spa.c revision 260617
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	zti_mode_fixed,			/* value is # of threads (min 1) */
99	zti_mode_online_percent,	/* value is % of online CPUs */
100	zti_mode_batch,			/* cpu-intensive; value is ignored */
101	zti_mode_null,			/* don't create a taskq */
102	zti_nmodes
103} zti_modes_t;
104
105#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
106#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
107#define	ZTI_BATCH	{ zti_mode_batch, 0 }
108#define	ZTI_NULL	{ zti_mode_null, 0 }
109
110#define	ZTI_ONE		ZTI_FIX(1)
111
112typedef struct zio_taskq_info {
113	enum zti_modes zti_mode;
114	uint_t zti_value;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * Define the taskq threads for the following I/O types:
123 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
124 */
125const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
126	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
127	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
128	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
129	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
130	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
131	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
132	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
133};
134
135static void spa_sync_version(void *arg, dmu_tx_t *tx);
136static void spa_sync_props(void *arg, dmu_tx_t *tx);
137static boolean_t spa_has_active_shared_spare(spa_t *spa);
138static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
139    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
140    char **ereport);
141static void spa_vdev_resilver_done(spa_t *spa);
142
143uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
144#ifdef PSRSET_BIND
145id_t		zio_taskq_psrset_bind = PS_NONE;
146#endif
147#ifdef SYSDC
148boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
149#endif
150uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151
152boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153extern int	zfs_sync_pass_deferred_free;
154
155#ifndef illumos
156extern void spa_deadman(void *arg);
157#endif
158
159/*
160 * This (illegal) pool name is used when temporarily importing a spa_t in order
161 * to get the vdev stats associated with the imported devices.
162 */
163#define	TRYIMPORT_NAME	"$import"
164
165/*
166 * ==========================================================================
167 * SPA properties routines
168 * ==========================================================================
169 */
170
171/*
172 * Add a (source=src, propname=propval) list to an nvlist.
173 */
174static void
175spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
176    uint64_t intval, zprop_source_t src)
177{
178	const char *propname = zpool_prop_to_name(prop);
179	nvlist_t *propval;
180
181	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
182	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
183
184	if (strval != NULL)
185		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
186	else
187		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
188
189	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
190	nvlist_free(propval);
191}
192
193/*
194 * Get property values from the spa configuration.
195 */
196static void
197spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
198{
199	vdev_t *rvd = spa->spa_root_vdev;
200	dsl_pool_t *pool = spa->spa_dsl_pool;
201	uint64_t size;
202	uint64_t alloc;
203	uint64_t space;
204	uint64_t cap, version;
205	zprop_source_t src = ZPROP_SRC_NONE;
206	spa_config_dirent_t *dp;
207
208	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
209
210	if (rvd != NULL) {
211		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
212		size = metaslab_class_get_space(spa_normal_class(spa));
213		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
214		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
215		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
216		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
217		    size - alloc, src);
218
219		space = 0;
220		for (int c = 0; c < rvd->vdev_children; c++) {
221			vdev_t *tvd = rvd->vdev_child[c];
222			space += tvd->vdev_max_asize - tvd->vdev_asize;
223		}
224		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
225		    src);
226
227		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
228		    (spa_mode(spa) == FREAD), src);
229
230		cap = (size == 0) ? 0 : (alloc * 100 / size);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
232
233		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
234		    ddt_get_pool_dedup_ratio(spa), src);
235
236		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
237		    rvd->vdev_state, src);
238
239		version = spa_version(spa);
240		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
241			src = ZPROP_SRC_DEFAULT;
242		else
243			src = ZPROP_SRC_LOCAL;
244		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
245	}
246
247	if (pool != NULL) {
248		dsl_dir_t *freedir = pool->dp_free_dir;
249
250		/*
251		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
252		 * when opening pools before this version freedir will be NULL.
253		 */
254		if (freedir != NULL) {
255			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
256			    freedir->dd_phys->dd_used_bytes, src);
257		} else {
258			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
259			    NULL, 0, src);
260		}
261	}
262
263	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
264
265	if (spa->spa_comment != NULL) {
266		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
267		    0, ZPROP_SRC_LOCAL);
268	}
269
270	if (spa->spa_root != NULL)
271		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
272		    0, ZPROP_SRC_LOCAL);
273
274	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
275		if (dp->scd_path == NULL) {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
277			    "none", 0, ZPROP_SRC_LOCAL);
278		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
279			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
280			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
281		}
282	}
283}
284
285/*
286 * Get zpool property values.
287 */
288int
289spa_prop_get(spa_t *spa, nvlist_t **nvp)
290{
291	objset_t *mos = spa->spa_meta_objset;
292	zap_cursor_t zc;
293	zap_attribute_t za;
294	int err;
295
296	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
297
298	mutex_enter(&spa->spa_props_lock);
299
300	/*
301	 * Get properties from the spa config.
302	 */
303	spa_prop_get_config(spa, nvp);
304
305	/* If no pool property object, no more prop to get. */
306	if (mos == NULL || spa->spa_pool_props_object == 0) {
307		mutex_exit(&spa->spa_props_lock);
308		return (0);
309	}
310
311	/*
312	 * Get properties from the MOS pool property object.
313	 */
314	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
315	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
316	    zap_cursor_advance(&zc)) {
317		uint64_t intval = 0;
318		char *strval = NULL;
319		zprop_source_t src = ZPROP_SRC_DEFAULT;
320		zpool_prop_t prop;
321
322		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
323			continue;
324
325		switch (za.za_integer_length) {
326		case 8:
327			/* integer property */
328			if (za.za_first_integer !=
329			    zpool_prop_default_numeric(prop))
330				src = ZPROP_SRC_LOCAL;
331
332			if (prop == ZPOOL_PROP_BOOTFS) {
333				dsl_pool_t *dp;
334				dsl_dataset_t *ds = NULL;
335
336				dp = spa_get_dsl(spa);
337				dsl_pool_config_enter(dp, FTAG);
338				if (err = dsl_dataset_hold_obj(dp,
339				    za.za_first_integer, FTAG, &ds)) {
340					dsl_pool_config_exit(dp, FTAG);
341					break;
342				}
343
344				strval = kmem_alloc(
345				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
346				    KM_SLEEP);
347				dsl_dataset_name(ds, strval);
348				dsl_dataset_rele(ds, FTAG);
349				dsl_pool_config_exit(dp, FTAG);
350			} else {
351				strval = NULL;
352				intval = za.za_first_integer;
353			}
354
355			spa_prop_add_list(*nvp, prop, strval, intval, src);
356
357			if (strval != NULL)
358				kmem_free(strval,
359				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
360
361			break;
362
363		case 1:
364			/* string property */
365			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
366			err = zap_lookup(mos, spa->spa_pool_props_object,
367			    za.za_name, 1, za.za_num_integers, strval);
368			if (err) {
369				kmem_free(strval, za.za_num_integers);
370				break;
371			}
372			spa_prop_add_list(*nvp, prop, strval, 0, src);
373			kmem_free(strval, za.za_num_integers);
374			break;
375
376		default:
377			break;
378		}
379	}
380	zap_cursor_fini(&zc);
381	mutex_exit(&spa->spa_props_lock);
382out:
383	if (err && err != ENOENT) {
384		nvlist_free(*nvp);
385		*nvp = NULL;
386		return (err);
387	}
388
389	return (0);
390}
391
392/*
393 * Validate the given pool properties nvlist and modify the list
394 * for the property values to be set.
395 */
396static int
397spa_prop_validate(spa_t *spa, nvlist_t *props)
398{
399	nvpair_t *elem;
400	int error = 0, reset_bootfs = 0;
401	uint64_t objnum = 0;
402	boolean_t has_feature = B_FALSE;
403
404	elem = NULL;
405	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
406		uint64_t intval;
407		char *strval, *slash, *check, *fname;
408		const char *propname = nvpair_name(elem);
409		zpool_prop_t prop = zpool_name_to_prop(propname);
410
411		switch (prop) {
412		case ZPROP_INVAL:
413			if (!zpool_prop_feature(propname)) {
414				error = SET_ERROR(EINVAL);
415				break;
416			}
417
418			/*
419			 * Sanitize the input.
420			 */
421			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
422				error = SET_ERROR(EINVAL);
423				break;
424			}
425
426			if (nvpair_value_uint64(elem, &intval) != 0) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			if (intval != 0) {
432				error = SET_ERROR(EINVAL);
433				break;
434			}
435
436			fname = strchr(propname, '@') + 1;
437			if (zfeature_lookup_name(fname, NULL) != 0) {
438				error = SET_ERROR(EINVAL);
439				break;
440			}
441
442			has_feature = B_TRUE;
443			break;
444
445		case ZPOOL_PROP_VERSION:
446			error = nvpair_value_uint64(elem, &intval);
447			if (!error &&
448			    (intval < spa_version(spa) ||
449			    intval > SPA_VERSION_BEFORE_FEATURES ||
450			    has_feature))
451				error = SET_ERROR(EINVAL);
452			break;
453
454		case ZPOOL_PROP_DELEGATION:
455		case ZPOOL_PROP_AUTOREPLACE:
456		case ZPOOL_PROP_LISTSNAPS:
457		case ZPOOL_PROP_AUTOEXPAND:
458			error = nvpair_value_uint64(elem, &intval);
459			if (!error && intval > 1)
460				error = SET_ERROR(EINVAL);
461			break;
462
463		case ZPOOL_PROP_BOOTFS:
464			/*
465			 * If the pool version is less than SPA_VERSION_BOOTFS,
466			 * or the pool is still being created (version == 0),
467			 * the bootfs property cannot be set.
468			 */
469			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
470				error = SET_ERROR(ENOTSUP);
471				break;
472			}
473
474			/*
475			 * Make sure the vdev config is bootable
476			 */
477			if (!vdev_is_bootable(spa->spa_root_vdev)) {
478				error = SET_ERROR(ENOTSUP);
479				break;
480			}
481
482			reset_bootfs = 1;
483
484			error = nvpair_value_string(elem, &strval);
485
486			if (!error) {
487				objset_t *os;
488				uint64_t compress;
489
490				if (strval == NULL || strval[0] == '\0') {
491					objnum = zpool_prop_default_numeric(
492					    ZPOOL_PROP_BOOTFS);
493					break;
494				}
495
496				if (error = dmu_objset_hold(strval, FTAG, &os))
497					break;
498
499				/* Must be ZPL and not gzip compressed. */
500
501				if (dmu_objset_type(os) != DMU_OST_ZFS) {
502					error = SET_ERROR(ENOTSUP);
503				} else if ((error =
504				    dsl_prop_get_int_ds(dmu_objset_ds(os),
505				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
506				    &compress)) == 0 &&
507				    !BOOTFS_COMPRESS_VALID(compress)) {
508					error = SET_ERROR(ENOTSUP);
509				} else {
510					objnum = dmu_objset_id(os);
511				}
512				dmu_objset_rele(os, FTAG);
513			}
514			break;
515
516		case ZPOOL_PROP_FAILUREMODE:
517			error = nvpair_value_uint64(elem, &intval);
518			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
519			    intval > ZIO_FAILURE_MODE_PANIC))
520				error = SET_ERROR(EINVAL);
521
522			/*
523			 * This is a special case which only occurs when
524			 * the pool has completely failed. This allows
525			 * the user to change the in-core failmode property
526			 * without syncing it out to disk (I/Os might
527			 * currently be blocked). We do this by returning
528			 * EIO to the caller (spa_prop_set) to trick it
529			 * into thinking we encountered a property validation
530			 * error.
531			 */
532			if (!error && spa_suspended(spa)) {
533				spa->spa_failmode = intval;
534				error = SET_ERROR(EIO);
535			}
536			break;
537
538		case ZPOOL_PROP_CACHEFILE:
539			if ((error = nvpair_value_string(elem, &strval)) != 0)
540				break;
541
542			if (strval[0] == '\0')
543				break;
544
545			if (strcmp(strval, "none") == 0)
546				break;
547
548			if (strval[0] != '/') {
549				error = SET_ERROR(EINVAL);
550				break;
551			}
552
553			slash = strrchr(strval, '/');
554			ASSERT(slash != NULL);
555
556			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
557			    strcmp(slash, "/..") == 0)
558				error = SET_ERROR(EINVAL);
559			break;
560
561		case ZPOOL_PROP_COMMENT:
562			if ((error = nvpair_value_string(elem, &strval)) != 0)
563				break;
564			for (check = strval; *check != '\0'; check++) {
565				/*
566				 * The kernel doesn't have an easy isprint()
567				 * check.  For this kernel check, we merely
568				 * check ASCII apart from DEL.  Fix this if
569				 * there is an easy-to-use kernel isprint().
570				 */
571				if (*check >= 0x7f) {
572					error = SET_ERROR(EINVAL);
573					break;
574				}
575				check++;
576			}
577			if (strlen(strval) > ZPROP_MAX_COMMENT)
578				error = E2BIG;
579			break;
580
581		case ZPOOL_PROP_DEDUPDITTO:
582			if (spa_version(spa) < SPA_VERSION_DEDUP)
583				error = SET_ERROR(ENOTSUP);
584			else
585				error = nvpair_value_uint64(elem, &intval);
586			if (error == 0 &&
587			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
588				error = SET_ERROR(EINVAL);
589			break;
590		}
591
592		if (error)
593			break;
594	}
595
596	if (!error && reset_bootfs) {
597		error = nvlist_remove(props,
598		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
599
600		if (!error) {
601			error = nvlist_add_uint64(props,
602			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
603		}
604	}
605
606	return (error);
607}
608
609void
610spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
611{
612	char *cachefile;
613	spa_config_dirent_t *dp;
614
615	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
616	    &cachefile) != 0)
617		return;
618
619	dp = kmem_alloc(sizeof (spa_config_dirent_t),
620	    KM_SLEEP);
621
622	if (cachefile[0] == '\0')
623		dp->scd_path = spa_strdup(spa_config_path);
624	else if (strcmp(cachefile, "none") == 0)
625		dp->scd_path = NULL;
626	else
627		dp->scd_path = spa_strdup(cachefile);
628
629	list_insert_head(&spa->spa_config_list, dp);
630	if (need_sync)
631		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
632}
633
634int
635spa_prop_set(spa_t *spa, nvlist_t *nvp)
636{
637	int error;
638	nvpair_t *elem = NULL;
639	boolean_t need_sync = B_FALSE;
640
641	if ((error = spa_prop_validate(spa, nvp)) != 0)
642		return (error);
643
644	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
645		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
646
647		if (prop == ZPOOL_PROP_CACHEFILE ||
648		    prop == ZPOOL_PROP_ALTROOT ||
649		    prop == ZPOOL_PROP_READONLY)
650			continue;
651
652		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
653			uint64_t ver;
654
655			if (prop == ZPOOL_PROP_VERSION) {
656				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
657			} else {
658				ASSERT(zpool_prop_feature(nvpair_name(elem)));
659				ver = SPA_VERSION_FEATURES;
660				need_sync = B_TRUE;
661			}
662
663			/* Save time if the version is already set. */
664			if (ver == spa_version(spa))
665				continue;
666
667			/*
668			 * In addition to the pool directory object, we might
669			 * create the pool properties object, the features for
670			 * read object, the features for write object, or the
671			 * feature descriptions object.
672			 */
673			error = dsl_sync_task(spa->spa_name, NULL,
674			    spa_sync_version, &ver, 6);
675			if (error)
676				return (error);
677			continue;
678		}
679
680		need_sync = B_TRUE;
681		break;
682	}
683
684	if (need_sync) {
685		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
686		    nvp, 6));
687	}
688
689	return (0);
690}
691
692/*
693 * If the bootfs property value is dsobj, clear it.
694 */
695void
696spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
697{
698	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
699		VERIFY(zap_remove(spa->spa_meta_objset,
700		    spa->spa_pool_props_object,
701		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
702		spa->spa_bootfs = 0;
703	}
704}
705
706/*ARGSUSED*/
707static int
708spa_change_guid_check(void *arg, dmu_tx_t *tx)
709{
710	uint64_t *newguid = arg;
711	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
712	vdev_t *rvd = spa->spa_root_vdev;
713	uint64_t vdev_state;
714
715	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
716	vdev_state = rvd->vdev_state;
717	spa_config_exit(spa, SCL_STATE, FTAG);
718
719	if (vdev_state != VDEV_STATE_HEALTHY)
720		return (SET_ERROR(ENXIO));
721
722	ASSERT3U(spa_guid(spa), !=, *newguid);
723
724	return (0);
725}
726
727static void
728spa_change_guid_sync(void *arg, dmu_tx_t *tx)
729{
730	uint64_t *newguid = arg;
731	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
732	uint64_t oldguid;
733	vdev_t *rvd = spa->spa_root_vdev;
734
735	oldguid = spa_guid(spa);
736
737	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
738	rvd->vdev_guid = *newguid;
739	rvd->vdev_guid_sum += (*newguid - oldguid);
740	vdev_config_dirty(rvd);
741	spa_config_exit(spa, SCL_STATE, FTAG);
742
743	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
744	    oldguid, *newguid);
745}
746
747/*
748 * Change the GUID for the pool.  This is done so that we can later
749 * re-import a pool built from a clone of our own vdevs.  We will modify
750 * the root vdev's guid, our own pool guid, and then mark all of our
751 * vdevs dirty.  Note that we must make sure that all our vdevs are
752 * online when we do this, or else any vdevs that weren't present
753 * would be orphaned from our pool.  We are also going to issue a
754 * sysevent to update any watchers.
755 */
756int
757spa_change_guid(spa_t *spa)
758{
759	int error;
760	uint64_t guid;
761
762	mutex_enter(&spa->spa_vdev_top_lock);
763	mutex_enter(&spa_namespace_lock);
764	guid = spa_generate_guid(NULL);
765
766	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
767	    spa_change_guid_sync, &guid, 5);
768
769	if (error == 0) {
770		spa_config_sync(spa, B_FALSE, B_TRUE);
771		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
772	}
773
774	mutex_exit(&spa_namespace_lock);
775	mutex_exit(&spa->spa_vdev_top_lock);
776
777	return (error);
778}
779
780/*
781 * ==========================================================================
782 * SPA state manipulation (open/create/destroy/import/export)
783 * ==========================================================================
784 */
785
786static int
787spa_error_entry_compare(const void *a, const void *b)
788{
789	spa_error_entry_t *sa = (spa_error_entry_t *)a;
790	spa_error_entry_t *sb = (spa_error_entry_t *)b;
791	int ret;
792
793	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
794	    sizeof (zbookmark_t));
795
796	if (ret < 0)
797		return (-1);
798	else if (ret > 0)
799		return (1);
800	else
801		return (0);
802}
803
804/*
805 * Utility function which retrieves copies of the current logs and
806 * re-initializes them in the process.
