spa.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		dsl_dir_t *freedir = pool->dp_free_dir;
262
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (freedir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    freedir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
288		if (dp->scd_path == NULL) {
289			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290			    "none", 0, ZPROP_SRC_LOCAL);
291		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
294		}
295	}
296}
297
298/*
299 * Get zpool property values.
300 */
301int
302spa_prop_get(spa_t *spa, nvlist_t **nvp)
303{
304	objset_t *mos = spa->spa_meta_objset;
305	zap_cursor_t zc;
306	zap_attribute_t za;
307	int err;
308
309	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310
311	mutex_enter(&spa->spa_props_lock);
312
313	/*
314	 * Get properties from the spa config.
315	 */
316	spa_prop_get_config(spa, nvp);
317
318	/* If no pool property object, no more prop to get. */
319	if (mos == NULL || spa->spa_pool_props_object == 0) {
320		mutex_exit(&spa->spa_props_lock);
321		return (0);
322	}
323
324	/*
325	 * Get properties from the MOS pool property object.
326	 */
327	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
328	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
329	    zap_cursor_advance(&zc)) {
330		uint64_t intval = 0;
331		char *strval = NULL;
332		zprop_source_t src = ZPROP_SRC_DEFAULT;
333		zpool_prop_t prop;
334
335		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
336			continue;
337
338		switch (za.za_integer_length) {
339		case 8:
340			/* integer property */
341			if (za.za_first_integer !=
342			    zpool_prop_default_numeric(prop))
343				src = ZPROP_SRC_LOCAL;
344
345			if (prop == ZPOOL_PROP_BOOTFS) {
346				dsl_pool_t *dp;
347				dsl_dataset_t *ds = NULL;
348
349				dp = spa_get_dsl(spa);
350				dsl_pool_config_enter(dp, FTAG);
351				if (err = dsl_dataset_hold_obj(dp,
352				    za.za_first_integer, FTAG, &ds)) {
353					dsl_pool_config_exit(dp, FTAG);
354					break;
355				}
356
357				strval = kmem_alloc(
358				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
359				    KM_SLEEP);
360				dsl_dataset_name(ds, strval);
361				dsl_dataset_rele(ds, FTAG);
362				dsl_pool_config_exit(dp, FTAG);
363			} else {
364				strval = NULL;
365				intval = za.za_first_integer;
366			}
367
368			spa_prop_add_list(*nvp, prop, strval, intval, src);
369
370			if (strval != NULL)
371				kmem_free(strval,
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
373
374			break;
375
376		case 1:
377			/* string property */
378			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
379			err = zap_lookup(mos, spa->spa_pool_props_object,
380			    za.za_name, 1, za.za_num_integers, strval);
381			if (err) {
382				kmem_free(strval, za.za_num_integers);
383				break;
384			}
385			spa_prop_add_list(*nvp, prop, strval, 0, src);
386			kmem_free(strval, za.za_num_integers);
387			break;
388
389		default:
390			break;
391		}
392	}
393	zap_cursor_fini(&zc);
394	mutex_exit(&spa->spa_props_lock);
395out:
396	if (err && err != ENOENT) {
397		nvlist_free(*nvp);
398		*nvp = NULL;
399		return (err);
400	}
401
402	return (0);
403}
404
405/*
406 * Validate the given pool properties nvlist and modify the list
407 * for the property values to be set.
408 */
409static int
410spa_prop_validate(spa_t *spa, nvlist_t *props)
411{
412	nvpair_t *elem;
413	int error = 0, reset_bootfs = 0;
414	uint64_t objnum = 0;
415	boolean_t has_feature = B_FALSE;
416
417	elem = NULL;
418	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
419		uint64_t intval;
420		char *strval, *slash, *check, *fname;
421		const char *propname = nvpair_name(elem);
422		zpool_prop_t prop = zpool_name_to_prop(propname);
423
424		switch (prop) {
425		case ZPROP_INVAL:
426			if (!zpool_prop_feature(propname)) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			/*
432			 * Sanitize the input.
433			 */
434			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			if (nvpair_value_uint64(elem, &intval) != 0) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (intval != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			fname = strchr(propname, '@') + 1;
450			if (zfeature_lookup_name(fname, NULL) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			has_feature = B_TRUE;
456			break;
457
458		case ZPOOL_PROP_VERSION:
459			error = nvpair_value_uint64(elem, &intval);
460			if (!error &&
461			    (intval < spa_version(spa) ||
462			    intval > SPA_VERSION_BEFORE_FEATURES ||
463			    has_feature))
464				error = SET_ERROR(EINVAL);
465			break;
466
467		case ZPOOL_PROP_DELEGATION:
468		case ZPOOL_PROP_AUTOREPLACE:
469		case ZPOOL_PROP_LISTSNAPS:
470		case ZPOOL_PROP_AUTOEXPAND:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error && intval > 1)
473				error = SET_ERROR(EINVAL);
474			break;
475
476		case ZPOOL_PROP_BOOTFS:
477			/*
478			 * If the pool version is less than SPA_VERSION_BOOTFS,
479			 * or the pool is still being created (version == 0),
480			 * the bootfs property cannot be set.
481			 */
482			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
483				error = SET_ERROR(ENOTSUP);
484				break;
485			}
486
487			/*
488			 * Make sure the vdev config is bootable
489			 */
490			if (!vdev_is_bootable(spa->spa_root_vdev)) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			reset_bootfs = 1;
496
497			error = nvpair_value_string(elem, &strval);
498
499			if (!error) {
500				objset_t *os;
501				uint64_t compress;
502
503				if (strval == NULL || strval[0] == '\0') {
504					objnum = zpool_prop_default_numeric(
505					    ZPOOL_PROP_BOOTFS);
506					break;
507				}
508
509				if (error = dmu_objset_hold(strval, FTAG, &os))
510					break;
511
512				/* Must be ZPL and not gzip compressed. */
513
514				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515					error = SET_ERROR(ENOTSUP);
516				} else if ((error =
517				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519				    &compress)) == 0 &&
520				    !BOOTFS_COMPRESS_VALID(compress)) {
521					error = SET_ERROR(ENOTSUP);
522				} else {
523					objnum = dmu_objset_id(os);
524				}
525				dmu_objset_rele(os, FTAG);
526			}
527			break;
528
529		case ZPOOL_PROP_FAILUREMODE:
530			error = nvpair_value_uint64(elem, &intval);
531			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
532			    intval > ZIO_FAILURE_MODE_PANIC))
533				error = SET_ERROR(EINVAL);
534
535			/*
536			 * This is a special case which only occurs when
537			 * the pool has completely failed. This allows
538			 * the user to change the in-core failmode property
539			 * without syncing it out to disk (I/Os might
540			 * currently be blocked). We do this by returning
541			 * EIO to the caller (spa_prop_set) to trick it
542			 * into thinking we encountered a property validation
543			 * error.
544			 */
545			if (!error && spa_suspended(spa)) {
546				spa->spa_failmode = intval;
547				error = SET_ERROR(EIO);
548			}
549			break;
550
551		case ZPOOL_PROP_CACHEFILE:
552			if ((error = nvpair_value_string(elem, &strval)) != 0)
553				break;
554
555			if (strval[0] == '\0')
556				break;
557
558			if (strcmp(strval, "none") == 0)
559				break;
560
561			if (strval[0] != '/') {
562				error = SET_ERROR(EINVAL);
563				break;
564			}
565
566			slash = strrchr(strval, '/');
567			ASSERT(slash != NULL);
568
569			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
570			    strcmp(slash, "/..") == 0)
571				error = SET_ERROR(EINVAL);
572			break;
573
574		case ZPOOL_PROP_COMMENT:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577			for (check = strval; *check != '\0'; check++) {
578				/*
579				 * The kernel doesn't have an easy isprint()
580				 * check.  For this kernel check, we merely
581				 * check ASCII apart from DEL.  Fix this if
582				 * there is an easy-to-use kernel isprint().
583				 */
584				if (*check >= 0x7f) {
585					error = SET_ERROR(EINVAL);
586					break;
587				}
588				check++;
589			}
590			if (strlen(strval) > ZPROP_MAX_COMMENT)
591				error = E2BIG;
592			break;
593
594		case ZPOOL_PROP_DEDUPDITTO:
595			if (spa_version(spa) < SPA_VERSION_DEDUP)
596				error = SET_ERROR(ENOTSUP);
597			else
598				error = nvpair_value_uint64(elem, &intval);
599			if (error == 0 &&
600			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601				error = SET_ERROR(EINVAL);
602			break;
603		}
604
605		if (error)
606			break;
607	}
608
609	if (!error && reset_bootfs) {
610		error = nvlist_remove(props,
611		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613		if (!error) {
614			error = nvlist_add_uint64(props,
615			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616		}
617	}
618
619	return (error);
620}
621
622void
623spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624{
625	char *cachefile;
626	spa_config_dirent_t *dp;
627
628	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629	    &cachefile) != 0)
630		return;
631
632	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633	    KM_SLEEP);
634
635	if (cachefile[0] == '\0')
636		dp->scd_path = spa_strdup(spa_config_path);
637	else if (strcmp(cachefile, "none") == 0)
638		dp->scd_path = NULL;
639	else
640		dp->scd_path = spa_strdup(cachefile);
641
642	list_insert_head(&spa->spa_config_list, dp);
643	if (need_sync)
644		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645}
646
647int
648spa_prop_set(spa_t *spa, nvlist_t *nvp)
649{
650	int error;
651	nvpair_t *elem = NULL;
652	boolean_t need_sync = B_FALSE;
653
654	if ((error = spa_prop_validate(spa, nvp)) != 0)
655		return (error);
656
657	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660		if (prop == ZPOOL_PROP_CACHEFILE ||
661		    prop == ZPOOL_PROP_ALTROOT ||
662		    prop == ZPOOL_PROP_READONLY)
663			continue;
664
665		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666			uint64_t ver;
667
668			if (prop == ZPOOL_PROP_VERSION) {
669				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670			} else {
671				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672				ver = SPA_VERSION_FEATURES;
673				need_sync = B_TRUE;
674			}
675
676			/* Save time if the version is already set. */
677			if (ver == spa_version(spa))
678				continue;
679
680			/*
681			 * In addition to the pool directory object, we might
682			 * create the pool properties object, the features for
683			 * read object, the features for write object, or the
684			 * feature descriptions object.
685			 */
686			error = dsl_sync_task(spa->spa_name, NULL,
687			    spa_sync_version, &ver, 6);
688			if (error)
689				return (error);
690			continue;
691		}
692
693		need_sync = B_TRUE;
694		break;
695	}
696
697	if (need_sync) {
698		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
699		    nvp, 6));
700	}
701
702	return (0);
703}
704
705/*
706 * If the bootfs property value is dsobj, clear it.
707 */
708void
709spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
710{
711	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
712		VERIFY(zap_remove(spa->spa_meta_objset,
713		    spa->spa_pool_props_object,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
715		spa->spa_bootfs = 0;
716	}
717}
718
719/*ARGSUSED*/
720static int
721spa_change_guid_check(void *arg, dmu_tx_t *tx)
722{
723	uint64_t *newguid = arg;
724	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725	vdev_t *rvd = spa->spa_root_vdev;
726	uint64_t vdev_state;
727
728	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
729	vdev_state = rvd->vdev_state;
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732	if (vdev_state != VDEV_STATE_HEALTHY)
733		return (SET_ERROR(ENXIO));
734
735	ASSERT3U(spa_guid(spa), !=, *newguid);
736
737	return (0);
738}
739
740static void
741spa_change_guid_sync(void *arg, dmu_tx_t *tx)
742{
743	uint64_t *newguid = arg;
744	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
745	uint64_t oldguid;
746	vdev_t *rvd = spa->spa_root_vdev;
747
748	oldguid = spa_guid(spa);
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	rvd->vdev_guid = *newguid;
752	rvd->vdev_guid_sum += (*newguid - oldguid);
753	vdev_config_dirty(rvd);
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
757	    oldguid, *newguid);
758}
759
760/*
761 * Change the GUID for the pool.  This is done so that we can later
762 * re-import a pool built from a clone of our own vdevs.  We will modify
763 * the root vdev's guid, our own pool guid, and then mark all of our
764 * vdevs dirty.  Note that we must make sure that all our vdevs are
765 * online when we do this, or else any vdevs that weren't present
766 * would be orphaned from our pool.  We are also going to issue a
767 * sysevent to update any watchers.
768 */
769int
770spa_change_guid(spa_t *spa)
771{
772	int error;
773	uint64_t guid;
774
775	mutex_enter(&spa->spa_vdev_top_lock);
776	mutex_enter(&spa_namespace_lock);
777	guid = spa_generate_guid(NULL);
778
779	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
780	    spa_change_guid_sync, &guid, 5);
781
782	if (error == 0) {
783		spa_config_sync(spa, B_FALSE, B_TRUE);
784		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
785	}
786
787	mutex_exit(&spa_namespace_lock);
788	mutex_exit(&spa->spa_vdev_top_lock);
789
790	return (error);
791}
792
793/*
794 * ==========================================================================
795 * SPA state manipulation (open/create/destroy/import/export)
796 * ==========================================================================
797 */
798
799static int
800spa_error_entry_compare(const void *a, const void *b)
801{
802	spa_error_entry_t *sa = (spa_error_entry_t *)a;
803	spa_error_entry_t *sb = (spa_error_entry_t *)b;
804	int ret;
805
806	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
807	    sizeof (zbookmark_t));
808
809	if (ret < 0)
810		return (-1);
811	else if (ret > 0)
812		return (1);
813	else
814		return (0);
815}
816
817/*
818 * Utility function which retrieves copies of the current logs and
819 * re-initializes them in the process.
820 */
821void
822spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
823{
824	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
825
826	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
827	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
828
829	avl_create(&spa->spa_errlist_scrub,
830	    spa_error_entry_compare, sizeof (spa_error_entry_t),
831	    offsetof(spa_error_entry_t, se_avl));
832	avl_create(&spa->spa_errlist_last,
833	    spa_error_entry_compare, sizeof (spa_error_entry_t),
834	    offsetof(spa_error_entry_t, se_avl));
835}
836
837static void
838spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
839{
840	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
841	enum zti_modes mode = ztip->zti_mode;
842	uint_t value = ztip->zti_value;
843	uint_t count = ztip->zti_count;
844	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
845	char name[32];
846	uint_t flags = 0;
847	boolean_t batch = B_FALSE;
848
849	if (mode == ZTI_MODE_NULL) {
850		tqs->stqs_count = 0;
851		tqs->stqs_taskq = NULL;
852		return;
853	}
854
855	ASSERT3U(count, >, 0);
856
857	tqs->stqs_count = count;
858	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
859
860	switch (mode) {
861	case ZTI_MODE_FIXED:
862		ASSERT3U(value, >=, 1);
863		value = MAX(value, 1);
864		break;
865
866	case ZTI_MODE_BATCH:
867		batch = B_TRUE;
868		flags |= TASKQ_THREADS_CPU_PCT;
869		value = zio_taskq_batch_pct;
870		break;
871
872	default:
873		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
874		    "spa_activate()",
875		    zio_type_name[t], zio_taskq_types[q], mode, value);
876		break;
877	}
878
879	for (uint_t i = 0; i < count; i++) {
880		taskq_t *tq;
881
882		if (count > 1) {
883			(void) snprintf(name, sizeof (name), "%s_%s_%u",
884			    zio_type_name[t], zio_taskq_types[q], i);
885		} else {
886			(void) snprintf(name, sizeof (name), "%s_%s",
887			    zio_type_name[t], zio_taskq_types[q]);
888		}
889
890#ifdef SYSDC
891		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892			if (batch)
893				flags |= TASKQ_DC_BATCH;
894
895			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896			    spa->spa_proc, zio_taskq_basedc, flags);
897		} else {
898#endif
899			pri_t pri = maxclsyspri;
900			/*
901			 * The write issue taskq can be extremely CPU
902			 * intensive.  Run it at slightly lower priority
903			 * than the other taskqs.
904			 */
905			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
906				pri--;
907
908			tq = taskq_create_proc(name, value, pri, 50,
909			    INT_MAX, spa->spa_proc, flags);
910#ifdef SYSDC
911		}
912#endif
913
914		tqs->stqs_taskq[i] = tq;
915	}
916}
917
918static void
919spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920{
921	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923	if (tqs->stqs_taskq == NULL) {
924		ASSERT0(tqs->stqs_count);
925		return;
926	}
927
928	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930		taskq_destroy(tqs->stqs_taskq[i]);
931	}
932
933	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934	tqs->stqs_taskq = NULL;
935}
936
937/*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943void
944spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	taskq_t *tq;
949
950	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951	ASSERT3U(tqs->stqs_count, !=, 0);
952
953	if (tqs->stqs_count == 1) {
954		tq = tqs->stqs_taskq[0];
955	} else {
956		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957	}
958
959	taskq_dispatch_ent(tq, func, arg, flags, ent);
960}
961
962static void
963spa_create_zio_taskqs(spa_t *spa)
964{
965	for (int t = 0; t < ZIO_TYPES; t++) {
966		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967			spa_taskqs_init(spa, t, q);
968		}
969	}
970}
971
972#ifdef _KERNEL
973#ifdef SPA_PROCESS
974static void
975spa_thread(void *arg)
976{
977	callb_cpr_t cprinfo;
978
979	spa_t *spa = arg;
980	user_t *pu = PTOU(curproc);
981
982	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983	    spa->spa_name);
984
985	ASSERT(curproc != &p0);
986	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987	    "zpool-%s", spa->spa_name);
988	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990#ifdef PSRSET_BIND
991	/* bind this thread to the requested psrset */
992	if (zio_taskq_psrset_bind != PS_NONE) {
993		pool_lock();
994		mutex_enter(&cpu_lock);
995		mutex_enter(&pidlock);
996		mutex_enter(&curproc->p_lock);
997
998		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999		    0, NULL, NULL) == 0)  {
1000			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001		} else {
1002			cmn_err(CE_WARN,
1003			    "Couldn't bind process for zfs pool \"%s\" to "
1004			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005		}
1006
1007		mutex_exit(&curproc->p_lock);
1008		mutex_exit(&pidlock);
1009		mutex_exit(&cpu_lock);
1010		pool_unlock();
1011	}
1012#endif
1013
1014#ifdef SYSDC
1015	if (zio_taskq_sysdc) {
1016		sysdc_thread_enter(curthread, 100, 0);
1017	}
1018#endif
1019
1020	spa->spa_proc = curproc;
1021	spa->spa_did = curthread->t_did;
1022
1023	spa_create_zio_taskqs(spa);
1024
1025	mutex_enter(&spa->spa_proc_lock);
1026	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1027
1028	spa->spa_proc_state = SPA_PROC_ACTIVE;
1029	cv_broadcast(&spa->spa_proc_cv);
1030
1031	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1032	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1033		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1034	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1035
1036	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1037	spa->spa_proc_state = SPA_PROC_GONE;
1038	spa->spa_proc = &p0;
1039	cv_broadcast(&spa->spa_proc_cv);
1040	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1041
1042	mutex_enter(&curproc->p_lock);
1043	lwp_exit();
1044}
1045#endif	/* SPA_PROCESS */
1046#endif
1047
1048/*
1049 * Activate an uninitialized pool.
1050 */
1051static void
1052spa_activate(spa_t *spa, int mode)
1053{
1054	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1055
1056	spa->spa_state = POOL_STATE_ACTIVE;
1057	spa->spa_mode = mode;
1058
1059	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1060	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1061
1062	/* Try to create a covering process */
1063	mutex_enter(&spa->spa_proc_lock);
1064	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1065	ASSERT(spa->spa_proc == &p0);
1066	spa->spa_did = 0;
1067
1068#ifdef SPA_PROCESS
1069	/* Only create a process if we're going to be around a while. */
1070	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1071		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1072		    NULL, 0) == 0) {
1073			spa->spa_proc_state = SPA_PROC_CREATED;
1074			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1075				cv_wait(&spa->spa_proc_cv,
1076				    &spa->spa_proc_lock);
1077			}
1078			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1079			ASSERT(spa->spa_proc != &p0);
1080			ASSERT(spa->spa_did != 0);
1081		} else {
1082#ifdef _KERNEL
1083			cmn_err(CE_WARN,
1084			    "Couldn't create process for zfs pool \"%s\"\n",
1085			    spa->spa_name);
1086#endif
1087		}
1088	}
1089#endif	/* SPA_PROCESS */
1090	mutex_exit(&spa->spa_proc_lock);
1091
1092	/* If we didn't create a process, we need to create our taskqs. */
1093	ASSERT(spa->spa_proc == &p0);
1094	if (spa->spa_proc == &p0) {
1095		spa_create_zio_taskqs(spa);
1096	}
1097
1098	/*
1099	 * Start TRIM thread.
1100	 */
1101	trim_thread_create(spa);
1102
1103	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1104	    offsetof(vdev_t, vdev_config_dirty_node));
1105	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1106	    offsetof(vdev_t, vdev_state_dirty_node));
1107
1108	txg_list_create(&spa->spa_vdev_txg_list,
1109	    offsetof(struct vdev, vdev_txg_node));
1110
1111	avl_create(&spa->spa_errlist_scrub,
1112	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113	    offsetof(spa_error_entry_t, se_avl));
1114	avl_create(&spa->spa_errlist_last,
1115	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1116	    offsetof(spa_error_entry_t, se_avl));
1117}
1118
1119/*
1120 * Opposite of spa_activate().
1121 */
1122static void
1123spa_deactivate(spa_t *spa)
1124{
1125	ASSERT(spa->spa_sync_on == B_FALSE);
1126	ASSERT(spa->spa_dsl_pool == NULL);
1127	ASSERT(spa->spa_root_vdev == NULL);
1128	ASSERT(spa->spa_async_zio_root == NULL);
1129	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1130
1131	/*
1132	 * Stop TRIM thread in case spa_unload() wasn't called directly
1133	 * before spa_deactivate().
1134	 */
1135	trim_thread_destroy(spa);
1136
1137	txg_list_destroy(&spa->spa_vdev_txg_list);
1138
1139	list_destroy(&spa->spa_config_dirty_list);
1140	list_destroy(&spa->spa_state_dirty_list);
1141
1142	for (int t = 0; t < ZIO_TYPES; t++) {
1143		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1144			spa_taskqs_fini(spa, t, q);
1145		}
1146	}
1147
1148	metaslab_class_destroy(spa->spa_normal_class);
1149	spa->spa_normal_class = NULL;
1150
1151	metaslab_class_destroy(spa->spa_log_class);
1152	spa->spa_log_class = NULL;
1153
1154	/*
1155	 * If this was part of an import or the open otherwise failed, we may
1156	 * still have errors left in the queues.  Empty them just in case.
1157	 */
1158	spa_errlog_drain(spa);
1159
1160	avl_destroy(&spa->spa_errlist_scrub);
1161	avl_destroy(&spa->spa_errlist_last);
1162
1163	spa->spa_state = POOL_STATE_UNINITIALIZED;
1164
1165	mutex_enter(&spa->spa_proc_lock);
1166	if (spa->spa_proc_state != SPA_PROC_NONE) {
1167		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1168		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1169		cv_broadcast(&spa->spa_proc_cv);
1170		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1171			ASSERT(spa->spa_proc != &p0);
1172			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1173		}
1174		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1175		spa->spa_proc_state = SPA_PROC_NONE;
1176	}
1177	ASSERT(spa->spa_proc == &p0);
1178	mutex_exit(&spa->spa_proc_lock);
1179
1180#ifdef SPA_PROCESS
1181	/*
1182	 * We want to make sure spa_thread() has actually exited the ZFS
1183	 * module, so that the module can't be unloaded out from underneath
1184	 * it.
