->spa_scrub_io_cv);
1905	mutex_exit(&spa->spa_scrub_lock);
1906}
1907
1908/*
1909 * Maximum number of concurrent scrub i/os to create while verifying
1910 * a pool while importing it.
1911 */
1912int spa_load_verify_maxinflight = 10000;
1913boolean_t spa_load_verify_metadata = B_TRUE;
1914boolean_t spa_load_verify_data = B_TRUE;
1915
1916SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1917    &spa_load_verify_maxinflight, 0,
1918    "Maximum number of concurrent scrub I/Os to create while verifying a "
1919    "pool while importing it");
1920
1921SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1922    &spa_load_verify_metadata, 0,
1923    "Check metadata on import?");
1924
1925SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1926    &spa_load_verify_data, 0,
1927    "Check user data on import?");
1928
1929/*ARGSUSED*/
1930static int
1931spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1932    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1933{
1934	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1935		return (0);
1936	/*
1937	 * Note: normally this routine will not be called if
1938	 * spa_load_verify_metadata is not set.  However, it may be useful
1939	 * to manually set the flag after the traversal has begun.
1940	 */
1941	if (!spa_load_verify_metadata)
1942		return (0);
1943	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1944		return (0);
1945
1946	zio_t *rio = arg;
1947	size_t size = BP_GET_PSIZE(bp);
1948	void *data = zio_data_buf_alloc(size);
1949
1950	mutex_enter(&spa->spa_scrub_lock);
1951	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1952		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1953	spa->spa_scrub_inflight++;
1954	mutex_exit(&spa->spa_scrub_lock);
1955
1956	zio_nowait(zio_read(rio, spa, bp, data, size,
1957	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1958	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1959	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1960	return (0);
1961}
1962
1963static int
1964spa_load_verify(spa_t *spa)
1965{
1966	zio_t *rio;
1967	spa_load_error_t sle = { 0 };
1968	zpool_rewind_policy_t policy;
1969	boolean_t verify_ok = B_FALSE;
1970	int error = 0;
1971
1972	zpool_get_rewind_policy(spa->spa_config, &policy);
1973
1974	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1975		return (0);
1976
1977	rio = zio_root(spa, NULL, &sle,
1978	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1979
1980	if (spa_load_verify_metadata) {
1981		error = traverse_pool(spa, spa->spa_verify_min_txg,
1982		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1983		    spa_load_verify_cb, rio);
1984	}
1985
1986	(void) zio_wait(rio);
1987
1988	spa->spa_load_meta_errors = sle.sle_meta_count;
1989	spa->spa_load_data_errors = sle.sle_data_count;
1990
1991	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1992	    sle.sle_data_count <= policy.zrp_maxdata) {
1993		int64_t loss = 0;
1994
1995		verify_ok = B_TRUE;
1996		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1997		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1998
1999		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2000		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2001		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2002		VERIFY(nvlist_add_int64(spa->spa_load_info,
2003		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2004		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2005		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2006	} else {
2007		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2008	}
2009
2010	if (error) {
2011		if (error != ENXIO && error != EIO)
2012			error = SET_ERROR(EIO);
2013		return (error);
2014	}
2015
2016	return (verify_ok ? 0 : EIO);
2017}
2018
2019/*
2020 * Find a value in the pool props object.
2021 */
2022static void
2023spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2024{
2025	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2026	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2027}
2028
2029/*
2030 * Find a value in the pool directory object.
2031 */
2032static int
2033spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2034{
2035	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2036	    name, sizeof (uint64_t), 1, val));
2037}
2038
2039static int
2040spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2041{
2042	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2043	return (err);
2044}
2045
2046/*
2047 * Fix up config after a partly-completed split.  This is done with the
2048 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2049 * pool have that entry in their config, but only the splitting one contains
2050 * a list of all the guids of the vdevs that are being split off.
2051 *
2052 * This function determines what to do with that list: either rejoin
2053 * all the disks to the pool, or complete the splitting process.  To attempt
2054 * the rejoin, each disk that is offlined is marked online again, and
2055 * we do a reopen() call.  If the vdev label for every disk that was
2056 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2057 * then we call vdev_split() on each disk, and complete the split.
2058 *
2059 * Otherwise we leave the config alone, with all the vdevs in place in
2060 * the original pool.
2061 */
2062static void
2063spa_try_repair(spa_t *spa, nvlist_t *config)
2064{
2065	uint_t extracted;
2066	uint64_t *glist;
2067	uint_t i, gcount;
2068	nvlist_t *nvl;
2069	vdev_t **vd;
2070	boolean_t attempt_reopen;
2071
2072	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2073		return;
2074
2075	/* check that the config is complete */
2076	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2077	    &glist, &gcount) != 0)
2078		return;
2079
2080	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2081
2082	/* attempt to online all the vdevs & validate */
2083	attempt_reopen = B_TRUE;
2084	for (i = 0; i < gcount; i++) {
2085		if (glist[i] == 0)	/* vdev is hole */
2086			continue;
2087
2088		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2089		if (vd[i] == NULL) {
2090			/*
2091			 * Don't bother attempting to reopen the disks;
2092			 * just do the split.
2093			 */
2094			attempt_reopen = B_FALSE;
2095		} else {
2096			/* attempt to re-online it */
2097			vd[i]->vdev_offline = B_FALSE;
2098		}
2099	}
2100
2101	if (attempt_reopen) {
2102		vdev_reopen(spa->spa_root_vdev);
2103
2104		/* check each device to see what state it's in */
2105		for (extracted = 0, i = 0; i < gcount; i++) {
2106			if (vd[i] != NULL &&
2107			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2108				break;
2109			++extracted;
2110		}
2111	}
2112
2113	/*
2114	 * If every disk has been moved to the new pool, or if we never
2115	 * even attempted to look at them, then we split them off for
2116	 * good.
2117	 */
2118	if (!attempt_reopen || gcount == extracted) {
2119		for (i = 0; i < gcount; i++)
2120			if (vd[i] != NULL)
2121				vdev_split(vd[i]);
2122		vdev_reopen(spa->spa_root_vdev);
2123	}
2124
2125	kmem_free(vd, gcount * sizeof (vdev_t *));
2126}
2127
2128static int
2129spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2130    boolean_t mosconfig)
2131{
2132	nvlist_t *config = spa->spa_config;
2133	char *ereport = FM_EREPORT_ZFS_POOL;
2134	char *comment;
2135	int error;
2136	uint64_t pool_guid;
2137	nvlist_t *nvl;
2138
2139	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2140		return (SET_ERROR(EINVAL));
2141
2142	ASSERT(spa->spa_comment == NULL);
2143	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2144		spa->spa_comment = spa_strdup(comment);
2145
2146	/*
2147	 * Versioning wasn't explicitly added to the label until later, so if
2148	 * it's not present treat it as the initial version.
2149	 */
2150	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2151	    &spa->spa_ubsync.ub_version) != 0)
2152		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2153
2154	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2155	    &spa->spa_config_txg);
2156
2157	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2158	    spa_guid_exists(pool_guid, 0)) {
2159		error = SET_ERROR(EEXIST);
2160	} else {
2161		spa->spa_config_guid = pool_guid;
2162
2163		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2164		    &nvl) == 0) {
2165			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2166			    KM_SLEEP) == 0);
2167		}
2168
2169		nvlist_free(spa->spa_load_info);
2170		spa->spa_load_info = fnvlist_alloc();
2171
2172		gethrestime(&spa->spa_loaded_ts);
2173		error = spa_load_impl(spa, pool_guid, config, state, type,
2174		    mosconfig, &ereport);
2175	}
2176
2177	spa->spa_minref = refcount_count(&spa->spa_refcount);
2178	if (error) {
2179		if (error != EEXIST) {
2180			spa->spa_loaded_ts.tv_sec = 0;
2181			spa->spa_loaded_ts.tv_nsec = 0;
2182		}
2183		if (error != EBADF) {
2184			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2185		}
2186	}
2187	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2188	spa->spa_ena = 0;
2189
2190	return (error);
2191}
2192
2193/*
2194 * Load an existing storage pool, using the pool's builtin spa_config as a
2195 * source of configuration information.
2196 */
2197static int
2198spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2199    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2200    char **ereport)
2201{
2202	int error = 0;
2203	nvlist_t *nvroot = NULL;
2204	nvlist_t *label;
2205	vdev_t *rvd;
2206	uberblock_t *ub = &spa->spa_uberblock;
2207	uint64_t children, config_cache_txg = spa->spa_config_txg;
2208	int orig_mode = spa->spa_mode;
2209	int parse;
2210	uint64_t obj;
2211	boolean_t missing_feat_write = B_FALSE;
2212
2213	/*
2214	 * If this is an untrusted config, access the pool in read-only mode.
2215	 * This prevents things like resilvering recently removed devices.
2216	 */
2217	if (!mosconfig)
2218		spa->spa_mode = FREAD;
2219
2220	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2221
2222	spa->spa_load_state = state;
2223
2224	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2225		return (SET_ERROR(EINVAL));
2226
2227	parse = (type == SPA_IMPORT_EXISTING ?
2228	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2229
2230	/*
2231	 * Create "The Godfather" zio to hold all async IOs
2232	 */
2233	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2234	    KM_SLEEP);
2235	for (int i = 0; i < max_ncpus; i++) {
2236		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2237		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2238		    ZIO_FLAG_GODFATHER);
2239	}
2240
2241	/*
2242	 * Parse the configuration into a vdev tree.  We explicitly set the
2243	 * value that will be returned by spa_version() since parsing the
2244	 * configuration requires knowing the version number.
2245	 */
2246	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2247	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2248	spa_config_exit(spa, SCL_ALL, FTAG);
2249
2250	if (error != 0)
2251		return (error);
2252
2253	ASSERT(spa->spa_root_vdev == rvd);
2254
2255	if (type != SPA_IMPORT_ASSEMBLE) {
2256		ASSERT(spa_guid(spa) == pool_guid);
2257	}
2258
2259	/*
2260	 * Try to open all vdevs, loading each label in the process.
2261	 */
2262	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2263	error = vdev_open(rvd);
2264	spa_config_exit(spa, SCL_ALL, FTAG);
2265	if (error != 0)
2266		return (error);
2267
2268	/*
2269	 * We need to validate the vdev labels against the configuration that
2270	 * we have in hand, which is dependent on the setting of mosconfig. If
2271	 * mosconfig is true then we're validating the vdev labels based on
2272	 * that config.  Otherwise, we're validating against the cached config
2273	 * (zpool.cache) that was read when we loaded the zfs module, and then
2274	 * later we will recursively call spa_load() and validate against
2275	 * the vdev config.
2276	 *
2277	 * If we're assembling a new pool that's been split off from an
2278	 * existing pool, the labels haven't yet been updated so we skip
2279	 * validation for now.
2280	 */
2281	if (type != SPA_IMPORT_ASSEMBLE) {
2282		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2283		error = vdev_validate(rvd, mosconfig);
2284		spa_config_exit(spa, SCL_ALL, FTAG);
2285
2286		if (error != 0)
2287			return (error);
2288
2289		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2290			return (SET_ERROR(ENXIO));
2291	}
2292
2293	/*
2294	 * Find the best uberblock.
2295	 */
2296	vdev_uberblock_load(rvd, ub, &label);
2297
2298	/*
2299	 * If we weren't able to find a single valid uberblock, return failure.
2300	 */
2301	if (ub->ub_txg == 0) {
2302		nvlist_free(label);
2303		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2304	}
2305
2306	/*
2307	 * If the pool has an unsupported version we can't open it.
2308	 */
2309	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2310		nvlist_free(label);
2311		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2312	}
2313
2314	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2315		nvlist_t *features;
2316
2317		/*
2318		 * If we weren't able to find what's necessary for reading the
2319		 * MOS in the label, return failure.
2320		 */
2321		if (label == NULL || nvlist_lookup_nvlist(label,
2322		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2323			nvlist_free(label);
2324			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2325			    ENXIO));
2326		}
2327
2328		/*
2329		 * Update our in-core representation with the definitive values
2330		 * from the label.
2331		 */
2332		nvlist_free(spa->spa_label_features);
2333		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2334	}
2335
2336	nvlist_free(label);
2337
2338	/*
2339	 * Look through entries in the label nvlist's features_for_read. If
2340	 * there is a feature listed there which we don't understand then we
2341	 * cannot open a pool.
2342	 */
2343	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2344		nvlist_t *unsup_feat;
2345
2346		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2347		    0);
2348
2349		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2350		    NULL); nvp != NULL;
2351		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2352			if (!zfeature_is_supported(nvpair_name(nvp))) {
2353				VERIFY(nvlist_add_string(unsup_feat,
2354				    nvpair_name(nvp), "") == 0);
2355			}
2356		}
2357
2358		if (!nvlist_empty(unsup_feat)) {
2359			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2360			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2361			nvlist_free(unsup_feat);
2362			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2363			    ENOTSUP));
2364		}
2365
2366		nvlist_free(unsup_feat);
2367	}
2368
2369	/*
2370	 * If the vdev guid sum doesn't match the uberblock, we have an
2371	 * incomplete configuration.  We first check to see if the pool
2372	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2373	 * If it is, defer the vdev_guid_sum check till later so we
2374	 * can handle missing vdevs.
2375	 */
2376	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2377	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2378	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2379		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2380
2381	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2382		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2383		spa_try_repair(spa, config);
2384		spa_config_exit(spa, SCL_ALL, FTAG);
2385		nvlist_free(spa->spa_config_splitting);
2386		spa->spa_config_splitting = NULL;
2387	}
2388
2389	/*
2390	 * Initialize internal SPA structures.
2391	 */
2392	spa->spa_state = POOL_STATE_ACTIVE;
2393	spa->spa_ubsync = spa->spa_uberblock;
2394	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2395	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2396	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2397	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2398	spa->spa_claim_max_txg = spa->spa_first_txg;
2399	spa->spa_prev_software_version = ub->ub_software_version;
2400
2401	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2402	if (error)
2403		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2404	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2405
2406	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2407		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2408
2409	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2410		boolean_t missing_feat_read = B_FALSE;
2411		nvlist_t *unsup_feat, *enabled_feat;
2412
2413		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2414		    &spa->spa_feat_for_read_obj) != 0) {
2415			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2416		}
2417
2418		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2419		    &spa->spa_feat_for_write_obj) != 0) {
2420			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421		}
2422
2423		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2424		    &spa->spa_feat_desc_obj) != 0) {
2425			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426		}
2427
2428		enabled_feat = fnvlist_alloc();
2429		unsup_feat = fnvlist_alloc();
2430
2431		if (!spa_features_check(spa, B_FALSE,
2432		    unsup_feat, enabled_feat))
2433			missing_feat_read = B_TRUE;
2434
2435		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2436			if (!spa_features_check(spa, B_TRUE,
2437			    unsup_feat, enabled_feat)) {
2438				missing_feat_write = B_TRUE;
2439			}
2440		}
2441
2442		fnvlist_add_nvlist(spa->spa_load_info,
2443		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2444
2445		if (!nvlist_empty(unsup_feat)) {
2446			fnvlist_add_nvlist(spa->spa_load_info,
2447			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2448		}
2449
2450		fnvlist_free(enabled_feat);
2451		fnvlist_free(unsup_feat);
2452
2453		if (!missing_feat_read) {
2454			fnvlist_add_boolean(spa->spa_load_info,
2455			    ZPOOL_CONFIG_CAN_RDONLY);
2456		}
2457
2458		/*
2459		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2460		 * twofold: to determine whether the pool is available for
2461		 * import in read-write mode and (if it is not) whether the
2462		 * pool is available for import in read-only mode. If the pool
2463		 * is available for import in read-write mode, it is displayed
2464		 * as available in userland; if it is not available for import
2465		 * in read-only mode, it is displayed as unavailable in
2466		 * userland. If the pool is available for import in read-only
2467		 * mode but not read-write mode, it is displayed as unavailable
2468		 * in userland with a special note that the pool is actually
2469		 * available for open in read-only mode.
2470		 *
2471		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2472		 * missing a feature for write, we must first determine whether
2473		 * the pool can be opened read-only before returning to
2474		 * userland in order to know whether to display the
2475		 * abovementioned note.
2476		 */
2477		if (missing_feat_read || (missing_feat_write &&
2478		    spa_writeable(spa))) {
2479			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2480			    ENOTSUP));
2481		}
2482
2483		/*
2484		 * Load refcounts for ZFS features from disk into an in-memory
2485		 * cache during SPA initialization.
2486		 */
2487		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2488			uint64_t refcount;
2489
2490			error = feature_get_refcount_from_disk(spa,
2491			    &spa_feature_table[i], &refcount);
2492			if (error == 0) {
2493				spa->spa_feat_refcount_cache[i] = refcount;
2494			} else if (error == ENOTSUP) {
2495				spa->spa_feat_refcount_cache[i] =
2496				    SPA_FEATURE_DISABLED;
2497			} else {
2498				return (spa_vdev_err(rvd,
2499				    VDEV_AUX_CORRUPT_DATA, EIO));
2500			}
2501		}
2502	}
2503
2504	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2505		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2506		    &spa->spa_feat_enabled_txg_obj) != 0)
2507			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2508	}
2509
2510	spa->spa_is_initializing = B_TRUE;
2511	error = dsl_pool_open(spa->spa_dsl_pool);
2512	spa->spa_is_initializing = B_FALSE;
2513	if (error != 0)
2514		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515
2516	if (!mosconfig) {
2517		uint64_t hostid;
2518		nvlist_t *policy = NULL, *nvconfig;
2519
2520		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2521			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522
2523		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2524		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2525			char *hostname;
2526			unsigned long myhostid = 0;
2527
2528			VERIFY(nvlist_lookup_string(nvconfig,
2529			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2530
2531#ifdef	_KERNEL
2532			myhostid = zone_get_hostid(NULL);
2533#else	/* _KERNEL */
2534			/*
2535			 * We're emulating the system's hostid in userland, so
2536			 * we can't use zone_get_hostid().
