spa.c revision 268649
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		dsl_dir_t *freedir = pool->dp_free_dir;
262
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (freedir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    freedir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
288		if (dp->scd_path == NULL) {
289			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290			    "none", 0, ZPROP_SRC_LOCAL);
291		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
294		}
295	}
296}
297
298/*
299 * Get zpool property values.
300 */
301int
302spa_prop_get(spa_t *spa, nvlist_t **nvp)
303{
304	objset_t *mos = spa->spa_meta_objset;
305	zap_cursor_t zc;
306	zap_attribute_t za;
307	int err;
308
309	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310
311	mutex_enter(&spa->spa_props_lock);
312
313	/*
314	 * Get properties from the spa config.
315	 */
316	spa_prop_get_config(spa, nvp);
317
318	/* If no pool property object, no more prop to get. */
319	if (mos == NULL || spa->spa_pool_props_object == 0) {
320		mutex_exit(&spa->spa_props_lock);
321		return (0);
322	}
323
324	/*
325	 * Get properties from the MOS pool property object.
326	 */
327	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
328	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
329	    zap_cursor_advance(&zc)) {
330		uint64_t intval = 0;
331		char *strval = NULL;
332		zprop_source_t src = ZPROP_SRC_DEFAULT;
333		zpool_prop_t prop;
334
335		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
336			continue;
337
338		switch (za.za_integer_length) {
339		case 8:
340			/* integer property */
341			if (za.za_first_integer !=
342			    zpool_prop_default_numeric(prop))
343				src = ZPROP_SRC_LOCAL;
344
345			if (prop == ZPOOL_PROP_BOOTFS) {
346				dsl_pool_t *dp;
347				dsl_dataset_t *ds = NULL;
348
349				dp = spa_get_dsl(spa);
350				dsl_pool_config_enter(dp, FTAG);
351				if (err = dsl_dataset_hold_obj(dp,
352				    za.za_first_integer, FTAG, &ds)) {
353					dsl_pool_config_exit(dp, FTAG);
354					break;
355				}
356
357				strval = kmem_alloc(
358				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
359				    KM_SLEEP);
360				dsl_dataset_name(ds, strval);
361				dsl_dataset_rele(ds, FTAG);
362				dsl_pool_config_exit(dp, FTAG);
363			} else {
364				strval = NULL;
365				intval = za.za_first_integer;
366			}
367
368			spa_prop_add_list(*nvp, prop, strval, intval, src);
369
370			if (strval != NULL)
371				kmem_free(strval,
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
373
374			break;
375
376		case 1:
377			/* string property */
378			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
379			err = zap_lookup(mos, spa->spa_pool_props_object,
380			    za.za_name, 1, za.za_num_integers, strval);
381			if (err) {
382				kmem_free(strval, za.za_num_integers);
383				break;
384			}
385			spa_prop_add_list(*nvp, prop, strval, 0, src);
386			kmem_free(strval, za.za_num_integers);
387			break;
388
389		default:
390			break;
391		}
392	}
393	zap_cursor_fini(&zc);
394	mutex_exit(&spa->spa_props_lock);
395out:
396	if (err && err != ENOENT) {
397		nvlist_free(*nvp);
398		*nvp = NULL;
399		return (err);
400	}
401
402	return (0);
403}
404
405/*
406 * Validate the given pool properties nvlist and modify the list
407 * for the property values to be set.
408 */
409static int
410spa_prop_validate(spa_t *spa, nvlist_t *props)
411{
412	nvpair_t *elem;
413	int error = 0, reset_bootfs = 0;
414	uint64_t objnum = 0;
415	boolean_t has_feature = B_FALSE;
416
417	elem = NULL;
418	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
419		uint64_t intval;
420		char *strval, *slash, *check, *fname;
421		const char *propname = nvpair_name(elem);
422		zpool_prop_t prop = zpool_name_to_prop(propname);
423
424		switch (prop) {
425		case ZPROP_INVAL:
426			if (!zpool_prop_feature(propname)) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			/*
432			 * Sanitize the input.
433			 */
434			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			if (nvpair_value_uint64(elem, &intval) != 0) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (intval != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			fname = strchr(propname, '@') + 1;
450			if (zfeature_lookup_name(fname, NULL) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			has_feature = B_TRUE;
456			break;
457
458		case ZPOOL_PROP_VERSION:
459			error = nvpair_value_uint64(elem, &intval);
460			if (!error &&
461			    (intval < spa_version(spa) ||
462			    intval > SPA_VERSION_BEFORE_FEATURES ||
463			    has_feature))
464				error = SET_ERROR(EINVAL);
465			break;
466
467		case ZPOOL_PROP_DELEGATION:
468		case ZPOOL_PROP_AUTOREPLACE:
469		case ZPOOL_PROP_LISTSNAPS:
470		case ZPOOL_PROP_AUTOEXPAND:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error && intval > 1)
473				error = SET_ERROR(EINVAL);
474			break;
475
476		case ZPOOL_PROP_BOOTFS:
477			/*
478			 * If the pool version is less than SPA_VERSION_BOOTFS,
479			 * or the pool is still being created (version == 0),
480			 * the bootfs property cannot be set.
481			 */
482			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
483				error = SET_ERROR(ENOTSUP);
484				break;
485			}
486
487			/*
488			 * Make sure the vdev config is bootable
489			 */
490			if (!vdev_is_bootable(spa->spa_root_vdev)) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			reset_bootfs = 1;
496
497			error = nvpair_value_string(elem, &strval);
498
499			if (!error) {
500				objset_t *os;
501				uint64_t compress;
502
503				if (strval == NULL || strval[0] == '\0') {
504					objnum = zpool_prop_default_numeric(
505					    ZPOOL_PROP_BOOTFS);
506					break;
507				}
508
509				if (error = dmu_objset_hold(strval, FTAG, &os))
510					break;
511
512				/* Must be ZPL and not gzip compressed. */
513
514				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515					error = SET_ERROR(ENOTSUP);
516				} else if ((error =
517				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519				    &compress)) == 0 &&
520				    !BOOTFS_COMPRESS_VALID(compress)) {
521					error = SET_ERROR(ENOTSUP);
522				} else {
523					objnum = dmu_objset_id(os);
524				}
525				dmu_objset_rele(os, FTAG);
526			}
527			break;
528
529		case ZPOOL_PROP_FAILUREMODE:
530			error = nvpair_value_uint64(elem, &intval);
531			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
532			    intval > ZIO_FAILURE_MODE_PANIC))
533				error = SET_ERROR(EINVAL);
534
535			/*
536			 * This is a special case which only occurs when
537			 * the pool has completely failed. This allows
538			 * the user to change the in-core failmode property
539			 * without syncing it out to disk (I/Os might
540			 * currently be blocked). We do this by returning
541			 * EIO to the caller (spa_prop_set) to trick it
542			 * into thinking we encountered a property validation
543			 * error.
544			 */
545			if (!error && spa_suspended(spa)) {
546				spa->spa_failmode = intval;
547				error = SET_ERROR(EIO);
548			}
549			break;
550
551		case ZPOOL_PROP_CACHEFILE:
552			if ((error = nvpair_value_string(elem, &strval)) != 0)
553				break;
554
555			if (strval[0] == '\0')
556				break;
557
558			if (strcmp(strval, "none") == 0)
559				break;
560
561			if (strval[0] != '/') {
562				error = SET_ERROR(EINVAL);
563				break;
564			}
565
566			slash = strrchr(strval, '/');
567			ASSERT(slash != NULL);
568
569			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
570			    strcmp(slash, "/..") == 0)
571				error = SET_ERROR(EINVAL);
572			break;
573
574		case ZPOOL_PROP_COMMENT:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577			for (check = strval; *check != '\0'; check++) {
578				/*
579				 * The kernel doesn't have an easy isprint()
580				 * check.  For this kernel check, we merely
581				 * check ASCII apart from DEL.  Fix this if
582				 * there is an easy-to-use kernel isprint().
583				 */
584				if (*check >= 0x7f) {
585					error = SET_ERROR(EINVAL);
586					break;
587				}
588				check++;
589			}
590			if (strlen(strval) > ZPROP_MAX_COMMENT)
591				error = E2BIG;
592			break;
593
594		case ZPOOL_PROP_DEDUPDITTO:
595			if (spa_version(spa) < SPA_VERSION_DEDUP)
596				error = SET_ERROR(ENOTSUP);
597			else
598				error = nvpair_value_uint64(elem, &intval);
599			if (error == 0 &&
600			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601				error = SET_ERROR(EINVAL);
602			break;
603		}
604
605		if (error)
606			break;
607	}
608
609	if (!error && reset_bootfs) {
610		error = nvlist_remove(props,
611		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613		if (!error) {
614			error = nvlist_add_uint64(props,
615			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616		}
617	}
618
619	return (error);
620}
621
622void
623spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624{
625	char *cachefile;
626	spa_config_dirent_t *dp;
627
628	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629	    &cachefile) != 0)
630		return;
631
632	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633	    KM_SLEEP);
634
635	if (cachefile[0] == '\0')
636		dp->scd_path = spa_strdup(spa_config_path);
637	else if (strcmp(cachefile, "none") == 0)
638		dp->scd_path = NULL;
639	else
640		dp->scd_path = spa_strdup(cachefile);
641
642	list_insert_head(&spa->spa_config_list, dp);
643	if (need_sync)
644		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645}
646
647int
648spa_prop_set(spa_t *spa, nvlist_t *nvp)
649{
650	int error;
651	nvpair_t *elem = NULL;
652	boolean_t need_sync = B_FALSE;
653
654	if ((error = spa_prop_validate(spa, nvp)) != 0)
655		return (error);
656
657	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660		if (prop == ZPOOL_PROP_CACHEFILE ||
661		    prop == ZPOOL_PROP_ALTROOT ||
662		    prop == ZPOOL_PROP_READONLY)
663			continue;
664
665		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666			uint64_t ver;
667
668			if (prop == ZPOOL_PROP_VERSION) {
669				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670			} else {
671				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672				ver = SPA_VERSION_FEATURES;
673				need_sync = B_TRUE;
674			}
675
676			/* Save time if the version is already set. */
677			if (ver == spa_version(spa))
678				continue;
679
680			/*
681			 * In addition to the pool directory object, we might
682			 * create the pool properties object, the features for
683			 * read object, the features for write object, or the
684			 * feature descriptions object.
685			 */
686			error = dsl_sync_task(spa->spa_name, NULL,
687			    spa_sync_version, &ver, 6);
688			if (error)
689				return (error);
690			continue;
691		}
692
693		need_sync = B_TRUE;
694		break;
695	}
696
697	if (need_sync) {
698		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
699		    nvp, 6));
700	}
701
702	return (0);
703}
704
705/*
706 * If the bootfs property value is dsobj, clear it.
707 */
708void
709spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
710{
711	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
712		VERIFY(zap_remove(spa->spa_meta_objset,
713		    spa->spa_pool_props_object,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
715		spa->spa_bootfs = 0;
716	}
717}
718
719/*ARGSUSED*/
720static int
721spa_change_guid_check(void *arg, dmu_tx_t *tx)
722{
723	uint64_t *newguid = arg;
724	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725	vdev_t *rvd = spa->spa_root_vdev;
726	uint64_t vdev_state;
727
728	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
729	vdev_state = rvd->vdev_state;
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732	if (vdev_state != VDEV_STATE_HEALTHY)
733		return (SET_ERROR(ENXIO));
734
735	ASSERT3U(spa_guid(spa), !=, *newguid);
736
737	return (0);
738}
739
740static void
741spa_change_guid_sync(void *arg, dmu_tx_t *tx)
742{
743	uint64_t *newguid = arg;
744	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
745	uint64_t oldguid;
746	vdev_t *rvd = spa->spa_root_vdev;
747
748	oldguid = spa_guid(spa);
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	rvd->vdev_guid = *newguid;
752	rvd->vdev_guid_sum += (*newguid - oldguid);
753	vdev_config_dirty(rvd);
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
757	    oldguid, *newguid);
758}
759
760/*
761 * Change the GUID for the pool.  This is done so that we can later
762 * re-import a pool built from a clone of our own vdevs.  We will modify
763 * the root vdev's guid, our own pool guid, and then mark all of our
764 * vdevs dirty.  Note that we must make sure that all our vdevs are
765 * online when we do this, or else any vdevs that weren't present
766 * would be orphaned from our pool.  We are also going to issue a
767 * sysevent to update any watchers.
768 */
769int
770spa_change_guid(spa_t *spa)
771{
772	int error;
773	uint64_t guid;
774
775	mutex_enter(&spa->spa_vdev_top_lock);
776	mutex_enter(&spa_namespace_lock);
777	guid = spa_generate_guid(NULL);
778
779	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
780	    spa_change_guid_sync, &guid, 5);
781
782	if (error == 0) {
783		spa_config_sync(spa, B_FALSE, B_TRUE);
784		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
785	}
786
787	mutex_exit(&spa_namespace_lock);
788	mutex_exit(&spa->spa_vdev_top_lock);
789
790	return (error);
791}
792
793/*
794 * ==========================================================================
795 * SPA state manipulation (open/create/destroy/import/export)
796 * ==========================================================================
797 */
798
799static int
800spa_error_entry_compare(const void *a, const void *b)
801{
802	spa_error_entry_t *sa = (spa_error_entry_t *)a;
803	spa_error_entry_t *sb = (spa_error_entry_t *)b;
804	int ret;
805
806	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
807	    sizeof (zbookmark_t));
808
809	if (ret < 0)
810		return (-1);
811	else if (ret > 0)
812		return (1);
813	else
814		return (0);
815}
816
817/*
818 * Utility function which retrieves copies of the current logs and
819 * re-initializes them in the process.
820 */
821void
822spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
823{
824	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
825
826	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
827	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
828
829	avl_create(&spa->spa_errlist_scrub,
830	    spa_error_entry_compare, sizeof (spa_error_entry_t),
831	    offsetof(spa_error_entry_t, se_avl));
832	avl_create(&spa->spa_errlist_last,
833	    spa_error_entry_compare, sizeof (spa_error_entry_t),
834	    offsetof(spa_error_entry_t, se_avl));
835}
836
837static void
838spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
839{
840	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
841	enum zti_modes mode = ztip->zti_mode;
842	uint_t value = ztip->zti_value;
843	uint_t count = ztip->zti_count;
844	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
845	char name[32];
846	uint_t flags = 0;
847	boolean_t batch = B_FALSE;
848
849	if (mode == ZTI_MODE_NULL) {
850		tqs->stqs_count = 0;
851		tqs->stqs_taskq = NULL;
852		return;
853	}
854
855	ASSERT3U(count, >, 0);
856
857	tqs->stqs_count = count;
858	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
859
860	switch (mode) {
861	case ZTI_MODE_FIXED:
862		ASSERT3U(value, >=, 1);
863		value = MAX(value, 1);
864		break;
865
866	case ZTI_MODE_BATCH:
867		batch = B_TRUE;
868		flags |= TASKQ_THREADS_CPU_PCT;
869		value = zio_taskq_batch_pct;
870		break;
871
872	default:
873		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
874		    "spa_activate()",
875		    zio_type_name[t], zio_taskq_types[q], mode, value);
876		break;
877	}
878
879	for (uint_t i = 0; i < count; i++) {
880		taskq_t *tq;
881
882		if (count > 1) {
883			(void) snprintf(name, sizeof (name), "%s_%s_%u",
884			    zio_type_name[t], zio_taskq_types[q], i);
885		} else {
886			(void) snprintf(name, sizeof (name), "%s_%s",
887			    zio_type_name[t], zio_taskq_types[q]);
888		}
889
890#ifdef SYSDC
891		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892			if (batch)
893				flags |= TASKQ_DC_BATCH;
894
895			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896			    spa->spa_proc, zio_taskq_basedc, flags);
897		} else {
898#endif
899			pri_t pri = maxclsyspri;
900			/*
901			 * The write issue taskq can be extremely CPU
902			 * intensive.  Run it at slightly lower priority
903			 * than the other taskqs.
904			 */
905			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
906				pri--;
907
908			tq = taskq_create_proc(name, value, pri, 50,
909			    INT_MAX, spa->spa_proc, flags);
910#ifdef SYSDC
911		}
912#endif
913
914		tqs->stqs_taskq[i] = tq;
915	}
916}
917
918static void
919spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920{
921	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923	if (tqs->stqs_taskq == NULL) {
924		ASSERT0(tqs->stqs_count);
925		return;
926	}
927
928	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930		taskq_destroy(tqs->stqs_taskq[i]);
931	}
932
933	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934	tqs->stqs_taskq = NULL;
935}
936
937/*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943void
944spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	taskq_t *tq;
949
950	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951	ASSERT3U(tqs->stqs_count, !=, 0);
952
953	if (tqs->stqs_count == 1) {
954		tq = tqs->stqs_taskq[0];
955	} else {
956#ifdef _KERNEL
957		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
958#else
959		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
960#endif
961	}
962
963	taskq_dispatch_ent(tq, func, arg, flags, ent);
964}
965
966static void
967spa_create_zio_taskqs(spa_t *spa)
968{
969	for (int t = 0; t < ZIO_TYPES; t++) {
970		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
971			spa_taskqs_init(spa, t, q);
972		}
973	}
974}
975
976#ifdef _KERNEL
977#ifdef SPA_PROCESS
978static void
979spa_thread(void *arg)
980{
981	callb_cpr_t cprinfo;
982
983	spa_t *spa = arg;
984	user_t *pu = PTOU(curproc);
985
986	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
987	    spa->spa_name);
988
989	ASSERT(curproc != &p0);
990	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
991	    "zpool-%s", spa->spa_name);
992	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
993
994#ifdef PSRSET_BIND
995	/* bind this thread to the requested psrset */
996	if (zio_taskq_psrset_bind != PS_NONE) {
997		pool_lock();
998		mutex_enter(&cpu_lock);
999		mutex_enter(&pidlock);
1000		mutex_enter(&curproc->p_lock);
1001
1002		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1003		    0, NULL, NULL) == 0)  {
1004			curthread->t_bind_pset = zio_taskq_psrset_bind;
1005		} else {
1006			cmn_err(CE_WARN,
1007			    "Couldn't bind process for zfs pool \"%s\" to "
1008			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1009		}
1010
1011		mutex_exit(&curproc->p_lock);
1012		mutex_exit(&pidlock);
1013		mutex_exit(&cpu_lock);
1014		pool_unlock();
1015	}
1016#endif
1017
1018#ifdef SYSDC
1019	if (zio_taskq_sysdc) {
1020		sysdc_thread_enter(curthread, 100, 0);
1021	}
1022#endif
1023
1024	spa->spa_proc = curproc;
1025	spa->spa_did = curthread->t_did;
1026
1027	spa_create_zio_taskqs(spa);
1028
1029	mutex_enter(&spa->spa_proc_lock);
1030	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1031
1032	spa->spa_proc_state = SPA_PROC_ACTIVE;
1033	cv_broadcast(&spa->spa_proc_cv);
1034
1035	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1036	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1037		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1038	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1039
1040	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1041	spa->spa_proc_state = SPA_PROC_GONE;
1042	spa->spa_proc = &p0;
1043	cv_broadcast(&spa->spa_proc_cv);
1044	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1045
1046	mutex_enter(&curproc->p_lock);
1047	lwp_exit();
1048}
1049#endif	/* SPA_PROCESS */
1050#endif
1051
1052/*
1053 * Activate an uninitialized pool.
1054 */
1055static void
1056spa_activate(spa_t *spa, int mode)
1057{
1058	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1059
1060	spa->spa_state = POOL_STATE_ACTIVE;
1061	spa->spa_mode = mode;
1062
1063	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1064	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1065
1066	/* Try to create a covering process */
1067	mutex_enter(&spa->spa_proc_lock);
1068	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1069	ASSERT(spa->spa_proc == &p0);
1070	spa->spa_did = 0;
1071
1072#ifdef SPA_PROCESS
1073	/* Only create a process if we're going to be around a while. */
1074	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1075		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1076		    NULL, 0) == 0) {
1077			spa->spa_proc_state = SPA_PROC_CREATED;
1078			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1079				cv_wait(&spa->spa_proc_cv,
1080				    &spa->spa_proc_lock);
1081			}
1082			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1083			ASSERT(spa->spa_proc != &p0);
1084			ASSERT(spa->spa_did != 0);
1085		} else {
1086#ifdef _KERNEL
1087			cmn_err(CE_WARN,
1088			    "Couldn't create process for zfs pool \"%s\"\n",
1089			    spa->spa_name);
1090#endif
1091		}
1092	}
1093#endif	/* SPA_PROCESS */
1094	mutex_exit(&spa->spa_proc_lock);
1095
1096	/* If we didn't create a process, we need to create our taskqs. */
1097	ASSERT(spa->spa_proc == &p0);
1098	if (spa->spa_proc == &p0) {
1099		spa_create_zio_taskqs(spa);
1100	}
1101
1102	/*
1103	 * Start TRIM thread.
1104	 */
1105	trim_thread_create(spa);
1106
1107	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1108	    offsetof(vdev_t, vdev_config_dirty_node));
1109	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1110	    offsetof(vdev_t, vdev_state_dirty_node));
1111
1112	txg_list_create(&spa->spa_vdev_txg_list,
1113	    offsetof(struct vdev, vdev_txg_node));
1114
1115	avl_create(&spa->spa_errlist_scrub,
1116	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1117	    offsetof(spa_error_entry_t, se_avl));
1118	avl_create(&spa->spa_errlist_last,
1119	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1120	    offsetof(spa_error_entry_t, se_avl));
1121}
1122
1123/*
1124 * Opposite of spa_activate().
1125 */
1126static void
1127spa_deactivate(spa_t *spa)
1128{
1129	ASSERT(spa->spa_sync_on == B_FALSE);
1130	ASSERT(spa->spa_dsl_pool == NULL);
1131	ASSERT(spa->spa_root_vdev == NULL);
1132	ASSERT(spa->spa_async_zio_root == NULL);
1133	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1134
1135	/*
1136	 * Stop TRIM thread in case spa_unload() wasn't called directly
1137	 * before spa_deactivate().
1138	 */
1139	trim_thread_destroy(spa);
1140
1141	txg_list_destroy(&spa->spa_vdev_txg_list);
1142
1143	list_destroy(&spa->spa_config_dirty_list);
1144	list_destroy(&spa->spa_state_dirty_list);
1145
1146	for (int t = 0; t < ZIO_TYPES; t++) {
1147		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1148			spa_taskqs_fini(spa, t, q);
1149		}
1150	}
1151
1152	metaslab_class_destroy(spa->spa_normal_class);
1153	spa->spa_normal_class = NULL;
1154
1155	metaslab_class_destroy(spa->spa_log_class);
1156	spa->spa_log_class = NULL;
1157
1158	/*
1159	 * If this was part of an import or the open otherwise failed, we may
1160	 * still have errors left in the queues.  Empty them just in case.
1161	 */
1162	spa_errlog_drain(spa);
1163
1164	avl_destroy(&spa->spa_errlist_scrub);
1165	avl_destroy(&spa->spa_errlist_last);
1166
1167	spa->spa_state = POOL_STATE_UNINITIALIZED;
1168
1169	mutex_enter(&spa->spa_proc_lock);
1170	if (spa->spa_proc_state != SPA_PROC_NONE) {
1171		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1172		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1173		cv_broadcast(&spa->spa_proc_cv);
1174		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1175			ASSERT(spa->spa_proc != &p0);
1176			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1177		}
1178		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1179		spa->spa_proc_state = SPA_PROC_NONE;
1180	}
1181	ASSERT(spa->spa_proc == &p0);
1182	mutex_exit(&spa->spa_proc_lock);
1183
1184#ifdef SPA_PROCESS
1185	/*
1186	 * We want to make sure spa_thread() has actually exited the ZFS
1187	 * module, so that the module can't be unloaded out from underneath
1188	 * it.