807 */
808void
809spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
810{
811	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
812
813	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
814	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
815
816	avl_create(&spa->spa_errlist_scrub,
817	    spa_error_entry_compare, sizeof (spa_error_entry_t),
818	    offsetof(spa_error_entry_t, se_avl));
819	avl_create(&spa->spa_errlist_last,
820	    spa_error_entry_compare, sizeof (spa_error_entry_t),
821	    offsetof(spa_error_entry_t, se_avl));
822}
823
824static taskq_t *
825spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
826    uint_t value)
827{
828	uint_t flags = TASKQ_PREPOPULATE;
829	boolean_t batch = B_FALSE;
830
831	switch (mode) {
832	case zti_mode_null:
833		return (NULL);		/* no taskq needed */
834
835	case zti_mode_fixed:
836		ASSERT3U(value, >=, 1);
837		value = MAX(value, 1);
838		break;
839
840	case zti_mode_batch:
841		batch = B_TRUE;
842		flags |= TASKQ_THREADS_CPU_PCT;
843		value = zio_taskq_batch_pct;
844		break;
845
846	case zti_mode_online_percent:
847		flags |= TASKQ_THREADS_CPU_PCT;
848		break;
849
850	default:
851		panic("unrecognized mode for %s taskq (%u:%u) in "
852		    "spa_activate()",
853		    name, mode, value);
854		break;
855	}
856
857#ifdef SYSDC
858	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
859		if (batch)
860			flags |= TASKQ_DC_BATCH;
861
862		return (taskq_create_sysdc(name, value, 50, INT_MAX,
863		    spa->spa_proc, zio_taskq_basedc, flags));
864	}
865#endif
866	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
867	    spa->spa_proc, flags));
868}
869
870static void
871spa_create_zio_taskqs(spa_t *spa)
872{
873	for (int t = 0; t < ZIO_TYPES; t++) {
874		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
875			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
876			enum zti_modes mode = ztip->zti_mode;
877			uint_t value = ztip->zti_value;
878			char name[32];
879
880			(void) snprintf(name, sizeof (name),
881			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
882
883			spa->spa_zio_taskq[t][q] =
884			    spa_taskq_create(spa, name, mode, value);
885		}
886	}
887}
888
889#ifdef _KERNEL
890#ifdef SPA_PROCESS
891static void
892spa_thread(void *arg)
893{
894	callb_cpr_t cprinfo;
895
896	spa_t *spa = arg;
897	user_t *pu = PTOU(curproc);
898
899	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
900	    spa->spa_name);
901
902	ASSERT(curproc != &p0);
903	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
904	    "zpool-%s", spa->spa_name);
905	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
906
907#ifdef PSRSET_BIND
908	/* bind this thread to the requested psrset */
909	if (zio_taskq_psrset_bind != PS_NONE) {
910		pool_lock();
911		mutex_enter(&cpu_lock);
912		mutex_enter(&pidlock);
913		mutex_enter(&curproc->p_lock);
914
915		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
916		    0, NULL, NULL) == 0)  {
917			curthread->t_bind_pset = zio_taskq_psrset_bind;
918		} else {
919			cmn_err(CE_WARN,
920			    "Couldn't bind process for zfs pool \"%s\" to "
921			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
922		}
923
924		mutex_exit(&curproc->p_lock);
925		mutex_exit(&pidlock);
926		mutex_exit(&cpu_lock);
927		pool_unlock();
928	}
929#endif
930
931#ifdef SYSDC
932	if (zio_taskq_sysdc) {
933		sysdc_thread_enter(curthread, 100, 0);
934	}
935#endif
936
937	spa->spa_proc = curproc;
938	spa->spa_did = curthread->t_did;
939
940	spa_create_zio_taskqs(spa);
941
942	mutex_enter(&spa->spa_proc_lock);
943	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
944
945	spa->spa_proc_state = SPA_PROC_ACTIVE;
946	cv_broadcast(&spa->spa_proc_cv);
947
948	CALLB_CPR_SAFE_BEGIN(&cprinfo);
949	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
950		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
951	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
952
953	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
954	spa->spa_proc_state = SPA_PROC_GONE;
955	spa->spa_proc = &p0;
956	cv_broadcast(&spa->spa_proc_cv);
957	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
958
959	mutex_enter(&curproc->p_lock);
960	lwp_exit();
961}
962#endif	/* SPA_PROCESS */
963#endif
964
965/*
966 * Activate an uninitialized pool.
967 */
968static void
969spa_activate(spa_t *spa, int mode)
970{
971	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
972
973	spa->spa_state = POOL_STATE_ACTIVE;
974	spa->spa_mode = mode;
975
976	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
977	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
978
979	/* Try to create a covering process */
980	mutex_enter(&spa->spa_proc_lock);
981	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
982	ASSERT(spa->spa_proc == &p0);
983	spa->spa_did = 0;
984
985#ifdef SPA_PROCESS
986	/* Only create a process if we're going to be around a while. */
987	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
988		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
989		    NULL, 0) == 0) {
990			spa->spa_proc_state = SPA_PROC_CREATED;
991			while (spa->spa_proc_state == SPA_PROC_CREATED) {
992				cv_wait(&spa->spa_proc_cv,
993				    &spa->spa_proc_lock);
994			}
995			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
996			ASSERT(spa->spa_proc != &p0);
997			ASSERT(spa->spa_did != 0);
998		} else {
999#ifdef _KERNEL
1000			cmn_err(CE_WARN,
1001			    "Couldn't create process for zfs pool \"%s\"\n",
1002			    spa->spa_name);
1003#endif
1004		}
1005	}
1006#endif	/* SPA_PROCESS */
1007	mutex_exit(&spa->spa_proc_lock);
1008
1009	/* If we didn't create a process, we need to create our taskqs. */
1010	ASSERT(spa->spa_proc == &p0);
1011	if (spa->spa_proc == &p0) {
1012		spa_create_zio_taskqs(spa);
1013	}
1014
1015	/*
1016	 * Start TRIM thread.
1017	 */
1018	trim_thread_create(spa);
1019
1020	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1021	    offsetof(vdev_t, vdev_config_dirty_node));
1022	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1023	    offsetof(vdev_t, vdev_state_dirty_node));
1024
1025	txg_list_create(&spa->spa_vdev_txg_list,
1026	    offsetof(struct vdev, vdev_txg_node));
1027
1028	avl_create(&spa->spa_errlist_scrub,
1029	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1030	    offsetof(spa_error_entry_t, se_avl));
1031	avl_create(&spa->spa_errlist_last,
1032	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1033	    offsetof(spa_error_entry_t, se_avl));
1034}
1035
1036/*
1037 * Opposite of spa_activate().
1038 */
1039static void
1040spa_deactivate(spa_t *spa)
1041{
1042	ASSERT(spa->spa_sync_on == B_FALSE);
1043	ASSERT(spa->spa_dsl_pool == NULL);
1044	ASSERT(spa->spa_root_vdev == NULL);
1045	ASSERT(spa->spa_async_zio_root == NULL);
1046	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1047
1048	/*
1049	 * Stop TRIM thread in case spa_unload() wasn't called directly
1050	 * before spa_deactivate().
1051	 */
1052	trim_thread_destroy(spa);
1053
1054	txg_list_destroy(&spa->spa_vdev_txg_list);
1055
1056	list_destroy(&spa->spa_config_dirty_list);
1057	list_destroy(&spa->spa_state_dirty_list);
1058
1059	for (int t = 0; t < ZIO_TYPES; t++) {
1060		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1061			if (spa->spa_zio_taskq[t][q] != NULL)
1062				taskq_destroy(spa->spa_zio_taskq[t][q]);
1063			spa->spa_zio_taskq[t][q] = NULL;
1064		}
1065	}
1066
1067	metaslab_class_destroy(spa->spa_normal_class);
1068	spa->spa_normal_class = NULL;
1069
1070	metaslab_class_destroy(spa->spa_log_class);
1071	spa->spa_log_class = NULL;
1072
1073	/*
1074	 * If this was part of an import or the open otherwise failed, we may
1075	 * still have errors left in the queues.  Empty them just in case.
1076	 */
1077	spa_errlog_drain(spa);
1078
1079	avl_destroy(&spa->spa_errlist_scrub);
1080	avl_destroy(&spa->spa_errlist_last);
1081
1082	spa->spa_state = POOL_STATE_UNINITIALIZED;
1083
1084	mutex_enter(&spa->spa_proc_lock);
1085	if (spa->spa_proc_state != SPA_PROC_NONE) {
1086		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1087		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1088		cv_broadcast(&spa->spa_proc_cv);
1089		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1090			ASSERT(spa->spa_proc != &p0);
1091			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1092		}
1093		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1094		spa->spa_proc_state = SPA_PROC_NONE;
1095	}
1096	ASSERT(spa->spa_proc == &p0);
1097	mutex_exit(&spa->spa_proc_lock);
1098
1099#ifdef SPA_PROCESS
1100	/*
1101	 * We want to make sure spa_thread() has actually exited the ZFS
1102	 * module, so that the module can't be unloaded out from underneath
1103	 * it.
1104	 */
1105	if (spa->spa_did != 0) {
1106		thread_join(spa->spa_did);
1107		spa->spa_did = 0;
1108	}
1109#endif	/* SPA_PROCESS */
1110}
1111
1112/*
1113 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1114 * will create all the necessary vdevs in the appropriate layout, with each vdev
1115 * in the CLOSED state.  This will prep the pool before open/creation/import.
1116 * All vdev validation is done by the vdev_alloc() routine.
1117 */
1118static int
1119spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1120    uint_t id, int atype)
1121{
1122	nvlist_t **child;
1123	uint_t children;
1124	int error;
1125
1126	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1127		return (error);
1128
1129	if ((*vdp)->vdev_ops->vdev_op_leaf)
1130		return (0);
1131
1132	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1133	    &child, &children);
1134
1135	if (error == ENOENT)
1136		return (0);
1137
1138	if (error) {
1139		vdev_free(*vdp);
1140		*vdp = NULL;
1141		return (SET_ERROR(EINVAL));
1142	}
1143
1144	for (int c = 0; c < children; c++) {
1145		vdev_t *vd;
1146		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1147		    atype)) != 0) {
1148			vdev_free(*vdp);
1149			*vdp = NULL;
1150			return (error);
1151		}
1152	}
1153
1154	ASSERT(*vdp != NULL);
1155
1156	return (0);
1157}
1158
1159/*
1160 * Opposite of spa_load().
1161 */
1162static void
1163spa_unload(spa_t *spa)
1164{
1165	int i;
1166
1167	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1168
1169	/*
1170	 * Stop TRIM thread.
1171	 */
1172	trim_thread_destroy(spa);
1173
1174	/*
1175	 * Stop async tasks.
1176	 */
1177	spa_async_suspend(spa);
1178
1179	/*
1180	 * Stop syncing.
1181	 */
1182	if (spa->spa_sync_on) {
1183		txg_sync_stop(spa->spa_dsl_pool);
1184		spa->spa_sync_on = B_FALSE;
1185	}
1186
1187	/*
1188	 * Wait for any outstanding async I/O to complete.
1189	 */
1190	if (spa->spa_async_zio_root != NULL) {
1191		(void) zio_wait(spa->spa_async_zio_root);
1192		spa->spa_async_zio_root = NULL;
1193	}
1194
1195	bpobj_close(&spa->spa_deferred_bpobj);
1196
1197	/*
1198	 * Close the dsl pool.
1199	 */
1200	if (spa->spa_dsl_pool) {
1201		dsl_pool_close(spa->spa_dsl_pool);
1202		spa->spa_dsl_pool = NULL;
1203		spa->spa_meta_objset = NULL;
1204	}
1205
1206	ddt_unload(spa);
1207
1208	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209
1210	/*
1211	 * Drop and purge level 2 cache
1212	 */
1213	spa_l2cache_drop(spa);
1214
1215	/*
1216	 * Close all vdevs.
1217	 */
1218	if (spa->spa_root_vdev)
1219		vdev_free(spa->spa_root_vdev);
1220	ASSERT(spa->spa_root_vdev == NULL);
1221
1222	for (i = 0; i < spa->spa_spares.sav_count; i++)
1223		vdev_free(spa->spa_spares.sav_vdevs[i]);
1224	if (spa->spa_spares.sav_vdevs) {
1225		kmem_free(spa->spa_spares.sav_vdevs,
1226		    spa->spa_spares.sav_count * sizeof (void *));
1227		spa->spa_spares.sav_vdevs = NULL;
1228	}
1229	if (spa->spa_spares.sav_config) {
1230		nvlist_free(spa->spa_spares.sav_config);
1231		spa->spa_spares.sav_config = NULL;
1232	}
1233	spa->spa_spares.sav_count = 0;
1234
1235	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1236		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1237		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1238	}
1239	if (spa->spa_l2cache.sav_vdevs) {
1240		kmem_free(spa->spa_l2cache.sav_vdevs,
1241		    spa->spa_l2cache.sav_count * sizeof (void *));
1242		spa->spa_l2cache.sav_vdevs = NULL;
1243	}
1244	if (spa->spa_l2cache.sav_config) {
1245		nvlist_free(spa->spa_l2cache.sav_config);
1246		spa->spa_l2cache.sav_config = NULL;
1247	}
1248	spa->spa_l2cache.sav_count = 0;
1249
1250	spa->spa_async_suspended = 0;
1251
1252	if (spa->spa_comment != NULL) {
1253		spa_strfree(spa->spa_comment);
1254		spa->spa_comment = NULL;
1255	}
1256
1257	spa_config_exit(spa, SCL_ALL, FTAG);
1258}
1259
1260/*
1261 * Load (or re-load) the current list of vdevs describing the active spares for
1262 * this pool.  When this is called, we have some form of basic information in
1263 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1264 * then re-generate a more complete list including status information.
1265 */
1266static void
1267spa_load_spares(spa_t *spa)
1268{
1269	nvlist_t **spares;
1270	uint_t nspares;
1271	int i;
1272	vdev_t *vd, *tvd;
1273
1274	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1275
1276	/*
1277	 * First, close and free any existing spare vdevs.
1278	 */
1279	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1280		vd = spa->spa_spares.sav_vdevs[i];
1281
1282		/* Undo the call to spa_activate() below */
1283		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1284		    B_FALSE)) != NULL && tvd->vdev_isspare)
1285			spa_spare_remove(tvd);
1286		vdev_close(vd);
1287		vdev_free(vd);
1288	}
1289
1290	if (spa->spa_spares.sav_vdevs)
1291		kmem_free(spa->spa_spares.sav_vdevs,
1292		    spa->spa_spares.sav_count * sizeof (void *));
1293
1294	if (spa->spa_spares.sav_config == NULL)
1295		nspares = 0;
1296	else
1297		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1298		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1299
1300	spa->spa_spares.sav_count = (int)nspares;
1301	spa->spa_spares.sav_vdevs = NULL;
1302
1303	if (nspares == 0)
1304		return;
1305
1306	/*
1307	 * Construct the array of vdevs, opening them to get status in the
1308	 * process.   For each spare, there is potentially two different vdev_t
1309	 * structures associated with it: one in the list of spares (used only
1310	 * for basic validation purposes) and one in the active vdev
1311	 * configuration (if it's spared in).  During this phase we open and
1312	 * validate each vdev on the spare list.  If the vdev also exists in the
1313	 * active configuration, then we also mark this vdev as an active spare.
1314	 */
1315	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1316	    KM_SLEEP);
1317	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1318		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1319		    VDEV_ALLOC_SPARE) == 0);
1320		ASSERT(vd != NULL);
1321
1322		spa->spa_spares.sav_vdevs[i] = vd;
1323
1324		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1325		    B_FALSE)) != NULL) {
1326			if (!tvd->vdev_isspare)
1327				spa_spare_add(tvd);
1328
1329			/*
1330			 * We only mark the spare active if we were successfully
1331			 * able to load the vdev.  Otherwise, importing a pool
1332			 * with a bad active spare would result in strange
1333			 * behavior, because multiple pool would think the spare
1334			 * is actively in use.
1335			 *
1336			 * There is a vulnerability here to an equally bizarre
1337			 * circumstance, where a dead active spare is later
1338			 * brought back to life (onlined or otherwise).  Given
1339			 * the rarity of this scenario, and the extra complexity
1340			 * it adds, we ignore the possibility.
1341			 */
1342			if (!vdev_is_dead(tvd))
1343				spa_spare_activate(tvd);
1344		}
1345
1346		vd->vdev_top = vd;
1347		vd->vdev_aux = &spa->spa_spares;
1348
1349		if (vdev_open(vd) != 0)
1350			continue;
1351
1352		if (vdev_validate_aux(vd) == 0)
1353			spa_spare_add(vd);
1354	}
1355
1356	/*
1357	 * Recompute the stashed list of spares, with status information
1358	 * this time.
1359	 */
1360	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1361	    DATA_TYPE_NVLIST_ARRAY) == 0);
1362
1363	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1364	    KM_SLEEP);
1365	for (i = 0; i < spa->spa_spares.sav_count; i++)
1366		spares[i] = vdev_config_generate(spa,
1367		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1368	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1369	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1370	for (i = 0; i < spa->spa_spares.sav_count; i++)
1371		nvlist_free(spares[i]);
1372	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1373}
1374
1375/*
1376 * Load (or re-load) the current list of vdevs describing the active l2cache for
1377 * this pool.  When this is called, we have some form of basic information in
1378 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1379 * then re-generate a more complete list including status information.
1380 * Devices which are already active have their details maintained, and are
1381 * not re-opened.
1382 */
1383static void
1384spa_load_l2cache(spa_t *spa)
1385{
1386	nvlist_t **l2cache;
1387	uint_t nl2cache;
1388	int i, j, oldnvdevs;
1389	uint64_t guid;
1390	vdev_t *vd, **oldvdevs, **newvdevs;
1391	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	if (sav->sav_config != NULL) {
1396		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1397		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1398		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1399	} else {
1400		nl2cache = 0;
1401		newvdevs = NULL;
1402	}
1403
1404	oldvdevs = sav->sav_vdevs;
1405	oldnvdevs = sav->sav_count;
1406	sav->sav_vdevs = NULL;
1407	sav->sav_count = 0;
1408
1409	/*
1410	 * Process new nvlist of vdevs.
1411	 */
1412	for (i = 0; i < nl2cache; i++) {
1413		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1414		    &guid) == 0);
1415
1416		newvdevs[i] = NULL;
1417		for (j = 0; j < oldnvdevs; j++) {
1418			vd = oldvdevs[j];
1419			if (vd != NULL && guid == vd->vdev_guid) {
1420				/*
1421				 * Retain previous vdev for add/remove ops.
1422				 */
1423				newvdevs[i] = vd;
1424				oldvdevs[j] = NULL;
1425				break;
1426			}
1427		}
1428
1429		if (newvdevs[i] == NULL) {
1430			/*
1431			 * Create new vdev
1432			 */
1433			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1434			    VDEV_ALLOC_L2CACHE) == 0);
1435			ASSERT(vd != NULL);
1436			newvdevs[i] = vd;
1437
1438			/*
1439			 * Commit this vdev as an l2cache device,
1440			 * even if it fails to open.
1441			 */
1442			spa_l2cache_add(vd);
1443
1444			vd->vdev_top = vd;
1445			vd->vdev_aux = sav;
1446
1447			spa_l2cache_activate(vd);
1448
1449			if (vdev_open(vd) != 0)
1450				continue;
1451
1452			(void) vdev_validate_aux(vd);
1453
1454			if (!vdev_is_dead(vd))
1455				l2arc_add_vdev(spa, vd);
1456		}
1457	}
1458
1459	/*
1460	 * Purge vdevs that were dropped
1461	 */
1462	for (i = 0; i < oldnvdevs; i++) {
1463		uint64_t pool;
1464
1465		vd = oldvdevs[i];
1466		if (vd != NULL) {
1467			ASSERT(vd->vdev_isl2cache);
1468
1469			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1470			    pool != 0ULL && l2arc_vdev_present(vd))
1471				l2arc_remove_vdev(vd);
1472			vdev_clear_stats(vd);
1473			vdev_free(vd);
1474		}
1475	}
1476
1477	if (oldvdevs)
1478		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1479
1480	if (sav->sav_config == NULL)
1481		goto out;
1482
1483	sav->sav_vdevs = newvdevs;
1484	sav->sav_count = (int)nl2cache;
1485
1486	/*
1487	 * Recompute the stashed list of l2cache devices, with status
1488	 * information this time.