2537			 */
2538			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2539#endif	/* _KERNEL */
2540			if (check_hostid && hostid != 0 && myhostid != 0 &&
2541			    hostid != myhostid) {
2542				nvlist_free(nvconfig);
2543				cmn_err(CE_WARN, "pool '%s' could not be "
2544				    "loaded as it was last accessed by "
2545				    "another system (host: %s hostid: 0x%lx). "
2546				    "See: http://illumos.org/msg/ZFS-8000-EY",
2547				    spa_name(spa), hostname,
2548				    (unsigned long)hostid);
2549				return (SET_ERROR(EBADF));
2550			}
2551		}
2552		if (nvlist_lookup_nvlist(spa->spa_config,
2553		    ZPOOL_REWIND_POLICY, &policy) == 0)
2554			VERIFY(nvlist_add_nvlist(nvconfig,
2555			    ZPOOL_REWIND_POLICY, policy) == 0);
2556
2557		spa_config_set(spa, nvconfig);
2558		spa_unload(spa);
2559		spa_deactivate(spa);
2560		spa_activate(spa, orig_mode);
2561
2562		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2563	}
2564
2565	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2566		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2567	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2568	if (error != 0)
2569		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2570
2571	/*
2572	 * Load the bit that tells us to use the new accounting function
2573	 * (raid-z deflation).  If we have an older pool, this will not
2574	 * be present.
2575	 */
2576	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2577	if (error != 0 && error != ENOENT)
2578		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2579
2580	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2581	    &spa->spa_creation_version);
2582	if (error != 0 && error != ENOENT)
2583		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584
2585	/*
2586	 * Load the persistent error log.  If we have an older pool, this will
2587	 * not be present.
2588	 */
2589	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2590	if (error != 0 && error != ENOENT)
2591		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2592
2593	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2594	    &spa->spa_errlog_scrub);
2595	if (error != 0 && error != ENOENT)
2596		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597
2598	/*
2599	 * Load the history object.  If we have an older pool, this
2600	 * will not be present.
2601	 */
2602	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2603	if (error != 0 && error != ENOENT)
2604		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605
2606	/*
2607	 * If we're assembling the pool from the split-off vdevs of
2608	 * an existing pool, we don't want to attach the spares & cache
2609	 * devices.
2610	 */
2611
2612	/*
2613	 * Load any hot spares for this pool.
2614	 */
2615	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2616	if (error != 0 && error != ENOENT)
2617		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2619		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2620		if (load_nvlist(spa, spa->spa_spares.sav_object,
2621		    &spa->spa_spares.sav_config) != 0)
2622			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623
2624		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2625		spa_load_spares(spa);
2626		spa_config_exit(spa, SCL_ALL, FTAG);
2627	} else if (error == 0) {
2628		spa->spa_spares.sav_sync = B_TRUE;
2629	}
2630
2631	/*
2632	 * Load any level 2 ARC devices for this pool.
2633	 */
2634	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2635	    &spa->spa_l2cache.sav_object);
2636	if (error != 0 && error != ENOENT)
2637		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2638	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2639		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2640		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2641		    &spa->spa_l2cache.sav_config) != 0)
2642			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643
2644		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2645		spa_load_l2cache(spa);
2646		spa_config_exit(spa, SCL_ALL, FTAG);
2647	} else if (error == 0) {
2648		spa->spa_l2cache.sav_sync = B_TRUE;
2649	}
2650
2651	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2652
2653	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2654	if (error && error != ENOENT)
2655		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656
2657	if (error == 0) {
2658		uint64_t autoreplace;
2659
2660		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2661		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2662		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2663		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2664		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2665		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2666		    &spa->spa_dedup_ditto);
2667
2668		spa->spa_autoreplace = (autoreplace != 0);
2669	}
2670
2671	/*
2672	 * If the 'autoreplace' property is set, then post a resource notifying
2673	 * the ZFS DE that it should not issue any faults for unopenable
2674	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2675	 * unopenable vdevs so that the normal autoreplace handler can take
2676	 * over.
2677	 */
2678	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2679		spa_check_removed(spa->spa_root_vdev);
2680		/*
2681		 * For the import case, this is done in spa_import(), because
2682		 * at this point we're using the spare definitions from
2683		 * the MOS config, not necessarily from the userland config.
2684		 */
2685		if (state != SPA_LOAD_IMPORT) {
2686			spa_aux_check_removed(&spa->spa_spares);
2687			spa_aux_check_removed(&spa->spa_l2cache);
2688		}
2689	}
2690
2691	/*
2692	 * Load the vdev state for all toplevel vdevs.
2693	 */
2694	vdev_load(rvd);
2695
2696	/*
2697	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2698	 */
2699	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2700	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2701	spa_config_exit(spa, SCL_ALL, FTAG);
2702
2703	/*
2704	 * Load the DDTs (dedup tables).
2705	 */
2706	error = ddt_load(spa);
2707	if (error != 0)
2708		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2709
2710	spa_update_dspace(spa);
2711
2712	/*
2713	 * Validate the config, using the MOS config to fill in any
2714	 * information which might be missing.  If we fail to validate
2715	 * the config then declare the pool unfit for use. If we're
2716	 * assembling a pool from a split, the log is not transferred
2717	 * over.
2718	 */
2719	if (type != SPA_IMPORT_ASSEMBLE) {
2720		nvlist_t *nvconfig;
2721
2722		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2723			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2724
2725		if (!spa_config_valid(spa, nvconfig)) {
2726			nvlist_free(nvconfig);
2727			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2728			    ENXIO));
2729		}
2730		nvlist_free(nvconfig);
2731
2732		/*
2733		 * Now that we've validated the config, check the state of the
2734		 * root vdev.  If it can't be opened, it indicates one or
2735		 * more toplevel vdevs are faulted.
2736		 */
2737		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2738			return (SET_ERROR(ENXIO));
2739
2740		if (spa_check_logs(spa)) {
2741			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2742			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2743		}
2744	}
2745
2746	if (missing_feat_write) {
2747		ASSERT(state == SPA_LOAD_TRYIMPORT);
2748
2749		/*
2750		 * At this point, we know that we can open the pool in
2751		 * read-only mode but not read-write mode. We now have enough
2752		 * information and can return to userland.
2753		 */
2754		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2755	}
2756
2757	/*
2758	 * We've successfully opened the pool, verify that we're ready
2759	 * to start pushing transactions.
2760	 */
2761	if (state != SPA_LOAD_TRYIMPORT) {
2762		if (error = spa_load_verify(spa))
2763			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2764			    error));
2765	}
2766
2767	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2768	    spa->spa_load_max_txg == UINT64_MAX)) {
2769		dmu_tx_t *tx;
2770		int need_update = B_FALSE;
2771
2772		ASSERT(state != SPA_LOAD_TRYIMPORT);
2773
2774		/*
2775		 * Claim log blocks that haven't been committed yet.
2776		 * This must all happen in a single txg.
2777		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2778		 * invoked from zil_claim_log_block()'s i/o done callback.
2779		 * Price of rollback is that we abandon the log.
2780		 */
2781		spa->spa_claiming = B_TRUE;
2782
2783		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2784		    spa_first_txg(spa));
2785		(void) dmu_objset_find(spa_name(spa),
2786		    zil_claim, tx, DS_FIND_CHILDREN);
2787		dmu_tx_commit(tx);
2788
2789		spa->spa_claiming = B_FALSE;
2790
2791		spa_set_log_state(spa, SPA_LOG_GOOD);
2792		spa->spa_sync_on = B_TRUE;
2793		txg_sync_start(spa->spa_dsl_pool);
2794
2795		/*
2796		 * Wait for all claims to sync.  We sync up to the highest
2797		 * claimed log block birth time so that claimed log blocks
2798		 * don't appear to be from the future.  spa_claim_max_txg
2799		 * will have been set for us by either zil_check_log_chain()
2800		 * (invoked from spa_check_logs()) or zil_claim() above.
2801		 */
2802		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2803
2804		/*
2805		 * If the config cache is stale, or we have uninitialized
2806		 * metaslabs (see spa_vdev_add()), then update the config.
2807		 *
2808		 * If this is a verbatim import, trust the current
2809		 * in-core spa_config and update the disk labels.
2810		 */
2811		if (config_cache_txg != spa->spa_config_txg ||
2812		    state == SPA_LOAD_IMPORT ||
2813		    state == SPA_LOAD_RECOVER ||
2814		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2815			need_update = B_TRUE;
2816
2817		for (int c = 0; c < rvd->vdev_children; c++)
2818			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2819				need_update = B_TRUE;
2820
2821		/*
2822		 * Update the config cache asychronously in case we're the
2823		 * root pool, in which case the config cache isn't writable yet.
2824		 */
2825		if (need_update)
2826			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2827
2828		/*
2829		 * Check all DTLs to see if anything needs resilvering.
2830		 */
2831		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2832		    vdev_resilver_needed(rvd, NULL, NULL))
2833			spa_async_request(spa, SPA_ASYNC_RESILVER);
2834
2835		/*
2836		 * Log the fact that we booted up (so that we can detect if
2837		 * we rebooted in the middle of an operation).
2838		 */
2839		spa_history_log_version(spa, "open");
2840
2841		/*
2842		 * Delete any inconsistent datasets.
2843		 */
2844		(void) dmu_objset_find(spa_name(spa),
2845		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2846
2847		/*
2848		 * Clean up any stale temporary dataset userrefs.
2849		 */
2850		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2851	}
2852
2853	return (0);
2854}
2855
2856static int
2857spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2858{
2859	int mode = spa->spa_mode;
2860
2861	spa_unload(spa);
2862	spa_deactivate(spa);
2863
2864	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2865
2866	spa_activate(spa, mode);
2867	spa_async_suspend(spa);
2868
2869	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2870}
2871
2872/*
2873 * If spa_load() fails this function will try loading prior txg's. If
2874 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2875 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2876 * function will not rewind the pool and will return the same error as
2877 * spa_load().
2878 */
2879static int
2880spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2881    uint64_t max_request, int rewind_flags)
2882{
2883	nvlist_t *loadinfo = NULL;
2884	nvlist_t *config = NULL;
2885	int load_error, rewind_error;
2886	uint64_t safe_rewind_txg;
2887	uint64_t min_txg;
2888
2889	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2890		spa->spa_load_max_txg = spa->spa_load_txg;
2891		spa_set_log_state(spa, SPA_LOG_CLEAR);
2892	} else {
2893		spa->spa_load_max_txg = max_request;
2894		if (max_request != UINT64_MAX)
2895			spa->spa_extreme_rewind = B_TRUE;
2896	}
2897
2898	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2899	    mosconfig);
2900	if (load_error == 0)
2901		return (0);
2902
2903	if (spa->spa_root_vdev != NULL)
2904		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2905
2906	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2907	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2908
2909	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2910		nvlist_free(config);
2911		return (load_error);
2912	}
2913
2914	if (state == SPA_LOAD_RECOVER) {
2915		/* Price of rolling back is discarding txgs, including log */
2916		spa_set_log_state(spa, SPA_LOG_CLEAR);
2917	} else {
2918		/*
2919		 * If we aren't rolling back save the load info from our first
2920		 * import attempt so that we can restore it after attempting
2921		 * to rewind.
2922		 */
2923		loadinfo = spa->spa_load_info;
2924		spa->spa_load_info = fnvlist_alloc();
2925	}
2926
2927	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2928	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2929	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2930	    TXG_INITIAL : safe_rewind_txg;
2931
2932	/*
2933	 * Continue as long as we're finding errors, we're still within
2934	 * the acceptable rewind range, and we're still finding uberblocks
2935	 */
2936	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2937	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2938		if (spa->spa_load_max_txg < safe_rewind_txg)
2939			spa->spa_extreme_rewind = B_TRUE;
2940		rewind_error = spa_load_retry(spa, state, mosconfig);
2941	}
2942
2943	spa->spa_extreme_rewind = B_FALSE;
2944	spa->spa_load_max_txg = UINT64_MAX;
2945
2946	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2947		spa_config_set(spa, config);
2948
2949	if (state == SPA_LOAD_RECOVER) {
2950		ASSERT3P(loadinfo, ==, NULL);
2951		return (rewind_error);
2952	} else {
2953		/* Store the rewind info as part of the initial load info */
2954		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2955		    spa->spa_load_info);
2956
2957		/* Restore the initial load info */
2958		fnvlist_free(spa->spa_load_info);
2959		spa->spa_load_info = loadinfo;
2960
2961		return (load_error);
2962	}
2963}
2964
2965/*
2966 * Pool Open/Import
2967 *
2968 * The import case is identical to an open except that the configuration is sent
2969 * down from userland, instead of grabbed from the configuration cache.  For the
2970 * case of an open, the pool configuration will exist in the
2971 * POOL_STATE_UNINITIALIZED state.
2972 *
2973 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2974 * the same time open the pool, without having to keep around the spa_t in some
2975 * ambiguous state.
2976 */
2977static int
2978spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2979    nvlist_t **config)
2980{
2981	spa_t *spa;
2982	spa_load_state_t state = SPA_LOAD_OPEN;
2983	int error;
2984	int locked = B_FALSE;
2985	int firstopen = B_FALSE;
2986
2987	*spapp = NULL;
2988
2989	/*
2990	 * As disgusting as this is, we need to support recursive calls to this
2991	 * function because dsl_dir_open() is called during spa_load(), and ends
2992	 * up calling spa_open() again.  The real fix is to figure out how to
2993	 * avoid dsl_dir_open() calling this in the first place.
2994	 */
2995	if (mutex_owner(&spa_namespace_lock) != curthread) {
2996		mutex_enter(&spa_namespace_lock);
2997		locked = B_TRUE;
2998	}
2999
3000	if ((spa = spa_lookup(pool)) == NULL) {
3001		if (locked)
3002			mutex_exit(&spa_namespace_lock);
3003		return (SET_ERROR(ENOENT));
3004	}
3005
3006	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3007		zpool_rewind_policy_t policy;
3008
3009		firstopen = B_TRUE;
3010
3011		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3012		    &policy);
3013		if (policy.zrp_request & ZPOOL_DO_REWIND)
3014			state = SPA_LOAD_RECOVER;
3015
3016		spa_activate(spa, spa_mode_global);
3017
3018		if (state != SPA_LOAD_RECOVER)
3019			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3020
3021		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3022		    policy.zrp_request);
3023
3024		if (error == EBADF) {
3025			/*
3026			 * If vdev_validate() returns failure (indicated by
3027			 * EBADF), it indicates that one of the vdevs indicates
3028			 * that the pool has been exported or destroyed.  If
3029			 * this is the case, the config cache is out of sync and
3030			 * we should remove the pool from the namespace.
3031			 */
3032			spa_unload(spa);
3033			spa_deactivate(spa);
3034			spa_config_sync(spa, B_TRUE, B_TRUE);
3035			spa_remove(spa);
3036			if (locked)
3037				mutex_exit(&spa_namespace_lock);
3038			return (SET_ERROR(ENOENT));
3039		}
3040
3041		if (error) {
3042			/*
3043			 * We can't open the pool, but we still have useful
3044			 * information: the state of each vdev after the
3045			 * attempted vdev_open().  Return this to the user.
3046			 */
3047			if (config != NULL && spa->spa_config) {
3048				VERIFY(nvlist_dup(spa->spa_config, config,
3049				    KM_SLEEP) == 0);
3050				VERIFY(nvlist_add_nvlist(*config,
3051				    ZPOOL_CONFIG_LOAD_INFO,
3052				    spa->spa_load_info) == 0);
3053			}
3054			spa_unload(spa);
3055			spa_deactivate(spa);
3056			spa->spa_last_open_failed = error;
3057			if (locked)
3058				mutex_exit(&spa_namespace_lock);
3059			*spapp = NULL;
3060			return (error);
3061		}
3062	}
3063
3064	spa_open_ref(spa, tag);
3065
3066	if (config != NULL)
3067		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3068
3069	/*
3070	 * If we've recovered the pool, pass back any information we
3071	 * gathered while doing the load.
3072	 */
3073	if (state == SPA_LOAD_RECOVER) {
3074		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3075		    spa->spa_load_info) == 0);
3076	}
3077
3078	if (locked) {
3079		spa->spa_last_open_failed = 0;
3080		spa->spa_last_ubsync_txg = 0;
3081		spa->spa_load_txg = 0;
3082		mutex_exit(&spa_namespace_lock);
3083#ifdef __FreeBSD__
3084#ifdef _KERNEL
3085		if (firstopen)
3086			zvol_create_minors(spa->spa_name);
3087#endif
3088#endif
3089	}
3090
3091	*spapp = spa;
3092
3093	return (0);
3094}
3095
3096int
3097spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3098    nvlist_t **config)
3099{
3100	return (spa_open_common(name, spapp, tag, policy, config));
3101}
3102
3103int
3104spa_open(const char *name, spa_t **spapp, void *tag)
3105{
3106	return (spa_open_common(name, spapp, tag, NULL, NULL));
3107}
3108
3109/*
3110 * Lookup the given spa_t, incrementing the inject count in the process,
3111 * preventing it from being exported or destroyed.
3112 */
3113spa_t *
3114spa_inject_addref(char *name)
3115{
3116	spa_t *spa;
3117
3118	mutex_enter(&spa_namespace_lock);
3119	if ((spa = spa_lookup(name)) == NULL) {
3120		mutex_exit(&spa_namespace_lock);
3121		return (NULL);
3122	}
3123	spa->spa_inject_ref++;
3124	mutex_exit(&spa_namespace_lock);
3125
3126	return (spa);
3127}
3128
3129void
3130spa_inject_delref(spa_t *spa)
3131{
3132	mutex_enter(&spa_namespace_lock);
3133	spa->spa_inject_ref--;
3134	mutex_exit(&spa_namespace_lock);
3135}
3136
3137/*
3138 * Add spares device information to the nvlist.
3139 */
3140static void
3141spa_add_spares(spa_t *spa, nvlist_t *config)
3142{
3143	nvlist_t **spares;
3144	uint_t i, nspares;
3145	nvlist_t *nvroot;
3146	uint64_t guid;
3147	vdev_stat_t *vs;
3148	uint_t vsc;
3149	uint64_t pool;
3150
3151	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3152
3153	if (spa->spa_spares.sav_count == 0)
3154		return;
3155
3156	VERIFY(nvlist_lookup_nvlist(config,
3157	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3158	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3159	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3160	if (nspares != 0) {
3161		VERIFY(nvlist_add_nvlist_array(nvroot,
3162		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3163		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3164		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3165
3166		/*
3167		 * Go through and find any spares which have since been
3168		 * repurposed as an active spare.  If this is the case, update
3169		 * their status appropriately.