1185	 */
1186	if (spa->spa_did != 0) {
1187		thread_join(spa->spa_did);
1188		spa->spa_did = 0;
1189	}
1190#endif	/* SPA_PROCESS */
1191}
1192
1193/*
1194 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1195 * will create all the necessary vdevs in the appropriate layout, with each vdev
1196 * in the CLOSED state.  This will prep the pool before open/creation/import.
1197 * All vdev validation is done by the vdev_alloc() routine.
1198 */
1199static int
1200spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1201    uint_t id, int atype)
1202{
1203	nvlist_t **child;
1204	uint_t children;
1205	int error;
1206
1207	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1208		return (error);
1209
1210	if ((*vdp)->vdev_ops->vdev_op_leaf)
1211		return (0);
1212
1213	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1214	    &child, &children);
1215
1216	if (error == ENOENT)
1217		return (0);
1218
1219	if (error) {
1220		vdev_free(*vdp);
1221		*vdp = NULL;
1222		return (SET_ERROR(EINVAL));
1223	}
1224
1225	for (int c = 0; c < children; c++) {
1226		vdev_t *vd;
1227		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1228		    atype)) != 0) {
1229			vdev_free(*vdp);
1230			*vdp = NULL;
1231			return (error);
1232		}
1233	}
1234
1235	ASSERT(*vdp != NULL);
1236
1237	return (0);
1238}
1239
1240/*
1241 * Opposite of spa_load().
1242 */
1243static void
1244spa_unload(spa_t *spa)
1245{
1246	int i;
1247
1248	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1249
1250	/*
1251	 * Stop TRIM thread.
1252	 */
1253	trim_thread_destroy(spa);
1254
1255	/*
1256	 * Stop async tasks.
1257	 */
1258	spa_async_suspend(spa);
1259
1260	/*
1261	 * Stop syncing.
1262	 */
1263	if (spa->spa_sync_on) {
1264		txg_sync_stop(spa->spa_dsl_pool);
1265		spa->spa_sync_on = B_FALSE;
1266	}
1267
1268	/*
1269	 * Wait for any outstanding async I/O to complete.
1270	 */
1271	if (spa->spa_async_zio_root != NULL) {
1272		(void) zio_wait(spa->spa_async_zio_root);
1273		spa->spa_async_zio_root = NULL;
1274	}
1275
1276	bpobj_close(&spa->spa_deferred_bpobj);
1277
1278	/*
1279	 * Close the dsl pool.
1280	 */
1281	if (spa->spa_dsl_pool) {
1282		dsl_pool_close(spa->spa_dsl_pool);
1283		spa->spa_dsl_pool = NULL;
1284		spa->spa_meta_objset = NULL;
1285	}
1286
1287	ddt_unload(spa);
1288
1289	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1290
1291	/*
1292	 * Drop and purge level 2 cache
1293	 */
1294	spa_l2cache_drop(spa);
1295
1296	/*
1297	 * Close all vdevs.
1298	 */
1299	if (spa->spa_root_vdev)
1300		vdev_free(spa->spa_root_vdev);
1301	ASSERT(spa->spa_root_vdev == NULL);
1302
1303	for (i = 0; i < spa->spa_spares.sav_count; i++)
1304		vdev_free(spa->spa_spares.sav_vdevs[i]);
1305	if (spa->spa_spares.sav_vdevs) {
1306		kmem_free(spa->spa_spares.sav_vdevs,
1307		    spa->spa_spares.sav_count * sizeof (void *));
1308		spa->spa_spares.sav_vdevs = NULL;
1309	}
1310	if (spa->spa_spares.sav_config) {
1311		nvlist_free(spa->spa_spares.sav_config);
1312		spa->spa_spares.sav_config = NULL;
1313	}
1314	spa->spa_spares.sav_count = 0;
1315
1316	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1317		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1318		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1319	}
1320	if (spa->spa_l2cache.sav_vdevs) {
1321		kmem_free(spa->spa_l2cache.sav_vdevs,
1322		    spa->spa_l2cache.sav_count * sizeof (void *));
1323		spa->spa_l2cache.sav_vdevs = NULL;
1324	}
1325	if (spa->spa_l2cache.sav_config) {
1326		nvlist_free(spa->spa_l2cache.sav_config);
1327		spa->spa_l2cache.sav_config = NULL;
1328	}
1329	spa->spa_l2cache.sav_count = 0;
1330
1331	spa->spa_async_suspended = 0;
1332
1333	if (spa->spa_comment != NULL) {
1334		spa_strfree(spa->spa_comment);
1335		spa->spa_comment = NULL;
1336	}
1337
1338	spa_config_exit(spa, SCL_ALL, FTAG);
1339}
1340
1341/*
1342 * Load (or re-load) the current list of vdevs describing the active spares for
1343 * this pool.  When this is called, we have some form of basic information in
1344 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1345 * then re-generate a more complete list including status information.
1346 */
1347static void
1348spa_load_spares(spa_t *spa)
1349{
1350	nvlist_t **spares;
1351	uint_t nspares;
1352	int i;
1353	vdev_t *vd, *tvd;
1354
1355	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1356
1357	/*
1358	 * First, close and free any existing spare vdevs.
1359	 */
1360	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1361		vd = spa->spa_spares.sav_vdevs[i];
1362
1363		/* Undo the call to spa_activate() below */
1364		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1365		    B_FALSE)) != NULL && tvd->vdev_isspare)
1366			spa_spare_remove(tvd);
1367		vdev_close(vd);
1368		vdev_free(vd);
1369	}
1370
1371	if (spa->spa_spares.sav_vdevs)
1372		kmem_free(spa->spa_spares.sav_vdevs,
1373		    spa->spa_spares.sav_count * sizeof (void *));
1374
1375	if (spa->spa_spares.sav_config == NULL)
1376		nspares = 0;
1377	else
1378		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1379		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1380
1381	spa->spa_spares.sav_count = (int)nspares;
1382	spa->spa_spares.sav_vdevs = NULL;
1383
1384	if (nspares == 0)
1385		return;
1386
1387	/*
1388	 * Construct the array of vdevs, opening them to get status in the
1389	 * process.   For each spare, there is potentially two different vdev_t
1390	 * structures associated with it: one in the list of spares (used only
1391	 * for basic validation purposes) and one in the active vdev
1392	 * configuration (if it's spared in).  During this phase we open and
1393	 * validate each vdev on the spare list.  If the vdev also exists in the
1394	 * active configuration, then we also mark this vdev as an active spare.
1395	 */
1396	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1397	    KM_SLEEP);
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1400		    VDEV_ALLOC_SPARE) == 0);
1401		ASSERT(vd != NULL);
1402
1403		spa->spa_spares.sav_vdevs[i] = vd;
1404
1405		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1406		    B_FALSE)) != NULL) {
1407			if (!tvd->vdev_isspare)
1408				spa_spare_add(tvd);
1409
1410			/*
1411			 * We only mark the spare active if we were successfully
1412			 * able to load the vdev.  Otherwise, importing a pool
1413			 * with a bad active spare would result in strange
1414			 * behavior, because multiple pool would think the spare
1415			 * is actively in use.
1416			 *
1417			 * There is a vulnerability here to an equally bizarre
1418			 * circumstance, where a dead active spare is later
1419			 * brought back to life (onlined or otherwise).  Given
1420			 * the rarity of this scenario, and the extra complexity
1421			 * it adds, we ignore the possibility.
1422			 */
1423			if (!vdev_is_dead(tvd))
1424				spa_spare_activate(tvd);
1425		}
1426
1427		vd->vdev_top = vd;
1428		vd->vdev_aux = &spa->spa_spares;
1429
1430		if (vdev_open(vd) != 0)
1431			continue;
1432
1433		if (vdev_validate_aux(vd) == 0)
1434			spa_spare_add(vd);
1435	}
1436
1437	/*
1438	 * Recompute the stashed list of spares, with status information
1439	 * this time.
1440	 */
1441	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1442	    DATA_TYPE_NVLIST_ARRAY) == 0);
1443
1444	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1445	    KM_SLEEP);
1446	for (i = 0; i < spa->spa_spares.sav_count; i++)
1447		spares[i] = vdev_config_generate(spa,
1448		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1449	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1450	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1451	for (i = 0; i < spa->spa_spares.sav_count; i++)
1452		nvlist_free(spares[i]);
1453	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1454}
1455
1456/*
1457 * Load (or re-load) the current list of vdevs describing the active l2cache for
1458 * this pool.  When this is called, we have some form of basic information in
1459 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1460 * then re-generate a more complete list including status information.
1461 * Devices which are already active have their details maintained, and are
1462 * not re-opened.
1463 */
1464static void
1465spa_load_l2cache(spa_t *spa)
1466{
1467	nvlist_t **l2cache;
1468	uint_t nl2cache;
1469	int i, j, oldnvdevs;
1470	uint64_t guid;
1471	vdev_t *vd, **oldvdevs, **newvdevs;
1472	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1473
1474	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1475
1476	if (sav->sav_config != NULL) {
1477		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1478		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1479		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1480	} else {
1481		nl2cache = 0;
1482		newvdevs = NULL;
1483	}
1484
1485	oldvdevs = sav->sav_vdevs;
1486	oldnvdevs = sav->sav_count;
1487	sav->sav_vdevs = NULL;
1488	sav->sav_count = 0;
1489
1490	/*
1491	 * Process new nvlist of vdevs.
1492	 */
1493	for (i = 0; i < nl2cache; i++) {
1494		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1495		    &guid) == 0);
1496
1497		newvdevs[i] = NULL;
1498		for (j = 0; j < oldnvdevs; j++) {
1499			vd = oldvdevs[j];
1500			if (vd != NULL && guid == vd->vdev_guid) {
1501				/*
1502				 * Retain previous vdev for add/remove ops.
1503				 */
1504				newvdevs[i] = vd;
1505				oldvdevs[j] = NULL;
1506				break;
1507			}
1508		}
1509
1510		if (newvdevs[i] == NULL) {
1511			/*
1512			 * Create new vdev
1513			 */
1514			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1515			    VDEV_ALLOC_L2CACHE) == 0);
1516			ASSERT(vd != NULL);
1517			newvdevs[i] = vd;
1518
1519			/*
1520			 * Commit this vdev as an l2cache device,
1521			 * even if it fails to open.
1522			 */
1523			spa_l2cache_add(vd);
1524
1525			vd->vdev_top = vd;
1526			vd->vdev_aux = sav;
1527
1528			spa_l2cache_activate(vd);
1529
1530			if (vdev_open(vd) != 0)
1531				continue;
1532
1533			(void) vdev_validate_aux(vd);
1534
1535			if (!vdev_is_dead(vd))
1536				l2arc_add_vdev(spa, vd);
1537		}
1538	}
1539
1540	/*
1541	 * Purge vdevs that were dropped
1542	 */
1543	for (i = 0; i < oldnvdevs; i++) {
1544		uint64_t pool;
1545
1546		vd = oldvdevs[i];
1547		if (vd != NULL) {
1548			ASSERT(vd->vdev_isl2cache);
1549
1550			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1551			    pool != 0ULL && l2arc_vdev_present(vd))
1552				l2arc_remove_vdev(vd);
1553			vdev_clear_stats(vd);
1554			vdev_free(vd);
1555		}
1556	}
1557
1558	if (oldvdevs)
1559		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1560
1561	if (sav->sav_config == NULL)
1562		goto out;
1563
1564	sav->sav_vdevs = newvdevs;
1565	sav->sav_count = (int)nl2cache;
1566
1567	/*
1568	 * Recompute the stashed list of l2cache devices, with status
1569	 * information this time.
1570	 */
1571	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1572	    DATA_TYPE_NVLIST_ARRAY) == 0);
1573
1574	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1575	for (i = 0; i < sav->sav_count; i++)
1576		l2cache[i] = vdev_config_generate(spa,
1577		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1578	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1579	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1580out:
1581	for (i = 0; i < sav->sav_count; i++)
1582		nvlist_free(l2cache[i]);
1583	if (sav->sav_count)
1584		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1585}
1586
1587static int
1588load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1589{
1590	dmu_buf_t *db;
1591	char *packed = NULL;
1592	size_t nvsize = 0;
1593	int error;
1594	*value = NULL;
1595
1596	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1597	nvsize = *(uint64_t *)db->db_data;
1598	dmu_buf_rele(db, FTAG);
1599
1600	packed = kmem_alloc(nvsize, KM_SLEEP);
1601	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1602	    DMU_READ_PREFETCH);
1603	if (error == 0)
1604		error = nvlist_unpack(packed, nvsize, value, 0);
1605	kmem_free(packed, nvsize);
1606
1607	return (error);
1608}
1609
1610/*
1611 * Checks to see if the given vdev could not be opened, in which case we post a
1612 * sysevent to notify the autoreplace code that the device has been removed.
1613 */
1614static void
1615spa_check_removed(vdev_t *vd)
1616{
1617	for (int c = 0; c < vd->vdev_children; c++)
1618		spa_check_removed(vd->vdev_child[c]);
1619
1620	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1621	    !vd->vdev_ishole) {
1622		zfs_post_autoreplace(vd->vdev_spa, vd);
1623		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1624	}
1625}
1626
1627/*
1628 * Validate the current config against the MOS config
1629 */
1630static boolean_t
1631spa_config_valid(spa_t *spa, nvlist_t *config)
1632{
1633	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1634	nvlist_t *nv;
1635
1636	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1637
1638	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1639	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1640
1641	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1642
1643	/*
1644	 * If we're doing a normal import, then build up any additional
1645	 * diagnostic information about missing devices in this config.
1646	 * We'll pass this up to the user for further processing.
1647	 */
1648	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1649		nvlist_t **child, *nv;
1650		uint64_t idx = 0;
1651
1652		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1653		    KM_SLEEP);
1654		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1655
1656		for (int c = 0; c < rvd->vdev_children; c++) {
1657			vdev_t *tvd = rvd->vdev_child[c];
1658			vdev_t *mtvd  = mrvd->vdev_child[c];
1659
1660			if (tvd->vdev_ops == &vdev_missing_ops &&
1661			    mtvd->vdev_ops != &vdev_missing_ops &&
1662			    mtvd->vdev_islog)
1663				child[idx++] = vdev_config_generate(spa, mtvd,
1664				    B_FALSE, 0);
1665		}
1666
1667		if (idx) {
1668			VERIFY(nvlist_add_nvlist_array(nv,
1669			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1670			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1671			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1672
1673			for (int i = 0; i < idx; i++)
1674				nvlist_free(child[i]);
1675		}
1676		nvlist_free(nv);
1677		kmem_free(child, rvd->vdev_children * sizeof (char **));
1678	}
1679
1680	/*
1681	 * Compare the root vdev tree with the information we have
1682	 * from the MOS config (mrvd). Check each top-level vdev
1683	 * with the corresponding MOS config top-level (mtvd).
1684	 */
1685	for (int c = 0; c < rvd->vdev_children; c++) {
1686		vdev_t *tvd = rvd->vdev_child[c];
1687		vdev_t *mtvd  = mrvd->vdev_child[c];
1688
1689		/*
1690		 * Resolve any "missing" vdevs in the current configuration.
1691		 * If we find that the MOS config has more accurate information
1692		 * about the top-level vdev then use that vdev instead.
1693		 */
1694		if (tvd->vdev_ops == &vdev_missing_ops &&
1695		    mtvd->vdev_ops != &vdev_missing_ops) {
1696
1697			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1698				continue;
1699
1700			/*
1701			 * Device specific actions.
1702			 */
1703			if (mtvd->vdev_islog) {
1704				spa_set_log_state(spa, SPA_LOG_CLEAR);
1705			} else {
1706				/*
1707				 * XXX - once we have 'readonly' pool
1708				 * support we should be able to handle
1709				 * missing data devices by transitioning
1710				 * the pool to readonly.
1711				 */
1712				continue;
1713			}
1714
1715			/*
1716			 * Swap the missing vdev with the data we were
1717			 * able to obtain from the MOS config.
1718			 */
1719			vdev_remove_child(rvd, tvd);
1720			vdev_remove_child(mrvd, mtvd);
1721
1722			vdev_add_child(rvd, mtvd);
1723			vdev_add_child(mrvd, tvd);
1724
1725			spa_config_exit(spa, SCL_ALL, FTAG);
1726			vdev_load(mtvd);
1727			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1728
1729			vdev_reopen(rvd);
1730		} else if (mtvd->vdev_islog) {
1731			/*
1732			 * Load the slog device's state from the MOS config
1733			 * since it's possible that the label does not
1734			 * contain the most up-to-date information.
1735			 */
1736			vdev_load_log_state(tvd, mtvd);
1737			vdev_reopen(tvd);
1738		}
1739	}
1740	vdev_free(mrvd);
1741	spa_config_exit(spa, SCL_ALL, FTAG);
1742
1743	/*
1744	 * Ensure we were able to validate the config.
1745	 */
1746	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1747}
1748
1749/*
1750 * Check for missing log devices
1751 */
1752static boolean_t
1753spa_check_logs(spa_t *spa)
1754{
1755	boolean_t rv = B_FALSE;
1756
1757	switch (spa->spa_log_state) {
1758	case SPA_LOG_MISSING:
1759		/* need to recheck in case slog has been restored */
1760	case SPA_LOG_UNKNOWN:
1761		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1762		    NULL, DS_FIND_CHILDREN) != 0);
1763		if (rv)
1764			spa_set_log_state(spa, SPA_LOG_MISSING);
1765		break;
1766	}
1767	return (rv);
1768}
1769
1770static boolean_t
1771spa_passivate_log(spa_t *spa)
1772{
1773	vdev_t *rvd = spa->spa_root_vdev;
1774	boolean_t slog_found = B_FALSE;
1775
1776	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1777
1778	if (!spa_has_slogs(spa))
1779		return (B_FALSE);
1780
1781	for (int c = 0; c < rvd->vdev_children; c++) {
1782		vdev_t *tvd = rvd->vdev_child[c];
1783		metaslab_group_t *mg = tvd->vdev_mg;
1784
1785		if (tvd->vdev_islog) {
1786			metaslab_group_passivate(mg);
1787			slog_found = B_TRUE;
1788		}
1789	}
1790
1791	return (slog_found);
1792}
1793
1794static void
1795spa_activate_log(spa_t *spa)
1796{
1797	vdev_t *rvd = spa->spa_root_vdev;
1798
1799	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1800
1801	for (int c = 0; c < rvd->vdev_children; c++) {
1802		vdev_t *tvd = rvd->vdev_child[c];
1803		metaslab_group_t *mg = tvd->vdev_mg;
1804
1805		if (tvd->vdev_islog)
1806			metaslab_group_activate(mg);
1807	}
1808}
1809
1810int
1811spa_offline_log(spa_t *spa)
1812{
1813	int error;
1814
1815	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1816	    NULL, DS_FIND_CHILDREN);
1817	if (error == 0) {
1818		/*
1819		 * We successfully offlined the log device, sync out the
1820		 * current txg so that the "stubby" block can be removed
1821		 * by zil_sync().
1822		 */
1823		txg_wait_synced(spa->spa_dsl_pool, 0);
1824	}
1825	return (error);
1826}
1827
1828static void
1829spa_aux_check_removed(spa_aux_vdev_t *sav)
1830{
1831	int i;
1832
1833	for (i = 0; i < sav->sav_count; i++)
1834		spa_check_removed(sav->sav_vdevs[i]);
1835}
1836
1837void
1838spa_claim_notify(zio_t *zio)
1839{
1840	spa_t *spa = zio->io_spa;
1841
1842	if (zio->io_error)
1843		return;
1844
1845	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1846	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1847		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1848	mutex_exit(&spa->spa_props_lock);
1849}
1850
1851typedef struct spa_load_error {
1852	uint64_t	sle_meta_count;
1853	uint64_t	sle_data_count;
1854} spa_load_error_t;
1855
1856static void
1857spa_load_verify_done(zio_t *zio)
1858{
1859	blkptr_t *bp = zio->io_bp;
1860	spa_load_error_t *sle = zio->io_private;
1861	dmu_object_type_t type = BP_GET_TYPE(bp);
1862	int error = zio->io_error;
1863
1864	if (error) {
1865		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1866		    type != DMU_OT_INTENT_LOG)
1867			atomic_add_64(&sle->sle_meta_count, 1);
1868		else
1869			atomic_add_64(&sle->sle_data_count, 1);
1870	}
1871	zio_data_buf_free(zio->io_data, zio->io_size);
1872}
1873
1874/*ARGSUSED*/
1875static int
1876spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1877    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1878{
1879	if (bp != NULL) {
1880		zio_t *rio = arg;
1881		size_t size = BP_GET_PSIZE(bp);
1882		void *data = zio_data_buf_alloc(size);
1883
1884		zio_nowait(zio_read(rio, spa, bp, data, size,
1885		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1886		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1887		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1888	}
1889	return (0);
1890}
1891
1892static int
1893spa_load_verify(spa_t *spa)
1894{
1895	zio_t *rio;
1896	spa_load_error_t sle = { 0 };
1897	zpool_rewind_policy_t policy;
1898	boolean_t verify_ok = B_FALSE;
1899	int error;
1900
1901	zpool_get_rewind_policy(spa->spa_config, &policy);
1902
1903	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1904		return (0);
1905
1906	rio = zio_root(spa, NULL, &sle,
1907	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1908
1909	error = traverse_pool(spa, spa->spa_verify_min_txg,
1910	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1911
1912	(void) zio_wait(rio);
1913
1914	spa->spa_load_meta_errors = sle.sle_meta_count;
1915	spa->spa_load_data_errors = sle.sle_data_count;
1916
1917	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1918	    sle.sle_data_count <= policy.zrp_maxdata) {
1919		int64_t loss = 0;
1920
1921		verify_ok = B_TRUE;
1922		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1923		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1924
1925		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1926		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1927		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1928		VERIFY(nvlist_add_int64(spa->spa_load_info,
1929		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1930		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1931		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1932	} else {
1933		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1934	}
1935
1936	if (error) {
1937		if (error != ENXIO && error != EIO)
1938			error = SET_ERROR(EIO);
1939		return (error);
1940	}
1941
1942	return (verify_ok ? 0 : EIO);
1943}
1944
1945/*
1946 * Find a value in the pool props object.
1947 */
1948static void
1949spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1950{
1951	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1952	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1953}
1954
1955/*
1956 * Find a value in the pool directory object.
1957 */
1958static int
1959spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1960{
1961	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1962	    name, sizeof (uint64_t), 1, val));
1963}
1964
1965static int
1966spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1967{
1968	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1969	return (err);
1970}
1971
1972/*
1973 * Fix up config after a partly-completed split.  This is done with the
1974 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1975 * pool have that entry in their config, but only the splitting one contains
1976 * a list of all the guids of the vdevs that are being split off.
1977 *
1978 * This function determines what to do with that list: either rejoin
1979 * all the disks to the pool, or complete the splitting process.  To attempt
1980 * the rejoin, each disk that is offlined is marked online again, and
1981 * we do a reopen() call.  If the vdev label for every disk that was
1982 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1983 * then we call vdev_split() on each disk, and complete the split.
1984 *
1985 * Otherwise we leave the config alone, with all the vdevs in place in
1986 * the original pool.