1489	 */
1490	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1491	    DATA_TYPE_NVLIST_ARRAY) == 0);
1492
1493	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1494	for (i = 0; i < sav->sav_count; i++)
1495		l2cache[i] = vdev_config_generate(spa,
1496		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1497	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1498	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1499out:
1500	for (i = 0; i < sav->sav_count; i++)
1501		nvlist_free(l2cache[i]);
1502	if (sav->sav_count)
1503		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1504}
1505
1506static int
1507load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1508{
1509	dmu_buf_t *db;
1510	char *packed = NULL;
1511	size_t nvsize = 0;
1512	int error;
1513	*value = NULL;
1514
1515	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1516	nvsize = *(uint64_t *)db->db_data;
1517	dmu_buf_rele(db, FTAG);
1518
1519	packed = kmem_alloc(nvsize, KM_SLEEP);
1520	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1521	    DMU_READ_PREFETCH);
1522	if (error == 0)
1523		error = nvlist_unpack(packed, nvsize, value, 0);
1524	kmem_free(packed, nvsize);
1525
1526	return (error);
1527}
1528
1529/*
1530 * Checks to see if the given vdev could not be opened, in which case we post a
1531 * sysevent to notify the autoreplace code that the device has been removed.
1532 */
1533static void
1534spa_check_removed(vdev_t *vd)
1535{
1536	for (int c = 0; c < vd->vdev_children; c++)
1537		spa_check_removed(vd->vdev_child[c]);
1538
1539	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1540	    !vd->vdev_ishole) {
1541		zfs_post_autoreplace(vd->vdev_spa, vd);
1542		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1543	}
1544}
1545
1546/*
1547 * Validate the current config against the MOS config
1548 */
1549static boolean_t
1550spa_config_valid(spa_t *spa, nvlist_t *config)
1551{
1552	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1553	nvlist_t *nv;
1554
1555	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1556
1557	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1558	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1559
1560	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1561
1562	/*
1563	 * If we're doing a normal import, then build up any additional
1564	 * diagnostic information about missing devices in this config.
1565	 * We'll pass this up to the user for further processing.
1566	 */
1567	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1568		nvlist_t **child, *nv;
1569		uint64_t idx = 0;
1570
1571		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1572		    KM_SLEEP);
1573		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1574
1575		for (int c = 0; c < rvd->vdev_children; c++) {
1576			vdev_t *tvd = rvd->vdev_child[c];
1577			vdev_t *mtvd  = mrvd->vdev_child[c];
1578
1579			if (tvd->vdev_ops == &vdev_missing_ops &&
1580			    mtvd->vdev_ops != &vdev_missing_ops &&
1581			    mtvd->vdev_islog)
1582				child[idx++] = vdev_config_generate(spa, mtvd,
1583				    B_FALSE, 0);
1584		}
1585
1586		if (idx) {
1587			VERIFY(nvlist_add_nvlist_array(nv,
1588			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1589			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1590			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1591
1592			for (int i = 0; i < idx; i++)
1593				nvlist_free(child[i]);
1594		}
1595		nvlist_free(nv);
1596		kmem_free(child, rvd->vdev_children * sizeof (char **));
1597	}
1598
1599	/*
1600	 * Compare the root vdev tree with the information we have
1601	 * from the MOS config (mrvd). Check each top-level vdev
1602	 * with the corresponding MOS config top-level (mtvd).
1603	 */
1604	for (int c = 0; c < rvd->vdev_children; c++) {
1605		vdev_t *tvd = rvd->vdev_child[c];
1606		vdev_t *mtvd  = mrvd->vdev_child[c];
1607
1608		/*
1609		 * Resolve any "missing" vdevs in the current configuration.
1610		 * If we find that the MOS config has more accurate information
1611		 * about the top-level vdev then use that vdev instead.
1612		 */
1613		if (tvd->vdev_ops == &vdev_missing_ops &&
1614		    mtvd->vdev_ops != &vdev_missing_ops) {
1615
1616			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1617				continue;
1618
1619			/*
1620			 * Device specific actions.
1621			 */
1622			if (mtvd->vdev_islog) {
1623				spa_set_log_state(spa, SPA_LOG_CLEAR);
1624			} else {
1625				/*
1626				 * XXX - once we have 'readonly' pool
1627				 * support we should be able to handle
1628				 * missing data devices by transitioning
1629				 * the pool to readonly.
1630				 */
1631				continue;
1632			}
1633
1634			/*
1635			 * Swap the missing vdev with the data we were
1636			 * able to obtain from the MOS config.
1637			 */
1638			vdev_remove_child(rvd, tvd);
1639			vdev_remove_child(mrvd, mtvd);
1640
1641			vdev_add_child(rvd, mtvd);
1642			vdev_add_child(mrvd, tvd);
1643
1644			spa_config_exit(spa, SCL_ALL, FTAG);
1645			vdev_load(mtvd);
1646			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1647
1648			vdev_reopen(rvd);
1649		} else if (mtvd->vdev_islog) {
1650			/*
1651			 * Load the slog device's state from the MOS config
1652			 * since it's possible that the label does not
1653			 * contain the most up-to-date information.
1654			 */
1655			vdev_load_log_state(tvd, mtvd);
1656			vdev_reopen(tvd);
1657		}
1658	}
1659	vdev_free(mrvd);
1660	spa_config_exit(spa, SCL_ALL, FTAG);
1661
1662	/*
1663	 * Ensure we were able to validate the config.
1664	 */
1665	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1666}
1667
1668/*
1669 * Check for missing log devices
1670 */
1671static boolean_t
1672spa_check_logs(spa_t *spa)
1673{
1674	boolean_t rv = B_FALSE;
1675
1676	switch (spa->spa_log_state) {
1677	case SPA_LOG_MISSING:
1678		/* need to recheck in case slog has been restored */
1679	case SPA_LOG_UNKNOWN:
1680		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1681		    NULL, DS_FIND_CHILDREN) != 0);
1682		if (rv)
1683			spa_set_log_state(spa, SPA_LOG_MISSING);
1684		break;
1685	}
1686	return (rv);
1687}
1688
1689static boolean_t
1690spa_passivate_log(spa_t *spa)
1691{
1692	vdev_t *rvd = spa->spa_root_vdev;
1693	boolean_t slog_found = B_FALSE;
1694
1695	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1696
1697	if (!spa_has_slogs(spa))
1698		return (B_FALSE);
1699
1700	for (int c = 0; c < rvd->vdev_children; c++) {
1701		vdev_t *tvd = rvd->vdev_child[c];
1702		metaslab_group_t *mg = tvd->vdev_mg;
1703
1704		if (tvd->vdev_islog) {
1705			metaslab_group_passivate(mg);
1706			slog_found = B_TRUE;
1707		}
1708	}
1709
1710	return (slog_found);
1711}
1712
1713static void
1714spa_activate_log(spa_t *spa)
1715{
1716	vdev_t *rvd = spa->spa_root_vdev;
1717
1718	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1719
1720	for (int c = 0; c < rvd->vdev_children; c++) {
1721		vdev_t *tvd = rvd->vdev_child[c];
1722		metaslab_group_t *mg = tvd->vdev_mg;
1723
1724		if (tvd->vdev_islog)
1725			metaslab_group_activate(mg);
1726	}
1727}
1728
1729int
1730spa_offline_log(spa_t *spa)
1731{
1732	int error;
1733
1734	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1735	    NULL, DS_FIND_CHILDREN);
1736	if (error == 0) {
1737		/*
1738		 * We successfully offlined the log device, sync out the
1739		 * current txg so that the "stubby" block can be removed
1740		 * by zil_sync().
1741		 */
1742		txg_wait_synced(spa->spa_dsl_pool, 0);
1743	}
1744	return (error);
1745}
1746
1747static void
1748spa_aux_check_removed(spa_aux_vdev_t *sav)
1749{
1750	int i;
1751
1752	for (i = 0; i < sav->sav_count; i++)
1753		spa_check_removed(sav->sav_vdevs[i]);
1754}
1755
1756void
1757spa_claim_notify(zio_t *zio)
1758{
1759	spa_t *spa = zio->io_spa;
1760
1761	if (zio->io_error)
1762		return;
1763
1764	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1765	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1766		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1767	mutex_exit(&spa->spa_props_lock);
1768}
1769
1770typedef struct spa_load_error {
1771	uint64_t	sle_meta_count;
1772	uint64_t	sle_data_count;
1773} spa_load_error_t;
1774
1775static void
1776spa_load_verify_done(zio_t *zio)
1777{
1778	blkptr_t *bp = zio->io_bp;
1779	spa_load_error_t *sle = zio->io_private;
1780	dmu_object_type_t type = BP_GET_TYPE(bp);
1781	int error = zio->io_error;
1782
1783	if (error) {
1784		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1785		    type != DMU_OT_INTENT_LOG)
1786			atomic_add_64(&sle->sle_meta_count, 1);
1787		else
1788			atomic_add_64(&sle->sle_data_count, 1);
1789	}
1790	zio_data_buf_free(zio->io_data, zio->io_size);
1791}
1792
1793/*ARGSUSED*/
1794static int
1795spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1796    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1797{
1798	if (bp != NULL) {
1799		zio_t *rio = arg;
1800		size_t size = BP_GET_PSIZE(bp);
1801		void *data = zio_data_buf_alloc(size);
1802
1803		zio_nowait(zio_read(rio, spa, bp, data, size,
1804		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1805		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1806		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1807	}
1808	return (0);
1809}
1810
1811static int
1812spa_load_verify(spa_t *spa)
1813{
1814	zio_t *rio;
1815	spa_load_error_t sle = { 0 };
1816	zpool_rewind_policy_t policy;
1817	boolean_t verify_ok = B_FALSE;
1818	int error;
1819
1820	zpool_get_rewind_policy(spa->spa_config, &policy);
1821
1822	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1823		return (0);
1824
1825	rio = zio_root(spa, NULL, &sle,
1826	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1827
1828	error = traverse_pool(spa, spa->spa_verify_min_txg,
1829	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1830
1831	(void) zio_wait(rio);
1832
1833	spa->spa_load_meta_errors = sle.sle_meta_count;
1834	spa->spa_load_data_errors = sle.sle_data_count;
1835
1836	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1837	    sle.sle_data_count <= policy.zrp_maxdata) {
1838		int64_t loss = 0;
1839
1840		verify_ok = B_TRUE;
1841		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1842		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1843
1844		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1845		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1846		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1847		VERIFY(nvlist_add_int64(spa->spa_load_info,
1848		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1849		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1850		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1851	} else {
1852		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1853	}
1854
1855	if (error) {
1856		if (error != ENXIO && error != EIO)
1857			error = SET_ERROR(EIO);
1858		return (error);
1859	}
1860
1861	return (verify_ok ? 0 : EIO);
1862}
1863
1864/*
1865 * Find a value in the pool props object.
1866 */
1867static void
1868spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1869{
1870	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1871	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1872}
1873
1874/*
1875 * Find a value in the pool directory object.
1876 */
1877static int
1878spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1879{
1880	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1881	    name, sizeof (uint64_t), 1, val));
1882}
1883
1884static int
1885spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1886{
1887	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1888	return (err);
1889}
1890
1891/*
1892 * Fix up config after a partly-completed split.  This is done with the
1893 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1894 * pool have that entry in their config, but only the splitting one contains
1895 * a list of all the guids of the vdevs that are being split off.
1896 *
1897 * This function determines what to do with that list: either rejoin
1898 * all the disks to the pool, or complete the splitting process.  To attempt
1899 * the rejoin, each disk that is offlined is marked online again, and
1900 * we do a reopen() call.  If the vdev label for every disk that was
1901 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1902 * then we call vdev_split() on each disk, and complete the split.
1903 *
1904 * Otherwise we leave the config alone, with all the vdevs in place in
1905 * the original pool.
1906 */
1907static void
1908spa_try_repair(spa_t *spa, nvlist_t *config)
1909{
1910	uint_t extracted;
1911	uint64_t *glist;
1912	uint_t i, gcount;
1913	nvlist_t *nvl;
1914	vdev_t **vd;
1915	boolean_t attempt_reopen;
1916
1917	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1918		return;
1919
1920	/* check that the config is complete */
1921	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1922	    &glist, &gcount) != 0)
1923		return;
1924
1925	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1926
1927	/* attempt to online all the vdevs & validate */
1928	attempt_reopen = B_TRUE;
1929	for (i = 0; i < gcount; i++) {
1930		if (glist[i] == 0)	/* vdev is hole */
1931			continue;
1932
1933		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1934		if (vd[i] == NULL) {
1935			/*
1936			 * Don't bother attempting to reopen the disks;
1937			 * just do the split.
1938			 */
1939			attempt_reopen = B_FALSE;
1940		} else {
1941			/* attempt to re-online it */
1942			vd[i]->vdev_offline = B_FALSE;
1943		}
1944	}
1945
1946	if (attempt_reopen) {
1947		vdev_reopen(spa->spa_root_vdev);
1948
1949		/* check each device to see what state it's in */
1950		for (extracted = 0, i = 0; i < gcount; i++) {
1951			if (vd[i] != NULL &&
1952			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1953				break;
1954			++extracted;
1955		}
1956	}
1957
1958	/*
1959	 * If every disk has been moved to the new pool, or if we never
1960	 * even attempted to look at them, then we split them off for
1961	 * good.
1962	 */
1963	if (!attempt_reopen || gcount == extracted) {
1964		for (i = 0; i < gcount; i++)
1965			if (vd[i] != NULL)
1966				vdev_split(vd[i]);
1967		vdev_reopen(spa->spa_root_vdev);
1968	}
1969
1970	kmem_free(vd, gcount * sizeof (vdev_t *));
1971}
1972
1973static int
1974spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1975    boolean_t mosconfig)
1976{
1977	nvlist_t *config = spa->spa_config;
1978	char *ereport = FM_EREPORT_ZFS_POOL;
1979	char *comment;
1980	int error;
1981	uint64_t pool_guid;
1982	nvlist_t *nvl;
1983
1984	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1985		return (SET_ERROR(EINVAL));
1986
1987	ASSERT(spa->spa_comment == NULL);
1988	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1989		spa->spa_comment = spa_strdup(comment);
1990
1991	/*
1992	 * Versioning wasn't explicitly added to the label until later, so if
1993	 * it's not present treat it as the initial version.
1994	 */
1995	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1996	    &spa->spa_ubsync.ub_version) != 0)
1997		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1998
1999	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2000	    &spa->spa_config_txg);
2001
2002	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2003	    spa_guid_exists(pool_guid, 0)) {
2004		error = SET_ERROR(EEXIST);
2005	} else {
2006		spa->spa_config_guid = pool_guid;
2007
2008		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2009		    &nvl) == 0) {
2010			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2011			    KM_SLEEP) == 0);
2012		}
2013
2014		nvlist_free(spa->spa_load_info);
2015		spa->spa_load_info = fnvlist_alloc();
2016
2017		gethrestime(&spa->spa_loaded_ts);
2018		error = spa_load_impl(spa, pool_guid, config, state, type,
2019		    mosconfig, &ereport);
2020	}
2021
2022	spa->spa_minref = refcount_count(&spa->spa_refcount);
2023	if (error) {
2024		if (error != EEXIST) {
2025			spa->spa_loaded_ts.tv_sec = 0;
2026			spa->spa_loaded_ts.tv_nsec = 0;
2027		}
2028		if (error != EBADF) {
2029			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2030		}
2031	}
2032	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2033	spa->spa_ena = 0;
2034
2035	return (error);
2036}
2037
2038/*
2039 * Load an existing storage pool, using the pool's builtin spa_config as a
2040 * source of configuration information.
2041 */
2042static int
2043spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2044    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2045    char **ereport)
2046{
2047	int error = 0;
2048	nvlist_t *nvroot = NULL;
2049	nvlist_t *label;
2050	vdev_t *rvd;
2051	uberblock_t *ub = &spa->spa_uberblock;
2052	uint64_t children, config_cache_txg = spa->spa_config_txg;
2053	int orig_mode = spa->spa_mode;
2054	int parse;
2055	uint64_t obj;
2056	boolean_t missing_feat_write = B_FALSE;
2057
2058	/*
2059	 * If this is an untrusted config, access the pool in read-only mode.
2060	 * This prevents things like resilvering recently removed devices.
2061	 */
2062	if (!mosconfig)
2063		spa->spa_mode = FREAD;
2064
2065	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2066
2067	spa->spa_load_state = state;
2068
2069	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2070		return (SET_ERROR(EINVAL));
2071
2072	parse = (type == SPA_IMPORT_EXISTING ?
2073	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2074
2075	/*
2076	 * Create "The Godfather" zio to hold all async IOs
2077	 */
2078	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2079	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2080
2081	/*
2082	 * Parse the configuration into a vdev tree.  We explicitly set the
2083	 * value that will be returned by spa_version() since parsing the
2084	 * configuration requires knowing the version number.
2085	 */
2086	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2087	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2088	spa_config_exit(spa, SCL_ALL, FTAG);
2089
2090	if (error != 0)
2091		return (error);
2092
2093	ASSERT(spa->spa_root_vdev == rvd);
2094
2095	if (type != SPA_IMPORT_ASSEMBLE) {
2096		ASSERT(spa_guid(spa) == pool_guid);
2097	}
2098
2099	/*
2100	 * Try to open all vdevs, loading each label in the process.
2101	 */
2102	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2103	error = vdev_open(rvd);
2104	spa_config_exit(spa, SCL_ALL, FTAG);
2105	if (error != 0)
2106		return (error);
2107
2108	/*
2109	 * We need to validate the vdev labels against the configuration that
2110	 * we have in hand, which is dependent on the setting of mosconfig. If
2111	 * mosconfig is true then we're validating the vdev labels based on
2112	 * that config.  Otherwise, we're validating against the cached config
2113	 * (zpool.cache) that was read when we loaded the zfs module, and then
2114	 * later we will recursively call spa_load() and validate against
2115	 * the vdev config.
2116	 *
2117	 * If we're assembling a new pool that's been split off from an
2118	 * existing pool, the labels haven't yet been updated so we skip
2119	 * validation for now.
2120	 */
2121	if (type != SPA_IMPORT_ASSEMBLE) {
2122		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2123		error = vdev_validate(rvd, mosconfig);
2124		spa_config_exit(spa, SCL_ALL, FTAG);
2125
2126		if (error != 0)
2127			return (error);
2128
2129		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2130			return (SET_ERROR(ENXIO));
2131	}
2132
2133	/*
2134	 * Find the best uberblock.
2135	 */
2136	vdev_uberblock_load(rvd, ub, &label);
2137
2138	/*
2139	 * If we weren't able to find a single valid uberblock, return failure.
2140	 */
2141	if (ub->ub_txg == 0) {
2142		nvlist_free(label);
2143		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2144	}
2145
2146	/*
2147	 * If the pool has an unsupported version we can't open it.
2148	 */
2149	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2150		nvlist_free(label);
2151		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2152	}
2153
2154	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2155		nvlist_t *features;
2156
2157		/*
2158		 * If we weren't able to find what's necessary for reading the
2159		 * MOS in the label, return failure.
2160		 */
2161		if (label == NULL || nvlist_lookup_nvlist(label,
2162		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2163			nvlist_free(label);
2164			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2165			    ENXIO));
2166		}
2167
2168		/*
2169		 * Update our in-core representation with the definitive values
2170		 * from the label.