3170		 */
3171		for (i = 0; i < nspares; i++) {
3172			VERIFY(nvlist_lookup_uint64(spares[i],
3173			    ZPOOL_CONFIG_GUID, &guid) == 0);
3174			if (spa_spare_exists(guid, &pool, NULL) &&
3175			    pool != 0ULL) {
3176				VERIFY(nvlist_lookup_uint64_array(
3177				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3178				    (uint64_t **)&vs, &vsc) == 0);
3179				vs->vs_state = VDEV_STATE_CANT_OPEN;
3180				vs->vs_aux = VDEV_AUX_SPARED;
3181			}
3182		}
3183	}
3184}
3185
3186/*
3187 * Add l2cache device information to the nvlist, including vdev stats.
3188 */
3189static void
3190spa_add_l2cache(spa_t *spa, nvlist_t *config)
3191{
3192	nvlist_t **l2cache;
3193	uint_t i, j, nl2cache;
3194	nvlist_t *nvroot;
3195	uint64_t guid;
3196	vdev_t *vd;
3197	vdev_stat_t *vs;
3198	uint_t vsc;
3199
3200	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3201
3202	if (spa->spa_l2cache.sav_count == 0)
3203		return;
3204
3205	VERIFY(nvlist_lookup_nvlist(config,
3206	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3207	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3208	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3209	if (nl2cache != 0) {
3210		VERIFY(nvlist_add_nvlist_array(nvroot,
3211		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3212		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3213		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3214
3215		/*
3216		 * Update level 2 cache device stats.
3217		 */
3218
3219		for (i = 0; i < nl2cache; i++) {
3220			VERIFY(nvlist_lookup_uint64(l2cache[i],
3221			    ZPOOL_CONFIG_GUID, &guid) == 0);
3222
3223			vd = NULL;
3224			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3225				if (guid ==
3226				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3227					vd = spa->spa_l2cache.sav_vdevs[j];
3228					break;
3229				}
3230			}
3231			ASSERT(vd != NULL);
3232
3233			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3234			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3235			    == 0);
3236			vdev_get_stats(vd, vs);
3237		}
3238	}
3239}
3240
3241static void
3242spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3243{
3244	nvlist_t *features;
3245	zap_cursor_t zc;
3246	zap_attribute_t za;
3247
3248	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3249	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3250
3251	/* We may be unable to read features if pool is suspended. */
3252	if (spa_suspended(spa))
3253		goto out;
3254
3255	if (spa->spa_feat_for_read_obj != 0) {
3256		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3257		    spa->spa_feat_for_read_obj);
3258		    zap_cursor_retrieve(&zc, &za) == 0;
3259		    zap_cursor_advance(&zc)) {
3260			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3261			    za.za_num_integers == 1);
3262			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3263			    za.za_first_integer));
3264		}
3265		zap_cursor_fini(&zc);
3266	}
3267
3268	if (spa->spa_feat_for_write_obj != 0) {
3269		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3270		    spa->spa_feat_for_write_obj);
3271		    zap_cursor_retrieve(&zc, &za) == 0;
3272		    zap_cursor_advance(&zc)) {
3273			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3274			    za.za_num_integers == 1);
3275			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3276			    za.za_first_integer));
3277		}
3278		zap_cursor_fini(&zc);
3279	}
3280
3281out:
3282	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3283	    features) == 0);
3284	nvlist_free(features);
3285}
3286
3287int
3288spa_get_stats(const char *name, nvlist_t **config,
3289    char *altroot, size_t buflen)
3290{
3291	int error;
3292	spa_t *spa;
3293
3294	*config = NULL;
3295	error = spa_open_common(name, &spa, FTAG, NULL, config);
3296
3297	if (spa != NULL) {
3298		/*
3299		 * This still leaves a window of inconsistency where the spares
3300		 * or l2cache devices could change and the config would be
3301		 * self-inconsistent.
3302		 */
3303		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3304
3305		if (*config != NULL) {
3306			uint64_t loadtimes[2];
3307
3308			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3309			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3310			VERIFY(nvlist_add_uint64_array(*config,
3311			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3312
3313			VERIFY(nvlist_add_uint64(*config,
3314			    ZPOOL_CONFIG_ERRCOUNT,
3315			    spa_get_errlog_size(spa)) == 0);
3316
3317			if (spa_suspended(spa))
3318				VERIFY(nvlist_add_uint64(*config,
3319				    ZPOOL_CONFIG_SUSPENDED,
3320				    spa->spa_failmode) == 0);
3321
3322			spa_add_spares(spa, *config);
3323			spa_add_l2cache(spa, *config);
3324			spa_add_feature_stats(spa, *config);
3325		}
3326	}
3327
3328	/*
3329	 * We want to get the alternate root even for faulted pools, so we cheat
3330	 * and call spa_lookup() directly.
3331	 */
3332	if (altroot) {
3333		if (spa == NULL) {
3334			mutex_enter(&spa_namespace_lock);
3335			spa = spa_lookup(name);
3336			if (spa)
3337				spa_altroot(spa, altroot, buflen);
3338			else
3339				altroot[0] = '\0';
3340			spa = NULL;
3341			mutex_exit(&spa_namespace_lock);
3342		} else {
3343			spa_altroot(spa, altroot, buflen);
3344		}
3345	}
3346
3347	if (spa != NULL) {
3348		spa_config_exit(spa, SCL_CONFIG, FTAG);
3349		spa_close(spa, FTAG);
3350	}
3351
3352	return (error);
3353}
3354
3355/*
3356 * Validate that the auxiliary device array is well formed.  We must have an
3357 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3358 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3359 * specified, as long as they are well-formed.
3360 */
3361static int
3362spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3363    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3364    vdev_labeltype_t label)
3365{
3366	nvlist_t **dev;
3367	uint_t i, ndev;
3368	vdev_t *vd;
3369	int error;
3370
3371	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3372
3373	/*
3374	 * It's acceptable to have no devs specified.
3375	 */
3376	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3377		return (0);
3378
3379	if (ndev == 0)
3380		return (SET_ERROR(EINVAL));
3381
3382	/*
3383	 * Make sure the pool is formatted with a version that supports this
3384	 * device type.
3385	 */
3386	if (spa_version(spa) < version)
3387		return (SET_ERROR(ENOTSUP));
3388
3389	/*
3390	 * Set the pending device list so we correctly handle device in-use
3391	 * checking.
3392	 */
3393	sav->sav_pending = dev;
3394	sav->sav_npending = ndev;
3395
3396	for (i = 0; i < ndev; i++) {
3397		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3398		    mode)) != 0)
3399			goto out;
3400
3401		if (!vd->vdev_ops->vdev_op_leaf) {
3402			vdev_free(vd);
3403			error = SET_ERROR(EINVAL);
3404			goto out;
3405		}
3406
3407		/*
3408		 * The L2ARC currently only supports disk devices in
3409		 * kernel context.  For user-level testing, we allow it.
3410		 */
3411#ifdef _KERNEL
3412		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3413		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3414			error = SET_ERROR(ENOTBLK);
3415			vdev_free(vd);
3416			goto out;
3417		}
3418#endif
3419		vd->vdev_top = vd;
3420
3421		if ((error = vdev_open(vd)) == 0 &&
3422		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3423			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3424			    vd->vdev_guid) == 0);
3425		}
3426
3427		vdev_free(vd);
3428
3429		if (error &&
3430		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3431			goto out;
3432		else
3433			error = 0;
3434	}
3435
3436out:
3437	sav->sav_pending = NULL;
3438	sav->sav_npending = 0;
3439	return (error);
3440}
3441
3442static int
3443spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3444{
3445	int error;
3446
3447	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3448
3449	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3450	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3451	    VDEV_LABEL_SPARE)) != 0) {
3452		return (error);
3453	}
3454
3455	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3456	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3457	    VDEV_LABEL_L2CACHE));
3458}
3459
3460static void
3461spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3462    const char *config)
3463{
3464	int i;
3465
3466	if (sav->sav_config != NULL) {
3467		nvlist_t **olddevs;
3468		uint_t oldndevs;
3469		nvlist_t **newdevs;
3470
3471		/*
3472		 * Generate new dev list by concatentating with the
3473		 * current dev list.
3474		 */
3475		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3476		    &olddevs, &oldndevs) == 0);
3477
3478		newdevs = kmem_alloc(sizeof (void *) *
3479		    (ndevs + oldndevs), KM_SLEEP);
3480		for (i = 0; i < oldndevs; i++)
3481			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3482			    KM_SLEEP) == 0);
3483		for (i = 0; i < ndevs; i++)
3484			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3485			    KM_SLEEP) == 0);
3486
3487		VERIFY(nvlist_remove(sav->sav_config, config,
3488		    DATA_TYPE_NVLIST_ARRAY) == 0);
3489
3490		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3491		    config, newdevs, ndevs + oldndevs) == 0);
3492		for (i = 0; i < oldndevs + ndevs; i++)
3493			nvlist_free(newdevs[i]);
3494		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3495	} else {
3496		/*
3497		 * Generate a new dev list.
3498		 */
3499		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3500		    KM_SLEEP) == 0);
3501		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3502		    devs, ndevs) == 0);
3503	}
3504}
3505
3506/*
3507 * Stop and drop level 2 ARC devices
3508 */
3509void
3510spa_l2cache_drop(spa_t *spa)
3511{
3512	vdev_t *vd;
3513	int i;
3514	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3515
3516	for (i = 0; i < sav->sav_count; i++) {
3517		uint64_t pool;
3518
3519		vd = sav->sav_vdevs[i];
3520		ASSERT(vd != NULL);
3521
3522		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3523		    pool != 0ULL && l2arc_vdev_present(vd))
3524			l2arc_remove_vdev(vd);
3525	}
3526}
3527
3528/*
3529 * Pool Creation
3530 */
3531int
3532spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3533    nvlist_t *zplprops)
3534{
3535	spa_t *spa;
3536	char *altroot = NULL;
3537	vdev_t *rvd;
3538	dsl_pool_t *dp;
3539	dmu_tx_t *tx;
3540	int error = 0;
3541	uint64_t txg = TXG_INITIAL;
3542	nvlist_t **spares, **l2cache;
3543	uint_t nspares, nl2cache;
3544	uint64_t version, obj;
3545	boolean_t has_features;
3546
3547	/*
3548	 * If this pool already exists, return failure.
3549	 */
3550	mutex_enter(&spa_namespace_lock);
3551	if (spa_lookup(pool) != NULL) {
3552		mutex_exit(&spa_namespace_lock);
3553		return (SET_ERROR(EEXIST));
3554	}
3555
3556	/*
3557	 * Allocate a new spa_t structure.
3558	 */
3559	(void) nvlist_lookup_string(props,
3560	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3561	spa = spa_add(pool, NULL, altroot);
3562	spa_activate(spa, spa_mode_global);
3563
3564	if (props && (error = spa_prop_validate(spa, props))) {
3565		spa_deactivate(spa);
3566		spa_remove(spa);
3567		mutex_exit(&spa_namespace_lock);
3568		return (error);
3569	}
3570
3571	has_features = B_FALSE;
3572	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3573	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3574		if (zpool_prop_feature(nvpair_name(elem)))
3575			has_features = B_TRUE;
3576	}
3577
3578	if (has_features || nvlist_lookup_uint64(props,
3579	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3580		version = SPA_VERSION;
3581	}
3582	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3583
3584	spa->spa_first_txg = txg;
3585	spa->spa_uberblock.ub_txg = txg - 1;
3586	spa->spa_uberblock.ub_version = version;
3587	spa->spa_ubsync = spa->spa_uberblock;
3588
3589	/*
3590	 * Create "The Godfather" zio to hold all async IOs
3591	 */
3592	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3593	    KM_SLEEP);
3594	for (int i = 0; i < max_ncpus; i++) {
3595		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3596		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3597		    ZIO_FLAG_GODFATHER);
3598	}
3599
3600	/*
3601	 * Create the root vdev.
3602	 */
3603	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3604
3605	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3606
3607	ASSERT(error != 0 || rvd != NULL);
3608	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3609
3610	if (error == 0 && !zfs_allocatable_devs(nvroot))
3611		error = SET_ERROR(EINVAL);
3612
3613	if (error == 0 &&
3614	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3615	    (error = spa_validate_aux(spa, nvroot, txg,
3616	    VDEV_ALLOC_ADD)) == 0) {
3617		for (int c = 0; c < rvd->vdev_children; c++) {
3618			vdev_ashift_optimize(rvd->vdev_child[c]);
3619			vdev_metaslab_set_size(rvd->vdev_child[c]);
3620			vdev_expand(rvd->vdev_child[c], txg);
3621		}
3622	}
3623
3624	spa_config_exit(spa, SCL_ALL, FTAG);
3625
3626	if (error != 0) {
3627		spa_unload(spa);
3628		spa_deactivate(spa);
3629		spa_remove(spa);
3630		mutex_exit(&spa_namespace_lock);
3631		return (error);
3632	}
3633
3634	/*
3635	 * Get the list of spares, if specified.
3636	 */
3637	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3638	    &spares, &nspares) == 0) {
3639		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3640		    KM_SLEEP) == 0);
3641		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3642		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3643		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3644		spa_load_spares(spa);
3645		spa_config_exit(spa, SCL_ALL, FTAG);
3646		spa->spa_spares.sav_sync = B_TRUE;
3647	}
3648
3649	/*
3650	 * Get the list of level 2 cache devices, if specified.
3651	 */
3652	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3653	    &l2cache, &nl2cache) == 0) {
3654		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3655		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3656		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3657		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3658		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3659		spa_load_l2cache(spa);
3660		spa_config_exit(spa, SCL_ALL, FTAG);
3661		spa->spa_l2cache.sav_sync = B_TRUE;
3662	}
3663
3664	spa->spa_is_initializing = B_TRUE;
3665	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3666	spa->spa_meta_objset = dp->dp_meta_objset;
3667	spa->spa_is_initializing = B_FALSE;
3668
3669	/*
3670	 * Create DDTs (dedup tables).
3671	 */
3672	ddt_create(spa);
3673
3674	spa_update_dspace(spa);
3675
3676	tx = dmu_tx_create_assigned(dp, txg);
3677
3678	/*
3679	 * Create the pool config object.
3680	 */
3681	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3682	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3683	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3684
3685	if (zap_add(spa->spa_meta_objset,
3686	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3687	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3688		cmn_err(CE_PANIC, "failed to add pool config");
3689	}
3690
3691	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3692		spa_feature_create_zap_objects(spa, tx);
3693
3694	if (zap_add(spa->spa_meta_objset,
3695	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3696	    sizeof (uint64_t), 1, &version, tx) != 0) {
3697		cmn_err(CE_PANIC, "failed to add pool version");
3698	}
3699
3700	/* Newly created pools with the right version are always deflated. */
3701	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3702		spa->spa_deflate = TRUE;
3703		if (zap_add(spa->spa_meta_objset,
3704		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3705		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3706			cmn_err(CE_PANIC, "failed to add deflate");
3707		}
3708	}
3709
3710	/*
3711	 * Create the deferred-free bpobj.  Turn off compression
3712	 * because sync-to-convergence takes longer if the blocksize
3713	 * keeps changing.
3714	 */
3715	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3716	dmu_object_set_compress(spa->spa_meta_objset, obj,
3717	    ZIO_COMPRESS_OFF, tx);
3718	if (zap_add(spa->spa_meta_objset,
3719	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3720	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3721		cmn_err(CE_PANIC, "failed to add bpobj");
3722	}
3723	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3724	    spa->spa_meta_objset, obj));
3725
3726	/*
3727	 * Create the pool's history object.
3728	 */
3729	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3730		spa_history_create_obj(spa, tx);
3731
3732	/*
3733	 * Set pool properties.
3734	 */
3735	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3736	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3737	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3738	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3739
3740	if (props != NULL) {
3741		spa_configfile_set(spa, props, B_FALSE);
3742		spa_sync_props(props, tx);
3743	}
3744
3745	dmu_tx_commit(tx);
3746
3747	spa->spa_sync_on = B_TRUE;
3748	txg_sync_start(spa->spa_dsl_pool);
3749
3750	/*
3751	 * We explicitly wait for the first transaction to complete so that our
3752	 * bean counters are appropriately updated.
3753	 */
3754	txg_wait_synced(spa->spa_dsl_pool, txg);
3755
3756	spa_config_sync(spa, B_FALSE, B_TRUE);
3757
3758	spa_history_log_version(spa, "create");
3759
3760	spa->spa_minref = refcount_count(&spa->spa_refcount);
3761
3762	mutex_exit(&spa_namespace_lock);
3763
3764	return (0);
3765}
3766
3767#ifdef _KERNEL
3768#if defined(sun)
3769/*
3770 * Get the root pool information from the root disk, then import the root pool
3771 * during the system boot up time.
3772 */
3773extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3774
3775static nvlist_t *
3776spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3777{
3778	nvlist_t *config;
3779	nvlist_t *nvtop, *nvroot;
3780	uint64_t pgid;
3781
3782	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3783		return (NULL);
3784
3785	/*
3786	 * Add this top-level vdev to the child array.
3787	 */
3788	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3789	    &nvtop) == 0);
3790	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3791	    &pgid) == 0);
3792	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3793
3794	/*
3795	 * Put this pool's top-level vdevs into a root vdev.
3796	 */
3797	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3798	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3799	    VDEV_TYPE_ROOT) == 0);
3800	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3801	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3802	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3803	    &nvtop, 1) == 0);
3804
3805	/*
3806	 * Replace the existing vdev_tree with the new root vdev in
3807	 * this pool's configuration (remove the old, add the new).
3808	 */
3809	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3810	nvlist_free(nvroot);
3811	return (config);
3812}
3813
3814/*
3815 * Walk the vdev tree and see if we can find a device with "better"
3816 * configuration. A configuration is "better" if the label on that
3817 * device has a more recent txg.
3818 */
3819static void
3820spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3821{
3822	for (int c = 0; c < vd->vdev_children; c++)
3823		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3824
3825	if (vd->vdev_ops->vdev_op_leaf) {
3826		nvlist_t *label;
3827		uint64_t label_txg;
3828
3829		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3830		    &label) != 0)
3831			return;
3832
3833		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3834		    &label_txg) == 0);
3835
3836		/*
3837		 * Do we have a better boot device?
3838		 */
3839		if (label_txg > *txg) {
3840			*txg = label_txg;
3841			*avd = vd;
3842		}
3843		nvlist_free(label);
3844	}
3845}
3846
3847/*
3848 * Import a root pool.
3849 *
3850 * For x86. devpath_list will consist of devid and/or physpath name of
3851 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3852 * The GRUB "findroot" command will return the vdev we should boot.