1987 */
1988static void
1989spa_try_repair(spa_t *spa, nvlist_t *config)
1990{
1991	uint_t extracted;
1992	uint64_t *glist;
1993	uint_t i, gcount;
1994	nvlist_t *nvl;
1995	vdev_t **vd;
1996	boolean_t attempt_reopen;
1997
1998	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1999		return;
2000
2001	/* check that the config is complete */
2002	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2003	    &glist, &gcount) != 0)
2004		return;
2005
2006	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2007
2008	/* attempt to online all the vdevs & validate */
2009	attempt_reopen = B_TRUE;
2010	for (i = 0; i < gcount; i++) {
2011		if (glist[i] == 0)	/* vdev is hole */
2012			continue;
2013
2014		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2015		if (vd[i] == NULL) {
2016			/*
2017			 * Don't bother attempting to reopen the disks;
2018			 * just do the split.
2019			 */
2020			attempt_reopen = B_FALSE;
2021		} else {
2022			/* attempt to re-online it */
2023			vd[i]->vdev_offline = B_FALSE;
2024		}
2025	}
2026
2027	if (attempt_reopen) {
2028		vdev_reopen(spa->spa_root_vdev);
2029
2030		/* check each device to see what state it's in */
2031		for (extracted = 0, i = 0; i < gcount; i++) {
2032			if (vd[i] != NULL &&
2033			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2034				break;
2035			++extracted;
2036		}
2037	}
2038
2039	/*
2040	 * If every disk has been moved to the new pool, or if we never
2041	 * even attempted to look at them, then we split them off for
2042	 * good.
2043	 */
2044	if (!attempt_reopen || gcount == extracted) {
2045		for (i = 0; i < gcount; i++)
2046			if (vd[i] != NULL)
2047				vdev_split(vd[i]);
2048		vdev_reopen(spa->spa_root_vdev);
2049	}
2050
2051	kmem_free(vd, gcount * sizeof (vdev_t *));
2052}
2053
2054static int
2055spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2056    boolean_t mosconfig)
2057{
2058	nvlist_t *config = spa->spa_config;
2059	char *ereport = FM_EREPORT_ZFS_POOL;
2060	char *comment;
2061	int error;
2062	uint64_t pool_guid;
2063	nvlist_t *nvl;
2064
2065	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2066		return (SET_ERROR(EINVAL));
2067
2068	ASSERT(spa->spa_comment == NULL);
2069	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2070		spa->spa_comment = spa_strdup(comment);
2071
2072	/*
2073	 * Versioning wasn't explicitly added to the label until later, so if
2074	 * it's not present treat it as the initial version.
2075	 */
2076	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2077	    &spa->spa_ubsync.ub_version) != 0)
2078		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2079
2080	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2081	    &spa->spa_config_txg);
2082
2083	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2084	    spa_guid_exists(pool_guid, 0)) {
2085		error = SET_ERROR(EEXIST);
2086	} else {
2087		spa->spa_config_guid = pool_guid;
2088
2089		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2090		    &nvl) == 0) {
2091			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2092			    KM_SLEEP) == 0);
2093		}
2094
2095		nvlist_free(spa->spa_load_info);
2096		spa->spa_load_info = fnvlist_alloc();
2097
2098		gethrestime(&spa->spa_loaded_ts);
2099		error = spa_load_impl(spa, pool_guid, config, state, type,
2100		    mosconfig, &ereport);
2101	}
2102
2103	spa->spa_minref = refcount_count(&spa->spa_refcount);
2104	if (error) {
2105		if (error != EEXIST) {
2106			spa->spa_loaded_ts.tv_sec = 0;
2107			spa->spa_loaded_ts.tv_nsec = 0;
2108		}
2109		if (error != EBADF) {
2110			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2111		}
2112	}
2113	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2114	spa->spa_ena = 0;
2115
2116	return (error);
2117}
2118
2119/*
2120 * Load an existing storage pool, using the pool's builtin spa_config as a
2121 * source of configuration information.
2122 */
2123static int
2124spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2125    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2126    char **ereport)
2127{
2128	int error = 0;
2129	nvlist_t *nvroot = NULL;
2130	nvlist_t *label;
2131	vdev_t *rvd;
2132	uberblock_t *ub = &spa->spa_uberblock;
2133	uint64_t children, config_cache_txg = spa->spa_config_txg;
2134	int orig_mode = spa->spa_mode;
2135	int parse;
2136	uint64_t obj;
2137	boolean_t missing_feat_write = B_FALSE;
2138
2139	/*
2140	 * If this is an untrusted config, access the pool in read-only mode.
2141	 * This prevents things like resilvering recently removed devices.
2142	 */
2143	if (!mosconfig)
2144		spa->spa_mode = FREAD;
2145
2146	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2147
2148	spa->spa_load_state = state;
2149
2150	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2151		return (SET_ERROR(EINVAL));
2152
2153	parse = (type == SPA_IMPORT_EXISTING ?
2154	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2155
2156	/*
2157	 * Create "The Godfather" zio to hold all async IOs
2158	 */
2159	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2160	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2161
2162	/*
2163	 * Parse the configuration into a vdev tree.  We explicitly set the
2164	 * value that will be returned by spa_version() since parsing the
2165	 * configuration requires knowing the version number.
2166	 */
2167	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2168	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2169	spa_config_exit(spa, SCL_ALL, FTAG);
2170
2171	if (error != 0)
2172		return (error);
2173
2174	ASSERT(spa->spa_root_vdev == rvd);
2175
2176	if (type != SPA_IMPORT_ASSEMBLE) {
2177		ASSERT(spa_guid(spa) == pool_guid);
2178	}
2179
2180	/*
2181	 * Try to open all vdevs, loading each label in the process.
2182	 */
2183	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2184	error = vdev_open(rvd);
2185	spa_config_exit(spa, SCL_ALL, FTAG);
2186	if (error != 0)
2187		return (error);
2188
2189	/*
2190	 * We need to validate the vdev labels against the configuration that
2191	 * we have in hand, which is dependent on the setting of mosconfig. If
2192	 * mosconfig is true then we're validating the vdev labels based on
2193	 * that config.  Otherwise, we're validating against the cached config
2194	 * (zpool.cache) that was read when we loaded the zfs module, and then
2195	 * later we will recursively call spa_load() and validate against
2196	 * the vdev config.
2197	 *
2198	 * If we're assembling a new pool that's been split off from an
2199	 * existing pool, the labels haven't yet been updated so we skip
2200	 * validation for now.
2201	 */
2202	if (type != SPA_IMPORT_ASSEMBLE) {
2203		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2204		error = vdev_validate(rvd, mosconfig);
2205		spa_config_exit(spa, SCL_ALL, FTAG);
2206
2207		if (error != 0)
2208			return (error);
2209
2210		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2211			return (SET_ERROR(ENXIO));
2212	}
2213
2214	/*
2215	 * Find the best uberblock.
2216	 */
2217	vdev_uberblock_load(rvd, ub, &label);
2218
2219	/*
2220	 * If we weren't able to find a single valid uberblock, return failure.
2221	 */
2222	if (ub->ub_txg == 0) {
2223		nvlist_free(label);
2224		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2225	}
2226
2227	/*
2228	 * If the pool has an unsupported version we can't open it.
2229	 */
2230	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2231		nvlist_free(label);
2232		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2233	}
2234
2235	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2236		nvlist_t *features;
2237
2238		/*
2239		 * If we weren't able to find what's necessary for reading the
2240		 * MOS in the label, return failure.
2241		 */
2242		if (label == NULL || nvlist_lookup_nvlist(label,
2243		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2244			nvlist_free(label);
2245			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2246			    ENXIO));
2247		}
2248
2249		/*
2250		 * Update our in-core representation with the definitive values
2251		 * from the label.
2252		 */
2253		nvlist_free(spa->spa_label_features);
2254		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2255	}
2256
2257	nvlist_free(label);
2258
2259	/*
2260	 * Look through entries in the label nvlist's features_for_read. If
2261	 * there is a feature listed there which we don't understand then we
2262	 * cannot open a pool.
2263	 */
2264	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2265		nvlist_t *unsup_feat;
2266
2267		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2268		    0);
2269
2270		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2271		    NULL); nvp != NULL;
2272		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2273			if (!zfeature_is_supported(nvpair_name(nvp))) {
2274				VERIFY(nvlist_add_string(unsup_feat,
2275				    nvpair_name(nvp), "") == 0);
2276			}
2277		}
2278
2279		if (!nvlist_empty(unsup_feat)) {
2280			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2281			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2282			nvlist_free(unsup_feat);
2283			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2284			    ENOTSUP));
2285		}
2286
2287		nvlist_free(unsup_feat);
2288	}
2289
2290	/*
2291	 * If the vdev guid sum doesn't match the uberblock, we have an
2292	 * incomplete configuration.  We first check to see if the pool
2293	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2294	 * If it is, defer the vdev_guid_sum check till later so we
2295	 * can handle missing vdevs.
2296	 */
2297	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2298	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2299	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2300		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2301
2302	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2303		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2304		spa_try_repair(spa, config);
2305		spa_config_exit(spa, SCL_ALL, FTAG);
2306		nvlist_free(spa->spa_config_splitting);
2307		spa->spa_config_splitting = NULL;
2308	}
2309
2310	/*
2311	 * Initialize internal SPA structures.
2312	 */
2313	spa->spa_state = POOL_STATE_ACTIVE;
2314	spa->spa_ubsync = spa->spa_uberblock;
2315	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2316	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2317	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2318	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2319	spa->spa_claim_max_txg = spa->spa_first_txg;
2320	spa->spa_prev_software_version = ub->ub_software_version;
2321
2322	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2323	if (error)
2324		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2325	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2326
2327	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2328		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2329
2330	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2331		boolean_t missing_feat_read = B_FALSE;
2332		nvlist_t *unsup_feat, *enabled_feat;
2333
2334		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2335		    &spa->spa_feat_for_read_obj) != 0) {
2336			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2337		}
2338
2339		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2340		    &spa->spa_feat_for_write_obj) != 0) {
2341			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2342		}
2343
2344		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2345		    &spa->spa_feat_desc_obj) != 0) {
2346			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2347		}
2348
2349		enabled_feat = fnvlist_alloc();
2350		unsup_feat = fnvlist_alloc();
2351
2352		if (!feature_is_supported(spa->spa_meta_objset,
2353		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2354		    unsup_feat, enabled_feat))
2355			missing_feat_read = B_TRUE;
2356
2357		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2358			if (!feature_is_supported(spa->spa_meta_objset,
2359			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2360			    unsup_feat, enabled_feat)) {
2361				missing_feat_write = B_TRUE;
2362			}
2363		}
2364
2365		fnvlist_add_nvlist(spa->spa_load_info,
2366		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2367
2368		if (!nvlist_empty(unsup_feat)) {
2369			fnvlist_add_nvlist(spa->spa_load_info,
2370			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2371		}
2372
2373		fnvlist_free(enabled_feat);
2374		fnvlist_free(unsup_feat);
2375
2376		if (!missing_feat_read) {
2377			fnvlist_add_boolean(spa->spa_load_info,
2378			    ZPOOL_CONFIG_CAN_RDONLY);
2379		}
2380
2381		/*
2382		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2383		 * twofold: to determine whether the pool is available for
2384		 * import in read-write mode and (if it is not) whether the
2385		 * pool is available for import in read-only mode. If the pool
2386		 * is available for import in read-write mode, it is displayed
2387		 * as available in userland; if it is not available for import
2388		 * in read-only mode, it is displayed as unavailable in
2389		 * userland. If the pool is available for import in read-only
2390		 * mode but not read-write mode, it is displayed as unavailable
2391		 * in userland with a special note that the pool is actually
2392		 * available for open in read-only mode.
2393		 *
2394		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2395		 * missing a feature for write, we must first determine whether
2396		 * the pool can be opened read-only before returning to
2397		 * userland in order to know whether to display the
2398		 * abovementioned note.
2399		 */
2400		if (missing_feat_read || (missing_feat_write &&
2401		    spa_writeable(spa))) {
2402			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2403			    ENOTSUP));
2404		}
2405	}
2406
2407	spa->spa_is_initializing = B_TRUE;
2408	error = dsl_pool_open(spa->spa_dsl_pool);
2409	spa->spa_is_initializing = B_FALSE;
2410	if (error != 0)
2411		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2412
2413	if (!mosconfig) {
2414		uint64_t hostid;
2415		nvlist_t *policy = NULL, *nvconfig;
2416
2417		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2418			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2419
2420		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2421		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2422			char *hostname;
2423			unsigned long myhostid = 0;
2424
2425			VERIFY(nvlist_lookup_string(nvconfig,
2426			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2427
2428#ifdef	_KERNEL
2429			myhostid = zone_get_hostid(NULL);
2430#else	/* _KERNEL */
2431			/*
2432			 * We're emulating the system's hostid in userland, so
2433			 * we can't use zone_get_hostid().
2434			 */
2435			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2436#endif	/* _KERNEL */
2437			if (check_hostid && hostid != 0 && myhostid != 0 &&
2438			    hostid != myhostid) {
2439				nvlist_free(nvconfig);
2440				cmn_err(CE_WARN, "pool '%s' could not be "
2441				    "loaded as it was last accessed by "
2442				    "another system (host: %s hostid: 0x%lx). "
2443				    "See: http://illumos.org/msg/ZFS-8000-EY",
2444				    spa_name(spa), hostname,
2445				    (unsigned long)hostid);
2446				return (SET_ERROR(EBADF));
2447			}
2448		}
2449		if (nvlist_lookup_nvlist(spa->spa_config,
2450		    ZPOOL_REWIND_POLICY, &policy) == 0)
2451			VERIFY(nvlist_add_nvlist(nvconfig,
2452			    ZPOOL_REWIND_POLICY, policy) == 0);
2453
2454		spa_config_set(spa, nvconfig);
2455		spa_unload(spa);
2456		spa_deactivate(spa);
2457		spa_activate(spa, orig_mode);
2458
2459		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2460	}
2461
2462	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2463		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2465	if (error != 0)
2466		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2467
2468	/*
2469	 * Load the bit that tells us to use the new accounting function
2470	 * (raid-z deflation).  If we have an older pool, this will not
2471	 * be present.
2472	 */
2473	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2474	if (error != 0 && error != ENOENT)
2475		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2476
2477	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2478	    &spa->spa_creation_version);
2479	if (error != 0 && error != ENOENT)
2480		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2481
2482	/*
2483	 * Load the persistent error log.  If we have an older pool, this will
2484	 * not be present.
2485	 */
2486	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2487	if (error != 0 && error != ENOENT)
2488		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2489
2490	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2491	    &spa->spa_errlog_scrub);
2492	if (error != 0 && error != ENOENT)
2493		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2494
2495	/*
2496	 * Load the history object.  If we have an older pool, this
2497	 * will not be present.
2498	 */
2499	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2500	if (error != 0 && error != ENOENT)
2501		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2502
2503	/*
2504	 * If we're assembling the pool from the split-off vdevs of
2505	 * an existing pool, we don't want to attach the spares & cache
2506	 * devices.
2507	 */
2508
2509	/*
2510	 * Load any hot spares for this pool.
2511	 */
2512	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2513	if (error != 0 && error != ENOENT)
2514		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2516		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2517		if (load_nvlist(spa, spa->spa_spares.sav_object,
2518		    &spa->spa_spares.sav_config) != 0)
2519			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520
2521		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2522		spa_load_spares(spa);
2523		spa_config_exit(spa, SCL_ALL, FTAG);
2524	} else if (error == 0) {
2525		spa->spa_spares.sav_sync = B_TRUE;
2526	}
2527
2528	/*
2529	 * Load any level 2 ARC devices for this pool.
2530	 */
2531	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2532	    &spa->spa_l2cache.sav_object);
2533	if (error != 0 && error != ENOENT)
2534		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2536		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2537		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2538		    &spa->spa_l2cache.sav_config) != 0)
2539			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540
2541		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2542		spa_load_l2cache(spa);
2543		spa_config_exit(spa, SCL_ALL, FTAG);
2544	} else if (error == 0) {
2545		spa->spa_l2cache.sav_sync = B_TRUE;
2546	}
2547
2548	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2549
2550	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2551	if (error && error != ENOENT)
2552		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2553
2554	if (error == 0) {
2555		uint64_t autoreplace;
2556
2557		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2558		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2559		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2560		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2561		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2562		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2563		    &spa->spa_dedup_ditto);
2564
2565		spa->spa_autoreplace = (autoreplace != 0);
2566	}
2567
2568	/*
2569	 * If the 'autoreplace' property is set, then post a resource notifying
2570	 * the ZFS DE that it should not issue any faults for unopenable
2571	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2572	 * unopenable vdevs so that the normal autoreplace handler can take
2573	 * over.
2574	 */
2575	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2576		spa_check_removed(spa->spa_root_vdev);
2577		/*
2578		 * For the import case, this is done in spa_import(), because
2579		 * at this point we're using the spare definitions from
2580		 * the MOS config, not necessarily from the userland config.
2581		 */
2582		if (state != SPA_LOAD_IMPORT) {
2583			spa_aux_check_removed(&spa->spa_spares);
2584			spa_aux_check_removed(&spa->spa_l2cache);
2585		}
2586	}
2587
2588	/*
2589	 * Load the vdev state for all toplevel vdevs.
2590	 */
2591	vdev_load(rvd);
2592
2593	/*
2594	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2595	 */
2596	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2597	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2598	spa_config_exit(spa, SCL_ALL, FTAG);
2599
2600	/*
2601	 * Load the DDTs (dedup tables).
2602	 */
2603	error = ddt_load(spa);
2604	if (error != 0)
2605		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606
2607	spa_update_dspace(spa);
2608
2609	/*
2610	 * Validate the config, using the MOS config to fill in any
2611	 * information which might be missing.  If we fail to validate
2612	 * the config then declare the pool unfit for use. If we're
2613	 * assembling a pool from a split, the log is not transferred
2614	 * over.
2615	 */
2616	if (type != SPA_IMPORT_ASSEMBLE) {
2617		nvlist_t *nvconfig;
2618
2619		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2620			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621
2622		if (!spa_config_valid(spa, nvconfig)) {
2623			nvlist_free(nvconfig);
2624			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2625			    ENXIO));
2626		}
2627		nvlist_free(nvconfig);
2628
2629		/*
2630		 * Now that we've validated the config, check the state of the
2631		 * root vdev.  If it can't be opened, it indicates one or
2632		 * more toplevel vdevs are faulted.
2633		 */
2634		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2635			return (SET_ERROR(ENXIO));
2636
2637		if (spa_check_logs(spa)) {
2638			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2639			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2640		}
2641	}
2642
2643	if (missing_feat_write) {
2644		ASSERT(state == SPA_LOAD_TRYIMPORT);
2645
2646		/*
2647		 * At this point, we know that we can open the pool in
2648		 * read-only mode but not read-write mode. We now have enough
2649		 * information and can return to userland.
2650		 */
2651		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2652	}
2653
2654	/*
2655	 * We've successfully opened the pool, verify that we're ready
2656	 * to start pushing transactions.
2657	 */
2658	if (state != SPA_LOAD_TRYIMPORT) {
2659		if (error = spa_load_verify(spa))
2660			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2661			    error));
2662	}
2663
2664	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2665	    spa->spa_load_max_txg == UINT64_MAX)) {
2666		dmu_tx_t *tx;
2667		int need_update = B_FALSE;
2668
2669		ASSERT(state != SPA_LOAD_TRYIMPORT);
2670
2671		/*
2672		 * Claim log blocks that haven't been committed yet.
2673		 * This must all happen in a single txg.
2674		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2675		 * invoked from zil_claim_log_block()'s i/o done callback.
2676		 * Price of rollback is that we abandon the log.
2677		 */
2678		spa->spa_claiming = B_TRUE;
2679
2680		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2681		    spa_first_txg(spa));
2682		(void) dmu_objset_find(spa_name(spa),
2683		    zil_claim, tx, DS_FIND_CHILDREN);
2684		dmu_tx_commit(tx);
2685
2686		spa->spa_claiming = B_FALSE;
2687
2688		spa_set_log_state(spa, SPA_LOG_GOOD);
2689		spa->spa_sync_on = B_TRUE;
2690		txg_sync_start(spa->spa_dsl_pool);
2691
2692		/*
2693		 * Wait for all claims to sync.  We sync up to the highest
2694		 * claimed log block birth time so that claimed log blocks
2695		 * don't appear to be from the future.  spa_claim_max_txg
2696		 * will have been set for us by either zil_check_log_chain()
2697		 * (invoked from spa_check_logs()) or zil_claim() above.
2698		 */
2699		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2700
2701		/*
2702		 * If the config cache is stale, or we have uninitialized
2703		 * metaslabs (see spa_vdev_add()), then update the config.
2704		 *
2705		 * If this is a verbatim import, trust the current
2706		 * in-core spa_config and update the disk labels.
2707		 */
2708		if (config_cache_txg != spa->spa_config_txg ||
2709		    state == SPA_LOAD_IMPORT ||
2710		    state == SPA_LOAD_RECOVER ||
2711		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2712			need_update = B_TRUE;
2713
2714		for (int c = 0; c < rvd->vdev_children; c++)
2715			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2716				need_update = B_TRUE;
2717
2718		/*
2719		 * Update the config cache asychronously in case we're the
2720		 * root pool, in which case the config cache isn't writable yet.
2721		 */
2722		if (need_update)
2723			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2724
2725		/*
2726		 * Check all DTLs to see if anything needs resilvering.
2727		 */
2728		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2729		    vdev_resilver_needed(rvd, NULL, NULL))
2730			spa_async_request(spa, SPA_ASYNC_RESILVER);
2731
2732		/*
2733		 * Log the fact that we booted up (so that we can detect if
2734		 * we rebooted in the middle of an operation).
2735		 */
2736		spa_history_log_version(spa, "open");
2737
2738		/*
2739		 * Delete any inconsistent datasets.
2740		 */
2741		(void) dmu_objset_find(spa_name(spa),
2742		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2743
2744		/*
2745		 * Clean up any stale temporary dataset userrefs.
2746		 */
2747		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2748	}
2749
2750	return (0);
2751}
2752
2753static int
2754spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2755{
2756	int mode = spa->spa_mode;
2757
2758	spa_unload(spa);
2759	spa_deactivate(spa);
2760
2761	spa->spa_load_max_txg--;
2762
2763	spa_activate(spa, mode);
2764	spa_async_suspend(spa);
2765
2766	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2767}
2768
2769/*
2770 * If spa_load() fails this function will try loading prior txg's. If
2771 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2772 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2773 * function will not rewind the pool and will return the same error as
2774 * spa_load().
2775 */
2776static int
2777spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2778    uint64_t max_request, int rewind_flags)
2779{
2780	nvlist_t *loadinfo = NULL;
2781	nvlist_t *config = NULL;
2782	int load_error, rewind_error;
2783	uint64_t safe_rewind_txg;
2784	uint64_t min_txg;
2785
2786	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2787		spa->spa_load_max_txg = spa->spa_load_txg;
2788		spa_set_log_state(spa, SPA_LOG_CLEAR);
2789	} else {
2790		spa->spa_load_max_txg = max_request;
2791	}
2792
2793	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2794	    mosconfig);
2795	if (load_error == 0)
2796		return (0);
2797
2798	if (spa->spa_root_vdev != NULL)
2799		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2800
2801	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2802	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2803
2804	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2805		nvlist_free(config);
2806		return (load_error);
2807	}
2808
2809	if (state == SPA_LOAD_RECOVER) {
2810		/* Price of rolling back is discarding txgs, including log */
2811		spa_set_log_state(spa, SPA_LOG_CLEAR);
2812	} else {
2813		/*
2814		 * If we aren't rolling back save the load info from our first
2815		 * import attempt so that we can restore it after attempting
2816		 * to rewind.