2171		 */
2172		nvlist_free(spa->spa_label_features);
2173		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2174	}
2175
2176	nvlist_free(label);
2177
2178	/*
2179	 * Look through entries in the label nvlist's features_for_read. If
2180	 * there is a feature listed there which we don't understand then we
2181	 * cannot open a pool.
2182	 */
2183	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2184		nvlist_t *unsup_feat;
2185
2186		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2187		    0);
2188
2189		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2190		    NULL); nvp != NULL;
2191		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2192			if (!zfeature_is_supported(nvpair_name(nvp))) {
2193				VERIFY(nvlist_add_string(unsup_feat,
2194				    nvpair_name(nvp), "") == 0);
2195			}
2196		}
2197
2198		if (!nvlist_empty(unsup_feat)) {
2199			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2200			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2201			nvlist_free(unsup_feat);
2202			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2203			    ENOTSUP));
2204		}
2205
2206		nvlist_free(unsup_feat);
2207	}
2208
2209	/*
2210	 * If the vdev guid sum doesn't match the uberblock, we have an
2211	 * incomplete configuration.  We first check to see if the pool
2212	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2213	 * If it is, defer the vdev_guid_sum check till later so we
2214	 * can handle missing vdevs.
2215	 */
2216	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2217	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2218	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2219		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2220
2221	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2222		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2223		spa_try_repair(spa, config);
2224		spa_config_exit(spa, SCL_ALL, FTAG);
2225		nvlist_free(spa->spa_config_splitting);
2226		spa->spa_config_splitting = NULL;
2227	}
2228
2229	/*
2230	 * Initialize internal SPA structures.
2231	 */
2232	spa->spa_state = POOL_STATE_ACTIVE;
2233	spa->spa_ubsync = spa->spa_uberblock;
2234	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2235	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2236	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2237	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2238	spa->spa_claim_max_txg = spa->spa_first_txg;
2239	spa->spa_prev_software_version = ub->ub_software_version;
2240
2241	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2242	if (error)
2243		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2244	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2245
2246	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2247		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2248
2249	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2250		boolean_t missing_feat_read = B_FALSE;
2251		nvlist_t *unsup_feat, *enabled_feat;
2252
2253		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2254		    &spa->spa_feat_for_read_obj) != 0) {
2255			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2256		}
2257
2258		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2259		    &spa->spa_feat_for_write_obj) != 0) {
2260			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2261		}
2262
2263		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2264		    &spa->spa_feat_desc_obj) != 0) {
2265			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2266		}
2267
2268		enabled_feat = fnvlist_alloc();
2269		unsup_feat = fnvlist_alloc();
2270
2271		if (!feature_is_supported(spa->spa_meta_objset,
2272		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2273		    unsup_feat, enabled_feat))
2274			missing_feat_read = B_TRUE;
2275
2276		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2277			if (!feature_is_supported(spa->spa_meta_objset,
2278			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2279			    unsup_feat, enabled_feat)) {
2280				missing_feat_write = B_TRUE;
2281			}
2282		}
2283
2284		fnvlist_add_nvlist(spa->spa_load_info,
2285		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2286
2287		if (!nvlist_empty(unsup_feat)) {
2288			fnvlist_add_nvlist(spa->spa_load_info,
2289			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2290		}
2291
2292		fnvlist_free(enabled_feat);
2293		fnvlist_free(unsup_feat);
2294
2295		if (!missing_feat_read) {
2296			fnvlist_add_boolean(spa->spa_load_info,
2297			    ZPOOL_CONFIG_CAN_RDONLY);
2298		}
2299
2300		/*
2301		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2302		 * twofold: to determine whether the pool is available for
2303		 * import in read-write mode and (if it is not) whether the
2304		 * pool is available for import in read-only mode. If the pool
2305		 * is available for import in read-write mode, it is displayed
2306		 * as available in userland; if it is not available for import
2307		 * in read-only mode, it is displayed as unavailable in
2308		 * userland. If the pool is available for import in read-only
2309		 * mode but not read-write mode, it is displayed as unavailable
2310		 * in userland with a special note that the pool is actually
2311		 * available for open in read-only mode.
2312		 *
2313		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2314		 * missing a feature for write, we must first determine whether
2315		 * the pool can be opened read-only before returning to
2316		 * userland in order to know whether to display the
2317		 * abovementioned note.
2318		 */
2319		if (missing_feat_read || (missing_feat_write &&
2320		    spa_writeable(spa))) {
2321			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2322			    ENOTSUP));
2323		}
2324	}
2325
2326	spa->spa_is_initializing = B_TRUE;
2327	error = dsl_pool_open(spa->spa_dsl_pool);
2328	spa->spa_is_initializing = B_FALSE;
2329	if (error != 0)
2330		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2331
2332	if (!mosconfig) {
2333		uint64_t hostid;
2334		nvlist_t *policy = NULL, *nvconfig;
2335
2336		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2337			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2338
2339		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2340		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2341			char *hostname;
2342			unsigned long myhostid = 0;
2343
2344			VERIFY(nvlist_lookup_string(nvconfig,
2345			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2346
2347#ifdef	_KERNEL
2348			myhostid = zone_get_hostid(NULL);
2349#else	/* _KERNEL */
2350			/*
2351			 * We're emulating the system's hostid in userland, so
2352			 * we can't use zone_get_hostid().
2353			 */
2354			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2355#endif	/* _KERNEL */
2356			if (check_hostid && hostid != 0 && myhostid != 0 &&
2357			    hostid != myhostid) {
2358				nvlist_free(nvconfig);
2359				cmn_err(CE_WARN, "pool '%s' could not be "
2360				    "loaded as it was last accessed by "
2361				    "another system (host: %s hostid: 0x%lx). "
2362				    "See: http://illumos.org/msg/ZFS-8000-EY",
2363				    spa_name(spa), hostname,
2364				    (unsigned long)hostid);
2365				return (SET_ERROR(EBADF));
2366			}
2367		}
2368		if (nvlist_lookup_nvlist(spa->spa_config,
2369		    ZPOOL_REWIND_POLICY, &policy) == 0)
2370			VERIFY(nvlist_add_nvlist(nvconfig,
2371			    ZPOOL_REWIND_POLICY, policy) == 0);
2372
2373		spa_config_set(spa, nvconfig);
2374		spa_unload(spa);
2375		spa_deactivate(spa);
2376		spa_activate(spa, orig_mode);
2377
2378		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2379	}
2380
2381	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2382		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2383	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2384	if (error != 0)
2385		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386
2387	/*
2388	 * Load the bit that tells us to use the new accounting function
2389	 * (raid-z deflation).  If we have an older pool, this will not
2390	 * be present.
2391	 */
2392	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2393	if (error != 0 && error != ENOENT)
2394		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2395
2396	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2397	    &spa->spa_creation_version);
2398	if (error != 0 && error != ENOENT)
2399		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400
2401	/*
2402	 * Load the persistent error log.  If we have an older pool, this will
2403	 * not be present.
2404	 */
2405	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2406	if (error != 0 && error != ENOENT)
2407		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2408
2409	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2410	    &spa->spa_errlog_scrub);
2411	if (error != 0 && error != ENOENT)
2412		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413
2414	/*
2415	 * Load the history object.  If we have an older pool, this
2416	 * will not be present.
2417	 */
2418	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2419	if (error != 0 && error != ENOENT)
2420		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421
2422	/*
2423	 * If we're assembling the pool from the split-off vdevs of
2424	 * an existing pool, we don't want to attach the spares & cache
2425	 * devices.
2426	 */
2427
2428	/*
2429	 * Load any hot spares for this pool.
2430	 */
2431	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2432	if (error != 0 && error != ENOENT)
2433		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2435		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2436		if (load_nvlist(spa, spa->spa_spares.sav_object,
2437		    &spa->spa_spares.sav_config) != 0)
2438			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2439
2440		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2441		spa_load_spares(spa);
2442		spa_config_exit(spa, SCL_ALL, FTAG);
2443	} else if (error == 0) {
2444		spa->spa_spares.sav_sync = B_TRUE;
2445	}
2446
2447	/*
2448	 * Load any level 2 ARC devices for this pool.
2449	 */
2450	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2451	    &spa->spa_l2cache.sav_object);
2452	if (error != 0 && error != ENOENT)
2453		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2454	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2455		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2456		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2457		    &spa->spa_l2cache.sav_config) != 0)
2458			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459
2460		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2461		spa_load_l2cache(spa);
2462		spa_config_exit(spa, SCL_ALL, FTAG);
2463	} else if (error == 0) {
2464		spa->spa_l2cache.sav_sync = B_TRUE;
2465	}
2466
2467	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2468
2469	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2470	if (error && error != ENOENT)
2471		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2472
2473	if (error == 0) {
2474		uint64_t autoreplace;
2475
2476		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2477		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2478		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2479		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2480		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2481		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2482		    &spa->spa_dedup_ditto);
2483
2484		spa->spa_autoreplace = (autoreplace != 0);
2485	}
2486
2487	/*
2488	 * If the 'autoreplace' property is set, then post a resource notifying
2489	 * the ZFS DE that it should not issue any faults for unopenable
2490	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2491	 * unopenable vdevs so that the normal autoreplace handler can take
2492	 * over.
2493	 */
2494	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2495		spa_check_removed(spa->spa_root_vdev);
2496		/*
2497		 * For the import case, this is done in spa_import(), because
2498		 * at this point we're using the spare definitions from
2499		 * the MOS config, not necessarily from the userland config.
2500		 */
2501		if (state != SPA_LOAD_IMPORT) {
2502			spa_aux_check_removed(&spa->spa_spares);
2503			spa_aux_check_removed(&spa->spa_l2cache);
2504		}
2505	}
2506
2507	/*
2508	 * Load the vdev state for all toplevel vdevs.
2509	 */
2510	vdev_load(rvd);
2511
2512	/*
2513	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2514	 */
2515	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2516	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2517	spa_config_exit(spa, SCL_ALL, FTAG);
2518
2519	/*
2520	 * Load the DDTs (dedup tables).
2521	 */
2522	error = ddt_load(spa);
2523	if (error != 0)
2524		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2525
2526	spa_update_dspace(spa);
2527
2528	/*
2529	 * Validate the config, using the MOS config to fill in any
2530	 * information which might be missing.  If we fail to validate
2531	 * the config then declare the pool unfit for use. If we're
2532	 * assembling a pool from a split, the log is not transferred
2533	 * over.
2534	 */
2535	if (type != SPA_IMPORT_ASSEMBLE) {
2536		nvlist_t *nvconfig;
2537
2538		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2539			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2540
2541		if (!spa_config_valid(spa, nvconfig)) {
2542			nvlist_free(nvconfig);
2543			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2544			    ENXIO));
2545		}
2546		nvlist_free(nvconfig);
2547
2548		/*
2549		 * Now that we've validated the config, check the state of the
2550		 * root vdev.  If it can't be opened, it indicates one or
2551		 * more toplevel vdevs are faulted.
2552		 */
2553		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2554			return (SET_ERROR(ENXIO));
2555
2556		if (spa_check_logs(spa)) {
2557			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2558			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2559		}
2560	}
2561
2562	if (missing_feat_write) {
2563		ASSERT(state == SPA_LOAD_TRYIMPORT);
2564
2565		/*
2566		 * At this point, we know that we can open the pool in
2567		 * read-only mode but not read-write mode. We now have enough
2568		 * information and can return to userland.
2569		 */
2570		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2571	}
2572
2573	/*
2574	 * We've successfully opened the pool, verify that we're ready
2575	 * to start pushing transactions.
2576	 */
2577	if (state != SPA_LOAD_TRYIMPORT) {
2578		if (error = spa_load_verify(spa))
2579			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2580			    error));
2581	}
2582
2583	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2584	    spa->spa_load_max_txg == UINT64_MAX)) {
2585		dmu_tx_t *tx;
2586		int need_update = B_FALSE;
2587
2588		ASSERT(state != SPA_LOAD_TRYIMPORT);
2589
2590		/*
2591		 * Claim log blocks that haven't been committed yet.
2592		 * This must all happen in a single txg.
2593		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2594		 * invoked from zil_claim_log_block()'s i/o done callback.
2595		 * Price of rollback is that we abandon the log.
2596		 */
2597		spa->spa_claiming = B_TRUE;
2598
2599		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2600		    spa_first_txg(spa));
2601		(void) dmu_objset_find(spa_name(spa),
2602		    zil_claim, tx, DS_FIND_CHILDREN);
2603		dmu_tx_commit(tx);
2604
2605		spa->spa_claiming = B_FALSE;
2606
2607		spa_set_log_state(spa, SPA_LOG_GOOD);
2608		spa->spa_sync_on = B_TRUE;
2609		txg_sync_start(spa->spa_dsl_pool);
2610
2611		/*
2612		 * Wait for all claims to sync.  We sync up to the highest
2613		 * claimed log block birth time so that claimed log blocks
2614		 * don't appear to be from the future.  spa_claim_max_txg
2615		 * will have been set for us by either zil_check_log_chain()
2616		 * (invoked from spa_check_logs()) or zil_claim() above.
2617		 */
2618		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2619
2620		/*
2621		 * If the config cache is stale, or we have uninitialized
2622		 * metaslabs (see spa_vdev_add()), then update the config.
2623		 *
2624		 * If this is a verbatim import, trust the current
2625		 * in-core spa_config and update the disk labels.
2626		 */
2627		if (config_cache_txg != spa->spa_config_txg ||
2628		    state == SPA_LOAD_IMPORT ||
2629		    state == SPA_LOAD_RECOVER ||
2630		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2631			need_update = B_TRUE;
2632
2633		for (int c = 0; c < rvd->vdev_children; c++)
2634			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2635				need_update = B_TRUE;
2636
2637		/*
2638		 * Update the config cache asychronously in case we're the
2639		 * root pool, in which case the config cache isn't writable yet.
2640		 */
2641		if (need_update)
2642			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2643
2644		/*
2645		 * Check all DTLs to see if anything needs resilvering.
2646		 */
2647		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2648		    vdev_resilver_needed(rvd, NULL, NULL))
2649			spa_async_request(spa, SPA_ASYNC_RESILVER);
2650
2651		/*
2652		 * Log the fact that we booted up (so that we can detect if
2653		 * we rebooted in the middle of an operation).
2654		 */
2655		spa_history_log_version(spa, "open");
2656
2657		/*
2658		 * Delete any inconsistent datasets.
2659		 */
2660		(void) dmu_objset_find(spa_name(spa),
2661		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2662
2663		/*
2664		 * Clean up any stale temporary dataset userrefs.
2665		 */
2666		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2667	}
2668
2669	return (0);
2670}
2671
2672static int
2673spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2674{
2675	int mode = spa->spa_mode;
2676
2677	spa_unload(spa);
2678	spa_deactivate(spa);
2679
2680	spa->spa_load_max_txg--;
2681
2682	spa_activate(spa, mode);
2683	spa_async_suspend(spa);
2684
2685	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2686}
2687
2688/*
2689 * If spa_load() fails this function will try loading prior txg's. If
2690 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2691 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2692 * function will not rewind the pool and will return the same error as
2693 * spa_load().
2694 */
2695static int
2696spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2697    uint64_t max_request, int rewind_flags)
2698{
2699	nvlist_t *loadinfo = NULL;
2700	nvlist_t *config = NULL;
2701	int load_error, rewind_error;
2702	uint64_t safe_rewind_txg;
2703	uint64_t min_txg;
2704
2705	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2706		spa->spa_load_max_txg = spa->spa_load_txg;
2707		spa_set_log_state(spa, SPA_LOG_CLEAR);
2708	} else {
2709		spa->spa_load_max_txg = max_request;
2710	}
2711
2712	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2713	    mosconfig);
2714	if (load_error == 0)
2715		return (0);
2716
2717	if (spa->spa_root_vdev != NULL)
2718		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2719
2720	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2721	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2722
2723	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2724		nvlist_free(config);
2725		return (load_error);
2726	}
2727
2728	if (state == SPA_LOAD_RECOVER) {
2729		/* Price of rolling back is discarding txgs, including log */
2730		spa_set_log_state(spa, SPA_LOG_CLEAR);
2731	} else {
2732		/*
2733		 * If we aren't rolling back save the load info from our first
2734		 * import attempt so that we can restore it after attempting
2735		 * to rewind.
2736		 */
2737		loadinfo = spa->spa_load_info;
2738		spa->spa_load_info = fnvlist_alloc();
2739	}
2740
2741	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2742	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2743	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2744	    TXG_INITIAL : safe_rewind_txg;
2745
2746	/*
2747	 * Continue as long as we're finding errors, we're still within
2748	 * the acceptable rewind range, and we're still finding uberblocks
2749	 */
2750	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2751	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2752		if (spa->spa_load_max_txg < safe_rewind_txg)
2753			spa->spa_extreme_rewind = B_TRUE;
2754		rewind_error = spa_load_retry(spa, state, mosconfig);
2755	}
2756
2757	spa->spa_extreme_rewind = B_FALSE;
2758	spa->spa_load_max_txg = UINT64_MAX;
2759
2760	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2761		spa_config_set(spa, config);
2762
2763	if (state == SPA_LOAD_RECOVER) {
2764		ASSERT3P(loadinfo, ==, NULL);
2765		return (rewind_error);
2766	} else {
2767		/* Store the rewind info as part of the initial load info */
2768		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2769		    spa->spa_load_info);
2770
2771		/* Restore the initial load info */
2772		fnvlist_free(spa->spa_load_info);
2773		spa->spa_load_info = loadinfo;
2774
2775		return (load_error);
2776	}
2777}
2778
2779/*
2780 * Pool Open/Import
2781 *
2782 * The import case is identical to an open except that the configuration is sent
2783 * down from userland, instead of grabbed from the configuration cache.  For the
2784 * case of an open, the pool configuration will exist in the
2785 * POOL_STATE_UNINITIALIZED state.
2786 *
2787 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2788 * the same time open the pool, without having to keep around the spa_t in some
2789 * ambiguous state.
2790 */
2791static int
2792spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2793    nvlist_t **config)
2794{
2795	spa_t *spa;
2796	spa_load_state_t state = SPA_LOAD_OPEN;
2797	int error;
2798	int locked = B_FALSE;
2799	int firstopen = B_FALSE;
2800
2801	*spapp = NULL;
2802
2803	/*
2804	 * As disgusting as this is, we need to support recursive calls to this
2805	 * function because dsl_dir_open() is called during spa_load(), and ends
2806	 * up calling spa_open() again.  The real fix is to figure out how to
2807	 * avoid dsl_dir_open() calling this in the first place.
2808	 */
2809	if (mutex_owner(&spa_namespace_lock) != curthread) {
2810		mutex_enter(&spa_namespace_lock);
2811		locked = B_TRUE;
2812	}
2813
2814	if ((spa = spa_lookup(pool)) == NULL) {
2815		if (locked)
2816			mutex_exit(&spa_namespace_lock);
2817		return (SET_ERROR(ENOENT));
2818	}
2819
2820	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2821		zpool_rewind_policy_t policy;
2822
2823		firstopen = B_TRUE;
2824
2825		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2826		    &policy);
2827		if (policy.zrp_request & ZPOOL_DO_REWIND)
2828			state = SPA_LOAD_RECOVER;
2829
2830		spa_activate(spa, spa_mode_global);
2831
2832		if (state != SPA_LOAD_RECOVER)
2833			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2834
2835		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2836		    policy.zrp_request);
2837
2838		if (error == EBADF) {
2839			/*
2840			 * If vdev_validate() returns failure (indicated by
2841			 * EBADF), it indicates that one of the vdevs indicates
2842			 * that the pool has been exported or destroyed.  If
2843			 * this is the case, the config cache is out of sync and
2844			 * we should remove the pool from the namespace.