1189	 */
1190	if (spa->spa_did != 0) {
1191		thread_join(spa->spa_did);
1192		spa->spa_did = 0;
1193	}
1194#endif	/* SPA_PROCESS */
1195}
1196
1197/*
1198 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1199 * will create all the necessary vdevs in the appropriate layout, with each vdev
1200 * in the CLOSED state.  This will prep the pool before open/creation/import.
1201 * All vdev validation is done by the vdev_alloc() routine.
1202 */
1203static int
1204spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1205    uint_t id, int atype)
1206{
1207	nvlist_t **child;
1208	uint_t children;
1209	int error;
1210
1211	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1212		return (error);
1213
1214	if ((*vdp)->vdev_ops->vdev_op_leaf)
1215		return (0);
1216
1217	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1218	    &child, &children);
1219
1220	if (error == ENOENT)
1221		return (0);
1222
1223	if (error) {
1224		vdev_free(*vdp);
1225		*vdp = NULL;
1226		return (SET_ERROR(EINVAL));
1227	}
1228
1229	for (int c = 0; c < children; c++) {
1230		vdev_t *vd;
1231		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1232		    atype)) != 0) {
1233			vdev_free(*vdp);
1234			*vdp = NULL;
1235			return (error);
1236		}
1237	}
1238
1239	ASSERT(*vdp != NULL);
1240
1241	return (0);
1242}
1243
1244/*
1245 * Opposite of spa_load().
1246 */
1247static void
1248spa_unload(spa_t *spa)
1249{
1250	int i;
1251
1252	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1253
1254	/*
1255	 * Stop TRIM thread.
1256	 */
1257	trim_thread_destroy(spa);
1258
1259	/*
1260	 * Stop async tasks.
1261	 */
1262	spa_async_suspend(spa);
1263
1264	/*
1265	 * Stop syncing.
1266	 */
1267	if (spa->spa_sync_on) {
1268		txg_sync_stop(spa->spa_dsl_pool);
1269		spa->spa_sync_on = B_FALSE;
1270	}
1271
1272	/*
1273	 * Wait for any outstanding async I/O to complete.
1274	 */
1275	if (spa->spa_async_zio_root != NULL) {
1276		(void) zio_wait(spa->spa_async_zio_root);
1277		spa->spa_async_zio_root = NULL;
1278	}
1279
1280	bpobj_close(&spa->spa_deferred_bpobj);
1281
1282	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1283
1284	/*
1285	 * Close all vdevs.
1286	 */
1287	if (spa->spa_root_vdev)
1288		vdev_free(spa->spa_root_vdev);
1289	ASSERT(spa->spa_root_vdev == NULL);
1290
1291	/*
1292	 * Close the dsl pool.
1293	 */
1294	if (spa->spa_dsl_pool) {
1295		dsl_pool_close(spa->spa_dsl_pool);
1296		spa->spa_dsl_pool = NULL;
1297		spa->spa_meta_objset = NULL;
1298	}
1299
1300	ddt_unload(spa);
1301
1302
1303	/*
1304	 * Drop and purge level 2 cache
1305	 */
1306	spa_l2cache_drop(spa);
1307
1308	for (i = 0; i < spa->spa_spares.sav_count; i++)
1309		vdev_free(spa->spa_spares.sav_vdevs[i]);
1310	if (spa->spa_spares.sav_vdevs) {
1311		kmem_free(spa->spa_spares.sav_vdevs,
1312		    spa->spa_spares.sav_count * sizeof (void *));
1313		spa->spa_spares.sav_vdevs = NULL;
1314	}
1315	if (spa->spa_spares.sav_config) {
1316		nvlist_free(spa->spa_spares.sav_config);
1317		spa->spa_spares.sav_config = NULL;
1318	}
1319	spa->spa_spares.sav_count = 0;
1320
1321	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1322		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1323		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1324	}
1325	if (spa->spa_l2cache.sav_vdevs) {
1326		kmem_free(spa->spa_l2cache.sav_vdevs,
1327		    spa->spa_l2cache.sav_count * sizeof (void *));
1328		spa->spa_l2cache.sav_vdevs = NULL;
1329	}
1330	if (spa->spa_l2cache.sav_config) {
1331		nvlist_free(spa->spa_l2cache.sav_config);
1332		spa->spa_l2cache.sav_config = NULL;
1333	}
1334	spa->spa_l2cache.sav_count = 0;
1335
1336	spa->spa_async_suspended = 0;
1337
1338	if (spa->spa_comment != NULL) {
1339		spa_strfree(spa->spa_comment);
1340		spa->spa_comment = NULL;
1341	}
1342
1343	spa_config_exit(spa, SCL_ALL, FTAG);
1344}
1345
1346/*
1347 * Load (or re-load) the current list of vdevs describing the active spares for
1348 * this pool.  When this is called, we have some form of basic information in
1349 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1350 * then re-generate a more complete list including status information.
1351 */
1352static void
1353spa_load_spares(spa_t *spa)
1354{
1355	nvlist_t **spares;
1356	uint_t nspares;
1357	int i;
1358	vdev_t *vd, *tvd;
1359
1360	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1361
1362	/*
1363	 * First, close and free any existing spare vdevs.
1364	 */
1365	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1366		vd = spa->spa_spares.sav_vdevs[i];
1367
1368		/* Undo the call to spa_activate() below */
1369		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1370		    B_FALSE)) != NULL && tvd->vdev_isspare)
1371			spa_spare_remove(tvd);
1372		vdev_close(vd);
1373		vdev_free(vd);
1374	}
1375
1376	if (spa->spa_spares.sav_vdevs)
1377		kmem_free(spa->spa_spares.sav_vdevs,
1378		    spa->spa_spares.sav_count * sizeof (void *));
1379
1380	if (spa->spa_spares.sav_config == NULL)
1381		nspares = 0;
1382	else
1383		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1384		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1385
1386	spa->spa_spares.sav_count = (int)nspares;
1387	spa->spa_spares.sav_vdevs = NULL;
1388
1389	if (nspares == 0)
1390		return;
1391
1392	/*
1393	 * Construct the array of vdevs, opening them to get status in the
1394	 * process.   For each spare, there is potentially two different vdev_t
1395	 * structures associated with it: one in the list of spares (used only
1396	 * for basic validation purposes) and one in the active vdev
1397	 * configuration (if it's spared in).  During this phase we open and
1398	 * validate each vdev on the spare list.  If the vdev also exists in the
1399	 * active configuration, then we also mark this vdev as an active spare.
1400	 */
1401	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1402	    KM_SLEEP);
1403	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1404		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1405		    VDEV_ALLOC_SPARE) == 0);
1406		ASSERT(vd != NULL);
1407
1408		spa->spa_spares.sav_vdevs[i] = vd;
1409
1410		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1411		    B_FALSE)) != NULL) {
1412			if (!tvd->vdev_isspare)
1413				spa_spare_add(tvd);
1414
1415			/*
1416			 * We only mark the spare active if we were successfully
1417			 * able to load the vdev.  Otherwise, importing a pool
1418			 * with a bad active spare would result in strange
1419			 * behavior, because multiple pool would think the spare
1420			 * is actively in use.
1421			 *
1422			 * There is a vulnerability here to an equally bizarre
1423			 * circumstance, where a dead active spare is later
1424			 * brought back to life (onlined or otherwise).  Given
1425			 * the rarity of this scenario, and the extra complexity
1426			 * it adds, we ignore the possibility.
1427			 */
1428			if (!vdev_is_dead(tvd))
1429				spa_spare_activate(tvd);
1430		}
1431
1432		vd->vdev_top = vd;
1433		vd->vdev_aux = &spa->spa_spares;
1434
1435		if (vdev_open(vd) != 0)
1436			continue;
1437
1438		if (vdev_validate_aux(vd) == 0)
1439			spa_spare_add(vd);
1440	}
1441
1442	/*
1443	 * Recompute the stashed list of spares, with status information
1444	 * this time.
1445	 */
1446	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1447	    DATA_TYPE_NVLIST_ARRAY) == 0);
1448
1449	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1450	    KM_SLEEP);
1451	for (i = 0; i < spa->spa_spares.sav_count; i++)
1452		spares[i] = vdev_config_generate(spa,
1453		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1454	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1455	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1456	for (i = 0; i < spa->spa_spares.sav_count; i++)
1457		nvlist_free(spares[i]);
1458	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1459}
1460
1461/*
1462 * Load (or re-load) the current list of vdevs describing the active l2cache for
1463 * this pool.  When this is called, we have some form of basic information in
1464 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1465 * then re-generate a more complete list including status information.
1466 * Devices which are already active have their details maintained, and are
1467 * not re-opened.
1468 */
1469static void
1470spa_load_l2cache(spa_t *spa)
1471{
1472	nvlist_t **l2cache;
1473	uint_t nl2cache;
1474	int i, j, oldnvdevs;
1475	uint64_t guid;
1476	vdev_t *vd, **oldvdevs, **newvdevs;
1477	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1478
1479	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1480
1481	if (sav->sav_config != NULL) {
1482		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1483		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1484		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1485	} else {
1486		nl2cache = 0;
1487		newvdevs = NULL;
1488	}
1489
1490	oldvdevs = sav->sav_vdevs;
1491	oldnvdevs = sav->sav_count;
1492	sav->sav_vdevs = NULL;
1493	sav->sav_count = 0;
1494
1495	/*
1496	 * Process new nvlist of vdevs.
1497	 */
1498	for (i = 0; i < nl2cache; i++) {
1499		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1500		    &guid) == 0);
1501
1502		newvdevs[i] = NULL;
1503		for (j = 0; j < oldnvdevs; j++) {
1504			vd = oldvdevs[j];
1505			if (vd != NULL && guid == vd->vdev_guid) {
1506				/*
1507				 * Retain previous vdev for add/remove ops.
1508				 */
1509				newvdevs[i] = vd;
1510				oldvdevs[j] = NULL;
1511				break;
1512			}
1513		}
1514
1515		if (newvdevs[i] == NULL) {
1516			/*
1517			 * Create new vdev
1518			 */
1519			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1520			    VDEV_ALLOC_L2CACHE) == 0);
1521			ASSERT(vd != NULL);
1522			newvdevs[i] = vd;
1523
1524			/*
1525			 * Commit this vdev as an l2cache device,
1526			 * even if it fails to open.
1527			 */
1528			spa_l2cache_add(vd);
1529
1530			vd->vdev_top = vd;
1531			vd->vdev_aux = sav;
1532
1533			spa_l2cache_activate(vd);
1534
1535			if (vdev_open(vd) != 0)
1536				continue;
1537
1538			(void) vdev_validate_aux(vd);
1539
1540			if (!vdev_is_dead(vd))
1541				l2arc_add_vdev(spa, vd);
1542		}
1543	}
1544
1545	/*
1546	 * Purge vdevs that were dropped
1547	 */
1548	for (i = 0; i < oldnvdevs; i++) {
1549		uint64_t pool;
1550
1551		vd = oldvdevs[i];
1552		if (vd != NULL) {
1553			ASSERT(vd->vdev_isl2cache);
1554
1555			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1556			    pool != 0ULL && l2arc_vdev_present(vd))
1557				l2arc_remove_vdev(vd);
1558			vdev_clear_stats(vd);
1559			vdev_free(vd);
1560		}
1561	}
1562
1563	if (oldvdevs)
1564		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1565
1566	if (sav->sav_config == NULL)
1567		goto out;
1568
1569	sav->sav_vdevs = newvdevs;
1570	sav->sav_count = (int)nl2cache;
1571
1572	/*
1573	 * Recompute the stashed list of l2cache devices, with status
1574	 * information this time.
1575	 */
1576	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1577	    DATA_TYPE_NVLIST_ARRAY) == 0);
1578
1579	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1580	for (i = 0; i < sav->sav_count; i++)
1581		l2cache[i] = vdev_config_generate(spa,
1582		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1583	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1584	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1585out:
1586	for (i = 0; i < sav->sav_count; i++)
1587		nvlist_free(l2cache[i]);
1588	if (sav->sav_count)
1589		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1590}
1591
1592static int
1593load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1594{
1595	dmu_buf_t *db;
1596	char *packed = NULL;
1597	size_t nvsize = 0;
1598	int error;
1599	*value = NULL;
1600
1601	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1602	if (error != 0)
1603		return (error);
1604	nvsize = *(uint64_t *)db->db_data;
1605	dmu_buf_rele(db, FTAG);
1606
1607	packed = kmem_alloc(nvsize, KM_SLEEP);
1608	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1609	    DMU_READ_PREFETCH);
1610	if (error == 0)
1611		error = nvlist_unpack(packed, nvsize, value, 0);
1612	kmem_free(packed, nvsize);
1613
1614	return (error);
1615}
1616
1617/*
1618 * Checks to see if the given vdev could not be opened, in which case we post a
1619 * sysevent to notify the autoreplace code that the device has been removed.
1620 */
1621static void
1622spa_check_removed(vdev_t *vd)
1623{
1624	for (int c = 0; c < vd->vdev_children; c++)
1625		spa_check_removed(vd->vdev_child[c]);
1626
1627	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1628	    !vd->vdev_ishole) {
1629		zfs_post_autoreplace(vd->vdev_spa, vd);
1630		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1631	}
1632}
1633
1634/*
1635 * Validate the current config against the MOS config
1636 */
1637static boolean_t
1638spa_config_valid(spa_t *spa, nvlist_t *config)
1639{
1640	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1641	nvlist_t *nv;
1642
1643	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1644
1645	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1646	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1647
1648	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1649
1650	/*
1651	 * If we're doing a normal import, then build up any additional
1652	 * diagnostic information about missing devices in this config.
1653	 * We'll pass this up to the user for further processing.
1654	 */
1655	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1656		nvlist_t **child, *nv;
1657		uint64_t idx = 0;
1658
1659		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1660		    KM_SLEEP);
1661		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1662
1663		for (int c = 0; c < rvd->vdev_children; c++) {
1664			vdev_t *tvd = rvd->vdev_child[c];
1665			vdev_t *mtvd  = mrvd->vdev_child[c];
1666
1667			if (tvd->vdev_ops == &vdev_missing_ops &&
1668			    mtvd->vdev_ops != &vdev_missing_ops &&
1669			    mtvd->vdev_islog)
1670				child[idx++] = vdev_config_generate(spa, mtvd,
1671				    B_FALSE, 0);
1672		}
1673
1674		if (idx) {
1675			VERIFY(nvlist_add_nvlist_array(nv,
1676			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1677			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1678			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1679
1680			for (int i = 0; i < idx; i++)
1681				nvlist_free(child[i]);
1682		}
1683		nvlist_free(nv);
1684		kmem_free(child, rvd->vdev_children * sizeof (char **));
1685	}
1686
1687	/*
1688	 * Compare the root vdev tree with the information we have
1689	 * from the MOS config (mrvd). Check each top-level vdev
1690	 * with the corresponding MOS config top-level (mtvd).
1691	 */
1692	for (int c = 0; c < rvd->vdev_children; c++) {
1693		vdev_t *tvd = rvd->vdev_child[c];
1694		vdev_t *mtvd  = mrvd->vdev_child[c];
1695
1696		/*
1697		 * Resolve any "missing" vdevs in the current configuration.
1698		 * If we find that the MOS config has more accurate information
1699		 * about the top-level vdev then use that vdev instead.
1700		 */
1701		if (tvd->vdev_ops == &vdev_missing_ops &&
1702		    mtvd->vdev_ops != &vdev_missing_ops) {
1703
1704			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1705				continue;
1706
1707			/*
1708			 * Device specific actions.
1709			 */
1710			if (mtvd->vdev_islog) {
1711				spa_set_log_state(spa, SPA_LOG_CLEAR);
1712			} else {
1713				/*
1714				 * XXX - once we have 'readonly' pool
1715				 * support we should be able to handle
1716				 * missing data devices by transitioning
1717				 * the pool to readonly.
1718				 */
1719				continue;
1720			}
1721
1722			/*
1723			 * Swap the missing vdev with the data we were
1724			 * able to obtain from the MOS config.
1725			 */
1726			vdev_remove_child(rvd, tvd);
1727			vdev_remove_child(mrvd, mtvd);
1728
1729			vdev_add_child(rvd, mtvd);
1730			vdev_add_child(mrvd, tvd);
1731
1732			spa_config_exit(spa, SCL_ALL, FTAG);
1733			vdev_load(mtvd);
1734			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1735
1736			vdev_reopen(rvd);
1737		} else if (mtvd->vdev_islog) {
1738			/*
1739			 * Load the slog device's state from the MOS config
1740			 * since it's possible that the label does not
1741			 * contain the most up-to-date information.
1742			 */
1743			vdev_load_log_state(tvd, mtvd);
1744			vdev_reopen(tvd);
1745		}
1746	}
1747	vdev_free(mrvd);
1748	spa_config_exit(spa, SCL_ALL, FTAG);
1749
1750	/*
1751	 * Ensure we were able to validate the config.
1752	 */
1753	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1754}
1755
1756/*
1757 * Check for missing log devices
1758 */
1759static boolean_t
1760spa_check_logs(spa_t *spa)
1761{
1762	boolean_t rv = B_FALSE;
1763
1764	switch (spa->spa_log_state) {
1765	case SPA_LOG_MISSING:
1766		/* need to recheck in case slog has been restored */
1767	case SPA_LOG_UNKNOWN:
1768		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1769		    NULL, DS_FIND_CHILDREN) != 0);
1770		if (rv)
1771			spa_set_log_state(spa, SPA_LOG_MISSING);
1772		break;
1773	}
1774	return (rv);
1775}
1776
1777static boolean_t
1778spa_passivate_log(spa_t *spa)
1779{
1780	vdev_t *rvd = spa->spa_root_vdev;
1781	boolean_t slog_found = B_FALSE;
1782
1783	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1784
1785	if (!spa_has_slogs(spa))
1786		return (B_FALSE);
1787
1788	for (int c = 0; c < rvd->vdev_children; c++) {
1789		vdev_t *tvd = rvd->vdev_child[c];
1790		metaslab_group_t *mg = tvd->vdev_mg;
1791
1792		if (tvd->vdev_islog) {
1793			metaslab_group_passivate(mg);
1794			slog_found = B_TRUE;
1795		}
1796	}
1797
1798	return (slog_found);
1799}
1800
1801static void
1802spa_activate_log(spa_t *spa)
1803{
1804	vdev_t *rvd = spa->spa_root_vdev;
1805
1806	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1807
1808	for (int c = 0; c < rvd->vdev_children; c++) {
1809		vdev_t *tvd = rvd->vdev_child[c];
1810		metaslab_group_t *mg = tvd->vdev_mg;
1811
1812		if (tvd->vdev_islog)
1813			metaslab_group_activate(mg);
1814	}
1815}
1816
1817int
1818spa_offline_log(spa_t *spa)
1819{
1820	int error;
1821
1822	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1823	    NULL, DS_FIND_CHILDREN);
1824	if (error == 0) {
1825		/*
1826		 * We successfully offlined the log device, sync out the
1827		 * current txg so that the "stubby" block can be removed
1828		 * by zil_sync().
1829		 */
1830		txg_wait_synced(spa->spa_dsl_pool, 0);
1831	}
1832	return (error);
1833}
1834
1835static void
1836spa_aux_check_removed(spa_aux_vdev_t *sav)
1837{
1838	int i;
1839
1840	for (i = 0; i < sav->sav_count; i++)
1841		spa_check_removed(sav->sav_vdevs[i]);
1842}
1843
1844void
1845spa_claim_notify(zio_t *zio)
1846{
1847	spa_t *spa = zio->io_spa;
1848
1849	if (zio->io_error)
1850		return;
1851
1852	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1853	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1854		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1855	mutex_exit(&spa->spa_props_lock);
1856}
1857
1858typedef struct spa_load_error {
1859	uint64_t	sle_meta_count;
1860	uint64_t	sle_data_count;
1861} spa_load_error_t;
1862
1863static void
1864spa_load_verify_done(zio_t *zio)
1865{
1866	blkptr_t *bp = zio->io_bp;
1867	spa_load_error_t *sle = zio->io_private;
1868	dmu_object_type_t type = BP_GET_TYPE(bp);
1869	int error = zio->io_error;
1870
1871	if (error) {
1872		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1873		    type != DMU_OT_INTENT_LOG)
1874			atomic_add_64(&sle->sle_meta_count, 1);
1875		else
1876			atomic_add_64(&sle->sle_data_count, 1);
1877	}
1878	zio_data_buf_free(zio->io_data, zio->io_size);
1879}
1880
1881/*ARGSUSED*/
1882static int
1883spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1884    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1885{
1886	if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1887		zio_t *rio = arg;
1888		size_t size = BP_GET_PSIZE(bp);
1889		void *data = zio_data_buf_alloc(size);
1890
1891		zio_nowait(zio_read(rio, spa, bp, data, size,
1892		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1893		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1894		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1895	}
1896	return (0);
1897}
1898
1899static int
1900spa_load_verify(spa_t *spa)
1901{
1902	zio_t *rio;
1903	spa_load_error_t sle = { 0 };
1904	zpool_rewind_policy_t policy;
1905	boolean_t verify_ok = B_FALSE;
1906	int error;
1907
1908	zpool_get_rewind_policy(spa->spa_config, &policy);
1909
1910	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1911		return (0);
1912
1913	rio = zio_root(spa, NULL, &sle,
1914	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1915
1916	error = traverse_pool(spa, spa->spa_verify_min_txg,
1917	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1918
1919	(void) zio_wait(rio);
1920
1921	spa->spa_load_meta_errors = sle.sle_meta_count;
1922	spa->spa_load_data_errors = sle.sle_data_count;
1923
1924	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1925	    sle.sle_data_count <= policy.zrp_maxdata) {
1926		int64_t loss = 0;
1927
1928		verify_ok = B_TRUE;
1929		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1930		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1931
1932		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1933		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1934		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1935		VERIFY(nvlist_add_int64(spa->spa_load_info,
1936		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1937		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1938		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1939	} else {
1940		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1941	}
1942
1943	if (error) {
1944		if (error != ENXIO && error != EIO)
1945			error = SET_ERROR(EIO);
1946		return (error);
1947	}
1948
1949	return (verify_ok ? 0 : EIO);
1950}
1951
1952/*
1953 * Find a value in the pool props object.
1954 */
1955static void
1956spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1957{
1958	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1959	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1960}
1961
1962/*
1963 * Find a value in the pool directory object.
1964 */
1965static int
1966spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1967{
1968	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1969	    name, sizeof (uint64_t), 1, val));
1970}
1971
1972static int
1973spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1974{
1975	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1976	return (err);
1977}
1978
1979/*
1980 * Fix up config after a partly-completed split.  This is done with the
1981 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1982 * pool have that entry in their config, but only the splitting one contains
1983 * a list of all the guids of the vdevs that are being split off.
1984 *
1985 * This function determines what to do with that list: either rejoin
1986 * all the disks to the pool, or complete the splitting process.  To attempt
1987 * the rejoin, each disk that is offlined is marked online again, and
1988 * we do a reopen() call.  If the vdev label for every disk that was
1989 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1990 * then we call vdev_split() on each disk, and complete the split.
1991 *
1992 * Otherwise we leave the config alone, with all the vdevs in place in
1993 * the original pool.