2817		 */
2818		loadinfo = spa->spa_load_info;
2819		spa->spa_load_info = fnvlist_alloc();
2820	}
2821
2822	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2823	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2824	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2825	    TXG_INITIAL : safe_rewind_txg;
2826
2827	/*
2828	 * Continue as long as we're finding errors, we're still within
2829	 * the acceptable rewind range, and we're still finding uberblocks
2830	 */
2831	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2832	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2833		if (spa->spa_load_max_txg < safe_rewind_txg)
2834			spa->spa_extreme_rewind = B_TRUE;
2835		rewind_error = spa_load_retry(spa, state, mosconfig);
2836	}
2837
2838	spa->spa_extreme_rewind = B_FALSE;
2839	spa->spa_load_max_txg = UINT64_MAX;
2840
2841	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2842		spa_config_set(spa, config);
2843
2844	if (state == SPA_LOAD_RECOVER) {
2845		ASSERT3P(loadinfo, ==, NULL);
2846		return (rewind_error);
2847	} else {
2848		/* Store the rewind info as part of the initial load info */
2849		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2850		    spa->spa_load_info);
2851
2852		/* Restore the initial load info */
2853		fnvlist_free(spa->spa_load_info);
2854		spa->spa_load_info = loadinfo;
2855
2856		return (load_error);
2857	}
2858}
2859
2860/*
2861 * Pool Open/Import
2862 *
2863 * The import case is identical to an open except that the configuration is sent
2864 * down from userland, instead of grabbed from the configuration cache.  For the
2865 * case of an open, the pool configuration will exist in the
2866 * POOL_STATE_UNINITIALIZED state.
2867 *
2868 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2869 * the same time open the pool, without having to keep around the spa_t in some
2870 * ambiguous state.
2871 */
2872static int
2873spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2874    nvlist_t **config)
2875{
2876	spa_t *spa;
2877	spa_load_state_t state = SPA_LOAD_OPEN;
2878	int error;
2879	int locked = B_FALSE;
2880	int firstopen = B_FALSE;
2881
2882	*spapp = NULL;
2883
2884	/*
2885	 * As disgusting as this is, we need to support recursive calls to this
2886	 * function because dsl_dir_open() is called during spa_load(), and ends
2887	 * up calling spa_open() again.  The real fix is to figure out how to
2888	 * avoid dsl_dir_open() calling this in the first place.
2889	 */
2890	if (mutex_owner(&spa_namespace_lock) != curthread) {
2891		mutex_enter(&spa_namespace_lock);
2892		locked = B_TRUE;
2893	}
2894
2895	if ((spa = spa_lookup(pool)) == NULL) {
2896		if (locked)
2897			mutex_exit(&spa_namespace_lock);
2898		return (SET_ERROR(ENOENT));
2899	}
2900
2901	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2902		zpool_rewind_policy_t policy;
2903
2904		firstopen = B_TRUE;
2905
2906		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2907		    &policy);
2908		if (policy.zrp_request & ZPOOL_DO_REWIND)
2909			state = SPA_LOAD_RECOVER;
2910
2911		spa_activate(spa, spa_mode_global);
2912
2913		if (state != SPA_LOAD_RECOVER)
2914			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2915
2916		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2917		    policy.zrp_request);
2918
2919		if (error == EBADF) {
2920			/*
2921			 * If vdev_validate() returns failure (indicated by
2922			 * EBADF), it indicates that one of the vdevs indicates
2923			 * that the pool has been exported or destroyed.  If
2924			 * this is the case, the config cache is out of sync and
2925			 * we should remove the pool from the namespace.
2926			 */
2927			spa_unload(spa);
2928			spa_deactivate(spa);
2929			spa_config_sync(spa, B_TRUE, B_TRUE);
2930			spa_remove(spa);
2931			if (locked)
2932				mutex_exit(&spa_namespace_lock);
2933			return (SET_ERROR(ENOENT));
2934		}
2935
2936		if (error) {
2937			/*
2938			 * We can't open the pool, but we still have useful
2939			 * information: the state of each vdev after the
2940			 * attempted vdev_open().  Return this to the user.
2941			 */
2942			if (config != NULL && spa->spa_config) {
2943				VERIFY(nvlist_dup(spa->spa_config, config,
2944				    KM_SLEEP) == 0);
2945				VERIFY(nvlist_add_nvlist(*config,
2946				    ZPOOL_CONFIG_LOAD_INFO,
2947				    spa->spa_load_info) == 0);
2948			}
2949			spa_unload(spa);
2950			spa_deactivate(spa);
2951			spa->spa_last_open_failed = error;
2952			if (locked)
2953				mutex_exit(&spa_namespace_lock);
2954			*spapp = NULL;
2955			return (error);
2956		}
2957	}
2958
2959	spa_open_ref(spa, tag);
2960
2961	if (config != NULL)
2962		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2963
2964	/*
2965	 * If we've recovered the pool, pass back any information we
2966	 * gathered while doing the load.
2967	 */
2968	if (state == SPA_LOAD_RECOVER) {
2969		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2970		    spa->spa_load_info) == 0);
2971	}
2972
2973	if (locked) {
2974		spa->spa_last_open_failed = 0;
2975		spa->spa_last_ubsync_txg = 0;
2976		spa->spa_load_txg = 0;
2977		mutex_exit(&spa_namespace_lock);
2978#ifdef __FreeBSD__
2979#ifdef _KERNEL
2980		if (firstopen)
2981			zvol_create_minors(spa->spa_name);
2982#endif
2983#endif
2984	}
2985
2986	*spapp = spa;
2987
2988	return (0);
2989}
2990
2991int
2992spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2993    nvlist_t **config)
2994{
2995	return (spa_open_common(name, spapp, tag, policy, config));
2996}
2997
2998int
2999spa_open(const char *name, spa_t **spapp, void *tag)
3000{
3001	return (spa_open_common(name, spapp, tag, NULL, NULL));
3002}
3003
3004/*
3005 * Lookup the given spa_t, incrementing the inject count in the process,
3006 * preventing it from being exported or destroyed.
3007 */
3008spa_t *
3009spa_inject_addref(char *name)
3010{
3011	spa_t *spa;
3012
3013	mutex_enter(&spa_namespace_lock);
3014	if ((spa = spa_lookup(name)) == NULL) {
3015		mutex_exit(&spa_namespace_lock);
3016		return (NULL);
3017	}
3018	spa->spa_inject_ref++;
3019	mutex_exit(&spa_namespace_lock);
3020
3021	return (spa);
3022}
3023
3024void
3025spa_inject_delref(spa_t *spa)
3026{
3027	mutex_enter(&spa_namespace_lock);
3028	spa->spa_inject_ref--;
3029	mutex_exit(&spa_namespace_lock);
3030}
3031
3032/*
3033 * Add spares device information to the nvlist.
3034 */
3035static void
3036spa_add_spares(spa_t *spa, nvlist_t *config)
3037{
3038	nvlist_t **spares;
3039	uint_t i, nspares;
3040	nvlist_t *nvroot;
3041	uint64_t guid;
3042	vdev_stat_t *vs;
3043	uint_t vsc;
3044	uint64_t pool;
3045
3046	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3047
3048	if (spa->spa_spares.sav_count == 0)
3049		return;
3050
3051	VERIFY(nvlist_lookup_nvlist(config,
3052	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3053	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3054	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3055	if (nspares != 0) {
3056		VERIFY(nvlist_add_nvlist_array(nvroot,
3057		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3058		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3059		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3060
3061		/*
3062		 * Go through and find any spares which have since been
3063		 * repurposed as an active spare.  If this is the case, update
3064		 * their status appropriately.
3065		 */
3066		for (i = 0; i < nspares; i++) {
3067			VERIFY(nvlist_lookup_uint64(spares[i],
3068			    ZPOOL_CONFIG_GUID, &guid) == 0);
3069			if (spa_spare_exists(guid, &pool, NULL) &&
3070			    pool != 0ULL) {
3071				VERIFY(nvlist_lookup_uint64_array(
3072				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3073				    (uint64_t **)&vs, &vsc) == 0);
3074				vs->vs_state = VDEV_STATE_CANT_OPEN;
3075				vs->vs_aux = VDEV_AUX_SPARED;
3076			}
3077		}
3078	}
3079}
3080
3081/*
3082 * Add l2cache device information to the nvlist, including vdev stats.
3083 */
3084static void
3085spa_add_l2cache(spa_t *spa, nvlist_t *config)
3086{
3087	nvlist_t **l2cache;
3088	uint_t i, j, nl2cache;
3089	nvlist_t *nvroot;
3090	uint64_t guid;
3091	vdev_t *vd;
3092	vdev_stat_t *vs;
3093	uint_t vsc;
3094
3095	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3096
3097	if (spa->spa_l2cache.sav_count == 0)
3098		return;
3099
3100	VERIFY(nvlist_lookup_nvlist(config,
3101	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3102	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3103	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3104	if (nl2cache != 0) {
3105		VERIFY(nvlist_add_nvlist_array(nvroot,
3106		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3107		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3108		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3109
3110		/*
3111		 * Update level 2 cache device stats.
3112		 */
3113
3114		for (i = 0; i < nl2cache; i++) {
3115			VERIFY(nvlist_lookup_uint64(l2cache[i],
3116			    ZPOOL_CONFIG_GUID, &guid) == 0);
3117
3118			vd = NULL;
3119			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3120				if (guid ==
3121				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3122					vd = spa->spa_l2cache.sav_vdevs[j];
3123					break;
3124				}
3125			}
3126			ASSERT(vd != NULL);
3127
3128			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3129			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3130			    == 0);
3131			vdev_get_stats(vd, vs);
3132		}
3133	}
3134}
3135
3136static void
3137spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3138{
3139	nvlist_t *features;
3140	zap_cursor_t zc;
3141	zap_attribute_t za;
3142
3143	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3144	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3145
3146	/* We may be unable to read features if pool is suspended. */
3147	if (spa_suspended(spa))
3148		goto out;
3149
3150	if (spa->spa_feat_for_read_obj != 0) {
3151		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3152		    spa->spa_feat_for_read_obj);
3153		    zap_cursor_retrieve(&zc, &za) == 0;
3154		    zap_cursor_advance(&zc)) {
3155			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3156			    za.za_num_integers == 1);
3157			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3158			    za.za_first_integer));
3159		}
3160		zap_cursor_fini(&zc);
3161	}
3162
3163	if (spa->spa_feat_for_write_obj != 0) {
3164		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3165		    spa->spa_feat_for_write_obj);
3166		    zap_cursor_retrieve(&zc, &za) == 0;
3167		    zap_cursor_advance(&zc)) {
3168			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3169			    za.za_num_integers == 1);
3170			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3171			    za.za_first_integer));
3172		}
3173		zap_cursor_fini(&zc);
3174	}
3175
3176out:
3177	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3178	    features) == 0);
3179	nvlist_free(features);
3180}
3181
3182int
3183spa_get_stats(const char *name, nvlist_t **config,
3184    char *altroot, size_t buflen)
3185{
3186	int error;
3187	spa_t *spa;
3188
3189	*config = NULL;
3190	error = spa_open_common(name, &spa, FTAG, NULL, config);
3191
3192	if (spa != NULL) {
3193		/*
3194		 * This still leaves a window of inconsistency where the spares
3195		 * or l2cache devices could change and the config would be
3196		 * self-inconsistent.
3197		 */
3198		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3199
3200		if (*config != NULL) {
3201			uint64_t loadtimes[2];
3202
3203			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3204			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3205			VERIFY(nvlist_add_uint64_array(*config,
3206			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3207
3208			VERIFY(nvlist_add_uint64(*config,
3209			    ZPOOL_CONFIG_ERRCOUNT,
3210			    spa_get_errlog_size(spa)) == 0);
3211
3212			if (spa_suspended(spa))
3213				VERIFY(nvlist_add_uint64(*config,
3214				    ZPOOL_CONFIG_SUSPENDED,
3215				    spa->spa_failmode) == 0);
3216
3217			spa_add_spares(spa, *config);
3218			spa_add_l2cache(spa, *config);
3219			spa_add_feature_stats(spa, *config);
3220		}
3221	}
3222
3223	/*
3224	 * We want to get the alternate root even for faulted pools, so we cheat
3225	 * and call spa_lookup() directly.
3226	 */
3227	if (altroot) {
3228		if (spa == NULL) {
3229			mutex_enter(&spa_namespace_lock);
3230			spa = spa_lookup(name);
3231			if (spa)
3232				spa_altroot(spa, altroot, buflen);
3233			else
3234				altroot[0] = '\0';
3235			spa = NULL;
3236			mutex_exit(&spa_namespace_lock);
3237		} else {
3238			spa_altroot(spa, altroot, buflen);
3239		}
3240	}
3241
3242	if (spa != NULL) {
3243		spa_config_exit(spa, SCL_CONFIG, FTAG);
3244		spa_close(spa, FTAG);
3245	}
3246
3247	return (error);
3248}
3249
3250/*
3251 * Validate that the auxiliary device array is well formed.  We must have an
3252 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3253 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3254 * specified, as long as they are well-formed.
3255 */
3256static int
3257spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3258    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3259    vdev_labeltype_t label)
3260{
3261	nvlist_t **dev;
3262	uint_t i, ndev;
3263	vdev_t *vd;
3264	int error;
3265
3266	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3267
3268	/*
3269	 * It's acceptable to have no devs specified.
3270	 */
3271	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3272		return (0);
3273
3274	if (ndev == 0)
3275		return (SET_ERROR(EINVAL));
3276
3277	/*
3278	 * Make sure the pool is formatted with a version that supports this
3279	 * device type.
3280	 */
3281	if (spa_version(spa) < version)
3282		return (SET_ERROR(ENOTSUP));
3283
3284	/*
3285	 * Set the pending device list so we correctly handle device in-use
3286	 * checking.
3287	 */
3288	sav->sav_pending = dev;
3289	sav->sav_npending = ndev;
3290
3291	for (i = 0; i < ndev; i++) {
3292		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3293		    mode)) != 0)
3294			goto out;
3295
3296		if (!vd->vdev_ops->vdev_op_leaf) {
3297			vdev_free(vd);
3298			error = SET_ERROR(EINVAL);
3299			goto out;
3300		}
3301
3302		/*
3303		 * The L2ARC currently only supports disk devices in
3304		 * kernel context.  For user-level testing, we allow it.
3305		 */
3306#ifdef _KERNEL
3307		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3308		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3309			error = SET_ERROR(ENOTBLK);
3310			vdev_free(vd);
3311			goto out;
3312		}
3313#endif
3314		vd->vdev_top = vd;
3315
3316		if ((error = vdev_open(vd)) == 0 &&
3317		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3318			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3319			    vd->vdev_guid) == 0);
3320		}
3321
3322		vdev_free(vd);
3323
3324		if (error &&
3325		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3326			goto out;
3327		else
3328			error = 0;
3329	}
3330
3331out:
3332	sav->sav_pending = NULL;
3333	sav->sav_npending = 0;
3334	return (error);
3335}
3336
3337static int
3338spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3339{
3340	int error;
3341
3342	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3343
3344	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3345	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3346	    VDEV_LABEL_SPARE)) != 0) {
3347		return (error);
3348	}
3349
3350	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3351	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3352	    VDEV_LABEL_L2CACHE));
3353}
3354
3355static void
3356spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3357    const char *config)
3358{
3359	int i;
3360
3361	if (sav->sav_config != NULL) {
3362		nvlist_t **olddevs;
3363		uint_t oldndevs;
3364		nvlist_t **newdevs;
3365
3366		/*
3367		 * Generate new dev list by concatentating with the
3368		 * current dev list.
3369		 */
3370		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3371		    &olddevs, &oldndevs) == 0);
3372
3373		newdevs = kmem_alloc(sizeof (void *) *
3374		    (ndevs + oldndevs), KM_SLEEP);
3375		for (i = 0; i < oldndevs; i++)
3376			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3377			    KM_SLEEP) == 0);
3378		for (i = 0; i < ndevs; i++)
3379			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3380			    KM_SLEEP) == 0);
3381
3382		VERIFY(nvlist_remove(sav->sav_config, config,
3383		    DATA_TYPE_NVLIST_ARRAY) == 0);
3384
3385		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3386		    config, newdevs, ndevs + oldndevs) == 0);
3387		for (i = 0; i < oldndevs + ndevs; i++)
3388			nvlist_free(newdevs[i]);
3389		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3390	} else {
3391		/*
3392		 * Generate a new dev list.
3393		 */
3394		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3395		    KM_SLEEP) == 0);
3396		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3397		    devs, ndevs) == 0);
3398	}
3399}
3400
3401/*
3402 * Stop and drop level 2 ARC devices
3403 */
3404void
3405spa_l2cache_drop(spa_t *spa)
3406{
3407	vdev_t *vd;
3408	int i;
3409	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3410
3411	for (i = 0; i < sav->sav_count; i++) {
3412		uint64_t pool;
3413
3414		vd = sav->sav_vdevs[i];
3415		ASSERT(vd != NULL);
3416
3417		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3418		    pool != 0ULL && l2arc_vdev_present(vd))
3419			l2arc_remove_vdev(vd);
3420	}
3421}
3422
3423/*
3424 * Pool Creation
3425 */
3426int
3427spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3428    nvlist_t *zplprops)
3429{
3430	spa_t *spa;
3431	char *altroot = NULL;
3432	vdev_t *rvd;
3433	dsl_pool_t *dp;
3434	dmu_tx_t *tx;
3435	int error = 0;
3436	uint64_t txg = TXG_INITIAL;
3437	nvlist_t **spares, **l2cache;
3438	uint_t nspares, nl2cache;
3439	uint64_t version, obj;
3440	boolean_t has_features;
3441
3442	/*
3443	 * If this pool already exists, return failure.
3444	 */
3445	mutex_enter(&spa_namespace_lock);
3446	if (spa_lookup(pool) != NULL) {
3447		mutex_exit(&spa_namespace_lock);
3448		return (SET_ERROR(EEXIST));
3449	}
3450
3451	/*
3452	 * Allocate a new spa_t structure.
3453	 */
3454	(void) nvlist_lookup_string(props,
3455	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3456	spa = spa_add(pool, NULL, altroot);
3457	spa_activate(spa, spa_mode_global);
3458
3459	if (props && (error = spa_prop_validate(spa, props))) {
3460		spa_deactivate(spa);
3461		spa_remove(spa);
3462		mutex_exit(&spa_namespace_lock);
3463		return (error);
3464	}
3465
3466	has_features = B_FALSE;
3467	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3468	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3469		if (zpool_prop_feature(nvpair_name(elem)))
3470			has_features = B_TRUE;
3471	}
3472
3473	if (has_features || nvlist_lookup_uint64(props,
3474	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3475		version = SPA_VERSION;
3476	}
3477	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3478
3479	spa->spa_first_txg = txg;
3480	spa->spa_uberblock.ub_txg = txg - 1;
3481	spa->spa_uberblock.ub_version = version;
3482	spa->spa_ubsync = spa->spa_uberblock;
3483
3484	/*
3485	 * Create "The Godfather" zio to hold all async IOs
3486	 */
3487	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3488	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3489
3490	/*
3491	 * Create the root vdev.
3492	 */
3493	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3494
3495	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3496
3497	ASSERT(error != 0 || rvd != NULL);
3498	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3499
3500	if (error == 0 && !zfs_allocatable_devs(nvroot))
3501		error = SET_ERROR(EINVAL);
3502
3503	if (error == 0 &&
3504	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3505	    (error = spa_validate_aux(spa, nvroot, txg,
3506	    VDEV_ALLOC_ADD)) == 0) {
3507		for (int c = 0; c < rvd->vdev_children; c++) {
3508			vdev_ashift_optimize(rvd->vdev_child[c]);
3509			vdev_metaslab_set_size(rvd->vdev_child[c]);
3510			vdev_expand(rvd->vdev_child[c], txg);
3511		}
3512	}
3513
3514	spa_config_exit(spa, SCL_ALL, FTAG);
3515
3516	if (error != 0) {
3517		spa_unload(spa);
3518		spa_deactivate(spa);
3519		spa_remove(spa);
3520		mutex_exit(&spa_namespace_lock);
3521		return (error);
3522	}
3523
3524	/*
3525	 * Get the list of spares, if specified.
3526	 */
3527	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3528	    &spares, &nspares) == 0) {
3529		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3530		    KM_SLEEP) == 0);
3531		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3532		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3533		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3534		spa_load_spares(spa);
3535		spa_config_exit(spa, SCL_ALL, FTAG);
3536		spa->spa_spares.sav_sync = B_TRUE;
3537	}
3538
3539	/*
3540	 * Get the list of level 2 cache devices, if specified.
3541	 */
3542	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3543	    &l2cache, &nl2cache) == 0) {
3544		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3545		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3546		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3547		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3548		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3549		spa_load_l2cache(spa);
3550		spa_config_exit(spa, SCL_ALL, FTAG);
3551		spa->spa_l2cache.sav_sync = B_TRUE;
3552	}
3553
3554	spa->spa_is_initializing = B_TRUE;
3555	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3556	spa->spa_meta_objset = dp->dp_meta_objset;
3557	spa->spa_is_initializing = B_FALSE;
3558
3559	/*
3560	 * Create DDTs (dedup tables).
3561	 */
3562	ddt_create(spa);
3563
3564	spa_update_dspace(spa);
3565
3566	tx = dmu_tx_create_assigned(dp, txg);
3567
3568	/*
3569	 * Create the pool config object.
3570	 */
3571	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3572	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3573	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3574
3575	if (zap_add(spa->spa_meta_objset,
3576	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3577	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3578		cmn_err(CE_PANIC, "failed to add pool config");
3579	}
3580
3581	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3582		spa_feature_create_zap_objects(spa, tx);
3583
3584	if (zap_add(spa->spa_meta_objset,
3585	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3586	    sizeof (uint64_t), 1, &version, tx) != 0) {
3587		cmn_err(CE_PANIC, "failed to add pool version");
3588	}
3589
3590	/* Newly created pools with the right version are always deflated. */
3591	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3592		spa->spa_deflate = TRUE;
3593		if (zap_add(spa->spa_meta_objset,
3594		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3595		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3596			cmn_err(CE_PANIC, "failed to add deflate");
3597		}
3598	}
3599
3600	/*
3601	 * Create the deferred-free bpobj.  Turn off compression
3602	 * because sync-to-convergence takes longer if the blocksize
3603	 * keeps changing.
3604	 */
3605	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3606	dmu_object_set_compress(spa->spa_meta_objset, obj,
3607	    ZIO_COMPRESS_OFF, tx);
3608	if (zap_add(spa->spa_meta_objset,
3609	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3610	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3611		cmn_err(CE_PANIC, "failed to add bpobj");
3612	}
3613	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3614	    spa->spa_meta_objset, obj));
3615
3616	/*
3617	 * Create the pool's history object.
3618	 */
3619	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3620		spa_history_create_obj(spa, tx);
3621
3622	/*
3623	 * Set pool properties.
3624	 */
3625	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3626	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3627	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3628	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3629
3630	if (props != NULL) {
3631		spa_configfile_set(spa, props, B_FALSE);
3632		spa_sync_props(props, tx);
3633	}
3634
3635	dmu_tx_commit(tx);
3636
3637	spa->spa_sync_on = B_TRUE;
3638	txg_sync_start(spa->spa_dsl_pool);
3639
3640	/*
3641	 * We explicitly wait for the first transaction to complete so that our
3642	 * bean counters are appropriately updated.