2845			 */
2846			spa_unload(spa);
2847			spa_deactivate(spa);
2848			spa_config_sync(spa, B_TRUE, B_TRUE);
2849			spa_remove(spa);
2850			if (locked)
2851				mutex_exit(&spa_namespace_lock);
2852			return (SET_ERROR(ENOENT));
2853		}
2854
2855		if (error) {
2856			/*
2857			 * We can't open the pool, but we still have useful
2858			 * information: the state of each vdev after the
2859			 * attempted vdev_open().  Return this to the user.
2860			 */
2861			if (config != NULL && spa->spa_config) {
2862				VERIFY(nvlist_dup(spa->spa_config, config,
2863				    KM_SLEEP) == 0);
2864				VERIFY(nvlist_add_nvlist(*config,
2865				    ZPOOL_CONFIG_LOAD_INFO,
2866				    spa->spa_load_info) == 0);
2867			}
2868			spa_unload(spa);
2869			spa_deactivate(spa);
2870			spa->spa_last_open_failed = error;
2871			if (locked)
2872				mutex_exit(&spa_namespace_lock);
2873			*spapp = NULL;
2874			return (error);
2875		}
2876	}
2877
2878	spa_open_ref(spa, tag);
2879
2880	if (config != NULL)
2881		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2882
2883	/*
2884	 * If we've recovered the pool, pass back any information we
2885	 * gathered while doing the load.
2886	 */
2887	if (state == SPA_LOAD_RECOVER) {
2888		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2889		    spa->spa_load_info) == 0);
2890	}
2891
2892	if (locked) {
2893		spa->spa_last_open_failed = 0;
2894		spa->spa_last_ubsync_txg = 0;
2895		spa->spa_load_txg = 0;
2896		mutex_exit(&spa_namespace_lock);
2897#ifdef __FreeBSD__
2898#ifdef _KERNEL
2899		if (firstopen)
2900			zvol_create_minors(spa->spa_name);
2901#endif
2902#endif
2903	}
2904
2905	*spapp = spa;
2906
2907	return (0);
2908}
2909
2910int
2911spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2912    nvlist_t **config)
2913{
2914	return (spa_open_common(name, spapp, tag, policy, config));
2915}
2916
2917int
2918spa_open(const char *name, spa_t **spapp, void *tag)
2919{
2920	return (spa_open_common(name, spapp, tag, NULL, NULL));
2921}
2922
2923/*
2924 * Lookup the given spa_t, incrementing the inject count in the process,
2925 * preventing it from being exported or destroyed.
2926 */
2927spa_t *
2928spa_inject_addref(char *name)
2929{
2930	spa_t *spa;
2931
2932	mutex_enter(&spa_namespace_lock);
2933	if ((spa = spa_lookup(name)) == NULL) {
2934		mutex_exit(&spa_namespace_lock);
2935		return (NULL);
2936	}
2937	spa->spa_inject_ref++;
2938	mutex_exit(&spa_namespace_lock);
2939
2940	return (spa);
2941}
2942
2943void
2944spa_inject_delref(spa_t *spa)
2945{
2946	mutex_enter(&spa_namespace_lock);
2947	spa->spa_inject_ref--;
2948	mutex_exit(&spa_namespace_lock);
2949}
2950
2951/*
2952 * Add spares device information to the nvlist.
2953 */
2954static void
2955spa_add_spares(spa_t *spa, nvlist_t *config)
2956{
2957	nvlist_t **spares;
2958	uint_t i, nspares;
2959	nvlist_t *nvroot;
2960	uint64_t guid;
2961	vdev_stat_t *vs;
2962	uint_t vsc;
2963	uint64_t pool;
2964
2965	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2966
2967	if (spa->spa_spares.sav_count == 0)
2968		return;
2969
2970	VERIFY(nvlist_lookup_nvlist(config,
2971	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2972	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2973	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2974	if (nspares != 0) {
2975		VERIFY(nvlist_add_nvlist_array(nvroot,
2976		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2977		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2978		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2979
2980		/*
2981		 * Go through and find any spares which have since been
2982		 * repurposed as an active spare.  If this is the case, update
2983		 * their status appropriately.
2984		 */
2985		for (i = 0; i < nspares; i++) {
2986			VERIFY(nvlist_lookup_uint64(spares[i],
2987			    ZPOOL_CONFIG_GUID, &guid) == 0);
2988			if (spa_spare_exists(guid, &pool, NULL) &&
2989			    pool != 0ULL) {
2990				VERIFY(nvlist_lookup_uint64_array(
2991				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2992				    (uint64_t **)&vs, &vsc) == 0);
2993				vs->vs_state = VDEV_STATE_CANT_OPEN;
2994				vs->vs_aux = VDEV_AUX_SPARED;
2995			}
2996		}
2997	}
2998}
2999
3000/*
3001 * Add l2cache device information to the nvlist, including vdev stats.
3002 */
3003static void
3004spa_add_l2cache(spa_t *spa, nvlist_t *config)
3005{
3006	nvlist_t **l2cache;
3007	uint_t i, j, nl2cache;
3008	nvlist_t *nvroot;
3009	uint64_t guid;
3010	vdev_t *vd;
3011	vdev_stat_t *vs;
3012	uint_t vsc;
3013
3014	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3015
3016	if (spa->spa_l2cache.sav_count == 0)
3017		return;
3018
3019	VERIFY(nvlist_lookup_nvlist(config,
3020	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3021	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3022	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3023	if (nl2cache != 0) {
3024		VERIFY(nvlist_add_nvlist_array(nvroot,
3025		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3026		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3027		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3028
3029		/*
3030		 * Update level 2 cache device stats.
3031		 */
3032
3033		for (i = 0; i < nl2cache; i++) {
3034			VERIFY(nvlist_lookup_uint64(l2cache[i],
3035			    ZPOOL_CONFIG_GUID, &guid) == 0);
3036
3037			vd = NULL;
3038			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3039				if (guid ==
3040				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3041					vd = spa->spa_l2cache.sav_vdevs[j];
3042					break;
3043				}
3044			}
3045			ASSERT(vd != NULL);
3046
3047			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3048			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3049			    == 0);
3050			vdev_get_stats(vd, vs);
3051		}
3052	}
3053}
3054
3055static void
3056spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3057{
3058	nvlist_t *features;
3059	zap_cursor_t zc;
3060	zap_attribute_t za;
3061
3062	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3063	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3064
3065	/* We may be unable to read features if pool is suspended. */
3066	if (spa_suspended(spa))
3067		goto out;
3068
3069	if (spa->spa_feat_for_read_obj != 0) {
3070		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3071		    spa->spa_feat_for_read_obj);
3072		    zap_cursor_retrieve(&zc, &za) == 0;
3073		    zap_cursor_advance(&zc)) {
3074			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3075			    za.za_num_integers == 1);
3076			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3077			    za.za_first_integer));
3078		}
3079		zap_cursor_fini(&zc);
3080	}
3081
3082	if (spa->spa_feat_for_write_obj != 0) {
3083		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3084		    spa->spa_feat_for_write_obj);
3085		    zap_cursor_retrieve(&zc, &za) == 0;
3086		    zap_cursor_advance(&zc)) {
3087			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3088			    za.za_num_integers == 1);
3089			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3090			    za.za_first_integer));
3091		}
3092		zap_cursor_fini(&zc);
3093	}
3094
3095out:
3096	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3097	    features) == 0);
3098	nvlist_free(features);
3099}
3100
3101int
3102spa_get_stats(const char *name, nvlist_t **config,
3103    char *altroot, size_t buflen)
3104{
3105	int error;
3106	spa_t *spa;
3107
3108	*config = NULL;
3109	error = spa_open_common(name, &spa, FTAG, NULL, config);
3110
3111	if (spa != NULL) {
3112		/*
3113		 * This still leaves a window of inconsistency where the spares
3114		 * or l2cache devices could change and the config would be
3115		 * self-inconsistent.
3116		 */
3117		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3118
3119		if (*config != NULL) {
3120			uint64_t loadtimes[2];
3121
3122			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3123			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3124			VERIFY(nvlist_add_uint64_array(*config,
3125			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3126
3127			VERIFY(nvlist_add_uint64(*config,
3128			    ZPOOL_CONFIG_ERRCOUNT,
3129			    spa_get_errlog_size(spa)) == 0);
3130
3131			if (spa_suspended(spa))
3132				VERIFY(nvlist_add_uint64(*config,
3133				    ZPOOL_CONFIG_SUSPENDED,
3134				    spa->spa_failmode) == 0);
3135
3136			spa_add_spares(spa, *config);
3137			spa_add_l2cache(spa, *config);
3138			spa_add_feature_stats(spa, *config);
3139		}
3140	}
3141
3142	/*
3143	 * We want to get the alternate root even for faulted pools, so we cheat
3144	 * and call spa_lookup() directly.
3145	 */
3146	if (altroot) {
3147		if (spa == NULL) {
3148			mutex_enter(&spa_namespace_lock);
3149			spa = spa_lookup(name);
3150			if (spa)
3151				spa_altroot(spa, altroot, buflen);
3152			else
3153				altroot[0] = '\0';
3154			spa = NULL;
3155			mutex_exit(&spa_namespace_lock);
3156		} else {
3157			spa_altroot(spa, altroot, buflen);
3158		}
3159	}
3160
3161	if (spa != NULL) {
3162		spa_config_exit(spa, SCL_CONFIG, FTAG);
3163		spa_close(spa, FTAG);
3164	}
3165
3166	return (error);
3167}
3168
3169/*
3170 * Validate that the auxiliary device array is well formed.  We must have an
3171 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3172 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3173 * specified, as long as they are well-formed.
3174 */
3175static int
3176spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3177    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3178    vdev_labeltype_t label)
3179{
3180	nvlist_t **dev;
3181	uint_t i, ndev;
3182	vdev_t *vd;
3183	int error;
3184
3185	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3186
3187	/*
3188	 * It's acceptable to have no devs specified.
3189	 */
3190	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3191		return (0);
3192
3193	if (ndev == 0)
3194		return (SET_ERROR(EINVAL));
3195
3196	/*
3197	 * Make sure the pool is formatted with a version that supports this
3198	 * device type.
3199	 */
3200	if (spa_version(spa) < version)
3201		return (SET_ERROR(ENOTSUP));
3202
3203	/*
3204	 * Set the pending device list so we correctly handle device in-use
3205	 * checking.
3206	 */
3207	sav->sav_pending = dev;
3208	sav->sav_npending = ndev;
3209
3210	for (i = 0; i < ndev; i++) {
3211		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3212		    mode)) != 0)
3213			goto out;
3214
3215		if (!vd->vdev_ops->vdev_op_leaf) {
3216			vdev_free(vd);
3217			error = SET_ERROR(EINVAL);
3218			goto out;
3219		}
3220
3221		/*
3222		 * The L2ARC currently only supports disk devices in
3223		 * kernel context.  For user-level testing, we allow it.
3224		 */
3225#ifdef _KERNEL
3226		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3227		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3228			error = SET_ERROR(ENOTBLK);
3229			vdev_free(vd);
3230			goto out;
3231		}
3232#endif
3233		vd->vdev_top = vd;
3234
3235		if ((error = vdev_open(vd)) == 0 &&
3236		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3237			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3238			    vd->vdev_guid) == 0);
3239		}
3240
3241		vdev_free(vd);
3242
3243		if (error &&
3244		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3245			goto out;
3246		else
3247			error = 0;
3248	}
3249
3250out:
3251	sav->sav_pending = NULL;
3252	sav->sav_npending = 0;
3253	return (error);
3254}
3255
3256static int
3257spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3258{
3259	int error;
3260
3261	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3262
3263	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3264	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3265	    VDEV_LABEL_SPARE)) != 0) {
3266		return (error);
3267	}
3268
3269	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3270	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3271	    VDEV_LABEL_L2CACHE));
3272}
3273
3274static void
3275spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3276    const char *config)
3277{
3278	int i;
3279
3280	if (sav->sav_config != NULL) {
3281		nvlist_t **olddevs;
3282		uint_t oldndevs;
3283		nvlist_t **newdevs;
3284
3285		/*
3286		 * Generate new dev list by concatentating with the
3287		 * current dev list.
3288		 */
3289		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3290		    &olddevs, &oldndevs) == 0);
3291
3292		newdevs = kmem_alloc(sizeof (void *) *
3293		    (ndevs + oldndevs), KM_SLEEP);
3294		for (i = 0; i < oldndevs; i++)
3295			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3296			    KM_SLEEP) == 0);
3297		for (i = 0; i < ndevs; i++)
3298			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3299			    KM_SLEEP) == 0);
3300
3301		VERIFY(nvlist_remove(sav->sav_config, config,
3302		    DATA_TYPE_NVLIST_ARRAY) == 0);
3303
3304		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3305		    config, newdevs, ndevs + oldndevs) == 0);
3306		for (i = 0; i < oldndevs + ndevs; i++)
3307			nvlist_free(newdevs[i]);
3308		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3309	} else {
3310		/*
3311		 * Generate a new dev list.
3312		 */
3313		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3314		    KM_SLEEP) == 0);
3315		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3316		    devs, ndevs) == 0);
3317	}
3318}
3319
3320/*
3321 * Stop and drop level 2 ARC devices
3322 */
3323void
3324spa_l2cache_drop(spa_t *spa)
3325{
3326	vdev_t *vd;
3327	int i;
3328	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3329
3330	for (i = 0; i < sav->sav_count; i++) {
3331		uint64_t pool;
3332
3333		vd = sav->sav_vdevs[i];
3334		ASSERT(vd != NULL);
3335
3336		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3337		    pool != 0ULL && l2arc_vdev_present(vd))
3338			l2arc_remove_vdev(vd);
3339	}
3340}
3341
3342/*
3343 * Pool Creation
3344 */
3345int
3346spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3347    nvlist_t *zplprops)
3348{
3349	spa_t *spa;
3350	char *altroot = NULL;
3351	vdev_t *rvd;
3352	dsl_pool_t *dp;
3353	dmu_tx_t *tx;
3354	int error = 0;
3355	uint64_t txg = TXG_INITIAL;
3356	nvlist_t **spares, **l2cache;
3357	uint_t nspares, nl2cache;
3358	uint64_t version, obj;
3359	boolean_t has_features;
3360
3361	/*
3362	 * If this pool already exists, return failure.
3363	 */
3364	mutex_enter(&spa_namespace_lock);
3365	if (spa_lookup(pool) != NULL) {
3366		mutex_exit(&spa_namespace_lock);
3367		return (SET_ERROR(EEXIST));
3368	}
3369
3370	/*
3371	 * Allocate a new spa_t structure.
3372	 */
3373	(void) nvlist_lookup_string(props,
3374	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3375	spa = spa_add(pool, NULL, altroot);
3376	spa_activate(spa, spa_mode_global);
3377
3378	if (props && (error = spa_prop_validate(spa, props))) {
3379		spa_deactivate(spa);
3380		spa_remove(spa);
3381		mutex_exit(&spa_namespace_lock);
3382		return (error);
3383	}
3384
3385	has_features = B_FALSE;
3386	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3387	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3388		if (zpool_prop_feature(nvpair_name(elem)))
3389			has_features = B_TRUE;
3390	}
3391
3392	if (has_features || nvlist_lookup_uint64(props,
3393	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3394		version = SPA_VERSION;
3395	}
3396	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3397
3398	spa->spa_first_txg = txg;
3399	spa->spa_uberblock.ub_txg = txg - 1;
3400	spa->spa_uberblock.ub_version = version;
3401	spa->spa_ubsync = spa->spa_uberblock;
3402
3403	/*
3404	 * Create "The Godfather" zio to hold all async IOs
3405	 */
3406	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3407	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3408
3409	/*
3410	 * Create the root vdev.
3411	 */
3412	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3413
3414	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3415
3416	ASSERT(error != 0 || rvd != NULL);
3417	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3418
3419	if (error == 0 && !zfs_allocatable_devs(nvroot))
3420		error = SET_ERROR(EINVAL);
3421
3422	if (error == 0 &&
3423	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3424	    (error = spa_validate_aux(spa, nvroot, txg,
3425	    VDEV_ALLOC_ADD)) == 0) {
3426		for (int c = 0; c < rvd->vdev_children; c++) {
3427			vdev_ashift_optimize(rvd->vdev_child[c]);
3428			vdev_metaslab_set_size(rvd->vdev_child[c]);
3429			vdev_expand(rvd->vdev_child[c], txg);
3430		}
3431	}
3432
3433	spa_config_exit(spa, SCL_ALL, FTAG);
3434
3435	if (error != 0) {
3436		spa_unload(spa);
3437		spa_deactivate(spa);
3438		spa_remove(spa);
3439		mutex_exit(&spa_namespace_lock);
3440		return (error);
3441	}
3442
3443	/*
3444	 * Get the list of spares, if specified.
3445	 */
3446	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3447	    &spares, &nspares) == 0) {
3448		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3449		    KM_SLEEP) == 0);
3450		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3451		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3452		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3453		spa_load_spares(spa);
3454		spa_config_exit(spa, SCL_ALL, FTAG);
3455		spa->spa_spares.sav_sync = B_TRUE;
3456	}
3457
3458	/*
3459	 * Get the list of level 2 cache devices, if specified.
3460	 */
3461	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3462	    &l2cache, &nl2cache) == 0) {
3463		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3464		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3465		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3466		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3467		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3468		spa_load_l2cache(spa);
3469		spa_config_exit(spa, SCL_ALL, FTAG);
3470		spa->spa_l2cache.sav_sync = B_TRUE;
3471	}
3472
3473	spa->spa_is_initializing = B_TRUE;
3474	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3475	spa->spa_meta_objset = dp->dp_meta_objset;
3476	spa->spa_is_initializing = B_FALSE;
3477
3478	/*
3479	 * Create DDTs (dedup tables).
3480	 */
3481	ddt_create(spa);
3482
3483	spa_update_dspace(spa);
3484
3485	tx = dmu_tx_create_assigned(dp, txg);
3486
3487	/*
3488	 * Create the pool config object.
3489	 */
3490	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3491	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3492	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3493
3494	if (zap_add(spa->spa_meta_objset,
3495	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3496	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3497		cmn_err(CE_PANIC, "failed to add pool config");
3498	}
3499
3500	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3501		spa_feature_create_zap_objects(spa, tx);
3502
3503	if (zap_add(spa->spa_meta_objset,
3504	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3505	    sizeof (uint64_t), 1, &version, tx) != 0) {
3506		cmn_err(CE_PANIC, "failed to add pool version");
3507	}
3508
3509	/* Newly created pools with the right version are always deflated. */
3510	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3511		spa->spa_deflate = TRUE;
3512		if (zap_add(spa->spa_meta_objset,
3513		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3514		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3515			cmn_err(CE_PANIC, "failed to add deflate");
3516		}
3517	}
3518
3519	/*
3520	 * Create the deferred-free bpobj.  Turn off compression
3521	 * because sync-to-convergence takes longer if the blocksize
3522	 * keeps changing.
3523	 */
3524	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3525	dmu_object_set_compress(spa->spa_meta_objset, obj,
3526	    ZIO_COMPRESS_OFF, tx);
3527	if (zap_add(spa->spa_meta_objset,
3528	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3529	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3530		cmn_err(CE_PANIC, "failed to add bpobj");
3531	}
3532	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3533	    spa->spa_meta_objset, obj));
3534
3535	/*
3536	 * Create the pool's history object.
