spa.c revision 269219
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		/*
262		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
263		 * when opening pools before this version freedir will be NULL.
264		 */
265		if (pool->dp_free_dir != NULL) {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
267			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
268		} else {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
270			    NULL, 0, src);
271		}
272
273		if (pool->dp_leak_dir != NULL) {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
275			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
276		} else {
277			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
278			    NULL, 0, src);
279		}
280	}
281
282	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
283
284	if (spa->spa_comment != NULL) {
285		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
286		    0, ZPROP_SRC_LOCAL);
287	}
288
289	if (spa->spa_root != NULL)
290		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
291		    0, ZPROP_SRC_LOCAL);
292
293	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
294		if (dp->scd_path == NULL) {
295			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
296			    "none", 0, ZPROP_SRC_LOCAL);
297		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
298			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
299			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
300		}
301	}
302}
303
304/*
305 * Get zpool property values.
306 */
307int
308spa_prop_get(spa_t *spa, nvlist_t **nvp)
309{
310	objset_t *mos = spa->spa_meta_objset;
311	zap_cursor_t zc;
312	zap_attribute_t za;
313	int err;
314
315	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
316
317	mutex_enter(&spa->spa_props_lock);
318
319	/*
320	 * Get properties from the spa config.
321	 */
322	spa_prop_get_config(spa, nvp);
323
324	/* If no pool property object, no more prop to get. */
325	if (mos == NULL || spa->spa_pool_props_object == 0) {
326		mutex_exit(&spa->spa_props_lock);
327		return (0);
328	}
329
330	/*
331	 * Get properties from the MOS pool property object.
332	 */
333	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
334	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
335	    zap_cursor_advance(&zc)) {
336		uint64_t intval = 0;
337		char *strval = NULL;
338		zprop_source_t src = ZPROP_SRC_DEFAULT;
339		zpool_prop_t prop;
340
341		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
342			continue;
343
344		switch (za.za_integer_length) {
345		case 8:
346			/* integer property */
347			if (za.za_first_integer !=
348			    zpool_prop_default_numeric(prop))
349				src = ZPROP_SRC_LOCAL;
350
351			if (prop == ZPOOL_PROP_BOOTFS) {
352				dsl_pool_t *dp;
353				dsl_dataset_t *ds = NULL;
354
355				dp = spa_get_dsl(spa);
356				dsl_pool_config_enter(dp, FTAG);
357				if (err = dsl_dataset_hold_obj(dp,
358				    za.za_first_integer, FTAG, &ds)) {
359					dsl_pool_config_exit(dp, FTAG);
360					break;
361				}
362
363				strval = kmem_alloc(
364				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
365				    KM_SLEEP);
366				dsl_dataset_name(ds, strval);
367				dsl_dataset_rele(ds, FTAG);
368				dsl_pool_config_exit(dp, FTAG);
369			} else {
370				strval = NULL;
371				intval = za.za_first_integer;
372			}
373
374			spa_prop_add_list(*nvp, prop, strval, intval, src);
375
376			if (strval != NULL)
377				kmem_free(strval,
378				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
379
380			break;
381
382		case 1:
383			/* string property */
384			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
385			err = zap_lookup(mos, spa->spa_pool_props_object,
386			    za.za_name, 1, za.za_num_integers, strval);
387			if (err) {
388				kmem_free(strval, za.za_num_integers);
389				break;
390			}
391			spa_prop_add_list(*nvp, prop, strval, 0, src);
392			kmem_free(strval, za.za_num_integers);
393			break;
394
395		default:
396			break;
397		}
398	}
399	zap_cursor_fini(&zc);
400	mutex_exit(&spa->spa_props_lock);
401out:
402	if (err && err != ENOENT) {
403		nvlist_free(*nvp);
404		*nvp = NULL;
405		return (err);
406	}
407
408	return (0);
409}
410
411/*
412 * Validate the given pool properties nvlist and modify the list
413 * for the property values to be set.
414 */
415static int
416spa_prop_validate(spa_t *spa, nvlist_t *props)
417{
418	nvpair_t *elem;
419	int error = 0, reset_bootfs = 0;
420	uint64_t objnum = 0;
421	boolean_t has_feature = B_FALSE;
422
423	elem = NULL;
424	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
425		uint64_t intval;
426		char *strval, *slash, *check, *fname;
427		const char *propname = nvpair_name(elem);
428		zpool_prop_t prop = zpool_name_to_prop(propname);
429
430		switch (prop) {
431		case ZPROP_INVAL:
432			if (!zpool_prop_feature(propname)) {
433				error = SET_ERROR(EINVAL);
434				break;
435			}
436
437			/*
438			 * Sanitize the input.
439			 */
440			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
441				error = SET_ERROR(EINVAL);
442				break;
443			}
444
445			if (nvpair_value_uint64(elem, &intval) != 0) {
446				error = SET_ERROR(EINVAL);
447				break;
448			}
449
450			if (intval != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			fname = strchr(propname, '@') + 1;
456			if (zfeature_lookup_name(fname, NULL) != 0) {
457				error = SET_ERROR(EINVAL);
458				break;
459			}
460
461			has_feature = B_TRUE;
462			break;
463
464		case ZPOOL_PROP_VERSION:
465			error = nvpair_value_uint64(elem, &intval);
466			if (!error &&
467			    (intval < spa_version(spa) ||
468			    intval > SPA_VERSION_BEFORE_FEATURES ||
469			    has_feature))
470				error = SET_ERROR(EINVAL);
471			break;
472
473		case ZPOOL_PROP_DELEGATION:
474		case ZPOOL_PROP_AUTOREPLACE:
475		case ZPOOL_PROP_LISTSNAPS:
476		case ZPOOL_PROP_AUTOEXPAND:
477			error = nvpair_value_uint64(elem, &intval);
478			if (!error && intval > 1)
479				error = SET_ERROR(EINVAL);
480			break;
481
482		case ZPOOL_PROP_BOOTFS:
483			/*
484			 * If the pool version is less than SPA_VERSION_BOOTFS,
485			 * or the pool is still being created (version == 0),
486			 * the bootfs property cannot be set.
487			 */
488			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
489				error = SET_ERROR(ENOTSUP);
490				break;
491			}
492
493			/*
494			 * Make sure the vdev config is bootable
495			 */
496			if (!vdev_is_bootable(spa->spa_root_vdev)) {
497				error = SET_ERROR(ENOTSUP);
498				break;
499			}
500
501			reset_bootfs = 1;
502
503			error = nvpair_value_string(elem, &strval);
504
505			if (!error) {
506				objset_t *os;
507				uint64_t compress;
508
509				if (strval == NULL || strval[0] == '\0') {
510					objnum = zpool_prop_default_numeric(
511					    ZPOOL_PROP_BOOTFS);
512					break;
513				}
514
515				if (error = dmu_objset_hold(strval, FTAG, &os))
516					break;
517
518				/* Must be ZPL and not gzip compressed. */
519
520				if (dmu_objset_type(os) != DMU_OST_ZFS) {
521					error = SET_ERROR(ENOTSUP);
522				} else if ((error =
523				    dsl_prop_get_int_ds(dmu_objset_ds(os),
524				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
525				    &compress)) == 0 &&
526				    !BOOTFS_COMPRESS_VALID(compress)) {
527					error = SET_ERROR(ENOTSUP);
528				} else {
529					objnum = dmu_objset_id(os);
530				}
531				dmu_objset_rele(os, FTAG);
532			}
533			break;
534
535		case ZPOOL_PROP_FAILUREMODE:
536			error = nvpair_value_uint64(elem, &intval);
537			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
538			    intval > ZIO_FAILURE_MODE_PANIC))
539				error = SET_ERROR(EINVAL);
540
541			/*
542			 * This is a special case which only occurs when
543			 * the pool has completely failed. This allows
544			 * the user to change the in-core failmode property
545			 * without syncing it out to disk (I/Os might
546			 * currently be blocked). We do this by returning
547			 * EIO to the caller (spa_prop_set) to trick it
548			 * into thinking we encountered a property validation
549			 * error.
550			 */
551			if (!error && spa_suspended(spa)) {
552				spa->spa_failmode = intval;
553				error = SET_ERROR(EIO);
554			}
555			break;
556
557		case ZPOOL_PROP_CACHEFILE:
558			if ((error = nvpair_value_string(elem, &strval)) != 0)
559				break;
560
561			if (strval[0] == '\0')
562				break;
563
564			if (strcmp(strval, "none") == 0)
565				break;
566
567			if (strval[0] != '/') {
568				error = SET_ERROR(EINVAL);
569				break;
570			}
571
572			slash = strrchr(strval, '/');
573			ASSERT(slash != NULL);
574
575			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
576			    strcmp(slash, "/..") == 0)
577				error = SET_ERROR(EINVAL);
578			break;
579
580		case ZPOOL_PROP_COMMENT:
581			if ((error = nvpair_value_string(elem, &strval)) != 0)
582				break;
583			for (check = strval; *check != '\0'; check++) {
584				/*
585				 * The kernel doesn't have an easy isprint()
586				 * check.  For this kernel check, we merely
587				 * check ASCII apart from DEL.  Fix this if
588				 * there is an easy-to-use kernel isprint().
589				 */
590				if (*check >= 0x7f) {
591					error = SET_ERROR(EINVAL);
592					break;
593				}
594				check++;
595			}
596			if (strlen(strval) > ZPROP_MAX_COMMENT)
597				error = E2BIG;
598			break;
599
600		case ZPOOL_PROP_DEDUPDITTO:
601			if (spa_version(spa) < SPA_VERSION_DEDUP)
602				error = SET_ERROR(ENOTSUP);
603			else
604				error = nvpair_value_uint64(elem, &intval);
605			if (error == 0 &&
606			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
607				error = SET_ERROR(EINVAL);
608			break;
609		}
610
611		if (error)
612			break;
613	}
614
615	if (!error && reset_bootfs) {
616		error = nvlist_remove(props,
617		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
618
619		if (!error) {
620			error = nvlist_add_uint64(props,
621			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
622		}
623	}
624
625	return (error);
626}
627
628void
629spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
630{
631	char *cachefile;
632	spa_config_dirent_t *dp;
633
634	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
635	    &cachefile) != 0)
636		return;
637
638	dp = kmem_alloc(sizeof (spa_config_dirent_t),
639	    KM_SLEEP);
640
641	if (cachefile[0] == '\0')
642		dp->scd_path = spa_strdup(spa_config_path);
643	else if (strcmp(cachefile, "none") == 0)
644		dp->scd_path = NULL;
645	else
646		dp->scd_path = spa_strdup(cachefile);
647
648	list_insert_head(&spa->spa_config_list, dp);
649	if (need_sync)
650		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
651}
652
653int
654spa_prop_set(spa_t *spa, nvlist_t *nvp)
655{
656	int error;
657	nvpair_t *elem = NULL;
658	boolean_t need_sync = B_FALSE;
659
660	if ((error = spa_prop_validate(spa, nvp)) != 0)
661		return (error);
662
663	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
664		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
665
666		if (prop == ZPOOL_PROP_CACHEFILE ||
667		    prop == ZPOOL_PROP_ALTROOT ||
668		    prop == ZPOOL_PROP_READONLY)
669			continue;
670
671		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
672			uint64_t ver;
673
674			if (prop == ZPOOL_PROP_VERSION) {
675				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
676			} else {
677				ASSERT(zpool_prop_feature(nvpair_name(elem)));
678				ver = SPA_VERSION_FEATURES;
679				need_sync = B_TRUE;
680			}
681
682			/* Save time if the version is already set. */
683			if (ver == spa_version(spa))
684				continue;
685
686			/*
687			 * In addition to the pool directory object, we might
688			 * create the pool properties object, the features for
689			 * read object, the features for write object, or the
690			 * feature descriptions object.
691			 */
692			error = dsl_sync_task(spa->spa_name, NULL,
693			    spa_sync_version, &ver,
694			    6, ZFS_SPACE_CHECK_RESERVED);
695			if (error)
696				return (error);
697			continue;
698		}
699
700		need_sync = B_TRUE;
701		break;
702	}
703
704	if (need_sync) {
705		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
706		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
707	}
708
709	return (0);
710}
711
712/*
713 * If the bootfs property value is dsobj, clear it.
714 */
715void
716spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
717{
718	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
719		VERIFY(zap_remove(spa->spa_meta_objset,
720		    spa->spa_pool_props_object,
721		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
722		spa->spa_bootfs = 0;
723	}
724}
725
726/*ARGSUSED*/
727static int
728spa_change_guid_check(void *arg, dmu_tx_t *tx)
729{
730	uint64_t *newguid = arg;
731	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
732	vdev_t *rvd = spa->spa_root_vdev;
733	uint64_t vdev_state;
734
735	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736	vdev_state = rvd->vdev_state;
737	spa_config_exit(spa, SCL_STATE, FTAG);
738
739	if (vdev_state != VDEV_STATE_HEALTHY)
740		return (SET_ERROR(ENXIO));
741
742	ASSERT3U(spa_guid(spa), !=, *newguid);
743
744	return (0);
745}
746
747static void
748spa_change_guid_sync(void *arg, dmu_tx_t *tx)
749{
750	uint64_t *newguid = arg;
751	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752	uint64_t oldguid;
753	vdev_t *rvd = spa->spa_root_vdev;
754
755	oldguid = spa_guid(spa);
756
757	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
758	rvd->vdev_guid = *newguid;
759	rvd->vdev_guid_sum += (*newguid - oldguid);
760	vdev_config_dirty(rvd);
761	spa_config_exit(spa, SCL_STATE, FTAG);
762
763	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
764	    oldguid, *newguid);
765}
766
767/*
768 * Change the GUID for the pool.  This is done so that we can later
769 * re-import a pool built from a clone of our own vdevs.  We will modify
770 * the root vdev's guid, our own pool guid, and then mark all of our
771 * vdevs dirty.  Note that we must make sure that all our vdevs are
772 * online when we do this, or else any vdevs that weren't present
773 * would be orphaned from our pool.  We are also going to issue a
774 * sysevent to update any watchers.
775 */
776int
777spa_change_guid(spa_t *spa)
778{
779	int error;
780	uint64_t guid;
781
782	mutex_enter(&spa->spa_vdev_top_lock);
783	mutex_enter(&spa_namespace_lock);
784	guid = spa_generate_guid(NULL);
785
786	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
787	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
788
789	if (error == 0) {
790		spa_config_sync(spa, B_FALSE, B_TRUE);
791		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
792	}
793
794	mutex_exit(&spa_namespace_lock);
795	mutex_exit(&spa->spa_vdev_top_lock);
796
797	return (error);
798}
799
800/*
801 * ==========================================================================
802 * SPA state manipulation (open/create/destroy/import/export)
803 * ==========================================================================
804 */
805
806static int
807spa_error_entry_compare(const void *a, const void *b)
808{
809	spa_error_entry_t *sa = (spa_error_entry_t *)a;
810	spa_error_entry_t *sb = (spa_error_entry_t *)b;
811	int ret;
812
813	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
814	    sizeof (zbookmark_phys_t));
815
816	if (ret < 0)
817		return (-1);
818	else if (ret > 0)
819		return (1);
820	else
821		return (0);
822}
823
824/*
825 * Utility function which retrieves copies of the current logs and
826 * re-initializes them in the process.
827 */
828void
829spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
830{
831	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
832
833	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
834	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
835
836	avl_create(&spa->spa_errlist_scrub,
837	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838	    offsetof(spa_error_entry_t, se_avl));
839	avl_create(&spa->spa_errlist_last,
840	    spa_error_entry_compare, sizeof (spa_error_entry_t),
841	    offsetof(spa_error_entry_t, se_avl));
842}
843
844static void
845spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
846{
847	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
848	enum zti_modes mode = ztip->zti_mode;
849	uint_t value = ztip->zti_value;
850	uint_t count = ztip->zti_count;
851	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
852	char name[32];
853	uint_t flags = 0;
854	boolean_t batch = B_FALSE;
855
856	if (mode == ZTI_MODE_NULL) {
857		tqs->stqs_count = 0;
858		tqs->stqs_taskq = NULL;
859		return;
860	}
861
862	ASSERT3U(count, >, 0);
863
864	tqs->stqs_count = count;
865	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
866
867	switch (mode) {
868	case ZTI_MODE_FIXED:
869		ASSERT3U(value, >=, 1);
870		value = MAX(value, 1);
871		break;
872
873	case ZTI_MODE_BATCH:
874		batch = B_TRUE;
875		flags |= TASKQ_THREADS_CPU_PCT;
876		value = zio_taskq_batch_pct;
877		break;
878
879	default:
880		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
881		    "spa_activate()",
882		    zio_type_name[t], zio_taskq_types[q], mode, value);
883		break;
884	}
885
886	for (uint_t i = 0; i < count; i++) {
887		taskq_t *tq;
888
889		if (count > 1) {
890			(void) snprintf(name, sizeof (name), "%s_%s_%u",
891			    zio_type_name[t], zio_taskq_types[q], i);
892		} else {
893			(void) snprintf(name, sizeof (name), "%s_%s",
894			    zio_type_name[t], zio_taskq_types[q]);
895		}
896
897#ifdef SYSDC
898		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
899			if (batch)
900				flags |= TASKQ_DC_BATCH;
901
902			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
903			    spa->spa_proc, zio_taskq_basedc, flags);
904		} else {
905#endif
906			pri_t pri = maxclsyspri;
907			/*
908			 * The write issue taskq can be extremely CPU
909			 * intensive.  Run it at slightly lower priority
910			 * than the other taskqs.
911			 */
912			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
913				pri--;
914
915			tq = taskq_create_proc(name, value, pri, 50,
916			    INT_MAX, spa->spa_proc, flags);
917#ifdef SYSDC
918		}
919#endif
920
921		tqs->stqs_taskq[i] = tq;
922	}
923}
924
925static void
926spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
927{
928	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
929
930	if (tqs->stqs_taskq == NULL) {
931		ASSERT0(tqs->stqs_count);
932		return;
933	}
934
935	for (uint_t i = 0; i < tqs->stqs_count; i++) {
936		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
937		taskq_destroy(tqs->stqs_taskq[i]);
938	}
939
940	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
941	tqs->stqs_taskq = NULL;
942}
943
944/*
945 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
946 * Note that a type may have multiple discrete taskqs to avoid lock contention
947 * on the taskq itself. In that case we choose which taskq at random by using
948 * the low bits of gethrtime().
949 */
950void
951spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
952    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
953{
954	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
955	taskq_t *tq;
956
957	ASSERT3P(tqs->stqs_taskq, !=, NULL);
958	ASSERT3U(tqs->stqs_count, !=, 0);
959
960	if (tqs->stqs_count == 1) {
961		tq = tqs->stqs_taskq[0];
962	} else {
963#ifdef _KERNEL
964		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
965#else
966		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
967#endif
968	}
969
970	taskq_dispatch_ent(tq, func, arg, flags, ent);
971}
972
973static void
974spa_create_zio_taskqs(spa_t *spa)
975{
976	for (int t = 0; t < ZIO_TYPES; t++) {
977		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
978			spa_taskqs_init(spa, t, q);
979		}
980	}
981}
982
983#ifdef _KERNEL
984#ifdef SPA_PROCESS
985static void
986spa_thread(void *arg)
987{
988	callb_cpr_t cprinfo;
989
990	spa_t *spa = arg;
991	user_t *pu = PTOU(curproc);
992
993	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
994	    spa->spa_name);
995
996	ASSERT(curproc != &p0);
997	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
998	    "zpool-%s", spa->spa_name);
999	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1000
1001#ifdef PSRSET_BIND
1002	/* bind this thread to the requested psrset */
1003	if (zio_taskq_psrset_bind != PS_NONE) {
1004		pool_lock();
1005		mutex_enter(&cpu_lock);
1006		mutex_enter(&pidlock);
1007		mutex_enter(&curproc->p_lock);
1008
1009		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1010		    0, NULL, NULL) == 0)  {
1011			curthread->t_bind_pset = zio_taskq_psrset_bind;
1012		} else {
1013			cmn_err(CE_WARN,
1014			    "Couldn't bind process for zfs pool \"%s\" to "
1015			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1016		}
1017
1018		mutex_exit(&curproc->p_lock);
1019		mutex_exit(&pidlock);
1020		mutex_exit(&cpu_lock);
1021		pool_unlock();
1022	}
1023#endif
1024
1025#ifdef SYSDC
1026	if (zio_taskq_sysdc) {
1027		sysdc_thread_enter(curthread, 100, 0);
1028	}
1029#endif
1030
1031	spa->spa_proc = curproc;
1032	spa->spa_did = curthread->t_did;
1033
1034	spa_create_zio_taskqs(spa);
1035
1036	mutex_enter(&spa->spa_proc_lock);
1037	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1038
1039	spa->spa_proc_state = SPA_PROC_ACTIVE;
1040	cv_broadcast(&spa->spa_proc_cv);
1041
1042	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1043	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1044		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1045	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1046
1047	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1048	spa->spa_proc_state = SPA_PROC_GONE;
1049	spa->spa_proc = &p0;
1050	cv_broadcast(&spa->spa_proc_cv);
1051	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1052
1053	mutex_enter(&curproc->p_lock);
1054	lwp_exit();
1055}
1056#endif	/* SPA_PROCESS */
1057#endif
1058
1059/*
1060 * Activate an uninitialized pool.
1061 */
1062static void
1063spa_activate(spa_t *spa, int mode)
1064{
1065	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1066
1067	spa->spa_state = POOL_STATE_ACTIVE;
1068	spa->spa_mode = mode;
1069
1070	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1071	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1072
1073	/* Try to create a covering process */
1074	mutex_enter(&spa->spa_proc_lock);
1075	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1076	ASSERT(spa->spa_proc == &p0);
1077	spa->spa_did = 0;
1078
1079#ifdef SPA_PROCESS
1080	/* Only create a process if we're going to be around a while. */
1081	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1082		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1083		    NULL, 0) == 0) {
1084			spa->spa_proc_state = SPA_PROC_CREATED;
1085			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1086				cv_wait(&spa->spa_proc_cv,
1087				    &spa->spa_proc_lock);
1088			}
1089			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1090			ASSERT(spa->spa_proc != &p0);
1091			ASSERT(spa->spa_did != 0);
1092		} else {
1093#ifdef _KERNEL
1094			cmn_err(CE_WARN,
1095			    "Couldn't create process for zfs pool \"%s\"\n",
1096			    spa->spa_name);
1097#endif
1098		}
1099	}
1100#endif	/* SPA_PROCESS */
1101	mutex_exit(&spa->spa_proc_lock);
1102
1103	/* If we didn't create a process, we need to create our taskqs. */
1104	ASSERT(spa->spa_proc == &p0);
1105	if (spa->spa_proc == &p0) {
1106		spa_create_zio_taskqs(spa);
1107	}
1108
1109	/*
1110	 * Start TRIM thread.
1111	 */
1112	trim_thread_create(spa);
1113
1114	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1115	    offsetof(vdev_t, vdev_config_dirty_node));
1116	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1117	    offsetof(vdev_t, vdev_state_dirty_node));
1118
1119	txg_list_create(&spa->spa_vdev_txg_list,
1120	    offsetof(struct vdev, vdev_txg_node));
1121
1122	avl_create(&spa->spa_errlist_scrub,
1123	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1124	    offsetof(spa_error_entry_t, se_avl));
1125	avl_create(&spa->spa_errlist_last,
1126	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1127	    offsetof(spa_error_entry_t, se_avl));
1128}
1129
1130/*
1131 * Opposite of spa_activate().
1132 */
1133static void
1134spa_deactivate(spa_t *spa)
1135{
1136	ASSERT(spa->spa_sync_on == B_FALSE);
1137	ASSERT(spa->spa_dsl_pool == NULL);
1138	ASSERT(spa->spa_root_vdev == NULL);
1139	ASSERT(spa->spa_async_zio_root == NULL);
1140	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1141
1142	/*
1143	 * Stop TRIM thread in case spa_unload() wasn't called directly
1144	 * before spa_deactivate().