1994 */
1995static void
1996spa_try_repair(spa_t *spa, nvlist_t *config)
1997{
1998	uint_t extracted;
1999	uint64_t *glist;
2000	uint_t i, gcount;
2001	nvlist_t *nvl;
2002	vdev_t **vd;
2003	boolean_t attempt_reopen;
2004
2005	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2006		return;
2007
2008	/* check that the config is complete */
2009	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2010	    &glist, &gcount) != 0)
2011		return;
2012
2013	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2014
2015	/* attempt to online all the vdevs & validate */
2016	attempt_reopen = B_TRUE;
2017	for (i = 0; i < gcount; i++) {
2018		if (glist[i] == 0)	/* vdev is hole */
2019			continue;
2020
2021		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2022		if (vd[i] == NULL) {
2023			/*
2024			 * Don't bother attempting to reopen the disks;
2025			 * just do the split.
2026			 */
2027			attempt_reopen = B_FALSE;
2028		} else {
2029			/* attempt to re-online it */
2030			vd[i]->vdev_offline = B_FALSE;
2031		}
2032	}
2033
2034	if (attempt_reopen) {
2035		vdev_reopen(spa->spa_root_vdev);
2036
2037		/* check each device to see what state it's in */
2038		for (extracted = 0, i = 0; i < gcount; i++) {
2039			if (vd[i] != NULL &&
2040			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2041				break;
2042			++extracted;
2043		}
2044	}
2045
2046	/*
2047	 * If every disk has been moved to the new pool, or if we never
2048	 * even attempted to look at them, then we split them off for
2049	 * good.
2050	 */
2051	if (!attempt_reopen || gcount == extracted) {
2052		for (i = 0; i < gcount; i++)
2053			if (vd[i] != NULL)
2054				vdev_split(vd[i]);
2055		vdev_reopen(spa->spa_root_vdev);
2056	}
2057
2058	kmem_free(vd, gcount * sizeof (vdev_t *));
2059}
2060
2061static int
2062spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2063    boolean_t mosconfig)
2064{
2065	nvlist_t *config = spa->spa_config;
2066	char *ereport = FM_EREPORT_ZFS_POOL;
2067	char *comment;
2068	int error;
2069	uint64_t pool_guid;
2070	nvlist_t *nvl;
2071
2072	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2073		return (SET_ERROR(EINVAL));
2074
2075	ASSERT(spa->spa_comment == NULL);
2076	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2077		spa->spa_comment = spa_strdup(comment);
2078
2079	/*
2080	 * Versioning wasn't explicitly added to the label until later, so if
2081	 * it's not present treat it as the initial version.
2082	 */
2083	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2084	    &spa->spa_ubsync.ub_version) != 0)
2085		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2086
2087	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2088	    &spa->spa_config_txg);
2089
2090	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2091	    spa_guid_exists(pool_guid, 0)) {
2092		error = SET_ERROR(EEXIST);
2093	} else {
2094		spa->spa_config_guid = pool_guid;
2095
2096		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2097		    &nvl) == 0) {
2098			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2099			    KM_SLEEP) == 0);
2100		}
2101
2102		nvlist_free(spa->spa_load_info);
2103		spa->spa_load_info = fnvlist_alloc();
2104
2105		gethrestime(&spa->spa_loaded_ts);
2106		error = spa_load_impl(spa, pool_guid, config, state, type,
2107		    mosconfig, &ereport);
2108	}
2109
2110	spa->spa_minref = refcount_count(&spa->spa_refcount);
2111	if (error) {
2112		if (error != EEXIST) {
2113			spa->spa_loaded_ts.tv_sec = 0;
2114			spa->spa_loaded_ts.tv_nsec = 0;
2115		}
2116		if (error != EBADF) {
2117			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2118		}
2119	}
2120	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2121	spa->spa_ena = 0;
2122
2123	return (error);
2124}
2125
2126/*
2127 * Load an existing storage pool, using the pool's builtin spa_config as a
2128 * source of configuration information.
2129 */
2130static int
2131spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2132    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2133    char **ereport)
2134{
2135	int error = 0;
2136	nvlist_t *nvroot = NULL;
2137	nvlist_t *label;
2138	vdev_t *rvd;
2139	uberblock_t *ub = &spa->spa_uberblock;
2140	uint64_t children, config_cache_txg = spa->spa_config_txg;
2141	int orig_mode = spa->spa_mode;
2142	int parse;
2143	uint64_t obj;
2144	boolean_t missing_feat_write = B_FALSE;
2145
2146	/*
2147	 * If this is an untrusted config, access the pool in read-only mode.
2148	 * This prevents things like resilvering recently removed devices.
2149	 */
2150	if (!mosconfig)
2151		spa->spa_mode = FREAD;
2152
2153	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2154
2155	spa->spa_load_state = state;
2156
2157	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2158		return (SET_ERROR(EINVAL));
2159
2160	parse = (type == SPA_IMPORT_EXISTING ?
2161	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2162
2163	/*
2164	 * Create "The Godfather" zio to hold all async IOs
2165	 */
2166	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2167	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2168
2169	/*
2170	 * Parse the configuration into a vdev tree.  We explicitly set the
2171	 * value that will be returned by spa_version() since parsing the
2172	 * configuration requires knowing the version number.
2173	 */
2174	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2175	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2176	spa_config_exit(spa, SCL_ALL, FTAG);
2177
2178	if (error != 0)
2179		return (error);
2180
2181	ASSERT(spa->spa_root_vdev == rvd);
2182
2183	if (type != SPA_IMPORT_ASSEMBLE) {
2184		ASSERT(spa_guid(spa) == pool_guid);
2185	}
2186
2187	/*
2188	 * Try to open all vdevs, loading each label in the process.
2189	 */
2190	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191	error = vdev_open(rvd);
2192	spa_config_exit(spa, SCL_ALL, FTAG);
2193	if (error != 0)
2194		return (error);
2195
2196	/*
2197	 * We need to validate the vdev labels against the configuration that
2198	 * we have in hand, which is dependent on the setting of mosconfig. If
2199	 * mosconfig is true then we're validating the vdev labels based on
2200	 * that config.  Otherwise, we're validating against the cached config
2201	 * (zpool.cache) that was read when we loaded the zfs module, and then
2202	 * later we will recursively call spa_load() and validate against
2203	 * the vdev config.
2204	 *
2205	 * If we're assembling a new pool that's been split off from an
2206	 * existing pool, the labels haven't yet been updated so we skip
2207	 * validation for now.
2208	 */
2209	if (type != SPA_IMPORT_ASSEMBLE) {
2210		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2211		error = vdev_validate(rvd, mosconfig);
2212		spa_config_exit(spa, SCL_ALL, FTAG);
2213
2214		if (error != 0)
2215			return (error);
2216
2217		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2218			return (SET_ERROR(ENXIO));
2219	}
2220
2221	/*
2222	 * Find the best uberblock.
2223	 */
2224	vdev_uberblock_load(rvd, ub, &label);
2225
2226	/*
2227	 * If we weren't able to find a single valid uberblock, return failure.
2228	 */
2229	if (ub->ub_txg == 0) {
2230		nvlist_free(label);
2231		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2232	}
2233
2234	/*
2235	 * If the pool has an unsupported version we can't open it.
2236	 */
2237	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2238		nvlist_free(label);
2239		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2240	}
2241
2242	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2243		nvlist_t *features;
2244
2245		/*
2246		 * If we weren't able to find what's necessary for reading the
2247		 * MOS in the label, return failure.
2248		 */
2249		if (label == NULL || nvlist_lookup_nvlist(label,
2250		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2251			nvlist_free(label);
2252			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2253			    ENXIO));
2254		}
2255
2256		/*
2257		 * Update our in-core representation with the definitive values
2258		 * from the label.
2259		 */
2260		nvlist_free(spa->spa_label_features);
2261		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2262	}
2263
2264	nvlist_free(label);
2265
2266	/*
2267	 * Look through entries in the label nvlist's features_for_read. If
2268	 * there is a feature listed there which we don't understand then we
2269	 * cannot open a pool.
2270	 */
2271	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2272		nvlist_t *unsup_feat;
2273
2274		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2275		    0);
2276
2277		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2278		    NULL); nvp != NULL;
2279		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2280			if (!zfeature_is_supported(nvpair_name(nvp))) {
2281				VERIFY(nvlist_add_string(unsup_feat,
2282				    nvpair_name(nvp), "") == 0);
2283			}
2284		}
2285
2286		if (!nvlist_empty(unsup_feat)) {
2287			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2288			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2289			nvlist_free(unsup_feat);
2290			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2291			    ENOTSUP));
2292		}
2293
2294		nvlist_free(unsup_feat);
2295	}
2296
2297	/*
2298	 * If the vdev guid sum doesn't match the uberblock, we have an
2299	 * incomplete configuration.  We first check to see if the pool
2300	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2301	 * If it is, defer the vdev_guid_sum check till later so we
2302	 * can handle missing vdevs.
2303	 */
2304	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2305	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2306	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2307		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2308
2309	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2310		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2311		spa_try_repair(spa, config);
2312		spa_config_exit(spa, SCL_ALL, FTAG);
2313		nvlist_free(spa->spa_config_splitting);
2314		spa->spa_config_splitting = NULL;
2315	}
2316
2317	/*
2318	 * Initialize internal SPA structures.
2319	 */
2320	spa->spa_state = POOL_STATE_ACTIVE;
2321	spa->spa_ubsync = spa->spa_uberblock;
2322	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2323	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2324	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2325	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2326	spa->spa_claim_max_txg = spa->spa_first_txg;
2327	spa->spa_prev_software_version = ub->ub_software_version;
2328
2329	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2330	if (error)
2331		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2332	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2333
2334	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2335		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2336
2337	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2338		boolean_t missing_feat_read = B_FALSE;
2339		nvlist_t *unsup_feat, *enabled_feat;
2340
2341		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2342		    &spa->spa_feat_for_read_obj) != 0) {
2343			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2344		}
2345
2346		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2347		    &spa->spa_feat_for_write_obj) != 0) {
2348			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2349		}
2350
2351		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2352		    &spa->spa_feat_desc_obj) != 0) {
2353			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2354		}
2355
2356		enabled_feat = fnvlist_alloc();
2357		unsup_feat = fnvlist_alloc();
2358
2359		if (!spa_features_check(spa, B_FALSE,
2360		    unsup_feat, enabled_feat))
2361			missing_feat_read = B_TRUE;
2362
2363		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2364			if (!spa_features_check(spa, B_TRUE,
2365			    unsup_feat, enabled_feat)) {
2366				missing_feat_write = B_TRUE;
2367			}
2368		}
2369
2370		fnvlist_add_nvlist(spa->spa_load_info,
2371		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2372
2373		if (!nvlist_empty(unsup_feat)) {
2374			fnvlist_add_nvlist(spa->spa_load_info,
2375			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2376		}
2377
2378		fnvlist_free(enabled_feat);
2379		fnvlist_free(unsup_feat);
2380
2381		if (!missing_feat_read) {
2382			fnvlist_add_boolean(spa->spa_load_info,
2383			    ZPOOL_CONFIG_CAN_RDONLY);
2384		}
2385
2386		/*
2387		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2388		 * twofold: to determine whether the pool is available for
2389		 * import in read-write mode and (if it is not) whether the
2390		 * pool is available for import in read-only mode. If the pool
2391		 * is available for import in read-write mode, it is displayed
2392		 * as available in userland; if it is not available for import
2393		 * in read-only mode, it is displayed as unavailable in
2394		 * userland. If the pool is available for import in read-only
2395		 * mode but not read-write mode, it is displayed as unavailable
2396		 * in userland with a special note that the pool is actually
2397		 * available for open in read-only mode.
2398		 *
2399		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2400		 * missing a feature for write, we must first determine whether
2401		 * the pool can be opened read-only before returning to
2402		 * userland in order to know whether to display the
2403		 * abovementioned note.
2404		 */
2405		if (missing_feat_read || (missing_feat_write &&
2406		    spa_writeable(spa))) {
2407			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2408			    ENOTSUP));
2409		}
2410
2411		/*
2412		 * Load refcounts for ZFS features from disk into an in-memory
2413		 * cache during SPA initialization.
2414		 */
2415		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2416			uint64_t refcount;
2417
2418			error = feature_get_refcount_from_disk(spa,
2419			    &spa_feature_table[i], &refcount);
2420			if (error == 0) {
2421				spa->spa_feat_refcount_cache[i] = refcount;
2422			} else if (error == ENOTSUP) {
2423				spa->spa_feat_refcount_cache[i] =
2424				    SPA_FEATURE_DISABLED;
2425			} else {
2426				return (spa_vdev_err(rvd,
2427				    VDEV_AUX_CORRUPT_DATA, EIO));
2428			}
2429		}
2430	}
2431
2432	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2433		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2434		    &spa->spa_feat_enabled_txg_obj) != 0)
2435			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436	}
2437
2438	spa->spa_is_initializing = B_TRUE;
2439	error = dsl_pool_open(spa->spa_dsl_pool);
2440	spa->spa_is_initializing = B_FALSE;
2441	if (error != 0)
2442		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443
2444	if (!mosconfig) {
2445		uint64_t hostid;
2446		nvlist_t *policy = NULL, *nvconfig;
2447
2448		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2449			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2450
2451		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2452		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2453			char *hostname;
2454			unsigned long myhostid = 0;
2455
2456			VERIFY(nvlist_lookup_string(nvconfig,
2457			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2458
2459#ifdef	_KERNEL
2460			myhostid = zone_get_hostid(NULL);
2461#else	/* _KERNEL */
2462			/*
2463			 * We're emulating the system's hostid in userland, so
2464			 * we can't use zone_get_hostid().
2465			 */
2466			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2467#endif	/* _KERNEL */
2468			if (check_hostid && hostid != 0 && myhostid != 0 &&
2469			    hostid != myhostid) {
2470				nvlist_free(nvconfig);
2471				cmn_err(CE_WARN, "pool '%s' could not be "
2472				    "loaded as it was last accessed by "
2473				    "another system (host: %s hostid: 0x%lx). "
2474				    "See: http://illumos.org/msg/ZFS-8000-EY",
2475				    spa_name(spa), hostname,
2476				    (unsigned long)hostid);
2477				return (SET_ERROR(EBADF));
2478			}
2479		}
2480		if (nvlist_lookup_nvlist(spa->spa_config,
2481		    ZPOOL_REWIND_POLICY, &policy) == 0)
2482			VERIFY(nvlist_add_nvlist(nvconfig,
2483			    ZPOOL_REWIND_POLICY, policy) == 0);
2484
2485		spa_config_set(spa, nvconfig);
2486		spa_unload(spa);
2487		spa_deactivate(spa);
2488		spa_activate(spa, orig_mode);
2489
2490		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2491	}
2492
2493	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2494		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2495	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2496	if (error != 0)
2497		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2498
2499	/*
2500	 * Load the bit that tells us to use the new accounting function
2501	 * (raid-z deflation).  If we have an older pool, this will not
2502	 * be present.
2503	 */
2504	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2505	if (error != 0 && error != ENOENT)
2506		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2507
2508	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2509	    &spa->spa_creation_version);
2510	if (error != 0 && error != ENOENT)
2511		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512
2513	/*
2514	 * Load the persistent error log.  If we have an older pool, this will
2515	 * not be present.
2516	 */
2517	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2518	if (error != 0 && error != ENOENT)
2519		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520
2521	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2522	    &spa->spa_errlog_scrub);
2523	if (error != 0 && error != ENOENT)
2524		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525
2526	/*
2527	 * Load the history object.  If we have an older pool, this
2528	 * will not be present.
2529	 */
2530	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2531	if (error != 0 && error != ENOENT)
2532		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533
2534	/*
2535	 * If we're assembling the pool from the split-off vdevs of
2536	 * an existing pool, we don't want to attach the spares & cache
2537	 * devices.
2538	 */
2539
2540	/*
2541	 * Load any hot spares for this pool.
2542	 */
2543	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2544	if (error != 0 && error != ENOENT)
2545		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2546	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2547		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2548		if (load_nvlist(spa, spa->spa_spares.sav_object,
2549		    &spa->spa_spares.sav_config) != 0)
2550			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2551
2552		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2553		spa_load_spares(spa);
2554		spa_config_exit(spa, SCL_ALL, FTAG);
2555	} else if (error == 0) {
2556		spa->spa_spares.sav_sync = B_TRUE;
2557	}
2558
2559	/*
2560	 * Load any level 2 ARC devices for this pool.
2561	 */
2562	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2563	    &spa->spa_l2cache.sav_object);
2564	if (error != 0 && error != ENOENT)
2565		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2566	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2567		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2568		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2569		    &spa->spa_l2cache.sav_config) != 0)
2570			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2571
2572		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2573		spa_load_l2cache(spa);
2574		spa_config_exit(spa, SCL_ALL, FTAG);
2575	} else if (error == 0) {
2576		spa->spa_l2cache.sav_sync = B_TRUE;
2577	}
2578
2579	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2580
2581	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2582	if (error && error != ENOENT)
2583		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584
2585	if (error == 0) {
2586		uint64_t autoreplace;
2587
2588		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2589		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2590		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2591		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2592		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2593		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2594		    &spa->spa_dedup_ditto);
2595
2596		spa->spa_autoreplace = (autoreplace != 0);
2597	}
2598
2599	/*
2600	 * If the 'autoreplace' property is set, then post a resource notifying
2601	 * the ZFS DE that it should not issue any faults for unopenable
2602	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2603	 * unopenable vdevs so that the normal autoreplace handler can take
2604	 * over.
2605	 */
2606	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2607		spa_check_removed(spa->spa_root_vdev);
2608		/*
2609		 * For the import case, this is done in spa_import(), because
2610		 * at this point we're using the spare definitions from
2611		 * the MOS config, not necessarily from the userland config.
2612		 */
2613		if (state != SPA_LOAD_IMPORT) {
2614			spa_aux_check_removed(&spa->spa_spares);
2615			spa_aux_check_removed(&spa->spa_l2cache);
2616		}
2617	}
2618
2619	/*
2620	 * Load the vdev state for all toplevel vdevs.
2621	 */
2622	vdev_load(rvd);
2623
2624	/*
2625	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2626	 */
2627	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2628	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2629	spa_config_exit(spa, SCL_ALL, FTAG);
2630
2631	/*
2632	 * Load the DDTs (dedup tables).
2633	 */
2634	error = ddt_load(spa);
2635	if (error != 0)
2636		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2637
2638	spa_update_dspace(spa);
2639
2640	/*
2641	 * Validate the config, using the MOS config to fill in any
2642	 * information which might be missing.  If we fail to validate
2643	 * the config then declare the pool unfit for use. If we're
2644	 * assembling a pool from a split, the log is not transferred
2645	 * over.
2646	 */
2647	if (type != SPA_IMPORT_ASSEMBLE) {
2648		nvlist_t *nvconfig;
2649
2650		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2651			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2652
2653		if (!spa_config_valid(spa, nvconfig)) {
2654			nvlist_free(nvconfig);
2655			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2656			    ENXIO));
2657		}
2658		nvlist_free(nvconfig);
2659
2660		/*
2661		 * Now that we've validated the config, check the state of the
2662		 * root vdev.  If it can't be opened, it indicates one or
2663		 * more toplevel vdevs are faulted.
2664		 */
2665		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2666			return (SET_ERROR(ENXIO));
2667
2668		if (spa_check_logs(spa)) {
2669			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2670			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2671		}
2672	}
2673
2674	if (missing_feat_write) {
2675		ASSERT(state == SPA_LOAD_TRYIMPORT);
2676
2677		/*
2678		 * At this point, we know that we can open the pool in
2679		 * read-only mode but not read-write mode. We now have enough
2680		 * information and can return to userland.
2681		 */
2682		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2683	}
2684
2685	/*
2686	 * We've successfully opened the pool, verify that we're ready
2687	 * to start pushing transactions.
2688	 */
2689	if (state != SPA_LOAD_TRYIMPORT) {
2690		if (error = spa_load_verify(spa))
2691			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2692			    error));
2693	}
2694
2695	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2696	    spa->spa_load_max_txg == UINT64_MAX)) {
2697		dmu_tx_t *tx;
2698		int need_update = B_FALSE;
2699
2700		ASSERT(state != SPA_LOAD_TRYIMPORT);
2701
2702		/*
2703		 * Claim log blocks that haven't been committed yet.
2704		 * This must all happen in a single txg.
2705		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2706		 * invoked from zil_claim_log_block()'s i/o done callback.
2707		 * Price of rollback is that we abandon the log.
2708		 */
2709		spa->spa_claiming = B_TRUE;
2710
2711		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2712		    spa_first_txg(spa));
2713		(void) dmu_objset_find(spa_name(spa),
2714		    zil_claim, tx, DS_FIND_CHILDREN);
2715		dmu_tx_commit(tx);
2716
2717		spa->spa_claiming = B_FALSE;
2718
2719		spa_set_log_state(spa, SPA_LOG_GOOD);
2720		spa->spa_sync_on = B_TRUE;
2721		txg_sync_start(spa->spa_dsl_pool);
2722
2723		/*
2724		 * Wait for all claims to sync.  We sync up to the highest
2725		 * claimed log block birth time so that claimed log blocks
2726		 * don't appear to be from the future.  spa_claim_max_txg
2727		 * will have been set for us by either zil_check_log_chain()
2728		 * (invoked from spa_check_logs()) or zil_claim() above.
2729		 */
2730		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2731
2732		/*
2733		 * If the config cache is stale, or we have uninitialized
2734		 * metaslabs (see spa_vdev_add()), then update the config.
2735		 *
2736		 * If this is a verbatim import, trust the current
2737		 * in-core spa_config and update the disk labels.
2738		 */
2739		if (config_cache_txg != spa->spa_config_txg ||
2740		    state == SPA_LOAD_IMPORT ||
2741		    state == SPA_LOAD_RECOVER ||
2742		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2743			need_update = B_TRUE;
2744
2745		for (int c = 0; c < rvd->vdev_children; c++)
2746			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2747				need_update = B_TRUE;
2748
2749		/*
2750		 * Update the config cache asychronously in case we're the
2751		 * root pool, in which case the config cache isn't writable yet.
2752		 */
2753		if (need_update)
2754			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2755
2756		/*
2757		 * Check all DTLs to see if anything needs resilvering.
2758		 */
2759		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2760		    vdev_resilver_needed(rvd, NULL, NULL))
2761			spa_async_request(spa, SPA_ASYNC_RESILVER);
2762
2763		/*
2764		 * Log the fact that we booted up (so that we can detect if
2765		 * we rebooted in the middle of an operation).
2766		 */
2767		spa_history_log_version(spa, "open");
2768
2769		/*
2770		 * Delete any inconsistent datasets.
2771		 */
2772		(void) dmu_objset_find(spa_name(spa),
2773		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2774
2775		/*
2776		 * Clean up any stale temporary dataset userrefs.
2777		 */
2778		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2779	}
2780
2781	return (0);
2782}
2783
2784static int
2785spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2786{
2787	int mode = spa->spa_mode;
2788
2789	spa_unload(spa);
2790	spa_deactivate(spa);
2791
2792	spa->spa_load_max_txg--;
2793
2794	spa_activate(spa, mode);
2795	spa_async_suspend(spa);
2796
2797	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2798}
2799
2800/*
2801 * If spa_load() fails this function will try loading prior txg's. If
2802 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2803 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2804 * function will not rewind the pool and will return the same error as
2805 * spa_load().