3643	 */
3644	txg_wait_synced(spa->spa_dsl_pool, txg);
3645
3646	spa_config_sync(spa, B_FALSE, B_TRUE);
3647
3648	spa_history_log_version(spa, "create");
3649
3650	spa->spa_minref = refcount_count(&spa->spa_refcount);
3651
3652	mutex_exit(&spa_namespace_lock);
3653
3654	return (0);
3655}
3656
3657#ifdef _KERNEL
3658#if defined(sun)
3659/*
3660 * Get the root pool information from the root disk, then import the root pool
3661 * during the system boot up time.
3662 */
3663extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3664
3665static nvlist_t *
3666spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3667{
3668	nvlist_t *config;
3669	nvlist_t *nvtop, *nvroot;
3670	uint64_t pgid;
3671
3672	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3673		return (NULL);
3674
3675	/*
3676	 * Add this top-level vdev to the child array.
3677	 */
3678	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3679	    &nvtop) == 0);
3680	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3681	    &pgid) == 0);
3682	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3683
3684	/*
3685	 * Put this pool's top-level vdevs into a root vdev.
3686	 */
3687	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3688	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3689	    VDEV_TYPE_ROOT) == 0);
3690	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3691	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3692	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3693	    &nvtop, 1) == 0);
3694
3695	/*
3696	 * Replace the existing vdev_tree with the new root vdev in
3697	 * this pool's configuration (remove the old, add the new).
3698	 */
3699	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3700	nvlist_free(nvroot);
3701	return (config);
3702}
3703
3704/*
3705 * Walk the vdev tree and see if we can find a device with "better"
3706 * configuration. A configuration is "better" if the label on that
3707 * device has a more recent txg.
3708 */
3709static void
3710spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3711{
3712	for (int c = 0; c < vd->vdev_children; c++)
3713		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3714
3715	if (vd->vdev_ops->vdev_op_leaf) {
3716		nvlist_t *label;
3717		uint64_t label_txg;
3718
3719		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3720		    &label) != 0)
3721			return;
3722
3723		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3724		    &label_txg) == 0);
3725
3726		/*
3727		 * Do we have a better boot device?
3728		 */
3729		if (label_txg > *txg) {
3730			*txg = label_txg;
3731			*avd = vd;
3732		}
3733		nvlist_free(label);
3734	}
3735}
3736
3737/*
3738 * Import a root pool.
3739 *
3740 * For x86. devpath_list will consist of devid and/or physpath name of
3741 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3742 * The GRUB "findroot" command will return the vdev we should boot.
3743 *
3744 * For Sparc, devpath_list consists the physpath name of the booting device
3745 * no matter the rootpool is a single device pool or a mirrored pool.
3746 * e.g.
3747 *	"/pci@1f,0/ide@d/disk@0,0:a"
3748 */
3749int
3750spa_import_rootpool(char *devpath, char *devid)
3751{
3752	spa_t *spa;
3753	vdev_t *rvd, *bvd, *avd = NULL;
3754	nvlist_t *config, *nvtop;
3755	uint64_t guid, txg;
3756	char *pname;
3757	int error;
3758
3759	/*
3760	 * Read the label from the boot device and generate a configuration.
3761	 */
3762	config = spa_generate_rootconf(devpath, devid, &guid);
3763#if defined(_OBP) && defined(_KERNEL)
3764	if (config == NULL) {
3765		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3766			/* iscsi boot */
3767			get_iscsi_bootpath_phy(devpath);
3768			config = spa_generate_rootconf(devpath, devid, &guid);
3769		}
3770	}
3771#endif
3772	if (config == NULL) {
3773		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3774		    devpath);
3775		return (SET_ERROR(EIO));
3776	}
3777
3778	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3779	    &pname) == 0);
3780	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3781
3782	mutex_enter(&spa_namespace_lock);
3783	if ((spa = spa_lookup(pname)) != NULL) {
3784		/*
3785		 * Remove the existing root pool from the namespace so that we
3786		 * can replace it with the correct config we just read in.
3787		 */
3788		spa_remove(spa);
3789	}
3790
3791	spa = spa_add(pname, config, NULL);
3792	spa->spa_is_root = B_TRUE;
3793	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3794
3795	/*
3796	 * Build up a vdev tree based on the boot device's label config.
3797	 */
3798	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3799	    &nvtop) == 0);
3800	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3801	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3802	    VDEV_ALLOC_ROOTPOOL);
3803	spa_config_exit(spa, SCL_ALL, FTAG);
3804	if (error) {
3805		mutex_exit(&spa_namespace_lock);
3806		nvlist_free(config);
3807		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3808		    pname);
3809		return (error);
3810	}
3811
3812	/*
3813	 * Get the boot vdev.
3814	 */
3815	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3816		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3817		    (u_longlong_t)guid);
3818		error = SET_ERROR(ENOENT);
3819		goto out;
3820	}
3821
3822	/*
3823	 * Determine if there is a better boot device.
3824	 */
3825	avd = bvd;
3826	spa_alt_rootvdev(rvd, &avd, &txg);
3827	if (avd != bvd) {
3828		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3829		    "try booting from '%s'", avd->vdev_path);
3830		error = SET_ERROR(EINVAL);
3831		goto out;
3832	}
3833
3834	/*
3835	 * If the boot device is part of a spare vdev then ensure that
3836	 * we're booting off the active spare.
3837	 */
3838	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3839	    !bvd->vdev_isspare) {
3840		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3841		    "try booting from '%s'",
3842		    bvd->vdev_parent->
3843		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3844		error = SET_ERROR(EINVAL);
3845		goto out;
3846	}
3847
3848	error = 0;
3849out:
3850	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3851	vdev_free(rvd);
3852	spa_config_exit(spa, SCL_ALL, FTAG);
3853	mutex_exit(&spa_namespace_lock);
3854
3855	nvlist_free(config);
3856	return (error);
3857}
3858
3859#else
3860
3861extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3862    uint64_t *count);
3863
3864static nvlist_t *
3865spa_generate_rootconf(const char *name)
3866{
3867	nvlist_t **configs, **tops;
3868	nvlist_t *config;
3869	nvlist_t *best_cfg, *nvtop, *nvroot;
3870	uint64_t *holes;
3871	uint64_t best_txg;
3872	uint64_t nchildren;
3873	uint64_t pgid;
3874	uint64_t count;
3875	uint64_t i;
3876	uint_t   nholes;
3877
3878	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3879		return (NULL);
3880
3881	ASSERT3U(count, !=, 0);
3882	best_txg = 0;
3883	for (i = 0; i < count; i++) {
3884		uint64_t txg;
3885
3886		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3887		    &txg) == 0);
3888		if (txg > best_txg) {
3889			best_txg = txg;
3890			best_cfg = configs[i];
3891		}
3892	}
3893
3894	/*
3895	 * Multi-vdev root pool configuration discovery is not supported yet.
3896	 */
3897	nchildren = 1;
3898	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3899	holes = NULL;
3900	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3901	    &holes, &nholes);
3902
3903	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3904	for (i = 0; i < nchildren; i++) {
3905		if (i >= count)
3906			break;
3907		if (configs[i] == NULL)
3908			continue;
3909		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3910		    &nvtop) == 0);
3911		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3912	}
3913	for (i = 0; holes != NULL && i < nholes; i++) {
3914		if (i >= nchildren)
3915			continue;
3916		if (tops[holes[i]] != NULL)
3917			continue;
3918		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3919		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3920		    VDEV_TYPE_HOLE) == 0);
3921		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3922		    holes[i]) == 0);
3923		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3924		    0) == 0);
3925	}
3926	for (i = 0; i < nchildren; i++) {
3927		if (tops[i] != NULL)
3928			continue;
3929		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3930		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3931		    VDEV_TYPE_MISSING) == 0);
3932		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3933		    i) == 0);
3934		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3935		    0) == 0);
3936	}
3937
3938	/*
3939	 * Create pool config based on the best vdev config.
3940	 */
3941	nvlist_dup(best_cfg, &config, KM_SLEEP);
3942
3943	/*
3944	 * Put this pool's top-level vdevs into a root vdev.
3945	 */
3946	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3947	    &pgid) == 0);
3948	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3949	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3950	    VDEV_TYPE_ROOT) == 0);
3951	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3952	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3953	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3954	    tops, nchildren) == 0);
3955
3956	/*
3957	 * Replace the existing vdev_tree with the new root vdev in
3958	 * this pool's configuration (remove the old, add the new).
3959	 */
3960	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3961
3962	/*
3963	 * Drop vdev config elements that should not be present at pool level.
3964	 */
3965	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3966	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3967
3968	for (i = 0; i < count; i++)
3969		nvlist_free(configs[i]);
3970	kmem_free(configs, count * sizeof(void *));
3971	for (i = 0; i < nchildren; i++)
3972		nvlist_free(tops[i]);
3973	kmem_free(tops, nchildren * sizeof(void *));
3974	nvlist_free(nvroot);
3975	return (config);
3976}
3977
3978int
3979spa_import_rootpool(const char *name)
3980{
3981	spa_t *spa;
3982	vdev_t *rvd, *bvd, *avd = NULL;
3983	nvlist_t *config, *nvtop;
3984	uint64_t txg;
3985	char *pname;
3986	int error;
3987
3988	/*
3989	 * Read the label from the boot device and generate a configuration.
3990	 */
3991	config = spa_generate_rootconf(name);
3992
3993	mutex_enter(&spa_namespace_lock);
3994	if (config != NULL) {
3995		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3996		    &pname) == 0 && strcmp(name, pname) == 0);
3997		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3998		    == 0);
3999
4000		if ((spa = spa_lookup(pname)) != NULL) {
4001			/*
4002			 * Remove the existing root pool from the namespace so
4003			 * that we can replace it with the correct config
4004			 * we just read in.
4005			 */
4006			spa_remove(spa);
4007		}
4008		spa = spa_add(pname, config, NULL);
4009
4010		/*
4011		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4012		 * via spa_version().
4013		 */
4014		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4015		    &spa->spa_ubsync.ub_version) != 0)
4016			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4017	} else if ((spa = spa_lookup(name)) == NULL) {
4018		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4019		    name);
4020		return (EIO);
4021	} else {
4022		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4023	}
4024	spa->spa_is_root = B_TRUE;
4025	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4026
4027	/*
4028	 * Build up a vdev tree based on the boot device's label config.
4029	 */
4030	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4031	    &nvtop) == 0);
4032	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4033	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4034	    VDEV_ALLOC_ROOTPOOL);
4035	spa_config_exit(spa, SCL_ALL, FTAG);
4036	if (error) {
4037		mutex_exit(&spa_namespace_lock);
4038		nvlist_free(config);
4039		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4040		    pname);
4041		return (error);
4042	}
4043
4044	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4045	vdev_free(rvd);
4046	spa_config_exit(spa, SCL_ALL, FTAG);
4047	mutex_exit(&spa_namespace_lock);
4048
4049	nvlist_free(config);
4050	return (0);
4051}
4052
4053#endif	/* sun */
4054#endif
4055
4056/*
4057 * Import a non-root pool into the system.
4058 */
4059int
4060spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4061{
4062	spa_t *spa;
4063	char *altroot = NULL;
4064	spa_load_state_t state = SPA_LOAD_IMPORT;
4065	zpool_rewind_policy_t policy;
4066	uint64_t mode = spa_mode_global;
4067	uint64_t readonly = B_FALSE;
4068	int error;
4069	nvlist_t *nvroot;
4070	nvlist_t **spares, **l2cache;
4071	uint_t nspares, nl2cache;
4072
4073	/*
4074	 * If a pool with this name exists, return failure.
4075	 */
4076	mutex_enter(&spa_namespace_lock);
4077	if (spa_lookup(pool) != NULL) {
4078		mutex_exit(&spa_namespace_lock);
4079		return (SET_ERROR(EEXIST));
4080	}
4081
4082	/*
4083	 * Create and initialize the spa structure.
4084	 */
4085	(void) nvlist_lookup_string(props,
4086	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4087	(void) nvlist_lookup_uint64(props,
4088	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4089	if (readonly)
4090		mode = FREAD;
4091	spa = spa_add(pool, config, altroot);
4092	spa->spa_import_flags = flags;
4093
4094	/*
4095	 * Verbatim import - Take a pool and insert it into the namespace
4096	 * as if it had been loaded at boot.
4097	 */
4098	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4099		if (props != NULL)
4100			spa_configfile_set(spa, props, B_FALSE);
4101
4102		spa_config_sync(spa, B_FALSE, B_TRUE);
4103
4104		mutex_exit(&spa_namespace_lock);
4105		return (0);
4106	}
4107
4108	spa_activate(spa, mode);
4109
4110	/*
4111	 * Don't start async tasks until we know everything is healthy.
4112	 */
4113	spa_async_suspend(spa);
4114
4115	zpool_get_rewind_policy(config, &policy);
4116	if (policy.zrp_request & ZPOOL_DO_REWIND)
4117		state = SPA_LOAD_RECOVER;
4118
4119	/*
4120	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4121	 * because the user-supplied config is actually the one to trust when
4122	 * doing an import.
4123	 */
4124	if (state != SPA_LOAD_RECOVER)
4125		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4126
4127	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4128	    policy.zrp_request);
4129
4130	/*
4131	 * Propagate anything learned while loading the pool and pass it
4132	 * back to caller (i.e. rewind info, missing devices, etc).
4133	 */
4134	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4135	    spa->spa_load_info) == 0);
4136
4137	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4138	/*
4139	 * Toss any existing sparelist, as it doesn't have any validity
4140	 * anymore, and conflicts with spa_has_spare().
4141	 */
4142	if (spa->spa_spares.sav_config) {
4143		nvlist_free(spa->spa_spares.sav_config);
4144		spa->spa_spares.sav_config = NULL;
4145		spa_load_spares(spa);
4146	}
4147	if (spa->spa_l2cache.sav_config) {
4148		nvlist_free(spa->spa_l2cache.sav_config);
4149		spa->spa_l2cache.sav_config = NULL;
4150		spa_load_l2cache(spa);
4151	}
4152
4153	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4154	    &nvroot) == 0);
4155	if (error == 0)
4156		error = spa_validate_aux(spa, nvroot, -1ULL,
4157		    VDEV_ALLOC_SPARE);
4158	if (error == 0)
4159		error = spa_validate_aux(spa, nvroot, -1ULL,
4160		    VDEV_ALLOC_L2CACHE);
4161	spa_config_exit(spa, SCL_ALL, FTAG);
4162
4163	if (props != NULL)
4164		spa_configfile_set(spa, props, B_FALSE);
4165
4166	if (error != 0 || (props && spa_writeable(spa) &&
4167	    (error = spa_prop_set(spa, props)))) {
4168		spa_unload(spa);
4169		spa_deactivate(spa);
4170		spa_remove(spa);
4171		mutex_exit(&spa_namespace_lock);
4172		return (error);
4173	}
4174
4175	spa_async_resume(spa);
4176
4177	/*
4178	 * Override any spares and level 2 cache devices as specified by
4179	 * the user, as these may have correct device names/devids, etc.
4180	 */
4181	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4182	    &spares, &nspares) == 0) {
4183		if (spa->spa_spares.sav_config)
4184			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4185			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4186		else
4187			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4188			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4189		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4190		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4191		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4192		spa_load_spares(spa);
4193		spa_config_exit(spa, SCL_ALL, FTAG);
4194		spa->spa_spares.sav_sync = B_TRUE;
4195	}
4196	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4197	    &l2cache, &nl2cache) == 0) {
4198		if (spa->spa_l2cache.sav_config)
4199			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4200			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4201		else
4202			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4203			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4204		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4205		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4206		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4207		spa_load_l2cache(spa);
4208		spa_config_exit(spa, SCL_ALL, FTAG);
4209		spa->spa_l2cache.sav_sync = B_TRUE;
4210	}
4211
4212	/*
4213	 * Check for any removed devices.
4214	 */
4215	if (spa->spa_autoreplace) {
4216		spa_aux_check_removed(&spa->spa_spares);
4217		spa_aux_check_removed(&spa->spa_l2cache);
4218	}
4219
4220	if (spa_writeable(spa)) {
4221		/*
4222		 * Update the config cache to include the newly-imported pool.
4223		 */
4224		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4225	}
4226
4227	/*
4228	 * It's possible that the pool was expanded while it was exported.
4229	 * We kick off an async task to handle this for us.
4230	 */
4231	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4232
4233	mutex_exit(&spa_namespace_lock);
4234	spa_history_log_version(spa, "import");
4235
4236#ifdef __FreeBSD__
4237#ifdef _KERNEL
4238	zvol_create_minors(pool);
4239#endif
4240#endif
4241	return (0);
4242}
4243
4244nvlist_t *
4245spa_tryimport(nvlist_t *tryconfig)
4246{
4247	nvlist_t *config = NULL;
4248	char *poolname;
4249	spa_t *spa;
4250	uint64_t state;
4251	int error;
4252
4253	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4254		return (NULL);
4255
4256	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4257		return (NULL);
4258
4259	/*
4260	 * Create and initialize the spa structure.
4261	 */
4262	mutex_enter(&spa_namespace_lock);
4263	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4264	spa_activate(spa, FREAD);
4265
4266	/*
4267	 * Pass off the heavy lifting to spa_load().
4268	 * Pass TRUE for mosconfig because the user-supplied config
4269	 * is actually the one to trust when doing an import.
4270	 */
4271	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4272
4273	/*
4274	 * If 'tryconfig' was at least parsable, return the current config.
4275	 */
4276	if (spa->spa_root_vdev != NULL) {
4277		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4278		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4279		    poolname) == 0);
4280		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4281		    state) == 0);
4282		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4283		    spa->spa_uberblock.ub_timestamp) == 0);
4284		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4285		    spa->spa_load_info) == 0);
4286
4287		/*
4288		 * If the bootfs property exists on this pool then we
4289		 * copy it out so that external consumers can tell which
4290		 * pools are bootable.
4291		 */
4292		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4293			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4294
4295			/*
4296			 * We have to play games with the name since the
4297			 * pool was opened as TRYIMPORT_NAME.
4298			 */
4299			if (dsl_dsobj_to_dsname(spa_name(spa),
4300			    spa->spa_bootfs, tmpname) == 0) {
4301				char *cp;
4302				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4303
4304				cp = strchr(tmpname, '/');
4305				if (cp == NULL) {
4306					(void) strlcpy(dsname, tmpname,
4307					    MAXPATHLEN);
4308				} else {
4309					(void) snprintf(dsname, MAXPATHLEN,
4310					    "%s/%s", poolname, ++cp);
4311				}
4312				VERIFY(nvlist_add_string(config,
4313				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4314				kmem_free(dsname, MAXPATHLEN);
4315			}
4316			kmem_free(tmpname, MAXPATHLEN);
4317		}
4318
4319		/*
4320		 * Add the list of hot spares and level 2 cache devices.
4321		 */
4322		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4323		spa_add_spares(spa, config);
4324		spa_add_l2cache(spa, config);
4325		spa_config_exit(spa, SCL_CONFIG, FTAG);
4326	}
4327
4328	spa_unload(spa);
4329	spa_deactivate(spa);
4330	spa_remove(spa);
4331	mutex_exit(&spa_namespace_lock);
4332
4333	return (config);
4334}
4335
4336/*
4337 * Pool export/destroy
4338 *
4339 * The act of destroying or exporting a pool is very simple.  We make sure there
4340 * is no more pending I/O and any references to the pool are gone.  Then, we
4341 * update the pool state and sync all the labels to disk, removing the
4342 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4343 * we don't sync the labels or remove the configuration cache.
4344 */
4345static int
4346spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4347    boolean_t force, boolean_t hardforce)
4348{
4349	spa_t *spa;
4350
4351	if (oldconfig)
4352		*oldconfig = NULL;
4353
4354	if (!(spa_mode_global & FWRITE))
4355		return (SET_ERROR(EROFS));
4356
4357	mutex_enter(&spa_namespace_lock);
4358	if ((spa = spa_lookup(pool)) == NULL) {
4359		mutex_exit(&spa_namespace_lock);
4360		return (SET_ERROR(ENOENT));
4361	}
4362
4363	/*
4364	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4365	 * reacquire the namespace lock, and see if we can export.
4366	 */
4367	spa_open_ref(spa, FTAG);
4368	mutex_exit(&spa_namespace_lock);
4369	spa_async_suspend(spa);
4370	mutex_enter(&spa_namespace_lock);
4371	spa_close(spa, FTAG);
4372
4373	/*
4374	 * The pool will be in core if it's openable,
4375	 * in which case we can modify its state.
4376	 */
4377	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4378		/*
4379		 * Objsets may be open only because they're dirty, so we
4380		 * have to force it to sync before checking spa_refcnt.
4381		 */
4382		txg_wait_synced(spa->spa_dsl_pool, 0);
4383
4384		/*
4385		 * A pool cannot be exported or destroyed if there are active
4386		 * references.  If we are resetting a pool, allow references by
4387		 * fault injection handlers.
4388		 */
4389		if (!spa_refcount_zero(spa) ||
4390		    (spa->spa_inject_ref != 0 &&
4391		    new_state != POOL_STATE_UNINITIALIZED)) {
4392			spa_async_resume(spa);
4393			mutex_exit(&spa_namespace_lock);
4394			return (SET_ERROR(EBUSY));
4395		}
4396
4397		/*
4398		 * A pool cannot be exported if it has an active shared spare.
4399		 * This is to prevent other pools stealing the active spare
4400		 * from an exported pool. At user's own will, such pool can
4401		 * be forcedly exported.
4402		 */
4403		if (!force && new_state == POOL_STATE_EXPORTED &&
4404		    spa_has_active_shared_spare(spa)) {
4405			spa_async_resume(spa);
4406			mutex_exit(&spa_namespace_lock);
4407			return (SET_ERROR(EXDEV));
4408		}
4409
4410		/*
4411		 * We want this to be reflected on every label,
4412		 * so mark them all dirty.  spa_unload() will do the
4413		 * final sync that pushes these changes out.
4414		 */
4415		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4416			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4417			spa->spa_state = new_state;
4418			spa->spa_final_txg = spa_last_synced_txg(spa) +
4419			    TXG_DEFER_SIZE + 1;
4420			vdev_config_dirty(spa->spa_root_vdev);
4421			spa_config_exit(spa, SCL_ALL, FTAG);
4422		}
4423	}
4424
4425	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4426
4427	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4428		spa_unload(spa);
4429		spa_deactivate(spa);
4430	}
4431
4432	if (oldconfig && spa->spa_config)
4433		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4434
4435	if (new_state != POOL_STATE_UNINITIALIZED) {
4436		if (!hardforce)
4437			spa_config_sync(spa, B_TRUE, B_TRUE);
4438		spa_remove(spa);
4439	}
4440	mutex_exit(&spa_namespace_lock);
4441
4442	return (0);
4443}
4444
4445/*
4446 * Destroy a storage pool.
4447 */
4448int
4449spa_destroy(char *pool)
4450{
4451	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4452	    B_FALSE, B_FALSE));
4453}
4454
4455/*
4456 * Export a storage pool.
4457 */
4458int
4459spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4460    boolean_t hardforce)
4461{
4462	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4463	    force, hardforce));
4464}
4465
4466/*
4467 * Similar to spa_export(), this unloads the spa_t without actually removing it
4468 * from the namespace in any way.