1145	 */
1146	trim_thread_destroy(spa);
1147
1148	txg_list_destroy(&spa->spa_vdev_txg_list);
1149
1150	list_destroy(&spa->spa_config_dirty_list);
1151	list_destroy(&spa->spa_state_dirty_list);
1152
1153	for (int t = 0; t < ZIO_TYPES; t++) {
1154		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1155			spa_taskqs_fini(spa, t, q);
1156		}
1157	}
1158
1159	metaslab_class_destroy(spa->spa_normal_class);
1160	spa->spa_normal_class = NULL;
1161
1162	metaslab_class_destroy(spa->spa_log_class);
1163	spa->spa_log_class = NULL;
1164
1165	/*
1166	 * If this was part of an import or the open otherwise failed, we may
1167	 * still have errors left in the queues.  Empty them just in case.
1168	 */
1169	spa_errlog_drain(spa);
1170
1171	avl_destroy(&spa->spa_errlist_scrub);
1172	avl_destroy(&spa->spa_errlist_last);
1173
1174	spa->spa_state = POOL_STATE_UNINITIALIZED;
1175
1176	mutex_enter(&spa->spa_proc_lock);
1177	if (spa->spa_proc_state != SPA_PROC_NONE) {
1178		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1179		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1180		cv_broadcast(&spa->spa_proc_cv);
1181		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1182			ASSERT(spa->spa_proc != &p0);
1183			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1184		}
1185		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1186		spa->spa_proc_state = SPA_PROC_NONE;
1187	}
1188	ASSERT(spa->spa_proc == &p0);
1189	mutex_exit(&spa->spa_proc_lock);
1190
1191#ifdef SPA_PROCESS
1192	/*
1193	 * We want to make sure spa_thread() has actually exited the ZFS
1194	 * module, so that the module can't be unloaded out from underneath
1195	 * it.
1196	 */
1197	if (spa->spa_did != 0) {
1198		thread_join(spa->spa_did);
1199		spa->spa_did = 0;
1200	}
1201#endif	/* SPA_PROCESS */
1202}
1203
1204/*
1205 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1206 * will create all the necessary vdevs in the appropriate layout, with each vdev
1207 * in the CLOSED state.  This will prep the pool before open/creation/import.
1208 * All vdev validation is done by the vdev_alloc() routine.
1209 */
1210static int
1211spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1212    uint_t id, int atype)
1213{
1214	nvlist_t **child;
1215	uint_t children;
1216	int error;
1217
1218	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1219		return (error);
1220
1221	if ((*vdp)->vdev_ops->vdev_op_leaf)
1222		return (0);
1223
1224	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1225	    &child, &children);
1226
1227	if (error == ENOENT)
1228		return (0);
1229
1230	if (error) {
1231		vdev_free(*vdp);
1232		*vdp = NULL;
1233		return (SET_ERROR(EINVAL));
1234	}
1235
1236	for (int c = 0; c < children; c++) {
1237		vdev_t *vd;
1238		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1239		    atype)) != 0) {
1240			vdev_free(*vdp);
1241			*vdp = NULL;
1242			return (error);
1243		}
1244	}
1245
1246	ASSERT(*vdp != NULL);
1247
1248	return (0);
1249}
1250
1251/*
1252 * Opposite of spa_load().
1253 */
1254static void
1255spa_unload(spa_t *spa)
1256{
1257	int i;
1258
1259	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1260
1261	/*
1262	 * Stop TRIM thread.
1263	 */
1264	trim_thread_destroy(spa);
1265
1266	/*
1267	 * Stop async tasks.
1268	 */
1269	spa_async_suspend(spa);
1270
1271	/*
1272	 * Stop syncing.
1273	 */
1274	if (spa->spa_sync_on) {
1275		txg_sync_stop(spa->spa_dsl_pool);
1276		spa->spa_sync_on = B_FALSE;
1277	}
1278
1279	/*
1280	 * Wait for any outstanding async I/O to complete.
1281	 */
1282	if (spa->spa_async_zio_root != NULL) {
1283		(void) zio_wait(spa->spa_async_zio_root);
1284		spa->spa_async_zio_root = NULL;
1285	}
1286
1287	bpobj_close(&spa->spa_deferred_bpobj);
1288
1289	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1290
1291	/*
1292	 * Close all vdevs.
1293	 */
1294	if (spa->spa_root_vdev)
1295		vdev_free(spa->spa_root_vdev);
1296	ASSERT(spa->spa_root_vdev == NULL);
1297
1298	/*
1299	 * Close the dsl pool.
1300	 */
1301	if (spa->spa_dsl_pool) {
1302		dsl_pool_close(spa->spa_dsl_pool);
1303		spa->spa_dsl_pool = NULL;
1304		spa->spa_meta_objset = NULL;
1305	}
1306
1307	ddt_unload(spa);
1308
1309
1310	/*
1311	 * Drop and purge level 2 cache
1312	 */
1313	spa_l2cache_drop(spa);
1314
1315	for (i = 0; i < spa->spa_spares.sav_count; i++)
1316		vdev_free(spa->spa_spares.sav_vdevs[i]);
1317	if (spa->spa_spares.sav_vdevs) {
1318		kmem_free(spa->spa_spares.sav_vdevs,
1319		    spa->spa_spares.sav_count * sizeof (void *));
1320		spa->spa_spares.sav_vdevs = NULL;
1321	}
1322	if (spa->spa_spares.sav_config) {
1323		nvlist_free(spa->spa_spares.sav_config);
1324		spa->spa_spares.sav_config = NULL;
1325	}
1326	spa->spa_spares.sav_count = 0;
1327
1328	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1329		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1330		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1331	}
1332	if (spa->spa_l2cache.sav_vdevs) {
1333		kmem_free(spa->spa_l2cache.sav_vdevs,
1334		    spa->spa_l2cache.sav_count * sizeof (void *));
1335		spa->spa_l2cache.sav_vdevs = NULL;
1336	}
1337	if (spa->spa_l2cache.sav_config) {
1338		nvlist_free(spa->spa_l2cache.sav_config);
1339		spa->spa_l2cache.sav_config = NULL;
1340	}
1341	spa->spa_l2cache.sav_count = 0;
1342
1343	spa->spa_async_suspended = 0;
1344
1345	if (spa->spa_comment != NULL) {
1346		spa_strfree(spa->spa_comment);
1347		spa->spa_comment = NULL;
1348	}
1349
1350	spa_config_exit(spa, SCL_ALL, FTAG);
1351}
1352
1353/*
1354 * Load (or re-load) the current list of vdevs describing the active spares for
1355 * this pool.  When this is called, we have some form of basic information in
1356 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1357 * then re-generate a more complete list including status information.
1358 */
1359static void
1360spa_load_spares(spa_t *spa)
1361{
1362	nvlist_t **spares;
1363	uint_t nspares;
1364	int i;
1365	vdev_t *vd, *tvd;
1366
1367	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1368
1369	/*
1370	 * First, close and free any existing spare vdevs.
1371	 */
1372	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1373		vd = spa->spa_spares.sav_vdevs[i];
1374
1375		/* Undo the call to spa_activate() below */
1376		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1377		    B_FALSE)) != NULL && tvd->vdev_isspare)
1378			spa_spare_remove(tvd);
1379		vdev_close(vd);
1380		vdev_free(vd);
1381	}
1382
1383	if (spa->spa_spares.sav_vdevs)
1384		kmem_free(spa->spa_spares.sav_vdevs,
1385		    spa->spa_spares.sav_count * sizeof (void *));
1386
1387	if (spa->spa_spares.sav_config == NULL)
1388		nspares = 0;
1389	else
1390		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1391		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1392
1393	spa->spa_spares.sav_count = (int)nspares;
1394	spa->spa_spares.sav_vdevs = NULL;
1395
1396	if (nspares == 0)
1397		return;
1398
1399	/*
1400	 * Construct the array of vdevs, opening them to get status in the
1401	 * process.   For each spare, there is potentially two different vdev_t
1402	 * structures associated with it: one in the list of spares (used only
1403	 * for basic validation purposes) and one in the active vdev
1404	 * configuration (if it's spared in).  During this phase we open and
1405	 * validate each vdev on the spare list.  If the vdev also exists in the
1406	 * active configuration, then we also mark this vdev as an active spare.
1407	 */
1408	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1409	    KM_SLEEP);
1410	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1411		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1412		    VDEV_ALLOC_SPARE) == 0);
1413		ASSERT(vd != NULL);
1414
1415		spa->spa_spares.sav_vdevs[i] = vd;
1416
1417		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1418		    B_FALSE)) != NULL) {
1419			if (!tvd->vdev_isspare)
1420				spa_spare_add(tvd);
1421
1422			/*
1423			 * We only mark the spare active if we were successfully
1424			 * able to load the vdev.  Otherwise, importing a pool
1425			 * with a bad active spare would result in strange
1426			 * behavior, because multiple pool would think the spare
1427			 * is actively in use.
1428			 *
1429			 * There is a vulnerability here to an equally bizarre
1430			 * circumstance, where a dead active spare is later
1431			 * brought back to life (onlined or otherwise).  Given
1432			 * the rarity of this scenario, and the extra complexity
1433			 * it adds, we ignore the possibility.
1434			 */
1435			if (!vdev_is_dead(tvd))
1436				spa_spare_activate(tvd);
1437		}
1438
1439		vd->vdev_top = vd;
1440		vd->vdev_aux = &spa->spa_spares;
1441
1442		if (vdev_open(vd) != 0)
1443			continue;
1444
1445		if (vdev_validate_aux(vd) == 0)
1446			spa_spare_add(vd);
1447	}
1448
1449	/*
1450	 * Recompute the stashed list of spares, with status information
1451	 * this time.
1452	 */
1453	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1454	    DATA_TYPE_NVLIST_ARRAY) == 0);
1455
1456	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1457	    KM_SLEEP);
1458	for (i = 0; i < spa->spa_spares.sav_count; i++)
1459		spares[i] = vdev_config_generate(spa,
1460		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1461	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1462	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1463	for (i = 0; i < spa->spa_spares.sav_count; i++)
1464		nvlist_free(spares[i]);
1465	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1466}
1467
1468/*
1469 * Load (or re-load) the current list of vdevs describing the active l2cache for
1470 * this pool.  When this is called, we have some form of basic information in
1471 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1472 * then re-generate a more complete list including status information.
1473 * Devices which are already active have their details maintained, and are
1474 * not re-opened.
1475 */
1476static void
1477spa_load_l2cache(spa_t *spa)
1478{
1479	nvlist_t **l2cache;
1480	uint_t nl2cache;
1481	int i, j, oldnvdevs;
1482	uint64_t guid;
1483	vdev_t *vd, **oldvdevs, **newvdevs;
1484	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1485
1486	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1487
1488	if (sav->sav_config != NULL) {
1489		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1490		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1491		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1492	} else {
1493		nl2cache = 0;
1494		newvdevs = NULL;
1495	}
1496
1497	oldvdevs = sav->sav_vdevs;
1498	oldnvdevs = sav->sav_count;
1499	sav->sav_vdevs = NULL;
1500	sav->sav_count = 0;
1501
1502	/*
1503	 * Process new nvlist of vdevs.
1504	 */
1505	for (i = 0; i < nl2cache; i++) {
1506		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1507		    &guid) == 0);
1508
1509		newvdevs[i] = NULL;
1510		for (j = 0; j < oldnvdevs; j++) {
1511			vd = oldvdevs[j];
1512			if (vd != NULL && guid == vd->vdev_guid) {
1513				/*
1514				 * Retain previous vdev for add/remove ops.
1515				 */
1516				newvdevs[i] = vd;
1517				oldvdevs[j] = NULL;
1518				break;
1519			}
1520		}
1521
1522		if (newvdevs[i] == NULL) {
1523			/*
1524			 * Create new vdev
1525			 */
1526			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1527			    VDEV_ALLOC_L2CACHE) == 0);
1528			ASSERT(vd != NULL);
1529			newvdevs[i] = vd;
1530
1531			/*
1532			 * Commit this vdev as an l2cache device,
1533			 * even if it fails to open.
1534			 */
1535			spa_l2cache_add(vd);
1536
1537			vd->vdev_top = vd;
1538			vd->vdev_aux = sav;
1539
1540			spa_l2cache_activate(vd);
1541
1542			if (vdev_open(vd) != 0)
1543				continue;
1544
1545			(void) vdev_validate_aux(vd);
1546
1547			if (!vdev_is_dead(vd))
1548				l2arc_add_vdev(spa, vd);
1549		}
1550	}
1551
1552	/*
1553	 * Purge vdevs that were dropped
1554	 */
1555	for (i = 0; i < oldnvdevs; i++) {
1556		uint64_t pool;
1557
1558		vd = oldvdevs[i];
1559		if (vd != NULL) {
1560			ASSERT(vd->vdev_isl2cache);
1561
1562			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1563			    pool != 0ULL && l2arc_vdev_present(vd))
1564				l2arc_remove_vdev(vd);
1565			vdev_clear_stats(vd);
1566			vdev_free(vd);
1567		}
1568	}
1569
1570	if (oldvdevs)
1571		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1572
1573	if (sav->sav_config == NULL)
1574		goto out;
1575
1576	sav->sav_vdevs = newvdevs;
1577	sav->sav_count = (int)nl2cache;
1578
1579	/*
1580	 * Recompute the stashed list of l2cache devices, with status
1581	 * information this time.
1582	 */
1583	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1584	    DATA_TYPE_NVLIST_ARRAY) == 0);
1585
1586	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1587	for (i = 0; i < sav->sav_count; i++)
1588		l2cache[i] = vdev_config_generate(spa,
1589		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1590	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1591	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1592out:
1593	for (i = 0; i < sav->sav_count; i++)
1594		nvlist_free(l2cache[i]);
1595	if (sav->sav_count)
1596		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1597}
1598
1599static int
1600load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1601{
1602	dmu_buf_t *db;
1603	char *packed = NULL;
1604	size_t nvsize = 0;
1605	int error;
1606	*value = NULL;
1607
1608	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1609	if (error != 0)
1610		return (error);
1611	nvsize = *(uint64_t *)db->db_data;
1612	dmu_buf_rele(db, FTAG);
1613
1614	packed = kmem_alloc(nvsize, KM_SLEEP);
1615	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1616	    DMU_READ_PREFETCH);
1617	if (error == 0)
1618		error = nvlist_unpack(packed, nvsize, value, 0);
1619	kmem_free(packed, nvsize);
1620
1621	return (error);
1622}
1623
1624/*
1625 * Checks to see if the given vdev could not be opened, in which case we post a
1626 * sysevent to notify the autoreplace code that the device has been removed.
1627 */
1628static void
1629spa_check_removed(vdev_t *vd)
1630{
1631	for (int c = 0; c < vd->vdev_children; c++)
1632		spa_check_removed(vd->vdev_child[c]);
1633
1634	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1635	    !vd->vdev_ishole) {
1636		zfs_post_autoreplace(vd->vdev_spa, vd);
1637		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1638	}
1639}
1640
1641/*
1642 * Validate the current config against the MOS config
1643 */
1644static boolean_t
1645spa_config_valid(spa_t *spa, nvlist_t *config)
1646{
1647	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1648	nvlist_t *nv;
1649
1650	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1651
1652	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1653	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1654
1655	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1656
1657	/*
1658	 * If we're doing a normal import, then build up any additional
1659	 * diagnostic information about missing devices in this config.
1660	 * We'll pass this up to the user for further processing.
1661	 */
1662	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1663		nvlist_t **child, *nv;
1664		uint64_t idx = 0;
1665
1666		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1667		    KM_SLEEP);
1668		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1669
1670		for (int c = 0; c < rvd->vdev_children; c++) {
1671			vdev_t *tvd = rvd->vdev_child[c];
1672			vdev_t *mtvd  = mrvd->vdev_child[c];
1673
1674			if (tvd->vdev_ops == &vdev_missing_ops &&
1675			    mtvd->vdev_ops != &vdev_missing_ops &&
1676			    mtvd->vdev_islog)
1677				child[idx++] = vdev_config_generate(spa, mtvd,
1678				    B_FALSE, 0);
1679		}
1680
1681		if (idx) {
1682			VERIFY(nvlist_add_nvlist_array(nv,
1683			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1684			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1685			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1686
1687			for (int i = 0; i < idx; i++)
1688				nvlist_free(child[i]);
1689		}
1690		nvlist_free(nv);
1691		kmem_free(child, rvd->vdev_children * sizeof (char **));
1692	}
1693
1694	/*
1695	 * Compare the root vdev tree with the information we have
1696	 * from the MOS config (mrvd). Check each top-level vdev
1697	 * with the corresponding MOS config top-level (mtvd).
1698	 */
1699	for (int c = 0; c < rvd->vdev_children; c++) {
1700		vdev_t *tvd = rvd->vdev_child[c];
1701		vdev_t *mtvd  = mrvd->vdev_child[c];
1702
1703		/*
1704		 * Resolve any "missing" vdevs in the current configuration.
1705		 * If we find that the MOS config has more accurate information
1706		 * about the top-level vdev then use that vdev instead.
1707		 */
1708		if (tvd->vdev_ops == &vdev_missing_ops &&
1709		    mtvd->vdev_ops != &vdev_missing_ops) {
1710
1711			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1712				continue;
1713
1714			/*
1715			 * Device specific actions.
1716			 */
1717			if (mtvd->vdev_islog) {
1718				spa_set_log_state(spa, SPA_LOG_CLEAR);
1719			} else {
1720				/*
1721				 * XXX - once we have 'readonly' pool
1722				 * support we should be able to handle
1723				 * missing data devices by transitioning
1724				 * the pool to readonly.
1725				 */
1726				continue;
1727			}
1728
1729			/*
1730			 * Swap the missing vdev with the data we were
1731			 * able to obtain from the MOS config.
1732			 */
1733			vdev_remove_child(rvd, tvd);
1734			vdev_remove_child(mrvd, mtvd);
1735
1736			vdev_add_child(rvd, mtvd);
1737			vdev_add_child(mrvd, tvd);
1738
1739			spa_config_exit(spa, SCL_ALL, FTAG);
1740			vdev_load(mtvd);
1741			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1742
1743			vdev_reopen(rvd);
1744		} else if (mtvd->vdev_islog) {
1745			/*
1746			 * Load the slog device's state from the MOS config
1747			 * since it's possible that the label does not
1748			 * contain the most up-to-date information.
1749			 */
1750			vdev_load_log_state(tvd, mtvd);
1751			vdev_reopen(tvd);
1752		}
1753	}
1754	vdev_free(mrvd);
1755	spa_config_exit(spa, SCL_ALL, FTAG);
1756
1757	/*
1758	 * Ensure we were able to validate the config.
1759	 */
1760	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1761}
1762
1763/*
1764 * Check for missing log devices
1765 */
1766static boolean_t
1767spa_check_logs(spa_t *spa)
1768{
1769	boolean_t rv = B_FALSE;
1770
1771	switch (spa->spa_log_state) {
1772	case SPA_LOG_MISSING:
1773		/* need to recheck in case slog has been restored */
1774	case SPA_LOG_UNKNOWN:
1775		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1776		    NULL, DS_FIND_CHILDREN) != 0);
1777		if (rv)
1778			spa_set_log_state(spa, SPA_LOG_MISSING);
1779		break;
1780	}
1781	return (rv);
1782}
1783
1784static boolean_t
1785spa_passivate_log(spa_t *spa)
1786{
1787	vdev_t *rvd = spa->spa_root_vdev;
1788	boolean_t slog_found = B_FALSE;
1789
1790	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1791
1792	if (!spa_has_slogs(spa))
1793		return (B_FALSE);
1794
1795	for (int c = 0; c < rvd->vdev_children; c++) {
1796		vdev_t *tvd = rvd->vdev_child[c];
1797		metaslab_group_t *mg = tvd->vdev_mg;
1798
1799		if (tvd->vdev_islog) {
1800			metaslab_group_passivate(mg);
1801			slog_found = B_TRUE;
1802		}
1803	}
1804
1805	return (slog_found);
1806}
1807
1808static void
1809spa_activate_log(spa_t *spa)
1810{
1811	vdev_t *rvd = spa->spa_root_vdev;
1812
1813	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1814
1815	for (int c = 0; c < rvd->vdev_children; c++) {
1816		vdev_t *tvd = rvd->vdev_child[c];
1817		metaslab_group_t *mg = tvd->vdev_mg;
1818
1819		if (tvd->vdev_islog)
1820			metaslab_group_activate(mg);
1821	}
1822}
1823
1824int
1825spa_offline_log(spa_t *spa)
1826{
1827	int error;
1828
1829	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1830	    NULL, DS_FIND_CHILDREN);
1831	if (error == 0) {
1832		/*
1833		 * We successfully offlined the log device, sync out the
1834		 * current txg so that the "stubby" block can be removed
1835		 * by zil_sync().
1836		 */
1837		txg_wait_synced(spa->spa_dsl_pool, 0);
1838	}
1839	return (error);
1840}
1841
1842static void
1843spa_aux_check_removed(spa_aux_vdev_t *sav)
1844{
1845	int i;
1846
1847	for (i = 0; i < sav->sav_count; i++)
1848		spa_check_removed(sav->sav_vdevs[i]);
1849}
1850
1851void
1852spa_claim_notify(zio_t *zio)
1853{
1854	spa_t *spa = zio->io_spa;
1855
1856	if (zio->io_error)
1857		return;
1858
1859	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1860	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1861		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1862	mutex_exit(&spa->spa_props_lock);
1863}
1864
1865typedef struct spa_load_error {
1866	uint64_t	sle_meta_count;
1867	uint64_t	sle_data_count;
1868} spa_load_error_t;
1869
1870static void
1871spa_load_verify_done(zio_t *zio)
1872{
1873	blkptr_t *bp = zio->io_bp;
1874	spa_load_error_t *sle = zio->io_private;
1875	dmu_object_type_t type = BP_GET_TYPE(bp);
1876	int error = zio->io_error;
1877	spa_t *spa = zio->io_spa;
1878
1879	if (error) {
1880		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1881		    type != DMU_OT_INTENT_LOG)
1882			atomic_add_64(&sle->sle_meta_count, 1);
1883		else
1884			atomic_add_64(&sle->sle_data_count, 1);
1885	}
1886	zio_data_buf_free(zio->io_data, zio->io_size);
1887
1888	mutex_enter(&spa->spa_scrub_lock);
1889	spa->spa_scrub_inflight--;
1890	cv_broadcast(&spa->spa_scrub_io_cv);
1891	mutex_exit(&spa->spa_scrub_lock);
1892}
1893
1894/*
1895 * Maximum number of concurrent scrub i/os to create while verifying
1896 * a pool while importing it.
1897 */
1898int spa_load_verify_maxinflight = 10000;
1899boolean_t spa_load_verify_metadata = B_TRUE;
1900boolean_t spa_load_verify_data = B_TRUE;
1901
1902SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1903    &spa_load_verify_maxinflight, 0,
1904    "Maximum number of concurrent scrub I/Os to create while verifying a "
1905    "pool while importing it");
1906
1907SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1908    &spa_load_verify_metadata, 0,
1909    "Check metadata on import?");
1910
1911SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1912    &spa_load_verify_data, 0,
1913    "Check user data on import?");
1914
1915/*ARGSUSED*/
1916static int
1917spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1918    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1919{
1920	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1921		return (0);
1922	/*
1923	 * Note: normally this routine will not be called if
1924	 * spa_load_verify_metadata is not set.  However, it may be useful
1925	 * to manually set the flag after the traversal has begun.