2806 */
2807static int
2808spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2809    uint64_t max_request, int rewind_flags)
2810{
2811	nvlist_t *loadinfo = NULL;
2812	nvlist_t *config = NULL;
2813	int load_error, rewind_error;
2814	uint64_t safe_rewind_txg;
2815	uint64_t min_txg;
2816
2817	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2818		spa->spa_load_max_txg = spa->spa_load_txg;
2819		spa_set_log_state(spa, SPA_LOG_CLEAR);
2820	} else {
2821		spa->spa_load_max_txg = max_request;
2822	}
2823
2824	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2825	    mosconfig);
2826	if (load_error == 0)
2827		return (0);
2828
2829	if (spa->spa_root_vdev != NULL)
2830		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2831
2832	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2833	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2834
2835	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2836		nvlist_free(config);
2837		return (load_error);
2838	}
2839
2840	if (state == SPA_LOAD_RECOVER) {
2841		/* Price of rolling back is discarding txgs, including log */
2842		spa_set_log_state(spa, SPA_LOG_CLEAR);
2843	} else {
2844		/*
2845		 * If we aren't rolling back save the load info from our first
2846		 * import attempt so that we can restore it after attempting
2847		 * to rewind.
2848		 */
2849		loadinfo = spa->spa_load_info;
2850		spa->spa_load_info = fnvlist_alloc();
2851	}
2852
2853	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2854	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2855	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2856	    TXG_INITIAL : safe_rewind_txg;
2857
2858	/*
2859	 * Continue as long as we're finding errors, we're still within
2860	 * the acceptable rewind range, and we're still finding uberblocks
2861	 */
2862	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2863	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2864		if (spa->spa_load_max_txg < safe_rewind_txg)
2865			spa->spa_extreme_rewind = B_TRUE;
2866		rewind_error = spa_load_retry(spa, state, mosconfig);
2867	}
2868
2869	spa->spa_extreme_rewind = B_FALSE;
2870	spa->spa_load_max_txg = UINT64_MAX;
2871
2872	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2873		spa_config_set(spa, config);
2874
2875	if (state == SPA_LOAD_RECOVER) {
2876		ASSERT3P(loadinfo, ==, NULL);
2877		return (rewind_error);
2878	} else {
2879		/* Store the rewind info as part of the initial load info */
2880		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2881		    spa->spa_load_info);
2882
2883		/* Restore the initial load info */
2884		fnvlist_free(spa->spa_load_info);
2885		spa->spa_load_info = loadinfo;
2886
2887		return (load_error);
2888	}
2889}
2890
2891/*
2892 * Pool Open/Import
2893 *
2894 * The import case is identical to an open except that the configuration is sent
2895 * down from userland, instead of grabbed from the configuration cache.  For the
2896 * case of an open, the pool configuration will exist in the
2897 * POOL_STATE_UNINITIALIZED state.
2898 *
2899 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2900 * the same time open the pool, without having to keep around the spa_t in some
2901 * ambiguous state.
2902 */
2903static int
2904spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2905    nvlist_t **config)
2906{
2907	spa_t *spa;
2908	spa_load_state_t state = SPA_LOAD_OPEN;
2909	int error;
2910	int locked = B_FALSE;
2911	int firstopen = B_FALSE;
2912
2913	*spapp = NULL;
2914
2915	/*
2916	 * As disgusting as this is, we need to support recursive calls to this
2917	 * function because dsl_dir_open() is called during spa_load(), and ends
2918	 * up calling spa_open() again.  The real fix is to figure out how to
2919	 * avoid dsl_dir_open() calling this in the first place.
2920	 */
2921	if (mutex_owner(&spa_namespace_lock) != curthread) {
2922		mutex_enter(&spa_namespace_lock);
2923		locked = B_TRUE;
2924	}
2925
2926	if ((spa = spa_lookup(pool)) == NULL) {
2927		if (locked)
2928			mutex_exit(&spa_namespace_lock);
2929		return (SET_ERROR(ENOENT));
2930	}
2931
2932	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2933		zpool_rewind_policy_t policy;
2934
2935		firstopen = B_TRUE;
2936
2937		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2938		    &policy);
2939		if (policy.zrp_request & ZPOOL_DO_REWIND)
2940			state = SPA_LOAD_RECOVER;
2941
2942		spa_activate(spa, spa_mode_global);
2943
2944		if (state != SPA_LOAD_RECOVER)
2945			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2946
2947		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2948		    policy.zrp_request);
2949
2950		if (error == EBADF) {
2951			/*
2952			 * If vdev_validate() returns failure (indicated by
2953			 * EBADF), it indicates that one of the vdevs indicates
2954			 * that the pool has been exported or destroyed.  If
2955			 * this is the case, the config cache is out of sync and
2956			 * we should remove the pool from the namespace.
2957			 */
2958			spa_unload(spa);
2959			spa_deactivate(spa);
2960			spa_config_sync(spa, B_TRUE, B_TRUE);
2961			spa_remove(spa);
2962			if (locked)
2963				mutex_exit(&spa_namespace_lock);
2964			return (SET_ERROR(ENOENT));
2965		}
2966
2967		if (error) {
2968			/*
2969			 * We can't open the pool, but we still have useful
2970			 * information: the state of each vdev after the
2971			 * attempted vdev_open().  Return this to the user.
2972			 */
2973			if (config != NULL && spa->spa_config) {
2974				VERIFY(nvlist_dup(spa->spa_config, config,
2975				    KM_SLEEP) == 0);
2976				VERIFY(nvlist_add_nvlist(*config,
2977				    ZPOOL_CONFIG_LOAD_INFO,
2978				    spa->spa_load_info) == 0);
2979			}
2980			spa_unload(spa);
2981			spa_deactivate(spa);
2982			spa->spa_last_open_failed = error;
2983			if (locked)
2984				mutex_exit(&spa_namespace_lock);
2985			*spapp = NULL;
2986			return (error);
2987		}
2988	}
2989
2990	spa_open_ref(spa, tag);
2991
2992	if (config != NULL)
2993		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2994
2995	/*
2996	 * If we've recovered the pool, pass back any information we
2997	 * gathered while doing the load.
2998	 */
2999	if (state == SPA_LOAD_RECOVER) {
3000		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3001		    spa->spa_load_info) == 0);
3002	}
3003
3004	if (locked) {
3005		spa->spa_last_open_failed = 0;
3006		spa->spa_last_ubsync_txg = 0;
3007		spa->spa_load_txg = 0;
3008		mutex_exit(&spa_namespace_lock);
3009#ifdef __FreeBSD__
3010#ifdef _KERNEL
3011		if (firstopen)
3012			zvol_create_minors(spa->spa_name);
3013#endif
3014#endif
3015	}
3016
3017	*spapp = spa;
3018
3019	return (0);
3020}
3021
3022int
3023spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3024    nvlist_t **config)
3025{
3026	return (spa_open_common(name, spapp, tag, policy, config));
3027}
3028
3029int
3030spa_open(const char *name, spa_t **spapp, void *tag)
3031{
3032	return (spa_open_common(name, spapp, tag, NULL, NULL));
3033}
3034
3035/*
3036 * Lookup the given spa_t, incrementing the inject count in the process,
3037 * preventing it from being exported or destroyed.
3038 */
3039spa_t *
3040spa_inject_addref(char *name)
3041{
3042	spa_t *spa;
3043
3044	mutex_enter(&spa_namespace_lock);
3045	if ((spa = spa_lookup(name)) == NULL) {
3046		mutex_exit(&spa_namespace_lock);
3047		return (NULL);
3048	}
3049	spa->spa_inject_ref++;
3050	mutex_exit(&spa_namespace_lock);
3051
3052	return (spa);
3053}
3054
3055void
3056spa_inject_delref(spa_t *spa)
3057{
3058	mutex_enter(&spa_namespace_lock);
3059	spa->spa_inject_ref--;
3060	mutex_exit(&spa_namespace_lock);
3061}
3062
3063/*
3064 * Add spares device information to the nvlist.
3065 */
3066static void
3067spa_add_spares(spa_t *spa, nvlist_t *config)
3068{
3069	nvlist_t **spares;
3070	uint_t i, nspares;
3071	nvlist_t *nvroot;
3072	uint64_t guid;
3073	vdev_stat_t *vs;
3074	uint_t vsc;
3075	uint64_t pool;
3076
3077	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3078
3079	if (spa->spa_spares.sav_count == 0)
3080		return;
3081
3082	VERIFY(nvlist_lookup_nvlist(config,
3083	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3084	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3085	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3086	if (nspares != 0) {
3087		VERIFY(nvlist_add_nvlist_array(nvroot,
3088		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3089		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3090		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3091
3092		/*
3093		 * Go through and find any spares which have since been
3094		 * repurposed as an active spare.  If this is the case, update
3095		 * their status appropriately.
3096		 */
3097		for (i = 0; i < nspares; i++) {
3098			VERIFY(nvlist_lookup_uint64(spares[i],
3099			    ZPOOL_CONFIG_GUID, &guid) == 0);
3100			if (spa_spare_exists(guid, &pool, NULL) &&
3101			    pool != 0ULL) {
3102				VERIFY(nvlist_lookup_uint64_array(
3103				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3104				    (uint64_t **)&vs, &vsc) == 0);
3105				vs->vs_state = VDEV_STATE_CANT_OPEN;
3106				vs->vs_aux = VDEV_AUX_SPARED;
3107			}
3108		}
3109	}
3110}
3111
3112/*
3113 * Add l2cache device information to the nvlist, including vdev stats.
3114 */
3115static void
3116spa_add_l2cache(spa_t *spa, nvlist_t *config)
3117{
3118	nvlist_t **l2cache;
3119	uint_t i, j, nl2cache;
3120	nvlist_t *nvroot;
3121	uint64_t guid;
3122	vdev_t *vd;
3123	vdev_stat_t *vs;
3124	uint_t vsc;
3125
3126	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3127
3128	if (spa->spa_l2cache.sav_count == 0)
3129		return;
3130
3131	VERIFY(nvlist_lookup_nvlist(config,
3132	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3133	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3134	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3135	if (nl2cache != 0) {
3136		VERIFY(nvlist_add_nvlist_array(nvroot,
3137		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3138		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3139		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3140
3141		/*
3142		 * Update level 2 cache device stats.
3143		 */
3144
3145		for (i = 0; i < nl2cache; i++) {
3146			VERIFY(nvlist_lookup_uint64(l2cache[i],
3147			    ZPOOL_CONFIG_GUID, &guid) == 0);
3148
3149			vd = NULL;
3150			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3151				if (guid ==
3152				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3153					vd = spa->spa_l2cache.sav_vdevs[j];
3154					break;
3155				}
3156			}
3157			ASSERT(vd != NULL);
3158
3159			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3160			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3161			    == 0);
3162			vdev_get_stats(vd, vs);
3163		}
3164	}
3165}
3166
3167static void
3168spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3169{
3170	nvlist_t *features;
3171	zap_cursor_t zc;
3172	zap_attribute_t za;
3173
3174	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3175	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3176
3177	/* We may be unable to read features if pool is suspended. */
3178	if (spa_suspended(spa))
3179		goto out;
3180
3181	if (spa->spa_feat_for_read_obj != 0) {
3182		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3183		    spa->spa_feat_for_read_obj);
3184		    zap_cursor_retrieve(&zc, &za) == 0;
3185		    zap_cursor_advance(&zc)) {
3186			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3187			    za.za_num_integers == 1);
3188			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3189			    za.za_first_integer));
3190		}
3191		zap_cursor_fini(&zc);
3192	}
3193
3194	if (spa->spa_feat_for_write_obj != 0) {
3195		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3196		    spa->spa_feat_for_write_obj);
3197		    zap_cursor_retrieve(&zc, &za) == 0;
3198		    zap_cursor_advance(&zc)) {
3199			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3200			    za.za_num_integers == 1);
3201			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3202			    za.za_first_integer));
3203		}
3204		zap_cursor_fini(&zc);
3205	}
3206
3207out:
3208	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3209	    features) == 0);
3210	nvlist_free(features);
3211}
3212
3213int
3214spa_get_stats(const char *name, nvlist_t **config,
3215    char *altroot, size_t buflen)
3216{
3217	int error;
3218	spa_t *spa;
3219
3220	*config = NULL;
3221	error = spa_open_common(name, &spa, FTAG, NULL, config);
3222
3223	if (spa != NULL) {
3224		/*
3225		 * This still leaves a window of inconsistency where the spares
3226		 * or l2cache devices could change and the config would be
3227		 * self-inconsistent.
3228		 */
3229		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3230
3231		if (*config != NULL) {
3232			uint64_t loadtimes[2];
3233
3234			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3235			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3236			VERIFY(nvlist_add_uint64_array(*config,
3237			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3238
3239			VERIFY(nvlist_add_uint64(*config,
3240			    ZPOOL_CONFIG_ERRCOUNT,
3241			    spa_get_errlog_size(spa)) == 0);
3242
3243			if (spa_suspended(spa))
3244				VERIFY(nvlist_add_uint64(*config,
3245				    ZPOOL_CONFIG_SUSPENDED,
3246				    spa->spa_failmode) == 0);
3247
3248			spa_add_spares(spa, *config);
3249			spa_add_l2cache(spa, *config);
3250			spa_add_feature_stats(spa, *config);
3251		}
3252	}
3253
3254	/*
3255	 * We want to get the alternate root even for faulted pools, so we cheat
3256	 * and call spa_lookup() directly.
3257	 */
3258	if (altroot) {
3259		if (spa == NULL) {
3260			mutex_enter(&spa_namespace_lock);
3261			spa = spa_lookup(name);
3262			if (spa)
3263				spa_altroot(spa, altroot, buflen);
3264			else
3265				altroot[0] = '\0';
3266			spa = NULL;
3267			mutex_exit(&spa_namespace_lock);
3268		} else {
3269			spa_altroot(spa, altroot, buflen);
3270		}
3271	}
3272
3273	if (spa != NULL) {
3274		spa_config_exit(spa, SCL_CONFIG, FTAG);
3275		spa_close(spa, FTAG);
3276	}
3277
3278	return (error);
3279}
3280
3281/*
3282 * Validate that the auxiliary device array is well formed.  We must have an
3283 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3284 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3285 * specified, as long as they are well-formed.
3286 */
3287static int
3288spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3289    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3290    vdev_labeltype_t label)
3291{
3292	nvlist_t **dev;
3293	uint_t i, ndev;
3294	vdev_t *vd;
3295	int error;
3296
3297	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3298
3299	/*
3300	 * It's acceptable to have no devs specified.
3301	 */
3302	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3303		return (0);
3304
3305	if (ndev == 0)
3306		return (SET_ERROR(EINVAL));
3307
3308	/*
3309	 * Make sure the pool is formatted with a version that supports this
3310	 * device type.
3311	 */
3312	if (spa_version(spa) < version)
3313		return (SET_ERROR(ENOTSUP));
3314
3315	/*
3316	 * Set the pending device list so we correctly handle device in-use
3317	 * checking.
3318	 */
3319	sav->sav_pending = dev;
3320	sav->sav_npending = ndev;
3321
3322	for (i = 0; i < ndev; i++) {
3323		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3324		    mode)) != 0)
3325			goto out;
3326
3327		if (!vd->vdev_ops->vdev_op_leaf) {
3328			vdev_free(vd);
3329			error = SET_ERROR(EINVAL);
3330			goto out;
3331		}
3332
3333		/*
3334		 * The L2ARC currently only supports disk devices in
3335		 * kernel context.  For user-level testing, we allow it.
3336		 */
3337#ifdef _KERNEL
3338		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3339		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3340			error = SET_ERROR(ENOTBLK);
3341			vdev_free(vd);
3342			goto out;
3343		}
3344#endif
3345		vd->vdev_top = vd;
3346
3347		if ((error = vdev_open(vd)) == 0 &&
3348		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3349			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3350			    vd->vdev_guid) == 0);
3351		}
3352
3353		vdev_free(vd);
3354
3355		if (error &&
3356		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3357			goto out;
3358		else
3359			error = 0;
3360	}
3361
3362out:
3363	sav->sav_pending = NULL;
3364	sav->sav_npending = 0;
3365	return (error);
3366}
3367
3368static int
3369spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3370{
3371	int error;
3372
3373	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3374
3375	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3376	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3377	    VDEV_LABEL_SPARE)) != 0) {
3378		return (error);
3379	}
3380
3381	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3382	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3383	    VDEV_LABEL_L2CACHE));
3384}
3385
3386static void
3387spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3388    const char *config)
3389{
3390	int i;
3391
3392	if (sav->sav_config != NULL) {
3393		nvlist_t **olddevs;
3394		uint_t oldndevs;
3395		nvlist_t **newdevs;
3396
3397		/*
3398		 * Generate new dev list by concatentating with the
3399		 * current dev list.
3400		 */
3401		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3402		    &olddevs, &oldndevs) == 0);
3403
3404		newdevs = kmem_alloc(sizeof (void *) *
3405		    (ndevs + oldndevs), KM_SLEEP);
3406		for (i = 0; i < oldndevs; i++)
3407			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3408			    KM_SLEEP) == 0);
3409		for (i = 0; i < ndevs; i++)
3410			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3411			    KM_SLEEP) == 0);
3412
3413		VERIFY(nvlist_remove(sav->sav_config, config,
3414		    DATA_TYPE_NVLIST_ARRAY) == 0);
3415
3416		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3417		    config, newdevs, ndevs + oldndevs) == 0);
3418		for (i = 0; i < oldndevs + ndevs; i++)
3419			nvlist_free(newdevs[i]);
3420		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3421	} else {
3422		/*
3423		 * Generate a new dev list.
3424		 */
3425		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3426		    KM_SLEEP) == 0);
3427		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3428		    devs, ndevs) == 0);
3429	}
3430}
3431
3432/*
3433 * Stop and drop level 2 ARC devices
3434 */
3435void
3436spa_l2cache_drop(spa_t *spa)
3437{
3438	vdev_t *vd;
3439	int i;
3440	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3441
3442	for (i = 0; i < sav->sav_count; i++) {
3443		uint64_t pool;
3444
3445		vd = sav->sav_vdevs[i];
3446		ASSERT(vd != NULL);
3447
3448		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3449		    pool != 0ULL && l2arc_vdev_present(vd))
3450			l2arc_remove_vdev(vd);
3451	}
3452}
3453
3454/*
3455 * Pool Creation
3456 */
3457int
3458spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3459    nvlist_t *zplprops)
3460{
3461	spa_t *spa;
3462	char *altroot = NULL;
3463	vdev_t *rvd;
3464	dsl_pool_t *dp;
3465	dmu_tx_t *tx;
3466	int error = 0;
3467	uint64_t txg = TXG_INITIAL;
3468	nvlist_t **spares, **l2cache;
3469	uint_t nspares, nl2cache;
3470	uint64_t version, obj;
3471	boolean_t has_features;
3472
3473	/*
3474	 * If this pool already exists, return failure.
3475	 */
3476	mutex_enter(&spa_namespace_lock);
3477	if (spa_lookup(pool) != NULL) {
3478		mutex_exit(&spa_namespace_lock);
3479		return (SET_ERROR(EEXIST));
3480	}
3481
3482	/*
3483	 * Allocate a new spa_t structure.
3484	 */
3485	(void) nvlist_lookup_string(props,
3486	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3487	spa = spa_add(pool, NULL, altroot);
3488	spa_activate(spa, spa_mode_global);
3489
3490	if (props && (error = spa_prop_validate(spa, props))) {
3491		spa_deactivate(spa);
3492		spa_remove(spa);
3493		mutex_exit(&spa_namespace_lock);
3494		return (error);
3495	}
3496
3497	has_features = B_FALSE;
3498	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3499	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3500		if (zpool_prop_feature(nvpair_name(elem)))
3501			has_features = B_TRUE;
3502	}
3503
3504	if (has_features || nvlist_lookup_uint64(props,
3505	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3506		version = SPA_VERSION;
3507	}
3508	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3509
3510	spa->spa_first_txg = txg;
3511	spa->spa_uberblock.ub_txg = txg - 1;
3512	spa->spa_uberblock.ub_version = version;
3513	spa->spa_ubsync = spa->spa_uberblock;
3514
3515	/*
3516	 * Create "The Godfather" zio to hold all async IOs
3517	 */
3518	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3519	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3520
3521	/*
3522	 * Create the root vdev.
3523	 */
3524	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3525
3526	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3527
3528	ASSERT(error != 0 || rvd != NULL);
3529	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3530
3531	if (error == 0 && !zfs_allocatable_devs(nvroot))
3532		error = SET_ERROR(EINVAL);
3533
3534	if (error == 0 &&
3535	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3536	    (error = spa_validate_aux(spa, nvroot, txg,
3537	    VDEV_ALLOC_ADD)) == 0) {
3538		for (int c = 0; c < rvd->vdev_children; c++) {
3539			vdev_ashift_optimize(rvd->vdev_child[c]);
3540			vdev_metaslab_set_size(rvd->vdev_child[c]);
3541			vdev_expand(rvd->vdev_child[c], txg);
3542		}
3543	}
3544
3545	spa_config_exit(spa, SCL_ALL, FTAG);
3546
3547	if (error != 0) {
3548		spa_unload(spa);
3549		spa_deactivate(spa);
3550		spa_remove(spa);
3551		mutex_exit(&spa_namespace_lock);
3552		return (error);
3553	}
3554
3555	/*
3556	 * Get the list of spares, if specified.
3557	 */
3558	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3559	    &spares, &nspares) == 0) {
3560		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3561		    KM_SLEEP) == 0);
3562		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3563		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3564		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3565		spa_load_spares(spa);
3566		spa_config_exit(spa, SCL_ALL, FTAG);
3567		spa->spa_spares.sav_sync = B_TRUE;
3568	}
3569
3570	/*
3571	 * Get the list of level 2 cache devices, if specified.
3572	 */
3573	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3574	    &l2cache, &nl2cache) == 0) {
3575		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3576		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3577		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3578		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3579		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3580		spa_load_l2cache(spa);
3581		spa_config_exit(spa, SCL_ALL, FTAG);
3582		spa->spa_l2cache.sav_sync = B_TRUE;
3583	}
3584
3585	spa->spa_is_initializing = B_TRUE;
3586	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3587	spa->spa_meta_objset = dp->dp_meta_objset;
3588	spa->spa_is_initializing = B_FALSE;
3589
3590	/*
3591	 * Create DDTs (dedup tables).
3592	 */
3593	ddt_create(spa);
3594
3595	spa_update_dspace(spa);
3596
3597	tx = dmu_tx_create_assigned(dp, txg);
3598
3599	/*
3600	 * Create the pool config object.
3601	 */
3602	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3603	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3604	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3605
3606	if (zap_add(spa->spa_meta_objset,
3607	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3608	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3609		cmn_err(CE_PANIC, "failed to add pool config");
3610	}
3611
3612	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3613		spa_feature_create_zap_objects(spa, tx);
3614
3615	if (zap_add(spa->spa_meta_objset,
3616	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3617	    sizeof (uint64_t), 1, &version, tx) != 0) {
3618		cmn_err(CE_PANIC, "failed to add pool version");
3619	}
3620
3621	/* Newly created pools with the right version are always deflated. */
3622	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3623		spa->spa_deflate = TRUE;
3624		if (zap_add(spa->spa_meta_objset,
3625		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3626		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3627			cmn_err(CE_PANIC, "failed to add deflate");
3628		}
3629	}
3630
3631	/*
3632	 * Create the deferred-free bpobj.  Turn off compression
3633	 * because sync-to-convergence takes longer if the blocksize
3634	 * keeps changing.
3635	 */
3636	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3637	dmu_object_set_compress(spa->spa_meta_objset, obj,
3638	    ZIO_COMPRESS_OFF, tx);
3639	if (zap_add(spa->spa_meta_objset,
3640	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3641	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3642		cmn_err(CE_PANIC, "failed to add bpobj");
3643	}
3644	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3645	    spa->spa_meta_objset, obj));
3646
3647	/*
3648	 * Create the pool's history object.