3853 *
3854 * For Sparc, devpath_list consists the physpath name of the booting device
3855 * no matter the rootpool is a single device pool or a mirrored pool.
3856 * e.g.
3857 *	"/pci@1f,0/ide@d/disk@0,0:a"
3858 */
3859int
3860spa_import_rootpool(char *devpath, char *devid)
3861{
3862	spa_t *spa;
3863	vdev_t *rvd, *bvd, *avd = NULL;
3864	nvlist_t *config, *nvtop;
3865	uint64_t guid, txg;
3866	char *pname;
3867	int error;
3868
3869	/*
3870	 * Read the label from the boot device and generate a configuration.
3871	 */
3872	config = spa_generate_rootconf(devpath, devid, &guid);
3873#if defined(_OBP) && defined(_KERNEL)
3874	if (config == NULL) {
3875		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3876			/* iscsi boot */
3877			get_iscsi_bootpath_phy(devpath);
3878			config = spa_generate_rootconf(devpath, devid, &guid);
3879		}
3880	}
3881#endif
3882	if (config == NULL) {
3883		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3884		    devpath);
3885		return (SET_ERROR(EIO));
3886	}
3887
3888	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3889	    &pname) == 0);
3890	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3891
3892	mutex_enter(&spa_namespace_lock);
3893	if ((spa = spa_lookup(pname)) != NULL) {
3894		/*
3895		 * Remove the existing root pool from the namespace so that we
3896		 * can replace it with the correct config we just read in.
3897		 */
3898		spa_remove(spa);
3899	}
3900
3901	spa = spa_add(pname, config, NULL);
3902	spa->spa_is_root = B_TRUE;
3903	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3904
3905	/*
3906	 * Build up a vdev tree based on the boot device's label config.
3907	 */
3908	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3909	    &nvtop) == 0);
3910	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3911	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3912	    VDEV_ALLOC_ROOTPOOL);
3913	spa_config_exit(spa, SCL_ALL, FTAG);
3914	if (error) {
3915		mutex_exit(&spa_namespace_lock);
3916		nvlist_free(config);
3917		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3918		    pname);
3919		return (error);
3920	}
3921
3922	/*
3923	 * Get the boot vdev.
3924	 */
3925	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3926		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3927		    (u_longlong_t)guid);
3928		error = SET_ERROR(ENOENT);
3929		goto out;
3930	}
3931
3932	/*
3933	 * Determine if there is a better boot device.
3934	 */
3935	avd = bvd;
3936	spa_alt_rootvdev(rvd, &avd, &txg);
3937	if (avd != bvd) {
3938		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3939		    "try booting from '%s'", avd->vdev_path);
3940		error = SET_ERROR(EINVAL);
3941		goto out;
3942	}
3943
3944	/*
3945	 * If the boot device is part of a spare vdev then ensure that
3946	 * we're booting off the active spare.
3947	 */
3948	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3949	    !bvd->vdev_isspare) {
3950		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3951		    "try booting from '%s'",
3952		    bvd->vdev_parent->
3953		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3954		error = SET_ERROR(EINVAL);
3955		goto out;
3956	}
3957
3958	error = 0;
3959out:
3960	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3961	vdev_free(rvd);
3962	spa_config_exit(spa, SCL_ALL, FTAG);
3963	mutex_exit(&spa_namespace_lock);
3964
3965	nvlist_free(config);
3966	return (error);
3967}
3968
3969#else
3970
3971extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3972    uint64_t *count);
3973
3974static nvlist_t *
3975spa_generate_rootconf(const char *name)
3976{
3977	nvlist_t **configs, **tops;
3978	nvlist_t *config;
3979	nvlist_t *best_cfg, *nvtop, *nvroot;
3980	uint64_t *holes;
3981	uint64_t best_txg;
3982	uint64_t nchildren;
3983	uint64_t pgid;
3984	uint64_t count;
3985	uint64_t i;
3986	uint_t   nholes;
3987
3988	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3989		return (NULL);
3990
3991	ASSERT3U(count, !=, 0);
3992	best_txg = 0;
3993	for (i = 0; i < count; i++) {
3994		uint64_t txg;
3995
3996		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3997		    &txg) == 0);
3998		if (txg > best_txg) {
3999			best_txg = txg;
4000			best_cfg = configs[i];
4001		}
4002	}
4003
4004	/*
4005	 * Multi-vdev root pool configuration discovery is not supported yet.
4006	 */
4007	nchildren = 1;
4008	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4009	holes = NULL;
4010	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4011	    &holes, &nholes);
4012
4013	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4014	for (i = 0; i < nchildren; i++) {
4015		if (i >= count)
4016			break;
4017		if (configs[i] == NULL)
4018			continue;
4019		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4020		    &nvtop) == 0);
4021		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4022	}
4023	for (i = 0; holes != NULL && i < nholes; i++) {
4024		if (i >= nchildren)
4025			continue;
4026		if (tops[holes[i]] != NULL)
4027			continue;
4028		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4029		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4030		    VDEV_TYPE_HOLE) == 0);
4031		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4032		    holes[i]) == 0);
4033		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4034		    0) == 0);
4035	}
4036	for (i = 0; i < nchildren; i++) {
4037		if (tops[i] != NULL)
4038			continue;
4039		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4040		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4041		    VDEV_TYPE_MISSING) == 0);
4042		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4043		    i) == 0);
4044		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4045		    0) == 0);
4046	}
4047
4048	/*
4049	 * Create pool config based on the best vdev config.
4050	 */
4051	nvlist_dup(best_cfg, &config, KM_SLEEP);
4052
4053	/*
4054	 * Put this pool's top-level vdevs into a root vdev.
4055	 */
4056	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4057	    &pgid) == 0);
4058	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4059	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4060	    VDEV_TYPE_ROOT) == 0);
4061	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4062	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4063	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4064	    tops, nchildren) == 0);
4065
4066	/*
4067	 * Replace the existing vdev_tree with the new root vdev in
4068	 * this pool's configuration (remove the old, add the new).
4069	 */
4070	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4071
4072	/*
4073	 * Drop vdev config elements that should not be present at pool level.
4074	 */
4075	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4076	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4077
4078	for (i = 0; i < count; i++)
4079		nvlist_free(configs[i]);
4080	kmem_free(configs, count * sizeof(void *));
4081	for (i = 0; i < nchildren; i++)
4082		nvlist_free(tops[i]);
4083	kmem_free(tops, nchildren * sizeof(void *));
4084	nvlist_free(nvroot);
4085	return (config);
4086}
4087
4088int
4089spa_import_rootpool(const char *name)
4090{
4091	spa_t *spa;
4092	vdev_t *rvd, *bvd, *avd = NULL;
4093	nvlist_t *config, *nvtop;
4094	uint64_t txg;
4095	char *pname;
4096	int error;
4097
4098	/*
4099	 * Read the label from the boot device and generate a configuration.
4100	 */
4101	config = spa_generate_rootconf(name);
4102
4103	mutex_enter(&spa_namespace_lock);
4104	if (config != NULL) {
4105		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4106		    &pname) == 0 && strcmp(name, pname) == 0);
4107		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4108		    == 0);
4109
4110		if ((spa = spa_lookup(pname)) != NULL) {
4111			/*
4112			 * Remove the existing root pool from the namespace so
4113			 * that we can replace it with the correct config
4114			 * we just read in.
4115			 */
4116			spa_remove(spa);
4117		}
4118		spa = spa_add(pname, config, NULL);
4119
4120		/*
4121		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4122		 * via spa_version().
4123		 */
4124		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4125		    &spa->spa_ubsync.ub_version) != 0)
4126			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4127	} else if ((spa = spa_lookup(name)) == NULL) {
4128		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4129		    name);
4130		return (EIO);
4131	} else {
4132		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4133	}
4134	spa->spa_is_root = B_TRUE;
4135	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4136
4137	/*
4138	 * Build up a vdev tree based on the boot device's label config.
4139	 */
4140	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4141	    &nvtop) == 0);
4142	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4143	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4144	    VDEV_ALLOC_ROOTPOOL);
4145	spa_config_exit(spa, SCL_ALL, FTAG);
4146	if (error) {
4147		mutex_exit(&spa_namespace_lock);
4148		nvlist_free(config);
4149		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4150		    pname);
4151		return (error);
4152	}
4153
4154	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4155	vdev_free(rvd);
4156	spa_config_exit(spa, SCL_ALL, FTAG);
4157	mutex_exit(&spa_namespace_lock);
4158
4159	nvlist_free(config);
4160	return (0);
4161}
4162
4163#endif	/* sun */
4164#endif
4165
4166/*
4167 * Import a non-root pool into the system.
4168 */
4169int
4170spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4171{
4172	spa_t *spa;
4173	char *altroot = NULL;
4174	spa_load_state_t state = SPA_LOAD_IMPORT;
4175	zpool_rewind_policy_t policy;
4176	uint64_t mode = spa_mode_global;
4177	uint64_t readonly = B_FALSE;
4178	int error;
4179	nvlist_t *nvroot;
4180	nvlist_t **spares, **l2cache;
4181	uint_t nspares, nl2cache;
4182
4183	/*
4184	 * If a pool with this name exists, return failure.
4185	 */
4186	mutex_enter(&spa_namespace_lock);
4187	if (spa_lookup(pool) != NULL) {
4188		mutex_exit(&spa_namespace_lock);
4189		return (SET_ERROR(EEXIST));
4190	}
4191
4192	/*
4193	 * Create and initialize the spa structure.
4194	 */
4195	(void) nvlist_lookup_string(props,
4196	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4197	(void) nvlist_lookup_uint64(props,
4198	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4199	if (readonly)
4200		mode = FREAD;
4201	spa = spa_add(pool, config, altroot);
4202	spa->spa_import_flags = flags;
4203
4204	/*
4205	 * Verbatim import - Take a pool and insert it into the namespace
4206	 * as if it had been loaded at boot.
4207	 */
4208	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4209		if (props != NULL)
4210			spa_configfile_set(spa, props, B_FALSE);
4211
4212		spa_config_sync(spa, B_FALSE, B_TRUE);
4213
4214		mutex_exit(&spa_namespace_lock);
4215		return (0);
4216	}
4217
4218	spa_activate(spa, mode);
4219
4220	/*
4221	 * Don't start async tasks until we know everything is healthy.
4222	 */
4223	spa_async_suspend(spa);
4224
4225	zpool_get_rewind_policy(config, &policy);
4226	if (policy.zrp_request & ZPOOL_DO_REWIND)
4227		state = SPA_LOAD_RECOVER;
4228
4229	/*
4230	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4231	 * because the user-supplied config is actually the one to trust when
4232	 * doing an import.
4233	 */
4234	if (state != SPA_LOAD_RECOVER)
4235		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4236
4237	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4238	    policy.zrp_request);
4239
4240	/*
4241	 * Propagate anything learned while loading the pool and pass it
4242	 * back to caller (i.e. rewind info, missing devices, etc).
4243	 */
4244	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4245	    spa->spa_load_info) == 0);
4246
4247	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4248	/*
4249	 * Toss any existing sparelist, as it doesn't have any validity
4250	 * anymore, and conflicts with spa_has_spare().
4251	 */
4252	if (spa->spa_spares.sav_config) {
4253		nvlist_free(spa->spa_spares.sav_config);
4254		spa->spa_spares.sav_config = NULL;
4255		spa_load_spares(spa);
4256	}
4257	if (spa->spa_l2cache.sav_config) {
4258		nvlist_free(spa->spa_l2cache.sav_config);
4259		spa->spa_l2cache.sav_config = NULL;
4260		spa_load_l2cache(spa);
4261	}
4262
4263	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4264	    &nvroot) == 0);
4265	if (error == 0)
4266		error = spa_validate_aux(spa, nvroot, -1ULL,
4267		    VDEV_ALLOC_SPARE);
4268	if (error == 0)
4269		error = spa_validate_aux(spa, nvroot, -1ULL,
4270		    VDEV_ALLOC_L2CACHE);
4271	spa_config_exit(spa, SCL_ALL, FTAG);
4272
4273	if (props != NULL)
4274		spa_configfile_set(spa, props, B_FALSE);
4275
4276	if (error != 0 || (props && spa_writeable(spa) &&
4277	    (error = spa_prop_set(spa, props)))) {
4278		spa_unload(spa);
4279		spa_deactivate(spa);
4280		spa_remove(spa);
4281		mutex_exit(&spa_namespace_lock);
4282		return (error);
4283	}
4284
4285	spa_async_resume(spa);
4286
4287	/*
4288	 * Override any spares and level 2 cache devices as specified by
4289	 * the user, as these may have correct device names/devids, etc.
4290	 */
4291	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4292	    &spares, &nspares) == 0) {
4293		if (spa->spa_spares.sav_config)
4294			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4295			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4296		else
4297			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4298			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4299		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4300		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4301		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4302		spa_load_spares(spa);
4303		spa_config_exit(spa, SCL_ALL, FTAG);
4304		spa->spa_spares.sav_sync = B_TRUE;
4305	}
4306	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4307	    &l2cache, &nl2cache) == 0) {
4308		if (spa->spa_l2cache.sav_config)
4309			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4310			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4311		else
4312			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4313			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4314		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4315		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4316		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4317		spa_load_l2cache(spa);
4318		spa_config_exit(spa, SCL_ALL, FTAG);
4319		spa->spa_l2cache.sav_sync = B_TRUE;
4320	}
4321
4322	/*
4323	 * Check for any removed devices.
4324	 */
4325	if (spa->spa_autoreplace) {
4326		spa_aux_check_removed(&spa->spa_spares);
4327		spa_aux_check_removed(&spa->spa_l2cache);
4328	}
4329
4330	if (spa_writeable(spa)) {
4331		/*
4332		 * Update the config cache to include the newly-imported pool.
4333		 */
4334		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4335	}
4336
4337	/*
4338	 * It's possible that the pool was expanded while it was exported.
4339	 * We kick off an async task to handle this for us.
4340	 */
4341	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4342
4343	mutex_exit(&spa_namespace_lock);
4344	spa_history_log_version(spa, "import");
4345
4346#ifdef __FreeBSD__
4347#ifdef _KERNEL
4348	zvol_create_minors(pool);
4349#endif
4350#endif
4351	return (0);
4352}
4353
4354nvlist_t *
4355spa_tryimport(nvlist_t *tryconfig)
4356{
4357	nvlist_t *config = NULL;
4358	char *poolname;
4359	spa_t *spa;
4360	uint64_t state;
4361	int error;
4362
4363	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4364		return (NULL);
4365
4366	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4367		return (NULL);
4368
4369	/*
4370	 * Create and initialize the spa structure.
4371	 */
4372	mutex_enter(&spa_namespace_lock);
4373	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4374	spa_activate(spa, FREAD);
4375
4376	/*
4377	 * Pass off the heavy lifting to spa_load().
4378	 * Pass TRUE for mosconfig because the user-supplied config
4379	 * is actually the one to trust when doing an import.
4380	 */
4381	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4382
4383	/*
4384	 * If 'tryconfig' was at least parsable, return the current config.
4385	 */
4386	if (spa->spa_root_vdev != NULL) {
4387		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4388		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4389		    poolname) == 0);
4390		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4391		    state) == 0);
4392		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4393		    spa->spa_uberblock.ub_timestamp) == 0);
4394		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4395		    spa->spa_load_info) == 0);
4396
4397		/*
4398		 * If the bootfs property exists on this pool then we
4399		 * copy it out so that external consumers can tell which
4400		 * pools are bootable.
4401		 */
4402		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4403			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4404
4405			/*
4406			 * We have to play games with the name since the
4407			 * pool was opened as TRYIMPORT_NAME.
4408			 */
4409			if (dsl_dsobj_to_dsname(spa_name(spa),
4410			    spa->spa_bootfs, tmpname) == 0) {
4411				char *cp;
4412				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4413
4414				cp = strchr(tmpname, '/');
4415				if (cp == NULL) {
4416					(void) strlcpy(dsname, tmpname,
4417					    MAXPATHLEN);
4418				} else {
4419					(void) snprintf(dsname, MAXPATHLEN,
4420					    "%s/%s", poolname, ++cp);
4421				}
4422				VERIFY(nvlist_add_string(config,
4423				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4424				kmem_free(dsname, MAXPATHLEN);
4425			}
4426			kmem_free(tmpname, MAXPATHLEN);
4427		}
4428
4429		/*
4430		 * Add the list of hot spares and level 2 cache devices.
4431		 */
4432		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4433		spa_add_spares(spa, config);
4434		spa_add_l2cache(spa, config);
4435		spa_config_exit(spa, SCL_CONFIG, FTAG);
4436	}
4437
4438	spa_unload(spa);
4439	spa_deactivate(spa);
4440	spa_remove(spa);
4441	mutex_exit(&spa_namespace_lock);
4442
4443	return (config);
4444}
4445
4446/*
4447 * Pool export/destroy
4448 *
4449 * The act of destroying or exporting a pool is very simple.  We make sure there
4450 * is no more pending I/O and any references to the pool are gone.  Then, we
4451 * update the pool state and sync all the labels to disk, removing the
4452 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4453 * we don't sync the labels or remove the configuration cache.
4454 */
4455static int
4456spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4457    boolean_t force, boolean_t hardforce)
4458{
4459	spa_t *spa;
4460
4461	if (oldconfig)
4462		*oldconfig = NULL;
4463
4464	if (!(spa_mode_global & FWRITE))
4465		return (SET_ERROR(EROFS));
4466
4467	mutex_enter(&spa_namespace_lock);
4468	if ((spa = spa_lookup(pool)) == NULL) {
4469		mutex_exit(&spa_namespace_lock);
4470		return (SET_ERROR(ENOENT));
4471	}
4472
4473	/*
4474	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4475	 * reacquire the namespace lock, and see if we can export.
4476	 */
4477	spa_open_ref(spa, FTAG);
4478	mutex_exit(&spa_namespace_lock);
4479	spa_async_suspend(spa);
4480	mutex_enter(&spa_namespace_lock);
4481	spa_close(spa, FTAG);
4482
4483	/*
4484	 * The pool will be in core if it's openable,
4485	 * in which case we can modify its state.
4486	 */
4487	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4488		/*
4489		 * Objsets may be open only because they're dirty, so we
4490		 * have to force it to sync before checking spa_refcnt.
4491		 */
4492		txg_wait_synced(spa->spa_dsl_pool, 0);
4493
4494		/*
4495		 * A pool cannot be exported or destroyed if there are active
4496		 * references.  If we are resetting a pool, allow references by
4497		 * fault injection handlers.