1926	 */
1927	if (!spa_load_verify_metadata)
1928		return (0);
1929	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1930		return (0);
1931
1932	zio_t *rio = arg;
1933	size_t size = BP_GET_PSIZE(bp);
1934	void *data = zio_data_buf_alloc(size);
1935
1936	mutex_enter(&spa->spa_scrub_lock);
1937	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1938		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1939	spa->spa_scrub_inflight++;
1940	mutex_exit(&spa->spa_scrub_lock);
1941
1942	zio_nowait(zio_read(rio, spa, bp, data, size,
1943	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1944	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1945	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1946	return (0);
1947}
1948
1949static int
1950spa_load_verify(spa_t *spa)
1951{
1952	zio_t *rio;
1953	spa_load_error_t sle = { 0 };
1954	zpool_rewind_policy_t policy;
1955	boolean_t verify_ok = B_FALSE;
1956	int error = 0;
1957
1958	zpool_get_rewind_policy(spa->spa_config, &policy);
1959
1960	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1961		return (0);
1962
1963	rio = zio_root(spa, NULL, &sle,
1964	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1965
1966	if (spa_load_verify_metadata) {
1967		error = traverse_pool(spa, spa->spa_verify_min_txg,
1968		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1969		    spa_load_verify_cb, rio);
1970	}
1971
1972	(void) zio_wait(rio);
1973
1974	spa->spa_load_meta_errors = sle.sle_meta_count;
1975	spa->spa_load_data_errors = sle.sle_data_count;
1976
1977	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1978	    sle.sle_data_count <= policy.zrp_maxdata) {
1979		int64_t loss = 0;
1980
1981		verify_ok = B_TRUE;
1982		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1983		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1984
1985		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1986		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1987		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1988		VERIFY(nvlist_add_int64(spa->spa_load_info,
1989		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1990		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1991		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1992	} else {
1993		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1994	}
1995
1996	if (error) {
1997		if (error != ENXIO && error != EIO)
1998			error = SET_ERROR(EIO);
1999		return (error);
2000	}
2001
2002	return (verify_ok ? 0 : EIO);
2003}
2004
2005/*
2006 * Find a value in the pool props object.
2007 */
2008static void
2009spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2010{
2011	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2012	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2013}
2014
2015/*
2016 * Find a value in the pool directory object.
2017 */
2018static int
2019spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2020{
2021	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2022	    name, sizeof (uint64_t), 1, val));
2023}
2024
2025static int
2026spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2027{
2028	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2029	return (err);
2030}
2031
2032/*
2033 * Fix up config after a partly-completed split.  This is done with the
2034 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2035 * pool have that entry in their config, but only the splitting one contains
2036 * a list of all the guids of the vdevs that are being split off.
2037 *
2038 * This function determines what to do with that list: either rejoin
2039 * all the disks to the pool, or complete the splitting process.  To attempt
2040 * the rejoin, each disk that is offlined is marked online again, and
2041 * we do a reopen() call.  If the vdev label for every disk that was
2042 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2043 * then we call vdev_split() on each disk, and complete the split.
2044 *
2045 * Otherwise we leave the config alone, with all the vdevs in place in
2046 * the original pool.
2047 */
2048static void
2049spa_try_repair(spa_t *spa, nvlist_t *config)
2050{
2051	uint_t extracted;
2052	uint64_t *glist;
2053	uint_t i, gcount;
2054	nvlist_t *nvl;
2055	vdev_t **vd;
2056	boolean_t attempt_reopen;
2057
2058	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2059		return;
2060
2061	/* check that the config is complete */
2062	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2063	    &glist, &gcount) != 0)
2064		return;
2065
2066	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2067
2068	/* attempt to online all the vdevs & validate */
2069	attempt_reopen = B_TRUE;
2070	for (i = 0; i < gcount; i++) {
2071		if (glist[i] == 0)	/* vdev is hole */
2072			continue;
2073
2074		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2075		if (vd[i] == NULL) {
2076			/*
2077			 * Don't bother attempting to reopen the disks;
2078			 * just do the split.
2079			 */
2080			attempt_reopen = B_FALSE;
2081		} else {
2082			/* attempt to re-online it */
2083			vd[i]->vdev_offline = B_FALSE;
2084		}
2085	}
2086
2087	if (attempt_reopen) {
2088		vdev_reopen(spa->spa_root_vdev);
2089
2090		/* check each device to see what state it's in */
2091		for (extracted = 0, i = 0; i < gcount; i++) {
2092			if (vd[i] != NULL &&
2093			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2094				break;
2095			++extracted;
2096		}
2097	}
2098
2099	/*
2100	 * If every disk has been moved to the new pool, or if we never
2101	 * even attempted to look at them, then we split them off for
2102	 * good.
2103	 */
2104	if (!attempt_reopen || gcount == extracted) {
2105		for (i = 0; i < gcount; i++)
2106			if (vd[i] != NULL)
2107				vdev_split(vd[i]);
2108		vdev_reopen(spa->spa_root_vdev);
2109	}
2110
2111	kmem_free(vd, gcount * sizeof (vdev_t *));
2112}
2113
2114static int
2115spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2116    boolean_t mosconfig)
2117{
2118	nvlist_t *config = spa->spa_config;
2119	char *ereport = FM_EREPORT_ZFS_POOL;
2120	char *comment;
2121	int error;
2122	uint64_t pool_guid;
2123	nvlist_t *nvl;
2124
2125	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2126		return (SET_ERROR(EINVAL));
2127
2128	ASSERT(spa->spa_comment == NULL);
2129	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2130		spa->spa_comment = spa_strdup(comment);
2131
2132	/*
2133	 * Versioning wasn't explicitly added to the label until later, so if
2134	 * it's not present treat it as the initial version.
2135	 */
2136	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2137	    &spa->spa_ubsync.ub_version) != 0)
2138		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2139
2140	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2141	    &spa->spa_config_txg);
2142
2143	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2144	    spa_guid_exists(pool_guid, 0)) {
2145		error = SET_ERROR(EEXIST);
2146	} else {
2147		spa->spa_config_guid = pool_guid;
2148
2149		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2150		    &nvl) == 0) {
2151			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2152			    KM_SLEEP) == 0);
2153		}
2154
2155		nvlist_free(spa->spa_load_info);
2156		spa->spa_load_info = fnvlist_alloc();
2157
2158		gethrestime(&spa->spa_loaded_ts);
2159		error = spa_load_impl(spa, pool_guid, config, state, type,
2160		    mosconfig, &ereport);
2161	}
2162
2163	spa->spa_minref = refcount_count(&spa->spa_refcount);
2164	if (error) {
2165		if (error != EEXIST) {
2166			spa->spa_loaded_ts.tv_sec = 0;
2167			spa->spa_loaded_ts.tv_nsec = 0;
2168		}
2169		if (error != EBADF) {
2170			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2171		}
2172	}
2173	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2174	spa->spa_ena = 0;
2175
2176	return (error);
2177}
2178
2179/*
2180 * Load an existing storage pool, using the pool's builtin spa_config as a
2181 * source of configuration information.
2182 */
2183static int
2184spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2185    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2186    char **ereport)
2187{
2188	int error = 0;
2189	nvlist_t *nvroot = NULL;
2190	nvlist_t *label;
2191	vdev_t *rvd;
2192	uberblock_t *ub = &spa->spa_uberblock;
2193	uint64_t children, config_cache_txg = spa->spa_config_txg;
2194	int orig_mode = spa->spa_mode;
2195	int parse;
2196	uint64_t obj;
2197	boolean_t missing_feat_write = B_FALSE;
2198
2199	/*
2200	 * If this is an untrusted config, access the pool in read-only mode.
2201	 * This prevents things like resilvering recently removed devices.
2202	 */
2203	if (!mosconfig)
2204		spa->spa_mode = FREAD;
2205
2206	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2207
2208	spa->spa_load_state = state;
2209
2210	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2211		return (SET_ERROR(EINVAL));
2212
2213	parse = (type == SPA_IMPORT_EXISTING ?
2214	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2215
2216	/*
2217	 * Create "The Godfather" zio to hold all async IOs
2218	 */
2219	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2220	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2221
2222	/*
2223	 * Parse the configuration into a vdev tree.  We explicitly set the
2224	 * value that will be returned by spa_version() since parsing the
2225	 * configuration requires knowing the version number.
2226	 */
2227	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2228	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2229	spa_config_exit(spa, SCL_ALL, FTAG);
2230
2231	if (error != 0)
2232		return (error);
2233
2234	ASSERT(spa->spa_root_vdev == rvd);
2235
2236	if (type != SPA_IMPORT_ASSEMBLE) {
2237		ASSERT(spa_guid(spa) == pool_guid);
2238	}
2239
2240	/*
2241	 * Try to open all vdevs, loading each label in the process.
2242	 */
2243	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2244	error = vdev_open(rvd);
2245	spa_config_exit(spa, SCL_ALL, FTAG);
2246	if (error != 0)
2247		return (error);
2248
2249	/*
2250	 * We need to validate the vdev labels against the configuration that
2251	 * we have in hand, which is dependent on the setting of mosconfig. If
2252	 * mosconfig is true then we're validating the vdev labels based on
2253	 * that config.  Otherwise, we're validating against the cached config
2254	 * (zpool.cache) that was read when we loaded the zfs module, and then
2255	 * later we will recursively call spa_load() and validate against
2256	 * the vdev config.
2257	 *
2258	 * If we're assembling a new pool that's been split off from an
2259	 * existing pool, the labels haven't yet been updated so we skip
2260	 * validation for now.
2261	 */
2262	if (type != SPA_IMPORT_ASSEMBLE) {
2263		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2264		error = vdev_validate(rvd, mosconfig);
2265		spa_config_exit(spa, SCL_ALL, FTAG);
2266
2267		if (error != 0)
2268			return (error);
2269
2270		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2271			return (SET_ERROR(ENXIO));
2272	}
2273
2274	/*
2275	 * Find the best uberblock.
2276	 */
2277	vdev_uberblock_load(rvd, ub, &label);
2278
2279	/*
2280	 * If we weren't able to find a single valid uberblock, return failure.
2281	 */
2282	if (ub->ub_txg == 0) {
2283		nvlist_free(label);
2284		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2285	}
2286
2287	/*
2288	 * If the pool has an unsupported version we can't open it.
2289	 */
2290	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2291		nvlist_free(label);
2292		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2293	}
2294
2295	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2296		nvlist_t *features;
2297
2298		/*
2299		 * If we weren't able to find what's necessary for reading the
2300		 * MOS in the label, return failure.
2301		 */
2302		if (label == NULL || nvlist_lookup_nvlist(label,
2303		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2304			nvlist_free(label);
2305			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2306			    ENXIO));
2307		}
2308
2309		/*
2310		 * Update our in-core representation with the definitive values
2311		 * from the label.
2312		 */
2313		nvlist_free(spa->spa_label_features);
2314		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2315	}
2316
2317	nvlist_free(label);
2318
2319	/*
2320	 * Look through entries in the label nvlist's features_for_read. If
2321	 * there is a feature listed there which we don't understand then we
2322	 * cannot open a pool.
2323	 */
2324	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2325		nvlist_t *unsup_feat;
2326
2327		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2328		    0);
2329
2330		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2331		    NULL); nvp != NULL;
2332		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2333			if (!zfeature_is_supported(nvpair_name(nvp))) {
2334				VERIFY(nvlist_add_string(unsup_feat,
2335				    nvpair_name(nvp), "") == 0);
2336			}
2337		}
2338
2339		if (!nvlist_empty(unsup_feat)) {
2340			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2341			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2342			nvlist_free(unsup_feat);
2343			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2344			    ENOTSUP));
2345		}
2346
2347		nvlist_free(unsup_feat);
2348	}
2349
2350	/*
2351	 * If the vdev guid sum doesn't match the uberblock, we have an
2352	 * incomplete configuration.  We first check to see if the pool
2353	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2354	 * If it is, defer the vdev_guid_sum check till later so we
2355	 * can handle missing vdevs.
2356	 */
2357	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2358	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2359	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2360		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2361
2362	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2363		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2364		spa_try_repair(spa, config);
2365		spa_config_exit(spa, SCL_ALL, FTAG);
2366		nvlist_free(spa->spa_config_splitting);
2367		spa->spa_config_splitting = NULL;
2368	}
2369
2370	/*
2371	 * Initialize internal SPA structures.
2372	 */
2373	spa->spa_state = POOL_STATE_ACTIVE;
2374	spa->spa_ubsync = spa->spa_uberblock;
2375	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2376	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2377	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2378	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2379	spa->spa_claim_max_txg = spa->spa_first_txg;
2380	spa->spa_prev_software_version = ub->ub_software_version;
2381
2382	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2383	if (error)
2384		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2385	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2386
2387	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2388		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2389
2390	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2391		boolean_t missing_feat_read = B_FALSE;
2392		nvlist_t *unsup_feat, *enabled_feat;
2393
2394		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2395		    &spa->spa_feat_for_read_obj) != 0) {
2396			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2397		}
2398
2399		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2400		    &spa->spa_feat_for_write_obj) != 0) {
2401			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2402		}
2403
2404		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2405		    &spa->spa_feat_desc_obj) != 0) {
2406			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2407		}
2408
2409		enabled_feat = fnvlist_alloc();
2410		unsup_feat = fnvlist_alloc();
2411
2412		if (!spa_features_check(spa, B_FALSE,
2413		    unsup_feat, enabled_feat))
2414			missing_feat_read = B_TRUE;
2415
2416		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2417			if (!spa_features_check(spa, B_TRUE,
2418			    unsup_feat, enabled_feat)) {
2419				missing_feat_write = B_TRUE;
2420			}
2421		}
2422
2423		fnvlist_add_nvlist(spa->spa_load_info,
2424		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2425
2426		if (!nvlist_empty(unsup_feat)) {
2427			fnvlist_add_nvlist(spa->spa_load_info,
2428			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2429		}
2430
2431		fnvlist_free(enabled_feat);
2432		fnvlist_free(unsup_feat);
2433
2434		if (!missing_feat_read) {
2435			fnvlist_add_boolean(spa->spa_load_info,
2436			    ZPOOL_CONFIG_CAN_RDONLY);
2437		}
2438
2439		/*
2440		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2441		 * twofold: to determine whether the pool is available for
2442		 * import in read-write mode and (if it is not) whether the
2443		 * pool is available for import in read-only mode. If the pool
2444		 * is available for import in read-write mode, it is displayed
2445		 * as available in userland; if it is not available for import
2446		 * in read-only mode, it is displayed as unavailable in
2447		 * userland. If the pool is available for import in read-only
2448		 * mode but not read-write mode, it is displayed as unavailable
2449		 * in userland with a special note that the pool is actually
2450		 * available for open in read-only mode.
2451		 *
2452		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2453		 * missing a feature for write, we must first determine whether
2454		 * the pool can be opened read-only before returning to
2455		 * userland in order to know whether to display the
2456		 * abovementioned note.
2457		 */
2458		if (missing_feat_read || (missing_feat_write &&
2459		    spa_writeable(spa))) {
2460			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2461			    ENOTSUP));
2462		}
2463
2464		/*
2465		 * Load refcounts for ZFS features from disk into an in-memory
2466		 * cache during SPA initialization.
2467		 */
2468		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2469			uint64_t refcount;
2470
2471			error = feature_get_refcount_from_disk(spa,
2472			    &spa_feature_table[i], &refcount);
2473			if (error == 0) {
2474				spa->spa_feat_refcount_cache[i] = refcount;
2475			} else if (error == ENOTSUP) {
2476				spa->spa_feat_refcount_cache[i] =
2477				    SPA_FEATURE_DISABLED;
2478			} else {
2479				return (spa_vdev_err(rvd,
2480				    VDEV_AUX_CORRUPT_DATA, EIO));
2481			}
2482		}
2483	}
2484
2485	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2486		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2487		    &spa->spa_feat_enabled_txg_obj) != 0)
2488			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2489	}
2490
2491	spa->spa_is_initializing = B_TRUE;
2492	error = dsl_pool_open(spa->spa_dsl_pool);
2493	spa->spa_is_initializing = B_FALSE;
2494	if (error != 0)
2495		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496
2497	if (!mosconfig) {
2498		uint64_t hostid;
2499		nvlist_t *policy = NULL, *nvconfig;
2500
2501		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2502			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503
2504		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2505		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2506			char *hostname;
2507			unsigned long myhostid = 0;
2508
2509			VERIFY(nvlist_lookup_string(nvconfig,
2510			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2511
2512#ifdef	_KERNEL
2513			myhostid = zone_get_hostid(NULL);
2514#else	/* _KERNEL */
2515			/*
2516			 * We're emulating the system's hostid in userland, so
2517			 * we can't use zone_get_hostid().
2518			 */
2519			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2520#endif	/* _KERNEL */
2521			if (check_hostid && hostid != 0 && myhostid != 0 &&
2522			    hostid != myhostid) {
2523				nvlist_free(nvconfig);
2524				cmn_err(CE_WARN, "pool '%s' could not be "
2525				    "loaded as it was last accessed by "
2526				    "another system (host: %s hostid: 0x%lx). "
2527				    "See: http://illumos.org/msg/ZFS-8000-EY",
2528				    spa_name(spa), hostname,
2529				    (unsigned long)hostid);
2530				return (SET_ERROR(EBADF));
2531			}
2532		}
2533		if (nvlist_lookup_nvlist(spa->spa_config,
2534		    ZPOOL_REWIND_POLICY, &policy) == 0)
2535			VERIFY(nvlist_add_nvlist(nvconfig,
2536			    ZPOOL_REWIND_POLICY, policy) == 0);
2537
2538		spa_config_set(spa, nvconfig);
2539		spa_unload(spa);
2540		spa_deactivate(spa);
2541		spa_activate(spa, orig_mode);
2542
2543		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2544	}
2545
2546	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2547		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2549	if (error != 0)
2550		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551
2552	/*
2553	 * Load the bit that tells us to use the new accounting function
2554	 * (raid-z deflation).  If we have an older pool, this will not
2555	 * be present.
2556	 */
2557	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2558	if (error != 0 && error != ENOENT)
2559		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2560
2561	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2562	    &spa->spa_creation_version);
2563	if (error != 0 && error != ENOENT)
2564		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565
2566	/*
2567	 * Load the persistent error log.  If we have an older pool, this will
2568	 * not be present.
2569	 */
2570	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2571	if (error != 0 && error != ENOENT)
2572		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2573
2574	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2575	    &spa->spa_errlog_scrub);
2576	if (error != 0 && error != ENOENT)
2577		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2578
2579	/*
2580	 * Load the history object.  If we have an older pool, this
2581	 * will not be present.
2582	 */
2583	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2584	if (error != 0 && error != ENOENT)
2585		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586
2587	/*
2588	 * If we're assembling the pool from the split-off vdevs of
2589	 * an existing pool, we don't want to attach the spares & cache
2590	 * devices.
2591	 */
2592
2593	/*
2594	 * Load any hot spares for this pool.
2595	 */
2596	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2597	if (error != 0 && error != ENOENT)
2598		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2599	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2600		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2601		if (load_nvlist(spa, spa->spa_spares.sav_object,
2602		    &spa->spa_spares.sav_config) != 0)
2603			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2606		spa_load_spares(spa);
2607		spa_config_exit(spa, SCL_ALL, FTAG);
2608	} else if (error == 0) {
2609		spa->spa_spares.sav_sync = B_TRUE;
2610	}
2611
2612	/*
2613	 * Load any level 2 ARC devices for this pool.
2614	 */
2615	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2616	    &spa->spa_l2cache.sav_object);
2617	if (error != 0 && error != ENOENT)
2618		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2620		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2621		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2622		    &spa->spa_l2cache.sav_config) != 0)
2623			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2624
2625		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2626		spa_load_l2cache(spa);
2627		spa_config_exit(spa, SCL_ALL, FTAG);
2628	} else if (error == 0) {
2629		spa->spa_l2cache.sav_sync = B_TRUE;
2630	}
2631
2632	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2633
2634	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2635	if (error && error != ENOENT)
2636		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2637
2638	if (error == 0) {
2639		uint64_t autoreplace;
2640
2641		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2642		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2643		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2644		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2645		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2646		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2647		    &spa->spa_dedup_ditto);
2648
2649		spa->spa_autoreplace = (autoreplace != 0);
2650	}
2651
2652	/*
2653	 * If the 'autoreplace' property is set, then post a resource notifying
2654	 * the ZFS DE that it should not issue any faults for unopenable
2655	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2656	 * unopenable vdevs so that the normal autoreplace handler can take
2657	 * over.
2658	 */
2659	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2660		spa_check_removed(spa->spa_root_vdev);
2661		/*
2662		 * For the import case, this is done in spa_import(), because
2663		 * at this point we're using the spare definitions from
2664		 * the MOS config, not necessarily from the userland config.
2665		 */
2666		if (state != SPA_LOAD_IMPORT) {
2667			spa_aux_check_removed(&spa->spa_spares);
2668			spa_aux_check_removed(&spa->spa_l2cache);
2669		}
2670	}
2671
2672	/*
2673	 * Load the vdev state for all toplevel vdevs.
2674	 */
2675	vdev_load(rvd);
2676
2677	/*
2678	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2679	 */
2680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2681	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2682	spa_config_exit(spa, SCL_ALL, FTAG);
2683
2684	/*
2685	 * Load the DDTs (dedup tables).
2686	 */
2687	error = ddt_load(spa);
2688	if (error != 0)
2689		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690
2691	spa_update_dspace(spa);
2692
2693	/*
2694	 * Validate the config, using the MOS config to fill in any
2695	 * information which might be missing.  If we fail to validate
2696	 * the config then declare the pool unfit for use. If we're
2697	 * assembling a pool from a split, the log is not transferred
2698	 * over.
2699	 */
2700	if (type != SPA_IMPORT_ASSEMBLE) {
2701		nvlist_t *nvconfig;
2702
2703		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2704			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2705
2706		if (!spa_config_valid(spa, nvconfig)) {
2707			nvlist_free(nvconfig);
2708			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2709			    ENXIO));
2710		}
2711		nvlist_free(nvconfig);
2712
2713		/*
2714		 * Now that we've validated the config, check the state of the
2715		 * root vdev.  If it can't be opened, it indicates one or
2716		 * more toplevel vdevs are faulted.
2717		 */
2718		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2719			return (SET_ERROR(ENXIO));
2720
2721		if (spa_check_logs(spa)) {
2722			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2723			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2724		}
2725	}
2726
2727	if (missing_feat_write) {
2728		ASSERT(state == SPA_LOAD_TRYIMPORT);
2729
2730		/*
2731		 * At this point, we know that we can open the pool in
2732		 * read-only mode but not read-write mode. We now have enough
2733		 * information and can return to userland.
2734		 */
2735		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2736	}
2737
2738	/*
2739	 * We've successfully opened the pool, verify that we're ready
2740	 * to start pushing transactions.
2741	 */
2742	if (state != SPA_LOAD_TRYIMPORT) {
2743		if (error = spa_load_verify(spa))
2744			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2745			    error));
2746	}
2747
2748	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2749	    spa->spa_load_max_txg == UINT64_MAX)) {
2750		dmu_tx_t *tx;
2751		int need_update = B_FALSE;
2752
2753		ASSERT(state != SPA_LOAD_TRYIMPORT);
2754
2755		/*
2756		 * Claim log blocks that haven't been committed yet.
2757		 * This must all happen in a single txg.
2758		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2759		 * invoked from zil_claim_log_block()'s i/o done callback.
2760		 * Price of rollback is that we abandon the log.
2761		 */
2762		spa->spa_claiming = B_TRUE;
2763
2764		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2765		    spa_first_txg(spa));
2766		(void) dmu_objset_find(spa_name(spa),
2767		    zil_claim, tx, DS_FIND_CHILDREN);
2768		dmu_tx_commit(tx);
2769
2770		spa->spa_claiming = B_FALSE;
2771
2772		spa_set_log_state(spa, SPA_LOG_GOOD);
2773		spa->spa_sync_on = B_TRUE;
2774		txg_sync_start(spa->spa_dsl_pool);
2775
2776		/*
2777		 * Wait for all claims to sync.  We sync up to the highest
2778		 * claimed log block birth time so that claimed log blocks
2779		 * don't appear to be from the future.  spa_claim_max_txg
2780		 * will have been set for us by either zil_check_log_chain()
2781		 * (invoked from spa_check_logs()) or zil_claim() above.
2782		 */
2783		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2784
2785		/*
2786		 * If the config cache is stale, or we have uninitialized
2787		 * metaslabs (see spa_vdev_add()), then update the config.
2788		 *
2789		 * If this is a verbatim import, trust the current
2790		 * in-core spa_config and update the disk labels.