4469 */
4470int
4471spa_reset(char *pool)
4472{
4473	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4474	    B_FALSE, B_FALSE));
4475}
4476
4477/*
4478 * ==========================================================================
4479 * Device manipulation
4480 * ==========================================================================
4481 */
4482
4483/*
4484 * Add a device to a storage pool.
4485 */
4486int
4487spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4488{
4489	uint64_t txg, id;
4490	int error;
4491	vdev_t *rvd = spa->spa_root_vdev;
4492	vdev_t *vd, *tvd;
4493	nvlist_t **spares, **l2cache;
4494	uint_t nspares, nl2cache;
4495
4496	ASSERT(spa_writeable(spa));
4497
4498	txg = spa_vdev_enter(spa);
4499
4500	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4501	    VDEV_ALLOC_ADD)) != 0)
4502		return (spa_vdev_exit(spa, NULL, txg, error));
4503
4504	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4505
4506	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4507	    &nspares) != 0)
4508		nspares = 0;
4509
4510	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4511	    &nl2cache) != 0)
4512		nl2cache = 0;
4513
4514	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4515		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4516
4517	if (vd->vdev_children != 0 &&
4518	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4519		return (spa_vdev_exit(spa, vd, txg, error));
4520
4521	/*
4522	 * We must validate the spares and l2cache devices after checking the
4523	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4524	 */
4525	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4526		return (spa_vdev_exit(spa, vd, txg, error));
4527
4528	/*
4529	 * Transfer each new top-level vdev from vd to rvd.
4530	 */
4531	for (int c = 0; c < vd->vdev_children; c++) {
4532
4533		/*
4534		 * Set the vdev id to the first hole, if one exists.
4535		 */
4536		for (id = 0; id < rvd->vdev_children; id++) {
4537			if (rvd->vdev_child[id]->vdev_ishole) {
4538				vdev_free(rvd->vdev_child[id]);
4539				break;
4540			}
4541		}
4542		tvd = vd->vdev_child[c];
4543		vdev_remove_child(vd, tvd);
4544		tvd->vdev_id = id;
4545		vdev_add_child(rvd, tvd);
4546		vdev_config_dirty(tvd);
4547	}
4548
4549	if (nspares != 0) {
4550		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4551		    ZPOOL_CONFIG_SPARES);
4552		spa_load_spares(spa);
4553		spa->spa_spares.sav_sync = B_TRUE;
4554	}
4555
4556	if (nl2cache != 0) {
4557		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4558		    ZPOOL_CONFIG_L2CACHE);
4559		spa_load_l2cache(spa);
4560		spa->spa_l2cache.sav_sync = B_TRUE;
4561	}
4562
4563	/*
4564	 * We have to be careful when adding new vdevs to an existing pool.
4565	 * If other threads start allocating from these vdevs before we
4566	 * sync the config cache, and we lose power, then upon reboot we may
4567	 * fail to open the pool because there are DVAs that the config cache
4568	 * can't translate.  Therefore, we first add the vdevs without
4569	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4570	 * and then let spa_config_update() initialize the new metaslabs.
4571	 *
4572	 * spa_load() checks for added-but-not-initialized vdevs, so that
4573	 * if we lose power at any point in this sequence, the remaining
4574	 * steps will be completed the next time we load the pool.
4575	 */
4576	(void) spa_vdev_exit(spa, vd, txg, 0);
4577
4578	mutex_enter(&spa_namespace_lock);
4579	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4580	mutex_exit(&spa_namespace_lock);
4581
4582	return (0);
4583}
4584
4585/*
4586 * Attach a device to a mirror.  The arguments are the path to any device
4587 * in the mirror, and the nvroot for the new device.  If the path specifies
4588 * a device that is not mirrored, we automatically insert the mirror vdev.
4589 *
4590 * If 'replacing' is specified, the new device is intended to replace the
4591 * existing device; in this case the two devices are made into their own
4592 * mirror using the 'replacing' vdev, which is functionally identical to
4593 * the mirror vdev (it actually reuses all the same ops) but has a few
4594 * extra rules: you can't attach to it after it's been created, and upon
4595 * completion of resilvering, the first disk (the one being replaced)
4596 * is automatically detached.
4597 */
4598int
4599spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4600{
4601	uint64_t txg, dtl_max_txg;
4602	vdev_t *rvd = spa->spa_root_vdev;
4603	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4604	vdev_ops_t *pvops;
4605	char *oldvdpath, *newvdpath;
4606	int newvd_isspare;
4607	int error;
4608
4609	ASSERT(spa_writeable(spa));
4610
4611	txg = spa_vdev_enter(spa);
4612
4613	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4614
4615	if (oldvd == NULL)
4616		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4617
4618	if (!oldvd->vdev_ops->vdev_op_leaf)
4619		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4620
4621	pvd = oldvd->vdev_parent;
4622
4623	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4624	    VDEV_ALLOC_ATTACH)) != 0)
4625		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4626
4627	if (newrootvd->vdev_children != 1)
4628		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4629
4630	newvd = newrootvd->vdev_child[0];
4631
4632	if (!newvd->vdev_ops->vdev_op_leaf)
4633		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4634
4635	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4636		return (spa_vdev_exit(spa, newrootvd, txg, error));
4637
4638	/*
4639	 * Spares can't replace logs
4640	 */
4641	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4642		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4643
4644	if (!replacing) {
4645		/*
4646		 * For attach, the only allowable parent is a mirror or the root
4647		 * vdev.
4648		 */
4649		if (pvd->vdev_ops != &vdev_mirror_ops &&
4650		    pvd->vdev_ops != &vdev_root_ops)
4651			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4652
4653		pvops = &vdev_mirror_ops;
4654	} else {
4655		/*
4656		 * Active hot spares can only be replaced by inactive hot
4657		 * spares.
4658		 */
4659		if (pvd->vdev_ops == &vdev_spare_ops &&
4660		    oldvd->vdev_isspare &&
4661		    !spa_has_spare(spa, newvd->vdev_guid))
4662			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4663
4664		/*
4665		 * If the source is a hot spare, and the parent isn't already a
4666		 * spare, then we want to create a new hot spare.  Otherwise, we
4667		 * want to create a replacing vdev.  The user is not allowed to
4668		 * attach to a spared vdev child unless the 'isspare' state is
4669		 * the same (spare replaces spare, non-spare replaces
4670		 * non-spare).
4671		 */
4672		if (pvd->vdev_ops == &vdev_replacing_ops &&
4673		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4674			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4675		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4676		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4677			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4678		}
4679
4680		if (newvd->vdev_isspare)
4681			pvops = &vdev_spare_ops;
4682		else
4683			pvops = &vdev_replacing_ops;
4684	}
4685
4686	/*
4687	 * Make sure the new device is big enough.
4688	 */
4689	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4690		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4691
4692	/*
4693	 * The new device cannot have a higher alignment requirement
4694	 * than the top-level vdev.
4695	 */
4696	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4697		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4698
4699	/*
4700	 * If this is an in-place replacement, update oldvd's path and devid
4701	 * to make it distinguishable from newvd, and unopenable from now on.
4702	 */
4703	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4704		spa_strfree(oldvd->vdev_path);
4705		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4706		    KM_SLEEP);
4707		(void) sprintf(oldvd->vdev_path, "%s/%s",
4708		    newvd->vdev_path, "old");
4709		if (oldvd->vdev_devid != NULL) {
4710			spa_strfree(oldvd->vdev_devid);
4711			oldvd->vdev_devid = NULL;
4712		}
4713	}
4714
4715	/* mark the device being resilvered */
4716	newvd->vdev_resilver_txg = txg;
4717
4718	/*
4719	 * If the parent is not a mirror, or if we're replacing, insert the new
4720	 * mirror/replacing/spare vdev above oldvd.
4721	 */
4722	if (pvd->vdev_ops != pvops)
4723		pvd = vdev_add_parent(oldvd, pvops);
4724
4725	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4726	ASSERT(pvd->vdev_ops == pvops);
4727	ASSERT(oldvd->vdev_parent == pvd);
4728
4729	/*
4730	 * Extract the new device from its root and add it to pvd.
4731	 */
4732	vdev_remove_child(newrootvd, newvd);
4733	newvd->vdev_id = pvd->vdev_children;
4734	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4735	vdev_add_child(pvd, newvd);
4736
4737	tvd = newvd->vdev_top;
4738	ASSERT(pvd->vdev_top == tvd);
4739	ASSERT(tvd->vdev_parent == rvd);
4740
4741	vdev_config_dirty(tvd);
4742
4743	/*
4744	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4745	 * for any dmu_sync-ed blocks.  It will propagate upward when
4746	 * spa_vdev_exit() calls vdev_dtl_reassess().
4747	 */
4748	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4749
4750	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4751	    dtl_max_txg - TXG_INITIAL);
4752
4753	if (newvd->vdev_isspare) {
4754		spa_spare_activate(newvd);
4755		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4756	}
4757
4758	oldvdpath = spa_strdup(oldvd->vdev_path);
4759	newvdpath = spa_strdup(newvd->vdev_path);
4760	newvd_isspare = newvd->vdev_isspare;
4761
4762	/*
4763	 * Mark newvd's DTL dirty in this txg.
4764	 */
4765	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4766
4767	/*
4768	 * Restart the resilver
4769	 */
4770	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4771
4772	/*
4773	 * Commit the config
4774	 */
4775	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4776
4777	spa_history_log_internal(spa, "vdev attach", NULL,
4778	    "%s vdev=%s %s vdev=%s",
4779	    replacing && newvd_isspare ? "spare in" :
4780	    replacing ? "replace" : "attach", newvdpath,
4781	    replacing ? "for" : "to", oldvdpath);
4782
4783	spa_strfree(oldvdpath);
4784	spa_strfree(newvdpath);
4785
4786	if (spa->spa_bootfs)
4787		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4788
4789	return (0);
4790}
4791
4792/*
4793 * Detach a device from a mirror or replacing vdev.
4794 *
4795 * If 'replace_done' is specified, only detach if the parent
4796 * is a replacing vdev.
4797 */
4798int
4799spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4800{
4801	uint64_t txg;
4802	int error;
4803	vdev_t *rvd = spa->spa_root_vdev;
4804	vdev_t *vd, *pvd, *cvd, *tvd;
4805	boolean_t unspare = B_FALSE;
4806	uint64_t unspare_guid = 0;
4807	char *vdpath;
4808
4809	ASSERT(spa_writeable(spa));
4810
4811	txg = spa_vdev_enter(spa);
4812
4813	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4814
4815	if (vd == NULL)
4816		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4817
4818	if (!vd->vdev_ops->vdev_op_leaf)
4819		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4820
4821	pvd = vd->vdev_parent;
4822
4823	/*
4824	 * If the parent/child relationship is not as expected, don't do it.
4825	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4826	 * vdev that's replacing B with C.  The user's intent in replacing
4827	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4828	 * the replace by detaching C, the expected behavior is to end up
4829	 * M(A,B).  But suppose that right after deciding to detach C,
4830	 * the replacement of B completes.  We would have M(A,C), and then
4831	 * ask to detach C, which would leave us with just A -- not what
4832	 * the user wanted.  To prevent this, we make sure that the
4833	 * parent/child relationship hasn't changed -- in this example,
4834	 * that C's parent is still the replacing vdev R.
4835	 */
4836	if (pvd->vdev_guid != pguid && pguid != 0)
4837		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4838
4839	/*
4840	 * Only 'replacing' or 'spare' vdevs can be replaced.
4841	 */
4842	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4843	    pvd->vdev_ops != &vdev_spare_ops)
4844		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4845
4846	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4847	    spa_version(spa) >= SPA_VERSION_SPARES);
4848
4849	/*
4850	 * Only mirror, replacing, and spare vdevs support detach.
4851	 */
4852	if (pvd->vdev_ops != &vdev_replacing_ops &&
4853	    pvd->vdev_ops != &vdev_mirror_ops &&
4854	    pvd->vdev_ops != &vdev_spare_ops)
4855		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4856
4857	/*
4858	 * If this device has the only valid copy of some data,
4859	 * we cannot safely detach it.
4860	 */
4861	if (vdev_dtl_required(vd))
4862		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4863
4864	ASSERT(pvd->vdev_children >= 2);
4865
4866	/*
4867	 * If we are detaching the second disk from a replacing vdev, then
4868	 * check to see if we changed the original vdev's path to have "/old"
4869	 * at the end in spa_vdev_attach().  If so, undo that change now.
4870	 */
4871	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4872	    vd->vdev_path != NULL) {
4873		size_t len = strlen(vd->vdev_path);
4874
4875		for (int c = 0; c < pvd->vdev_children; c++) {
4876			cvd = pvd->vdev_child[c];
4877
4878			if (cvd == vd || cvd->vdev_path == NULL)
4879				continue;
4880
4881			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4882			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4883				spa_strfree(cvd->vdev_path);
4884				cvd->vdev_path = spa_strdup(vd->vdev_path);
4885				break;
4886			}
4887		}
4888	}
4889
4890	/*
4891	 * If we are detaching the original disk from a spare, then it implies
4892	 * that the spare should become a real disk, and be removed from the
4893	 * active spare list for the pool.
4894	 */
4895	if (pvd->vdev_ops == &vdev_spare_ops &&
4896	    vd->vdev_id == 0 &&
4897	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4898		unspare = B_TRUE;
4899
4900	/*
4901	 * Erase the disk labels so the disk can be used for other things.
4902	 * This must be done after all other error cases are handled,
4903	 * but before we disembowel vd (so we can still do I/O to it).
4904	 * But if we can't do it, don't treat the error as fatal --
4905	 * it may be that the unwritability of the disk is the reason
4906	 * it's being detached!
4907	 */
4908	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4909
4910	/*
4911	 * Remove vd from its parent and compact the parent's children.
4912	 */
4913	vdev_remove_child(pvd, vd);
4914	vdev_compact_children(pvd);
4915
4916	/*
4917	 * Remember one of the remaining children so we can get tvd below.
4918	 */
4919	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4920
4921	/*
4922	 * If we need to remove the remaining child from the list of hot spares,
4923	 * do it now, marking the vdev as no longer a spare in the process.
4924	 * We must do this before vdev_remove_parent(), because that can
4925	 * change the GUID if it creates a new toplevel GUID.  For a similar
4926	 * reason, we must remove the spare now, in the same txg as the detach;
4927	 * otherwise someone could attach a new sibling, change the GUID, and
4928	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4929	 */
4930	if (unspare) {
4931		ASSERT(cvd->vdev_isspare);
4932		spa_spare_remove(cvd);
4933		unspare_guid = cvd->vdev_guid;
4934		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4935		cvd->vdev_unspare = B_TRUE;
4936	}
4937
4938	/*
4939	 * If the parent mirror/replacing vdev only has one child,
4940	 * the parent is no longer needed.  Remove it from the tree.
4941	 */
4942	if (pvd->vdev_children == 1) {
4943		if (pvd->vdev_ops == &vdev_spare_ops)
4944			cvd->vdev_unspare = B_FALSE;
4945		vdev_remove_parent(cvd);
4946	}
4947
4948
4949	/*
4950	 * We don't set tvd until now because the parent we just removed
4951	 * may have been the previous top-level vdev.
4952	 */
4953	tvd = cvd->vdev_top;
4954	ASSERT(tvd->vdev_parent == rvd);
4955
4956	/*
4957	 * Reevaluate the parent vdev state.
4958	 */
4959	vdev_propagate_state(cvd);
4960
4961	/*
4962	 * If the 'autoexpand' property is set on the pool then automatically
4963	 * try to expand the size of the pool. For example if the device we
4964	 * just detached was smaller than the others, it may be possible to
4965	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4966	 * first so that we can obtain the updated sizes of the leaf vdevs.
4967	 */
4968	if (spa->spa_autoexpand) {
4969		vdev_reopen(tvd);
4970		vdev_expand(tvd, txg);
4971	}
4972
4973	vdev_config_dirty(tvd);
4974
4975	/*
4976	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4977	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4978	 * But first make sure we're not on any *other* txg's DTL list, to
4979	 * prevent vd from being accessed after it's freed.
4980	 */
4981	vdpath = spa_strdup(vd->vdev_path);
4982	for (int t = 0; t < TXG_SIZE; t++)
4983		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4984	vd->vdev_detached = B_TRUE;
4985	vdev_dirty(tvd, VDD_DTL, vd, txg);
4986
4987	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4988
4989	/* hang on to the spa before we release the lock */
4990	spa_open_ref(spa, FTAG);
4991
4992	error = spa_vdev_exit(spa, vd, txg, 0);
4993
4994	spa_history_log_internal(spa, "detach", NULL,
4995	    "vdev=%s", vdpath);
4996	spa_strfree(vdpath);
4997
4998	/*
4999	 * If this was the removal of the original device in a hot spare vdev,
5000	 * then we want to go through and remove the device from the hot spare
5001	 * list of every other pool.
5002	 */
5003	if (unspare) {
5004		spa_t *altspa = NULL;
5005
5006		mutex_enter(&spa_namespace_lock);
5007		while ((altspa = spa_next(altspa)) != NULL) {
5008			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5009			    altspa == spa)
5010				continue;
5011
5012			spa_open_ref(altspa, FTAG);
5013			mutex_exit(&spa_namespace_lock);
5014			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5015			mutex_enter(&spa_namespace_lock);
5016			spa_close(altspa, FTAG);
5017		}
5018		mutex_exit(&spa_namespace_lock);
5019
5020		/* search the rest of the vdevs for spares to remove */
5021		spa_vdev_resilver_done(spa);
5022	}
5023
5024	/* all done with the spa; OK to release */
5025	mutex_enter(&spa_namespace_lock);
5026	spa_close(spa, FTAG);
5027	mutex_exit(&spa_namespace_lock);
5028
5029	return (error);
5030}
5031
5032/*
5033 * Split a set of devices from their mirrors, and create a new pool from them.
5034 */
5035int
5036spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5037    nvlist_t *props, boolean_t exp)
5038{
5039	int error = 0;
5040	uint64_t txg, *glist;
5041	spa_t *newspa;
5042	uint_t c, children, lastlog;
5043	nvlist_t **child, *nvl, *tmp;
5044	dmu_tx_t *tx;
5045	char *altroot = NULL;
5046	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5047	boolean_t activate_slog;
5048
5049	ASSERT(spa_writeable(spa));
5050
5051	txg = spa_vdev_enter(spa);
5052
5053	/* clear the log and flush everything up to now */
5054	activate_slog = spa_passivate_log(spa);
5055	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5056	error = spa_offline_log(spa);
5057	txg = spa_vdev_config_enter(spa);
5058
5059	if (activate_slog)
5060		spa_activate_log(spa);
5061
5062	if (error != 0)
5063		return (spa_vdev_exit(spa, NULL, txg, error));
5064
5065	/* check new spa name before going any further */
5066	if (spa_lookup(newname) != NULL)
5067		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5068
5069	/*
5070	 * scan through all the children to ensure they're all mirrors
5071	 */
5072	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5073	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5074	    &children) != 0)
5075		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5076
5077	/* first, check to ensure we've got the right child count */
5078	rvd = spa->spa_root_vdev;
5079	lastlog = 0;
5080	for (c = 0; c < rvd->vdev_children; c++) {
5081		vdev_t *vd = rvd->vdev_child[c];
5082
5083		/* don't count the holes & logs as children */
5084		if (vd->vdev_islog || vd->vdev_ishole) {
5085			if (lastlog == 0)
5086				lastlog = c;
5087			continue;
5088		}
5089
5090		lastlog = 0;
5091	}
5092	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5093		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5094
5095	/* next, ensure no spare or cache devices are part of the split */
5096	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5097	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5098		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5099
5100	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5101	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5102
5103	/* then, loop over each vdev and validate it */
5104	for (c = 0; c < children; c++) {
5105		uint64_t is_hole = 0;
5106
5107		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5108		    &is_hole);
5109
5110		if (is_hole != 0) {
5111			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5112			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5113				continue;
5114			} else {
5115				error = SET_ERROR(EINVAL);
5116				break;
5117			}
5118		}
5119
5120		/* which disk is going to be split? */
5121		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5122		    &glist[c]) != 0) {
5123			error = SET_ERROR(EINVAL);
5124			break;
5125		}
5126
5127		/* look it up in the spa */
5128		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5129		if (vml[c] == NULL) {
5130			error = SET_ERROR(ENODEV);
5131			break;
5132		}
5133
5134		/* make sure there's nothing stopping the split */
5135		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5136		    vml[c]->vdev_islog ||
5137		    vml[c]->vdev_ishole ||
5138		    vml[c]->vdev_isspare ||
5139		    vml[c]->vdev_isl2cache ||
5140		    !vdev_writeable(vml[c]) ||
5141		    vml[c]->vdev_children != 0 ||
5142		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5143		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5144			error = SET_ERROR(EINVAL);
5145			break;
5146		}
5147
5148		if (vdev_dtl_required(vml[c])) {
5149			error = SET_ERROR(EBUSY);
5150			break;
5151		}
5152
5153		/* we need certain info from the top level */
5154		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5155		    vml[c]->vdev_top->vdev_ms_array) == 0);
5156		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5157		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5158		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5159		    vml[c]->vdev_top->vdev_asize) == 0);
5160		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5161		    vml[c]->vdev_top->vdev_ashift) == 0);
5162	}
5163
5164	if (error != 0) {
5165		kmem_free(vml, children * sizeof (vdev_t *));
5166		kmem_free(glist, children * sizeof (uint64_t));
5167		return (spa_vdev_exit(spa, NULL, txg, error));
5168	}
5169
5170	/* stop writers from using the disks */
5171	for (c = 0; c < children; c++) {
5172		if (vml[c] != NULL)
5173			vml[c]->vdev_offline = B_TRUE;
5174	}
5175	vdev_reopen(spa->spa_root_vdev);
5176
5177	/*
5178	 * Temporarily record the splitting vdevs in the spa config.  This
5179	 * will disappear once the config is regenerated.