4498		 */
4499		if (!spa_refcount_zero(spa) ||
4500		    (spa->spa_inject_ref != 0 &&
4501		    new_state != POOL_STATE_UNINITIALIZED)) {
4502			spa_async_resume(spa);
4503			mutex_exit(&spa_namespace_lock);
4504			return (SET_ERROR(EBUSY));
4505		}
4506
4507		/*
4508		 * A pool cannot be exported if it has an active shared spare.
4509		 * This is to prevent other pools stealing the active spare
4510		 * from an exported pool. At user's own will, such pool can
4511		 * be forcedly exported.
4512		 */
4513		if (!force && new_state == POOL_STATE_EXPORTED &&
4514		    spa_has_active_shared_spare(spa)) {
4515			spa_async_resume(spa);
4516			mutex_exit(&spa_namespace_lock);
4517			return (SET_ERROR(EXDEV));
4518		}
4519
4520		/*
4521		 * We want this to be reflected on every label,
4522		 * so mark them all dirty.  spa_unload() will do the
4523		 * final sync that pushes these changes out.
4524		 */
4525		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4526			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4527			spa->spa_state = new_state;
4528			spa->spa_final_txg = spa_last_synced_txg(spa) +
4529			    TXG_DEFER_SIZE + 1;
4530			vdev_config_dirty(spa->spa_root_vdev);
4531			spa_config_exit(spa, SCL_ALL, FTAG);
4532		}
4533	}
4534
4535	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4536
4537	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4538		spa_unload(spa);
4539		spa_deactivate(spa);
4540	}
4541
4542	if (oldconfig && spa->spa_config)
4543		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4544
4545	if (new_state != POOL_STATE_UNINITIALIZED) {
4546		if (!hardforce)
4547			spa_config_sync(spa, B_TRUE, B_TRUE);
4548		spa_remove(spa);
4549	}
4550	mutex_exit(&spa_namespace_lock);
4551
4552	return (0);
4553}
4554
4555/*
4556 * Destroy a storage pool.
4557 */
4558int
4559spa_destroy(char *pool)
4560{
4561	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4562	    B_FALSE, B_FALSE));
4563}
4564
4565/*
4566 * Export a storage pool.
4567 */
4568int
4569spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4570    boolean_t hardforce)
4571{
4572	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4573	    force, hardforce));
4574}
4575
4576/*
4577 * Similar to spa_export(), this unloads the spa_t without actually removing it
4578 * from the namespace in any way.
4579 */
4580int
4581spa_reset(char *pool)
4582{
4583	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4584	    B_FALSE, B_FALSE));
4585}
4586
4587/*
4588 * ==========================================================================
4589 * Device manipulation
4590 * ==========================================================================
4591 */
4592
4593/*
4594 * Add a device to a storage pool.
4595 */
4596int
4597spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4598{
4599	uint64_t txg, id;
4600	int error;
4601	vdev_t *rvd = spa->spa_root_vdev;
4602	vdev_t *vd, *tvd;
4603	nvlist_t **spares, **l2cache;
4604	uint_t nspares, nl2cache;
4605
4606	ASSERT(spa_writeable(spa));
4607
4608	txg = spa_vdev_enter(spa);
4609
4610	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4611	    VDEV_ALLOC_ADD)) != 0)
4612		return (spa_vdev_exit(spa, NULL, txg, error));
4613
4614	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4615
4616	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4617	    &nspares) != 0)
4618		nspares = 0;
4619
4620	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4621	    &nl2cache) != 0)
4622		nl2cache = 0;
4623
4624	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4625		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4626
4627	if (vd->vdev_children != 0 &&
4628	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4629		return (spa_vdev_exit(spa, vd, txg, error));
4630
4631	/*
4632	 * We must validate the spares and l2cache devices after checking the
4633	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4634	 */
4635	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4636		return (spa_vdev_exit(spa, vd, txg, error));
4637
4638	/*
4639	 * Transfer each new top-level vdev from vd to rvd.
4640	 */
4641	for (int c = 0; c < vd->vdev_children; c++) {
4642
4643		/*
4644		 * Set the vdev id to the first hole, if one exists.
4645		 */
4646		for (id = 0; id < rvd->vdev_children; id++) {
4647			if (rvd->vdev_child[id]->vdev_ishole) {
4648				vdev_free(rvd->vdev_child[id]);
4649				break;
4650			}
4651		}
4652		tvd = vd->vdev_child[c];
4653		vdev_remove_child(vd, tvd);
4654		tvd->vdev_id = id;
4655		vdev_add_child(rvd, tvd);
4656		vdev_config_dirty(tvd);
4657	}
4658
4659	if (nspares != 0) {
4660		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4661		    ZPOOL_CONFIG_SPARES);
4662		spa_load_spares(spa);
4663		spa->spa_spares.sav_sync = B_TRUE;
4664	}
4665
4666	if (nl2cache != 0) {
4667		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4668		    ZPOOL_CONFIG_L2CACHE);
4669		spa_load_l2cache(spa);
4670		spa->spa_l2cache.sav_sync = B_TRUE;
4671	}
4672
4673	/*
4674	 * We have to be careful when adding new vdevs to an existing pool.
4675	 * If other threads start allocating from these vdevs before we
4676	 * sync the config cache, and we lose power, then upon reboot we may
4677	 * fail to open the pool because there are DVAs that the config cache
4678	 * can't translate.  Therefore, we first add the vdevs without
4679	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4680	 * and then let spa_config_update() initialize the new metaslabs.
4681	 *
4682	 * spa_load() checks for added-but-not-initialized vdevs, so that
4683	 * if we lose power at any point in this sequence, the remaining
4684	 * steps will be completed the next time we load the pool.
4685	 */
4686	(void) spa_vdev_exit(spa, vd, txg, 0);
4687
4688	mutex_enter(&spa_namespace_lock);
4689	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4690	mutex_exit(&spa_namespace_lock);
4691
4692	return (0);
4693}
4694
4695/*
4696 * Attach a device to a mirror.  The arguments are the path to any device
4697 * in the mirror, and the nvroot for the new device.  If the path specifies
4698 * a device that is not mirrored, we automatically insert the mirror vdev.
4699 *
4700 * If 'replacing' is specified, the new device is intended to replace the
4701 * existing device; in this case the two devices are made into their own
4702 * mirror using the 'replacing' vdev, which is functionally identical to
4703 * the mirror vdev (it actually reuses all the same ops) but has a few
4704 * extra rules: you can't attach to it after it's been created, and upon
4705 * completion of resilvering, the first disk (the one being replaced)
4706 * is automatically detached.
4707 */
4708int
4709spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4710{
4711	uint64_t txg, dtl_max_txg;
4712	vdev_t *rvd = spa->spa_root_vdev;
4713	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4714	vdev_ops_t *pvops;
4715	char *oldvdpath, *newvdpath;
4716	int newvd_isspare;
4717	int error;
4718
4719	ASSERT(spa_writeable(spa));
4720
4721	txg = spa_vdev_enter(spa);
4722
4723	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4724
4725	if (oldvd == NULL)
4726		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4727
4728	if (!oldvd->vdev_ops->vdev_op_leaf)
4729		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4730
4731	pvd = oldvd->vdev_parent;
4732
4733	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4734	    VDEV_ALLOC_ATTACH)) != 0)
4735		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4736
4737	if (newrootvd->vdev_children != 1)
4738		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4739
4740	newvd = newrootvd->vdev_child[0];
4741
4742	if (!newvd->vdev_ops->vdev_op_leaf)
4743		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4744
4745	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4746		return (spa_vdev_exit(spa, newrootvd, txg, error));
4747
4748	/*
4749	 * Spares can't replace logs
4750	 */
4751	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4752		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4753
4754	if (!replacing) {
4755		/*
4756		 * For attach, the only allowable parent is a mirror or the root
4757		 * vdev.
4758		 */
4759		if (pvd->vdev_ops != &vdev_mirror_ops &&
4760		    pvd->vdev_ops != &vdev_root_ops)
4761			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4762
4763		pvops = &vdev_mirror_ops;
4764	} else {
4765		/*
4766		 * Active hot spares can only be replaced by inactive hot
4767		 * spares.
4768		 */
4769		if (pvd->vdev_ops == &vdev_spare_ops &&
4770		    oldvd->vdev_isspare &&
4771		    !spa_has_spare(spa, newvd->vdev_guid))
4772			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4773
4774		/*
4775		 * If the source is a hot spare, and the parent isn't already a
4776		 * spare, then we want to create a new hot spare.  Otherwise, we
4777		 * want to create a replacing vdev.  The user is not allowed to
4778		 * attach to a spared vdev child unless the 'isspare' state is
4779		 * the same (spare replaces spare, non-spare replaces
4780		 * non-spare).
4781		 */
4782		if (pvd->vdev_ops == &vdev_replacing_ops &&
4783		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4784			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4785		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4786		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4787			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4788		}
4789
4790		if (newvd->vdev_isspare)
4791			pvops = &vdev_spare_ops;
4792		else
4793			pvops = &vdev_replacing_ops;
4794	}
4795
4796	/*
4797	 * Make sure the new device is big enough.
4798	 */
4799	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4800		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4801
4802	/*
4803	 * The new device cannot have a higher alignment requirement
4804	 * than the top-level vdev.
4805	 */
4806	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4807		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4808
4809	/*
4810	 * If this is an in-place replacement, update oldvd's path and devid
4811	 * to make it distinguishable from newvd, and unopenable from now on.
4812	 */
4813	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4814		spa_strfree(oldvd->vdev_path);
4815		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4816		    KM_SLEEP);
4817		(void) sprintf(oldvd->vdev_path, "%s/%s",
4818		    newvd->vdev_path, "old");
4819		if (oldvd->vdev_devid != NULL) {
4820			spa_strfree(oldvd->vdev_devid);
4821			oldvd->vdev_devid = NULL;
4822		}
4823	}
4824
4825	/* mark the device being resilvered */
4826	newvd->vdev_resilver_txg = txg;
4827
4828	/*
4829	 * If the parent is not a mirror, or if we're replacing, insert the new
4830	 * mirror/replacing/spare vdev above oldvd.
4831	 */
4832	if (pvd->vdev_ops != pvops)
4833		pvd = vdev_add_parent(oldvd, pvops);
4834
4835	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4836	ASSERT(pvd->vdev_ops == pvops);
4837	ASSERT(oldvd->vdev_parent == pvd);
4838
4839	/*
4840	 * Extract the new device from its root and add it to pvd.
4841	 */
4842	vdev_remove_child(newrootvd, newvd);
4843	newvd->vdev_id = pvd->vdev_children;
4844	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4845	vdev_add_child(pvd, newvd);
4846
4847	tvd = newvd->vdev_top;
4848	ASSERT(pvd->vdev_top == tvd);
4849	ASSERT(tvd->vdev_parent == rvd);
4850
4851	vdev_config_dirty(tvd);
4852
4853	/*
4854	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4855	 * for any dmu_sync-ed blocks.  It will propagate upward when
4856	 * spa_vdev_exit() calls vdev_dtl_reassess().
4857	 */
4858	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4859
4860	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4861	    dtl_max_txg - TXG_INITIAL);
4862
4863	if (newvd->vdev_isspare) {
4864		spa_spare_activate(newvd);
4865		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4866	}
4867
4868	oldvdpath = spa_strdup(oldvd->vdev_path);
4869	newvdpath = spa_strdup(newvd->vdev_path);
4870	newvd_isspare = newvd->vdev_isspare;
4871
4872	/*
4873	 * Mark newvd's DTL dirty in this txg.
4874	 */
4875	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4876
4877	/*
4878	 * Schedule the resilver to restart in the future. We do this to
4879	 * ensure that dmu_sync-ed blocks have been stitched into the
4880	 * respective datasets.
4881	 */
4882	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4883
4884	/*
4885	 * Commit the config
4886	 */
4887	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4888
4889	spa_history_log_internal(spa, "vdev attach", NULL,
4890	    "%s vdev=%s %s vdev=%s",
4891	    replacing && newvd_isspare ? "spare in" :
4892	    replacing ? "replace" : "attach", newvdpath,
4893	    replacing ? "for" : "to", oldvdpath);
4894
4895	spa_strfree(oldvdpath);
4896	spa_strfree(newvdpath);
4897
4898	if (spa->spa_bootfs)
4899		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4900
4901	return (0);
4902}
4903
4904/*
4905 * Detach a device from a mirror or replacing vdev.
4906 *
4907 * If 'replace_done' is specified, only detach if the parent
4908 * is a replacing vdev.
4909 */
4910int
4911spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4912{
4913	uint64_t txg;
4914	int error;
4915	vdev_t *rvd = spa->spa_root_vdev;
4916	vdev_t *vd, *pvd, *cvd, *tvd;
4917	boolean_t unspare = B_FALSE;
4918	uint64_t unspare_guid = 0;
4919	char *vdpath;
4920
4921	ASSERT(spa_writeable(spa));
4922
4923	txg = spa_vdev_enter(spa);
4924
4925	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4926
4927	if (vd == NULL)
4928		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4929
4930	if (!vd->vdev_ops->vdev_op_leaf)
4931		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4932
4933	pvd = vd->vdev_parent;
4934
4935	/*
4936	 * If the parent/child relationship is not as expected, don't do it.
4937	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4938	 * vdev that's replacing B with C.  The user's intent in replacing
4939	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4940	 * the replace by detaching C, the expected behavior is to end up
4941	 * M(A,B).  But suppose that right after deciding to detach C,
4942	 * the replacement of B completes.  We would have M(A,C), and then
4943	 * ask to detach C, which would leave us with just A -- not what
4944	 * the user wanted.  To prevent this, we make sure that the
4945	 * parent/child relationship hasn't changed -- in this example,
4946	 * that C's parent is still the replacing vdev R.
4947	 */
4948	if (pvd->vdev_guid != pguid && pguid != 0)
4949		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4950
4951	/*
4952	 * Only 'replacing' or 'spare' vdevs can be replaced.
4953	 */
4954	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4955	    pvd->vdev_ops != &vdev_spare_ops)
4956		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4957
4958	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4959	    spa_version(spa) >= SPA_VERSION_SPARES);
4960
4961	/*
4962	 * Only mirror, replacing, and spare vdevs support detach.
4963	 */
4964	if (pvd->vdev_ops != &vdev_replacing_ops &&
4965	    pvd->vdev_ops != &vdev_mirror_ops &&
4966	    pvd->vdev_ops != &vdev_spare_ops)
4967		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4968
4969	/*
4970	 * If this device has the only valid copy of some data,
4971	 * we cannot safely detach it.
4972	 */
4973	if (vdev_dtl_required(vd))
4974		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4975
4976	ASSERT(pvd->vdev_children >= 2);
4977
4978	/*
4979	 * If we are detaching the second disk from a replacing vdev, then
4980	 * check to see if we changed the original vdev's path to have "/old"
4981	 * at the end in spa_vdev_attach().  If so, undo that change now.
4982	 */
4983	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4984	    vd->vdev_path != NULL) {
4985		size_t len = strlen(vd->vdev_path);
4986
4987		for (int c = 0; c < pvd->vdev_children; c++) {
4988			cvd = pvd->vdev_child[c];
4989
4990			if (cvd == vd || cvd->vdev_path == NULL)
4991				continue;
4992
4993			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4994			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4995				spa_strfree(cvd->vdev_path);
4996				cvd->vdev_path = spa_strdup(vd->vdev_path);
4997				break;
4998			}
4999		}
5000	}
5001
5002	/*
5003	 * If we are detaching the original disk from a spare, then it implies
5004	 * that the spare should become a real disk, and be removed from the
5005	 * active spare list for the pool.
5006	 */
5007	if (pvd->vdev_ops == &vdev_spare_ops &&
5008	    vd->vdev_id == 0 &&
5009	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5010		unspare = B_TRUE;
5011
5012	/*
5013	 * Erase the disk labels so the disk can be used for other things.
5014	 * This must be done after all other error cases are handled,
5015	 * but before we disembowel vd (so we can still do I/O to it).
5016	 * But if we can't do it, don't treat the error as fatal --
5017	 * it may be that the unwritability of the disk is the reason
5018	 * it's being detached!
5019	 */
5020	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5021
5022	/*
5023	 * Remove vd from its parent and compact the parent's children.
5024	 */
5025	vdev_remove_child(pvd, vd);
5026	vdev_compact_children(pvd);
5027
5028	/*
5029	 * Remember one of the remaining children so we can get tvd below.
5030	 */
5031	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5032
5033	/*
5034	 * If we need to remove the remaining child from the list of hot spares,
5035	 * do it now, marking the vdev as no longer a spare in the process.
5036	 * We must do this before vdev_remove_parent(), because that can
5037	 * change the GUID if it creates a new toplevel GUID.  For a similar
5038	 * reason, we must remove the spare now, in the same txg as the detach;
5039	 * otherwise someone could attach a new sibling, change the GUID, and
5040	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5041	 */
5042	if (unspare) {
5043		ASSERT(cvd->vdev_isspare);
5044		spa_spare_remove(cvd);
5045		unspare_guid = cvd->vdev_guid;
5046		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5047		cvd->vdev_unspare = B_TRUE;
5048	}
5049
5050	/*
5051	 * If the parent mirror/replacing vdev only has one child,
5052	 * the parent is no longer needed.  Remove it from the tree.
5053	 */
5054	if (pvd->vdev_children == 1) {
5055		if (pvd->vdev_ops == &vdev_spare_ops)
5056			cvd->vdev_unspare = B_FALSE;
5057		vdev_remove_parent(cvd);
5058	}
5059
5060
5061	/*
5062	 * We don't set tvd until now because the parent we just removed
5063	 * may have been the previous top-level vdev.
5064	 */
5065	tvd = cvd->vdev_top;
5066	ASSERT(tvd->vdev_parent == rvd);
5067
5068	/*
5069	 * Reevaluate the parent vdev state.
5070	 */
5071	vdev_propagate_state(cvd);
5072
5073	/*
5074	 * If the 'autoexpand' property is set on the pool then automatically
5075	 * try to expand the size of the pool. For example if the device we
5076	 * just detached was smaller than the others, it may be possible to
5077	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5078	 * first so that we can obtain the updated sizes of the leaf vdevs.