3537	 */
3538	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3539		spa_history_create_obj(spa, tx);
3540
3541	/*
3542	 * Set pool properties.
3543	 */
3544	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3545	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3546	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3547	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3548
3549	if (props != NULL) {
3550		spa_configfile_set(spa, props, B_FALSE);
3551		spa_sync_props(props, tx);
3552	}
3553
3554	dmu_tx_commit(tx);
3555
3556	spa->spa_sync_on = B_TRUE;
3557	txg_sync_start(spa->spa_dsl_pool);
3558
3559	/*
3560	 * We explicitly wait for the first transaction to complete so that our
3561	 * bean counters are appropriately updated.
3562	 */
3563	txg_wait_synced(spa->spa_dsl_pool, txg);
3564
3565	spa_config_sync(spa, B_FALSE, B_TRUE);
3566
3567	spa_history_log_version(spa, "create");
3568
3569	spa->spa_minref = refcount_count(&spa->spa_refcount);
3570
3571	mutex_exit(&spa_namespace_lock);
3572
3573	return (0);
3574}
3575
3576#ifdef _KERNEL
3577#if defined(sun)
3578/*
3579 * Get the root pool information from the root disk, then import the root pool
3580 * during the system boot up time.
3581 */
3582extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3583
3584static nvlist_t *
3585spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3586{
3587	nvlist_t *config;
3588	nvlist_t *nvtop, *nvroot;
3589	uint64_t pgid;
3590
3591	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3592		return (NULL);
3593
3594	/*
3595	 * Add this top-level vdev to the child array.
3596	 */
3597	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3598	    &nvtop) == 0);
3599	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3600	    &pgid) == 0);
3601	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3602
3603	/*
3604	 * Put this pool's top-level vdevs into a root vdev.
3605	 */
3606	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3607	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3608	    VDEV_TYPE_ROOT) == 0);
3609	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3610	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3611	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3612	    &nvtop, 1) == 0);
3613
3614	/*
3615	 * Replace the existing vdev_tree with the new root vdev in
3616	 * this pool's configuration (remove the old, add the new).
3617	 */
3618	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3619	nvlist_free(nvroot);
3620	return (config);
3621}
3622
3623/*
3624 * Walk the vdev tree and see if we can find a device with "better"
3625 * configuration. A configuration is "better" if the label on that
3626 * device has a more recent txg.
3627 */
3628static void
3629spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3630{
3631	for (int c = 0; c < vd->vdev_children; c++)
3632		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3633
3634	if (vd->vdev_ops->vdev_op_leaf) {
3635		nvlist_t *label;
3636		uint64_t label_txg;
3637
3638		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3639		    &label) != 0)
3640			return;
3641
3642		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3643		    &label_txg) == 0);
3644
3645		/*
3646		 * Do we have a better boot device?
3647		 */
3648		if (label_txg > *txg) {
3649			*txg = label_txg;
3650			*avd = vd;
3651		}
3652		nvlist_free(label);
3653	}
3654}
3655
3656/*
3657 * Import a root pool.
3658 *
3659 * For x86. devpath_list will consist of devid and/or physpath name of
3660 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3661 * The GRUB "findroot" command will return the vdev we should boot.
3662 *
3663 * For Sparc, devpath_list consists the physpath name of the booting device
3664 * no matter the rootpool is a single device pool or a mirrored pool.
3665 * e.g.
3666 *	"/pci@1f,0/ide@d/disk@0,0:a"
3667 */
3668int
3669spa_import_rootpool(char *devpath, char *devid)
3670{
3671	spa_t *spa;
3672	vdev_t *rvd, *bvd, *avd = NULL;
3673	nvlist_t *config, *nvtop;
3674	uint64_t guid, txg;
3675	char *pname;
3676	int error;
3677
3678	/*
3679	 * Read the label from the boot device and generate a configuration.
3680	 */
3681	config = spa_generate_rootconf(devpath, devid, &guid);
3682#if defined(_OBP) && defined(_KERNEL)
3683	if (config == NULL) {
3684		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3685			/* iscsi boot */
3686			get_iscsi_bootpath_phy(devpath);
3687			config = spa_generate_rootconf(devpath, devid, &guid);
3688		}
3689	}
3690#endif
3691	if (config == NULL) {
3692		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3693		    devpath);
3694		return (SET_ERROR(EIO));
3695	}
3696
3697	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3698	    &pname) == 0);
3699	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3700
3701	mutex_enter(&spa_namespace_lock);
3702	if ((spa = spa_lookup(pname)) != NULL) {
3703		/*
3704		 * Remove the existing root pool from the namespace so that we
3705		 * can replace it with the correct config we just read in.
3706		 */
3707		spa_remove(spa);
3708	}
3709
3710	spa = spa_add(pname, config, NULL);
3711	spa->spa_is_root = B_TRUE;
3712	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3713
3714	/*
3715	 * Build up a vdev tree based on the boot device's label config.
3716	 */
3717	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3718	    &nvtop) == 0);
3719	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3720	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3721	    VDEV_ALLOC_ROOTPOOL);
3722	spa_config_exit(spa, SCL_ALL, FTAG);
3723	if (error) {
3724		mutex_exit(&spa_namespace_lock);
3725		nvlist_free(config);
3726		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3727		    pname);
3728		return (error);
3729	}
3730
3731	/*
3732	 * Get the boot vdev.
3733	 */
3734	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3735		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3736		    (u_longlong_t)guid);
3737		error = SET_ERROR(ENOENT);
3738		goto out;
3739	}
3740
3741	/*
3742	 * Determine if there is a better boot device.
3743	 */
3744	avd = bvd;
3745	spa_alt_rootvdev(rvd, &avd, &txg);
3746	if (avd != bvd) {
3747		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3748		    "try booting from '%s'", avd->vdev_path);
3749		error = SET_ERROR(EINVAL);
3750		goto out;
3751	}
3752
3753	/*
3754	 * If the boot device is part of a spare vdev then ensure that
3755	 * we're booting off the active spare.
3756	 */
3757	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3758	    !bvd->vdev_isspare) {
3759		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3760		    "try booting from '%s'",
3761		    bvd->vdev_parent->
3762		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3763		error = SET_ERROR(EINVAL);
3764		goto out;
3765	}
3766
3767	error = 0;
3768out:
3769	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3770	vdev_free(rvd);
3771	spa_config_exit(spa, SCL_ALL, FTAG);
3772	mutex_exit(&spa_namespace_lock);
3773
3774	nvlist_free(config);
3775	return (error);
3776}
3777
3778#else
3779
3780extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3781    uint64_t *count);
3782
3783static nvlist_t *
3784spa_generate_rootconf(const char *name)
3785{
3786	nvlist_t **configs, **tops;
3787	nvlist_t *config;
3788	nvlist_t *best_cfg, *nvtop, *nvroot;
3789	uint64_t *holes;
3790	uint64_t best_txg;
3791	uint64_t nchildren;
3792	uint64_t pgid;
3793	uint64_t count;
3794	uint64_t i;
3795	uint_t   nholes;
3796
3797	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3798		return (NULL);
3799
3800	ASSERT3U(count, !=, 0);
3801	best_txg = 0;
3802	for (i = 0; i < count; i++) {
3803		uint64_t txg;
3804
3805		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3806		    &txg) == 0);
3807		if (txg > best_txg) {
3808			best_txg = txg;
3809			best_cfg = configs[i];
3810		}
3811	}
3812
3813	/*
3814	 * Multi-vdev root pool configuration discovery is not supported yet.
3815	 */
3816	nchildren = 1;
3817	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3818	holes = NULL;
3819	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3820	    &holes, &nholes);
3821
3822	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3823	for (i = 0; i < nchildren; i++) {
3824		if (i >= count)
3825			break;
3826		if (configs[i] == NULL)
3827			continue;
3828		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3829		    &nvtop) == 0);
3830		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3831	}
3832	for (i = 0; holes != NULL && i < nholes; i++) {
3833		if (i >= nchildren)
3834			continue;
3835		if (tops[holes[i]] != NULL)
3836			continue;
3837		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3838		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3839		    VDEV_TYPE_HOLE) == 0);
3840		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3841		    holes[i]) == 0);
3842		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3843		    0) == 0);
3844	}
3845	for (i = 0; i < nchildren; i++) {
3846		if (tops[i] != NULL)
3847			continue;
3848		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3849		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3850		    VDEV_TYPE_MISSING) == 0);
3851		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3852		    i) == 0);
3853		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3854		    0) == 0);
3855	}
3856
3857	/*
3858	 * Create pool config based on the best vdev config.
3859	 */
3860	nvlist_dup(best_cfg, &config, KM_SLEEP);
3861
3862	/*
3863	 * Put this pool's top-level vdevs into a root vdev.
3864	 */
3865	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3866	    &pgid) == 0);
3867	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3868	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3869	    VDEV_TYPE_ROOT) == 0);
3870	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3871	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3872	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3873	    tops, nchildren) == 0);
3874
3875	/*
3876	 * Replace the existing vdev_tree with the new root vdev in
3877	 * this pool's configuration (remove the old, add the new).
3878	 */
3879	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3880
3881	/*
3882	 * Drop vdev config elements that should not be present at pool level.
3883	 */
3884	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3885	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3886
3887	for (i = 0; i < count; i++)
3888		nvlist_free(configs[i]);
3889	kmem_free(configs, count * sizeof(void *));
3890	for (i = 0; i < nchildren; i++)
3891		nvlist_free(tops[i]);
3892	kmem_free(tops, nchildren * sizeof(void *));
3893	nvlist_free(nvroot);
3894	return (config);
3895}
3896
3897int
3898spa_import_rootpool(const char *name)
3899{
3900	spa_t *spa;
3901	vdev_t *rvd, *bvd, *avd = NULL;
3902	nvlist_t *config, *nvtop;
3903	uint64_t txg;
3904	char *pname;
3905	int error;
3906
3907	/*
3908	 * Read the label from the boot device and generate a configuration.
3909	 */
3910	config = spa_generate_rootconf(name);
3911
3912	mutex_enter(&spa_namespace_lock);
3913	if (config != NULL) {
3914		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3915		    &pname) == 0 && strcmp(name, pname) == 0);
3916		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3917		    == 0);
3918
3919		if ((spa = spa_lookup(pname)) != NULL) {
3920			/*
3921			 * Remove the existing root pool from the namespace so
3922			 * that we can replace it with the correct config
3923			 * we just read in.
3924			 */
3925			spa_remove(spa);
3926		}
3927		spa = spa_add(pname, config, NULL);
3928
3929		/*
3930		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
3931		 * via spa_version().
3932		 */
3933		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3934		    &spa->spa_ubsync.ub_version) != 0)
3935			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3936	} else if ((spa = spa_lookup(name)) == NULL) {
3937		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
3938		    name);
3939		return (EIO);
3940	} else {
3941		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
3942	}
3943	spa->spa_is_root = B_TRUE;
3944	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3945
3946	/*
3947	 * Build up a vdev tree based on the boot device's label config.
3948	 */
3949	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3950	    &nvtop) == 0);
3951	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3952	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3953	    VDEV_ALLOC_ROOTPOOL);
3954	spa_config_exit(spa, SCL_ALL, FTAG);
3955	if (error) {
3956		mutex_exit(&spa_namespace_lock);
3957		nvlist_free(config);
3958		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3959		    pname);
3960		return (error);
3961	}
3962
3963	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3964	vdev_free(rvd);
3965	spa_config_exit(spa, SCL_ALL, FTAG);
3966	mutex_exit(&spa_namespace_lock);
3967
3968	nvlist_free(config);
3969	return (0);
3970}
3971
3972#endif	/* sun */
3973#endif
3974
3975/*
3976 * Import a non-root pool into the system.
3977 */
3978int
3979spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3980{
3981	spa_t *spa;
3982	char *altroot = NULL;
3983	spa_load_state_t state = SPA_LOAD_IMPORT;
3984	zpool_rewind_policy_t policy;
3985	uint64_t mode = spa_mode_global;
3986	uint64_t readonly = B_FALSE;
3987	int error;
3988	nvlist_t *nvroot;
3989	nvlist_t **spares, **l2cache;
3990	uint_t nspares, nl2cache;
3991
3992	/*
3993	 * If a pool with this name exists, return failure.
3994	 */
3995	mutex_enter(&spa_namespace_lock);
3996	if (spa_lookup(pool) != NULL) {
3997		mutex_exit(&spa_namespace_lock);
3998		return (SET_ERROR(EEXIST));
3999	}
4000
4001	/*
4002	 * Create and initialize the spa structure.
4003	 */
4004	(void) nvlist_lookup_string(props,
4005	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4006	(void) nvlist_lookup_uint64(props,
4007	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4008	if (readonly)
4009		mode = FREAD;
4010	spa = spa_add(pool, config, altroot);
4011	spa->spa_import_flags = flags;
4012
4013	/*
4014	 * Verbatim import - Take a pool and insert it into the namespace
4015	 * as if it had been loaded at boot.
4016	 */
4017	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4018		if (props != NULL)
4019			spa_configfile_set(spa, props, B_FALSE);
4020
4021		spa_config_sync(spa, B_FALSE, B_TRUE);
4022
4023		mutex_exit(&spa_namespace_lock);
4024		return (0);
4025	}
4026
4027	spa_activate(spa, mode);
4028
4029	/*
4030	 * Don't start async tasks until we know everything is healthy.
4031	 */
4032	spa_async_suspend(spa);
4033
4034	zpool_get_rewind_policy(config, &policy);
4035	if (policy.zrp_request & ZPOOL_DO_REWIND)
4036		state = SPA_LOAD_RECOVER;
4037
4038	/*
4039	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4040	 * because the user-supplied config is actually the one to trust when
4041	 * doing an import.
4042	 */
4043	if (state != SPA_LOAD_RECOVER)
4044		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4045
4046	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4047	    policy.zrp_request);
4048
4049	/*
4050	 * Propagate anything learned while loading the pool and pass it
4051	 * back to caller (i.e. rewind info, missing devices, etc).
4052	 */
4053	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4054	    spa->spa_load_info) == 0);
4055
4056	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4057	/*
4058	 * Toss any existing sparelist, as it doesn't have any validity
4059	 * anymore, and conflicts with spa_has_spare().
4060	 */
4061	if (spa->spa_spares.sav_config) {
4062		nvlist_free(spa->spa_spares.sav_config);
4063		spa->spa_spares.sav_config = NULL;
4064		spa_load_spares(spa);
4065	}
4066	if (spa->spa_l2cache.sav_config) {
4067		nvlist_free(spa->spa_l2cache.sav_config);
4068		spa->spa_l2cache.sav_config = NULL;
4069		spa_load_l2cache(spa);
4070	}
4071
4072	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4073	    &nvroot) == 0);
4074	if (error == 0)
4075		error = spa_validate_aux(spa, nvroot, -1ULL,
4076		    VDEV_ALLOC_SPARE);
4077	if (error == 0)
4078		error = spa_validate_aux(spa, nvroot, -1ULL,
4079		    VDEV_ALLOC_L2CACHE);
4080	spa_config_exit(spa, SCL_ALL, FTAG);
4081
4082	if (props != NULL)
4083		spa_configfile_set(spa, props, B_FALSE);
4084
4085	if (error != 0 || (props && spa_writeable(spa) &&
4086	    (error = spa_prop_set(spa, props)))) {
4087		spa_unload(spa);
4088		spa_deactivate(spa);
4089		spa_remove(spa);
4090		mutex_exit(&spa_namespace_lock);
4091		return (error);
4092	}
4093
4094	spa_async_resume(spa);
4095
4096	/*
4097	 * Override any spares and level 2 cache devices as specified by
4098	 * the user, as these may have correct device names/devids, etc.
4099	 */
4100	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4101	    &spares, &nspares) == 0) {
4102		if (spa->spa_spares.sav_config)
4103			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4104			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4105		else
4106			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4107			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4108		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4109		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4110		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4111		spa_load_spares(spa);
4112		spa_config_exit(spa, SCL_ALL, FTAG);
4113		spa->spa_spares.sav_sync = B_TRUE;
4114	}
4115	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4116	    &l2cache, &nl2cache) == 0) {
4117		if (spa->spa_l2cache.sav_config)
4118			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4119			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4120		else
4121			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4122			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4123		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4124		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4125		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4126		spa_load_l2cache(spa);
4127		spa_config_exit(spa, SCL_ALL, FTAG);
4128		spa->spa_l2cache.sav_sync = B_TRUE;
4129	}
4130
4131	/*
4132	 * Check for any removed devices.
4133	 */
4134	if (spa->spa_autoreplace) {
4135		spa_aux_check_removed(&spa->spa_spares);
4136		spa_aux_check_removed(&spa->spa_l2cache);
4137	}
4138
4139	if (spa_writeable(spa)) {
4140		/*
4141		 * Update the config cache to include the newly-imported pool.
4142		 */
4143		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4144	}
4145
4146	/*
4147	 * It's possible that the pool was expanded while it was exported.
4148	 * We kick off an async task to handle this for us.
4149	 */
4150	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4151
4152	mutex_exit(&spa_namespace_lock);
4153	spa_history_log_version(spa, "import");
4154
4155#ifdef __FreeBSD__
4156#ifdef _KERNEL
4157	zvol_create_minors(pool);
4158#endif
4159#endif
4160	return (0);
4161}
4162
4163nvlist_t *
4164spa_tryimport(nvlist_t *tryconfig)
4165{
4166	nvlist_t *config = NULL;
4167	char *poolname;
4168	spa_t *spa;
4169	uint64_t state;
4170	int error;
4171
4172	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4173		return (NULL);
4174
4175	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4176		return (NULL);
4177
4178	/*
4179	 * Create and initialize the spa structure.
4180	 */
4181	mutex_enter(&spa_namespace_lock);
4182	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4183	spa_activate(spa, FREAD);
4184
4185	/*
4186	 * Pass off the heavy lifting to spa_load().
4187	 * Pass TRUE for mosconfig because the user-supplied config
4188	 * is actually the one to trust when doing an import.
4189	 */
4190	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4191
4192	/*
4193	 * If 'tryconfig' was at least parsable, return the current config.
4194	 */
4195	if (spa->spa_root_vdev != NULL) {
4196		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4197		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4198		    poolname) == 0);
4199		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4200		    state) == 0);
4201		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4202		    spa->spa_uberblock.ub_timestamp) == 0);
4203		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4204		    spa->spa_load_info) == 0);
4205
4206		/*
4207		 * If the bootfs property exists on this pool then we
4208		 * copy it out so that external consumers can tell which
4209		 * pools are bootable.
4210		 */
4211		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4212			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4213
4214			/*
4215			 * We have to play games with the name since the
4216			 * pool was opened as TRYIMPORT_NAME.
4217			 */
4218			if (dsl_dsobj_to_dsname(spa_name(spa),
4219			    spa->spa_bootfs, tmpname) == 0) {
4220				char *cp;
4221				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4222
4223				cp = strchr(tmpname, '/');
4224				if (cp == NULL) {
4225					(void) strlcpy(dsname, tmpname,
4226					    MAXPATHLEN);
4227				} else {
4228					(void) snprintf(dsname, MAXPATHLEN,
4229					    "%s/%s", poolname, ++cp);
4230				}
4231				VERIFY(nvlist_add_string(config,
4232				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4233				kmem_free(dsname, MAXPATHLEN);
4234			}
4235			kmem_free(tmpname, MAXPATHLEN);
4236		}
4237
4238		/*
4239		 * Add the list of hot spares and level 2 cache devices.