3649	 */
3650	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3651		spa_history_create_obj(spa, tx);
3652
3653	/*
3654	 * Set pool properties.
3655	 */
3656	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3657	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3658	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3659	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3660
3661	if (props != NULL) {
3662		spa_configfile_set(spa, props, B_FALSE);
3663		spa_sync_props(props, tx);
3664	}
3665
3666	dmu_tx_commit(tx);
3667
3668	spa->spa_sync_on = B_TRUE;
3669	txg_sync_start(spa->spa_dsl_pool);
3670
3671	/*
3672	 * We explicitly wait for the first transaction to complete so that our
3673	 * bean counters are appropriately updated.
3674	 */
3675	txg_wait_synced(spa->spa_dsl_pool, txg);
3676
3677	spa_config_sync(spa, B_FALSE, B_TRUE);
3678
3679	spa_history_log_version(spa, "create");
3680
3681	spa->spa_minref = refcount_count(&spa->spa_refcount);
3682
3683	mutex_exit(&spa_namespace_lock);
3684
3685	return (0);
3686}
3687
3688#ifdef _KERNEL
3689#if defined(sun)
3690/*
3691 * Get the root pool information from the root disk, then import the root pool
3692 * during the system boot up time.
3693 */
3694extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3695
3696static nvlist_t *
3697spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3698{
3699	nvlist_t *config;
3700	nvlist_t *nvtop, *nvroot;
3701	uint64_t pgid;
3702
3703	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3704		return (NULL);
3705
3706	/*
3707	 * Add this top-level vdev to the child array.
3708	 */
3709	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3710	    &nvtop) == 0);
3711	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3712	    &pgid) == 0);
3713	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3714
3715	/*
3716	 * Put this pool's top-level vdevs into a root vdev.
3717	 */
3718	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3719	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3720	    VDEV_TYPE_ROOT) == 0);
3721	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3722	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3723	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3724	    &nvtop, 1) == 0);
3725
3726	/*
3727	 * Replace the existing vdev_tree with the new root vdev in
3728	 * this pool's configuration (remove the old, add the new).
3729	 */
3730	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3731	nvlist_free(nvroot);
3732	return (config);
3733}
3734
3735/*
3736 * Walk the vdev tree and see if we can find a device with "better"
3737 * configuration. A configuration is "better" if the label on that
3738 * device has a more recent txg.
3739 */
3740static void
3741spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3742{
3743	for (int c = 0; c < vd->vdev_children; c++)
3744		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3745
3746	if (vd->vdev_ops->vdev_op_leaf) {
3747		nvlist_t *label;
3748		uint64_t label_txg;
3749
3750		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3751		    &label) != 0)
3752			return;
3753
3754		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3755		    &label_txg) == 0);
3756
3757		/*
3758		 * Do we have a better boot device?
3759		 */
3760		if (label_txg > *txg) {
3761			*txg = label_txg;
3762			*avd = vd;
3763		}
3764		nvlist_free(label);
3765	}
3766}
3767
3768/*
3769 * Import a root pool.
3770 *
3771 * For x86. devpath_list will consist of devid and/or physpath name of
3772 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3773 * The GRUB "findroot" command will return the vdev we should boot.
3774 *
3775 * For Sparc, devpath_list consists the physpath name of the booting device
3776 * no matter the rootpool is a single device pool or a mirrored pool.
3777 * e.g.
3778 *	"/pci@1f,0/ide@d/disk@0,0:a"
3779 */
3780int
3781spa_import_rootpool(char *devpath, char *devid)
3782{
3783	spa_t *spa;
3784	vdev_t *rvd, *bvd, *avd = NULL;
3785	nvlist_t *config, *nvtop;
3786	uint64_t guid, txg;
3787	char *pname;
3788	int error;
3789
3790	/*
3791	 * Read the label from the boot device and generate a configuration.
3792	 */
3793	config = spa_generate_rootconf(devpath, devid, &guid);
3794#if defined(_OBP) && defined(_KERNEL)
3795	if (config == NULL) {
3796		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3797			/* iscsi boot */
3798			get_iscsi_bootpath_phy(devpath);
3799			config = spa_generate_rootconf(devpath, devid, &guid);
3800		}
3801	}
3802#endif
3803	if (config == NULL) {
3804		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3805		    devpath);
3806		return (SET_ERROR(EIO));
3807	}
3808
3809	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3810	    &pname) == 0);
3811	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3812
3813	mutex_enter(&spa_namespace_lock);
3814	if ((spa = spa_lookup(pname)) != NULL) {
3815		/*
3816		 * Remove the existing root pool from the namespace so that we
3817		 * can replace it with the correct config we just read in.
3818		 */
3819		spa_remove(spa);
3820	}
3821
3822	spa = spa_add(pname, config, NULL);
3823	spa->spa_is_root = B_TRUE;
3824	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3825
3826	/*
3827	 * Build up a vdev tree based on the boot device's label config.
3828	 */
3829	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3830	    &nvtop) == 0);
3831	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3832	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3833	    VDEV_ALLOC_ROOTPOOL);
3834	spa_config_exit(spa, SCL_ALL, FTAG);
3835	if (error) {
3836		mutex_exit(&spa_namespace_lock);
3837		nvlist_free(config);
3838		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3839		    pname);
3840		return (error);
3841	}
3842
3843	/*
3844	 * Get the boot vdev.
3845	 */
3846	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3847		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3848		    (u_longlong_t)guid);
3849		error = SET_ERROR(ENOENT);
3850		goto out;
3851	}
3852
3853	/*
3854	 * Determine if there is a better boot device.
3855	 */
3856	avd = bvd;
3857	spa_alt_rootvdev(rvd, &avd, &txg);
3858	if (avd != bvd) {
3859		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3860		    "try booting from '%s'", avd->vdev_path);
3861		error = SET_ERROR(EINVAL);
3862		goto out;
3863	}
3864
3865	/*
3866	 * If the boot device is part of a spare vdev then ensure that
3867	 * we're booting off the active spare.
3868	 */
3869	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3870	    !bvd->vdev_isspare) {
3871		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3872		    "try booting from '%s'",
3873		    bvd->vdev_parent->
3874		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3875		error = SET_ERROR(EINVAL);
3876		goto out;
3877	}
3878
3879	error = 0;
3880out:
3881	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3882	vdev_free(rvd);
3883	spa_config_exit(spa, SCL_ALL, FTAG);
3884	mutex_exit(&spa_namespace_lock);
3885
3886	nvlist_free(config);
3887	return (error);
3888}
3889
3890#else
3891
3892extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3893    uint64_t *count);
3894
3895static nvlist_t *
3896spa_generate_rootconf(const char *name)
3897{
3898	nvlist_t **configs, **tops;
3899	nvlist_t *config;
3900	nvlist_t *best_cfg, *nvtop, *nvroot;
3901	uint64_t *holes;
3902	uint64_t best_txg;
3903	uint64_t nchildren;
3904	uint64_t pgid;
3905	uint64_t count;
3906	uint64_t i;
3907	uint_t   nholes;
3908
3909	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3910		return (NULL);
3911
3912	ASSERT3U(count, !=, 0);
3913	best_txg = 0;
3914	for (i = 0; i < count; i++) {
3915		uint64_t txg;
3916
3917		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3918		    &txg) == 0);
3919		if (txg > best_txg) {
3920			best_txg = txg;
3921			best_cfg = configs[i];
3922		}
3923	}
3924
3925	/*
3926	 * Multi-vdev root pool configuration discovery is not supported yet.
3927	 */
3928	nchildren = 1;
3929	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3930	holes = NULL;
3931	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3932	    &holes, &nholes);
3933
3934	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3935	for (i = 0; i < nchildren; i++) {
3936		if (i >= count)
3937			break;
3938		if (configs[i] == NULL)
3939			continue;
3940		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3941		    &nvtop) == 0);
3942		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3943	}
3944	for (i = 0; holes != NULL && i < nholes; i++) {
3945		if (i >= nchildren)
3946			continue;
3947		if (tops[holes[i]] != NULL)
3948			continue;
3949		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3950		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3951		    VDEV_TYPE_HOLE) == 0);
3952		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3953		    holes[i]) == 0);
3954		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3955		    0) == 0);
3956	}
3957	for (i = 0; i < nchildren; i++) {
3958		if (tops[i] != NULL)
3959			continue;
3960		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3961		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3962		    VDEV_TYPE_MISSING) == 0);
3963		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3964		    i) == 0);
3965		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3966		    0) == 0);
3967	}
3968
3969	/*
3970	 * Create pool config based on the best vdev config.
3971	 */
3972	nvlist_dup(best_cfg, &config, KM_SLEEP);
3973
3974	/*
3975	 * Put this pool's top-level vdevs into a root vdev.
3976	 */
3977	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3978	    &pgid) == 0);
3979	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3980	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3981	    VDEV_TYPE_ROOT) == 0);
3982	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3983	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3984	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3985	    tops, nchildren) == 0);
3986
3987	/*
3988	 * Replace the existing vdev_tree with the new root vdev in
3989	 * this pool's configuration (remove the old, add the new).
3990	 */
3991	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3992
3993	/*
3994	 * Drop vdev config elements that should not be present at pool level.
3995	 */
3996	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3997	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3998
3999	for (i = 0; i < count; i++)
4000		nvlist_free(configs[i]);
4001	kmem_free(configs, count * sizeof(void *));
4002	for (i = 0; i < nchildren; i++)
4003		nvlist_free(tops[i]);
4004	kmem_free(tops, nchildren * sizeof(void *));
4005	nvlist_free(nvroot);
4006	return (config);
4007}
4008
4009int
4010spa_import_rootpool(const char *name)
4011{
4012	spa_t *spa;
4013	vdev_t *rvd, *bvd, *avd = NULL;
4014	nvlist_t *config, *nvtop;
4015	uint64_t txg;
4016	char *pname;
4017	int error;
4018
4019	/*
4020	 * Read the label from the boot device and generate a configuration.
4021	 */
4022	config = spa_generate_rootconf(name);
4023
4024	mutex_enter(&spa_namespace_lock);
4025	if (config != NULL) {
4026		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4027		    &pname) == 0 && strcmp(name, pname) == 0);
4028		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4029		    == 0);
4030
4031		if ((spa = spa_lookup(pname)) != NULL) {
4032			/*
4033			 * Remove the existing root pool from the namespace so
4034			 * that we can replace it with the correct config
4035			 * we just read in.
4036			 */
4037			spa_remove(spa);
4038		}
4039		spa = spa_add(pname, config, NULL);
4040
4041		/*
4042		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4043		 * via spa_version().
4044		 */
4045		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4046		    &spa->spa_ubsync.ub_version) != 0)
4047			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4048	} else if ((spa = spa_lookup(name)) == NULL) {
4049		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4050		    name);
4051		return (EIO);
4052	} else {
4053		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4054	}
4055	spa->spa_is_root = B_TRUE;
4056	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4057
4058	/*
4059	 * Build up a vdev tree based on the boot device's label config.
4060	 */
4061	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4062	    &nvtop) == 0);
4063	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4064	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4065	    VDEV_ALLOC_ROOTPOOL);
4066	spa_config_exit(spa, SCL_ALL, FTAG);
4067	if (error) {
4068		mutex_exit(&spa_namespace_lock);
4069		nvlist_free(config);
4070		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4071		    pname);
4072		return (error);
4073	}
4074
4075	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4076	vdev_free(rvd);
4077	spa_config_exit(spa, SCL_ALL, FTAG);
4078	mutex_exit(&spa_namespace_lock);
4079
4080	nvlist_free(config);
4081	return (0);
4082}
4083
4084#endif	/* sun */
4085#endif
4086
4087/*
4088 * Import a non-root pool into the system.
4089 */
4090int
4091spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4092{
4093	spa_t *spa;
4094	char *altroot = NULL;
4095	spa_load_state_t state = SPA_LOAD_IMPORT;
4096	zpool_rewind_policy_t policy;
4097	uint64_t mode = spa_mode_global;
4098	uint64_t readonly = B_FALSE;
4099	int error;
4100	nvlist_t *nvroot;
4101	nvlist_t **spares, **l2cache;
4102	uint_t nspares, nl2cache;
4103
4104	/*
4105	 * If a pool with this name exists, return failure.
4106	 */
4107	mutex_enter(&spa_namespace_lock);
4108	if (spa_lookup(pool) != NULL) {
4109		mutex_exit(&spa_namespace_lock);
4110		return (SET_ERROR(EEXIST));
4111	}
4112
4113	/*
4114	 * Create and initialize the spa structure.
4115	 */
4116	(void) nvlist_lookup_string(props,
4117	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4118	(void) nvlist_lookup_uint64(props,
4119	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4120	if (readonly)
4121		mode = FREAD;
4122	spa = spa_add(pool, config, altroot);
4123	spa->spa_import_flags = flags;
4124
4125	/*
4126	 * Verbatim import - Take a pool and insert it into the namespace
4127	 * as if it had been loaded at boot.
4128	 */
4129	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4130		if (props != NULL)
4131			spa_configfile_set(spa, props, B_FALSE);
4132
4133		spa_config_sync(spa, B_FALSE, B_TRUE);
4134
4135		mutex_exit(&spa_namespace_lock);
4136		return (0);
4137	}
4138
4139	spa_activate(spa, mode);
4140
4141	/*
4142	 * Don't start async tasks until we know everything is healthy.
4143	 */
4144	spa_async_suspend(spa);
4145
4146	zpool_get_rewind_policy(config, &policy);
4147	if (policy.zrp_request & ZPOOL_DO_REWIND)
4148		state = SPA_LOAD_RECOVER;
4149
4150	/*
4151	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4152	 * because the user-supplied config is actually the one to trust when
4153	 * doing an import.
4154	 */
4155	if (state != SPA_LOAD_RECOVER)
4156		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4157
4158	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4159	    policy.zrp_request);
4160
4161	/*
4162	 * Propagate anything learned while loading the pool and pass it
4163	 * back to caller (i.e. rewind info, missing devices, etc).
4164	 */
4165	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4166	    spa->spa_load_info) == 0);
4167
4168	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4169	/*
4170	 * Toss any existing sparelist, as it doesn't have any validity
4171	 * anymore, and conflicts with spa_has_spare().
4172	 */
4173	if (spa->spa_spares.sav_config) {
4174		nvlist_free(spa->spa_spares.sav_config);
4175		spa->spa_spares.sav_config = NULL;
4176		spa_load_spares(spa);
4177	}
4178	if (spa->spa_l2cache.sav_config) {
4179		nvlist_free(spa->spa_l2cache.sav_config);
4180		spa->spa_l2cache.sav_config = NULL;
4181		spa_load_l2cache(spa);
4182	}
4183
4184	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4185	    &nvroot) == 0);
4186	if (error == 0)
4187		error = spa_validate_aux(spa, nvroot, -1ULL,
4188		    VDEV_ALLOC_SPARE);
4189	if (error == 0)
4190		error = spa_validate_aux(spa, nvroot, -1ULL,
4191		    VDEV_ALLOC_L2CACHE);
4192	spa_config_exit(spa, SCL_ALL, FTAG);
4193
4194	if (props != NULL)
4195		spa_configfile_set(spa, props, B_FALSE);
4196
4197	if (error != 0 || (props && spa_writeable(spa) &&
4198	    (error = spa_prop_set(spa, props)))) {
4199		spa_unload(spa);
4200		spa_deactivate(spa);
4201		spa_remove(spa);
4202		mutex_exit(&spa_namespace_lock);
4203		return (error);
4204	}
4205
4206	spa_async_resume(spa);
4207
4208	/*
4209	 * Override any spares and level 2 cache devices as specified by
4210	 * the user, as these may have correct device names/devids, etc.
4211	 */
4212	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4213	    &spares, &nspares) == 0) {
4214		if (spa->spa_spares.sav_config)
4215			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4216			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4217		else
4218			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4219			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4220		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4221		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4222		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4223		spa_load_spares(spa);
4224		spa_config_exit(spa, SCL_ALL, FTAG);
4225		spa->spa_spares.sav_sync = B_TRUE;
4226	}
4227	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4228	    &l2cache, &nl2cache) == 0) {
4229		if (spa->spa_l2cache.sav_config)
4230			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4231			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4232		else
4233			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4234			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4235		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4236		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4237		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4238		spa_load_l2cache(spa);
4239		spa_config_exit(spa, SCL_ALL, FTAG);
4240		spa->spa_l2cache.sav_sync = B_TRUE;
4241	}
4242
4243	/*
4244	 * Check for any removed devices.
4245	 */
4246	if (spa->spa_autoreplace) {
4247		spa_aux_check_removed(&spa->spa_spares);
4248		spa_aux_check_removed(&spa->spa_l2cache);
4249	}
4250
4251	if (spa_writeable(spa)) {
4252		/*
4253		 * Update the config cache to include the newly-imported pool.
4254		 */
4255		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4256	}
4257
4258	/*
4259	 * It's possible that the pool was expanded while it was exported.
4260	 * We kick off an async task to handle this for us.
4261	 */
4262	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4263
4264	mutex_exit(&spa_namespace_lock);
4265	spa_history_log_version(spa, "import");
4266
4267#ifdef __FreeBSD__
4268#ifdef _KERNEL
4269	zvol_create_minors(pool);
4270#endif
4271#endif
4272	return (0);
4273}
4274
4275nvlist_t *
4276spa_tryimport(nvlist_t *tryconfig)
4277{
4278	nvlist_t *config = NULL;
4279	char *poolname;
4280	spa_t *spa;
4281	uint64_t state;
4282	int error;
4283
4284	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4285		return (NULL);
4286
4287	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4288		return (NULL);
4289
4290	/*
4291	 * Create and initialize the spa structure.
4292	 */
4293	mutex_enter(&spa_namespace_lock);
4294	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4295	spa_activate(spa, FREAD);
4296
4297	/*
4298	 * Pass off the heavy lifting to spa_load().
4299	 * Pass TRUE for mosconfig because the user-supplied config
4300	 * is actually the one to trust when doing an import.
4301	 */
4302	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4303
4304	/*
4305	 * If 'tryconfig' was at least parsable, return the current config.
4306	 */
4307	if (spa->spa_root_vdev != NULL) {
4308		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4309		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4310		    poolname) == 0);
4311		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4312		    state) == 0);
4313		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4314		    spa->spa_uberblock.ub_timestamp) == 0);
4315		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4316		    spa->spa_load_info) == 0);
4317
4318		/*
4319		 * If the bootfs property exists on this pool then we
4320		 * copy it out so that external consumers can tell which
4321		 * pools are bootable.
4322		 */
4323		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4324			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4325
4326			/*
4327			 * We have to play games with the name since the
4328			 * pool was opened as TRYIMPORT_NAME.
4329			 */
4330			if (dsl_dsobj_to_dsname(spa_name(spa),
4331			    spa->spa_bootfs, tmpname) == 0) {
4332				char *cp;
4333				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4334
4335				cp = strchr(tmpname, '/');
4336				if (cp == NULL) {
4337					(void) strlcpy(dsname, tmpname,
4338					    MAXPATHLEN);
4339				} else {
4340					(void) snprintf(dsname, MAXPATHLEN,
4341					    "%s/%s", poolname, ++cp);
4342				}
4343				VERIFY(nvlist_add_string(config,
4344				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4345				kmem_free(dsname, MAXPATHLEN);
4346			}
4347			kmem_free(tmpname, MAXPATHLEN);
4348		}
4349
4350		/*
4351		 * Add the list of hot spares and level 2 cache devices.
4352		 */
4353		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4354		spa_add_spares(spa, config);
4355		spa_add_l2cache(spa, config);
4356		spa_config_exit(spa, SCL_CONFIG, FTAG);
4357	}
4358
4359	spa_unload(spa);
4360	spa_deactivate(spa);
4361	spa_remove(spa);
4362	mutex_exit(&spa_namespace_lock);
4363
4364	return (config);
4365}
4366
4367/*
4368 * Pool export/destroy
4369 *
4370 * The act of destroying or exporting a pool is very simple.  We make sure there
4371 * is no more pending I/O and any references to the pool are gone.  Then, we
4372 * update the pool state and sync all the labels to disk, removing the
4373 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4374 * we don't sync the labels or remove the configuration cache.
4375 */
4376static int
4377spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4378    boolean_t force, boolean_t hardforce)
4379{
4380	spa_t *spa;
4381
4382	if (oldconfig)
4383		*oldconfig = NULL;
4384
4385	if (!(spa_mode_global & FWRITE))
4386		return (SET_ERROR(EROFS));
4387
4388	mutex_enter(&spa_namespace_lock);
4389	if ((spa = spa_lookup(pool)) == NULL) {
4390		mutex_exit(&spa_namespace_lock);
4391		return (SET_ERROR(ENOENT));
4392	}
4393
4394	/*
4395	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4396	 * reacquire the namespace lock, and see if we can export.
4397	 */
4398	spa_open_ref(spa, FTAG);
4399	mutex_exit(&spa_namespace_lock);
4400	spa_async_suspend(spa);
4401	mutex_enter(&spa_namespace_lock);
4402	spa_close(spa, FTAG);
4403
4404	/*
4405	 * The pool will be in core if it's openable,
4406	 * in which case we can modify its state.
4407	 */
4408	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4409		/*
4410		 * Objsets may be open only because they're dirty, so we
4411		 * have to force it to sync before checking spa_refcnt.
4412		 */
4413		txg_wait_synced(spa->spa_dsl_pool, 0);
4414
4415		/*
4416		 * A pool cannot be exported or destroyed if there are active
4417		 * references.  If we are resetting a pool, allow references by
4418		 * fault injection handlers.
4419		 */
4420		if (!spa_refcount_zero(spa) ||
4421		    (spa->spa_inject_ref != 0 &&
4422		    new_state != POOL_STATE_UNINITIALIZED)) {
4423			spa_async_resume(spa);
4424			mutex_exit(&spa_namespace_lock);
4425			return (SET_ERROR(EBUSY));
4426		}
4427
4428		/*
4429		 * A pool cannot be exported if it has an active shared spare.
4430		 * This is to prevent other pools stealing the active spare
4431		 * from an exported pool. At user's own will, such pool can
4432		 * be forcedly exported.
4433		 */
4434		if (!force && new_state == POOL_STATE_EXPORTED &&
4435		    spa_has_active_shared_spare(spa)) {
4436			spa_async_resume(spa);
4437			mutex_exit(&spa_namespace_lock);
4438			return (SET_ERROR(EXDEV));
4439		}
4440
4441		/*
4442		 * We want this to be reflected on every label,
4443		 * so mark them all dirty.  spa_unload() will do the
4444		 * final sync that pushes these changes out.
4445		 */
4446		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4447			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4448			spa->spa_state = new_state;
4449			spa->spa_final_txg = spa_last_synced_txg(spa) +
4450			    TXG_DEFER_SIZE + 1;
4451			vdev_config_dirty(spa->spa_root_vdev);
4452			spa_config_exit(spa, SCL_ALL, FTAG);
4453		}
4454	}
4455
4456	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4457
4458	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4459		spa_unload(spa);
4460		spa_deactivate(spa);
4461	}
4462
4463	if (oldconfig && spa->spa_config)
4464		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4465
4466	if (new_state != POOL_STATE_UNINITIALIZED) {
4467		if (!hardforce)
4468			spa_config_sync(spa, B_TRUE, B_TRUE);
4469		spa_remove(spa);
4470	}
4471	mutex_exit(&spa_namespace_lock);
4472
4473	return (0);
4474}
4475
4476/*
4477 * Destroy a storage pool.