5079	 */
5080	if (spa->spa_autoexpand) {
5081		vdev_reopen(tvd);
5082		vdev_expand(tvd, txg);
5083	}
5084
5085	vdev_config_dirty(tvd);
5086
5087	/*
5088	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5089	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5090	 * But first make sure we're not on any *other* txg's DTL list, to
5091	 * prevent vd from being accessed after it's freed.
5092	 */
5093	vdpath = spa_strdup(vd->vdev_path);
5094	for (int t = 0; t < TXG_SIZE; t++)
5095		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5096	vd->vdev_detached = B_TRUE;
5097	vdev_dirty(tvd, VDD_DTL, vd, txg);
5098
5099	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5100
5101	/* hang on to the spa before we release the lock */
5102	spa_open_ref(spa, FTAG);
5103
5104	error = spa_vdev_exit(spa, vd, txg, 0);
5105
5106	spa_history_log_internal(spa, "detach", NULL,
5107	    "vdev=%s", vdpath);
5108	spa_strfree(vdpath);
5109
5110	/*
5111	 * If this was the removal of the original device in a hot spare vdev,
5112	 * then we want to go through and remove the device from the hot spare
5113	 * list of every other pool.
5114	 */
5115	if (unspare) {
5116		spa_t *altspa = NULL;
5117
5118		mutex_enter(&spa_namespace_lock);
5119		while ((altspa = spa_next(altspa)) != NULL) {
5120			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5121			    altspa == spa)
5122				continue;
5123
5124			spa_open_ref(altspa, FTAG);
5125			mutex_exit(&spa_namespace_lock);
5126			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5127			mutex_enter(&spa_namespace_lock);
5128			spa_close(altspa, FTAG);
5129		}
5130		mutex_exit(&spa_namespace_lock);
5131
5132		/* search the rest of the vdevs for spares to remove */
5133		spa_vdev_resilver_done(spa);
5134	}
5135
5136	/* all done with the spa; OK to release */
5137	mutex_enter(&spa_namespace_lock);
5138	spa_close(spa, FTAG);
5139	mutex_exit(&spa_namespace_lock);
5140
5141	return (error);
5142}
5143
5144/*
5145 * Split a set of devices from their mirrors, and create a new pool from them.
5146 */
5147int
5148spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5149    nvlist_t *props, boolean_t exp)
5150{
5151	int error = 0;
5152	uint64_t txg, *glist;
5153	spa_t *newspa;
5154	uint_t c, children, lastlog;
5155	nvlist_t **child, *nvl, *tmp;
5156	dmu_tx_t *tx;
5157	char *altroot = NULL;
5158	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5159	boolean_t activate_slog;
5160
5161	ASSERT(spa_writeable(spa));
5162
5163	txg = spa_vdev_enter(spa);
5164
5165	/* clear the log and flush everything up to now */
5166	activate_slog = spa_passivate_log(spa);
5167	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5168	error = spa_offline_log(spa);
5169	txg = spa_vdev_config_enter(spa);
5170
5171	if (activate_slog)
5172		spa_activate_log(spa);
5173
5174	if (error != 0)
5175		return (spa_vdev_exit(spa, NULL, txg, error));
5176
5177	/* check new spa name before going any further */
5178	if (spa_lookup(newname) != NULL)
5179		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5180
5181	/*
5182	 * scan through all the children to ensure they're all mirrors
5183	 */
5184	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5185	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5186	    &children) != 0)
5187		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5188
5189	/* first, check to ensure we've got the right child count */
5190	rvd = spa->spa_root_vdev;
5191	lastlog = 0;
5192	for (c = 0; c < rvd->vdev_children; c++) {
5193		vdev_t *vd = rvd->vdev_child[c];
5194
5195		/* don't count the holes & logs as children */
5196		if (vd->vdev_islog || vd->vdev_ishole) {
5197			if (lastlog == 0)
5198				lastlog = c;
5199			continue;
5200		}
5201
5202		lastlog = 0;
5203	}
5204	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5205		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5206
5207	/* next, ensure no spare or cache devices are part of the split */
5208	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5209	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5210		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5211
5212	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5213	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5214
5215	/* then, loop over each vdev and validate it */
5216	for (c = 0; c < children; c++) {
5217		uint64_t is_hole = 0;
5218
5219		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5220		    &is_hole);
5221
5222		if (is_hole != 0) {
5223			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5224			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5225				continue;
5226			} else {
5227				error = SET_ERROR(EINVAL);
5228				break;
5229			}
5230		}
5231
5232		/* which disk is going to be split? */
5233		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5234		    &glist[c]) != 0) {
5235			error = SET_ERROR(EINVAL);
5236			break;
5237		}
5238
5239		/* look it up in the spa */
5240		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5241		if (vml[c] == NULL) {
5242			error = SET_ERROR(ENODEV);
5243			break;
5244		}
5245
5246		/* make sure there's nothing stopping the split */
5247		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5248		    vml[c]->vdev_islog ||
5249		    vml[c]->vdev_ishole ||
5250		    vml[c]->vdev_isspare ||
5251		    vml[c]->vdev_isl2cache ||
5252		    !vdev_writeable(vml[c]) ||
5253		    vml[c]->vdev_children != 0 ||
5254		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5255		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5256			error = SET_ERROR(EINVAL);
5257			break;
5258		}
5259
5260		if (vdev_dtl_required(vml[c])) {
5261			error = SET_ERROR(EBUSY);
5262			break;
5263		}
5264
5265		/* we need certain info from the top level */
5266		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5267		    vml[c]->vdev_top->vdev_ms_array) == 0);
5268		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5269		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5270		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5271		    vml[c]->vdev_top->vdev_asize) == 0);
5272		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5273		    vml[c]->vdev_top->vdev_ashift) == 0);
5274	}
5275
5276	if (error != 0) {
5277		kmem_free(vml, children * sizeof (vdev_t *));
5278		kmem_free(glist, children * sizeof (uint64_t));
5279		return (spa_vdev_exit(spa, NULL, txg, error));
5280	}
5281
5282	/* stop writers from using the disks */
5283	for (c = 0; c < children; c++) {
5284		if (vml[c] != NULL)
5285			vml[c]->vdev_offline = B_TRUE;
5286	}
5287	vdev_reopen(spa->spa_root_vdev);
5288
5289	/*
5290	 * Temporarily record the splitting vdevs in the spa config.  This
5291	 * will disappear once the config is regenerated.
5292	 */
5293	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5294	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5295	    glist, children) == 0);
5296	kmem_free(glist, children * sizeof (uint64_t));
5297
5298	mutex_enter(&spa->spa_props_lock);
5299	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5300	    nvl) == 0);
5301	mutex_exit(&spa->spa_props_lock);
5302	spa->spa_config_splitting = nvl;
5303	vdev_config_dirty(spa->spa_root_vdev);
5304
5305	/* configure and create the new pool */
5306	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5307	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5308	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5309	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5310	    spa_version(spa)) == 0);
5311	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5312	    spa->spa_config_txg) == 0);
5313	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5314	    spa_generate_guid(NULL)) == 0);
5315	(void) nvlist_lookup_string(props,
5316	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5317
5318	/* add the new pool to the namespace */
5319	newspa = spa_add(newname, config, altroot);
5320	newspa->spa_config_txg = spa->spa_config_txg;
5321	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5322
5323	/* release the spa config lock, retaining the namespace lock */
5324	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5325
5326	if (zio_injection_enabled)
5327		zio_handle_panic_injection(spa, FTAG, 1);
5328
5329	spa_activate(newspa, spa_mode_global);
5330	spa_async_suspend(newspa);
5331
5332#ifndef sun
5333	/* mark that we are creating new spa by splitting */
5334	newspa->spa_splitting_newspa = B_TRUE;
5335#endif
5336	/* create the new pool from the disks of the original pool */
5337	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5338#ifndef sun
5339	newspa->spa_splitting_newspa = B_FALSE;
5340#endif
5341	if (error)
5342		goto out;
5343
5344	/* if that worked, generate a real config for the new pool */
5345	if (newspa->spa_root_vdev != NULL) {
5346		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5347		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5348		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5349		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5350		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5351		    B_TRUE));
5352	}
5353
5354	/* set the props */
5355	if (props != NULL) {
5356		spa_configfile_set(newspa, props, B_FALSE);
5357		error = spa_prop_set(newspa, props);
5358		if (error)
5359			goto out;
5360	}
5361
5362	/* flush everything */
5363	txg = spa_vdev_config_enter(newspa);
5364	vdev_config_dirty(newspa->spa_root_vdev);
5365	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5366
5367	if (zio_injection_enabled)
5368		zio_handle_panic_injection(spa, FTAG, 2);
5369
5370	spa_async_resume(newspa);
5371
5372	/* finally, update the original pool's config */
5373	txg = spa_vdev_config_enter(spa);
5374	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5375	error = dmu_tx_assign(tx, TXG_WAIT);
5376	if (error != 0)
5377		dmu_tx_abort(tx);
5378	for (c = 0; c < children; c++) {
5379		if (vml[c] != NULL) {
5380			vdev_split(vml[c]);
5381			if (error == 0)
5382				spa_history_log_internal(spa, "detach", tx,
5383				    "vdev=%s", vml[c]->vdev_path);
5384			vdev_free(vml[c]);
5385		}
5386	}
5387	vdev_config_dirty(spa->spa_root_vdev);
5388	spa->spa_config_splitting = NULL;
5389	nvlist_free(nvl);
5390	if (error == 0)
5391		dmu_tx_commit(tx);
5392	(void) spa_vdev_exit(spa, NULL, txg, 0);
5393
5394	if (zio_injection_enabled)
5395		zio_handle_panic_injection(spa, FTAG, 3);
5396
5397	/* split is complete; log a history record */
5398	spa_history_log_internal(newspa, "split", NULL,
5399	    "from pool %s", spa_name(spa));
5400
5401	kmem_free(vml, children * sizeof (vdev_t *));
5402
5403	/* if we're not going to mount the filesystems in userland, export */
5404	if (exp)
5405		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5406		    B_FALSE, B_FALSE);
5407
5408	return (error);
5409
5410out:
5411	spa_unload(newspa);
5412	spa_deactivate(newspa);
5413	spa_remove(newspa);
5414
5415	txg = spa_vdev_config_enter(spa);
5416
5417	/* re-online all offlined disks */
5418	for (c = 0; c < children; c++) {
5419		if (vml[c] != NULL)
5420			vml[c]->vdev_offline = B_FALSE;
5421	}
5422	vdev_reopen(spa->spa_root_vdev);
5423
5424	nvlist_free(spa->spa_config_splitting);
5425	spa->spa_config_splitting = NULL;
5426	(void) spa_vdev_exit(spa, NULL, txg, error);
5427
5428	kmem_free(vml, children * sizeof (vdev_t *));
5429	return (error);
5430}
5431
5432static nvlist_t *
5433spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5434{
5435	for (int i = 0; i < count; i++) {
5436		uint64_t guid;
5437
5438		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5439		    &guid) == 0);
5440
5441		if (guid == target_guid)
5442			return (nvpp[i]);
5443	}
5444
5445	return (NULL);
5446}
5447
5448static void
5449spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5450	nvlist_t *dev_to_remove)
5451{
5452	nvlist_t **newdev = NULL;
5453
5454	if (count > 1)
5455		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5456
5457	for (int i = 0, j = 0; i < count; i++) {
5458		if (dev[i] == dev_to_remove)
5459			continue;
5460		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5461	}
5462
5463	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5464	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5465
5466	for (int i = 0; i < count - 1; i++)
5467		nvlist_free(newdev[i]);
5468
5469	if (count > 1)
5470		kmem_free(newdev, (count - 1) * sizeof (void *));
5471}
5472
5473/*
5474 * Evacuate the device.
5475 */
5476static int
5477spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5478{
5479	uint64_t txg;
5480	int error = 0;
5481
5482	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5483	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5484	ASSERT(vd == vd->vdev_top);
5485
5486	/*
5487	 * Evacuate the device.  We don't hold the config lock as writer
5488	 * since we need to do I/O but we do keep the
5489	 * spa_namespace_lock held.  Once this completes the device
5490	 * should no longer have any blocks allocated on it.
5491	 */
5492	if (vd->vdev_islog) {
5493		if (vd->vdev_stat.vs_alloc != 0)
5494			error = spa_offline_log(spa);
5495	} else {
5496		error = SET_ERROR(ENOTSUP);
5497	}
5498
5499	if (error)
5500		return (error);
5501
5502	/*
5503	 * The evacuation succeeded.  Remove any remaining MOS metadata
5504	 * associated with this vdev, and wait for these changes to sync.
5505	 */
5506	ASSERT0(vd->vdev_stat.vs_alloc);
5507	txg = spa_vdev_config_enter(spa);
5508	vd->vdev_removing = B_TRUE;
5509	vdev_dirty_leaves(vd, VDD_DTL, txg);
5510	vdev_config_dirty(vd);
5511	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5512
5513	return (0);
5514}
5515
5516/*
5517 * Complete the removal by cleaning up the namespace.
5518 */
5519static void
5520spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5521{
5522	vdev_t *rvd = spa->spa_root_vdev;
5523	uint64_t id = vd->vdev_id;
5524	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5525
5526	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5527	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5528	ASSERT(vd == vd->vdev_top);
5529
5530	/*
5531	 * Only remove any devices which are empty.
5532	 */
5533	if (vd->vdev_stat.vs_alloc != 0)
5534		return;
5535
5536	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5537
5538	if (list_link_active(&vd->vdev_state_dirty_node))
5539		vdev_state_clean(vd);
5540	if (list_link_active(&vd->vdev_config_dirty_node))
5541		vdev_config_clean(vd);
5542
5543	vdev_free(vd);
5544
5545	if (last_vdev) {
5546		vdev_compact_children(rvd);
5547	} else {
5548		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5549		vdev_add_child(rvd, vd);
5550	}
5551	vdev_config_dirty(rvd);
5552
5553	/*
5554	 * Reassess the health of our root vdev.
5555	 */
5556	vdev_reopen(rvd);
5557}
5558
5559/*
5560 * Remove a device from the pool -
5561 *
5562 * Removing a device from the vdev namespace requires several steps
5563 * and can take a significant amount of time.  As a result we use
5564 * the spa_vdev_config_[enter/exit] functions which allow us to
5565 * grab and release the spa_config_lock while still holding the namespace
5566 * lock.  During each step the configuration is synced out.
5567 *
5568 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5569 * devices.
5570 */
5571int
5572spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5573{
5574	vdev_t *vd;
5575	metaslab_group_t *mg;
5576	nvlist_t **spares, **l2cache, *nv;
5577	uint64_t txg = 0;
5578	uint_t nspares, nl2cache;
5579	int error = 0;
5580	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5581
5582	ASSERT(spa_writeable(spa));
5583
5584	if (!locked)
5585		txg = spa_vdev_enter(spa);
5586
5587	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5588
5589	if (spa->spa_spares.sav_vdevs != NULL &&
5590	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5591	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5592	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5593		/*
5594		 * Only remove the hot spare if it's not currently in use
5595		 * in this pool.
5596		 */
5597		if (vd == NULL || unspare) {
5598			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5599			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5600			spa_load_spares(spa);
5601			spa->spa_spares.sav_sync = B_TRUE;
5602		} else {
5603			error = SET_ERROR(EBUSY);
5604		}
5605	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5606	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5607	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5608	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5609		/*
5610		 * Cache devices can always be removed.
5611		 */
5612		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5613		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5614		spa_load_l2cache(spa);
5615		spa->spa_l2cache.sav_sync = B_TRUE;
5616	} else if (vd != NULL && vd->vdev_islog) {
5617		ASSERT(!locked);
5618		ASSERT(vd == vd->vdev_top);
5619
5620		mg = vd->vdev_mg;
5621
5622		/*
5623		 * Stop allocating from this vdev.
5624		 */
5625		metaslab_group_passivate(mg);
5626
5627		/*
5628		 * Wait for the youngest allocations and frees to sync,
5629		 * and then wait for the deferral of those frees to finish.
5630		 */
5631		spa_vdev_config_exit(spa, NULL,
5632		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5633
5634		/*
5635		 * Attempt to evacuate the vdev.
5636		 */
5637		error = spa_vdev_remove_evacuate(spa, vd);
5638
5639		txg = spa_vdev_config_enter(spa);
5640
5641		/*
5642		 * If we couldn't evacuate the vdev, unwind.
5643		 */
5644		if (error) {
5645			metaslab_group_activate(mg);
5646			return (spa_vdev_exit(spa, NULL, txg, error));
5647		}
5648
5649		/*
5650		 * Clean up the vdev namespace.
5651		 */
5652		spa_vdev_remove_from_namespace(spa, vd);
5653
5654	} else if (vd != NULL) {
5655		/*
5656		 * Normal vdevs cannot be removed (yet).
5657		 */
5658		error = SET_ERROR(ENOTSUP);
5659	} else {
5660		/*
5661		 * There is no vdev of any kind with the specified guid.
5662		 */
5663		error = SET_ERROR(ENOENT);
5664	}
5665
5666	if (!locked)
5667		return (spa_vdev_exit(spa, NULL, txg, error));
5668
5669	return (error);
5670}
5671
5672/*
5673 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5674 * currently spared, so we can detach it.
5675 */
5676static vdev_t *
5677spa_vdev_resilver_done_hunt(vdev_t *vd)
5678{
5679	vdev_t *newvd, *oldvd;
5680
5681	for (int c = 0; c < vd->vdev_children; c++) {
5682		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5683		if (oldvd != NULL)
5684			return (oldvd);
5685	}
5686
5687	/*
5688	 * Check for a completed replacement.  We always consider the first
5689	 * vdev in the list to be the oldest vdev, and the last one to be
5690	 * the newest (see spa_vdev_attach() for how that works).  In
5691	 * the case where the newest vdev is faulted, we will not automatically
5692	 * remove it after a resilver completes.  This is OK as it will require
5693	 * user intervention to determine which disk the admin wishes to keep.
5694	 */
5695	if (vd->vdev_ops == &vdev_replacing_ops) {
5696		ASSERT(vd->vdev_children > 1);
5697
5698		newvd = vd->vdev_child[vd->vdev_children - 1];
5699		oldvd = vd->vdev_child[0];
5700
5701		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5702		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5703		    !vdev_dtl_required(oldvd))
5704			return (oldvd);
5705	}
5706
5707	/*
5708	 * Check for a completed resilver with the 'unspare' flag set.