4240		 */
4241		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4242		spa_add_spares(spa, config);
4243		spa_add_l2cache(spa, config);
4244		spa_config_exit(spa, SCL_CONFIG, FTAG);
4245	}
4246
4247	spa_unload(spa);
4248	spa_deactivate(spa);
4249	spa_remove(spa);
4250	mutex_exit(&spa_namespace_lock);
4251
4252	return (config);
4253}
4254
4255/*
4256 * Pool export/destroy
4257 *
4258 * The act of destroying or exporting a pool is very simple.  We make sure there
4259 * is no more pending I/O and any references to the pool are gone.  Then, we
4260 * update the pool state and sync all the labels to disk, removing the
4261 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4262 * we don't sync the labels or remove the configuration cache.
4263 */
4264static int
4265spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4266    boolean_t force, boolean_t hardforce)
4267{
4268	spa_t *spa;
4269
4270	if (oldconfig)
4271		*oldconfig = NULL;
4272
4273	if (!(spa_mode_global & FWRITE))
4274		return (SET_ERROR(EROFS));
4275
4276	mutex_enter(&spa_namespace_lock);
4277	if ((spa = spa_lookup(pool)) == NULL) {
4278		mutex_exit(&spa_namespace_lock);
4279		return (SET_ERROR(ENOENT));
4280	}
4281
4282	/*
4283	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4284	 * reacquire the namespace lock, and see if we can export.
4285	 */
4286	spa_open_ref(spa, FTAG);
4287	mutex_exit(&spa_namespace_lock);
4288	spa_async_suspend(spa);
4289	mutex_enter(&spa_namespace_lock);
4290	spa_close(spa, FTAG);
4291
4292	/*
4293	 * The pool will be in core if it's openable,
4294	 * in which case we can modify its state.
4295	 */
4296	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4297		/*
4298		 * Objsets may be open only because they're dirty, so we
4299		 * have to force it to sync before checking spa_refcnt.
4300		 */
4301		txg_wait_synced(spa->spa_dsl_pool, 0);
4302
4303		/*
4304		 * A pool cannot be exported or destroyed if there are active
4305		 * references.  If we are resetting a pool, allow references by
4306		 * fault injection handlers.
4307		 */
4308		if (!spa_refcount_zero(spa) ||
4309		    (spa->spa_inject_ref != 0 &&
4310		    new_state != POOL_STATE_UNINITIALIZED)) {
4311			spa_async_resume(spa);
4312			mutex_exit(&spa_namespace_lock);
4313			return (SET_ERROR(EBUSY));
4314		}
4315
4316		/*
4317		 * A pool cannot be exported if it has an active shared spare.
4318		 * This is to prevent other pools stealing the active spare
4319		 * from an exported pool. At user's own will, such pool can
4320		 * be forcedly exported.
4321		 */
4322		if (!force && new_state == POOL_STATE_EXPORTED &&
4323		    spa_has_active_shared_spare(spa)) {
4324			spa_async_resume(spa);
4325			mutex_exit(&spa_namespace_lock);
4326			return (SET_ERROR(EXDEV));
4327		}
4328
4329		/*
4330		 * We want this to be reflected on every label,
4331		 * so mark them all dirty.  spa_unload() will do the
4332		 * final sync that pushes these changes out.
4333		 */
4334		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4335			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4336			spa->spa_state = new_state;
4337			spa->spa_final_txg = spa_last_synced_txg(spa) +
4338			    TXG_DEFER_SIZE + 1;
4339			vdev_config_dirty(spa->spa_root_vdev);
4340			spa_config_exit(spa, SCL_ALL, FTAG);
4341		}
4342	}
4343
4344	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4345
4346	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4347		spa_unload(spa);
4348		spa_deactivate(spa);
4349	}
4350
4351	if (oldconfig && spa->spa_config)
4352		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4353
4354	if (new_state != POOL_STATE_UNINITIALIZED) {
4355		if (!hardforce)
4356			spa_config_sync(spa, B_TRUE, B_TRUE);
4357		spa_remove(spa);
4358	}
4359	mutex_exit(&spa_namespace_lock);
4360
4361	return (0);
4362}
4363
4364/*
4365 * Destroy a storage pool.
4366 */
4367int
4368spa_destroy(char *pool)
4369{
4370	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4371	    B_FALSE, B_FALSE));
4372}
4373
4374/*
4375 * Export a storage pool.
4376 */
4377int
4378spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4379    boolean_t hardforce)
4380{
4381	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4382	    force, hardforce));
4383}
4384
4385/*
4386 * Similar to spa_export(), this unloads the spa_t without actually removing it
4387 * from the namespace in any way.
4388 */
4389int
4390spa_reset(char *pool)
4391{
4392	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4393	    B_FALSE, B_FALSE));
4394}
4395
4396/*
4397 * ==========================================================================
4398 * Device manipulation
4399 * ==========================================================================
4400 */
4401
4402/*
4403 * Add a device to a storage pool.
4404 */
4405int
4406spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4407{
4408	uint64_t txg, id;
4409	int error;
4410	vdev_t *rvd = spa->spa_root_vdev;
4411	vdev_t *vd, *tvd;
4412	nvlist_t **spares, **l2cache;
4413	uint_t nspares, nl2cache;
4414
4415	ASSERT(spa_writeable(spa));
4416
4417	txg = spa_vdev_enter(spa);
4418
4419	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4420	    VDEV_ALLOC_ADD)) != 0)
4421		return (spa_vdev_exit(spa, NULL, txg, error));
4422
4423	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4424
4425	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4426	    &nspares) != 0)
4427		nspares = 0;
4428
4429	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4430	    &nl2cache) != 0)
4431		nl2cache = 0;
4432
4433	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4434		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4435
4436	if (vd->vdev_children != 0 &&
4437	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4438		return (spa_vdev_exit(spa, vd, txg, error));
4439
4440	/*
4441	 * We must validate the spares and l2cache devices after checking the
4442	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4443	 */
4444	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4445		return (spa_vdev_exit(spa, vd, txg, error));
4446
4447	/*
4448	 * Transfer each new top-level vdev from vd to rvd.
4449	 */
4450	for (int c = 0; c < vd->vdev_children; c++) {
4451
4452		/*
4453		 * Set the vdev id to the first hole, if one exists.
4454		 */
4455		for (id = 0; id < rvd->vdev_children; id++) {
4456			if (rvd->vdev_child[id]->vdev_ishole) {
4457				vdev_free(rvd->vdev_child[id]);
4458				break;
4459			}
4460		}
4461		tvd = vd->vdev_child[c];
4462		vdev_remove_child(vd, tvd);
4463		tvd->vdev_id = id;
4464		vdev_add_child(rvd, tvd);
4465		vdev_config_dirty(tvd);
4466	}
4467
4468	if (nspares != 0) {
4469		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4470		    ZPOOL_CONFIG_SPARES);
4471		spa_load_spares(spa);
4472		spa->spa_spares.sav_sync = B_TRUE;
4473	}
4474
4475	if (nl2cache != 0) {
4476		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4477		    ZPOOL_CONFIG_L2CACHE);
4478		spa_load_l2cache(spa);
4479		spa->spa_l2cache.sav_sync = B_TRUE;
4480	}
4481
4482	/*
4483	 * We have to be careful when adding new vdevs to an existing pool.
4484	 * If other threads start allocating from these vdevs before we
4485	 * sync the config cache, and we lose power, then upon reboot we may
4486	 * fail to open the pool because there are DVAs that the config cache
4487	 * can't translate.  Therefore, we first add the vdevs without
4488	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4489	 * and then let spa_config_update() initialize the new metaslabs.
4490	 *
4491	 * spa_load() checks for added-but-not-initialized vdevs, so that
4492	 * if we lose power at any point in this sequence, the remaining
4493	 * steps will be completed the next time we load the pool.
4494	 */
4495	(void) spa_vdev_exit(spa, vd, txg, 0);
4496
4497	mutex_enter(&spa_namespace_lock);
4498	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4499	mutex_exit(&spa_namespace_lock);
4500
4501	return (0);
4502}
4503
4504/*
4505 * Attach a device to a mirror.  The arguments are the path to any device
4506 * in the mirror, and the nvroot for the new device.  If the path specifies
4507 * a device that is not mirrored, we automatically insert the mirror vdev.
4508 *
4509 * If 'replacing' is specified, the new device is intended to replace the
4510 * existing device; in this case the two devices are made into their own
4511 * mirror using the 'replacing' vdev, which is functionally identical to
4512 * the mirror vdev (it actually reuses all the same ops) but has a few
4513 * extra rules: you can't attach to it after it's been created, and upon
4514 * completion of resilvering, the first disk (the one being replaced)
4515 * is automatically detached.
4516 */
4517int
4518spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4519{
4520	uint64_t txg, dtl_max_txg;
4521	vdev_t *rvd = spa->spa_root_vdev;
4522	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4523	vdev_ops_t *pvops;
4524	char *oldvdpath, *newvdpath;
4525	int newvd_isspare;
4526	int error;
4527
4528	ASSERT(spa_writeable(spa));
4529
4530	txg = spa_vdev_enter(spa);
4531
4532	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4533
4534	if (oldvd == NULL)
4535		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4536
4537	if (!oldvd->vdev_ops->vdev_op_leaf)
4538		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4539
4540	pvd = oldvd->vdev_parent;
4541
4542	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4543	    VDEV_ALLOC_ATTACH)) != 0)
4544		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4545
4546	if (newrootvd->vdev_children != 1)
4547		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4548
4549	newvd = newrootvd->vdev_child[0];
4550
4551	if (!newvd->vdev_ops->vdev_op_leaf)
4552		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4553
4554	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4555		return (spa_vdev_exit(spa, newrootvd, txg, error));
4556
4557	/*
4558	 * Spares can't replace logs
4559	 */
4560	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4561		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4562
4563	if (!replacing) {
4564		/*
4565		 * For attach, the only allowable parent is a mirror or the root
4566		 * vdev.
4567		 */
4568		if (pvd->vdev_ops != &vdev_mirror_ops &&
4569		    pvd->vdev_ops != &vdev_root_ops)
4570			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4571
4572		pvops = &vdev_mirror_ops;
4573	} else {
4574		/*
4575		 * Active hot spares can only be replaced by inactive hot
4576		 * spares.
4577		 */
4578		if (pvd->vdev_ops == &vdev_spare_ops &&
4579		    oldvd->vdev_isspare &&
4580		    !spa_has_spare(spa, newvd->vdev_guid))
4581			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4582
4583		/*
4584		 * If the source is a hot spare, and the parent isn't already a
4585		 * spare, then we want to create a new hot spare.  Otherwise, we
4586		 * want to create a replacing vdev.  The user is not allowed to
4587		 * attach to a spared vdev child unless the 'isspare' state is
4588		 * the same (spare replaces spare, non-spare replaces
4589		 * non-spare).
4590		 */
4591		if (pvd->vdev_ops == &vdev_replacing_ops &&
4592		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4593			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4594		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4595		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4596			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4597		}
4598
4599		if (newvd->vdev_isspare)
4600			pvops = &vdev_spare_ops;
4601		else
4602			pvops = &vdev_replacing_ops;
4603	}
4604
4605	/*
4606	 * Make sure the new device is big enough.
4607	 */
4608	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4609		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4610
4611	/*
4612	 * The new device cannot have a higher alignment requirement
4613	 * than the top-level vdev.
4614	 */
4615	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4616		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4617
4618	/*
4619	 * If this is an in-place replacement, update oldvd's path and devid
4620	 * to make it distinguishable from newvd, and unopenable from now on.
4621	 */
4622	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4623		spa_strfree(oldvd->vdev_path);
4624		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4625		    KM_SLEEP);
4626		(void) sprintf(oldvd->vdev_path, "%s/%s",
4627		    newvd->vdev_path, "old");
4628		if (oldvd->vdev_devid != NULL) {
4629			spa_strfree(oldvd->vdev_devid);
4630			oldvd->vdev_devid = NULL;
4631		}
4632	}
4633
4634	/* mark the device being resilvered */
4635	newvd->vdev_resilver_txg = txg;
4636
4637	/*
4638	 * If the parent is not a mirror, or if we're replacing, insert the new
4639	 * mirror/replacing/spare vdev above oldvd.
4640	 */
4641	if (pvd->vdev_ops != pvops)
4642		pvd = vdev_add_parent(oldvd, pvops);
4643
4644	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4645	ASSERT(pvd->vdev_ops == pvops);
4646	ASSERT(oldvd->vdev_parent == pvd);
4647
4648	/*
4649	 * Extract the new device from its root and add it to pvd.
4650	 */
4651	vdev_remove_child(newrootvd, newvd);
4652	newvd->vdev_id = pvd->vdev_children;
4653	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4654	vdev_add_child(pvd, newvd);
4655
4656	tvd = newvd->vdev_top;
4657	ASSERT(pvd->vdev_top == tvd);
4658	ASSERT(tvd->vdev_parent == rvd);
4659
4660	vdev_config_dirty(tvd);
4661
4662	/*
4663	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4664	 * for any dmu_sync-ed blocks.  It will propagate upward when
4665	 * spa_vdev_exit() calls vdev_dtl_reassess().
4666	 */
4667	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4668
4669	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4670	    dtl_max_txg - TXG_INITIAL);
4671
4672	if (newvd->vdev_isspare) {
4673		spa_spare_activate(newvd);
4674		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4675	}
4676
4677	oldvdpath = spa_strdup(oldvd->vdev_path);
4678	newvdpath = spa_strdup(newvd->vdev_path);
4679	newvd_isspare = newvd->vdev_isspare;
4680
4681	/*
4682	 * Mark newvd's DTL dirty in this txg.
4683	 */
4684	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4685
4686	/*
4687	 * Restart the resilver
4688	 */
4689	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4690
4691	/*
4692	 * Commit the config
4693	 */
4694	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4695
4696	spa_history_log_internal(spa, "vdev attach", NULL,
4697	    "%s vdev=%s %s vdev=%s",
4698	    replacing && newvd_isspare ? "spare in" :
4699	    replacing ? "replace" : "attach", newvdpath,
4700	    replacing ? "for" : "to", oldvdpath);
4701
4702	spa_strfree(oldvdpath);
4703	spa_strfree(newvdpath);
4704
4705	if (spa->spa_bootfs)
4706		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4707
4708	return (0);
4709}
4710
4711/*
4712 * Detach a device from a mirror or replacing vdev.
4713 *
4714 * If 'replace_done' is specified, only detach if the parent
4715 * is a replacing vdev.
4716 */
4717int
4718spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4719{
4720	uint64_t txg;
4721	int error;
4722	vdev_t *rvd = spa->spa_root_vdev;
4723	vdev_t *vd, *pvd, *cvd, *tvd;
4724	boolean_t unspare = B_FALSE;
4725	uint64_t unspare_guid = 0;
4726	char *vdpath;
4727
4728	ASSERT(spa_writeable(spa));
4729
4730	txg = spa_vdev_enter(spa);
4731
4732	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4733
4734	if (vd == NULL)
4735		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4736
4737	if (!vd->vdev_ops->vdev_op_leaf)
4738		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4739
4740	pvd = vd->vdev_parent;
4741
4742	/*
4743	 * If the parent/child relationship is not as expected, don't do it.
4744	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4745	 * vdev that's replacing B with C.  The user's intent in replacing
4746	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4747	 * the replace by detaching C, the expected behavior is to end up
4748	 * M(A,B).  But suppose that right after deciding to detach C,
4749	 * the replacement of B completes.  We would have M(A,C), and then
4750	 * ask to detach C, which would leave us with just A -- not what
4751	 * the user wanted.  To prevent this, we make sure that the
4752	 * parent/child relationship hasn't changed -- in this example,
4753	 * that C's parent is still the replacing vdev R.
4754	 */
4755	if (pvd->vdev_guid != pguid && pguid != 0)
4756		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4757
4758	/*
4759	 * Only 'replacing' or 'spare' vdevs can be replaced.
4760	 */
4761	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4762	    pvd->vdev_ops != &vdev_spare_ops)
4763		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4764
4765	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4766	    spa_version(spa) >= SPA_VERSION_SPARES);
4767
4768	/*
4769	 * Only mirror, replacing, and spare vdevs support detach.
4770	 */
4771	if (pvd->vdev_ops != &vdev_replacing_ops &&
4772	    pvd->vdev_ops != &vdev_mirror_ops &&
4773	    pvd->vdev_ops != &vdev_spare_ops)
4774		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4775
4776	/*
4777	 * If this device has the only valid copy of some data,
4778	 * we cannot safely detach it.
4779	 */
4780	if (vdev_dtl_required(vd))
4781		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4782
4783	ASSERT(pvd->vdev_children >= 2);
4784
4785	/*
4786	 * If we are detaching the second disk from a replacing vdev, then
4787	 * check to see if we changed the original vdev's path to have "/old"
4788	 * at the end in spa_vdev_attach().  If so, undo that change now.
4789	 */
4790	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4791	    vd->vdev_path != NULL) {
4792		size_t len = strlen(vd->vdev_path);
4793
4794		for (int c = 0; c < pvd->vdev_children; c++) {
4795			cvd = pvd->vdev_child[c];
4796
4797			if (cvd == vd || cvd->vdev_path == NULL)
4798				continue;
4799
4800			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4801			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4802				spa_strfree(cvd->vdev_path);
4803				cvd->vdev_path = spa_strdup(vd->vdev_path);
4804				break;
4805			}
4806		}
4807	}
4808
4809	/*
4810	 * If we are detaching the original disk from a spare, then it implies
4811	 * that the spare should become a real disk, and be removed from the
4812	 * active spare list for the pool.
4813	 */
4814	if (pvd->vdev_ops == &vdev_spare_ops &&
4815	    vd->vdev_id == 0 &&
4816	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4817		unspare = B_TRUE;
4818
4819	/*
4820	 * Erase the disk labels so the disk can be used for other things.
4821	 * This must be done after all other error cases are handled,
4822	 * but before we disembowel vd (so we can still do I/O to it).
4823	 * But if we can't do it, don't treat the error as fatal --
4824	 * it may be that the unwritability of the disk is the reason
4825	 * it's being detached!
4826	 */
4827	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4828
4829	/*
4830	 * Remove vd from its parent and compact the parent's children.
4831	 */
4832	vdev_remove_child(pvd, vd);
4833	vdev_compact_children(pvd);
4834
4835	/*
4836	 * Remember one of the remaining children so we can get tvd below.
4837	 */
4838	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4839
4840	/*
4841	 * If we need to remove the remaining child from the list of hot spares,
4842	 * do it now, marking the vdev as no longer a spare in the process.
4843	 * We must do this before vdev_remove_parent(), because that can
4844	 * change the GUID if it creates a new toplevel GUID.  For a similar
4845	 * reason, we must remove the spare now, in the same txg as the detach;
4846	 * otherwise someone could attach a new sibling, change the GUID, and
4847	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4848	 */
4849	if (unspare) {
4850		ASSERT(cvd->vdev_isspare);
4851		spa_spare_remove(cvd);
4852		unspare_guid = cvd->vdev_guid;
4853		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4854		cvd->vdev_unspare = B_TRUE;
4855	}
4856
4857	/*
4858	 * If the parent mirror/replacing vdev only has one child,
4859	 * the parent is no longer needed.  Remove it from the tree.
4860	 */
4861	if (pvd->vdev_children == 1) {
4862		if (pvd->vdev_ops == &vdev_spare_ops)
4863			cvd->vdev_unspare = B_FALSE;
4864		vdev_remove_parent(cvd);
4865	}
4866
4867
4868	/*
4869	 * We don't set tvd until now because the parent we just removed
4870	 * may have been the previous top-level vdev.