2791		 */
2792		if (config_cache_txg != spa->spa_config_txg ||
2793		    state == SPA_LOAD_IMPORT ||
2794		    state == SPA_LOAD_RECOVER ||
2795		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2796			need_update = B_TRUE;
2797
2798		for (int c = 0; c < rvd->vdev_children; c++)
2799			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2800				need_update = B_TRUE;
2801
2802		/*
2803		 * Update the config cache asychronously in case we're the
2804		 * root pool, in which case the config cache isn't writable yet.
2805		 */
2806		if (need_update)
2807			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2808
2809		/*
2810		 * Check all DTLs to see if anything needs resilvering.
2811		 */
2812		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2813		    vdev_resilver_needed(rvd, NULL, NULL))
2814			spa_async_request(spa, SPA_ASYNC_RESILVER);
2815
2816		/*
2817		 * Log the fact that we booted up (so that we can detect if
2818		 * we rebooted in the middle of an operation).
2819		 */
2820		spa_history_log_version(spa, "open");
2821
2822		/*
2823		 * Delete any inconsistent datasets.
2824		 */
2825		(void) dmu_objset_find(spa_name(spa),
2826		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2827
2828		/*
2829		 * Clean up any stale temporary dataset userrefs.
2830		 */
2831		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2832	}
2833
2834	return (0);
2835}
2836
2837static int
2838spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2839{
2840	int mode = spa->spa_mode;
2841
2842	spa_unload(spa);
2843	spa_deactivate(spa);
2844
2845	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2846
2847	spa_activate(spa, mode);
2848	spa_async_suspend(spa);
2849
2850	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2851}
2852
2853/*
2854 * If spa_load() fails this function will try loading prior txg's. If
2855 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2856 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2857 * function will not rewind the pool and will return the same error as
2858 * spa_load().
2859 */
2860static int
2861spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2862    uint64_t max_request, int rewind_flags)
2863{
2864	nvlist_t *loadinfo = NULL;
2865	nvlist_t *config = NULL;
2866	int load_error, rewind_error;
2867	uint64_t safe_rewind_txg;
2868	uint64_t min_txg;
2869
2870	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2871		spa->spa_load_max_txg = spa->spa_load_txg;
2872		spa_set_log_state(spa, SPA_LOG_CLEAR);
2873	} else {
2874		spa->spa_load_max_txg = max_request;
2875		if (max_request != UINT64_MAX)
2876			spa->spa_extreme_rewind = B_TRUE;
2877	}
2878
2879	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2880	    mosconfig);
2881	if (load_error == 0)
2882		return (0);
2883
2884	if (spa->spa_root_vdev != NULL)
2885		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2886
2887	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2888	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2889
2890	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2891		nvlist_free(config);
2892		return (load_error);
2893	}
2894
2895	if (state == SPA_LOAD_RECOVER) {
2896		/* Price of rolling back is discarding txgs, including log */
2897		spa_set_log_state(spa, SPA_LOG_CLEAR);
2898	} else {
2899		/*
2900		 * If we aren't rolling back save the load info from our first
2901		 * import attempt so that we can restore it after attempting
2902		 * to rewind.
2903		 */
2904		loadinfo = spa->spa_load_info;
2905		spa->spa_load_info = fnvlist_alloc();
2906	}
2907
2908	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2909	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2910	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2911	    TXG_INITIAL : safe_rewind_txg;
2912
2913	/*
2914	 * Continue as long as we're finding errors, we're still within
2915	 * the acceptable rewind range, and we're still finding uberblocks
2916	 */
2917	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2918	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2919		if (spa->spa_load_max_txg < safe_rewind_txg)
2920			spa->spa_extreme_rewind = B_TRUE;
2921		rewind_error = spa_load_retry(spa, state, mosconfig);
2922	}
2923
2924	spa->spa_extreme_rewind = B_FALSE;
2925	spa->spa_load_max_txg = UINT64_MAX;
2926
2927	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2928		spa_config_set(spa, config);
2929
2930	if (state == SPA_LOAD_RECOVER) {
2931		ASSERT3P(loadinfo, ==, NULL);
2932		return (rewind_error);
2933	} else {
2934		/* Store the rewind info as part of the initial load info */
2935		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2936		    spa->spa_load_info);
2937
2938		/* Restore the initial load info */
2939		fnvlist_free(spa->spa_load_info);
2940		spa->spa_load_info = loadinfo;
2941
2942		return (load_error);
2943	}
2944}
2945
2946/*
2947 * Pool Open/Import
2948 *
2949 * The import case is identical to an open except that the configuration is sent
2950 * down from userland, instead of grabbed from the configuration cache.  For the
2951 * case of an open, the pool configuration will exist in the
2952 * POOL_STATE_UNINITIALIZED state.
2953 *
2954 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2955 * the same time open the pool, without having to keep around the spa_t in some
2956 * ambiguous state.
2957 */
2958static int
2959spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2960    nvlist_t **config)
2961{
2962	spa_t *spa;
2963	spa_load_state_t state = SPA_LOAD_OPEN;
2964	int error;
2965	int locked = B_FALSE;
2966	int firstopen = B_FALSE;
2967
2968	*spapp = NULL;
2969
2970	/*
2971	 * As disgusting as this is, we need to support recursive calls to this
2972	 * function because dsl_dir_open() is called during spa_load(), and ends
2973	 * up calling spa_open() again.  The real fix is to figure out how to
2974	 * avoid dsl_dir_open() calling this in the first place.
2975	 */
2976	if (mutex_owner(&spa_namespace_lock) != curthread) {
2977		mutex_enter(&spa_namespace_lock);
2978		locked = B_TRUE;
2979	}
2980
2981	if ((spa = spa_lookup(pool)) == NULL) {
2982		if (locked)
2983			mutex_exit(&spa_namespace_lock);
2984		return (SET_ERROR(ENOENT));
2985	}
2986
2987	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2988		zpool_rewind_policy_t policy;
2989
2990		firstopen = B_TRUE;
2991
2992		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2993		    &policy);
2994		if (policy.zrp_request & ZPOOL_DO_REWIND)
2995			state = SPA_LOAD_RECOVER;
2996
2997		spa_activate(spa, spa_mode_global);
2998
2999		if (state != SPA_LOAD_RECOVER)
3000			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3001
3002		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3003		    policy.zrp_request);
3004
3005		if (error == EBADF) {
3006			/*
3007			 * If vdev_validate() returns failure (indicated by
3008			 * EBADF), it indicates that one of the vdevs indicates
3009			 * that the pool has been exported or destroyed.  If
3010			 * this is the case, the config cache is out of sync and
3011			 * we should remove the pool from the namespace.
3012			 */
3013			spa_unload(spa);
3014			spa_deactivate(spa);
3015			spa_config_sync(spa, B_TRUE, B_TRUE);
3016			spa_remove(spa);
3017			if (locked)
3018				mutex_exit(&spa_namespace_lock);
3019			return (SET_ERROR(ENOENT));
3020		}
3021
3022		if (error) {
3023			/*
3024			 * We can't open the pool, but we still have useful
3025			 * information: the state of each vdev after the
3026			 * attempted vdev_open().  Return this to the user.
3027			 */
3028			if (config != NULL && spa->spa_config) {
3029				VERIFY(nvlist_dup(spa->spa_config, config,
3030				    KM_SLEEP) == 0);
3031				VERIFY(nvlist_add_nvlist(*config,
3032				    ZPOOL_CONFIG_LOAD_INFO,
3033				    spa->spa_load_info) == 0);
3034			}
3035			spa_unload(spa);
3036			spa_deactivate(spa);
3037			spa->spa_last_open_failed = error;
3038			if (locked)
3039				mutex_exit(&spa_namespace_lock);
3040			*spapp = NULL;
3041			return (error);
3042		}
3043	}
3044
3045	spa_open_ref(spa, tag);
3046
3047	if (config != NULL)
3048		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3049
3050	/*
3051	 * If we've recovered the pool, pass back any information we
3052	 * gathered while doing the load.
3053	 */
3054	if (state == SPA_LOAD_RECOVER) {
3055		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3056		    spa->spa_load_info) == 0);
3057	}
3058
3059	if (locked) {
3060		spa->spa_last_open_failed = 0;
3061		spa->spa_last_ubsync_txg = 0;
3062		spa->spa_load_txg = 0;
3063		mutex_exit(&spa_namespace_lock);
3064#ifdef __FreeBSD__
3065#ifdef _KERNEL
3066		if (firstopen)
3067			zvol_create_minors(spa->spa_name);
3068#endif
3069#endif
3070	}
3071
3072	*spapp = spa;
3073
3074	return (0);
3075}
3076
3077int
3078spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3079    nvlist_t **config)
3080{
3081	return (spa_open_common(name, spapp, tag, policy, config));
3082}
3083
3084int
3085spa_open(const char *name, spa_t **spapp, void *tag)
3086{
3087	return (spa_open_common(name, spapp, tag, NULL, NULL));
3088}
3089
3090/*
3091 * Lookup the given spa_t, incrementing the inject count in the process,
3092 * preventing it from being exported or destroyed.
3093 */
3094spa_t *
3095spa_inject_addref(char *name)
3096{
3097	spa_t *spa;
3098
3099	mutex_enter(&spa_namespace_lock);
3100	if ((spa = spa_lookup(name)) == NULL) {
3101		mutex_exit(&spa_namespace_lock);
3102		return (NULL);
3103	}
3104	spa->spa_inject_ref++;
3105	mutex_exit(&spa_namespace_lock);
3106
3107	return (spa);
3108}
3109
3110void
3111spa_inject_delref(spa_t *spa)
3112{
3113	mutex_enter(&spa_namespace_lock);
3114	spa->spa_inject_ref--;
3115	mutex_exit(&spa_namespace_lock);
3116}
3117
3118/*
3119 * Add spares device information to the nvlist.
3120 */
3121static void
3122spa_add_spares(spa_t *spa, nvlist_t *config)
3123{
3124	nvlist_t **spares;
3125	uint_t i, nspares;
3126	nvlist_t *nvroot;
3127	uint64_t guid;
3128	vdev_stat_t *vs;
3129	uint_t vsc;
3130	uint64_t pool;
3131
3132	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3133
3134	if (spa->spa_spares.sav_count == 0)
3135		return;
3136
3137	VERIFY(nvlist_lookup_nvlist(config,
3138	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3139	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3140	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3141	if (nspares != 0) {
3142		VERIFY(nvlist_add_nvlist_array(nvroot,
3143		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3144		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3145		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3146
3147		/*
3148		 * Go through and find any spares which have since been
3149		 * repurposed as an active spare.  If this is the case, update
3150		 * their status appropriately.
3151		 */
3152		for (i = 0; i < nspares; i++) {
3153			VERIFY(nvlist_lookup_uint64(spares[i],
3154			    ZPOOL_CONFIG_GUID, &guid) == 0);
3155			if (spa_spare_exists(guid, &pool, NULL) &&
3156			    pool != 0ULL) {
3157				VERIFY(nvlist_lookup_uint64_array(
3158				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3159				    (uint64_t **)&vs, &vsc) == 0);
3160				vs->vs_state = VDEV_STATE_CANT_OPEN;
3161				vs->vs_aux = VDEV_AUX_SPARED;
3162			}
3163		}
3164	}
3165}
3166
3167/*
3168 * Add l2cache device information to the nvlist, including vdev stats.
3169 */
3170static void
3171spa_add_l2cache(spa_t *spa, nvlist_t *config)
3172{
3173	nvlist_t **l2cache;
3174	uint_t i, j, nl2cache;
3175	nvlist_t *nvroot;
3176	uint64_t guid;
3177	vdev_t *vd;
3178	vdev_stat_t *vs;
3179	uint_t vsc;
3180
3181	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3182
3183	if (spa->spa_l2cache.sav_count == 0)
3184		return;
3185
3186	VERIFY(nvlist_lookup_nvlist(config,
3187	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3188	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3189	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3190	if (nl2cache != 0) {
3191		VERIFY(nvlist_add_nvlist_array(nvroot,
3192		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3193		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3194		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3195
3196		/*
3197		 * Update level 2 cache device stats.
3198		 */
3199
3200		for (i = 0; i < nl2cache; i++) {
3201			VERIFY(nvlist_lookup_uint64(l2cache[i],
3202			    ZPOOL_CONFIG_GUID, &guid) == 0);
3203
3204			vd = NULL;
3205			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3206				if (guid ==
3207				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3208					vd = spa->spa_l2cache.sav_vdevs[j];
3209					break;
3210				}
3211			}
3212			ASSERT(vd != NULL);
3213
3214			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3215			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3216			    == 0);
3217			vdev_get_stats(vd, vs);
3218		}
3219	}
3220}
3221
3222static void
3223spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3224{
3225	nvlist_t *features;
3226	zap_cursor_t zc;
3227	zap_attribute_t za;
3228
3229	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3230	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3231
3232	/* We may be unable to read features if pool is suspended. */
3233	if (spa_suspended(spa))
3234		goto out;
3235
3236	if (spa->spa_feat_for_read_obj != 0) {
3237		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3238		    spa->spa_feat_for_read_obj);
3239		    zap_cursor_retrieve(&zc, &za) == 0;
3240		    zap_cursor_advance(&zc)) {
3241			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3242			    za.za_num_integers == 1);
3243			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3244			    za.za_first_integer));
3245		}
3246		zap_cursor_fini(&zc);
3247	}
3248
3249	if (spa->spa_feat_for_write_obj != 0) {
3250		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3251		    spa->spa_feat_for_write_obj);
3252		    zap_cursor_retrieve(&zc, &za) == 0;
3253		    zap_cursor_advance(&zc)) {
3254			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3255			    za.za_num_integers == 1);
3256			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3257			    za.za_first_integer));
3258		}
3259		zap_cursor_fini(&zc);
3260	}
3261
3262out:
3263	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3264	    features) == 0);
3265	nvlist_free(features);
3266}
3267
3268int
3269spa_get_stats(const char *name, nvlist_t **config,
3270    char *altroot, size_t buflen)
3271{
3272	int error;
3273	spa_t *spa;
3274
3275	*config = NULL;
3276	error = spa_open_common(name, &spa, FTAG, NULL, config);
3277
3278	if (spa != NULL) {
3279		/*
3280		 * This still leaves a window of inconsistency where the spares
3281		 * or l2cache devices could change and the config would be
3282		 * self-inconsistent.
3283		 */
3284		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3285
3286		if (*config != NULL) {
3287			uint64_t loadtimes[2];
3288
3289			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3290			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3291			VERIFY(nvlist_add_uint64_array(*config,
3292			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3293
3294			VERIFY(nvlist_add_uint64(*config,
3295			    ZPOOL_CONFIG_ERRCOUNT,
3296			    spa_get_errlog_size(spa)) == 0);
3297
3298			if (spa_suspended(spa))
3299				VERIFY(nvlist_add_uint64(*config,
3300				    ZPOOL_CONFIG_SUSPENDED,
3301				    spa->spa_failmode) == 0);
3302
3303			spa_add_spares(spa, *config);
3304			spa_add_l2cache(spa, *config);
3305			spa_add_feature_stats(spa, *config);
3306		}
3307	}
3308
3309	/*
3310	 * We want to get the alternate root even for faulted pools, so we cheat
3311	 * and call spa_lookup() directly.
3312	 */
3313	if (altroot) {
3314		if (spa == NULL) {
3315			mutex_enter(&spa_namespace_lock);
3316			spa = spa_lookup(name);
3317			if (spa)
3318				spa_altroot(spa, altroot, buflen);
3319			else
3320				altroot[0] = '\0';
3321			spa = NULL;
3322			mutex_exit(&spa_namespace_lock);
3323		} else {
3324			spa_altroot(spa, altroot, buflen);
3325		}
3326	}
3327
3328	if (spa != NULL) {
3329		spa_config_exit(spa, SCL_CONFIG, FTAG);
3330		spa_close(spa, FTAG);
3331	}
3332
3333	return (error);
3334}
3335
3336/*
3337 * Validate that the auxiliary device array is well formed.  We must have an
3338 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3339 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3340 * specified, as long as they are well-formed.
3341 */
3342static int
3343spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3344    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3345    vdev_labeltype_t label)
3346{
3347	nvlist_t **dev;
3348	uint_t i, ndev;
3349	vdev_t *vd;
3350	int error;
3351
3352	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3353
3354	/*
3355	 * It's acceptable to have no devs specified.
3356	 */
3357	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3358		return (0);
3359
3360	if (ndev == 0)
3361		return (SET_ERROR(EINVAL));
3362
3363	/*
3364	 * Make sure the pool is formatted with a version that supports this
3365	 * device type.
3366	 */
3367	if (spa_version(spa) < version)
3368		return (SET_ERROR(ENOTSUP));
3369
3370	/*
3371	 * Set the pending device list so we correctly handle device in-use
3372	 * checking.
3373	 */
3374	sav->sav_pending = dev;
3375	sav->sav_npending = ndev;
3376
3377	for (i = 0; i < ndev; i++) {
3378		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3379		    mode)) != 0)
3380			goto out;
3381
3382		if (!vd->vdev_ops->vdev_op_leaf) {
3383			vdev_free(vd);
3384			error = SET_ERROR(EINVAL);
3385			goto out;
3386		}
3387
3388		/*
3389		 * The L2ARC currently only supports disk devices in
3390		 * kernel context.  For user-level testing, we allow it.
3391		 */
3392#ifdef _KERNEL
3393		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3394		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3395			error = SET_ERROR(ENOTBLK);
3396			vdev_free(vd);
3397			goto out;
3398		}
3399#endif
3400		vd->vdev_top = vd;
3401
3402		if ((error = vdev_open(vd)) == 0 &&
3403		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3404			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3405			    vd->vdev_guid) == 0);
3406		}
3407
3408		vdev_free(vd);
3409
3410		if (error &&
3411		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3412			goto out;
3413		else
3414			error = 0;
3415	}
3416
3417out:
3418	sav->sav_pending = NULL;
3419	sav->sav_npending = 0;
3420	return (error);
3421}
3422
3423static int
3424spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3425{
3426	int error;
3427
3428	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3429
3430	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3431	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3432	    VDEV_LABEL_SPARE)) != 0) {
3433		return (error);
3434	}
3435
3436	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3437	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3438	    VDEV_LABEL_L2CACHE));
3439}
3440
3441static void
3442spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3443    const char *config)
3444{
3445	int i;
3446
3447	if (sav->sav_config != NULL) {
3448		nvlist_t **olddevs;
3449		uint_t oldndevs;
3450		nvlist_t **newdevs;
3451
3452		/*
3453		 * Generate new dev list by concatentating with the
3454		 * current dev list.
3455		 */
3456		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3457		    &olddevs, &oldndevs) == 0);
3458
3459		newdevs = kmem_alloc(sizeof (void *) *
3460		    (ndevs + oldndevs), KM_SLEEP);
3461		for (i = 0; i < oldndevs; i++)
3462			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3463			    KM_SLEEP) == 0);
3464		for (i = 0; i < ndevs; i++)
3465			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3466			    KM_SLEEP) == 0);
3467
3468		VERIFY(nvlist_remove(sav->sav_config, config,
3469		    DATA_TYPE_NVLIST_ARRAY) == 0);
3470
3471		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3472		    config, newdevs, ndevs + oldndevs) == 0);
3473		for (i = 0; i < oldndevs + ndevs; i++)
3474			nvlist_free(newdevs[i]);
3475		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3476	} else {
3477		/*
3478		 * Generate a new dev list.
3479		 */
3480		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3481		    KM_SLEEP) == 0);
3482		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3483		    devs, ndevs) == 0);
3484	}
3485}
3486
3487/*
3488 * Stop and drop level 2 ARC devices
3489 */
3490void
3491spa_l2cache_drop(spa_t *spa)
3492{
3493	vdev_t *vd;
3494	int i;
3495	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3496
3497	for (i = 0; i < sav->sav_count; i++) {
3498		uint64_t pool;
3499
3500		vd = sav->sav_vdevs[i];
3501		ASSERT(vd != NULL);
3502
3503		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3504		    pool != 0ULL && l2arc_vdev_present(vd))
3505			l2arc_remove_vdev(vd);
3506	}
3507}
3508
3509/*
3510 * Pool Creation
3511 */
3512int
3513spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3514    nvlist_t *zplprops)
3515{
3516	spa_t *spa;
3517	char *altroot = NULL;
3518	vdev_t *rvd;
3519	dsl_pool_t *dp;
3520	dmu_tx_t *tx;
3521	int error = 0;
3522	uint64_t txg = TXG_INITIAL;
3523	nvlist_t **spares, **l2cache;
3524	uint_t nspares, nl2cache;
3525	uint64_t version, obj;
3526	boolean_t has_features;
3527
3528	/*
3529	 * If this pool already exists, return failure.
3530	 */
3531	mutex_enter(&spa_namespace_lock);
3532	if (spa_lookup(pool) != NULL) {
3533		mutex_exit(&spa_namespace_lock);
3534		return (SET_ERROR(EEXIST));
3535	}
3536
3537	/*
3538	 * Allocate a new spa_t structure.
3539	 */
3540	(void) nvlist_lookup_string(props,
3541	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3542	spa = spa_add(pool, NULL, altroot);
3543	spa_activate(spa, spa_mode_global);
3544
3545	if (props && (error = spa_prop_validate(spa, props))) {
3546		spa_deactivate(spa);
3547		spa_remove(spa);
3548		mutex_exit(&spa_namespace_lock);
3549		return (error);
3550	}
3551
3552	has_features = B_FALSE;
3553	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3554	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3555		if (zpool_prop_feature(nvpair_name(elem)))
3556			has_features = B_TRUE;
3557	}
3558
3559	if (has_features || nvlist_lookup_uint64(props,
3560	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3561		version = SPA_VERSION;
3562	}
3563	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3564
3565	spa->spa_first_txg = txg;
3566	spa->spa_uberblock.ub_txg = txg - 1;
3567	spa->spa_uberblock.ub_version = version;
3568	spa->spa_ubsync = spa->spa_uberblock;
3569
3570	/*
3571	 * Create "The Godfather" zio to hold all async IOs
3572	 */
3573	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3574	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3575
3576	/*
3577	 * Create the root vdev.
3578	 */
3579	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3580
3581	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3582
3583	ASSERT(error != 0 || rvd != NULL);
3584	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3585
3586	if (error == 0 && !zfs_allocatable_devs(nvroot))
3587		error = SET_ERROR(EINVAL);
3588
3589	if (error == 0 &&
3590	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3591	    (error = spa_validate_aux(spa, nvroot, txg,
3592	    VDEV_ALLOC_ADD)) == 0) {
3593		for (int c = 0; c < rvd->vdev_children; c++) {
3594			vdev_ashift_optimize(rvd->vdev_child[c]);
3595			vdev_metaslab_set_size(rvd->vdev_child[c]);
3596			vdev_expand(rvd->vdev_child[c], txg);
3597		}
3598	}
3599
3600	spa_config_exit(spa, SCL_ALL, FTAG);
3601
3602	if (error != 0) {
3603		spa_unload(spa);
3604		spa_deactivate(spa);
3605		spa_remove(spa);
3606		mutex_exit(&spa_namespace_lock);
3607		return (error);
3608	}
3609
3610	/*
3611	 * Get the list of spares, if specified.
3612	 */
3613	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3614	    &spares, &nspares) == 0) {
3615		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3616		    KM_SLEEP) == 0);
3617		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3618		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3619		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3620		spa_load_spares(spa);
3621		spa_config_exit(spa, SCL_ALL, FTAG);
3622		spa->spa_spares.sav_sync = B_TRUE;
3623	}
3624
3625	/*
3626	 * Get the list of level 2 cache devices, if specified.
3627	 */
3628	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3629	    &l2cache, &nl2cache) == 0) {
3630		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3631		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3632		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3633		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3634		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3635		spa_load_l2cache(spa);
3636		spa_config_exit(spa, SCL_ALL, FTAG);
3637		spa->spa_l2cache.sav_sync = B_TRUE;
3638	}
3639
3640	spa->spa_is_initializing = B_TRUE;
3641	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3642	spa->spa_meta_objset = dp->dp_meta_objset;
3643	spa->spa_is_initializing = B_FALSE;
3644
3645	/*
3646	 * Create DDTs (dedup tables).