5709	 */
5710	if (vd->vdev_ops == &vdev_spare_ops) {
5711		vdev_t *first = vd->vdev_child[0];
5712		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5713
5714		if (last->vdev_unspare) {
5715			oldvd = first;
5716			newvd = last;
5717		} else if (first->vdev_unspare) {
5718			oldvd = last;
5719			newvd = first;
5720		} else {
5721			oldvd = NULL;
5722		}
5723
5724		if (oldvd != NULL &&
5725		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5726		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5727		    !vdev_dtl_required(oldvd))
5728			return (oldvd);
5729
5730		/*
5731		 * If there are more than two spares attached to a disk,
5732		 * and those spares are not required, then we want to
5733		 * attempt to free them up now so that they can be used
5734		 * by other pools.  Once we're back down to a single
5735		 * disk+spare, we stop removing them.
5736		 */
5737		if (vd->vdev_children > 2) {
5738			newvd = vd->vdev_child[1];
5739
5740			if (newvd->vdev_isspare && last->vdev_isspare &&
5741			    vdev_dtl_empty(last, DTL_MISSING) &&
5742			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5743			    !vdev_dtl_required(newvd))
5744				return (newvd);
5745		}
5746	}
5747
5748	return (NULL);
5749}
5750
5751static void
5752spa_vdev_resilver_done(spa_t *spa)
5753{
5754	vdev_t *vd, *pvd, *ppvd;
5755	uint64_t guid, sguid, pguid, ppguid;
5756
5757	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5758
5759	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5760		pvd = vd->vdev_parent;
5761		ppvd = pvd->vdev_parent;
5762		guid = vd->vdev_guid;
5763		pguid = pvd->vdev_guid;
5764		ppguid = ppvd->vdev_guid;
5765		sguid = 0;
5766		/*
5767		 * If we have just finished replacing a hot spared device, then
5768		 * we need to detach the parent's first child (the original hot
5769		 * spare) as well.
5770		 */
5771		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5772		    ppvd->vdev_children == 2) {
5773			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5774			sguid = ppvd->vdev_child[1]->vdev_guid;
5775		}
5776		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5777
5778		spa_config_exit(spa, SCL_ALL, FTAG);
5779		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5780			return;
5781		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5782			return;
5783		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5784	}
5785
5786	spa_config_exit(spa, SCL_ALL, FTAG);
5787}
5788
5789/*
5790 * Update the stored path or FRU for this vdev.
5791 */
5792int
5793spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5794    boolean_t ispath)
5795{
5796	vdev_t *vd;
5797	boolean_t sync = B_FALSE;
5798
5799	ASSERT(spa_writeable(spa));
5800
5801	spa_vdev_state_enter(spa, SCL_ALL);
5802
5803	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5804		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5805
5806	if (!vd->vdev_ops->vdev_op_leaf)
5807		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5808
5809	if (ispath) {
5810		if (strcmp(value, vd->vdev_path) != 0) {
5811			spa_strfree(vd->vdev_path);
5812			vd->vdev_path = spa_strdup(value);
5813			sync = B_TRUE;
5814		}
5815	} else {
5816		if (vd->vdev_fru == NULL) {
5817			vd->vdev_fru = spa_strdup(value);
5818			sync = B_TRUE;
5819		} else if (strcmp(value, vd->vdev_fru) != 0) {
5820			spa_strfree(vd->vdev_fru);
5821			vd->vdev_fru = spa_strdup(value);
5822			sync = B_TRUE;
5823		}
5824	}
5825
5826	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5827}
5828
5829int
5830spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5831{
5832	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5833}
5834
5835int
5836spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5837{
5838	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5839}
5840
5841/*
5842 * ==========================================================================
5843 * SPA Scanning
5844 * ==========================================================================
5845 */
5846
5847int
5848spa_scan_stop(spa_t *spa)
5849{
5850	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5851	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5852		return (SET_ERROR(EBUSY));
5853	return (dsl_scan_cancel(spa->spa_dsl_pool));
5854}
5855
5856int
5857spa_scan(spa_t *spa, pool_scan_func_t func)
5858{
5859	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5860
5861	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5862		return (SET_ERROR(ENOTSUP));
5863
5864	/*
5865	 * If a resilver was requested, but there is no DTL on a
5866	 * writeable leaf device, we have nothing to do.
5867	 */
5868	if (func == POOL_SCAN_RESILVER &&
5869	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5870		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5871		return (0);
5872	}
5873
5874	return (dsl_scan(spa->spa_dsl_pool, func));
5875}
5876
5877/*
5878 * ==========================================================================
5879 * SPA async task processing
5880 * ==========================================================================
5881 */
5882
5883static void
5884spa_async_remove(spa_t *spa, vdev_t *vd)
5885{
5886	if (vd->vdev_remove_wanted) {
5887		vd->vdev_remove_wanted = B_FALSE;
5888		vd->vdev_delayed_close = B_FALSE;
5889		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5890
5891		/*
5892		 * We want to clear the stats, but we don't want to do a full
5893		 * vdev_clear() as that will cause us to throw away
5894		 * degraded/faulted state as well as attempt to reopen the
5895		 * device, all of which is a waste.
5896		 */
5897		vd->vdev_stat.vs_read_errors = 0;
5898		vd->vdev_stat.vs_write_errors = 0;
5899		vd->vdev_stat.vs_checksum_errors = 0;
5900
5901		vdev_state_dirty(vd->vdev_top);
5902	}
5903
5904	for (int c = 0; c < vd->vdev_children; c++)
5905		spa_async_remove(spa, vd->vdev_child[c]);
5906}
5907
5908static void
5909spa_async_probe(spa_t *spa, vdev_t *vd)
5910{
5911	if (vd->vdev_probe_wanted) {
5912		vd->vdev_probe_wanted = B_FALSE;
5913		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5914	}
5915
5916	for (int c = 0; c < vd->vdev_children; c++)
5917		spa_async_probe(spa, vd->vdev_child[c]);
5918}
5919
5920static void
5921spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5922{
5923	sysevent_id_t eid;
5924	nvlist_t *attr;
5925	char *physpath;
5926
5927	if (!spa->spa_autoexpand)
5928		return;
5929
5930	for (int c = 0; c < vd->vdev_children; c++) {
5931		vdev_t *cvd = vd->vdev_child[c];
5932		spa_async_autoexpand(spa, cvd);
5933	}
5934
5935	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5936		return;
5937
5938	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5939	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5940
5941	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5942	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5943
5944	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5945	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5946
5947	nvlist_free(attr);
5948	kmem_free(physpath, MAXPATHLEN);
5949}
5950
5951static void
5952spa_async_thread(void *arg)
5953{
5954	spa_t *spa = arg;
5955	int tasks;
5956
5957	ASSERT(spa->spa_sync_on);
5958
5959	mutex_enter(&spa->spa_async_lock);
5960	tasks = spa->spa_async_tasks;
5961	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5962	mutex_exit(&spa->spa_async_lock);
5963
5964	/*
5965	 * See if the config needs to be updated.
5966	 */
5967	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5968		uint64_t old_space, new_space;
5969
5970		mutex_enter(&spa_namespace_lock);
5971		old_space = metaslab_class_get_space(spa_normal_class(spa));
5972		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5973		new_space = metaslab_class_get_space(spa_normal_class(spa));
5974		mutex_exit(&spa_namespace_lock);
5975
5976		/*
5977		 * If the pool grew as a result of the config update,
5978		 * then log an internal history event.
5979		 */
5980		if (new_space != old_space) {
5981			spa_history_log_internal(spa, "vdev online", NULL,
5982			    "pool '%s' size: %llu(+%llu)",
5983			    spa_name(spa), new_space, new_space - old_space);
5984		}
5985	}
5986
5987	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5988		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5989		spa_async_autoexpand(spa, spa->spa_root_vdev);
5990		spa_config_exit(spa, SCL_CONFIG, FTAG);
5991	}
5992
5993	/*
5994	 * See if any devices need to be probed.
5995	 */
5996	if (tasks & SPA_ASYNC_PROBE) {
5997		spa_vdev_state_enter(spa, SCL_NONE);
5998		spa_async_probe(spa, spa->spa_root_vdev);
5999		(void) spa_vdev_state_exit(spa, NULL, 0);
6000	}
6001
6002	/*
6003	 * If any devices are done replacing, detach them.
6004	 */
6005	if (tasks & SPA_ASYNC_RESILVER_DONE)
6006		spa_vdev_resilver_done(spa);
6007
6008	/*
6009	 * Kick off a resilver.
6010	 */
6011	if (tasks & SPA_ASYNC_RESILVER)
6012		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6013
6014	/*
6015	 * Let the world know that we're done.
6016	 */
6017	mutex_enter(&spa->spa_async_lock);
6018	spa->spa_async_thread = NULL;
6019	cv_broadcast(&spa->spa_async_cv);
6020	mutex_exit(&spa->spa_async_lock);
6021	thread_exit();
6022}
6023
6024static void
6025spa_async_thread_vd(void *arg)
6026{
6027	spa_t *spa = arg;
6028	int tasks;
6029
6030	ASSERT(spa->spa_sync_on);
6031
6032	mutex_enter(&spa->spa_async_lock);
6033	tasks = spa->spa_async_tasks;
6034retry:
6035	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6036	mutex_exit(&spa->spa_async_lock);
6037
6038	/*
6039	 * See if any devices need to be marked REMOVED.
6040	 */
6041	if (tasks & SPA_ASYNC_REMOVE) {
6042		spa_vdev_state_enter(spa, SCL_NONE);
6043		spa_async_remove(spa, spa->spa_root_vdev);
6044		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6045			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6046		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6047			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6048		(void) spa_vdev_state_exit(spa, NULL, 0);
6049	}
6050
6051	/*
6052	 * Let the world know that we're done.
6053	 */
6054	mutex_enter(&spa->spa_async_lock);
6055	tasks = spa->spa_async_tasks;
6056	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6057		goto retry;
6058	spa->spa_async_thread_vd = NULL;
6059	cv_broadcast(&spa->spa_async_cv);
6060	mutex_exit(&spa->spa_async_lock);
6061	thread_exit();
6062}
6063
6064void
6065spa_async_suspend(spa_t *spa)
6066{
6067	mutex_enter(&spa->spa_async_lock);
6068	spa->spa_async_suspended++;
6069	while (spa->spa_async_thread != NULL &&
6070	    spa->spa_async_thread_vd != NULL)
6071		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6072	mutex_exit(&spa->spa_async_lock);
6073}
6074
6075void
6076spa_async_resume(spa_t *spa)
6077{
6078	mutex_enter(&spa->spa_async_lock);
6079	ASSERT(spa->spa_async_suspended != 0);
6080	spa->spa_async_suspended--;
6081	mutex_exit(&spa->spa_async_lock);
6082}
6083
6084static boolean_t
6085spa_async_tasks_pending(spa_t *spa)
6086{
6087	uint_t non_config_tasks;
6088	uint_t config_task;
6089	boolean_t config_task_suspended;
6090
6091	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6092	    SPA_ASYNC_REMOVE);
6093	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6094	if (spa->spa_ccw_fail_time == 0) {
6095		config_task_suspended = B_FALSE;
6096	} else {
6097		config_task_suspended =
6098		    (gethrtime() - spa->spa_ccw_fail_time) <
6099		    (zfs_ccw_retry_interval * NANOSEC);
6100	}
6101
6102	return (non_config_tasks || (config_task && !config_task_suspended));
6103}
6104
6105static void
6106spa_async_dispatch(spa_t *spa)
6107{
6108	mutex_enter(&spa->spa_async_lock);
6109	if (spa_async_tasks_pending(spa) &&
6110	    !spa->spa_async_suspended &&
6111	    spa->spa_async_thread == NULL &&
6112	    rootdir != NULL)
6113		spa->spa_async_thread = thread_create(NULL, 0,
6114		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6115	mutex_exit(&spa->spa_async_lock);
6116}
6117
6118static void
6119spa_async_dispatch_vd(spa_t *spa)
6120{
6121	mutex_enter(&spa->spa_async_lock);
6122	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6123	    !spa->spa_async_suspended &&
6124	    spa->spa_async_thread_vd == NULL &&
6125	    rootdir != NULL)
6126		spa->spa_async_thread_vd = thread_create(NULL, 0,
6127		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6128	mutex_exit(&spa->spa_async_lock);
6129}
6130
6131void
6132spa_async_request(spa_t *spa, int task)
6133{
6134	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6135	mutex_enter(&spa->spa_async_lock);
6136	spa->spa_async_tasks |= task;
6137	mutex_exit(&spa->spa_async_lock);
6138	spa_async_dispatch_vd(spa);
6139}
6140
6141/*
6142 * ==========================================================================
6143 * SPA syncing routines
6144 * ==========================================================================
6145 */
6146
6147static int
6148bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6149{
6150	bpobj_t *bpo = arg;
6151	bpobj_enqueue(bpo, bp, tx);
6152	return (0);
6153}
6154
6155static int
6156spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6157{
6158	zio_t *zio = arg;
6159
6160	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6161	    BP_GET_PSIZE(bp), zio->io_flags));
6162	return (0);
6163}
6164
6165/*
6166 * Note: this simple function is not inlined to make it easier to dtrace the
6167 * amount of time spent syncing frees.
6168 */
6169static void
6170spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6171{
6172	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6173	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6174	VERIFY(zio_wait(zio) == 0);
6175}
6176
6177/*
6178 * Note: this simple function is not inlined to make it easier to dtrace the
6179 * amount of time spent syncing deferred frees.
6180 */
6181static void
6182spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6183{
6184	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6185	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6186	    spa_free_sync_cb, zio, tx), ==, 0);
6187	VERIFY0(zio_wait(zio));
6188}
6189
6190
6191static void
6192spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6193{
6194	char *packed = NULL;
6195	size_t bufsize;
6196	size_t nvsize = 0;
6197	dmu_buf_t *db;
6198
6199	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6200
6201	/*
6202	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6203	 * information.  This avoids the dmu_buf_will_dirty() path and
6204	 * saves us a pre-read to get data we don't actually care about.
6205	 */
6206	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6207	packed = kmem_alloc(bufsize, KM_SLEEP);
6208
6209	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6210	    KM_SLEEP) == 0);
6211	bzero(packed + nvsize, bufsize - nvsize);
6212
6213	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6214
6215	kmem_free(packed, bufsize);
6216
6217	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6218	dmu_buf_will_dirty(db, tx);
6219	*(uint64_t *)db->db_data = nvsize;
6220	dmu_buf_rele(db, FTAG);
6221}
6222
6223static void
6224spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6225    const char *config, const char *entry)
6226{
6227	nvlist_t *nvroot;
6228	nvlist_t **list;
6229	int i;
6230
6231	if (!sav->sav_sync)
6232		return;
6233
6234	/*
6235	 * Update the MOS nvlist describing the list of available devices.
6236	 * spa_validate_aux() will have already made sure this nvlist is
6237	 * valid and the vdevs are labeled appropriately.
6238	 */
6239	if (sav->sav_object == 0) {
6240		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6241		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6242		    sizeof (uint64_t), tx);
6243		VERIFY(zap_update(spa->spa_meta_objset,
6244		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6245		    &sav->sav_object, tx) == 0);
6246	}
6247
6248	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6249	if (sav->sav_count == 0) {
6250		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6251	} else {
6252		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6253		for (i = 0; i < sav->sav_count; i++)
6254			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6255			    B_FALSE, VDEV_CONFIG_L2CACHE);
6256		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6257		    sav->sav_count) == 0);
6258		for (i = 0; i < sav->sav_count; i++)
6259			nvlist_free(list[i]);
6260		kmem_free(list, sav->sav_count * sizeof (void *));
6261	}
6262
6263	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6264	nvlist_free(nvroot);
6265
6266	sav->sav_sync = B_FALSE;
6267}
6268
6269static void
6270spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6271{
6272	nvlist_t *config;
6273
6274	if (list_is_empty(&spa->spa_config_dirty_list))
6275		return;
6276
6277	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6278
6279	config = spa_config_generate(spa, spa->spa_root_vdev,
6280	    dmu_tx_get_txg(tx), B_FALSE);
6281
6282	/*
6283	 * If we're upgrading the spa version then make sure that
6284	 * the config object gets updated with the correct version.
6285	 */
6286	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6287		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6288		    spa->spa_uberblock.ub_version);
6289
6290	spa_config_exit(spa, SCL_STATE, FTAG);
6291
6292	if (spa->spa_config_syncing)
6293		nvlist_free(spa->spa_config_syncing);
6294	spa->spa_config_syncing = config;
6295
6296	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6297}
6298
6299static void
6300spa_sync_version(void *arg, dmu_tx_t *tx)
6301{
6302	uint64_t *versionp = arg;
6303	uint64_t version = *versionp;
6304	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6305
6306	/*
6307	 * Setting the version is special cased when first creating the pool.
6308	 */
6309	ASSERT(tx->tx_txg != TXG_INITIAL);
6310
6311	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6312	ASSERT(version >= spa_version(spa));
6313
6314	spa->spa_uberblock.ub_version = version;
6315	vdev_config_dirty(spa->spa_root_vdev);
6316	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6317}
6318
6319/*
6320 * Set zpool properties.
6321 */
6322static void
6323spa_sync_props(void *arg, dmu_tx_t *tx)
6324{
6325	nvlist_t *nvp = arg;
6326	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6327	objset_t *mos = spa->spa_meta_objset;
6328	nvpair_t *elem = NULL;
6329
6330	mutex_enter(&spa->spa_props_lock);
6331
6332	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6333		uint64_t intval;
6334		char *strval, *fname;
6335		zpool_prop_t prop;
6336		const char *propname;
6337		zprop_type_t proptype;
6338		spa_feature_t fid;
6339
6340		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6341		case ZPROP_INVAL:
6342			/*
6343			 * We checked this earlier in spa_prop_validate().
6344			 */
6345			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6346
6347			fname = strchr(nvpair_name(elem), '@') + 1;
6348			VERIFY0(zfeature_lookup_name(fname, &fid));
6349
6350			spa_feature_enable(spa, fid, tx);
6351			spa_history_log_internal(spa, "set", tx,
6352			    "%s=enabled", nvpair_name(elem));
6353			break;
6354
6355		case ZPOOL_PROP_VERSION:
6356			intval = fnvpair_value_uint64(elem);
6357			/*
6358			 * The version is synced seperatly before other
6359			 * properties and should be correct by now.