4478 */
4479int
4480spa_destroy(char *pool)
4481{
4482	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4483	    B_FALSE, B_FALSE));
4484}
4485
4486/*
4487 * Export a storage pool.
4488 */
4489int
4490spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4491    boolean_t hardforce)
4492{
4493	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4494	    force, hardforce));
4495}
4496
4497/*
4498 * Similar to spa_export(), this unloads the spa_t without actually removing it
4499 * from the namespace in any way.
4500 */
4501int
4502spa_reset(char *pool)
4503{
4504	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4505	    B_FALSE, B_FALSE));
4506}
4507
4508/*
4509 * ==========================================================================
4510 * Device manipulation
4511 * ==========================================================================
4512 */
4513
4514/*
4515 * Add a device to a storage pool.
4516 */
4517int
4518spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4519{
4520	uint64_t txg, id;
4521	int error;
4522	vdev_t *rvd = spa->spa_root_vdev;
4523	vdev_t *vd, *tvd;
4524	nvlist_t **spares, **l2cache;
4525	uint_t nspares, nl2cache;
4526
4527	ASSERT(spa_writeable(spa));
4528
4529	txg = spa_vdev_enter(spa);
4530
4531	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4532	    VDEV_ALLOC_ADD)) != 0)
4533		return (spa_vdev_exit(spa, NULL, txg, error));
4534
4535	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4536
4537	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4538	    &nspares) != 0)
4539		nspares = 0;
4540
4541	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4542	    &nl2cache) != 0)
4543		nl2cache = 0;
4544
4545	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4546		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4547
4548	if (vd->vdev_children != 0 &&
4549	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4550		return (spa_vdev_exit(spa, vd, txg, error));
4551
4552	/*
4553	 * We must validate the spares and l2cache devices after checking the
4554	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4555	 */
4556	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4557		return (spa_vdev_exit(spa, vd, txg, error));
4558
4559	/*
4560	 * Transfer each new top-level vdev from vd to rvd.
4561	 */
4562	for (int c = 0; c < vd->vdev_children; c++) {
4563
4564		/*
4565		 * Set the vdev id to the first hole, if one exists.
4566		 */
4567		for (id = 0; id < rvd->vdev_children; id++) {
4568			if (rvd->vdev_child[id]->vdev_ishole) {
4569				vdev_free(rvd->vdev_child[id]);
4570				break;
4571			}
4572		}
4573		tvd = vd->vdev_child[c];
4574		vdev_remove_child(vd, tvd);
4575		tvd->vdev_id = id;
4576		vdev_add_child(rvd, tvd);
4577		vdev_config_dirty(tvd);
4578	}
4579
4580	if (nspares != 0) {
4581		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4582		    ZPOOL_CONFIG_SPARES);
4583		spa_load_spares(spa);
4584		spa->spa_spares.sav_sync = B_TRUE;
4585	}
4586
4587	if (nl2cache != 0) {
4588		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4589		    ZPOOL_CONFIG_L2CACHE);
4590		spa_load_l2cache(spa);
4591		spa->spa_l2cache.sav_sync = B_TRUE;
4592	}
4593
4594	/*
4595	 * We have to be careful when adding new vdevs to an existing pool.
4596	 * If other threads start allocating from these vdevs before we
4597	 * sync the config cache, and we lose power, then upon reboot we may
4598	 * fail to open the pool because there are DVAs that the config cache
4599	 * can't translate.  Therefore, we first add the vdevs without
4600	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4601	 * and then let spa_config_update() initialize the new metaslabs.
4602	 *
4603	 * spa_load() checks for added-but-not-initialized vdevs, so that
4604	 * if we lose power at any point in this sequence, the remaining
4605	 * steps will be completed the next time we load the pool.
4606	 */
4607	(void) spa_vdev_exit(spa, vd, txg, 0);
4608
4609	mutex_enter(&spa_namespace_lock);
4610	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4611	mutex_exit(&spa_namespace_lock);
4612
4613	return (0);
4614}
4615
4616/*
4617 * Attach a device to a mirror.  The arguments are the path to any device
4618 * in the mirror, and the nvroot for the new device.  If the path specifies
4619 * a device that is not mirrored, we automatically insert the mirror vdev.
4620 *
4621 * If 'replacing' is specified, the new device is intended to replace the
4622 * existing device; in this case the two devices are made into their own
4623 * mirror using the 'replacing' vdev, which is functionally identical to
4624 * the mirror vdev (it actually reuses all the same ops) but has a few
4625 * extra rules: you can't attach to it after it's been created, and upon
4626 * completion of resilvering, the first disk (the one being replaced)
4627 * is automatically detached.
4628 */
4629int
4630spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4631{
4632	uint64_t txg, dtl_max_txg;
4633	vdev_t *rvd = spa->spa_root_vdev;
4634	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4635	vdev_ops_t *pvops;
4636	char *oldvdpath, *newvdpath;
4637	int newvd_isspare;
4638	int error;
4639
4640	ASSERT(spa_writeable(spa));
4641
4642	txg = spa_vdev_enter(spa);
4643
4644	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4645
4646	if (oldvd == NULL)
4647		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4648
4649	if (!oldvd->vdev_ops->vdev_op_leaf)
4650		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4651
4652	pvd = oldvd->vdev_parent;
4653
4654	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4655	    VDEV_ALLOC_ATTACH)) != 0)
4656		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4657
4658	if (newrootvd->vdev_children != 1)
4659		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4660
4661	newvd = newrootvd->vdev_child[0];
4662
4663	if (!newvd->vdev_ops->vdev_op_leaf)
4664		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4665
4666	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4667		return (spa_vdev_exit(spa, newrootvd, txg, error));
4668
4669	/*
4670	 * Spares can't replace logs
4671	 */
4672	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4673		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4674
4675	if (!replacing) {
4676		/*
4677		 * For attach, the only allowable parent is a mirror or the root
4678		 * vdev.
4679		 */
4680		if (pvd->vdev_ops != &vdev_mirror_ops &&
4681		    pvd->vdev_ops != &vdev_root_ops)
4682			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4683
4684		pvops = &vdev_mirror_ops;
4685	} else {
4686		/*
4687		 * Active hot spares can only be replaced by inactive hot
4688		 * spares.
4689		 */
4690		if (pvd->vdev_ops == &vdev_spare_ops &&
4691		    oldvd->vdev_isspare &&
4692		    !spa_has_spare(spa, newvd->vdev_guid))
4693			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4694
4695		/*
4696		 * If the source is a hot spare, and the parent isn't already a
4697		 * spare, then we want to create a new hot spare.  Otherwise, we
4698		 * want to create a replacing vdev.  The user is not allowed to
4699		 * attach to a spared vdev child unless the 'isspare' state is
4700		 * the same (spare replaces spare, non-spare replaces
4701		 * non-spare).
4702		 */
4703		if (pvd->vdev_ops == &vdev_replacing_ops &&
4704		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4705			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4706		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4707		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4708			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4709		}
4710
4711		if (newvd->vdev_isspare)
4712			pvops = &vdev_spare_ops;
4713		else
4714			pvops = &vdev_replacing_ops;
4715	}
4716
4717	/*
4718	 * Make sure the new device is big enough.
4719	 */
4720	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4721		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4722
4723	/*
4724	 * The new device cannot have a higher alignment requirement
4725	 * than the top-level vdev.
4726	 */
4727	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4728		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4729
4730	/*
4731	 * If this is an in-place replacement, update oldvd's path and devid
4732	 * to make it distinguishable from newvd, and unopenable from now on.
4733	 */
4734	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4735		spa_strfree(oldvd->vdev_path);
4736		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4737		    KM_SLEEP);
4738		(void) sprintf(oldvd->vdev_path, "%s/%s",
4739		    newvd->vdev_path, "old");
4740		if (oldvd->vdev_devid != NULL) {
4741			spa_strfree(oldvd->vdev_devid);
4742			oldvd->vdev_devid = NULL;
4743		}
4744	}
4745
4746	/* mark the device being resilvered */
4747	newvd->vdev_resilver_txg = txg;
4748
4749	/*
4750	 * If the parent is not a mirror, or if we're replacing, insert the new
4751	 * mirror/replacing/spare vdev above oldvd.
4752	 */
4753	if (pvd->vdev_ops != pvops)
4754		pvd = vdev_add_parent(oldvd, pvops);
4755
4756	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4757	ASSERT(pvd->vdev_ops == pvops);
4758	ASSERT(oldvd->vdev_parent == pvd);
4759
4760	/*
4761	 * Extract the new device from its root and add it to pvd.
4762	 */
4763	vdev_remove_child(newrootvd, newvd);
4764	newvd->vdev_id = pvd->vdev_children;
4765	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4766	vdev_add_child(pvd, newvd);
4767
4768	tvd = newvd->vdev_top;
4769	ASSERT(pvd->vdev_top == tvd);
4770	ASSERT(tvd->vdev_parent == rvd);
4771
4772	vdev_config_dirty(tvd);
4773
4774	/*
4775	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4776	 * for any dmu_sync-ed blocks.  It will propagate upward when
4777	 * spa_vdev_exit() calls vdev_dtl_reassess().
4778	 */
4779	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4780
4781	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4782	    dtl_max_txg - TXG_INITIAL);
4783
4784	if (newvd->vdev_isspare) {
4785		spa_spare_activate(newvd);
4786		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4787	}
4788
4789	oldvdpath = spa_strdup(oldvd->vdev_path);
4790	newvdpath = spa_strdup(newvd->vdev_path);
4791	newvd_isspare = newvd->vdev_isspare;
4792
4793	/*
4794	 * Mark newvd's DTL dirty in this txg.
4795	 */
4796	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4797
4798	/*
4799	 * Schedule the resilver to restart in the future. We do this to
4800	 * ensure that dmu_sync-ed blocks have been stitched into the
4801	 * respective datasets.
4802	 */
4803	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4804
4805	/*
4806	 * Commit the config
4807	 */
4808	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4809
4810	spa_history_log_internal(spa, "vdev attach", NULL,
4811	    "%s vdev=%s %s vdev=%s",
4812	    replacing && newvd_isspare ? "spare in" :
4813	    replacing ? "replace" : "attach", newvdpath,
4814	    replacing ? "for" : "to", oldvdpath);
4815
4816	spa_strfree(oldvdpath);
4817	spa_strfree(newvdpath);
4818
4819	if (spa->spa_bootfs)
4820		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4821
4822	return (0);
4823}
4824
4825/*
4826 * Detach a device from a mirror or replacing vdev.
4827 *
4828 * If 'replace_done' is specified, only detach if the parent
4829 * is a replacing vdev.
4830 */
4831int
4832spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4833{
4834	uint64_t txg;
4835	int error;
4836	vdev_t *rvd = spa->spa_root_vdev;
4837	vdev_t *vd, *pvd, *cvd, *tvd;
4838	boolean_t unspare = B_FALSE;
4839	uint64_t unspare_guid = 0;
4840	char *vdpath;
4841
4842	ASSERT(spa_writeable(spa));
4843
4844	txg = spa_vdev_enter(spa);
4845
4846	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4847
4848	if (vd == NULL)
4849		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4850
4851	if (!vd->vdev_ops->vdev_op_leaf)
4852		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4853
4854	pvd = vd->vdev_parent;
4855
4856	/*
4857	 * If the parent/child relationship is not as expected, don't do it.
4858	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4859	 * vdev that's replacing B with C.  The user's intent in replacing
4860	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4861	 * the replace by detaching C, the expected behavior is to end up
4862	 * M(A,B).  But suppose that right after deciding to detach C,
4863	 * the replacement of B completes.  We would have M(A,C), and then
4864	 * ask to detach C, which would leave us with just A -- not what
4865	 * the user wanted.  To prevent this, we make sure that the
4866	 * parent/child relationship hasn't changed -- in this example,
4867	 * that C's parent is still the replacing vdev R.
4868	 */
4869	if (pvd->vdev_guid != pguid && pguid != 0)
4870		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4871
4872	/*
4873	 * Only 'replacing' or 'spare' vdevs can be replaced.
4874	 */
4875	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4876	    pvd->vdev_ops != &vdev_spare_ops)
4877		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4878
4879	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4880	    spa_version(spa) >= SPA_VERSION_SPARES);
4881
4882	/*
4883	 * Only mirror, replacing, and spare vdevs support detach.
4884	 */
4885	if (pvd->vdev_ops != &vdev_replacing_ops &&
4886	    pvd->vdev_ops != &vdev_mirror_ops &&
4887	    pvd->vdev_ops != &vdev_spare_ops)
4888		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4889
4890	/*
4891	 * If this device has the only valid copy of some data,
4892	 * we cannot safely detach it.
4893	 */
4894	if (vdev_dtl_required(vd))
4895		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4896
4897	ASSERT(pvd->vdev_children >= 2);
4898
4899	/*
4900	 * If we are detaching the second disk from a replacing vdev, then
4901	 * check to see if we changed the original vdev's path to have "/old"
4902	 * at the end in spa_vdev_attach().  If so, undo that change now.
4903	 */
4904	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4905	    vd->vdev_path != NULL) {
4906		size_t len = strlen(vd->vdev_path);
4907
4908		for (int c = 0; c < pvd->vdev_children; c++) {
4909			cvd = pvd->vdev_child[c];
4910
4911			if (cvd == vd || cvd->vdev_path == NULL)
4912				continue;
4913
4914			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4915			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4916				spa_strfree(cvd->vdev_path);
4917				cvd->vdev_path = spa_strdup(vd->vdev_path);
4918				break;
4919			}
4920		}
4921	}
4922
4923	/*
4924	 * If we are detaching the original disk from a spare, then it implies
4925	 * that the spare should become a real disk, and be removed from the
4926	 * active spare list for the pool.
4927	 */
4928	if (pvd->vdev_ops == &vdev_spare_ops &&
4929	    vd->vdev_id == 0 &&
4930	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4931		unspare = B_TRUE;
4932
4933	/*
4934	 * Erase the disk labels so the disk can be used for other things.
4935	 * This must be done after all other error cases are handled,
4936	 * but before we disembowel vd (so we can still do I/O to it).
4937	 * But if we can't do it, don't treat the error as fatal --
4938	 * it may be that the unwritability of the disk is the reason
4939	 * it's being detached!
4940	 */
4941	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4942
4943	/*
4944	 * Remove vd from its parent and compact the parent's children.
4945	 */
4946	vdev_remove_child(pvd, vd);
4947	vdev_compact_children(pvd);
4948
4949	/*
4950	 * Remember one of the remaining children so we can get tvd below.
4951	 */
4952	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4953
4954	/*
4955	 * If we need to remove the remaining child from the list of hot spares,
4956	 * do it now, marking the vdev as no longer a spare in the process.
4957	 * We must do this before vdev_remove_parent(), because that can
4958	 * change the GUID if it creates a new toplevel GUID.  For a similar
4959	 * reason, we must remove the spare now, in the same txg as the detach;
4960	 * otherwise someone could attach a new sibling, change the GUID, and
4961	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4962	 */
4963	if (unspare) {
4964		ASSERT(cvd->vdev_isspare);
4965		spa_spare_remove(cvd);
4966		unspare_guid = cvd->vdev_guid;
4967		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4968		cvd->vdev_unspare = B_TRUE;
4969	}
4970
4971	/*
4972	 * If the parent mirror/replacing vdev only has one child,
4973	 * the parent is no longer needed.  Remove it from the tree.
4974	 */
4975	if (pvd->vdev_children == 1) {
4976		if (pvd->vdev_ops == &vdev_spare_ops)
4977			cvd->vdev_unspare = B_FALSE;
4978		vdev_remove_parent(cvd);
4979	}
4980
4981
4982	/*
4983	 * We don't set tvd until now because the parent we just removed
4984	 * may have been the previous top-level vdev.
4985	 */
4986	tvd = cvd->vdev_top;
4987	ASSERT(tvd->vdev_parent == rvd);
4988
4989	/*
4990	 * Reevaluate the parent vdev state.
4991	 */
4992	vdev_propagate_state(cvd);
4993
4994	/*
4995	 * If the 'autoexpand' property is set on the pool then automatically
4996	 * try to expand the size of the pool. For example if the device we
4997	 * just detached was smaller than the others, it may be possible to
4998	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4999	 * first so that we can obtain the updated sizes of the leaf vdevs.
5000	 */
5001	if (spa->spa_autoexpand) {
5002		vdev_reopen(tvd);
5003		vdev_expand(tvd, txg);
5004	}
5005
5006	vdev_config_dirty(tvd);
5007
5008	/*
5009	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5010	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5011	 * But first make sure we're not on any *other* txg's DTL list, to
5012	 * prevent vd from being accessed after it's freed.
5013	 */
5014	vdpath = spa_strdup(vd->vdev_path);
5015	for (int t = 0; t < TXG_SIZE; t++)
5016		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5017	vd->vdev_detached = B_TRUE;
5018	vdev_dirty(tvd, VDD_DTL, vd, txg);
5019
5020	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5021
5022	/* hang on to the spa before we release the lock */
5023	spa_open_ref(spa, FTAG);
5024
5025	error = spa_vdev_exit(spa, vd, txg, 0);
5026
5027	spa_history_log_internal(spa, "detach", NULL,
5028	    "vdev=%s", vdpath);
5029	spa_strfree(vdpath);
5030
5031	/*
5032	 * If this was the removal of the original device in a hot spare vdev,
5033	 * then we want to go through and remove the device from the hot spare
5034	 * list of every other pool.
5035	 */
5036	if (unspare) {
5037		spa_t *altspa = NULL;
5038
5039		mutex_enter(&spa_namespace_lock);
5040		while ((altspa = spa_next(altspa)) != NULL) {
5041			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5042			    altspa == spa)
5043				continue;
5044
5045			spa_open_ref(altspa, FTAG);
5046			mutex_exit(&spa_namespace_lock);
5047			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5048			mutex_enter(&spa_namespace_lock);
5049			spa_close(altspa, FTAG);
5050		}
5051		mutex_exit(&spa_namespace_lock);
5052
5053		/* search the rest of the vdevs for spares to remove */
5054		spa_vdev_resilver_done(spa);
5055	}
5056
5057	/* all done with the spa; OK to release */
5058	mutex_enter(&spa_namespace_lock);
5059	spa_close(spa, FTAG);
5060	mutex_exit(&spa_namespace_lock);
5061
5062	return (error);
5063}
5064
5065/*
5066 * Split a set of devices from their mirrors, and create a new pool from them.
5067 */
5068int
5069spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5070    nvlist_t *props, boolean_t exp)
5071{
5072	int error = 0;
5073	uint64_t txg, *glist;
5074	spa_t *newspa;
5075	uint_t c, children, lastlog;
5076	nvlist_t **child, *nvl, *tmp;
5077	dmu_tx_t *tx;
5078	char *altroot = NULL;
5079	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5080	boolean_t activate_slog;
5081
5082	ASSERT(spa_writeable(spa));
5083
5084	txg = spa_vdev_enter(spa);
5085
5086	/* clear the log and flush everything up to now */
5087	activate_slog = spa_passivate_log(spa);
5088	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5089	error = spa_offline_log(spa);
5090	txg = spa_vdev_config_enter(spa);
5091
5092	if (activate_slog)
5093		spa_activate_log(spa);
5094
5095	if (error != 0)
5096		return (spa_vdev_exit(spa, NULL, txg, error));
5097
5098	/* check new spa name before going any further */
5099	if (spa_lookup(newname) != NULL)
5100		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5101
5102	/*
5103	 * scan through all the children to ensure they're all mirrors
5104	 */
5105	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5106	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5107	    &children) != 0)
5108		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5109
5110	/* first, check to ensure we've got the right child count */
5111	rvd = spa->spa_root_vdev;
5112	lastlog = 0;
5113	for (c = 0; c < rvd->vdev_children; c++) {
5114		vdev_t *vd = rvd->vdev_child[c];
5115
5116		/* don't count the holes & logs as children */
5117		if (vd->vdev_islog || vd->vdev_ishole) {
5118			if (lastlog == 0)
5119				lastlog = c;
5120			continue;
5121		}
5122
5123		lastlog = 0;
5124	}
5125	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5126		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5127
5128	/* next, ensure no spare or cache devices are part of the split */
5129	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5130	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5131		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5132
5133	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5134	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5135
5136	/* then, loop over each vdev and validate it */
5137	for (c = 0; c < children; c++) {
5138		uint64_t is_hole = 0;
5139
5140		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5141		    &is_hole);
5142
5143		if (is_hole != 0) {
5144			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5145			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5146				continue;
5147			} else {
5148				error = SET_ERROR(EINVAL);
5149				break;
5150			}
5151		}
5152
5153		/* which disk is going to be split? */
5154		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5155		    &glist[c]) != 0) {
5156			error = SET_ERROR(EINVAL);
5157			break;
5158		}
5159
5160		/* look it up in the spa */
5161		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5162		if (vml[c] == NULL) {
5163			error = SET_ERROR(ENODEV);
5164			break;
5165		}
5166
5167		/* make sure there's nothing stopping the split */
5168		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5169		    vml[c]->vdev_islog ||
5170		    vml[c]->vdev_ishole ||
5171		    vml[c]->vdev_isspare ||
5172		    vml[c]->vdev_isl2cache ||
5173		    !vdev_writeable(vml[c]) ||
5174		    vml[c]->vdev_children != 0 ||
5175		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5176		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5177			error = SET_ERROR(EINVAL);
5178			break;
5179		}
5180
5181		if (vdev_dtl_required(vml[c])) {
5182			error = SET_ERROR(EBUSY);
5183			break;
5184		}
5185
5186		/* we need certain info from the top level */
5187		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5188		    vml[c]->vdev_top->vdev_ms_array) == 0);
5189		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5190		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5191		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5192		    vml[c]->vdev_top->vdev_asize) == 0);
5193		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5194		    vml[c]->vdev_top->vdev_ashift) == 0);
5195	}
5196
5197	if (error != 0) {
5198		kmem_free(vml, children * sizeof (vdev_t *));
5199		kmem_free(glist, children * sizeof (uint64_t));
5200		return (spa_vdev_exit(spa, NULL, txg, error));
5201	}
5202
5203	/* stop writers from using the disks */
5204	for (c = 0; c < children; c++) {
5205		if (vml[c] != NULL)
5206			vml[c]->vdev_offline = B_TRUE;
5207	}
5208	vdev_reopen(spa->spa_root_vdev);
5209
5210	/*
5211	 * Temporarily record the splitting vdevs in the spa config.  This
5212	 * will disappear once the config is regenerated.