3647	 */
3648	ddt_create(spa);
3649
3650	spa_update_dspace(spa);
3651
3652	tx = dmu_tx_create_assigned(dp, txg);
3653
3654	/*
3655	 * Create the pool config object.
3656	 */
3657	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3658	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3659	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3660
3661	if (zap_add(spa->spa_meta_objset,
3662	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3663	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3664		cmn_err(CE_PANIC, "failed to add pool config");
3665	}
3666
3667	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3668		spa_feature_create_zap_objects(spa, tx);
3669
3670	if (zap_add(spa->spa_meta_objset,
3671	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3672	    sizeof (uint64_t), 1, &version, tx) != 0) {
3673		cmn_err(CE_PANIC, "failed to add pool version");
3674	}
3675
3676	/* Newly created pools with the right version are always deflated. */
3677	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3678		spa->spa_deflate = TRUE;
3679		if (zap_add(spa->spa_meta_objset,
3680		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3681		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3682			cmn_err(CE_PANIC, "failed to add deflate");
3683		}
3684	}
3685
3686	/*
3687	 * Create the deferred-free bpobj.  Turn off compression
3688	 * because sync-to-convergence takes longer if the blocksize
3689	 * keeps changing.
3690	 */
3691	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3692	dmu_object_set_compress(spa->spa_meta_objset, obj,
3693	    ZIO_COMPRESS_OFF, tx);
3694	if (zap_add(spa->spa_meta_objset,
3695	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3696	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3697		cmn_err(CE_PANIC, "failed to add bpobj");
3698	}
3699	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3700	    spa->spa_meta_objset, obj));
3701
3702	/*
3703	 * Create the pool's history object.
3704	 */
3705	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3706		spa_history_create_obj(spa, tx);
3707
3708	/*
3709	 * Set pool properties.
3710	 */
3711	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3712	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3713	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3714	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3715
3716	if (props != NULL) {
3717		spa_configfile_set(spa, props, B_FALSE);
3718		spa_sync_props(props, tx);
3719	}
3720
3721	dmu_tx_commit(tx);
3722
3723	spa->spa_sync_on = B_TRUE;
3724	txg_sync_start(spa->spa_dsl_pool);
3725
3726	/*
3727	 * We explicitly wait for the first transaction to complete so that our
3728	 * bean counters are appropriately updated.
3729	 */
3730	txg_wait_synced(spa->spa_dsl_pool, txg);
3731
3732	spa_config_sync(spa, B_FALSE, B_TRUE);
3733
3734	spa_history_log_version(spa, "create");
3735
3736	spa->spa_minref = refcount_count(&spa->spa_refcount);
3737
3738	mutex_exit(&spa_namespace_lock);
3739
3740	return (0);
3741}
3742
3743#ifdef _KERNEL
3744#if defined(sun)
3745/*
3746 * Get the root pool information from the root disk, then import the root pool
3747 * during the system boot up time.
3748 */
3749extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3750
3751static nvlist_t *
3752spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3753{
3754	nvlist_t *config;
3755	nvlist_t *nvtop, *nvroot;
3756	uint64_t pgid;
3757
3758	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3759		return (NULL);
3760
3761	/*
3762	 * Add this top-level vdev to the child array.
3763	 */
3764	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3765	    &nvtop) == 0);
3766	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3767	    &pgid) == 0);
3768	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3769
3770	/*
3771	 * Put this pool's top-level vdevs into a root vdev.
3772	 */
3773	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3774	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3775	    VDEV_TYPE_ROOT) == 0);
3776	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3777	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3778	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3779	    &nvtop, 1) == 0);
3780
3781	/*
3782	 * Replace the existing vdev_tree with the new root vdev in
3783	 * this pool's configuration (remove the old, add the new).
3784	 */
3785	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3786	nvlist_free(nvroot);
3787	return (config);
3788}
3789
3790/*
3791 * Walk the vdev tree and see if we can find a device with "better"
3792 * configuration. A configuration is "better" if the label on that
3793 * device has a more recent txg.
3794 */
3795static void
3796spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3797{
3798	for (int c = 0; c < vd->vdev_children; c++)
3799		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3800
3801	if (vd->vdev_ops->vdev_op_leaf) {
3802		nvlist_t *label;
3803		uint64_t label_txg;
3804
3805		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3806		    &label) != 0)
3807			return;
3808
3809		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3810		    &label_txg) == 0);
3811
3812		/*
3813		 * Do we have a better boot device?
3814		 */
3815		if (label_txg > *txg) {
3816			*txg = label_txg;
3817			*avd = vd;
3818		}
3819		nvlist_free(label);
3820	}
3821}
3822
3823/*
3824 * Import a root pool.
3825 *
3826 * For x86. devpath_list will consist of devid and/or physpath name of
3827 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3828 * The GRUB "findroot" command will return the vdev we should boot.
3829 *
3830 * For Sparc, devpath_list consists the physpath name of the booting device
3831 * no matter the rootpool is a single device pool or a mirrored pool.
3832 * e.g.
3833 *	"/pci@1f,0/ide@d/disk@0,0:a"
3834 */
3835int
3836spa_import_rootpool(char *devpath, char *devid)
3837{
3838	spa_t *spa;
3839	vdev_t *rvd, *bvd, *avd = NULL;
3840	nvlist_t *config, *nvtop;
3841	uint64_t guid, txg;
3842	char *pname;
3843	int error;
3844
3845	/*
3846	 * Read the label from the boot device and generate a configuration.
3847	 */
3848	config = spa_generate_rootconf(devpath, devid, &guid);
3849#if defined(_OBP) && defined(_KERNEL)
3850	if (config == NULL) {
3851		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3852			/* iscsi boot */
3853			get_iscsi_bootpath_phy(devpath);
3854			config = spa_generate_rootconf(devpath, devid, &guid);
3855		}
3856	}
3857#endif
3858	if (config == NULL) {
3859		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3860		    devpath);
3861		return (SET_ERROR(EIO));
3862	}
3863
3864	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3865	    &pname) == 0);
3866	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3867
3868	mutex_enter(&spa_namespace_lock);
3869	if ((spa = spa_lookup(pname)) != NULL) {
3870		/*
3871		 * Remove the existing root pool from the namespace so that we
3872		 * can replace it with the correct config we just read in.
3873		 */
3874		spa_remove(spa);
3875	}
3876
3877	spa = spa_add(pname, config, NULL);
3878	spa->spa_is_root = B_TRUE;
3879	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3880
3881	/*
3882	 * Build up a vdev tree based on the boot device's label config.
3883	 */
3884	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3885	    &nvtop) == 0);
3886	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3887	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3888	    VDEV_ALLOC_ROOTPOOL);
3889	spa_config_exit(spa, SCL_ALL, FTAG);
3890	if (error) {
3891		mutex_exit(&spa_namespace_lock);
3892		nvlist_free(config);
3893		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3894		    pname);
3895		return (error);
3896	}
3897
3898	/*
3899	 * Get the boot vdev.
3900	 */
3901	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3902		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3903		    (u_longlong_t)guid);
3904		error = SET_ERROR(ENOENT);
3905		goto out;
3906	}
3907
3908	/*
3909	 * Determine if there is a better boot device.
3910	 */
3911	avd = bvd;
3912	spa_alt_rootvdev(rvd, &avd, &txg);
3913	if (avd != bvd) {
3914		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3915		    "try booting from '%s'", avd->vdev_path);
3916		error = SET_ERROR(EINVAL);
3917		goto out;
3918	}
3919
3920	/*
3921	 * If the boot device is part of a spare vdev then ensure that
3922	 * we're booting off the active spare.
3923	 */
3924	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3925	    !bvd->vdev_isspare) {
3926		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3927		    "try booting from '%s'",
3928		    bvd->vdev_parent->
3929		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3930		error = SET_ERROR(EINVAL);
3931		goto out;
3932	}
3933
3934	error = 0;
3935out:
3936	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3937	vdev_free(rvd);
3938	spa_config_exit(spa, SCL_ALL, FTAG);
3939	mutex_exit(&spa_namespace_lock);
3940
3941	nvlist_free(config);
3942	return (error);
3943}
3944
3945#else
3946
3947extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3948    uint64_t *count);
3949
3950static nvlist_t *
3951spa_generate_rootconf(const char *name)
3952{
3953	nvlist_t **configs, **tops;
3954	nvlist_t *config;
3955	nvlist_t *best_cfg, *nvtop, *nvroot;
3956	uint64_t *holes;
3957	uint64_t best_txg;
3958	uint64_t nchildren;
3959	uint64_t pgid;
3960	uint64_t count;
3961	uint64_t i;
3962	uint_t   nholes;
3963
3964	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3965		return (NULL);
3966
3967	ASSERT3U(count, !=, 0);
3968	best_txg = 0;
3969	for (i = 0; i < count; i++) {
3970		uint64_t txg;
3971
3972		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3973		    &txg) == 0);
3974		if (txg > best_txg) {
3975			best_txg = txg;
3976			best_cfg = configs[i];
3977		}
3978	}
3979
3980	/*
3981	 * Multi-vdev root pool configuration discovery is not supported yet.
3982	 */
3983	nchildren = 1;
3984	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3985	holes = NULL;
3986	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3987	    &holes, &nholes);
3988
3989	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3990	for (i = 0; i < nchildren; i++) {
3991		if (i >= count)
3992			break;
3993		if (configs[i] == NULL)
3994			continue;
3995		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3996		    &nvtop) == 0);
3997		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3998	}
3999	for (i = 0; holes != NULL && i < nholes; i++) {
4000		if (i >= nchildren)
4001			continue;
4002		if (tops[holes[i]] != NULL)
4003			continue;
4004		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4005		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4006		    VDEV_TYPE_HOLE) == 0);
4007		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4008		    holes[i]) == 0);
4009		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4010		    0) == 0);
4011	}
4012	for (i = 0; i < nchildren; i++) {
4013		if (tops[i] != NULL)
4014			continue;
4015		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4016		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4017		    VDEV_TYPE_MISSING) == 0);
4018		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4019		    i) == 0);
4020		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4021		    0) == 0);
4022	}
4023
4024	/*
4025	 * Create pool config based on the best vdev config.
4026	 */
4027	nvlist_dup(best_cfg, &config, KM_SLEEP);
4028
4029	/*
4030	 * Put this pool's top-level vdevs into a root vdev.
4031	 */
4032	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4033	    &pgid) == 0);
4034	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4035	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4036	    VDEV_TYPE_ROOT) == 0);
4037	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4038	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4039	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4040	    tops, nchildren) == 0);
4041
4042	/*
4043	 * Replace the existing vdev_tree with the new root vdev in
4044	 * this pool's configuration (remove the old, add the new).
4045	 */
4046	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4047
4048	/*
4049	 * Drop vdev config elements that should not be present at pool level.
4050	 */
4051	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4052	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4053
4054	for (i = 0; i < count; i++)
4055		nvlist_free(configs[i]);
4056	kmem_free(configs, count * sizeof(void *));
4057	for (i = 0; i < nchildren; i++)
4058		nvlist_free(tops[i]);
4059	kmem_free(tops, nchildren * sizeof(void *));
4060	nvlist_free(nvroot);
4061	return (config);
4062}
4063
4064int
4065spa_import_rootpool(const char *name)
4066{
4067	spa_t *spa;
4068	vdev_t *rvd, *bvd, *avd = NULL;
4069	nvlist_t *config, *nvtop;
4070	uint64_t txg;
4071	char *pname;
4072	int error;
4073
4074	/*
4075	 * Read the label from the boot device and generate a configuration.
4076	 */
4077	config = spa_generate_rootconf(name);
4078
4079	mutex_enter(&spa_namespace_lock);
4080	if (config != NULL) {
4081		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4082		    &pname) == 0 && strcmp(name, pname) == 0);
4083		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4084		    == 0);
4085
4086		if ((spa = spa_lookup(pname)) != NULL) {
4087			/*
4088			 * Remove the existing root pool from the namespace so
4089			 * that we can replace it with the correct config
4090			 * we just read in.
4091			 */
4092			spa_remove(spa);
4093		}
4094		spa = spa_add(pname, config, NULL);
4095
4096		/*
4097		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4098		 * via spa_version().
4099		 */
4100		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4101		    &spa->spa_ubsync.ub_version) != 0)
4102			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4103	} else if ((spa = spa_lookup(name)) == NULL) {
4104		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4105		    name);
4106		return (EIO);
4107	} else {
4108		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4109	}
4110	spa->spa_is_root = B_TRUE;
4111	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4112
4113	/*
4114	 * Build up a vdev tree based on the boot device's label config.
4115	 */
4116	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4117	    &nvtop) == 0);
4118	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4119	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4120	    VDEV_ALLOC_ROOTPOOL);
4121	spa_config_exit(spa, SCL_ALL, FTAG);
4122	if (error) {
4123		mutex_exit(&spa_namespace_lock);
4124		nvlist_free(config);
4125		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4126		    pname);
4127		return (error);
4128	}
4129
4130	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4131	vdev_free(rvd);
4132	spa_config_exit(spa, SCL_ALL, FTAG);
4133	mutex_exit(&spa_namespace_lock);
4134
4135	nvlist_free(config);
4136	return (0);
4137}
4138
4139#endif	/* sun */
4140#endif
4141
4142/*
4143 * Import a non-root pool into the system.
4144 */
4145int
4146spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4147{
4148	spa_t *spa;
4149	char *altroot = NULL;
4150	spa_load_state_t state = SPA_LOAD_IMPORT;
4151	zpool_rewind_policy_t policy;
4152	uint64_t mode = spa_mode_global;
4153	uint64_t readonly = B_FALSE;
4154	int error;
4155	nvlist_t *nvroot;
4156	nvlist_t **spares, **l2cache;
4157	uint_t nspares, nl2cache;
4158
4159	/*
4160	 * If a pool with this name exists, return failure.
4161	 */
4162	mutex_enter(&spa_namespace_lock);
4163	if (spa_lookup(pool) != NULL) {
4164		mutex_exit(&spa_namespace_lock);
4165		return (SET_ERROR(EEXIST));
4166	}
4167
4168	/*
4169	 * Create and initialize the spa structure.
4170	 */
4171	(void) nvlist_lookup_string(props,
4172	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4173	(void) nvlist_lookup_uint64(props,
4174	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4175	if (readonly)
4176		mode = FREAD;
4177	spa = spa_add(pool, config, altroot);
4178	spa->spa_import_flags = flags;
4179
4180	/*
4181	 * Verbatim import - Take a pool and insert it into the namespace
4182	 * as if it had been loaded at boot.
4183	 */
4184	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4185		if (props != NULL)
4186			spa_configfile_set(spa, props, B_FALSE);
4187
4188		spa_config_sync(spa, B_FALSE, B_TRUE);
4189
4190		mutex_exit(&spa_namespace_lock);
4191		return (0);
4192	}
4193
4194	spa_activate(spa, mode);
4195
4196	/*
4197	 * Don't start async tasks until we know everything is healthy.
4198	 */
4199	spa_async_suspend(spa);
4200
4201	zpool_get_rewind_policy(config, &policy);
4202	if (policy.zrp_request & ZPOOL_DO_REWIND)
4203		state = SPA_LOAD_RECOVER;
4204
4205	/*
4206	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4207	 * because the user-supplied config is actually the one to trust when
4208	 * doing an import.
4209	 */
4210	if (state != SPA_LOAD_RECOVER)
4211		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4212
4213	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4214	    policy.zrp_request);
4215
4216	/*
4217	 * Propagate anything learned while loading the pool and pass it
4218	 * back to caller (i.e. rewind info, missing devices, etc).
4219	 */
4220	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4221	    spa->spa_load_info) == 0);
4222
4223	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4224	/*
4225	 * Toss any existing sparelist, as it doesn't have any validity
4226	 * anymore, and conflicts with spa_has_spare().
4227	 */
4228	if (spa->spa_spares.sav_config) {
4229		nvlist_free(spa->spa_spares.sav_config);
4230		spa->spa_spares.sav_config = NULL;
4231		spa_load_spares(spa);
4232	}
4233	if (spa->spa_l2cache.sav_config) {
4234		nvlist_free(spa->spa_l2cache.sav_config);
4235		spa->spa_l2cache.sav_config = NULL;
4236		spa_load_l2cache(spa);
4237	}
4238
4239	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4240	    &nvroot) == 0);
4241	if (error == 0)
4242		error = spa_validate_aux(spa, nvroot, -1ULL,
4243		    VDEV_ALLOC_SPARE);
4244	if (error == 0)
4245		error = spa_validate_aux(spa, nvroot, -1ULL,
4246		    VDEV_ALLOC_L2CACHE);
4247	spa_config_exit(spa, SCL_ALL, FTAG);
4248
4249	if (props != NULL)
4250		spa_configfile_set(spa, props, B_FALSE);
4251
4252	if (error != 0 || (props && spa_writeable(spa) &&
4253	    (error = spa_prop_set(spa, props)))) {
4254		spa_unload(spa);
4255		spa_deactivate(spa);
4256		spa_remove(spa);
4257		mutex_exit(&spa_namespace_lock);
4258		return (error);
4259	}
4260
4261	spa_async_resume(spa);
4262
4263	/*
4264	 * Override any spares and level 2 cache devices as specified by
4265	 * the user, as these may have correct device names/devids, etc.
4266	 */
4267	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4268	    &spares, &nspares) == 0) {
4269		if (spa->spa_spares.sav_config)
4270			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4271			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4272		else
4273			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4274			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4275		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4276		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4277		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4278		spa_load_spares(spa);
4279		spa_config_exit(spa, SCL_ALL, FTAG);
4280		spa->spa_spares.sav_sync = B_TRUE;
4281	}
4282	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4283	    &l2cache, &nl2cache) == 0) {
4284		if (spa->spa_l2cache.sav_config)
4285			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4286			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4287		else
4288			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4289			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4290		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4291		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4292		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4293		spa_load_l2cache(spa);
4294		spa_config_exit(spa, SCL_ALL, FTAG);
4295		spa->spa_l2cache.sav_sync = B_TRUE;
4296	}
4297
4298	/*
4299	 * Check for any removed devices.
4300	 */
4301	if (spa->spa_autoreplace) {
4302		spa_aux_check_removed(&spa->spa_spares);
4303		spa_aux_check_removed(&spa->spa_l2cache);
4304	}
4305
4306	if (spa_writeable(spa)) {
4307		/*
4308		 * Update the config cache to include the newly-imported pool.
4309		 */
4310		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4311	}
4312
4313	/*
4314	 * It's possible that the pool was expanded while it was exported.
4315	 * We kick off an async task to handle this for us.
4316	 */
4317	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4318
4319	mutex_exit(&spa_namespace_lock);
4320	spa_history_log_version(spa, "import");
4321
4322#ifdef __FreeBSD__
4323#ifdef _KERNEL
4324	zvol_create_minors(pool);
4325#endif
4326#endif
4327	return (0);
4328}
4329
4330nvlist_t *
4331spa_tryimport(nvlist_t *tryconfig)
4332{
4333	nvlist_t *config = NULL;
4334	char *poolname;
4335	spa_t *spa;
4336	uint64_t state;
4337	int error;
4338
4339	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4340		return (NULL);
4341
4342	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4343		return (NULL);
4344
4345	/*
4346	 * Create and initialize the spa structure.
4347	 */
4348	mutex_enter(&spa_namespace_lock);
4349	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4350	spa_activate(spa, FREAD);
4351
4352	/*
4353	 * Pass off the heavy lifting to spa_load().
4354	 * Pass TRUE for mosconfig because the user-supplied config
4355	 * is actually the one to trust when doing an import.
4356	 */
4357	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4358
4359	/*
4360	 * If 'tryconfig' was at least parsable, return the current config.
4361	 */
4362	if (spa->spa_root_vdev != NULL) {
4363		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4364		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4365		    poolname) == 0);
4366		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4367		    state) == 0);
4368		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4369		    spa->spa_uberblock.ub_timestamp) == 0);
4370		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4371		    spa->spa_load_info) == 0);
4372
4373		/*
4374		 * If the bootfs property exists on this pool then we
4375		 * copy it out so that external consumers can tell which
4376		 * pools are bootable.
4377		 */
4378		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4379			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4380
4381			/*
4382			 * We have to play games with the name since the
4383			 * pool was opened as TRYIMPORT_NAME.
4384			 */
4385			if (dsl_dsobj_to_dsname(spa_name(spa),
4386			    spa->spa_bootfs, tmpname) == 0) {
4387				char *cp;
4388				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4389
4390				cp = strchr(tmpname, '/');
4391				if (cp == NULL) {
4392					(void) strlcpy(dsname, tmpname,
4393					    MAXPATHLEN);
4394				} else {
4395					(void) snprintf(dsname, MAXPATHLEN,
4396					    "%s/%s", poolname, ++cp);
4397				}
4398				VERIFY(nvlist_add_string(config,
4399				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4400				kmem_free(dsname, MAXPATHLEN);
4401			}
4402			kmem_free(tmpname, MAXPATHLEN);
4403		}
4404
4405		/*
4406		 * Add the list of hot spares and level 2 cache devices.
4407		 */
4408		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4409		spa_add_spares(spa, config);
4410		spa_add_l2cache(spa, config);
4411		spa_config_exit(spa, SCL_CONFIG, FTAG);
4412	}
4413
4414	spa_unload(spa);
4415	spa_deactivate(spa);
4416	spa_remove(spa);
4417	mutex_exit(&spa_namespace_lock);
4418
4419	return (config);
4420}
4421
4422/*
4423 * Pool export/destroy
4424 *
4425 * The act of destroying or exporting a pool is very simple.  We make sure there
4426 * is no more pending I/O and any references to the pool are gone.  Then, we
4427 * update the pool state and sync all the labels to disk, removing the
4428 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4429 * we don't sync the labels or remove the configuration cache.
4430 */
4431static int
4432spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4433    boolean_t force, boolean_t hardforce)
4434{
4435	spa_t *spa;
4436
4437	if (oldconfig)
4438		*oldconfig = NULL;
4439
4440	if (!(spa_mode_global & FWRITE))
4441		return (SET_ERROR(EROFS));
4442
4443	mutex_enter(&spa_namespace_lock);
4444	if ((spa = spa_lookup(pool)) == NULL) {
4445		mutex_exit(&spa_namespace_lock);
4446		return (SET_ERROR(ENOENT));
4447	}
4448
4449	/*
4450	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4451	 * reacquire the namespace lock, and see if we can export.
4452	 */
4453	spa_open_ref(spa, FTAG);
4454	mutex_exit(&spa_namespace_lock);
4455	spa_async_suspend(spa);
4456	mutex_enter(&spa_namespace_lock);
4457	spa_close(spa, FTAG);
4458
4459	/*
4460	 * The pool will be in core if it's openable,
4461	 * in which case we can modify its state.
4462	 */
4463	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4464		/*
4465		 * Objsets may be open only because they're dirty, so we
4466		 * have to force it to sync before checking spa_refcnt.
4467		 */
4468		txg_wait_synced(spa->spa_dsl_pool, 0);
4469
4470		/*
4471		 * A pool cannot be exported or destroyed if there are active
4472		 * references.  If we are resetting a pool, allow references by
4473		 * fault injection handlers.
4474		 */
4475		if (!spa_refcount_zero(spa) ||
4476		    (spa->spa_inject_ref != 0 &&
4477		    new_state != POOL_STATE_UNINITIALIZED)) {
4478			spa_async_resume(spa);
4479			mutex_exit(&spa_namespace_lock);
4480			return (SET_ERROR(EBUSY));
4481		}
4482
4483		/*
4484		 * A pool cannot be exported if it has an active shared spare.
4485		 * This is to prevent other pools stealing the active spare
4486		 * from an exported pool. At user's own will, such pool can
4487		 * be forcedly exported.
4488		 */
4489		if (!force && new_state == POOL_STATE_EXPORTED &&
4490		    spa_has_active_shared_spare(spa)) {
4491			spa_async_resume(spa);
4492			mutex_exit(&spa_namespace_lock);
4493			return (SET_ERROR(EXDEV));
4494		}
4495
4496		/*
4497		 * We want this to be reflected on every label,
4498		 * so mark them all dirty.  spa_unload() will do the
4499		 * final sync that pushes these changes out.