6360			 */
6361			ASSERT3U(spa_version(spa), >=, intval);
6362			break;
6363
6364		case ZPOOL_PROP_ALTROOT:
6365			/*
6366			 * 'altroot' is a non-persistent property. It should
6367			 * have been set temporarily at creation or import time.
6368			 */
6369			ASSERT(spa->spa_root != NULL);
6370			break;
6371
6372		case ZPOOL_PROP_READONLY:
6373		case ZPOOL_PROP_CACHEFILE:
6374			/*
6375			 * 'readonly' and 'cachefile' are also non-persisitent
6376			 * properties.
6377			 */
6378			break;
6379		case ZPOOL_PROP_COMMENT:
6380			strval = fnvpair_value_string(elem);
6381			if (spa->spa_comment != NULL)
6382				spa_strfree(spa->spa_comment);
6383			spa->spa_comment = spa_strdup(strval);
6384			/*
6385			 * We need to dirty the configuration on all the vdevs
6386			 * so that their labels get updated.  It's unnecessary
6387			 * to do this for pool creation since the vdev's
6388			 * configuratoin has already been dirtied.
6389			 */
6390			if (tx->tx_txg != TXG_INITIAL)
6391				vdev_config_dirty(spa->spa_root_vdev);
6392			spa_history_log_internal(spa, "set", tx,
6393			    "%s=%s", nvpair_name(elem), strval);
6394			break;
6395		default:
6396			/*
6397			 * Set pool property values in the poolprops mos object.
6398			 */
6399			if (spa->spa_pool_props_object == 0) {
6400				spa->spa_pool_props_object =
6401				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6402				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6403				    tx);
6404			}
6405
6406			/* normalize the property name */
6407			propname = zpool_prop_to_name(prop);
6408			proptype = zpool_prop_get_type(prop);
6409
6410			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6411				ASSERT(proptype == PROP_TYPE_STRING);
6412				strval = fnvpair_value_string(elem);
6413				VERIFY0(zap_update(mos,
6414				    spa->spa_pool_props_object, propname,
6415				    1, strlen(strval) + 1, strval, tx));
6416				spa_history_log_internal(spa, "set", tx,
6417				    "%s=%s", nvpair_name(elem), strval);
6418			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6419				intval = fnvpair_value_uint64(elem);
6420
6421				if (proptype == PROP_TYPE_INDEX) {
6422					const char *unused;
6423					VERIFY0(zpool_prop_index_to_string(
6424					    prop, intval, &unused));
6425				}
6426				VERIFY0(zap_update(mos,
6427				    spa->spa_pool_props_object, propname,
6428				    8, 1, &intval, tx));
6429				spa_history_log_internal(spa, "set", tx,
6430				    "%s=%lld", nvpair_name(elem), intval);
6431			} else {
6432				ASSERT(0); /* not allowed */
6433			}
6434
6435			switch (prop) {
6436			case ZPOOL_PROP_DELEGATION:
6437				spa->spa_delegation = intval;
6438				break;
6439			case ZPOOL_PROP_BOOTFS:
6440				spa->spa_bootfs = intval;
6441				break;
6442			case ZPOOL_PROP_FAILUREMODE:
6443				spa->spa_failmode = intval;
6444				break;
6445			case ZPOOL_PROP_AUTOEXPAND:
6446				spa->spa_autoexpand = intval;
6447				if (tx->tx_txg != TXG_INITIAL)
6448					spa_async_request(spa,
6449					    SPA_ASYNC_AUTOEXPAND);
6450				break;
6451			case ZPOOL_PROP_DEDUPDITTO:
6452				spa->spa_dedup_ditto = intval;
6453				break;
6454			default:
6455				break;
6456			}
6457		}
6458
6459	}
6460
6461	mutex_exit(&spa->spa_props_lock);
6462}
6463
6464/*
6465 * Perform one-time upgrade on-disk changes.  spa_version() does not
6466 * reflect the new version this txg, so there must be no changes this
6467 * txg to anything that the upgrade code depends on after it executes.
6468 * Therefore this must be called after dsl_pool_sync() does the sync
6469 * tasks.
6470 */
6471static void
6472spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6473{
6474	dsl_pool_t *dp = spa->spa_dsl_pool;
6475
6476	ASSERT(spa->spa_sync_pass == 1);
6477
6478	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6479
6480	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6481	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6482		dsl_pool_create_origin(dp, tx);
6483
6484		/* Keeping the origin open increases spa_minref */
6485		spa->spa_minref += 3;
6486	}
6487
6488	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6489	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6490		dsl_pool_upgrade_clones(dp, tx);
6491	}
6492
6493	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6494	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6495		dsl_pool_upgrade_dir_clones(dp, tx);
6496
6497		/* Keeping the freedir open increases spa_minref */
6498		spa->spa_minref += 3;
6499	}
6500
6501	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6502	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6503		spa_feature_create_zap_objects(spa, tx);
6504	}
6505
6506	/*
6507	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6508	 * when possibility to use lz4 compression for metadata was added
6509	 * Old pools that have this feature enabled must be upgraded to have
6510	 * this feature active
6511	 */
6512	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6513		boolean_t lz4_en = spa_feature_is_enabled(spa,
6514		    SPA_FEATURE_LZ4_COMPRESS);
6515		boolean_t lz4_ac = spa_feature_is_active(spa,
6516		    SPA_FEATURE_LZ4_COMPRESS);
6517
6518		if (lz4_en && !lz4_ac)
6519			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6520	}
6521	rrw_exit(&dp->dp_config_rwlock, FTAG);
6522}
6523
6524/*
6525 * Sync the specified transaction group.  New blocks may be dirtied as
6526 * part of the process, so we iterate until it converges.
6527 */
6528void
6529spa_sync(spa_t *spa, uint64_t txg)
6530{
6531	dsl_pool_t *dp = spa->spa_dsl_pool;
6532	objset_t *mos = spa->spa_meta_objset;
6533	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6534	vdev_t *rvd = spa->spa_root_vdev;
6535	vdev_t *vd;
6536	dmu_tx_t *tx;
6537	int error;
6538
6539	VERIFY(spa_writeable(spa));
6540
6541	/*
6542	 * Lock out configuration changes.
6543	 */
6544	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6545
6546	spa->spa_syncing_txg = txg;
6547	spa->spa_sync_pass = 0;
6548
6549	/*
6550	 * If there are any pending vdev state changes, convert them
6551	 * into config changes that go out with this transaction group.
6552	 */
6553	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6554	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6555		/*
6556		 * We need the write lock here because, for aux vdevs,
6557		 * calling vdev_config_dirty() modifies sav_config.
6558		 * This is ugly and will become unnecessary when we
6559		 * eliminate the aux vdev wart by integrating all vdevs
6560		 * into the root vdev tree.
6561		 */
6562		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6563		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6564		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6565			vdev_state_clean(vd);
6566			vdev_config_dirty(vd);
6567		}
6568		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6569		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6570	}
6571	spa_config_exit(spa, SCL_STATE, FTAG);
6572
6573	tx = dmu_tx_create_assigned(dp, txg);
6574
6575	spa->spa_sync_starttime = gethrtime();
6576#ifdef illumos
6577	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6578	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6579#else	/* FreeBSD */
6580#ifdef _KERNEL
6581	callout_reset(&spa->spa_deadman_cycid,
6582	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6583#endif
6584#endif
6585
6586	/*
6587	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6588	 * set spa_deflate if we have no raid-z vdevs.
6589	 */
6590	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6591	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6592		int i;
6593
6594		for (i = 0; i < rvd->vdev_children; i++) {
6595			vd = rvd->vdev_child[i];
6596			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6597				break;
6598		}
6599		if (i == rvd->vdev_children) {
6600			spa->spa_deflate = TRUE;
6601			VERIFY(0 == zap_add(spa->spa_meta_objset,
6602			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6603			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6604		}
6605	}
6606
6607	/*
6608	 * If anything has changed in this txg, or if someone is waiting
6609	 * for this txg to sync (eg, spa_vdev_remove()), push the
6610	 * deferred frees from the previous txg.  If not, leave them
6611	 * alone so that we don't generate work on an otherwise idle
6612	 * system.
6613	 */
6614	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6615	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6616	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6617	    ((dsl_scan_active(dp->dp_scan) ||
6618	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6619		spa_sync_deferred_frees(spa, tx);
6620	}
6621
6622	/*
6623	 * Iterate to convergence.
6624	 */
6625	do {
6626		int pass = ++spa->spa_sync_pass;
6627
6628		spa_sync_config_object(spa, tx);
6629		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6630		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6631		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6632		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6633		spa_errlog_sync(spa, txg);
6634		dsl_pool_sync(dp, txg);
6635
6636		if (pass < zfs_sync_pass_deferred_free) {
6637			spa_sync_frees(spa, free_bpl, tx);
6638		} else {
6639			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6640			    &spa->spa_deferred_bpobj, tx);
6641		}
6642
6643		ddt_sync(spa, txg);
6644		dsl_scan_sync(dp, tx);
6645
6646		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6647			vdev_sync(vd, txg);
6648
6649		if (pass == 1)
6650			spa_sync_upgrades(spa, tx);
6651
6652	} while (dmu_objset_is_dirty(mos, txg));
6653
6654	/*
6655	 * Rewrite the vdev configuration (which includes the uberblock)
6656	 * to commit the transaction group.
6657	 *
6658	 * If there are no dirty vdevs, we sync the uberblock to a few
6659	 * random top-level vdevs that are known to be visible in the
6660	 * config cache (see spa_vdev_add() for a complete description).
6661	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6662	 */
6663	for (;;) {
6664		/*
6665		 * We hold SCL_STATE to prevent vdev open/close/etc.
6666		 * while we're attempting to write the vdev labels.
6667		 */
6668		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6669
6670		if (list_is_empty(&spa->spa_config_dirty_list)) {
6671			vdev_t *svd[SPA_DVAS_PER_BP];
6672			int svdcount = 0;
6673			int children = rvd->vdev_children;
6674			int c0 = spa_get_random(children);
6675
6676			for (int c = 0; c < children; c++) {
6677				vd = rvd->vdev_child[(c0 + c) % children];
6678				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6679					continue;
6680				svd[svdcount++] = vd;
6681				if (svdcount == SPA_DVAS_PER_BP)
6682					break;
6683			}
6684			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6685			if (error != 0)
6686				error = vdev_config_sync(svd, svdcount, txg,
6687				    B_TRUE);
6688		} else {
6689			error = vdev_config_sync(rvd->vdev_child,
6690			    rvd->vdev_children, txg, B_FALSE);
6691			if (error != 0)
6692				error = vdev_config_sync(rvd->vdev_child,
6693				    rvd->vdev_children, txg, B_TRUE);
6694		}
6695
6696		if (error == 0)
6697			spa->spa_last_synced_guid = rvd->vdev_guid;
6698
6699		spa_config_exit(spa, SCL_STATE, FTAG);
6700
6701		if (error == 0)
6702			break;
6703		zio_suspend(spa, NULL);
6704		zio_resume_wait(spa);
6705	}
6706	dmu_tx_commit(tx);
6707
6708#ifdef illumos
6709	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6710#else	/* FreeBSD */
6711#ifdef _KERNEL
6712	callout_drain(&spa->spa_deadman_cycid);
6713#endif
6714#endif
6715
6716	/*
6717	 * Clear the dirty config list.
6718	 */
6719	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6720		vdev_config_clean(vd);
6721
6722	/*
6723	 * Now that the new config has synced transactionally,
6724	 * let it become visible to the config cache.
6725	 */
6726	if (spa->spa_config_syncing != NULL) {
6727		spa_config_set(spa, spa->spa_config_syncing);
6728		spa->spa_config_txg = txg;
6729		spa->spa_config_syncing = NULL;
6730	}
6731
6732	spa->spa_ubsync = spa->spa_uberblock;
6733
6734	dsl_pool_sync_done(dp, txg);
6735
6736	/*
6737	 * Update usable space statistics.
6738	 */
6739	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6740		vdev_sync_done(vd, txg);
6741
6742	spa_update_dspace(spa);
6743
6744	/*
6745	 * It had better be the case that we didn't dirty anything
6746	 * since vdev_config_sync().
6747	 */
6748	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6749	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6750	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6751
6752	spa->spa_sync_pass = 0;
6753
6754	spa_config_exit(spa, SCL_CONFIG, FTAG);
6755
6756	spa_handle_ignored_writes(spa);
6757
6758	/*
6759	 * If any async tasks have been requested, kick them off.
6760	 */
6761	spa_async_dispatch(spa);
6762	spa_async_dispatch_vd(spa);
6763}
6764
6765/*
6766 * Sync all pools.  We don't want to hold the namespace lock across these
6767 * operations, so we take a reference on the spa_t and drop the lock during the
6768 * sync.
6769 */
6770void
6771spa_sync_allpools(void)
6772{
6773	spa_t *spa = NULL;
6774	mutex_enter(&spa_namespace_lock);
6775	while ((spa = spa_next(spa)) != NULL) {
6776		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6777		    !spa_writeable(spa) || spa_suspended(spa))
6778			continue;
6779		spa_open_ref(spa, FTAG);
6780		mutex_exit(&spa_namespace_lock);
6781		txg_wait_synced(spa_get_dsl(spa), 0);
6782		mutex_enter(&spa_namespace_lock);
6783		spa_close(spa, FTAG);
6784	}
6785	mutex_exit(&spa_namespace_lock);
6786}
6787
6788/*
6789 * ==========================================================================
6790 * Miscellaneous routines
6791 * ==========================================================================
6792 */
6793
6794/*
6795 * Remove all pools in the system.
6796 */
6797void
6798spa_evict_all(void)
6799{
6800	spa_t *spa;
6801
6802	/*
6803	 * Remove all cached state.  All pools should be closed now,
6804	 * so every spa in the AVL tree should be unreferenced.
6805	 */
6806	mutex_enter(&spa_namespace_lock);
6807	while ((spa = spa_next(NULL)) != NULL) {
6808		/*
6809		 * Stop async tasks.  The async thread may need to detach
6810		 * a device that's been replaced, which requires grabbing
6811		 * spa_namespace_lock, so we must drop it here.
6812		 */
6813		spa_open_ref(spa, FTAG);
6814		mutex_exit(&spa_namespace_lock);
6815		spa_async_suspend(spa);
6816		mutex_enter(&spa_namespace_lock);
6817		spa_close(spa, FTAG);
6818
6819		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6820			spa_unload(spa);
6821			spa_deactivate(spa);
6822		}
6823		spa_remove(spa);
6824	}
6825	mutex_exit(&spa_namespace_lock);
6826}
6827
6828vdev_t *
6829spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6830{
6831	vdev_t *vd;
6832	int i;
6833
6834	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6835		return (vd);
6836
6837	if (aux) {
6838		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6839			vd = spa->spa_l2cache.sav_vdevs[i];
6840			if (vd->vdev_guid == guid)
6841				return (vd);
6842		}
6843
6844		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6845			vd = spa->spa_spares.sav_vdevs[i];
6846			if (vd->vdev_guid == guid)
6847				return (vd);
6848		}
6849	}
6850
6851	return (NULL);
6852}
6853
6854void
6855spa_upgrade(spa_t *spa, uint64_t version)
6856{
6857	ASSERT(spa_writeable(spa));
6858
6859	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6860
6861	/*
6862	 * This should only be called for a non-faulted pool, and since a
6863	 * future version would result in an unopenable pool, this shouldn't be
6864	 * possible.
6865	 */
6866	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6867	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6868
6869	spa->spa_uberblock.ub_version = version;
6870	vdev_config_dirty(spa->spa_root_vdev);
6871
6872	spa_config_exit(spa, SCL_ALL, FTAG);
6873
6874	txg_wait_synced(spa_get_dsl(spa), 0);
6875}
6876
6877boolean_t
6878spa_has_spare(spa_t *spa, uint64_t guid)
6879{
6880	int i;
6881	uint64_t spareguid;
6882	spa_aux_vdev_t *sav = &spa->spa_spares;
6883
6884	for (i = 0; i < sav->sav_count; i++)
6885		if (sav->sav_vdevs[i]->vdev_guid == guid)
6886			return (B_TRUE);
6887
6888	for (i = 0; i < sav->sav_npending; i++) {
6889		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6890		    &spareguid) == 0 && spareguid == guid)
6891			return (B_TRUE);
6892	}
6893
6894	return (B_FALSE);
6895}
6896
6897/*
6898 * Check if a pool has an active shared spare device.
6899 * Note: reference count of an active spare is 2, as a spare and as a replace
6900 */
6901static boolean_t
6902spa_has_active_shared_spare(spa_t *spa)
6903{
6904	int i, refcnt;
6905	uint64_t pool;
6906	spa_aux_vdev_t *sav = &spa->spa_spares;
6907
6908	for (i = 0; i < sav->sav_count; i++) {
6909		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6910		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6911		    refcnt > 2)
6912			return (B_TRUE);
6913	}
6914
6915	return (B_FALSE);
6916}
6917
6918/*
6919 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6920 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6921 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6922 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6923 * or zdb as real changes.
6924 */
6925void
6926spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6927{
6928#ifdef _KERNEL
6929	sysevent_t		*ev;
6930	sysevent_attr_list_t	*attr = NULL;
6931	sysevent_value_t	value;
6932	sysevent_id_t		eid;
6933
6934	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6935	    SE_SLEEP);
6936
6937	value.value_type = SE_DATA_TYPE_STRING;
6938	value.value.sv_string = spa_name(spa);
6939	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6940		goto done;
6941
6942	value.value_type = SE_DATA_TYPE_UINT64;
6943	value.value.sv_uint64 = spa_guid(spa);
6944	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6945		goto done;
6946
6947	if (vd) {
6948		value.value_type = SE_DATA_TYPE_UINT64;
6949		value.value.sv_uint64 = vd->vdev_guid;
6950		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6951		    SE_SLEEP) != 0)
6952			goto done;
6953
6954		if (vd->vdev_path) {
6955			value.value_type = SE_DATA_TYPE_STRING;
6956			value.value.sv_string = vd->vdev_path;
6957			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6958			    &value, SE_SLEEP) != 0)
6959				goto done;
6960		}
6961	}
6962
6963	if (sysevent_attach_attributes(ev, attr) != 0)
6964		goto done;
6965	attr = NULL;
6966
6967	(void) log_sysevent(ev, SE_SLEEP, &eid);
6968
6969done:
6970	if (attr)
6971		sysevent_free_attr(attr);
6972	sysevent_free(ev);
6973#endif
6974}
6975