5213	 */
5214	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5215	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5216	    glist, children) == 0);
5217	kmem_free(glist, children * sizeof (uint64_t));
5218
5219	mutex_enter(&spa->spa_props_lock);
5220	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5221	    nvl) == 0);
5222	mutex_exit(&spa->spa_props_lock);
5223	spa->spa_config_splitting = nvl;
5224	vdev_config_dirty(spa->spa_root_vdev);
5225
5226	/* configure and create the new pool */
5227	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5228	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5229	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5230	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5231	    spa_version(spa)) == 0);
5232	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5233	    spa->spa_config_txg) == 0);
5234	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5235	    spa_generate_guid(NULL)) == 0);
5236	(void) nvlist_lookup_string(props,
5237	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5238
5239	/* add the new pool to the namespace */
5240	newspa = spa_add(newname, config, altroot);
5241	newspa->spa_config_txg = spa->spa_config_txg;
5242	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5243
5244	/* release the spa config lock, retaining the namespace lock */
5245	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5246
5247	if (zio_injection_enabled)
5248		zio_handle_panic_injection(spa, FTAG, 1);
5249
5250	spa_activate(newspa, spa_mode_global);
5251	spa_async_suspend(newspa);
5252
5253#ifndef sun
5254	/* mark that we are creating new spa by splitting */
5255	newspa->spa_splitting_newspa = B_TRUE;
5256#endif
5257	/* create the new pool from the disks of the original pool */
5258	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5259#ifndef sun
5260	newspa->spa_splitting_newspa = B_FALSE;
5261#endif
5262	if (error)
5263		goto out;
5264
5265	/* if that worked, generate a real config for the new pool */
5266	if (newspa->spa_root_vdev != NULL) {
5267		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5268		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5269		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5270		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5271		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5272		    B_TRUE));
5273	}
5274
5275	/* set the props */
5276	if (props != NULL) {
5277		spa_configfile_set(newspa, props, B_FALSE);
5278		error = spa_prop_set(newspa, props);
5279		if (error)
5280			goto out;
5281	}
5282
5283	/* flush everything */
5284	txg = spa_vdev_config_enter(newspa);
5285	vdev_config_dirty(newspa->spa_root_vdev);
5286	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5287
5288	if (zio_injection_enabled)
5289		zio_handle_panic_injection(spa, FTAG, 2);
5290
5291	spa_async_resume(newspa);
5292
5293	/* finally, update the original pool's config */
5294	txg = spa_vdev_config_enter(spa);
5295	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5296	error = dmu_tx_assign(tx, TXG_WAIT);
5297	if (error != 0)
5298		dmu_tx_abort(tx);
5299	for (c = 0; c < children; c++) {
5300		if (vml[c] != NULL) {
5301			vdev_split(vml[c]);
5302			if (error == 0)
5303				spa_history_log_internal(spa, "detach", tx,
5304				    "vdev=%s", vml[c]->vdev_path);
5305			vdev_free(vml[c]);
5306		}
5307	}
5308	vdev_config_dirty(spa->spa_root_vdev);
5309	spa->spa_config_splitting = NULL;
5310	nvlist_free(nvl);
5311	if (error == 0)
5312		dmu_tx_commit(tx);
5313	(void) spa_vdev_exit(spa, NULL, txg, 0);
5314
5315	if (zio_injection_enabled)
5316		zio_handle_panic_injection(spa, FTAG, 3);
5317
5318	/* split is complete; log a history record */
5319	spa_history_log_internal(newspa, "split", NULL,
5320	    "from pool %s", spa_name(spa));
5321
5322	kmem_free(vml, children * sizeof (vdev_t *));
5323
5324	/* if we're not going to mount the filesystems in userland, export */
5325	if (exp)
5326		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5327		    B_FALSE, B_FALSE);
5328
5329	return (error);
5330
5331out:
5332	spa_unload(newspa);
5333	spa_deactivate(newspa);
5334	spa_remove(newspa);
5335
5336	txg = spa_vdev_config_enter(spa);
5337
5338	/* re-online all offlined disks */
5339	for (c = 0; c < children; c++) {
5340		if (vml[c] != NULL)
5341			vml[c]->vdev_offline = B_FALSE;
5342	}
5343	vdev_reopen(spa->spa_root_vdev);
5344
5345	nvlist_free(spa->spa_config_splitting);
5346	spa->spa_config_splitting = NULL;
5347	(void) spa_vdev_exit(spa, NULL, txg, error);
5348
5349	kmem_free(vml, children * sizeof (vdev_t *));
5350	return (error);
5351}
5352
5353static nvlist_t *
5354spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5355{
5356	for (int i = 0; i < count; i++) {
5357		uint64_t guid;
5358
5359		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5360		    &guid) == 0);
5361
5362		if (guid == target_guid)
5363			return (nvpp[i]);
5364	}
5365
5366	return (NULL);
5367}
5368
5369static void
5370spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5371	nvlist_t *dev_to_remove)
5372{
5373	nvlist_t **newdev = NULL;
5374
5375	if (count > 1)
5376		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5377
5378	for (int i = 0, j = 0; i < count; i++) {
5379		if (dev[i] == dev_to_remove)
5380			continue;
5381		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5382	}
5383
5384	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5385	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5386
5387	for (int i = 0; i < count - 1; i++)
5388		nvlist_free(newdev[i]);
5389
5390	if (count > 1)
5391		kmem_free(newdev, (count - 1) * sizeof (void *));
5392}
5393
5394/*
5395 * Evacuate the device.
5396 */
5397static int
5398spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5399{
5400	uint64_t txg;
5401	int error = 0;
5402
5403	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5404	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5405	ASSERT(vd == vd->vdev_top);
5406
5407	/*
5408	 * Evacuate the device.  We don't hold the config lock as writer
5409	 * since we need to do I/O but we do keep the
5410	 * spa_namespace_lock held.  Once this completes the device
5411	 * should no longer have any blocks allocated on it.
5412	 */
5413	if (vd->vdev_islog) {
5414		if (vd->vdev_stat.vs_alloc != 0)
5415			error = spa_offline_log(spa);
5416	} else {
5417		error = SET_ERROR(ENOTSUP);
5418	}
5419
5420	if (error)
5421		return (error);
5422
5423	/*
5424	 * The evacuation succeeded.  Remove any remaining MOS metadata
5425	 * associated with this vdev, and wait for these changes to sync.
5426	 */
5427	ASSERT0(vd->vdev_stat.vs_alloc);
5428	txg = spa_vdev_config_enter(spa);
5429	vd->vdev_removing = B_TRUE;
5430	vdev_dirty_leaves(vd, VDD_DTL, txg);
5431	vdev_config_dirty(vd);
5432	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5433
5434	return (0);
5435}
5436
5437/*
5438 * Complete the removal by cleaning up the namespace.
5439 */
5440static void
5441spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5442{
5443	vdev_t *rvd = spa->spa_root_vdev;
5444	uint64_t id = vd->vdev_id;
5445	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5446
5447	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5448	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5449	ASSERT(vd == vd->vdev_top);
5450
5451	/*
5452	 * Only remove any devices which are empty.
5453	 */
5454	if (vd->vdev_stat.vs_alloc != 0)
5455		return;
5456
5457	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5458
5459	if (list_link_active(&vd->vdev_state_dirty_node))
5460		vdev_state_clean(vd);
5461	if (list_link_active(&vd->vdev_config_dirty_node))
5462		vdev_config_clean(vd);
5463
5464	vdev_free(vd);
5465
5466	if (last_vdev) {
5467		vdev_compact_children(rvd);
5468	} else {
5469		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5470		vdev_add_child(rvd, vd);
5471	}
5472	vdev_config_dirty(rvd);
5473
5474	/*
5475	 * Reassess the health of our root vdev.
5476	 */
5477	vdev_reopen(rvd);
5478}
5479
5480/*
5481 * Remove a device from the pool -
5482 *
5483 * Removing a device from the vdev namespace requires several steps
5484 * and can take a significant amount of time.  As a result we use
5485 * the spa_vdev_config_[enter/exit] functions which allow us to
5486 * grab and release the spa_config_lock while still holding the namespace
5487 * lock.  During each step the configuration is synced out.
5488 *
5489 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5490 * devices.
5491 */
5492int
5493spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5494{
5495	vdev_t *vd;
5496	metaslab_group_t *mg;
5497	nvlist_t **spares, **l2cache, *nv;
5498	uint64_t txg = 0;
5499	uint_t nspares, nl2cache;
5500	int error = 0;
5501	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5502
5503	ASSERT(spa_writeable(spa));
5504
5505	if (!locked)
5506		txg = spa_vdev_enter(spa);
5507
5508	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5509
5510	if (spa->spa_spares.sav_vdevs != NULL &&
5511	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5512	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5513	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5514		/*
5515		 * Only remove the hot spare if it's not currently in use
5516		 * in this pool.
5517		 */
5518		if (vd == NULL || unspare) {
5519			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5520			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5521			spa_load_spares(spa);
5522			spa->spa_spares.sav_sync = B_TRUE;
5523		} else {
5524			error = SET_ERROR(EBUSY);
5525		}
5526	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5527	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5528	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5529	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5530		/*
5531		 * Cache devices can always be removed.
5532		 */
5533		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5534		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5535		spa_load_l2cache(spa);
5536		spa->spa_l2cache.sav_sync = B_TRUE;
5537	} else if (vd != NULL && vd->vdev_islog) {
5538		ASSERT(!locked);
5539		ASSERT(vd == vd->vdev_top);
5540
5541		mg = vd->vdev_mg;
5542
5543		/*
5544		 * Stop allocating from this vdev.
5545		 */
5546		metaslab_group_passivate(mg);
5547
5548		/*
5549		 * Wait for the youngest allocations and frees to sync,
5550		 * and then wait for the deferral of those frees to finish.
5551		 */
5552		spa_vdev_config_exit(spa, NULL,
5553		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5554
5555		/*
5556		 * Attempt to evacuate the vdev.
5557		 */
5558		error = spa_vdev_remove_evacuate(spa, vd);
5559
5560		txg = spa_vdev_config_enter(spa);
5561
5562		/*
5563		 * If we couldn't evacuate the vdev, unwind.
5564		 */
5565		if (error) {
5566			metaslab_group_activate(mg);
5567			return (spa_vdev_exit(spa, NULL, txg, error));
5568		}
5569
5570		/*
5571		 * Clean up the vdev namespace.
5572		 */
5573		spa_vdev_remove_from_namespace(spa, vd);
5574
5575	} else if (vd != NULL) {
5576		/*
5577		 * Normal vdevs cannot be removed (yet).
5578		 */
5579		error = SET_ERROR(ENOTSUP);
5580	} else {
5581		/*
5582		 * There is no vdev of any kind with the specified guid.
5583		 */
5584		error = SET_ERROR(ENOENT);
5585	}
5586
5587	if (!locked)
5588		return (spa_vdev_exit(spa, NULL, txg, error));
5589
5590	return (error);
5591}
5592
5593/*
5594 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5595 * currently spared, so we can detach it.
5596 */
5597static vdev_t *
5598spa_vdev_resilver_done_hunt(vdev_t *vd)
5599{
5600	vdev_t *newvd, *oldvd;
5601
5602	for (int c = 0; c < vd->vdev_children; c++) {
5603		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5604		if (oldvd != NULL)
5605			return (oldvd);
5606	}
5607
5608	/*
5609	 * Check for a completed replacement.  We always consider the first
5610	 * vdev in the list to be the oldest vdev, and the last one to be
5611	 * the newest (see spa_vdev_attach() for how that works).  In
5612	 * the case where the newest vdev is faulted, we will not automatically
5613	 * remove it after a resilver completes.  This is OK as it will require
5614	 * user intervention to determine which disk the admin wishes to keep.
5615	 */
5616	if (vd->vdev_ops == &vdev_replacing_ops) {
5617		ASSERT(vd->vdev_children > 1);
5618
5619		newvd = vd->vdev_child[vd->vdev_children - 1];
5620		oldvd = vd->vdev_child[0];
5621
5622		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5623		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5624		    !vdev_dtl_required(oldvd))
5625			return (oldvd);
5626	}
5627
5628	/*
5629	 * Check for a completed resilver with the 'unspare' flag set.
5630	 */
5631	if (vd->vdev_ops == &vdev_spare_ops) {
5632		vdev_t *first = vd->vdev_child[0];
5633		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5634
5635		if (last->vdev_unspare) {
5636			oldvd = first;
5637			newvd = last;
5638		} else if (first->vdev_unspare) {
5639			oldvd = last;
5640			newvd = first;
5641		} else {
5642			oldvd = NULL;
5643		}
5644
5645		if (oldvd != NULL &&
5646		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5647		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5648		    !vdev_dtl_required(oldvd))
5649			return (oldvd);
5650
5651		/*
5652		 * If there are more than two spares attached to a disk,
5653		 * and those spares are not required, then we want to
5654		 * attempt to free them up now so that they can be used
5655		 * by other pools.  Once we're back down to a single
5656		 * disk+spare, we stop removing them.
5657		 */
5658		if (vd->vdev_children > 2) {
5659			newvd = vd->vdev_child[1];
5660
5661			if (newvd->vdev_isspare && last->vdev_isspare &&
5662			    vdev_dtl_empty(last, DTL_MISSING) &&
5663			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5664			    !vdev_dtl_required(newvd))
5665				return (newvd);
5666		}
5667	}
5668
5669	return (NULL);
5670}
5671
5672static void
5673spa_vdev_resilver_done(spa_t *spa)
5674{
5675	vdev_t *vd, *pvd, *ppvd;
5676	uint64_t guid, sguid, pguid, ppguid;
5677
5678	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5679
5680	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5681		pvd = vd->vdev_parent;
5682		ppvd = pvd->vdev_parent;
5683		guid = vd->vdev_guid;
5684		pguid = pvd->vdev_guid;
5685		ppguid = ppvd->vdev_guid;
5686		sguid = 0;
5687		/*
5688		 * If we have just finished replacing a hot spared device, then
5689		 * we need to detach the parent's first child (the original hot
5690		 * spare) as well.
5691		 */
5692		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5693		    ppvd->vdev_children == 2) {
5694			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5695			sguid = ppvd->vdev_child[1]->vdev_guid;
5696		}
5697		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5698
5699		spa_config_exit(spa, SCL_ALL, FTAG);
5700		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5701			return;
5702		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5703			return;
5704		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5705	}
5706
5707	spa_config_exit(spa, SCL_ALL, FTAG);
5708}
5709
5710/*
5711 * Update the stored path or FRU for this vdev.
5712 */
5713int
5714spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5715    boolean_t ispath)
5716{
5717	vdev_t *vd;
5718	boolean_t sync = B_FALSE;
5719
5720	ASSERT(spa_writeable(spa));
5721
5722	spa_vdev_state_enter(spa, SCL_ALL);
5723
5724	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5725		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5726
5727	if (!vd->vdev_ops->vdev_op_leaf)
5728		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5729
5730	if (ispath) {
5731		if (strcmp(value, vd->vdev_path) != 0) {
5732			spa_strfree(vd->vdev_path);
5733			vd->vdev_path = spa_strdup(value);
5734			sync = B_TRUE;
5735		}
5736	} else {
5737		if (vd->vdev_fru == NULL) {
5738			vd->vdev_fru = spa_strdup(value);
5739			sync = B_TRUE;
5740		} else if (strcmp(value, vd->vdev_fru) != 0) {
5741			spa_strfree(vd->vdev_fru);
5742			vd->vdev_fru = spa_strdup(value);
5743			sync = B_TRUE;
5744		}
5745	}
5746
5747	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5748}
5749
5750int
5751spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5752{
5753	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5754}
5755
5756int
5757spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5758{
5759	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5760}
5761
5762/*
5763 * ==========================================================================
5764 * SPA Scanning
5765 * ==========================================================================
5766 */
5767
5768int
5769spa_scan_stop(spa_t *spa)
5770{
5771	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5772	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5773		return (SET_ERROR(EBUSY));
5774	return (dsl_scan_cancel(spa->spa_dsl_pool));
5775}
5776
5777int
5778spa_scan(spa_t *spa, pool_scan_func_t func)
5779{
5780	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5781
5782	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5783		return (SET_ERROR(ENOTSUP));
5784
5785	/*
5786	 * If a resilver was requested, but there is no DTL on a
5787	 * writeable leaf device, we have nothing to do.
5788	 */
5789	if (func == POOL_SCAN_RESILVER &&
5790	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5791		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5792		return (0);
5793	}
5794
5795	return (dsl_scan(spa->spa_dsl_pool, func));
5796}
5797
5798/*
5799 * ==========================================================================
5800 * SPA async task processing
5801 * ==========================================================================
5802 */
5803
5804static void
5805spa_async_remove(spa_t *spa, vdev_t *vd)
5806{
5807	if (vd->vdev_remove_wanted) {
5808		vd->vdev_remove_wanted = B_FALSE;
5809		vd->vdev_delayed_close = B_FALSE;
5810		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5811
5812		/*
5813		 * We want to clear the stats, but we don't want to do a full
5814		 * vdev_clear() as that will cause us to throw away
5815		 * degraded/faulted state as well as attempt to reopen the
5816		 * device, all of which is a waste.
5817		 */
5818		vd->vdev_stat.vs_read_errors = 0;
5819		vd->vdev_stat.vs_write_errors = 0;
5820		vd->vdev_stat.vs_checksum_errors = 0;
5821
5822		vdev_state_dirty(vd->vdev_top);
5823	}
5824
5825	for (int c = 0; c < vd->vdev_children; c++)
5826		spa_async_remove(spa, vd->vdev_child[c]);
5827}
5828
5829static void
5830spa_async_probe(spa_t *spa, vdev_t *vd)
5831{
5832	if (vd->vdev_probe_wanted) {
5833		vd->vdev_probe_wanted = B_FALSE;
5834		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5835	}
5836
5837	for (int c = 0; c < vd->vdev_children; c++)
5838		spa_async_probe(spa, vd->vdev_child[c]);
5839}
5840
5841static void
5842spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5843{
5844	sysevent_id_t eid;
5845	nvlist_t *attr;
5846	char *physpath;
5847
5848	if (!spa->spa_autoexpand)
5849		return;
5850
5851	for (int c = 0; c < vd->vdev_children; c++) {
5852		vdev_t *cvd = vd->vdev_child[c];
5853		spa_async_autoexpand(spa, cvd);
5854	}
5855
5856	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5857		return;
5858
5859	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5860	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5861
5862	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5863	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5864
5865	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5866	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5867
5868	nvlist_free(attr);
5869	kmem_free(physpath, MAXPATHLEN);
5870}
5871
5872static void
5873spa_async_thread(void *arg)
5874{
5875	spa_t *spa = arg;
5876	int tasks;
5877
5878	ASSERT(spa->spa_sync_on);
5879
5880	mutex_enter(&spa->spa_async_lock);
5881	tasks = spa->spa_async_tasks;
5882	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5883	mutex_exit(&spa->spa_async_lock);
5884
5885	/*
5886	 * See if the config needs to be updated.
5887	 */
5888	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5889		uint64_t old_space, new_space;
5890
5891		mutex_enter(&spa_namespace_lock);
5892		old_space = metaslab_class_get_space(spa_normal_class(spa));
5893		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5894		new_space = metaslab_class_get_space(spa_normal_class(spa));
5895		mutex_exit(&spa_namespace_lock);
5896
5897		/*
5898		 * If the pool grew as a result of the config update,
5899		 * then log an internal history event.
5900		 */
5901		if (new_space != old_space) {
5902			spa_history_log_internal(spa, "vdev online", NULL,
5903			    "pool '%s' size: %llu(+%llu)",
5904			    spa_name(spa), new_space, new_space - old_space);
5905		}
5906	}
5907
5908	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5909		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5910		spa_async_autoexpand(spa, spa->spa_root_vdev);
5911		spa_config_exit(spa, SCL_CONFIG, FTAG);
5912	}
5913
5914	/*
5915	 * See if any devices need to be probed.
5916	 */
5917	if (tasks & SPA_ASYNC_PROBE) {
5918		spa_vdev_state_enter(spa, SCL_NONE);
5919		spa_async_probe(spa, spa->spa_root_vdev);
5920		(void) spa_vdev_state_exit(spa, NULL, 0);
5921	}
5922
5923	/*
5924	 * If any devices are done replacing, detach them.
5925	 */
5926	if (tasks & SPA_ASYNC_RESILVER_DONE)
5927		spa_vdev_resilver_done(spa);
5928
5929	/*
5930	 * Kick off a resilver.
5931	 */
5932	if (tasks & SPA_ASYNC_RESILVER)
5933		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5934
5935	/*
5936	 * Let the world know that we're done.
5937	 */
5938	mutex_enter(&spa->spa_async_lock);
5939	spa->spa_async_thread = NULL;
5940	cv_broadcast(&spa->spa_async_cv);
5941	mutex_exit(&spa->spa_async_lock);
5942	thread_exit();
5943}
5944
5945static void
5946spa_async_thread_vd(void *arg)
5947{
5948	spa_t *spa = arg;
5949	int tasks;
5950
5951	ASSERT(spa->spa_sync_on);
5952
5953	mutex_enter(&spa->spa_async_lock);
5954	tasks = spa->spa_async_tasks;
5955retry:
5956	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5957	mutex_exit(&spa->spa_async_lock);
5958
5959	/*
5960	 * See if any devices need to be marked REMOVED.
5961	 */
5962	if (tasks & SPA_ASYNC_REMOVE) {
5963		spa_vdev_state_enter(spa, SCL_NONE);
5964		spa_async_remove(spa, spa->spa_root_vdev);
5965		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5966			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5967		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5968			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5969		(void) spa_vdev_state_exit(spa, NULL, 0);
5970	}
5971
5972	/*
5973	 * Let the world know that we're done.
5974	 */
5975	mutex_enter(&spa->spa_async_lock);
5976	tasks = spa->spa_async_tasks;
5977	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5978		goto retry;
5979	spa->spa_async_thread_vd = NULL;
5980	cv_broadcast(&spa->spa_async_cv);
5981	mutex_exit(&spa->spa_async_lock);
5982	thread_exit();
5983}
5984
5985void
5986spa_async_suspend(spa_t *spa)
5987{
5988	mutex_enter(&spa->spa_async_lock);
5989	spa->spa_async_suspended++;
5990	while (spa->spa_async_thread != NULL &&
5991	    spa->spa_async_thread_vd != NULL)
5992		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5993	mutex_exit(&spa->spa_async_lock);
5994}
5995
5996void
5997spa_async_resume(spa_t *spa)
5998{
5999	mutex_enter(&spa->spa_async_lock);
6000	ASSERT(spa->spa_async_suspended != 0);
6001	spa->spa_async_suspended--;
6002	mutex_exit(&spa->spa_async_lock);
6003}
6004
6005static boolean_t
6006spa_async_tasks_pending(spa_t *spa)
6007{
6008	uint_t non_config_tasks;
6009	uint_t config_task;
6010	boolean_t config_task_suspended;
6011
6012	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6013	    SPA_ASYNC_REMOVE);
6014	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6015	if (spa->spa_ccw_fail_time == 0) {
6016		config_task_suspended = B_FALSE;
6017	} else {
6018		config_task_suspended =
6019		    (gethrtime() - spa->spa_ccw_fail_time) <
6020		    (zfs_ccw_retry_interval * NANOSEC);
6021	}
6022
6023	return (non_config_tasks || (config_task && !config_task_suspended));
6024}
6025
6026static void
6027spa_async_dispatch(spa_t *spa)
6028{
6029	mutex_enter(&spa->spa_async_lock);
6030	if (spa_async_tasks_pending(spa) &&
6031	    !spa->spa_async_suspended &&
6032	    spa->spa_async_thread == NULL &&
6033	    rootdir != NULL)
6034		spa->spa_async_thread = thread_create(NULL, 0,
6035		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6036	mutex_exit(&spa->spa_async_lock);
6037}
6038
6039static void
6040spa_async_dispatch_vd(spa_t *spa)
6041{
6042	mutex_enter(&spa->spa_async_lock);
6043	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6044	    !spa->spa_async_suspended &&
6045	    spa->spa_async_thread_vd == NULL &&
6046	    rootdir != NULL)
6047		spa->spa_async_thread_vd = thread_create(NULL, 0,
6048		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6049	mutex_exit(&spa->spa_async_lock);
6050}
6051
6052void
6053spa_async_request(spa_t *spa, int task)
6054{
6055	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6056	mutex_enter(&spa->spa_async_lock);
6057	spa->spa_async_tasks |= task;
6058	mutex_exit(&spa->spa_async_lock);
6059	spa_async_dispatch_vd(spa);
6060}
6061
6062/*
6063 * ==========================================================================
6064 * SPA syncing routines
6065 * ==========================================================================
6066 */
6067
6068static int
6069bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6070{
6071	bpobj_t *bpo = arg;
6072	bpobj_enqueue(bpo, bp, tx);
6073	return (0);
6074}
6075
6076static int
6077spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6078{
6079	zio_t *zio = arg;
6080
6081	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6082	    BP_GET_PSIZE(bp), zio->io_flags));
6083	return (0);
6084}
6085
6086/*
6087 * Note: this simple function is not inlined to make it easier to dtrace the
6088 * amount of time spent syncing frees.