4500		 */
4501		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4502			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4503			spa->spa_state = new_state;
4504			spa->spa_final_txg = spa_last_synced_txg(spa) +
4505			    TXG_DEFER_SIZE + 1;
4506			vdev_config_dirty(spa->spa_root_vdev);
4507			spa_config_exit(spa, SCL_ALL, FTAG);
4508		}
4509	}
4510
4511	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4512
4513	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4514		spa_unload(spa);
4515		spa_deactivate(spa);
4516	}
4517
4518	if (oldconfig && spa->spa_config)
4519		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4520
4521	if (new_state != POOL_STATE_UNINITIALIZED) {
4522		if (!hardforce)
4523			spa_config_sync(spa, B_TRUE, B_TRUE);
4524		spa_remove(spa);
4525	}
4526	mutex_exit(&spa_namespace_lock);
4527
4528	return (0);
4529}
4530
4531/*
4532 * Destroy a storage pool.
4533 */
4534int
4535spa_destroy(char *pool)
4536{
4537	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4538	    B_FALSE, B_FALSE));
4539}
4540
4541/*
4542 * Export a storage pool.
4543 */
4544int
4545spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4546    boolean_t hardforce)
4547{
4548	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4549	    force, hardforce));
4550}
4551
4552/*
4553 * Similar to spa_export(), this unloads the spa_t without actually removing it
4554 * from the namespace in any way.
4555 */
4556int
4557spa_reset(char *pool)
4558{
4559	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4560	    B_FALSE, B_FALSE));
4561}
4562
4563/*
4564 * ==========================================================================
4565 * Device manipulation
4566 * ==========================================================================
4567 */
4568
4569/*
4570 * Add a device to a storage pool.
4571 */
4572int
4573spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4574{
4575	uint64_t txg, id;
4576	int error;
4577	vdev_t *rvd = spa->spa_root_vdev;
4578	vdev_t *vd, *tvd;
4579	nvlist_t **spares, **l2cache;
4580	uint_t nspares, nl2cache;
4581
4582	ASSERT(spa_writeable(spa));
4583
4584	txg = spa_vdev_enter(spa);
4585
4586	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4587	    VDEV_ALLOC_ADD)) != 0)
4588		return (spa_vdev_exit(spa, NULL, txg, error));
4589
4590	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4591
4592	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4593	    &nspares) != 0)
4594		nspares = 0;
4595
4596	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4597	    &nl2cache) != 0)
4598		nl2cache = 0;
4599
4600	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4601		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4602
4603	if (vd->vdev_children != 0 &&
4604	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4605		return (spa_vdev_exit(spa, vd, txg, error));
4606
4607	/*
4608	 * We must validate the spares and l2cache devices after checking the
4609	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4610	 */
4611	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4612		return (spa_vdev_exit(spa, vd, txg, error));
4613
4614	/*
4615	 * Transfer each new top-level vdev from vd to rvd.
4616	 */
4617	for (int c = 0; c < vd->vdev_children; c++) {
4618
4619		/*
4620		 * Set the vdev id to the first hole, if one exists.
4621		 */
4622		for (id = 0; id < rvd->vdev_children; id++) {
4623			if (rvd->vdev_child[id]->vdev_ishole) {
4624				vdev_free(rvd->vdev_child[id]);
4625				break;
4626			}
4627		}
4628		tvd = vd->vdev_child[c];
4629		vdev_remove_child(vd, tvd);
4630		tvd->vdev_id = id;
4631		vdev_add_child(rvd, tvd);
4632		vdev_config_dirty(tvd);
4633	}
4634
4635	if (nspares != 0) {
4636		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4637		    ZPOOL_CONFIG_SPARES);
4638		spa_load_spares(spa);
4639		spa->spa_spares.sav_sync = B_TRUE;
4640	}
4641
4642	if (nl2cache != 0) {
4643		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4644		    ZPOOL_CONFIG_L2CACHE);
4645		spa_load_l2cache(spa);
4646		spa->spa_l2cache.sav_sync = B_TRUE;
4647	}
4648
4649	/*
4650	 * We have to be careful when adding new vdevs to an existing pool.
4651	 * If other threads start allocating from these vdevs before we
4652	 * sync the config cache, and we lose power, then upon reboot we may
4653	 * fail to open the pool because there are DVAs that the config cache
4654	 * can't translate.  Therefore, we first add the vdevs without
4655	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4656	 * and then let spa_config_update() initialize the new metaslabs.
4657	 *
4658	 * spa_load() checks for added-but-not-initialized vdevs, so that
4659	 * if we lose power at any point in this sequence, the remaining
4660	 * steps will be completed the next time we load the pool.
4661	 */
4662	(void) spa_vdev_exit(spa, vd, txg, 0);
4663
4664	mutex_enter(&spa_namespace_lock);
4665	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4666	mutex_exit(&spa_namespace_lock);
4667
4668	return (0);
4669}
4670
4671/*
4672 * Attach a device to a mirror.  The arguments are the path to any device
4673 * in the mirror, and the nvroot for the new device.  If the path specifies
4674 * a device that is not mirrored, we automatically insert the mirror vdev.
4675 *
4676 * If 'replacing' is specified, the new device is intended to replace the
4677 * existing device; in this case the two devices are made into their own
4678 * mirror using the 'replacing' vdev, which is functionally identical to
4679 * the mirror vdev (it actually reuses all the same ops) but has a few
4680 * extra rules: you can't attach to it after it's been created, and upon
4681 * completion of resilvering, the first disk (the one being replaced)
4682 * is automatically detached.
4683 */
4684int
4685spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4686{
4687	uint64_t txg, dtl_max_txg;
4688	vdev_t *rvd = spa->spa_root_vdev;
4689	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4690	vdev_ops_t *pvops;
4691	char *oldvdpath, *newvdpath;
4692	int newvd_isspare;
4693	int error;
4694
4695	ASSERT(spa_writeable(spa));
4696
4697	txg = spa_vdev_enter(spa);
4698
4699	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4700
4701	if (oldvd == NULL)
4702		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4703
4704	if (!oldvd->vdev_ops->vdev_op_leaf)
4705		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4706
4707	pvd = oldvd->vdev_parent;
4708
4709	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4710	    VDEV_ALLOC_ATTACH)) != 0)
4711		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4712
4713	if (newrootvd->vdev_children != 1)
4714		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4715
4716	newvd = newrootvd->vdev_child[0];
4717
4718	if (!newvd->vdev_ops->vdev_op_leaf)
4719		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4720
4721	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4722		return (spa_vdev_exit(spa, newrootvd, txg, error));
4723
4724	/*
4725	 * Spares can't replace logs
4726	 */
4727	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4728		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4729
4730	if (!replacing) {
4731		/*
4732		 * For attach, the only allowable parent is a mirror or the root
4733		 * vdev.
4734		 */
4735		if (pvd->vdev_ops != &vdev_mirror_ops &&
4736		    pvd->vdev_ops != &vdev_root_ops)
4737			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4738
4739		pvops = &vdev_mirror_ops;
4740	} else {
4741		/*
4742		 * Active hot spares can only be replaced by inactive hot
4743		 * spares.
4744		 */
4745		if (pvd->vdev_ops == &vdev_spare_ops &&
4746		    oldvd->vdev_isspare &&
4747		    !spa_has_spare(spa, newvd->vdev_guid))
4748			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4749
4750		/*
4751		 * If the source is a hot spare, and the parent isn't already a
4752		 * spare, then we want to create a new hot spare.  Otherwise, we
4753		 * want to create a replacing vdev.  The user is not allowed to
4754		 * attach to a spared vdev child unless the 'isspare' state is
4755		 * the same (spare replaces spare, non-spare replaces
4756		 * non-spare).
4757		 */
4758		if (pvd->vdev_ops == &vdev_replacing_ops &&
4759		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4760			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4761		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4762		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4763			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4764		}
4765
4766		if (newvd->vdev_isspare)
4767			pvops = &vdev_spare_ops;
4768		else
4769			pvops = &vdev_replacing_ops;
4770	}
4771
4772	/*
4773	 * Make sure the new device is big enough.
4774	 */
4775	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4776		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4777
4778	/*
4779	 * The new device cannot have a higher alignment requirement
4780	 * than the top-level vdev.
4781	 */
4782	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4783		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4784
4785	/*
4786	 * If this is an in-place replacement, update oldvd's path and devid
4787	 * to make it distinguishable from newvd, and unopenable from now on.
4788	 */
4789	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4790		spa_strfree(oldvd->vdev_path);
4791		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4792		    KM_SLEEP);
4793		(void) sprintf(oldvd->vdev_path, "%s/%s",
4794		    newvd->vdev_path, "old");
4795		if (oldvd->vdev_devid != NULL) {
4796			spa_strfree(oldvd->vdev_devid);
4797			oldvd->vdev_devid = NULL;
4798		}
4799	}
4800
4801	/* mark the device being resilvered */
4802	newvd->vdev_resilver_txg = txg;
4803
4804	/*
4805	 * If the parent is not a mirror, or if we're replacing, insert the new
4806	 * mirror/replacing/spare vdev above oldvd.
4807	 */
4808	if (pvd->vdev_ops != pvops)
4809		pvd = vdev_add_parent(oldvd, pvops);
4810
4811	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4812	ASSERT(pvd->vdev_ops == pvops);
4813	ASSERT(oldvd->vdev_parent == pvd);
4814
4815	/*
4816	 * Extract the new device from its root and add it to pvd.
4817	 */
4818	vdev_remove_child(newrootvd, newvd);
4819	newvd->vdev_id = pvd->vdev_children;
4820	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4821	vdev_add_child(pvd, newvd);
4822
4823	tvd = newvd->vdev_top;
4824	ASSERT(pvd->vdev_top == tvd);
4825	ASSERT(tvd->vdev_parent == rvd);
4826
4827	vdev_config_dirty(tvd);
4828
4829	/*
4830	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4831	 * for any dmu_sync-ed blocks.  It will propagate upward when
4832	 * spa_vdev_exit() calls vdev_dtl_reassess().
4833	 */
4834	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4835
4836	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4837	    dtl_max_txg - TXG_INITIAL);
4838
4839	if (newvd->vdev_isspare) {
4840		spa_spare_activate(newvd);
4841		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4842	}
4843
4844	oldvdpath = spa_strdup(oldvd->vdev_path);
4845	newvdpath = spa_strdup(newvd->vdev_path);
4846	newvd_isspare = newvd->vdev_isspare;
4847
4848	/*
4849	 * Mark newvd's DTL dirty in this txg.
4850	 */
4851	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4852
4853	/*
4854	 * Schedule the resilver to restart in the future. We do this to
4855	 * ensure that dmu_sync-ed blocks have been stitched into the
4856	 * respective datasets.
4857	 */
4858	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4859
4860	/*
4861	 * Commit the config
4862	 */
4863	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4864
4865	spa_history_log_internal(spa, "vdev attach", NULL,
4866	    "%s vdev=%s %s vdev=%s",
4867	    replacing && newvd_isspare ? "spare in" :
4868	    replacing ? "replace" : "attach", newvdpath,
4869	    replacing ? "for" : "to", oldvdpath);
4870
4871	spa_strfree(oldvdpath);
4872	spa_strfree(newvdpath);
4873
4874	if (spa->spa_bootfs)
4875		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4876
4877	return (0);
4878}
4879
4880/*
4881 * Detach a device from a mirror or replacing vdev.
4882 *
4883 * If 'replace_done' is specified, only detach if the parent
4884 * is a replacing vdev.
4885 */
4886int
4887spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4888{
4889	uint64_t txg;
4890	int error;
4891	vdev_t *rvd = spa->spa_root_vdev;
4892	vdev_t *vd, *pvd, *cvd, *tvd;
4893	boolean_t unspare = B_FALSE;
4894	uint64_t unspare_guid = 0;
4895	char *vdpath;
4896
4897	ASSERT(spa_writeable(spa));
4898
4899	txg = spa_vdev_enter(spa);
4900
4901	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4902
4903	if (vd == NULL)
4904		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4905
4906	if (!vd->vdev_ops->vdev_op_leaf)
4907		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4908
4909	pvd = vd->vdev_parent;
4910
4911	/*
4912	 * If the parent/child relationship is not as expected, don't do it.
4913	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4914	 * vdev that's replacing B with C.  The user's intent in replacing
4915	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4916	 * the replace by detaching C, the expected behavior is to end up
4917	 * M(A,B).  But suppose that right after deciding to detach C,
4918	 * the replacement of B completes.  We would have M(A,C), and then
4919	 * ask to detach C, which would leave us with just A -- not what
4920	 * the user wanted.  To prevent this, we make sure that the
4921	 * parent/child relationship hasn't changed -- in this example,
4922	 * that C's parent is still the replacing vdev R.
4923	 */
4924	if (pvd->vdev_guid != pguid && pguid != 0)
4925		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4926
4927	/*
4928	 * Only 'replacing' or 'spare' vdevs can be replaced.
4929	 */
4930	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4931	    pvd->vdev_ops != &vdev_spare_ops)
4932		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4933
4934	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4935	    spa_version(spa) >= SPA_VERSION_SPARES);
4936
4937	/*
4938	 * Only mirror, replacing, and spare vdevs support detach.
4939	 */
4940	if (pvd->vdev_ops != &vdev_replacing_ops &&
4941	    pvd->vdev_ops != &vdev_mirror_ops &&
4942	    pvd->vdev_ops != &vdev_spare_ops)
4943		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4944
4945	/*
4946	 * If this device has the only valid copy of some data,
4947	 * we cannot safely detach it.
4948	 */
4949	if (vdev_dtl_required(vd))
4950		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4951
4952	ASSERT(pvd->vdev_children >= 2);
4953
4954	/*
4955	 * If we are detaching the second disk from a replacing vdev, then
4956	 * check to see if we changed the original vdev's path to have "/old"
4957	 * at the end in spa_vdev_attach().  If so, undo that change now.
4958	 */
4959	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4960	    vd->vdev_path != NULL) {
4961		size_t len = strlen(vd->vdev_path);
4962
4963		for (int c = 0; c < pvd->vdev_children; c++) {
4964			cvd = pvd->vdev_child[c];
4965
4966			if (cvd == vd || cvd->vdev_path == NULL)
4967				continue;
4968
4969			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4970			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4971				spa_strfree(cvd->vdev_path);
4972				cvd->vdev_path = spa_strdup(vd->vdev_path);
4973				break;
4974			}
4975		}
4976	}
4977
4978	/*
4979	 * If we are detaching the original disk from a spare, then it implies
4980	 * that the spare should become a real disk, and be removed from the
4981	 * active spare list for the pool.
4982	 */
4983	if (pvd->vdev_ops == &vdev_spare_ops &&
4984	    vd->vdev_id == 0 &&
4985	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4986		unspare = B_TRUE;
4987
4988	/*
4989	 * Erase the disk labels so the disk can be used for other things.
4990	 * This must be done after all other error cases are handled,
4991	 * but before we disembowel vd (so we can still do I/O to it).
4992	 * But if we can't do it, don't treat the error as fatal --
4993	 * it may be that the unwritability of the disk is the reason
4994	 * it's being detached!
4995	 */
4996	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4997
4998	/*
4999	 * Remove vd from its parent and compact the parent's children.
5000	 */
5001	vdev_remove_child(pvd, vd);
5002	vdev_compact_children(pvd);
5003
5004	/*
5005	 * Remember one of the remaining children so we can get tvd below.
5006	 */
5007	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5008
5009	/*
5010	 * If we need to remove the remaining child from the list of hot spares,
5011	 * do it now, marking the vdev as no longer a spare in the process.
5012	 * We must do this before vdev_remove_parent(), because that can
5013	 * change the GUID if it creates a new toplevel GUID.  For a similar
5014	 * reason, we must remove the spare now, in the same txg as the detach;
5015	 * otherwise someone could attach a new sibling, change the GUID, and
5016	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5017	 */
5018	if (unspare) {
5019		ASSERT(cvd->vdev_isspare);
5020		spa_spare_remove(cvd);
5021		unspare_guid = cvd->vdev_guid;
5022		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5023		cvd->vdev_unspare = B_TRUE;
5024	}
5025
5026	/*
5027	 * If the parent mirror/replacing vdev only has one child,
5028	 * the parent is no longer needed.  Remove it from the tree.
5029	 */
5030	if (pvd->vdev_children == 1) {
5031		if (pvd->vdev_ops == &vdev_spare_ops)
5032			cvd->vdev_unspare = B_FALSE;
5033		vdev_remove_parent(cvd);
5034	}
5035
5036
5037	/*
5038	 * We don't set tvd until now because the parent we just removed
5039	 * may have been the previous top-level vdev.
5040	 */
5041	tvd = cvd->vdev_top;
5042	ASSERT(tvd->vdev_parent == rvd);
5043
5044	/*
5045	 * Reevaluate the parent vdev state.
5046	 */
5047	vdev_propagate_state(cvd);
5048
5049	/*
5050	 * If the 'autoexpand' property is set on the pool then automatically
5051	 * try to expand the size of the pool. For example if the device we
5052	 * just detached was smaller than the others, it may be possible to
5053	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5054	 * first so that we can obtain the updated sizes of the leaf vdevs.
5055	 */
5056	if (spa->spa_autoexpand) {
5057		vdev_reopen(tvd);
5058		vdev_expand(tvd, txg);
5059	}
5060
5061	vdev_config_dirty(tvd);
5062
5063	/*
5064	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5065	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5066	 * But first make sure we're not on any *other* txg's DTL list, to
5067	 * prevent vd from being accessed after it's freed.
5068	 */
5069	vdpath = spa_strdup(vd->vdev_path);
5070	for (int t = 0; t < TXG_SIZE; t++)
5071		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5072	vd->vdev_detached = B_TRUE;
5073	vdev_dirty(tvd, VDD_DTL, vd, txg);
5074
5075	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5076
5077	/* hang on to the spa before we release the lock */
5078	spa_open_ref(spa, FTAG);
5079
5080	error = spa_vdev_exit(spa, vd, txg, 0);
5081
5082	spa_history_log_internal(spa, "detach", NULL,
5083	    "vdev=%s", vdpath);
5084	spa_strfree(vdpath);
5085
5086	/*
5087	 * If this was the removal of the original device in a hot spare vdev,
5088	 * then we want to go through and remove the device from the hot spare
5089	 * list of every other pool.
5090	 */
5091	if (unspare) {
5092		spa_t *altspa = NULL;
5093
5094		mutex_enter(&spa_namespace_lock);
5095		while ((altspa = spa_next(altspa)) != NULL) {
5096			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5097			    altspa == spa)
5098				continue;
5099
5100			spa_open_ref(altspa, FTAG);
5101			mutex_exit(&spa_namespace_lock);
5102			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5103			mutex_enter(&spa_namespace_lock);
5104			spa_close(altspa, FTAG);
5105		}
5106		mutex_exit(&spa_namespace_lock);
5107
5108		/* search the rest of the vdevs for spares to remove */
5109		spa_vdev_resilver_done(spa);
5110	}
5111
5112	/* all done with the spa; OK to release */
5113	mutex_enter(&spa_namespace_lock);
5114	spa_close(spa, FTAG);
5115	mutex_exit(&spa_namespace_lock);
5116
5117	return (error);
5118}
5119
5120/*
5121 * Split a set of devices from their mirrors, and create a new pool from them.
5122 */
5123int
5124spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5125    nvlist_t *props, boolean_t exp)
5126{
5127	int error = 0;
5128	uint64_t txg, *glist;
5129	spa_t *newspa;
5130	uint_t c, children, lastlog;
5131	nvlist_t **child, *nvl, *tmp;
5132	dmu_tx_t *tx;
5133	char *altroot = NULL;
5134	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5135	boolean_t activate_slog;
5136
5137	ASSERT(spa_writeable(spa));
5138
5139	txg = spa_vdev_enter(spa);
5140
5141	/* clear the log and flush everything up to now */
5142	activate_slog = spa_passivate_log(spa);
5143	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5144	error = spa_offline_log(spa);
5145	txg = spa_vdev_config_enter(spa);
5146
5147	if (activate_slog)
5148		spa_activate_log(spa);
5149
5150	if (error != 0)
5151		return (spa_vdev_exit(spa, NULL, txg, error));
5152
5153	/* check new spa name before going any further */
5154	if (spa_lookup(newname) != NULL)
5155		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5156
5157	/*
5158	 * scan through all the children to ensure they're all mirrors
5159	 */
5160	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5161	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5162	    &children) != 0)
5163		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5164
5165	/* first, check to ensure we've got the right child count */
5166	rvd = spa->spa_root_vdev;
5167	lastlog = 0;
5168	for (c = 0; c < rvd->vdev_children; c++) {
5169		vdev_t *vd = rvd->vdev_child[c];
5170
5171		/* don't count the holes & logs as children */
5172		if (vd->vdev_islog || vd->vdev_ishole) {
5173			if (lastlog == 0)
5174				lastlog = c;
5175			continue;
5176		}
5177
5178		lastlog = 0;
5179	}
5180	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5181		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5182
5183	/* next, ensure no spare or cache devices are part of the split */
5184	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5185	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5186		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5187
5188	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5189	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5190
5191	/* then, loop over each vdev and validate it */
5192	for (c = 0; c < children; c++) {
5193		uint64_t is_hole = 0;
5194
5195		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5196		    &is_hole);
5197
5198		if (is_hole != 0) {
5199			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5200			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5201				continue;
5202			} else {
5203				error = SET_ERROR(EINVAL);
5204				break;
5205			}
5206		}
5207
5208		/* which disk is going to be split? */
5209		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5210		    &glist[c]) != 0) {
5211			error = SET_ERROR(EINVAL);
5212			break;
5213		}
5214
5215		/* look it up in the spa */
5216		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5217		if (vml[c] == NULL) {
5218			error = SET_ERROR(ENODEV);
5219			break;
5220		}
5221
5222		/* make sure there's nothing stopping the split */
5223		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5224		    vml[c]->vdev_islog ||
5225		    vml[c]->vdev_ishole ||
5226		    vml[c]->vdev_isspare ||
5227		    vml[c]->vdev_isl2cache ||
5228		    !vdev_writeable(vml[c]) ||
5229		    vml[c]->vdev_children != 0 ||
5230		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5231		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5232			error = SET_ERROR(EINVAL);
5233			break;
5234		}
5235
5236		if (vdev_dtl_required(vml[c])) {
5237			error = SET_ERROR(EBUSY);
5238			break;
5239		}
5240
5241		/* we need certain info from the top level */
5242		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5243		    vml[c]->vdev_top->vdev_ms_array) == 0);
5244		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5245		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5246		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5247		    vml[c]->vdev_top->vdev_asize) == 0);
5248		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5249		    vml[c]->vdev_top->vdev_ashift) == 0);
5250	}
5251
5252	if (error != 0) {
5253		kmem_free(vml, children * sizeof (vdev_t *));
5254		kmem_free(glist, children * sizeof (uint64_t));
5255		return (spa_vdev_exit(spa, NULL, txg, error));
5256	}
5257
5258	/* stop writers from using the disks */
5259	for (c = 0; c < children; c++) {
5260		if (vml[c] != NULL)
5261			vml[c]->vdev_offline = B_TRUE;
5262	}
5263	vdev_reopen(spa->spa_root_vdev);
5264
5265	/*
5266	 * Temporarily record the splitting vdevs in the spa config.  This
5267	 * will disappear once the config is regenerated.