5180	 */
5181	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5182	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5183	    glist, children) == 0);
5184	kmem_free(glist, children * sizeof (uint64_t));
5185
5186	mutex_enter(&spa->spa_props_lock);
5187	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5188	    nvl) == 0);
5189	mutex_exit(&spa->spa_props_lock);
5190	spa->spa_config_splitting = nvl;
5191	vdev_config_dirty(spa->spa_root_vdev);
5192
5193	/* configure and create the new pool */
5194	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5195	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5196	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5197	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5198	    spa_version(spa)) == 0);
5199	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5200	    spa->spa_config_txg) == 0);
5201	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5202	    spa_generate_guid(NULL)) == 0);
5203	(void) nvlist_lookup_string(props,
5204	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5205
5206	/* add the new pool to the namespace */
5207	newspa = spa_add(newname, config, altroot);
5208	newspa->spa_config_txg = spa->spa_config_txg;
5209	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5210
5211	/* release the spa config lock, retaining the namespace lock */
5212	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5213
5214	if (zio_injection_enabled)
5215		zio_handle_panic_injection(spa, FTAG, 1);
5216
5217	spa_activate(newspa, spa_mode_global);
5218	spa_async_suspend(newspa);
5219
5220#ifndef sun
5221	/* mark that we are creating new spa by splitting */
5222	newspa->spa_splitting_newspa = B_TRUE;
5223#endif
5224	/* create the new pool from the disks of the original pool */
5225	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5226#ifndef sun
5227	newspa->spa_splitting_newspa = B_FALSE;
5228#endif
5229	if (error)
5230		goto out;
5231
5232	/* if that worked, generate a real config for the new pool */
5233	if (newspa->spa_root_vdev != NULL) {
5234		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5235		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5236		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5237		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5238		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5239		    B_TRUE));
5240	}
5241
5242	/* set the props */
5243	if (props != NULL) {
5244		spa_configfile_set(newspa, props, B_FALSE);
5245		error = spa_prop_set(newspa, props);
5246		if (error)
5247			goto out;
5248	}
5249
5250	/* flush everything */
5251	txg = spa_vdev_config_enter(newspa);
5252	vdev_config_dirty(newspa->spa_root_vdev);
5253	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5254
5255	if (zio_injection_enabled)
5256		zio_handle_panic_injection(spa, FTAG, 2);
5257
5258	spa_async_resume(newspa);
5259
5260	/* finally, update the original pool's config */
5261	txg = spa_vdev_config_enter(spa);
5262	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5263	error = dmu_tx_assign(tx, TXG_WAIT);
5264	if (error != 0)
5265		dmu_tx_abort(tx);
5266	for (c = 0; c < children; c++) {
5267		if (vml[c] != NULL) {
5268			vdev_split(vml[c]);
5269			if (error == 0)
5270				spa_history_log_internal(spa, "detach", tx,
5271				    "vdev=%s", vml[c]->vdev_path);
5272			vdev_free(vml[c]);
5273		}
5274	}
5275	vdev_config_dirty(spa->spa_root_vdev);
5276	spa->spa_config_splitting = NULL;
5277	nvlist_free(nvl);
5278	if (error == 0)
5279		dmu_tx_commit(tx);
5280	(void) spa_vdev_exit(spa, NULL, txg, 0);
5281
5282	if (zio_injection_enabled)
5283		zio_handle_panic_injection(spa, FTAG, 3);
5284
5285	/* split is complete; log a history record */
5286	spa_history_log_internal(newspa, "split", NULL,
5287	    "from pool %s", spa_name(spa));
5288
5289	kmem_free(vml, children * sizeof (vdev_t *));
5290
5291	/* if we're not going to mount the filesystems in userland, export */
5292	if (exp)
5293		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5294		    B_FALSE, B_FALSE);
5295
5296	return (error);
5297
5298out:
5299	spa_unload(newspa);
5300	spa_deactivate(newspa);
5301	spa_remove(newspa);
5302
5303	txg = spa_vdev_config_enter(spa);
5304
5305	/* re-online all offlined disks */
5306	for (c = 0; c < children; c++) {
5307		if (vml[c] != NULL)
5308			vml[c]->vdev_offline = B_FALSE;
5309	}
5310	vdev_reopen(spa->spa_root_vdev);
5311
5312	nvlist_free(spa->spa_config_splitting);
5313	spa->spa_config_splitting = NULL;
5314	(void) spa_vdev_exit(spa, NULL, txg, error);
5315
5316	kmem_free(vml, children * sizeof (vdev_t *));
5317	return (error);
5318}
5319
5320static nvlist_t *
5321spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5322{
5323	for (int i = 0; i < count; i++) {
5324		uint64_t guid;
5325
5326		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5327		    &guid) == 0);
5328
5329		if (guid == target_guid)
5330			return (nvpp[i]);
5331	}
5332
5333	return (NULL);
5334}
5335
5336static void
5337spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5338	nvlist_t *dev_to_remove)
5339{
5340	nvlist_t **newdev = NULL;
5341
5342	if (count > 1)
5343		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5344
5345	for (int i = 0, j = 0; i < count; i++) {
5346		if (dev[i] == dev_to_remove)
5347			continue;
5348		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5349	}
5350
5351	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5352	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5353
5354	for (int i = 0; i < count - 1; i++)
5355		nvlist_free(newdev[i]);
5356
5357	if (count > 1)
5358		kmem_free(newdev, (count - 1) * sizeof (void *));
5359}
5360
5361/*
5362 * Evacuate the device.
5363 */
5364static int
5365spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5366{
5367	uint64_t txg;
5368	int error = 0;
5369
5370	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5371	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5372	ASSERT(vd == vd->vdev_top);
5373
5374	/*
5375	 * Evacuate the device.  We don't hold the config lock as writer
5376	 * since we need to do I/O but we do keep the
5377	 * spa_namespace_lock held.  Once this completes the device
5378	 * should no longer have any blocks allocated on it.
5379	 */
5380	if (vd->vdev_islog) {
5381		if (vd->vdev_stat.vs_alloc != 0)
5382			error = spa_offline_log(spa);
5383	} else {
5384		error = SET_ERROR(ENOTSUP);
5385	}
5386
5387	if (error)
5388		return (error);
5389
5390	/*
5391	 * The evacuation succeeded.  Remove any remaining MOS metadata
5392	 * associated with this vdev, and wait for these changes to sync.
5393	 */
5394	ASSERT0(vd->vdev_stat.vs_alloc);
5395	txg = spa_vdev_config_enter(spa);
5396	vd->vdev_removing = B_TRUE;
5397	vdev_dirty(vd, 0, NULL, txg);
5398	vdev_config_dirty(vd);
5399	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5400
5401	return (0);
5402}
5403
5404/*
5405 * Complete the removal by cleaning up the namespace.
5406 */
5407static void
5408spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5409{
5410	vdev_t *rvd = spa->spa_root_vdev;
5411	uint64_t id = vd->vdev_id;
5412	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5413
5414	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5415	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5416	ASSERT(vd == vd->vdev_top);
5417
5418	/*
5419	 * Only remove any devices which are empty.
5420	 */
5421	if (vd->vdev_stat.vs_alloc != 0)
5422		return;
5423
5424	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5425
5426	if (list_link_active(&vd->vdev_state_dirty_node))
5427		vdev_state_clean(vd);
5428	if (list_link_active(&vd->vdev_config_dirty_node))
5429		vdev_config_clean(vd);
5430
5431	vdev_free(vd);
5432
5433	if (last_vdev) {
5434		vdev_compact_children(rvd);
5435	} else {
5436		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5437		vdev_add_child(rvd, vd);
5438	}
5439	vdev_config_dirty(rvd);
5440
5441	/*
5442	 * Reassess the health of our root vdev.
5443	 */
5444	vdev_reopen(rvd);
5445}
5446
5447/*
5448 * Remove a device from the pool -
5449 *
5450 * Removing a device from the vdev namespace requires several steps
5451 * and can take a significant amount of time.  As a result we use
5452 * the spa_vdev_config_[enter/exit] functions which allow us to
5453 * grab and release the spa_config_lock while still holding the namespace
5454 * lock.  During each step the configuration is synced out.
5455 *
5456 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5457 * devices.
5458 */
5459int
5460spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5461{
5462	vdev_t *vd;
5463	metaslab_group_t *mg;
5464	nvlist_t **spares, **l2cache, *nv;
5465	uint64_t txg = 0;
5466	uint_t nspares, nl2cache;
5467	int error = 0;
5468	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5469
5470	ASSERT(spa_writeable(spa));
5471
5472	if (!locked)
5473		txg = spa_vdev_enter(spa);
5474
5475	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5476
5477	if (spa->spa_spares.sav_vdevs != NULL &&
5478	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5479	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5480	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5481		/*
5482		 * Only remove the hot spare if it's not currently in use
5483		 * in this pool.
5484		 */
5485		if (vd == NULL || unspare) {
5486			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5487			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5488			spa_load_spares(spa);
5489			spa->spa_spares.sav_sync = B_TRUE;
5490		} else {
5491			error = SET_ERROR(EBUSY);
5492		}
5493	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5494	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5495	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5496	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5497		/*
5498		 * Cache devices can always be removed.
5499		 */
5500		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5501		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5502		spa_load_l2cache(spa);
5503		spa->spa_l2cache.sav_sync = B_TRUE;
5504	} else if (vd != NULL && vd->vdev_islog) {
5505		ASSERT(!locked);
5506		ASSERT(vd == vd->vdev_top);
5507
5508		/*
5509		 * XXX - Once we have bp-rewrite this should
5510		 * become the common case.
5511		 */
5512
5513		mg = vd->vdev_mg;
5514
5515		/*
5516		 * Stop allocating from this vdev.
5517		 */
5518		metaslab_group_passivate(mg);
5519
5520		/*
5521		 * Wait for the youngest allocations and frees to sync,
5522		 * and then wait for the deferral of those frees to finish.
5523		 */
5524		spa_vdev_config_exit(spa, NULL,
5525		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5526
5527		/*
5528		 * Attempt to evacuate the vdev.
5529		 */
5530		error = spa_vdev_remove_evacuate(spa, vd);
5531
5532		txg = spa_vdev_config_enter(spa);
5533
5534		/*
5535		 * If we couldn't evacuate the vdev, unwind.
5536		 */
5537		if (error) {
5538			metaslab_group_activate(mg);
5539			return (spa_vdev_exit(spa, NULL, txg, error));
5540		}
5541
5542		/*
5543		 * Clean up the vdev namespace.
5544		 */
5545		spa_vdev_remove_from_namespace(spa, vd);
5546
5547	} else if (vd != NULL) {
5548		/*
5549		 * Normal vdevs cannot be removed (yet).
5550		 */
5551		error = SET_ERROR(ENOTSUP);
5552	} else {
5553		/*
5554		 * There is no vdev of any kind with the specified guid.
5555		 */
5556		error = SET_ERROR(ENOENT);
5557	}
5558
5559	if (!locked)
5560		return (spa_vdev_exit(spa, NULL, txg, error));
5561
5562	return (error);
5563}
5564
5565/*
5566 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5567 * currently spared, so we can detach it.
5568 */
5569static vdev_t *
5570spa_vdev_resilver_done_hunt(vdev_t *vd)
5571{
5572	vdev_t *newvd, *oldvd;
5573
5574	for (int c = 0; c < vd->vdev_children; c++) {
5575		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5576		if (oldvd != NULL)
5577			return (oldvd);
5578	}
5579
5580	/*
5581	 * Check for a completed replacement.  We always consider the first
5582	 * vdev in the list to be the oldest vdev, and the last one to be
5583	 * the newest (see spa_vdev_attach() for how that works).  In
5584	 * the case where the newest vdev is faulted, we will not automatically
5585	 * remove it after a resilver completes.  This is OK as it will require
5586	 * user intervention to determine which disk the admin wishes to keep.
5587	 */
5588	if (vd->vdev_ops == &vdev_replacing_ops) {
5589		ASSERT(vd->vdev_children > 1);
5590
5591		newvd = vd->vdev_child[vd->vdev_children - 1];
5592		oldvd = vd->vdev_child[0];
5593
5594		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5595		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5596		    !vdev_dtl_required(oldvd))
5597			return (oldvd);
5598	}
5599
5600	/*
5601	 * Check for a completed resilver with the 'unspare' flag set.
5602	 */
5603	if (vd->vdev_ops == &vdev_spare_ops) {
5604		vdev_t *first = vd->vdev_child[0];
5605		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5606
5607		if (last->vdev_unspare) {
5608			oldvd = first;
5609			newvd = last;
5610		} else if (first->vdev_unspare) {
5611			oldvd = last;
5612			newvd = first;
5613		} else {
5614			oldvd = NULL;
5615		}
5616
5617		if (oldvd != NULL &&
5618		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5619		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5620		    !vdev_dtl_required(oldvd))
5621			return (oldvd);
5622
5623		/*
5624		 * If there are more than two spares attached to a disk,
5625		 * and those spares are not required, then we want to
5626		 * attempt to free them up now so that they can be used
5627		 * by other pools.  Once we're back down to a single
5628		 * disk+spare, we stop removing them.
5629		 */
5630		if (vd->vdev_children > 2) {
5631			newvd = vd->vdev_child[1];
5632
5633			if (newvd->vdev_isspare && last->vdev_isspare &&
5634			    vdev_dtl_empty(last, DTL_MISSING) &&
5635			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5636			    !vdev_dtl_required(newvd))
5637				return (newvd);
5638		}
5639	}
5640
5641	return (NULL);
5642}
5643
5644static void
5645spa_vdev_resilver_done(spa_t *spa)
5646{
5647	vdev_t *vd, *pvd, *ppvd;
5648	uint64_t guid, sguid, pguid, ppguid;
5649
5650	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5651
5652	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5653		pvd = vd->vdev_parent;
5654		ppvd = pvd->vdev_parent;
5655		guid = vd->vdev_guid;
5656		pguid = pvd->vdev_guid;
5657		ppguid = ppvd->vdev_guid;
5658		sguid = 0;
5659		/*
5660		 * If we have just finished replacing a hot spared device, then
5661		 * we need to detach the parent's first child (the original hot
5662		 * spare) as well.
5663		 */
5664		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5665		    ppvd->vdev_children == 2) {
5666			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5667			sguid = ppvd->vdev_child[1]->vdev_guid;
5668		}
5669		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5670
5671		spa_config_exit(spa, SCL_ALL, FTAG);
5672		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5673			return;
5674		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5675			return;
5676		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5677	}
5678
5679	spa_config_exit(spa, SCL_ALL, FTAG);
5680}
5681
5682/*
5683 * Update the stored path or FRU for this vdev.
5684 */
5685int
5686spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5687    boolean_t ispath)
5688{
5689	vdev_t *vd;
5690	boolean_t sync = B_FALSE;
5691
5692	ASSERT(spa_writeable(spa));
5693
5694	spa_vdev_state_enter(spa, SCL_ALL);
5695
5696	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5697		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5698
5699	if (!vd->vdev_ops->vdev_op_leaf)
5700		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5701
5702	if (ispath) {
5703		if (strcmp(value, vd->vdev_path) != 0) {
5704			spa_strfree(vd->vdev_path);
5705			vd->vdev_path = spa_strdup(value);
5706			sync = B_TRUE;
5707		}
5708	} else {
5709		if (vd->vdev_fru == NULL) {
5710			vd->vdev_fru = spa_strdup(value);
5711			sync = B_TRUE;
5712		} else if (strcmp(value, vd->vdev_fru) != 0) {
5713			spa_strfree(vd->vdev_fru);
5714			vd->vdev_fru = spa_strdup(value);
5715			sync = B_TRUE;
5716		}
5717	}
5718
5719	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5720}
5721
5722int
5723spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5724{
5725	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5726}
5727
5728int
5729spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5730{
5731	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5732}
5733
5734/*
5735 * ==========================================================================
5736 * SPA Scanning
5737 * ==========================================================================
5738 */
5739
5740int
5741spa_scan_stop(spa_t *spa)
5742{
5743	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5744	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5745		return (SET_ERROR(EBUSY));
5746	return (dsl_scan_cancel(spa->spa_dsl_pool));
5747}
5748
5749int
5750spa_scan(spa_t *spa, pool_scan_func_t func)
5751{
5752	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5753
5754	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5755		return (SET_ERROR(ENOTSUP));
5756
5757	/*
5758	 * If a resilver was requested, but there is no DTL on a
5759	 * writeable leaf device, we have nothing to do.
5760	 */
5761	if (func == POOL_SCAN_RESILVER &&
5762	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5763		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5764		return (0);
5765	}
5766
5767	return (dsl_scan(spa->spa_dsl_pool, func));
5768}
5769
5770/*
5771 * ==========================================================================
5772 * SPA async task processing
5773 * ==========================================================================
5774 */
5775
5776static void
5777spa_async_remove(spa_t *spa, vdev_t *vd)
5778{
5779	if (vd->vdev_remove_wanted) {
5780		vd->vdev_remove_wanted = B_FALSE;
5781		vd->vdev_delayed_close = B_FALSE;
5782		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5783
5784		/*
5785		 * We want to clear the stats, but we don't want to do a full
5786		 * vdev_clear() as that will cause us to throw away
5787		 * degraded/faulted state as well as attempt to reopen the
5788		 * device, all of which is a waste.
5789		 */
5790		vd->vdev_stat.vs_read_errors = 0;
5791		vd->vdev_stat.vs_write_errors = 0;
5792		vd->vdev_stat.vs_checksum_errors = 0;
5793
5794		vdev_state_dirty(vd->vdev_top);
5795	}
5796
5797	for (int c = 0; c < vd->vdev_children; c++)
5798		spa_async_remove(spa, vd->vdev_child[c]);
5799}
5800
5801static void
5802spa_async_probe(spa_t *spa, vdev_t *vd)
5803{
5804	if (vd->vdev_probe_wanted) {
5805		vd->vdev_probe_wanted = B_FALSE;
5806		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5807	}
5808
5809	for (int c = 0; c < vd->vdev_children; c++)
5810		spa_async_probe(spa, vd->vdev_child[c]);
5811}
5812
5813static void
5814spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5815{
5816	sysevent_id_t eid;
5817	nvlist_t *attr;
5818	char *physpath;
5819
5820	if (!spa->spa_autoexpand)
5821		return;
5822
5823	for (int c = 0; c < vd->vdev_children; c++) {
5824		vdev_t *cvd = vd->vdev_child[c];
5825		spa_async_autoexpand(spa, cvd);
5826	}
5827
5828	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5829		return;
5830
5831	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5832	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5833
5834	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5835	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5836
5837	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5838	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5839
5840	nvlist_free(attr);
5841	kmem_free(physpath, MAXPATHLEN);
5842}
5843
5844static void
5845spa_async_thread(void *arg)
5846{
5847	spa_t *spa = arg;
5848	int tasks;
5849
5850	ASSERT(spa->spa_sync_on);
5851
5852	mutex_enter(&spa->spa_async_lock);
5853	tasks = spa->spa_async_tasks;
5854	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5855	mutex_exit(&spa->spa_async_lock);
5856
5857	/*
5858	 * See if the config needs to be updated.
5859	 */
5860	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5861		uint64_t old_space, new_space;
5862
5863		mutex_enter(&spa_namespace_lock);
5864		old_space = metaslab_class_get_space(spa_normal_class(spa));
5865		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5866		new_space = metaslab_class_get_space(spa_normal_class(spa));
5867		mutex_exit(&spa_namespace_lock);
5868
5869		/*
5870		 * If the pool grew as a result of the config update,
5871		 * then log an internal history event.
5872		 */
5873		if (new_space != old_space) {
5874			spa_history_log_internal(spa, "vdev online", NULL,
5875			    "pool '%s' size: %llu(+%llu)",
5876			    spa_name(spa), new_space, new_space - old_space);
5877		}
5878	}
5879
5880	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5881		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5882		spa_async_autoexpand(spa, spa->spa_root_vdev);
5883		spa_config_exit(spa, SCL_CONFIG, FTAG);
5884	}
5885
5886	/*
5887	 * See if any devices need to be probed.
5888	 */
5889	if (tasks & SPA_ASYNC_PROBE) {
5890		spa_vdev_state_enter(spa, SCL_NONE);
5891		spa_async_probe(spa, spa->spa_root_vdev);
5892		(void) spa_vdev_state_exit(spa, NULL, 0);
5893	}
5894
5895	/*
5896	 * If any devices are done replacing, detach them.
5897	 */
5898	if (tasks & SPA_ASYNC_RESILVER_DONE)
5899		spa_vdev_resilver_done(spa);
5900
5901	/*
5902	 * Kick off a resilver.
5903	 */
5904	if (tasks & SPA_ASYNC_RESILVER)
5905		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5906
5907	/*
5908	 * Let the world know that we're done.
5909	 */
5910	mutex_enter(&spa->spa_async_lock);
5911	spa->spa_async_thread = NULL;
5912	cv_broadcast(&spa->spa_async_cv);
5913	mutex_exit(&spa->spa_async_lock);
5914	thread_exit();
5915}
5916
5917static void
5918spa_async_thread_vd(void *arg)
5919{
5920	spa_t *spa = arg;
5921	int tasks;
5922
5923	ASSERT(spa->spa_sync_on);
5924
5925	mutex_enter(&spa->spa_async_lock);
5926	tasks = spa->spa_async_tasks;
5927retry:
5928	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5929	mutex_exit(&spa->spa_async_lock);
5930
5931	/*
5932	 * See if any devices need to be marked REMOVED.
5933	 */
5934	if (tasks & SPA_ASYNC_REMOVE) {
5935		spa_vdev_state_enter(spa, SCL_NONE);
5936		spa_async_remove(spa, spa->spa_root_vdev);
5937		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5938			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5939		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5940			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5941		(void) spa_vdev_state_exit(spa, NULL, 0);
5942	}
5943
5944	/*
5945	 * Let the world know that we're done.
5946	 */
5947	mutex_enter(&spa->spa_async_lock);
5948	tasks = spa->spa_async_tasks;
5949	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5950		goto retry;
5951	spa->spa_async_thread_vd = NULL;
5952	cv_broadcast(&spa->spa_async_cv);
5953	mutex_exit(&spa->spa_async_lock);
5954	thread_exit();
5955}
5956
5957void
5958spa_async_suspend(spa_t *spa)
5959{
5960	mutex_enter(&spa->spa_async_lock);
5961	spa->spa_async_suspended++;
5962	while (spa->spa_async_thread != NULL &&
5963	    spa->spa_async_thread_vd != NULL)
5964		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5965	mutex_exit(&spa->spa_async_lock);
5966}
5967
5968void
5969spa_async_resume(spa_t *spa)
5970{
5971	mutex_enter(&spa->spa_async_lock);
5972	ASSERT(spa->spa_async_suspended != 0);
5973	spa->spa_async_suspended--;
5974	mutex_exit(&spa->spa_async_lock);
5975}
5976
5977static boolean_t
5978spa_async_tasks_pending(spa_t *spa)
5979{
5980	uint_t non_config_tasks;
5981	uint_t config_task;
5982	boolean_t config_task_suspended;
5983
5984	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
5985	    SPA_ASYNC_REMOVE);
5986	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5987	if (spa->spa_ccw_fail_time == 0) {
5988		config_task_suspended = B_FALSE;
5989	} else {
5990		config_task_suspended =
5991		    (gethrtime() - spa->spa_ccw_fail_time) <
5992		    (zfs_ccw_retry_interval * NANOSEC);
5993	}
5994
5995	return (non_config_tasks || (config_task && !config_task_suspended));
5996}
5997
5998static void
5999spa_async_dispatch(spa_t *spa)
6000{
6001	mutex_enter(&spa->spa_async_lock);
6002	if (spa_async_tasks_pending(spa) &&
6003	    !spa->spa_async_suspended &&
6004	    spa->spa_async_thread == NULL &&
6005	    rootdir != NULL)
6006		spa->spa_async_thread = thread_create(NULL, 0,
6007		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6008	mutex_exit(&spa->spa_async_lock);
6009}
6010
6011static void
6012spa_async_dispatch_vd(spa_t *spa)
6013{
6014	mutex_enter(&spa->spa_async_lock);
6015	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6016	    !spa->spa_async_suspended &&
6017	    spa->spa_async_thread_vd == NULL &&
6018	    rootdir != NULL)
6019		spa->spa_async_thread_vd = thread_create(NULL, 0,
6020		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6021	mutex_exit(&spa->spa_async_lock);
6022}
6023
6024void
6025spa_async_request(spa_t *spa, int task)
6026{
6027	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6028	mutex_enter(&spa->spa_async_lock);
6029	spa->spa_async_tasks |= task;
6030	mutex_exit(&spa->spa_async_lock);
6031	spa_async_dispatch_vd(spa);
6032}
6033
6034/*
6035 * ==========================================================================
6036 * SPA syncing routines
6037 * ==========================================================================
6038 */
6039
6040static int
6041bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6042{
6043	bpobj_t *bpo = arg;
6044	bpobj_enqueue(bpo, bp, tx);
6045	return (0);
6046}
6047
6048static int
6049spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6050{
6051	zio_t *zio = arg;
6052
6053	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6054	    BP_GET_PSIZE(bp), zio->io_flags));
6055	return (0);
6056}
6057
6058/*
6059 * Note: this simple function is not inlined to make it easier to dtrace the
6060 * amount of time spent syncing frees.