6089 */
6090static void
6091spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6092{
6093	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6094	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6095	VERIFY(zio_wait(zio) == 0);
6096}
6097
6098/*
6099 * Note: this simple function is not inlined to make it easier to dtrace the
6100 * amount of time spent syncing deferred frees.
6101 */
6102static void
6103spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6104{
6105	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6106	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6107	    spa_free_sync_cb, zio, tx), ==, 0);
6108	VERIFY0(zio_wait(zio));
6109}
6110
6111
6112static void
6113spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6114{
6115	char *packed = NULL;
6116	size_t bufsize;
6117	size_t nvsize = 0;
6118	dmu_buf_t *db;
6119
6120	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6121
6122	/*
6123	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6124	 * information.  This avoids the dmu_buf_will_dirty() path and
6125	 * saves us a pre-read to get data we don't actually care about.
6126	 */
6127	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6128	packed = kmem_alloc(bufsize, KM_SLEEP);
6129
6130	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6131	    KM_SLEEP) == 0);
6132	bzero(packed + nvsize, bufsize - nvsize);
6133
6134	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6135
6136	kmem_free(packed, bufsize);
6137
6138	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6139	dmu_buf_will_dirty(db, tx);
6140	*(uint64_t *)db->db_data = nvsize;
6141	dmu_buf_rele(db, FTAG);
6142}
6143
6144static void
6145spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6146    const char *config, const char *entry)
6147{
6148	nvlist_t *nvroot;
6149	nvlist_t **list;
6150	int i;
6151
6152	if (!sav->sav_sync)
6153		return;
6154
6155	/*
6156	 * Update the MOS nvlist describing the list of available devices.
6157	 * spa_validate_aux() will have already made sure this nvlist is
6158	 * valid and the vdevs are labeled appropriately.
6159	 */
6160	if (sav->sav_object == 0) {
6161		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6162		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6163		    sizeof (uint64_t), tx);
6164		VERIFY(zap_update(spa->spa_meta_objset,
6165		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6166		    &sav->sav_object, tx) == 0);
6167	}
6168
6169	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6170	if (sav->sav_count == 0) {
6171		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6172	} else {
6173		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6174		for (i = 0; i < sav->sav_count; i++)
6175			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6176			    B_FALSE, VDEV_CONFIG_L2CACHE);
6177		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6178		    sav->sav_count) == 0);
6179		for (i = 0; i < sav->sav_count; i++)
6180			nvlist_free(list[i]);
6181		kmem_free(list, sav->sav_count * sizeof (void *));
6182	}
6183
6184	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6185	nvlist_free(nvroot);
6186
6187	sav->sav_sync = B_FALSE;
6188}
6189
6190static void
6191spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6192{
6193	nvlist_t *config;
6194
6195	if (list_is_empty(&spa->spa_config_dirty_list))
6196		return;
6197
6198	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6199
6200	config = spa_config_generate(spa, spa->spa_root_vdev,
6201	    dmu_tx_get_txg(tx), B_FALSE);
6202
6203	/*
6204	 * If we're upgrading the spa version then make sure that
6205	 * the config object gets updated with the correct version.
6206	 */
6207	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6208		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6209		    spa->spa_uberblock.ub_version);
6210
6211	spa_config_exit(spa, SCL_STATE, FTAG);
6212
6213	if (spa->spa_config_syncing)
6214		nvlist_free(spa->spa_config_syncing);
6215	spa->spa_config_syncing = config;
6216
6217	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6218}
6219
6220static void
6221spa_sync_version(void *arg, dmu_tx_t *tx)
6222{
6223	uint64_t *versionp = arg;
6224	uint64_t version = *versionp;
6225	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6226
6227	/*
6228	 * Setting the version is special cased when first creating the pool.
6229	 */
6230	ASSERT(tx->tx_txg != TXG_INITIAL);
6231
6232	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6233	ASSERT(version >= spa_version(spa));
6234
6235	spa->spa_uberblock.ub_version = version;
6236	vdev_config_dirty(spa->spa_root_vdev);
6237	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6238}
6239
6240/*
6241 * Set zpool properties.
6242 */
6243static void
6244spa_sync_props(void *arg, dmu_tx_t *tx)
6245{
6246	nvlist_t *nvp = arg;
6247	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6248	objset_t *mos = spa->spa_meta_objset;
6249	nvpair_t *elem = NULL;
6250
6251	mutex_enter(&spa->spa_props_lock);
6252
6253	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6254		uint64_t intval;
6255		char *strval, *fname;
6256		zpool_prop_t prop;
6257		const char *propname;
6258		zprop_type_t proptype;
6259		spa_feature_t fid;
6260
6261		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6262		case ZPROP_INVAL:
6263			/*
6264			 * We checked this earlier in spa_prop_validate().
6265			 */
6266			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6267
6268			fname = strchr(nvpair_name(elem), '@') + 1;
6269			VERIFY0(zfeature_lookup_name(fname, &fid));
6270
6271			spa_feature_enable(spa, fid, tx);
6272			spa_history_log_internal(spa, "set", tx,
6273			    "%s=enabled", nvpair_name(elem));
6274			break;
6275
6276		case ZPOOL_PROP_VERSION:
6277			intval = fnvpair_value_uint64(elem);
6278			/*
6279			 * The version is synced seperatly before other
6280			 * properties and should be correct by now.
6281			 */
6282			ASSERT3U(spa_version(spa), >=, intval);
6283			break;
6284
6285		case ZPOOL_PROP_ALTROOT:
6286			/*
6287			 * 'altroot' is a non-persistent property. It should
6288			 * have been set temporarily at creation or import time.
6289			 */
6290			ASSERT(spa->spa_root != NULL);
6291			break;
6292
6293		case ZPOOL_PROP_READONLY:
6294		case ZPOOL_PROP_CACHEFILE:
6295			/*
6296			 * 'readonly' and 'cachefile' are also non-persisitent
6297			 * properties.
6298			 */
6299			break;
6300		case ZPOOL_PROP_COMMENT:
6301			strval = fnvpair_value_string(elem);
6302			if (spa->spa_comment != NULL)
6303				spa_strfree(spa->spa_comment);
6304			spa->spa_comment = spa_strdup(strval);
6305			/*
6306			 * We need to dirty the configuration on all the vdevs
6307			 * so that their labels get updated.  It's unnecessary
6308			 * to do this for pool creation since the vdev's
6309			 * configuratoin has already been dirtied.
6310			 */
6311			if (tx->tx_txg != TXG_INITIAL)
6312				vdev_config_dirty(spa->spa_root_vdev);
6313			spa_history_log_internal(spa, "set", tx,
6314			    "%s=%s", nvpair_name(elem), strval);
6315			break;
6316		default:
6317			/*
6318			 * Set pool property values in the poolprops mos object.
6319			 */
6320			if (spa->spa_pool_props_object == 0) {
6321				spa->spa_pool_props_object =
6322				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6323				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6324				    tx);
6325			}
6326
6327			/* normalize the property name */
6328			propname = zpool_prop_to_name(prop);
6329			proptype = zpool_prop_get_type(prop);
6330
6331			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6332				ASSERT(proptype == PROP_TYPE_STRING);
6333				strval = fnvpair_value_string(elem);
6334				VERIFY0(zap_update(mos,
6335				    spa->spa_pool_props_object, propname,
6336				    1, strlen(strval) + 1, strval, tx));
6337				spa_history_log_internal(spa, "set", tx,
6338				    "%s=%s", nvpair_name(elem), strval);
6339			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6340				intval = fnvpair_value_uint64(elem);
6341
6342				if (proptype == PROP_TYPE_INDEX) {
6343					const char *unused;
6344					VERIFY0(zpool_prop_index_to_string(
6345					    prop, intval, &unused));
6346				}
6347				VERIFY0(zap_update(mos,
6348				    spa->spa_pool_props_object, propname,
6349				    8, 1, &intval, tx));
6350				spa_history_log_internal(spa, "set", tx,
6351				    "%s=%lld", nvpair_name(elem), intval);
6352			} else {
6353				ASSERT(0); /* not allowed */
6354			}
6355
6356			switch (prop) {
6357			case ZPOOL_PROP_DELEGATION:
6358				spa->spa_delegation = intval;
6359				break;
6360			case ZPOOL_PROP_BOOTFS:
6361				spa->spa_bootfs = intval;
6362				break;
6363			case ZPOOL_PROP_FAILUREMODE:
6364				spa->spa_failmode = intval;
6365				break;
6366			case ZPOOL_PROP_AUTOEXPAND:
6367				spa->spa_autoexpand = intval;
6368				if (tx->tx_txg != TXG_INITIAL)
6369					spa_async_request(spa,
6370					    SPA_ASYNC_AUTOEXPAND);
6371				break;
6372			case ZPOOL_PROP_DEDUPDITTO:
6373				spa->spa_dedup_ditto = intval;
6374				break;
6375			default:
6376				break;
6377			}
6378		}
6379
6380	}
6381
6382	mutex_exit(&spa->spa_props_lock);
6383}
6384
6385/*
6386 * Perform one-time upgrade on-disk changes.  spa_version() does not
6387 * reflect the new version this txg, so there must be no changes this
6388 * txg to anything that the upgrade code depends on after it executes.
6389 * Therefore this must be called after dsl_pool_sync() does the sync
6390 * tasks.
6391 */
6392static void
6393spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6394{
6395	dsl_pool_t *dp = spa->spa_dsl_pool;
6396
6397	ASSERT(spa->spa_sync_pass == 1);
6398
6399	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6400
6401	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6402	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6403		dsl_pool_create_origin(dp, tx);
6404
6405		/* Keeping the origin open increases spa_minref */
6406		spa->spa_minref += 3;
6407	}
6408
6409	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6410	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6411		dsl_pool_upgrade_clones(dp, tx);
6412	}
6413
6414	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6415	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6416		dsl_pool_upgrade_dir_clones(dp, tx);
6417
6418		/* Keeping the freedir open increases spa_minref */
6419		spa->spa_minref += 3;
6420	}
6421
6422	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6423	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6424		spa_feature_create_zap_objects(spa, tx);
6425	}
6426	rrw_exit(&dp->dp_config_rwlock, FTAG);
6427}
6428
6429/*
6430 * Sync the specified transaction group.  New blocks may be dirtied as
6431 * part of the process, so we iterate until it converges.
6432 */
6433void
6434spa_sync(spa_t *spa, uint64_t txg)
6435{
6436	dsl_pool_t *dp = spa->spa_dsl_pool;
6437	objset_t *mos = spa->spa_meta_objset;
6438	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6439	vdev_t *rvd = spa->spa_root_vdev;
6440	vdev_t *vd;
6441	dmu_tx_t *tx;
6442	int error;
6443
6444	VERIFY(spa_writeable(spa));
6445
6446	/*
6447	 * Lock out configuration changes.
6448	 */
6449	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6450
6451	spa->spa_syncing_txg = txg;
6452	spa->spa_sync_pass = 0;
6453
6454	/*
6455	 * If there are any pending vdev state changes, convert them
6456	 * into config changes that go out with this transaction group.
6457	 */
6458	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6459	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6460		/*
6461		 * We need the write lock here because, for aux vdevs,
6462		 * calling vdev_config_dirty() modifies sav_config.
6463		 * This is ugly and will become unnecessary when we
6464		 * eliminate the aux vdev wart by integrating all vdevs
6465		 * into the root vdev tree.
6466		 */
6467		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6468		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6469		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6470			vdev_state_clean(vd);
6471			vdev_config_dirty(vd);
6472		}
6473		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6474		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6475	}
6476	spa_config_exit(spa, SCL_STATE, FTAG);
6477
6478	tx = dmu_tx_create_assigned(dp, txg);
6479
6480	spa->spa_sync_starttime = gethrtime();
6481#ifdef illumos
6482	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6483	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6484#else	/* FreeBSD */
6485#ifdef _KERNEL
6486	callout_reset(&spa->spa_deadman_cycid,
6487	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6488#endif
6489#endif
6490
6491	/*
6492	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6493	 * set spa_deflate if we have no raid-z vdevs.
6494	 */
6495	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6496	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6497		int i;
6498
6499		for (i = 0; i < rvd->vdev_children; i++) {
6500			vd = rvd->vdev_child[i];
6501			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6502				break;
6503		}
6504		if (i == rvd->vdev_children) {
6505			spa->spa_deflate = TRUE;
6506			VERIFY(0 == zap_add(spa->spa_meta_objset,
6507			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6508			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6509		}
6510	}
6511
6512	/*
6513	 * If anything has changed in this txg, or if someone is waiting
6514	 * for this txg to sync (eg, spa_vdev_remove()), push the
6515	 * deferred frees from the previous txg.  If not, leave them
6516	 * alone so that we don't generate work on an otherwise idle
6517	 * system.
6518	 */
6519	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6520	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6521	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6522	    ((dsl_scan_active(dp->dp_scan) ||
6523	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6524		spa_sync_deferred_frees(spa, tx);
6525	}
6526
6527	/*
6528	 * Iterate to convergence.
6529	 */
6530	do {
6531		int pass = ++spa->spa_sync_pass;
6532
6533		spa_sync_config_object(spa, tx);
6534		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6535		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6536		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6537		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6538		spa_errlog_sync(spa, txg);
6539		dsl_pool_sync(dp, txg);
6540
6541		if (pass < zfs_sync_pass_deferred_free) {
6542			spa_sync_frees(spa, free_bpl, tx);
6543		} else {
6544			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6545			    &spa->spa_deferred_bpobj, tx);
6546		}
6547
6548		ddt_sync(spa, txg);
6549		dsl_scan_sync(dp, tx);
6550
6551		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6552			vdev_sync(vd, txg);
6553
6554		if (pass == 1)
6555			spa_sync_upgrades(spa, tx);
6556
6557	} while (dmu_objset_is_dirty(mos, txg));
6558
6559	/*
6560	 * Rewrite the vdev configuration (which includes the uberblock)
6561	 * to commit the transaction group.
6562	 *
6563	 * If there are no dirty vdevs, we sync the uberblock to a few
6564	 * random top-level vdevs that are known to be visible in the
6565	 * config cache (see spa_vdev_add() for a complete description).
6566	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6567	 */
6568	for (;;) {
6569		/*
6570		 * We hold SCL_STATE to prevent vdev open/close/etc.
6571		 * while we're attempting to write the vdev labels.
6572		 */
6573		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6574
6575		if (list_is_empty(&spa->spa_config_dirty_list)) {
6576			vdev_t *svd[SPA_DVAS_PER_BP];
6577			int svdcount = 0;
6578			int children = rvd->vdev_children;
6579			int c0 = spa_get_random(children);
6580
6581			for (int c = 0; c < children; c++) {
6582				vd = rvd->vdev_child[(c0 + c) % children];
6583				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6584					continue;
6585				svd[svdcount++] = vd;
6586				if (svdcount == SPA_DVAS_PER_BP)
6587					break;
6588			}
6589			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6590			if (error != 0)
6591				error = vdev_config_sync(svd, svdcount, txg,
6592				    B_TRUE);
6593		} else {
6594			error = vdev_config_sync(rvd->vdev_child,
6595			    rvd->vdev_children, txg, B_FALSE);
6596			if (error != 0)
6597				error = vdev_config_sync(rvd->vdev_child,
6598				    rvd->vdev_children, txg, B_TRUE);
6599		}
6600
6601		if (error == 0)
6602			spa->spa_last_synced_guid = rvd->vdev_guid;
6603
6604		spa_config_exit(spa, SCL_STATE, FTAG);
6605
6606		if (error == 0)
6607			break;
6608		zio_suspend(spa, NULL);
6609		zio_resume_wait(spa);
6610	}
6611	dmu_tx_commit(tx);
6612
6613#ifdef illumos
6614	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6615#else	/* FreeBSD */
6616#ifdef _KERNEL
6617	callout_drain(&spa->spa_deadman_cycid);
6618#endif
6619#endif
6620
6621	/*
6622	 * Clear the dirty config list.
6623	 */
6624	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6625		vdev_config_clean(vd);
6626
6627	/*
6628	 * Now that the new config has synced transactionally,
6629	 * let it become visible to the config cache.
6630	 */
6631	if (spa->spa_config_syncing != NULL) {
6632		spa_config_set(spa, spa->spa_config_syncing);
6633		spa->spa_config_txg = txg;
6634		spa->spa_config_syncing = NULL;
6635	}
6636
6637	spa->spa_ubsync = spa->spa_uberblock;
6638
6639	dsl_pool_sync_done(dp, txg);
6640
6641	/*
6642	 * Update usable space statistics.
6643	 */
6644	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6645		vdev_sync_done(vd, txg);
6646
6647	spa_update_dspace(spa);
6648
6649	/*
6650	 * It had better be the case that we didn't dirty anything
6651	 * since vdev_config_sync().
6652	 */
6653	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6654	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6655	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6656
6657	spa->spa_sync_pass = 0;
6658
6659	spa_config_exit(spa, SCL_CONFIG, FTAG);
6660
6661	spa_handle_ignored_writes(spa);
6662
6663	/*
6664	 * If any async tasks have been requested, kick them off.
6665	 */
6666	spa_async_dispatch(spa);
6667	spa_async_dispatch_vd(spa);
6668}
6669
6670/*
6671 * Sync all pools.  We don't want to hold the namespace lock across these
6672 * operations, so we take a reference on the spa_t and drop the lock during the
6673 * sync.
6674 */
6675void
6676spa_sync_allpools(void)
6677{
6678	spa_t *spa = NULL;
6679	mutex_enter(&spa_namespace_lock);
6680	while ((spa = spa_next(spa)) != NULL) {
6681		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6682		    !spa_writeable(spa) || spa_suspended(spa))
6683			continue;
6684		spa_open_ref(spa, FTAG);
6685		mutex_exit(&spa_namespace_lock);
6686		txg_wait_synced(spa_get_dsl(spa), 0);
6687		mutex_enter(&spa_namespace_lock);
6688		spa_close(spa, FTAG);
6689	}
6690	mutex_exit(&spa_namespace_lock);
6691}
6692
6693/*
6694 * ==========================================================================
6695 * Miscellaneous routines
6696 * ==========================================================================
6697 */
6698
6699/*
6700 * Remove all pools in the system.
6701 */
6702void
6703spa_evict_all(void)
6704{
6705	spa_t *spa;
6706
6707	/*
6708	 * Remove all cached state.  All pools should be closed now,
6709	 * so every spa in the AVL tree should be unreferenced.
6710	 */
6711	mutex_enter(&spa_namespace_lock);
6712	while ((spa = spa_next(NULL)) != NULL) {
6713		/*
6714		 * Stop async tasks.  The async thread may need to detach
6715		 * a device that's been replaced, which requires grabbing
6716		 * spa_namespace_lock, so we must drop it here.
6717		 */
6718		spa_open_ref(spa, FTAG);
6719		mutex_exit(&spa_namespace_lock);
6720		spa_async_suspend(spa);
6721		mutex_enter(&spa_namespace_lock);
6722		spa_close(spa, FTAG);
6723
6724		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6725			spa_unload(spa);
6726			spa_deactivate(spa);
6727		}
6728		spa_remove(spa);
6729	}
6730	mutex_exit(&spa_namespace_lock);
6731}
6732
6733vdev_t *
6734spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6735{
6736	vdev_t *vd;
6737	int i;
6738
6739	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6740		return (vd);
6741
6742	if (aux) {
6743		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6744			vd = spa->spa_l2cache.sav_vdevs[i];
6745			if (vd->vdev_guid == guid)
6746				return (vd);
6747		}
6748
6749		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6750			vd = spa->spa_spares.sav_vdevs[i];
6751			if (vd->vdev_guid == guid)
6752				return (vd);
6753		}
6754	}
6755
6756	return (NULL);
6757}
6758
6759void
6760spa_upgrade(spa_t *spa, uint64_t version)
6761{
6762	ASSERT(spa_writeable(spa));
6763
6764	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6765
6766	/*
6767	 * This should only be called for a non-faulted pool, and since a
6768	 * future version would result in an unopenable pool, this shouldn't be
6769	 * possible.
6770	 */
6771	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6772	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6773
6774	spa->spa_uberblock.ub_version = version;
6775	vdev_config_dirty(spa->spa_root_vdev);
6776
6777	spa_config_exit(spa, SCL_ALL, FTAG);
6778
6779	txg_wait_synced(spa_get_dsl(spa), 0);
6780}
6781
6782boolean_t
6783spa_has_spare(spa_t *spa, uint64_t guid)
6784{
6785	int i;
6786	uint64_t spareguid;
6787	spa_aux_vdev_t *sav = &spa->spa_spares;
6788
6789	for (i = 0; i < sav->sav_count; i++)
6790		if (sav->sav_vdevs[i]->vdev_guid == guid)
6791			return (B_TRUE);
6792
6793	for (i = 0; i < sav->sav_npending; i++) {
6794		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6795		    &spareguid) == 0 && spareguid == guid)
6796			return (B_TRUE);
6797	}
6798
6799	return (B_FALSE);
6800}
6801
6802/*
6803 * Check if a pool has an active shared spare device.
6804 * Note: reference count of an active spare is 2, as a spare and as a replace
6805 */
6806static boolean_t
6807spa_has_active_shared_spare(spa_t *spa)
6808{
6809	int i, refcnt;
6810	uint64_t pool;
6811	spa_aux_vdev_t *sav = &spa->spa_spares;
6812
6813	for (i = 0; i < sav->sav_count; i++) {
6814		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6815		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6816		    refcnt > 2)
6817			return (B_TRUE);
6818	}
6819
6820	return (B_FALSE);
6821}
6822
6823/*
6824 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6825 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6826 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6827 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6828 * or zdb as real changes.
6829 */
6830void
6831spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6832{
6833#ifdef _KERNEL
6834	sysevent_t		*ev;
6835	sysevent_attr_list_t	*attr = NULL;
6836	sysevent_value_t	value;
6837	sysevent_id_t		eid;
6838
6839	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6840	    SE_SLEEP);
6841
6842	value.value_type = SE_DATA_TYPE_STRING;
6843	value.value.sv_string = spa_name(spa);
6844	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6845		goto done;
6846
6847	value.value_type = SE_DATA_TYPE_UINT64;
6848	value.value.sv_uint64 = spa_guid(spa);
6849	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6850		goto done;
6851
6852	if (vd) {
6853		value.value_type = SE_DATA_TYPE_UINT64;
6854		value.value.sv_uint64 = vd->vdev_guid;
6855		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6856		    SE_SLEEP) != 0)
6857			goto done;
6858
6859		if (vd->vdev_path) {
6860			value.value_type = SE_DATA_TYPE_STRING;
6861			value.value.sv_string = vd->vdev_path;
6862			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6863			    &value, SE_SLEEP) != 0)
6864				goto done;
6865		}
6866	}
6867
6868	if (sysevent_attach_attributes(ev, attr) != 0)
6869		goto done;
6870	attr = NULL;
6871
6872	(void) log_sysevent(ev, SE_SLEEP, &eid);
6873
6874done:
6875	if (attr)
6876		sysevent_free_attr(attr);
6877	sysevent_free(ev);
6878#endif
6879}
6880