5268	 */
5269	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5270	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5271	    glist, children) == 0);
5272	kmem_free(glist, children * sizeof (uint64_t));
5273
5274	mutex_enter(&spa->spa_props_lock);
5275	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5276	    nvl) == 0);
5277	mutex_exit(&spa->spa_props_lock);
5278	spa->spa_config_splitting = nvl;
5279	vdev_config_dirty(spa->spa_root_vdev);
5280
5281	/* configure and create the new pool */
5282	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5283	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5284	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5285	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5286	    spa_version(spa)) == 0);
5287	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5288	    spa->spa_config_txg) == 0);
5289	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5290	    spa_generate_guid(NULL)) == 0);
5291	(void) nvlist_lookup_string(props,
5292	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5293
5294	/* add the new pool to the namespace */
5295	newspa = spa_add(newname, config, altroot);
5296	newspa->spa_config_txg = spa->spa_config_txg;
5297	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5298
5299	/* release the spa config lock, retaining the namespace lock */
5300	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5301
5302	if (zio_injection_enabled)
5303		zio_handle_panic_injection(spa, FTAG, 1);
5304
5305	spa_activate(newspa, spa_mode_global);
5306	spa_async_suspend(newspa);
5307
5308#ifndef sun
5309	/* mark that we are creating new spa by splitting */
5310	newspa->spa_splitting_newspa = B_TRUE;
5311#endif
5312	/* create the new pool from the disks of the original pool */
5313	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5314#ifndef sun
5315	newspa->spa_splitting_newspa = B_FALSE;
5316#endif
5317	if (error)
5318		goto out;
5319
5320	/* if that worked, generate a real config for the new pool */
5321	if (newspa->spa_root_vdev != NULL) {
5322		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5323		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5324		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5325		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5326		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5327		    B_TRUE));
5328	}
5329
5330	/* set the props */
5331	if (props != NULL) {
5332		spa_configfile_set(newspa, props, B_FALSE);
5333		error = spa_prop_set(newspa, props);
5334		if (error)
5335			goto out;
5336	}
5337
5338	/* flush everything */
5339	txg = spa_vdev_config_enter(newspa);
5340	vdev_config_dirty(newspa->spa_root_vdev);
5341	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5342
5343	if (zio_injection_enabled)
5344		zio_handle_panic_injection(spa, FTAG, 2);
5345
5346	spa_async_resume(newspa);
5347
5348	/* finally, update the original pool's config */
5349	txg = spa_vdev_config_enter(spa);
5350	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5351	error = dmu_tx_assign(tx, TXG_WAIT);
5352	if (error != 0)
5353		dmu_tx_abort(tx);
5354	for (c = 0; c < children; c++) {
5355		if (vml[c] != NULL) {
5356			vdev_split(vml[c]);
5357			if (error == 0)
5358				spa_history_log_internal(spa, "detach", tx,
5359				    "vdev=%s", vml[c]->vdev_path);
5360			vdev_free(vml[c]);
5361		}
5362	}
5363	vdev_config_dirty(spa->spa_root_vdev);
5364	spa->spa_config_splitting = NULL;
5365	nvlist_free(nvl);
5366	if (error == 0)
5367		dmu_tx_commit(tx);
5368	(void) spa_vdev_exit(spa, NULL, txg, 0);
5369
5370	if (zio_injection_enabled)
5371		zio_handle_panic_injection(spa, FTAG, 3);
5372
5373	/* split is complete; log a history record */
5374	spa_history_log_internal(newspa, "split", NULL,
5375	    "from pool %s", spa_name(spa));
5376
5377	kmem_free(vml, children * sizeof (vdev_t *));
5378
5379	/* if we're not going to mount the filesystems in userland, export */
5380	if (exp)
5381		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5382		    B_FALSE, B_FALSE);
5383
5384	return (error);
5385
5386out:
5387	spa_unload(newspa);
5388	spa_deactivate(newspa);
5389	spa_remove(newspa);
5390
5391	txg = spa_vdev_config_enter(spa);
5392
5393	/* re-online all offlined disks */
5394	for (c = 0; c < children; c++) {
5395		if (vml[c] != NULL)
5396			vml[c]->vdev_offline = B_FALSE;
5397	}
5398	vdev_reopen(spa->spa_root_vdev);
5399
5400	nvlist_free(spa->spa_config_splitting);
5401	spa->spa_config_splitting = NULL;
5402	(void) spa_vdev_exit(spa, NULL, txg, error);
5403
5404	kmem_free(vml, children * sizeof (vdev_t *));
5405	return (error);
5406}
5407
5408static nvlist_t *
5409spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5410{
5411	for (int i = 0; i < count; i++) {
5412		uint64_t guid;
5413
5414		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5415		    &guid) == 0);
5416
5417		if (guid == target_guid)
5418			return (nvpp[i]);
5419	}
5420
5421	return (NULL);
5422}
5423
5424static void
5425spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5426	nvlist_t *dev_to_remove)
5427{
5428	nvlist_t **newdev = NULL;
5429
5430	if (count > 1)
5431		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5432
5433	for (int i = 0, j = 0; i < count; i++) {
5434		if (dev[i] == dev_to_remove)
5435			continue;
5436		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5437	}
5438
5439	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5440	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5441
5442	for (int i = 0; i < count - 1; i++)
5443		nvlist_free(newdev[i]);
5444
5445	if (count > 1)
5446		kmem_free(newdev, (count - 1) * sizeof (void *));
5447}
5448
5449/*
5450 * Evacuate the device.
5451 */
5452static int
5453spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5454{
5455	uint64_t txg;
5456	int error = 0;
5457
5458	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5459	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5460	ASSERT(vd == vd->vdev_top);
5461
5462	/*
5463	 * Evacuate the device.  We don't hold the config lock as writer
5464	 * since we need to do I/O but we do keep the
5465	 * spa_namespace_lock held.  Once this completes the device
5466	 * should no longer have any blocks allocated on it.
5467	 */
5468	if (vd->vdev_islog) {
5469		if (vd->vdev_stat.vs_alloc != 0)
5470			error = spa_offline_log(spa);
5471	} else {
5472		error = SET_ERROR(ENOTSUP);
5473	}
5474
5475	if (error)
5476		return (error);
5477
5478	/*
5479	 * The evacuation succeeded.  Remove any remaining MOS metadata
5480	 * associated with this vdev, and wait for these changes to sync.
5481	 */
5482	ASSERT0(vd->vdev_stat.vs_alloc);
5483	txg = spa_vdev_config_enter(spa);
5484	vd->vdev_removing = B_TRUE;
5485	vdev_dirty_leaves(vd, VDD_DTL, txg);
5486	vdev_config_dirty(vd);
5487	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5488
5489	return (0);
5490}
5491
5492/*
5493 * Complete the removal by cleaning up the namespace.
5494 */
5495static void
5496spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5497{
5498	vdev_t *rvd = spa->spa_root_vdev;
5499	uint64_t id = vd->vdev_id;
5500	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5501
5502	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5503	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5504	ASSERT(vd == vd->vdev_top);
5505
5506	/*
5507	 * Only remove any devices which are empty.
5508	 */
5509	if (vd->vdev_stat.vs_alloc != 0)
5510		return;
5511
5512	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5513
5514	if (list_link_active(&vd->vdev_state_dirty_node))
5515		vdev_state_clean(vd);
5516	if (list_link_active(&vd->vdev_config_dirty_node))
5517		vdev_config_clean(vd);
5518
5519	vdev_free(vd);
5520
5521	if (last_vdev) {
5522		vdev_compact_children(rvd);
5523	} else {
5524		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5525		vdev_add_child(rvd, vd);
5526	}
5527	vdev_config_dirty(rvd);
5528
5529	/*
5530	 * Reassess the health of our root vdev.
5531	 */
5532	vdev_reopen(rvd);
5533}
5534
5535/*
5536 * Remove a device from the pool -
5537 *
5538 * Removing a device from the vdev namespace requires several steps
5539 * and can take a significant amount of time.  As a result we use
5540 * the spa_vdev_config_[enter/exit] functions which allow us to
5541 * grab and release the spa_config_lock while still holding the namespace
5542 * lock.  During each step the configuration is synced out.
5543 *
5544 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5545 * devices.
5546 */
5547int
5548spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5549{
5550	vdev_t *vd;
5551	metaslab_group_t *mg;
5552	nvlist_t **spares, **l2cache, *nv;
5553	uint64_t txg = 0;
5554	uint_t nspares, nl2cache;
5555	int error = 0;
5556	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5557
5558	ASSERT(spa_writeable(spa));
5559
5560	if (!locked)
5561		txg = spa_vdev_enter(spa);
5562
5563	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5564
5565	if (spa->spa_spares.sav_vdevs != NULL &&
5566	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5567	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5568	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5569		/*
5570		 * Only remove the hot spare if it's not currently in use
5571		 * in this pool.
5572		 */
5573		if (vd == NULL || unspare) {
5574			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5575			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5576			spa_load_spares(spa);
5577			spa->spa_spares.sav_sync = B_TRUE;
5578		} else {
5579			error = SET_ERROR(EBUSY);
5580		}
5581	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5582	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5583	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5584	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5585		/*
5586		 * Cache devices can always be removed.
5587		 */
5588		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5589		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5590		spa_load_l2cache(spa);
5591		spa->spa_l2cache.sav_sync = B_TRUE;
5592	} else if (vd != NULL && vd->vdev_islog) {
5593		ASSERT(!locked);
5594		ASSERT(vd == vd->vdev_top);
5595
5596		mg = vd->vdev_mg;
5597
5598		/*
5599		 * Stop allocating from this vdev.
5600		 */
5601		metaslab_group_passivate(mg);
5602
5603		/*
5604		 * Wait for the youngest allocations and frees to sync,
5605		 * and then wait for the deferral of those frees to finish.
5606		 */
5607		spa_vdev_config_exit(spa, NULL,
5608		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5609
5610		/*
5611		 * Attempt to evacuate the vdev.
5612		 */
5613		error = spa_vdev_remove_evacuate(spa, vd);
5614
5615		txg = spa_vdev_config_enter(spa);
5616
5617		/*
5618		 * If we couldn't evacuate the vdev, unwind.
5619		 */
5620		if (error) {
5621			metaslab_group_activate(mg);
5622			return (spa_vdev_exit(spa, NULL, txg, error));
5623		}
5624
5625		/*
5626		 * Clean up the vdev namespace.
5627		 */
5628		spa_vdev_remove_from_namespace(spa, vd);
5629
5630	} else if (vd != NULL) {
5631		/*
5632		 * Normal vdevs cannot be removed (yet).
5633		 */
5634		error = SET_ERROR(ENOTSUP);
5635	} else {
5636		/*
5637		 * There is no vdev of any kind with the specified guid.
5638		 */
5639		error = SET_ERROR(ENOENT);
5640	}
5641
5642	if (!locked)
5643		return (spa_vdev_exit(spa, NULL, txg, error));
5644
5645	return (error);
5646}
5647
5648/*
5649 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5650 * currently spared, so we can detach it.
5651 */
5652static vdev_t *
5653spa_vdev_resilver_done_hunt(vdev_t *vd)
5654{
5655	vdev_t *newvd, *oldvd;
5656
5657	for (int c = 0; c < vd->vdev_children; c++) {
5658		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5659		if (oldvd != NULL)
5660			return (oldvd);
5661	}
5662
5663	/*
5664	 * Check for a completed replacement.  We always consider the first
5665	 * vdev in the list to be the oldest vdev, and the last one to be
5666	 * the newest (see spa_vdev_attach() for how that works).  In
5667	 * the case where the newest vdev is faulted, we will not automatically
5668	 * remove it after a resilver completes.  This is OK as it will require
5669	 * user intervention to determine which disk the admin wishes to keep.
5670	 */
5671	if (vd->vdev_ops == &vdev_replacing_ops) {
5672		ASSERT(vd->vdev_children > 1);
5673
5674		newvd = vd->vdev_child[vd->vdev_children - 1];
5675		oldvd = vd->vdev_child[0];
5676
5677		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5678		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5679		    !vdev_dtl_required(oldvd))
5680			return (oldvd);
5681	}
5682
5683	/*
5684	 * Check for a completed resilver with the 'unspare' flag set.
5685	 */
5686	if (vd->vdev_ops == &vdev_spare_ops) {
5687		vdev_t *first = vd->vdev_child[0];
5688		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5689
5690		if (last->vdev_unspare) {
5691			oldvd = first;
5692			newvd = last;
5693		} else if (first->vdev_unspare) {
5694			oldvd = last;
5695			newvd = first;
5696		} else {
5697			oldvd = NULL;
5698		}
5699
5700		if (oldvd != NULL &&
5701		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5702		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5703		    !vdev_dtl_required(oldvd))
5704			return (oldvd);
5705
5706		/*
5707		 * If there are more than two spares attached to a disk,
5708		 * and those spares are not required, then we want to
5709		 * attempt to free them up now so that they can be used
5710		 * by other pools.  Once we're back down to a single
5711		 * disk+spare, we stop removing them.
5712		 */
5713		if (vd->vdev_children > 2) {
5714			newvd = vd->vdev_child[1];
5715
5716			if (newvd->vdev_isspare && last->vdev_isspare &&
5717			    vdev_dtl_empty(last, DTL_MISSING) &&
5718			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5719			    !vdev_dtl_required(newvd))
5720				return (newvd);
5721		}
5722	}
5723
5724	return (NULL);
5725}
5726
5727static void
5728spa_vdev_resilver_done(spa_t *spa)
5729{
5730	vdev_t *vd, *pvd, *ppvd;
5731	uint64_t guid, sguid, pguid, ppguid;
5732
5733	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5734
5735	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5736		pvd = vd->vdev_parent;
5737		ppvd = pvd->vdev_parent;
5738		guid = vd->vdev_guid;
5739		pguid = pvd->vdev_guid;
5740		ppguid = ppvd->vdev_guid;
5741		sguid = 0;
5742		/*
5743		 * If we have just finished replacing a hot spared device, then
5744		 * we need to detach the parent's first child (the original hot
5745		 * spare) as well.
5746		 */
5747		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5748		    ppvd->vdev_children == 2) {
5749			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5750			sguid = ppvd->vdev_child[1]->vdev_guid;
5751		}
5752		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5753
5754		spa_config_exit(spa, SCL_ALL, FTAG);
5755		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5756			return;
5757		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5758			return;
5759		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5760	}
5761
5762	spa_config_exit(spa, SCL_ALL, FTAG);
5763}
5764
5765/*
5766 * Update the stored path or FRU for this vdev.
5767 */
5768int
5769spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5770    boolean_t ispath)
5771{
5772	vdev_t *vd;
5773	boolean_t sync = B_FALSE;
5774
5775	ASSERT(spa_writeable(spa));
5776
5777	spa_vdev_state_enter(spa, SCL_ALL);
5778
5779	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5780		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5781
5782	if (!vd->vdev_ops->vdev_op_leaf)
5783		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5784
5785	if (ispath) {
5786		if (strcmp(value, vd->vdev_path) != 0) {
5787			spa_strfree(vd->vdev_path);
5788			vd->vdev_path = spa_strdup(value);
5789			sync = B_TRUE;
5790		}
5791	} else {
5792		if (vd->vdev_fru == NULL) {
5793			vd->vdev_fru = spa_strdup(value);
5794			sync = B_TRUE;
5795		} else if (strcmp(value, vd->vdev_fru) != 0) {
5796			spa_strfree(vd->vdev_fru);
5797			vd->vdev_fru = spa_strdup(value);
5798			sync = B_TRUE;
5799		}
5800	}
5801
5802	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5803}
5804
5805int
5806spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5807{
5808	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5809}
5810
5811int
5812spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5813{
5814	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5815}
5816
5817/*
5818 * ==========================================================================
5819 * SPA Scanning
5820 * ==========================================================================
5821 */
5822
5823int
5824spa_scan_stop(spa_t *spa)
5825{
5826	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5827	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5828		return (SET_ERROR(EBUSY));
5829	return (dsl_scan_cancel(spa->spa_dsl_pool));
5830}
5831
5832int
5833spa_scan(spa_t *spa, pool_scan_func_t func)
5834{
5835	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5836
5837	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5838		return (SET_ERROR(ENOTSUP));
5839
5840	/*
5841	 * If a resilver was requested, but there is no DTL on a
5842	 * writeable leaf device, we have nothing to do.
5843	 */
5844	if (func == POOL_SCAN_RESILVER &&
5845	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5846		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5847		return (0);
5848	}
5849
5850	return (dsl_scan(spa->spa_dsl_pool, func));
5851}
5852
5853/*
5854 * ==========================================================================
5855 * SPA async task processing
5856 * ==========================================================================
5857 */
5858
5859static void
5860spa_async_remove(spa_t *spa, vdev_t *vd)
5861{
5862	if (vd->vdev_remove_wanted) {
5863		vd->vdev_remove_wanted = B_FALSE;
5864		vd->vdev_delayed_close = B_FALSE;
5865		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5866
5867		/*
5868		 * We want to clear the stats, but we don't want to do a full
5869		 * vdev_clear() as that will cause us to throw away
5870		 * degraded/faulted state as well as attempt to reopen the
5871		 * device, all of which is a waste.
5872		 */
5873		vd->vdev_stat.vs_read_errors = 0;
5874		vd->vdev_stat.vs_write_errors = 0;
5875		vd->vdev_stat.vs_checksum_errors = 0;
5876
5877		vdev_state_dirty(vd->vdev_top);
5878	}
5879
5880	for (int c = 0; c < vd->vdev_children; c++)
5881		spa_async_remove(spa, vd->vdev_child[c]);
5882}
5883
5884static void
5885spa_async_probe(spa_t *spa, vdev_t *vd)
5886{
5887	if (vd->vdev_probe_wanted) {
5888		vd->vdev_probe_wanted = B_FALSE;
5889		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5890	}
5891
5892	for (int c = 0; c < vd->vdev_children; c++)
5893		spa_async_probe(spa, vd->vdev_child[c]);
5894}
5895
5896static void
5897spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5898{
5899	sysevent_id_t eid;
5900	nvlist_t *attr;
5901	char *physpath;
5902
5903	if (!spa->spa_autoexpand)
5904		return;
5905
5906	for (int c = 0; c < vd->vdev_children; c++) {
5907		vdev_t *cvd = vd->vdev_child[c];
5908		spa_async_autoexpand(spa, cvd);
5909	}
5910
5911	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5912		return;
5913
5914	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5915	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5916
5917	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5918	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5919
5920	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5921	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5922
5923	nvlist_free(attr);
5924	kmem_free(physpath, MAXPATHLEN);
5925}
5926
5927static void
5928spa_async_thread(void *arg)
5929{
5930	spa_t *spa = arg;
5931	int tasks;
5932
5933	ASSERT(spa->spa_sync_on);
5934
5935	mutex_enter(&spa->spa_async_lock);
5936	tasks = spa->spa_async_tasks;
5937	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5938	mutex_exit(&spa->spa_async_lock);
5939
5940	/*
5941	 * See if the config needs to be updated.
5942	 */
5943	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5944		uint64_t old_space, new_space;
5945
5946		mutex_enter(&spa_namespace_lock);
5947		old_space = metaslab_class_get_space(spa_normal_class(spa));
5948		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5949		new_space = metaslab_class_get_space(spa_normal_class(spa));
5950		mutex_exit(&spa_namespace_lock);
5951
5952		/*
5953		 * If the pool grew as a result of the config update,
5954		 * then log an internal history event.
5955		 */
5956		if (new_space != old_space) {
5957			spa_history_log_internal(spa, "vdev online", NULL,
5958			    "pool '%s' size: %llu(+%llu)",
5959			    spa_name(spa), new_space, new_space - old_space);
5960		}
5961	}
5962
5963	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5964		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5965		spa_async_autoexpand(spa, spa->spa_root_vdev);
5966		spa_config_exit(spa, SCL_CONFIG, FTAG);
5967	}
5968
5969	/*
5970	 * See if any devices need to be probed.
5971	 */
5972	if (tasks & SPA_ASYNC_PROBE) {
5973		spa_vdev_state_enter(spa, SCL_NONE);
5974		spa_async_probe(spa, spa->spa_root_vdev);
5975		(void) spa_vdev_state_exit(spa, NULL, 0);
5976	}
5977
5978	/*
5979	 * If any devices are done replacing, detach them.
5980	 */
5981	if (tasks & SPA_ASYNC_RESILVER_DONE)
5982		spa_vdev_resilver_done(spa);
5983
5984	/*
5985	 * Kick off a resilver.
5986	 */
5987	if (tasks & SPA_ASYNC_RESILVER)
5988		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5989
5990	/*
5991	 * Let the world know that we're done.
5992	 */
5993	mutex_enter(&spa->spa_async_lock);
5994	spa->spa_async_thread = NULL;
5995	cv_broadcast(&spa->spa_async_cv);
5996	mutex_exit(&spa->spa_async_lock);
5997	thread_exit();
5998}
5999
6000static void
6001spa_async_thread_vd(void *arg)
6002{
6003	spa_t *spa = arg;
6004	int tasks;
6005
6006	ASSERT(spa->spa_sync_on);
6007
6008	mutex_enter(&spa->spa_async_lock);
6009	tasks = spa->spa_async_tasks;
6010retry:
6011	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6012	mutex_exit(&spa->spa_async_lock);
6013
6014	/*
6015	 * See if any devices need to be marked REMOVED.
6016	 */
6017	if (tasks & SPA_ASYNC_REMOVE) {
6018		spa_vdev_state_enter(spa, SCL_NONE);
6019		spa_async_remove(spa, spa->spa_root_vdev);
6020		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6021			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6022		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6023			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6024		(void) spa_vdev_state_exit(spa, NULL, 0);
6025	}
6026
6027	/*
6028	 * Let the world know that we're done.
6029	 */
6030	mutex_enter(&spa->spa_async_lock);
6031	tasks = spa->spa_async_tasks;
6032	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6033		goto retry;
6034	spa->spa_async_thread_vd = NULL;
6035	cv_broadcast(&spa->spa_async_cv);
6036	mutex_exit(&spa->spa_async_lock);
6037	thread_exit();
6038}
6039
6040void
6041spa_async_suspend(spa_t *spa)
6042{
6043	mutex_enter(&spa->spa_async_lock);
6044	spa->spa_async_suspended++;
6045	while (spa->spa_async_thread != NULL &&
6046	    spa->spa_async_thread_vd != NULL)
6047		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6048	mutex_exit(&spa->spa_async_lock);
6049}
6050
6051void
6052spa_async_resume(spa_t *spa)
6053{
6054	mutex_enter(&spa->spa_async_lock);
6055	ASSERT(spa->spa_async_suspended != 0);
6056	spa->spa_async_suspended--;
6057	mutex_exit(&spa->spa_async_lock);
6058}
6059
6060static boolean_t
6061spa_async_tasks_pending(spa_t *spa)
6062{
6063	uint_t non_config_tasks;
6064	uint_t config_task;
6065	boolean_t config_task_suspended;
6066
6067	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6068	    SPA_ASYNC_REMOVE);
6069	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6070	if (spa->spa_ccw_fail_time == 0) {
6071		config_task_suspended = B_FALSE;
6072	} else {
6073		config_task_suspended =
6074		    (gethrtime() - spa->spa_ccw_fail_time) <
6075		    (zfs_ccw_retry_interval * NANOSEC);
6076	}
6077
6078	return (non_config_tasks || (config_task && !config_task_suspended));
6079}
6080
6081static void
6082spa_async_dispatch(spa_t *spa)
6083{
6084	mutex_enter(&spa->spa_async_lock);
6085	if (spa_async_tasks_pending(spa) &&
6086	    !spa->spa_async_suspended &&
6087	    spa->spa_async_thread == NULL &&
6088	    rootdir != NULL)
6089		spa->spa_async_thread = thread_create(NULL, 0,
6090		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6091	mutex_exit(&spa->spa_async_lock);
6092}
6093
6094static void
6095spa_async_dispatch_vd(spa_t *spa)
6096{
6097	mutex_enter(&spa->spa_async_lock);
6098	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6099	    !spa->spa_async_suspended &&
6100	    spa->spa_async_thread_vd == NULL &&
6101	    rootdir != NULL)
6102		spa->spa_async_thread_vd = thread_create(NULL, 0,
6103		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6104	mutex_exit(&spa->spa_async_lock);
6105}
6106
6107void
6108spa_async_request(spa_t *spa, int task)
6109{
6110	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6111	mutex_enter(&spa->spa_async_lock);
6112	spa->spa_async_tasks |= task;
6113	mutex_exit(&spa->spa_async_lock);
6114	spa_async_dispatch_vd(spa);
6115}
6116
6117/*
6118 * ==========================================================================
6119 * SPA syncing routines
6120 * ==========================================================================
6121 */
6122
6123static int
6124bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6125{
6126	bpobj_t *bpo = arg;
6127	bpobj_enqueue(bpo, bp, tx);
6128	return (0);
6129}
6130
6131static int
6132spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6133{
6134	zio_t *zio = arg;
6135
6136	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6137	    BP_GET_PSIZE(bp), zio->io_flags));
6138	return (0);
6139}
6140
6141/*
6142 * Note: this simple function is not inlined to make it easier to dtrace the
6143 * amount of time spent syncing frees.