6061 */
6062static void
6063spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6064{
6065	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6066	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6067	VERIFY(zio_wait(zio) == 0);
6068}
6069
6070/*
6071 * Note: this simple function is not inlined to make it easier to dtrace the
6072 * amount of time spent syncing deferred frees.
6073 */
6074static void
6075spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6076{
6077	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6078	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6079	    spa_free_sync_cb, zio, tx), ==, 0);
6080	VERIFY0(zio_wait(zio));
6081}
6082
6083
6084static void
6085spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6086{
6087	char *packed = NULL;
6088	size_t bufsize;
6089	size_t nvsize = 0;
6090	dmu_buf_t *db;
6091
6092	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6093
6094	/*
6095	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6096	 * information.  This avoids the dbuf_will_dirty() path and
6097	 * saves us a pre-read to get data we don't actually care about.
6098	 */
6099	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6100	packed = kmem_alloc(bufsize, KM_SLEEP);
6101
6102	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6103	    KM_SLEEP) == 0);
6104	bzero(packed + nvsize, bufsize - nvsize);
6105
6106	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6107
6108	kmem_free(packed, bufsize);
6109
6110	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6111	dmu_buf_will_dirty(db, tx);
6112	*(uint64_t *)db->db_data = nvsize;
6113	dmu_buf_rele(db, FTAG);
6114}
6115
6116static void
6117spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6118    const char *config, const char *entry)
6119{
6120	nvlist_t *nvroot;
6121	nvlist_t **list;
6122	int i;
6123
6124	if (!sav->sav_sync)
6125		return;
6126
6127	/*
6128	 * Update the MOS nvlist describing the list of available devices.
6129	 * spa_validate_aux() will have already made sure this nvlist is
6130	 * valid and the vdevs are labeled appropriately.
6131	 */
6132	if (sav->sav_object == 0) {
6133		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6134		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6135		    sizeof (uint64_t), tx);
6136		VERIFY(zap_update(spa->spa_meta_objset,
6137		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6138		    &sav->sav_object, tx) == 0);
6139	}
6140
6141	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6142	if (sav->sav_count == 0) {
6143		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6144	} else {
6145		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6146		for (i = 0; i < sav->sav_count; i++)
6147			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6148			    B_FALSE, VDEV_CONFIG_L2CACHE);
6149		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6150		    sav->sav_count) == 0);
6151		for (i = 0; i < sav->sav_count; i++)
6152			nvlist_free(list[i]);
6153		kmem_free(list, sav->sav_count * sizeof (void *));
6154	}
6155
6156	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6157	nvlist_free(nvroot);
6158
6159	sav->sav_sync = B_FALSE;
6160}
6161
6162static void
6163spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6164{
6165	nvlist_t *config;
6166
6167	if (list_is_empty(&spa->spa_config_dirty_list))
6168		return;
6169
6170	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6171
6172	config = spa_config_generate(spa, spa->spa_root_vdev,
6173	    dmu_tx_get_txg(tx), B_FALSE);
6174
6175	/*
6176	 * If we're upgrading the spa version then make sure that
6177	 * the config object gets updated with the correct version.
6178	 */
6179	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6180		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6181		    spa->spa_uberblock.ub_version);
6182
6183	spa_config_exit(spa, SCL_STATE, FTAG);
6184
6185	if (spa->spa_config_syncing)
6186		nvlist_free(spa->spa_config_syncing);
6187	spa->spa_config_syncing = config;
6188
6189	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6190}
6191
6192static void
6193spa_sync_version(void *arg, dmu_tx_t *tx)
6194{
6195	uint64_t *versionp = arg;
6196	uint64_t version = *versionp;
6197	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6198
6199	/*
6200	 * Setting the version is special cased when first creating the pool.
6201	 */
6202	ASSERT(tx->tx_txg != TXG_INITIAL);
6203
6204	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6205	ASSERT(version >= spa_version(spa));
6206
6207	spa->spa_uberblock.ub_version = version;
6208	vdev_config_dirty(spa->spa_root_vdev);
6209	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6210}
6211
6212/*
6213 * Set zpool properties.
6214 */
6215static void
6216spa_sync_props(void *arg, dmu_tx_t *tx)
6217{
6218	nvlist_t *nvp = arg;
6219	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6220	objset_t *mos = spa->spa_meta_objset;
6221	nvpair_t *elem = NULL;
6222
6223	mutex_enter(&spa->spa_props_lock);
6224
6225	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6226		uint64_t intval;
6227		char *strval, *fname;
6228		zpool_prop_t prop;
6229		const char *propname;
6230		zprop_type_t proptype;
6231		zfeature_info_t *feature;
6232
6233		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6234		case ZPROP_INVAL:
6235			/*
6236			 * We checked this earlier in spa_prop_validate().
6237			 */
6238			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6239
6240			fname = strchr(nvpair_name(elem), '@') + 1;
6241			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
6242
6243			spa_feature_enable(spa, feature, tx);
6244			spa_history_log_internal(spa, "set", tx,
6245			    "%s=enabled", nvpair_name(elem));
6246			break;
6247
6248		case ZPOOL_PROP_VERSION:
6249			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6250			/*
6251			 * The version is synced seperatly before other
6252			 * properties and should be correct by now.
6253			 */
6254			ASSERT3U(spa_version(spa), >=, intval);
6255			break;
6256
6257		case ZPOOL_PROP_ALTROOT:
6258			/*
6259			 * 'altroot' is a non-persistent property. It should
6260			 * have been set temporarily at creation or import time.
6261			 */
6262			ASSERT(spa->spa_root != NULL);
6263			break;
6264
6265		case ZPOOL_PROP_READONLY:
6266		case ZPOOL_PROP_CACHEFILE:
6267			/*
6268			 * 'readonly' and 'cachefile' are also non-persisitent
6269			 * properties.
6270			 */
6271			break;
6272		case ZPOOL_PROP_COMMENT:
6273			VERIFY(nvpair_value_string(elem, &strval) == 0);
6274			if (spa->spa_comment != NULL)
6275				spa_strfree(spa->spa_comment);
6276			spa->spa_comment = spa_strdup(strval);
6277			/*
6278			 * We need to dirty the configuration on all the vdevs
6279			 * so that their labels get updated.  It's unnecessary
6280			 * to do this for pool creation since the vdev's
6281			 * configuratoin has already been dirtied.
6282			 */
6283			if (tx->tx_txg != TXG_INITIAL)
6284				vdev_config_dirty(spa->spa_root_vdev);
6285			spa_history_log_internal(spa, "set", tx,
6286			    "%s=%s", nvpair_name(elem), strval);
6287			break;
6288		default:
6289			/*
6290			 * Set pool property values in the poolprops mos object.
6291			 */
6292			if (spa->spa_pool_props_object == 0) {
6293				spa->spa_pool_props_object =
6294				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6295				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6296				    tx);
6297			}
6298
6299			/* normalize the property name */
6300			propname = zpool_prop_to_name(prop);
6301			proptype = zpool_prop_get_type(prop);
6302
6303			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6304				ASSERT(proptype == PROP_TYPE_STRING);
6305				VERIFY(nvpair_value_string(elem, &strval) == 0);
6306				VERIFY(zap_update(mos,
6307				    spa->spa_pool_props_object, propname,
6308				    1, strlen(strval) + 1, strval, tx) == 0);
6309				spa_history_log_internal(spa, "set", tx,
6310				    "%s=%s", nvpair_name(elem), strval);
6311			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6312				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6313
6314				if (proptype == PROP_TYPE_INDEX) {
6315					const char *unused;
6316					VERIFY(zpool_prop_index_to_string(
6317					    prop, intval, &unused) == 0);
6318				}
6319				VERIFY(zap_update(mos,
6320				    spa->spa_pool_props_object, propname,
6321				    8, 1, &intval, tx) == 0);
6322				spa_history_log_internal(spa, "set", tx,
6323				    "%s=%lld", nvpair_name(elem), intval);
6324			} else {
6325				ASSERT(0); /* not allowed */
6326			}
6327
6328			switch (prop) {
6329			case ZPOOL_PROP_DELEGATION:
6330				spa->spa_delegation = intval;
6331				break;
6332			case ZPOOL_PROP_BOOTFS:
6333				spa->spa_bootfs = intval;
6334				break;
6335			case ZPOOL_PROP_FAILUREMODE:
6336				spa->spa_failmode = intval;
6337				break;
6338			case ZPOOL_PROP_AUTOEXPAND:
6339				spa->spa_autoexpand = intval;
6340				if (tx->tx_txg != TXG_INITIAL)
6341					spa_async_request(spa,
6342					    SPA_ASYNC_AUTOEXPAND);
6343				break;
6344			case ZPOOL_PROP_DEDUPDITTO:
6345				spa->spa_dedup_ditto = intval;
6346				break;
6347			default:
6348				break;
6349			}
6350		}
6351
6352	}
6353
6354	mutex_exit(&spa->spa_props_lock);
6355}
6356
6357/*
6358 * Perform one-time upgrade on-disk changes.  spa_version() does not
6359 * reflect the new version this txg, so there must be no changes this
6360 * txg to anything that the upgrade code depends on after it executes.
6361 * Therefore this must be called after dsl_pool_sync() does the sync
6362 * tasks.
6363 */
6364static void
6365spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6366{
6367	dsl_pool_t *dp = spa->spa_dsl_pool;
6368
6369	ASSERT(spa->spa_sync_pass == 1);
6370
6371	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6372
6373	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6374	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6375		dsl_pool_create_origin(dp, tx);
6376
6377		/* Keeping the origin open increases spa_minref */
6378		spa->spa_minref += 3;
6379	}
6380
6381	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6382	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6383		dsl_pool_upgrade_clones(dp, tx);
6384	}
6385
6386	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6387	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6388		dsl_pool_upgrade_dir_clones(dp, tx);
6389
6390		/* Keeping the freedir open increases spa_minref */
6391		spa->spa_minref += 3;
6392	}
6393
6394	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6395	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6396		spa_feature_create_zap_objects(spa, tx);
6397	}
6398	rrw_exit(&dp->dp_config_rwlock, FTAG);
6399}
6400
6401/*
6402 * Sync the specified transaction group.  New blocks may be dirtied as
6403 * part of the process, so we iterate until it converges.
6404 */
6405void
6406spa_sync(spa_t *spa, uint64_t txg)
6407{
6408	dsl_pool_t *dp = spa->spa_dsl_pool;
6409	objset_t *mos = spa->spa_meta_objset;
6410	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6411	vdev_t *rvd = spa->spa_root_vdev;
6412	vdev_t *vd;
6413	dmu_tx_t *tx;
6414	int error;
6415
6416	VERIFY(spa_writeable(spa));
6417
6418	/*
6419	 * Lock out configuration changes.
6420	 */
6421	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6422
6423	spa->spa_syncing_txg = txg;
6424	spa->spa_sync_pass = 0;
6425
6426	/*
6427	 * If there are any pending vdev state changes, convert them
6428	 * into config changes that go out with this transaction group.
6429	 */
6430	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6431	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6432		/*
6433		 * We need the write lock here because, for aux vdevs,
6434		 * calling vdev_config_dirty() modifies sav_config.
6435		 * This is ugly and will become unnecessary when we
6436		 * eliminate the aux vdev wart by integrating all vdevs
6437		 * into the root vdev tree.
6438		 */
6439		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6440		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6441		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6442			vdev_state_clean(vd);
6443			vdev_config_dirty(vd);
6444		}
6445		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6446		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6447	}
6448	spa_config_exit(spa, SCL_STATE, FTAG);
6449
6450	tx = dmu_tx_create_assigned(dp, txg);
6451
6452	spa->spa_sync_starttime = gethrtime();
6453#ifdef illumos
6454	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6455	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6456#else	/* FreeBSD */
6457#ifdef _KERNEL
6458	callout_reset(&spa->spa_deadman_cycid,
6459	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6460#endif
6461#endif
6462
6463	/*
6464	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6465	 * set spa_deflate if we have no raid-z vdevs.
6466	 */
6467	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6468	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6469		int i;
6470
6471		for (i = 0; i < rvd->vdev_children; i++) {
6472			vd = rvd->vdev_child[i];
6473			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6474				break;
6475		}
6476		if (i == rvd->vdev_children) {
6477			spa->spa_deflate = TRUE;
6478			VERIFY(0 == zap_add(spa->spa_meta_objset,
6479			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6480			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6481		}
6482	}
6483
6484	/*
6485	 * If anything has changed in this txg, or if someone is waiting
6486	 * for this txg to sync (eg, spa_vdev_remove()), push the
6487	 * deferred frees from the previous txg.  If not, leave them
6488	 * alone so that we don't generate work on an otherwise idle
6489	 * system.
6490	 */
6491	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6492	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6493	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6494	    ((dsl_scan_active(dp->dp_scan) ||
6495	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6496		spa_sync_deferred_frees(spa, tx);
6497	}
6498
6499	/*
6500	 * Iterate to convergence.
6501	 */
6502	do {
6503		int pass = ++spa->spa_sync_pass;
6504
6505		spa_sync_config_object(spa, tx);
6506		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6507		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6508		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6509		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6510		spa_errlog_sync(spa, txg);
6511		dsl_pool_sync(dp, txg);
6512
6513		if (pass < zfs_sync_pass_deferred_free) {
6514			spa_sync_frees(spa, free_bpl, tx);
6515		} else {
6516			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6517			    &spa->spa_deferred_bpobj, tx);
6518		}
6519
6520		ddt_sync(spa, txg);
6521		dsl_scan_sync(dp, tx);
6522
6523		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6524			vdev_sync(vd, txg);
6525
6526		if (pass == 1)
6527			spa_sync_upgrades(spa, tx);
6528
6529	} while (dmu_objset_is_dirty(mos, txg));
6530
6531	/*
6532	 * Rewrite the vdev configuration (which includes the uberblock)
6533	 * to commit the transaction group.
6534	 *
6535	 * If there are no dirty vdevs, we sync the uberblock to a few
6536	 * random top-level vdevs that are known to be visible in the
6537	 * config cache (see spa_vdev_add() for a complete description).
6538	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6539	 */
6540	for (;;) {
6541		/*
6542		 * We hold SCL_STATE to prevent vdev open/close/etc.
6543		 * while we're attempting to write the vdev labels.
6544		 */
6545		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6546
6547		if (list_is_empty(&spa->spa_config_dirty_list)) {
6548			vdev_t *svd[SPA_DVAS_PER_BP];
6549			int svdcount = 0;
6550			int children = rvd->vdev_children;
6551			int c0 = spa_get_random(children);
6552
6553			for (int c = 0; c < children; c++) {
6554				vd = rvd->vdev_child[(c0 + c) % children];
6555				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6556					continue;
6557				svd[svdcount++] = vd;
6558				if (svdcount == SPA_DVAS_PER_BP)
6559					break;
6560			}
6561			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6562			if (error != 0)
6563				error = vdev_config_sync(svd, svdcount, txg,
6564				    B_TRUE);
6565		} else {
6566			error = vdev_config_sync(rvd->vdev_child,
6567			    rvd->vdev_children, txg, B_FALSE);
6568			if (error != 0)
6569				error = vdev_config_sync(rvd->vdev_child,
6570				    rvd->vdev_children, txg, B_TRUE);
6571		}
6572
6573		if (error == 0)
6574			spa->spa_last_synced_guid = rvd->vdev_guid;
6575
6576		spa_config_exit(spa, SCL_STATE, FTAG);
6577
6578		if (error == 0)
6579			break;
6580		zio_suspend(spa, NULL);
6581		zio_resume_wait(spa);
6582	}
6583	dmu_tx_commit(tx);
6584
6585#ifdef illumos
6586	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6587#else	/* FreeBSD */
6588#ifdef _KERNEL
6589	callout_drain(&spa->spa_deadman_cycid);
6590#endif
6591#endif
6592
6593	/*
6594	 * Clear the dirty config list.
6595	 */
6596	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6597		vdev_config_clean(vd);
6598
6599	/*
6600	 * Now that the new config has synced transactionally,
6601	 * let it become visible to the config cache.
6602	 */
6603	if (spa->spa_config_syncing != NULL) {
6604		spa_config_set(spa, spa->spa_config_syncing);
6605		spa->spa_config_txg = txg;
6606		spa->spa_config_syncing = NULL;
6607	}
6608
6609	spa->spa_ubsync = spa->spa_uberblock;
6610
6611	dsl_pool_sync_done(dp, txg);
6612
6613	/*
6614	 * Update usable space statistics.
6615	 */
6616	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6617		vdev_sync_done(vd, txg);
6618
6619	spa_update_dspace(spa);
6620
6621	/*
6622	 * It had better be the case that we didn't dirty anything
6623	 * since vdev_config_sync().
6624	 */
6625	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6626	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6627	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6628
6629	spa->spa_sync_pass = 0;
6630
6631	spa_config_exit(spa, SCL_CONFIG, FTAG);
6632
6633	spa_handle_ignored_writes(spa);
6634
6635	/*
6636	 * If any async tasks have been requested, kick them off.
6637	 */
6638	spa_async_dispatch(spa);
6639	spa_async_dispatch_vd(spa);
6640}
6641
6642/*
6643 * Sync all pools.  We don't want to hold the namespace lock across these
6644 * operations, so we take a reference on the spa_t and drop the lock during the
6645 * sync.
6646 */
6647void
6648spa_sync_allpools(void)
6649{
6650	spa_t *spa = NULL;
6651	mutex_enter(&spa_namespace_lock);
6652	while ((spa = spa_next(spa)) != NULL) {
6653		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6654		    !spa_writeable(spa) || spa_suspended(spa))
6655			continue;
6656		spa_open_ref(spa, FTAG);
6657		mutex_exit(&spa_namespace_lock);
6658		txg_wait_synced(spa_get_dsl(spa), 0);
6659		mutex_enter(&spa_namespace_lock);
6660		spa_close(spa, FTAG);
6661	}
6662	mutex_exit(&spa_namespace_lock);
6663}
6664
6665/*
6666 * ==========================================================================
6667 * Miscellaneous routines
6668 * ==========================================================================
6669 */
6670
6671/*
6672 * Remove all pools in the system.
6673 */
6674void
6675spa_evict_all(void)
6676{
6677	spa_t *spa;
6678
6679	/*
6680	 * Remove all cached state.  All pools should be closed now,
6681	 * so every spa in the AVL tree should be unreferenced.
6682	 */
6683	mutex_enter(&spa_namespace_lock);
6684	while ((spa = spa_next(NULL)) != NULL) {
6685		/*
6686		 * Stop async tasks.  The async thread may need to detach
6687		 * a device that's been replaced, which requires grabbing
6688		 * spa_namespace_lock, so we must drop it here.
6689		 */
6690		spa_open_ref(spa, FTAG);
6691		mutex_exit(&spa_namespace_lock);
6692		spa_async_suspend(spa);
6693		mutex_enter(&spa_namespace_lock);
6694		spa_close(spa, FTAG);
6695
6696		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6697			spa_unload(spa);
6698			spa_deactivate(spa);
6699		}
6700		spa_remove(spa);
6701	}
6702	mutex_exit(&spa_namespace_lock);
6703}
6704
6705vdev_t *
6706spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6707{
6708	vdev_t *vd;
6709	int i;
6710
6711	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6712		return (vd);
6713
6714	if (aux) {
6715		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6716			vd = spa->spa_l2cache.sav_vdevs[i];
6717			if (vd->vdev_guid == guid)
6718				return (vd);
6719		}
6720
6721		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6722			vd = spa->spa_spares.sav_vdevs[i];
6723			if (vd->vdev_guid == guid)
6724				return (vd);
6725		}
6726	}
6727
6728	return (NULL);
6729}
6730
6731void
6732spa_upgrade(spa_t *spa, uint64_t version)
6733{
6734	ASSERT(spa_writeable(spa));
6735
6736	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6737
6738	/*
6739	 * This should only be called for a non-faulted pool, and since a
6740	 * future version would result in an unopenable pool, this shouldn't be
6741	 * possible.
6742	 */
6743	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6744	ASSERT(version >= spa->spa_uberblock.ub_version);
6745
6746	spa->spa_uberblock.ub_version = version;
6747	vdev_config_dirty(spa->spa_root_vdev);
6748
6749	spa_config_exit(spa, SCL_ALL, FTAG);
6750
6751	txg_wait_synced(spa_get_dsl(spa), 0);
6752}
6753
6754boolean_t
6755spa_has_spare(spa_t *spa, uint64_t guid)
6756{
6757	int i;
6758	uint64_t spareguid;
6759	spa_aux_vdev_t *sav = &spa->spa_spares;
6760
6761	for (i = 0; i < sav->sav_count; i++)
6762		if (sav->sav_vdevs[i]->vdev_guid == guid)
6763			return (B_TRUE);
6764
6765	for (i = 0; i < sav->sav_npending; i++) {
6766		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6767		    &spareguid) == 0 && spareguid == guid)
6768			return (B_TRUE);
6769	}
6770
6771	return (B_FALSE);
6772}
6773
6774/*
6775 * Check if a pool has an active shared spare device.
6776 * Note: reference count of an active spare is 2, as a spare and as a replace
6777 */
6778static boolean_t
6779spa_has_active_shared_spare(spa_t *spa)
6780{
6781	int i, refcnt;
6782	uint64_t pool;
6783	spa_aux_vdev_t *sav = &spa->spa_spares;
6784
6785	for (i = 0; i < sav->sav_count; i++) {
6786		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6787		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6788		    refcnt > 2)
6789			return (B_TRUE);
6790	}
6791
6792	return (B_FALSE);
6793}
6794
6795/*
6796 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6797 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6798 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6799 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6800 * or zdb as real changes.
6801 */
6802void
6803spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6804{
6805#ifdef _KERNEL
6806	sysevent_t		*ev;
6807	sysevent_attr_list_t	*attr = NULL;
6808	sysevent_value_t	value;
6809	sysevent_id_t		eid;
6810
6811	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6812	    SE_SLEEP);
6813
6814	value.value_type = SE_DATA_TYPE_STRING;
6815	value.value.sv_string = spa_name(spa);
6816	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6817		goto done;
6818
6819	value.value_type = SE_DATA_TYPE_UINT64;
6820	value.value.sv_uint64 = spa_guid(spa);
6821	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6822		goto done;
6823
6824	if (vd) {
6825		value.value_type = SE_DATA_TYPE_UINT64;
6826		value.value.sv_uint64 = vd->vdev_guid;
6827		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6828		    SE_SLEEP) != 0)
6829			goto done;
6830
6831		if (vd->vdev_path) {
6832			value.value_type = SE_DATA_TYPE_STRING;
6833			value.value.sv_string = vd->vdev_path;
6834			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6835			    &value, SE_SLEEP) != 0)
6836				goto done;
6837		}
6838	}
6839
6840	if (sysevent_attach_attributes(ev, attr) != 0)
6841		goto done;
6842	attr = NULL;
6843
6844	(void) log_sysevent(ev, SE_SLEEP, &eid);
6845
6846done:
6847	if (attr)
6848		sysevent_free_attr(attr);
6849	sysevent_free(ev);
6850#endif
6851}
6852