6144 */
6145static void
6146spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6147{
6148	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6149	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6150	VERIFY(zio_wait(zio) == 0);
6151}
6152
6153/*
6154 * Note: this simple function is not inlined to make it easier to dtrace the
6155 * amount of time spent syncing deferred frees.
6156 */
6157static void
6158spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6159{
6160	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6161	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6162	    spa_free_sync_cb, zio, tx), ==, 0);
6163	VERIFY0(zio_wait(zio));
6164}
6165
6166
6167static void
6168spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6169{
6170	char *packed = NULL;
6171	size_t bufsize;
6172	size_t nvsize = 0;
6173	dmu_buf_t *db;
6174
6175	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6176
6177	/*
6178	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6179	 * information.  This avoids the dmu_buf_will_dirty() path and
6180	 * saves us a pre-read to get data we don't actually care about.
6181	 */
6182	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6183	packed = kmem_alloc(bufsize, KM_SLEEP);
6184
6185	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6186	    KM_SLEEP) == 0);
6187	bzero(packed + nvsize, bufsize - nvsize);
6188
6189	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6190
6191	kmem_free(packed, bufsize);
6192
6193	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6194	dmu_buf_will_dirty(db, tx);
6195	*(uint64_t *)db->db_data = nvsize;
6196	dmu_buf_rele(db, FTAG);
6197}
6198
6199static void
6200spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6201    const char *config, const char *entry)
6202{
6203	nvlist_t *nvroot;
6204	nvlist_t **list;
6205	int i;
6206
6207	if (!sav->sav_sync)
6208		return;
6209
6210	/*
6211	 * Update the MOS nvlist describing the list of available devices.
6212	 * spa_validate_aux() will have already made sure this nvlist is
6213	 * valid and the vdevs are labeled appropriately.
6214	 */
6215	if (sav->sav_object == 0) {
6216		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6217		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6218		    sizeof (uint64_t), tx);
6219		VERIFY(zap_update(spa->spa_meta_objset,
6220		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6221		    &sav->sav_object, tx) == 0);
6222	}
6223
6224	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6225	if (sav->sav_count == 0) {
6226		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6227	} else {
6228		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6229		for (i = 0; i < sav->sav_count; i++)
6230			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6231			    B_FALSE, VDEV_CONFIG_L2CACHE);
6232		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6233		    sav->sav_count) == 0);
6234		for (i = 0; i < sav->sav_count; i++)
6235			nvlist_free(list[i]);
6236		kmem_free(list, sav->sav_count * sizeof (void *));
6237	}
6238
6239	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6240	nvlist_free(nvroot);
6241
6242	sav->sav_sync = B_FALSE;
6243}
6244
6245static void
6246spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6247{
6248	nvlist_t *config;
6249
6250	if (list_is_empty(&spa->spa_config_dirty_list))
6251		return;
6252
6253	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6254
6255	config = spa_config_generate(spa, spa->spa_root_vdev,
6256	    dmu_tx_get_txg(tx), B_FALSE);
6257
6258	/*
6259	 * If we're upgrading the spa version then make sure that
6260	 * the config object gets updated with the correct version.
6261	 */
6262	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6263		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6264		    spa->spa_uberblock.ub_version);
6265
6266	spa_config_exit(spa, SCL_STATE, FTAG);
6267
6268	if (spa->spa_config_syncing)
6269		nvlist_free(spa->spa_config_syncing);
6270	spa->spa_config_syncing = config;
6271
6272	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6273}
6274
6275static void
6276spa_sync_version(void *arg, dmu_tx_t *tx)
6277{
6278	uint64_t *versionp = arg;
6279	uint64_t version = *versionp;
6280	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6281
6282	/*
6283	 * Setting the version is special cased when first creating the pool.
6284	 */
6285	ASSERT(tx->tx_txg != TXG_INITIAL);
6286
6287	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6288	ASSERT(version >= spa_version(spa));
6289
6290	spa->spa_uberblock.ub_version = version;
6291	vdev_config_dirty(spa->spa_root_vdev);
6292	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6293}
6294
6295/*
6296 * Set zpool properties.
6297 */
6298static void
6299spa_sync_props(void *arg, dmu_tx_t *tx)
6300{
6301	nvlist_t *nvp = arg;
6302	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6303	objset_t *mos = spa->spa_meta_objset;
6304	nvpair_t *elem = NULL;
6305
6306	mutex_enter(&spa->spa_props_lock);
6307
6308	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6309		uint64_t intval;
6310		char *strval, *fname;
6311		zpool_prop_t prop;
6312		const char *propname;
6313		zprop_type_t proptype;
6314		spa_feature_t fid;
6315
6316		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6317		case ZPROP_INVAL:
6318			/*
6319			 * We checked this earlier in spa_prop_validate().
6320			 */
6321			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6322
6323			fname = strchr(nvpair_name(elem), '@') + 1;
6324			VERIFY0(zfeature_lookup_name(fname, &fid));
6325
6326			spa_feature_enable(spa, fid, tx);
6327			spa_history_log_internal(spa, "set", tx,
6328			    "%s=enabled", nvpair_name(elem));
6329			break;
6330
6331		case ZPOOL_PROP_VERSION:
6332			intval = fnvpair_value_uint64(elem);
6333			/*
6334			 * The version is synced seperatly before other
6335			 * properties and should be correct by now.
6336			 */
6337			ASSERT3U(spa_version(spa), >=, intval);
6338			break;
6339
6340		case ZPOOL_PROP_ALTROOT:
6341			/*
6342			 * 'altroot' is a non-persistent property. It should
6343			 * have been set temporarily at creation or import time.
6344			 */
6345			ASSERT(spa->spa_root != NULL);
6346			break;
6347
6348		case ZPOOL_PROP_READONLY:
6349		case ZPOOL_PROP_CACHEFILE:
6350			/*
6351			 * 'readonly' and 'cachefile' are also non-persisitent
6352			 * properties.
6353			 */
6354			break;
6355		case ZPOOL_PROP_COMMENT:
6356			strval = fnvpair_value_string(elem);
6357			if (spa->spa_comment != NULL)
6358				spa_strfree(spa->spa_comment);
6359			spa->spa_comment = spa_strdup(strval);
6360			/*
6361			 * We need to dirty the configuration on all the vdevs
6362			 * so that their labels get updated.  It's unnecessary
6363			 * to do this for pool creation since the vdev's
6364			 * configuratoin has already been dirtied.
6365			 */
6366			if (tx->tx_txg != TXG_INITIAL)
6367				vdev_config_dirty(spa->spa_root_vdev);
6368			spa_history_log_internal(spa, "set", tx,
6369			    "%s=%s", nvpair_name(elem), strval);
6370			break;
6371		default:
6372			/*
6373			 * Set pool property values in the poolprops mos object.
6374			 */
6375			if (spa->spa_pool_props_object == 0) {
6376				spa->spa_pool_props_object =
6377				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6378				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6379				    tx);
6380			}
6381
6382			/* normalize the property name */
6383			propname = zpool_prop_to_name(prop);
6384			proptype = zpool_prop_get_type(prop);
6385
6386			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6387				ASSERT(proptype == PROP_TYPE_STRING);
6388				strval = fnvpair_value_string(elem);
6389				VERIFY0(zap_update(mos,
6390				    spa->spa_pool_props_object, propname,
6391				    1, strlen(strval) + 1, strval, tx));
6392				spa_history_log_internal(spa, "set", tx,
6393				    "%s=%s", nvpair_name(elem), strval);
6394			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6395				intval = fnvpair_value_uint64(elem);
6396
6397				if (proptype == PROP_TYPE_INDEX) {
6398					const char *unused;
6399					VERIFY0(zpool_prop_index_to_string(
6400					    prop, intval, &unused));
6401				}
6402				VERIFY0(zap_update(mos,
6403				    spa->spa_pool_props_object, propname,
6404				    8, 1, &intval, tx));
6405				spa_history_log_internal(spa, "set", tx,
6406				    "%s=%lld", nvpair_name(elem), intval);
6407			} else {
6408				ASSERT(0); /* not allowed */
6409			}
6410
6411			switch (prop) {
6412			case ZPOOL_PROP_DELEGATION:
6413				spa->spa_delegation = intval;
6414				break;
6415			case ZPOOL_PROP_BOOTFS:
6416				spa->spa_bootfs = intval;
6417				break;
6418			case ZPOOL_PROP_FAILUREMODE:
6419				spa->spa_failmode = intval;
6420				break;
6421			case ZPOOL_PROP_AUTOEXPAND:
6422				spa->spa_autoexpand = intval;
6423				if (tx->tx_txg != TXG_INITIAL)
6424					spa_async_request(spa,
6425					    SPA_ASYNC_AUTOEXPAND);
6426				break;
6427			case ZPOOL_PROP_DEDUPDITTO:
6428				spa->spa_dedup_ditto = intval;
6429				break;
6430			default:
6431				break;
6432			}
6433		}
6434
6435	}
6436
6437	mutex_exit(&spa->spa_props_lock);
6438}
6439
6440/*
6441 * Perform one-time upgrade on-disk changes.  spa_version() does not
6442 * reflect the new version this txg, so there must be no changes this
6443 * txg to anything that the upgrade code depends on after it executes.
6444 * Therefore this must be called after dsl_pool_sync() does the sync
6445 * tasks.
6446 */
6447static void
6448spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6449{
6450	dsl_pool_t *dp = spa->spa_dsl_pool;
6451
6452	ASSERT(spa->spa_sync_pass == 1);
6453
6454	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6455
6456	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6457	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6458		dsl_pool_create_origin(dp, tx);
6459
6460		/* Keeping the origin open increases spa_minref */
6461		spa->spa_minref += 3;
6462	}
6463
6464	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6465	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6466		dsl_pool_upgrade_clones(dp, tx);
6467	}
6468
6469	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6470	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6471		dsl_pool_upgrade_dir_clones(dp, tx);
6472
6473		/* Keeping the freedir open increases spa_minref */
6474		spa->spa_minref += 3;
6475	}
6476
6477	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6478	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6479		spa_feature_create_zap_objects(spa, tx);
6480	}
6481
6482	/*
6483	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6484	 * when possibility to use lz4 compression for metadata was added
6485	 * Old pools that have this feature enabled must be upgraded to have
6486	 * this feature active
6487	 */
6488	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6489		boolean_t lz4_en = spa_feature_is_enabled(spa,
6490		    SPA_FEATURE_LZ4_COMPRESS);
6491		boolean_t lz4_ac = spa_feature_is_active(spa,
6492		    SPA_FEATURE_LZ4_COMPRESS);
6493
6494		if (lz4_en && !lz4_ac)
6495			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6496	}
6497	rrw_exit(&dp->dp_config_rwlock, FTAG);
6498}
6499
6500/*
6501 * Sync the specified transaction group.  New blocks may be dirtied as
6502 * part of the process, so we iterate until it converges.
6503 */
6504void
6505spa_sync(spa_t *spa, uint64_t txg)
6506{
6507	dsl_pool_t *dp = spa->spa_dsl_pool;
6508	objset_t *mos = spa->spa_meta_objset;
6509	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6510	vdev_t *rvd = spa->spa_root_vdev;
6511	vdev_t *vd;
6512	dmu_tx_t *tx;
6513	int error;
6514
6515	VERIFY(spa_writeable(spa));
6516
6517	/*
6518	 * Lock out configuration changes.
6519	 */
6520	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6521
6522	spa->spa_syncing_txg = txg;
6523	spa->spa_sync_pass = 0;
6524
6525	/*
6526	 * If there are any pending vdev state changes, convert them
6527	 * into config changes that go out with this transaction group.
6528	 */
6529	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6530	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6531		/*
6532		 * We need the write lock here because, for aux vdevs,
6533		 * calling vdev_config_dirty() modifies sav_config.
6534		 * This is ugly and will become unnecessary when we
6535		 * eliminate the aux vdev wart by integrating all vdevs
6536		 * into the root vdev tree.
6537		 */
6538		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6539		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6540		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6541			vdev_state_clean(vd);
6542			vdev_config_dirty(vd);
6543		}
6544		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6545		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6546	}
6547	spa_config_exit(spa, SCL_STATE, FTAG);
6548
6549	tx = dmu_tx_create_assigned(dp, txg);
6550
6551	spa->spa_sync_starttime = gethrtime();
6552#ifdef illumos
6553	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6554	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6555#else	/* FreeBSD */
6556#ifdef _KERNEL
6557	callout_reset(&spa->spa_deadman_cycid,
6558	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6559#endif
6560#endif
6561
6562	/*
6563	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6564	 * set spa_deflate if we have no raid-z vdevs.
6565	 */
6566	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6567	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6568		int i;
6569
6570		for (i = 0; i < rvd->vdev_children; i++) {
6571			vd = rvd->vdev_child[i];
6572			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6573				break;
6574		}
6575		if (i == rvd->vdev_children) {
6576			spa->spa_deflate = TRUE;
6577			VERIFY(0 == zap_add(spa->spa_meta_objset,
6578			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6579			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6580		}
6581	}
6582
6583	/*
6584	 * If anything has changed in this txg, or if someone is waiting
6585	 * for this txg to sync (eg, spa_vdev_remove()), push the
6586	 * deferred frees from the previous txg.  If not, leave them
6587	 * alone so that we don't generate work on an otherwise idle
6588	 * system.
6589	 */
6590	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6591	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6592	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6593	    ((dsl_scan_active(dp->dp_scan) ||
6594	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6595		spa_sync_deferred_frees(spa, tx);
6596	}
6597
6598	/*
6599	 * Iterate to convergence.
6600	 */
6601	do {
6602		int pass = ++spa->spa_sync_pass;
6603
6604		spa_sync_config_object(spa, tx);
6605		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6606		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6607		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6608		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6609		spa_errlog_sync(spa, txg);
6610		dsl_pool_sync(dp, txg);
6611
6612		if (pass < zfs_sync_pass_deferred_free) {
6613			spa_sync_frees(spa, free_bpl, tx);
6614		} else {
6615			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6616			    &spa->spa_deferred_bpobj, tx);
6617		}
6618
6619		ddt_sync(spa, txg);
6620		dsl_scan_sync(dp, tx);
6621
6622		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6623			vdev_sync(vd, txg);
6624
6625		if (pass == 1)
6626			spa_sync_upgrades(spa, tx);
6627
6628	} while (dmu_objset_is_dirty(mos, txg));
6629
6630	/*
6631	 * Rewrite the vdev configuration (which includes the uberblock)
6632	 * to commit the transaction group.
6633	 *
6634	 * If there are no dirty vdevs, we sync the uberblock to a few
6635	 * random top-level vdevs that are known to be visible in the
6636	 * config cache (see spa_vdev_add() for a complete description).
6637	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6638	 */
6639	for (;;) {
6640		/*
6641		 * We hold SCL_STATE to prevent vdev open/close/etc.
6642		 * while we're attempting to write the vdev labels.
6643		 */
6644		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6645
6646		if (list_is_empty(&spa->spa_config_dirty_list)) {
6647			vdev_t *svd[SPA_DVAS_PER_BP];
6648			int svdcount = 0;
6649			int children = rvd->vdev_children;
6650			int c0 = spa_get_random(children);
6651
6652			for (int c = 0; c < children; c++) {
6653				vd = rvd->vdev_child[(c0 + c) % children];
6654				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6655					continue;
6656				svd[svdcount++] = vd;
6657				if (svdcount == SPA_DVAS_PER_BP)
6658					break;
6659			}
6660			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6661			if (error != 0)
6662				error = vdev_config_sync(svd, svdcount, txg,
6663				    B_TRUE);
6664		} else {
6665			error = vdev_config_sync(rvd->vdev_child,
6666			    rvd->vdev_children, txg, B_FALSE);
6667			if (error != 0)
6668				error = vdev_config_sync(rvd->vdev_child,
6669				    rvd->vdev_children, txg, B_TRUE);
6670		}
6671
6672		if (error == 0)
6673			spa->spa_last_synced_guid = rvd->vdev_guid;
6674
6675		spa_config_exit(spa, SCL_STATE, FTAG);
6676
6677		if (error == 0)
6678			break;
6679		zio_suspend(spa, NULL);
6680		zio_resume_wait(spa);
6681	}
6682	dmu_tx_commit(tx);
6683
6684#ifdef illumos
6685	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6686#else	/* FreeBSD */
6687#ifdef _KERNEL
6688	callout_drain(&spa->spa_deadman_cycid);
6689#endif
6690#endif
6691
6692	/*
6693	 * Clear the dirty config list.
6694	 */
6695	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6696		vdev_config_clean(vd);
6697
6698	/*
6699	 * Now that the new config has synced transactionally,
6700	 * let it become visible to the config cache.
6701	 */
6702	if (spa->spa_config_syncing != NULL) {
6703		spa_config_set(spa, spa->spa_config_syncing);
6704		spa->spa_config_txg = txg;
6705		spa->spa_config_syncing = NULL;
6706	}
6707
6708	spa->spa_ubsync = spa->spa_uberblock;
6709
6710	dsl_pool_sync_done(dp, txg);
6711
6712	/*
6713	 * Update usable space statistics.
6714	 */
6715	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6716		vdev_sync_done(vd, txg);
6717
6718	spa_update_dspace(spa);
6719
6720	/*
6721	 * It had better be the case that we didn't dirty anything
6722	 * since vdev_config_sync().
6723	 */
6724	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6725	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6726	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6727
6728	spa->spa_sync_pass = 0;
6729
6730	spa_config_exit(spa, SCL_CONFIG, FTAG);
6731
6732	spa_handle_ignored_writes(spa);
6733
6734	/*
6735	 * If any async tasks have been requested, kick them off.
6736	 */
6737	spa_async_dispatch(spa);
6738	spa_async_dispatch_vd(spa);
6739}
6740
6741/*
6742 * Sync all pools.  We don't want to hold the namespace lock across these
6743 * operations, so we take a reference on the spa_t and drop the lock during the
6744 * sync.
6745 */
6746void
6747spa_sync_allpools(void)
6748{
6749	spa_t *spa = NULL;
6750	mutex_enter(&spa_namespace_lock);
6751	while ((spa = spa_next(spa)) != NULL) {
6752		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6753		    !spa_writeable(spa) || spa_suspended(spa))
6754			continue;
6755		spa_open_ref(spa, FTAG);
6756		mutex_exit(&spa_namespace_lock);
6757		txg_wait_synced(spa_get_dsl(spa), 0);
6758		mutex_enter(&spa_namespace_lock);
6759		spa_close(spa, FTAG);
6760	}
6761	mutex_exit(&spa_namespace_lock);
6762}
6763
6764/*
6765 * ==========================================================================
6766 * Miscellaneous routines
6767 * ==========================================================================
6768 */
6769
6770/*
6771 * Remove all pools in the system.
6772 */
6773void
6774spa_evict_all(void)
6775{
6776	spa_t *spa;
6777
6778	/*
6779	 * Remove all cached state.  All pools should be closed now,
6780	 * so every spa in the AVL tree should be unreferenced.
6781	 */
6782	mutex_enter(&spa_namespace_lock);
6783	while ((spa = spa_next(NULL)) != NULL) {
6784		/*
6785		 * Stop async tasks.  The async thread may need to detach
6786		 * a device that's been replaced, which requires grabbing
6787		 * spa_namespace_lock, so we must drop it here.
6788		 */
6789		spa_open_ref(spa, FTAG);
6790		mutex_exit(&spa_namespace_lock);
6791		spa_async_suspend(spa);
6792		mutex_enter(&spa_namespace_lock);
6793		spa_close(spa, FTAG);
6794
6795		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6796			spa_unload(spa);
6797			spa_deactivate(spa);
6798		}
6799		spa_remove(spa);
6800	}
6801	mutex_exit(&spa_namespace_lock);
6802}
6803
6804vdev_t *
6805spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6806{
6807	vdev_t *vd;
6808	int i;
6809
6810	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6811		return (vd);
6812
6813	if (aux) {
6814		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6815			vd = spa->spa_l2cache.sav_vdevs[i];
6816			if (vd->vdev_guid == guid)
6817				return (vd);
6818		}
6819
6820		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6821			vd = spa->spa_spares.sav_vdevs[i];
6822			if (vd->vdev_guid == guid)
6823				return (vd);
6824		}
6825	}
6826
6827	return (NULL);
6828}
6829
6830void
6831spa_upgrade(spa_t *spa, uint64_t version)
6832{
6833	ASSERT(spa_writeable(spa));
6834
6835	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6836
6837	/*
6838	 * This should only be called for a non-faulted pool, and since a
6839	 * future version would result in an unopenable pool, this shouldn't be
6840	 * possible.
6841	 */
6842	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6843	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6844
6845	spa->spa_uberblock.ub_version = version;
6846	vdev_config_dirty(spa->spa_root_vdev);
6847
6848	spa_config_exit(spa, SCL_ALL, FTAG);
6849
6850	txg_wait_synced(spa_get_dsl(spa), 0);
6851}
6852
6853boolean_t
6854spa_has_spare(spa_t *spa, uint64_t guid)
6855{
6856	int i;
6857	uint64_t spareguid;
6858	spa_aux_vdev_t *sav = &spa->spa_spares;
6859
6860	for (i = 0; i < sav->sav_count; i++)
6861		if (sav->sav_vdevs[i]->vdev_guid == guid)
6862			return (B_TRUE);
6863
6864	for (i = 0; i < sav->sav_npending; i++) {
6865		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6866		    &spareguid) == 0 && spareguid == guid)
6867			return (B_TRUE);
6868	}
6869
6870	return (B_FALSE);
6871}
6872
6873/*
6874 * Check if a pool has an active shared spare device.
6875 * Note: reference count of an active spare is 2, as a spare and as a replace
6876 */
6877static boolean_t
6878spa_has_active_shared_spare(spa_t *spa)
6879{
6880	int i, refcnt;
6881	uint64_t pool;
6882	spa_aux_vdev_t *sav = &spa->spa_spares;
6883
6884	for (i = 0; i < sav->sav_count; i++) {
6885		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6886		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6887		    refcnt > 2)
6888			return (B_TRUE);
6889	}
6890
6891	return (B_FALSE);
6892}
6893
6894/*
6895 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6896 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6897 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6898 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6899 * or zdb as real changes.
6900 */
6901void
6902spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6903{
6904#ifdef _KERNEL
6905	sysevent_t		*ev;
6906	sysevent_attr_list_t	*attr = NULL;
6907	sysevent_value_t	value;
6908	sysevent_id_t		eid;
6909
6910	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6911	    SE_SLEEP);
6912
6913	value.value_type = SE_DATA_TYPE_STRING;
6914	value.value.sv_string = spa_name(spa);
6915	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6916		goto done;
6917
6918	value.value_type = SE_DATA_TYPE_UINT64;
6919	value.value.sv_uint64 = spa_guid(spa);
6920	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6921		goto done;
6922
6923	if (vd) {
6924		value.value_type = SE_DATA_TYPE_UINT64;
6925		value.value.sv_uint64 = vd->vdev_guid;
6926		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6927		    SE_SLEEP) != 0)
6928			goto done;
6929
6930		if (vd->vdev_path) {
6931			value.value_type = SE_DATA_TYPE_STRING;
6932			value.value.sv_string = vd->vdev_path;
6933			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6934			    &value, SE_SLEEP) != 0)
6935				goto done;
6936		}
6937	}
6938
6939	if (sysevent_attach_attributes(ev, attr) != 0)
6940		goto done;
6941	attr = NULL;
6942
6943	(void) log_sysevent(ev, SE_SLEEP, &eid);
6944
6945done:
6946	if (attr)
6947		sysevent_free_attr(attr);
6948	sysevent_free(ev);
6949#endif
6950}
6951