4871	 */
4872	tvd = cvd->vdev_top;
4873	ASSERT(tvd->vdev_parent == rvd);
4874
4875	/*
4876	 * Reevaluate the parent vdev state.
4877	 */
4878	vdev_propagate_state(cvd);
4879
4880	/*
4881	 * If the 'autoexpand' property is set on the pool then automatically
4882	 * try to expand the size of the pool. For example if the device we
4883	 * just detached was smaller than the others, it may be possible to
4884	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4885	 * first so that we can obtain the updated sizes of the leaf vdevs.
4886	 */
4887	if (spa->spa_autoexpand) {
4888		vdev_reopen(tvd);
4889		vdev_expand(tvd, txg);
4890	}
4891
4892	vdev_config_dirty(tvd);
4893
4894	/*
4895	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4896	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4897	 * But first make sure we're not on any *other* txg's DTL list, to
4898	 * prevent vd from being accessed after it's freed.
4899	 */
4900	vdpath = spa_strdup(vd->vdev_path);
4901	for (int t = 0; t < TXG_SIZE; t++)
4902		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4903	vd->vdev_detached = B_TRUE;
4904	vdev_dirty(tvd, VDD_DTL, vd, txg);
4905
4906	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4907
4908	/* hang on to the spa before we release the lock */
4909	spa_open_ref(spa, FTAG);
4910
4911	error = spa_vdev_exit(spa, vd, txg, 0);
4912
4913	spa_history_log_internal(spa, "detach", NULL,
4914	    "vdev=%s", vdpath);
4915	spa_strfree(vdpath);
4916
4917	/*
4918	 * If this was the removal of the original device in a hot spare vdev,
4919	 * then we want to go through and remove the device from the hot spare
4920	 * list of every other pool.
4921	 */
4922	if (unspare) {
4923		spa_t *altspa = NULL;
4924
4925		mutex_enter(&spa_namespace_lock);
4926		while ((altspa = spa_next(altspa)) != NULL) {
4927			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4928			    altspa == spa)
4929				continue;
4930
4931			spa_open_ref(altspa, FTAG);
4932			mutex_exit(&spa_namespace_lock);
4933			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4934			mutex_enter(&spa_namespace_lock);
4935			spa_close(altspa, FTAG);
4936		}
4937		mutex_exit(&spa_namespace_lock);
4938
4939		/* search the rest of the vdevs for spares to remove */
4940		spa_vdev_resilver_done(spa);
4941	}
4942
4943	/* all done with the spa; OK to release */
4944	mutex_enter(&spa_namespace_lock);
4945	spa_close(spa, FTAG);
4946	mutex_exit(&spa_namespace_lock);
4947
4948	return (error);
4949}
4950
4951/*
4952 * Split a set of devices from their mirrors, and create a new pool from them.
4953 */
4954int
4955spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4956    nvlist_t *props, boolean_t exp)
4957{
4958	int error = 0;
4959	uint64_t txg, *glist;
4960	spa_t *newspa;
4961	uint_t c, children, lastlog;
4962	nvlist_t **child, *nvl, *tmp;
4963	dmu_tx_t *tx;
4964	char *altroot = NULL;
4965	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4966	boolean_t activate_slog;
4967
4968	ASSERT(spa_writeable(spa));
4969
4970	txg = spa_vdev_enter(spa);
4971
4972	/* clear the log and flush everything up to now */
4973	activate_slog = spa_passivate_log(spa);
4974	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4975	error = spa_offline_log(spa);
4976	txg = spa_vdev_config_enter(spa);
4977
4978	if (activate_slog)
4979		spa_activate_log(spa);
4980
4981	if (error != 0)
4982		return (spa_vdev_exit(spa, NULL, txg, error));
4983
4984	/* check new spa name before going any further */
4985	if (spa_lookup(newname) != NULL)
4986		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4987
4988	/*
4989	 * scan through all the children to ensure they're all mirrors
4990	 */
4991	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4992	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4993	    &children) != 0)
4994		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4995
4996	/* first, check to ensure we've got the right child count */
4997	rvd = spa->spa_root_vdev;
4998	lastlog = 0;
4999	for (c = 0; c < rvd->vdev_children; c++) {
5000		vdev_t *vd = rvd->vdev_child[c];
5001
5002		/* don't count the holes & logs as children */
5003		if (vd->vdev_islog || vd->vdev_ishole) {
5004			if (lastlog == 0)
5005				lastlog = c;
5006			continue;
5007		}
5008
5009		lastlog = 0;
5010	}
5011	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5012		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5013
5014	/* next, ensure no spare or cache devices are part of the split */
5015	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5016	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5017		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5018
5019	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5020	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5021
5022	/* then, loop over each vdev and validate it */
5023	for (c = 0; c < children; c++) {
5024		uint64_t is_hole = 0;
5025
5026		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5027		    &is_hole);
5028
5029		if (is_hole != 0) {
5030			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5031			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5032				continue;
5033			} else {
5034				error = SET_ERROR(EINVAL);
5035				break;
5036			}
5037		}
5038
5039		/* which disk is going to be split? */
5040		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5041		    &glist[c]) != 0) {
5042			error = SET_ERROR(EINVAL);
5043			break;
5044		}
5045
5046		/* look it up in the spa */
5047		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5048		if (vml[c] == NULL) {
5049			error = SET_ERROR(ENODEV);
5050			break;
5051		}
5052
5053		/* make sure there's nothing stopping the split */
5054		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5055		    vml[c]->vdev_islog ||
5056		    vml[c]->vdev_ishole ||
5057		    vml[c]->vdev_isspare ||
5058		    vml[c]->vdev_isl2cache ||
5059		    !vdev_writeable(vml[c]) ||
5060		    vml[c]->vdev_children != 0 ||
5061		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5062		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5063			error = SET_ERROR(EINVAL);
5064			break;
5065		}
5066
5067		if (vdev_dtl_required(vml[c])) {
5068			error = SET_ERROR(EBUSY);
5069			break;
5070		}
5071
5072		/* we need certain info from the top level */
5073		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5074		    vml[c]->vdev_top->vdev_ms_array) == 0);
5075		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5076		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5077		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5078		    vml[c]->vdev_top->vdev_asize) == 0);
5079		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5080		    vml[c]->vdev_top->vdev_ashift) == 0);
5081	}
5082
5083	if (error != 0) {
5084		kmem_free(vml, children * sizeof (vdev_t *));
5085		kmem_free(glist, children * sizeof (uint64_t));
5086		return (spa_vdev_exit(spa, NULL, txg, error));
5087	}
5088
5089	/* stop writers from using the disks */
5090	for (c = 0; c < children; c++) {
5091		if (vml[c] != NULL)
5092			vml[c]->vdev_offline = B_TRUE;
5093	}
5094	vdev_reopen(spa->spa_root_vdev);
5095
5096	/*
5097	 * Temporarily record the splitting vdevs in the spa config.  This
5098	 * will disappear once the config is regenerated.
5099	 */
5100	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5101	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5102	    glist, children) == 0);
5103	kmem_free(glist, children * sizeof (uint64_t));
5104
5105	mutex_enter(&spa->spa_props_lock);
5106	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5107	    nvl) == 0);
5108	mutex_exit(&spa->spa_props_lock);
5109	spa->spa_config_splitting = nvl;
5110	vdev_config_dirty(spa->spa_root_vdev);
5111
5112	/* configure and create the new pool */
5113	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5114	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5115	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5116	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5117	    spa_version(spa)) == 0);
5118	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5119	    spa->spa_config_txg) == 0);
5120	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5121	    spa_generate_guid(NULL)) == 0);
5122	(void) nvlist_lookup_string(props,
5123	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5124
5125	/* add the new pool to the namespace */
5126	newspa = spa_add(newname, config, altroot);
5127	newspa->spa_config_txg = spa->spa_config_txg;
5128	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5129
5130	/* release the spa config lock, retaining the namespace lock */
5131	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5132
5133	if (zio_injection_enabled)
5134		zio_handle_panic_injection(spa, FTAG, 1);
5135
5136	spa_activate(newspa, spa_mode_global);
5137	spa_async_suspend(newspa);
5138
5139#ifndef sun
5140	/* mark that we are creating new spa by splitting */
5141	newspa->spa_splitting_newspa = B_TRUE;
5142#endif
5143	/* create the new pool from the disks of the original pool */
5144	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5145#ifndef sun
5146	newspa->spa_splitting_newspa = B_FALSE;
5147#endif
5148	if (error)
5149		goto out;
5150
5151	/* if that worked, generate a real config for the new pool */
5152	if (newspa->spa_root_vdev != NULL) {
5153		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5154		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5155		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5156		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5157		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5158		    B_TRUE));
5159	}
5160
5161	/* set the props */
5162	if (props != NULL) {
5163		spa_configfile_set(newspa, props, B_FALSE);
5164		error = spa_prop_set(newspa, props);
5165		if (error)
5166			goto out;
5167	}
5168
5169	/* flush everything */
5170	txg = spa_vdev_config_enter(newspa);
5171	vdev_config_dirty(newspa->spa_root_vdev);
5172	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5173
5174	if (zio_injection_enabled)
5175		zio_handle_panic_injection(spa, FTAG, 2);
5176
5177	spa_async_resume(newspa);
5178
5179	/* finally, update the original pool's config */
5180	txg = spa_vdev_config_enter(spa);
5181	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5182	error = dmu_tx_assign(tx, TXG_WAIT);
5183	if (error != 0)
5184		dmu_tx_abort(tx);
5185	for (c = 0; c < children; c++) {
5186		if (vml[c] != NULL) {
5187			vdev_split(vml[c]);
5188			if (error == 0)
5189				spa_history_log_internal(spa, "detach", tx,
5190				    "vdev=%s", vml[c]->vdev_path);
5191			vdev_free(vml[c]);
5192		}
5193	}
5194	vdev_config_dirty(spa->spa_root_vdev);
5195	spa->spa_config_splitting = NULL;
5196	nvlist_free(nvl);
5197	if (error == 0)
5198		dmu_tx_commit(tx);
5199	(void) spa_vdev_exit(spa, NULL, txg, 0);
5200
5201	if (zio_injection_enabled)
5202		zio_handle_panic_injection(spa, FTAG, 3);
5203
5204	/* split is complete; log a history record */
5205	spa_history_log_internal(newspa, "split", NULL,
5206	    "from pool %s", spa_name(spa));
5207
5208	kmem_free(vml, children * sizeof (vdev_t *));
5209
5210	/* if we're not going to mount the filesystems in userland, export */
5211	if (exp)
5212		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5213		    B_FALSE, B_FALSE);
5214
5215	return (error);
5216
5217out:
5218	spa_unload(newspa);
5219	spa_deactivate(newspa);
5220	spa_remove(newspa);
5221
5222	txg = spa_vdev_config_enter(spa);
5223
5224	/* re-online all offlined disks */
5225	for (c = 0; c < children; c++) {
5226		if (vml[c] != NULL)
5227			vml[c]->vdev_offline = B_FALSE;
5228	}
5229	vdev_reopen(spa->spa_root_vdev);
5230
5231	nvlist_free(spa->spa_config_splitting);
5232	spa->spa_config_splitting = NULL;
5233	(void) spa_vdev_exit(spa, NULL, txg, error);
5234
5235	kmem_free(vml, children * sizeof (vdev_t *));
5236	return (error);
5237}
5238
5239static nvlist_t *
5240spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5241{
5242	for (int i = 0; i < count; i++) {
5243		uint64_t guid;
5244
5245		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5246		    &guid) == 0);
5247
5248		if (guid == target_guid)
5249			return (nvpp[i]);
5250	}
5251
5252	return (NULL);
5253}
5254
5255static void
5256spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5257	nvlist_t *dev_to_remove)
5258{
5259	nvlist_t **newdev = NULL;
5260
5261	if (count > 1)
5262		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5263
5264	for (int i = 0, j = 0; i < count; i++) {
5265		if (dev[i] == dev_to_remove)
5266			continue;
5267		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5268	}
5269
5270	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5271	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5272
5273	for (int i = 0; i < count - 1; i++)
5274		nvlist_free(newdev[i]);
5275
5276	if (count > 1)
5277		kmem_free(newdev, (count - 1) * sizeof (void *));
5278}
5279
5280/*
5281 * Evacuate the device.
5282 */
5283static int
5284spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5285{
5286	uint64_t txg;
5287	int error = 0;
5288
5289	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5290	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5291	ASSERT(vd == vd->vdev_top);
5292
5293	/*
5294	 * Evacuate the device.  We don't hold the config lock as writer
5295	 * since we need to do I/O but we do keep the
5296	 * spa_namespace_lock held.  Once this completes the device
5297	 * should no longer have any blocks allocated on it.
5298	 */
5299	if (vd->vdev_islog) {
5300		if (vd->vdev_stat.vs_alloc != 0)
5301			error = spa_offline_log(spa);
5302	} else {
5303		error = SET_ERROR(ENOTSUP);
5304	}
5305
5306	if (error)
5307		return (error);
5308
5309	/*
5310	 * The evacuation succeeded.  Remove any remaining MOS metadata
5311	 * associated with this vdev, and wait for these changes to sync.
5312	 */
5313	ASSERT0(vd->vdev_stat.vs_alloc);
5314	txg = spa_vdev_config_enter(spa);
5315	vd->vdev_removing = B_TRUE;
5316	vdev_dirty(vd, 0, NULL, txg);
5317	vdev_config_dirty(vd);
5318	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5319
5320	return (0);
5321}
5322
5323/*
5324 * Complete the removal by cleaning up the namespace.
5325 */
5326static void
5327spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5328{
5329	vdev_t *rvd = spa->spa_root_vdev;
5330	uint64_t id = vd->vdev_id;
5331	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5332
5333	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5334	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5335	ASSERT(vd == vd->vdev_top);
5336
5337	/*
5338	 * Only remove any devices which are empty.
5339	 */
5340	if (vd->vdev_stat.vs_alloc != 0)
5341		return;
5342
5343	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5344
5345	if (list_link_active(&vd->vdev_state_dirty_node))
5346		vdev_state_clean(vd);
5347	if (list_link_active(&vd->vdev_config_dirty_node))
5348		vdev_config_clean(vd);
5349
5350	vdev_free(vd);
5351
5352	if (last_vdev) {
5353		vdev_compact_children(rvd);
5354	} else {
5355		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5356		vdev_add_child(rvd, vd);
5357	}
5358	vdev_config_dirty(rvd);
5359
5360	/*
5361	 * Reassess the health of our root vdev.
5362	 */
5363	vdev_reopen(rvd);
5364}
5365
5366/*
5367 * Remove a device from the pool -
5368 *
5369 * Removing a device from the vdev namespace requires several steps
5370 * and can take a significant amount of time.  As a result we use
5371 * the spa_vdev_config_[enter/exit] functions which allow us to
5372 * grab and release the spa_config_lock while still holding the namespace
5373 * lock.  During each step the configuration is synced out.
5374 *
5375 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5376 * devices.
5377 */
5378int
5379spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5380{
5381	vdev_t *vd;
5382	metaslab_group_t *mg;
5383	nvlist_t **spares, **l2cache, *nv;
5384	uint64_t txg = 0;
5385	uint_t nspares, nl2cache;
5386	int error = 0;
5387	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5388
5389	ASSERT(spa_writeable(spa));
5390
5391	if (!locked)
5392		txg = spa_vdev_enter(spa);
5393
5394	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5395
5396	if (spa->spa_spares.sav_vdevs != NULL &&
5397	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5398	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5399	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5400		/*
5401		 * Only remove the hot spare if it's not currently in use
5402		 * in this pool.
5403		 */
5404		if (vd == NULL || unspare) {
5405			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5406			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5407			spa_load_spares(spa);
5408			spa->spa_spares.sav_sync = B_TRUE;
5409		} else {
5410			error = SET_ERROR(EBUSY);
5411		}
5412	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5413	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5414	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5415	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5416		/*
5417		 * Cache devices can always be removed.
5418		 */
5419		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5420		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5421		spa_load_l2cache(spa);
5422		spa->spa_l2cache.sav_sync = B_TRUE;
5423	} else if (vd != NULL && vd->vdev_islog) {
5424		ASSERT(!locked);
5425		ASSERT(vd == vd->vdev_top);
5426
5427		/*
5428		 * XXX - Once we have bp-rewrite this should
5429		 * become the common case.
5430		 */
5431
5432		mg = vd->vdev_mg;
5433
5434		/*
5435		 * Stop allocating from this vdev.
5436		 */
5437		metaslab_group_passivate(mg);
5438
5439		/*
5440		 * Wait for the youngest allocations and frees to sync,
5441		 * and then wait for the deferral of those frees to finish.
5442		 */
5443		spa_vdev_config_exit(spa, NULL,
5444		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5445
5446		/*
5447		 * Attempt to evacuate the vdev.
5448		 */
5449		error = spa_vdev_remove_evacuate(spa, vd);
5450
5451		txg = spa_vdev_config_enter(spa);
5452
5453		/*
5454		 * If we couldn't evacuate the vdev, unwind.
5455		 */
5456		if (error) {
5457			metaslab_group_activate(mg);
5458			return (spa_vdev_exit(spa, NULL, txg, error));
5459		}
5460
5461		/*
5462		 * Clean up the vdev namespace.
5463		 */
5464		spa_vdev_remove_from_namespace(spa, vd);
5465
5466	} else if (vd != NULL) {
5467		/*
5468		 * Normal vdevs cannot be removed (yet).
5469		 */
5470		error = SET_ERROR(ENOTSUP);
5471	} else {
5472		/*
5473		 * There is no vdev of any kind with the specified guid.
5474		 */
5475		error = SET_ERROR(ENOENT);
5476	}
5477
5478	if (!locked)
5479		return (spa_vdev_exit(spa, NULL, txg, error));
5480
5481	return (error);
5482}
5483
5484/*
5485 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5486 * currently spared, so we can detach it.
5487 */
5488static vdev_t *
5489spa_vdev_resilver_done_hunt(vdev_t *vd)
5490{
5491	vdev_t *newvd, *oldvd;
5492
5493	for (int c = 0; c < vd->vdev_children; c++) {
5494		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5495		if (oldvd != NULL)
5496			return (oldvd);
5497	}
5498
5499	/*
5500	 * Check for a completed replacement.  We always consider the first
5501	 * vdev in the list to be the oldest vdev, and the last one to be
5502	 * the newest (see spa_vdev_attach() for how that works).  In
5503	 * the case where the newest vdev is faulted, we will not automatically
5504	 * remove it after a resilver completes.  This is OK as it will require
5505	 * user intervention to determine which disk the admin wishes to keep.
5506	 */
5507	if (vd->vdev_ops == &vdev_replacing_ops) {
5508		ASSERT(vd->vdev_children > 1);
5509
5510		newvd = vd->vdev_child[vd->vdev_children - 1];
5511		oldvd = vd->vdev_child[0];
5512
5513		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5514		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5515		    !vdev_dtl_required(oldvd))
5516			return (oldvd);
5517	}
5518
5519	/*
5520	 * Check for a completed resilver with the 'unspare' flag set.
5521	 */
5522	if (vd->vdev_ops == &vdev_spare_ops) {
5523		vdev_t *first = vd->vdev_child[0];
5524		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5525
5526		if (last->vdev_unspare) {
5527			oldvd = first;
5528			newvd = last;
5529		} else if (first->vdev_unspare) {
5530			oldvd = last;
5531			newvd = first;
5532		} else {
5533			oldvd = NULL;
5534		}
5535
5536		if (oldvd != NULL &&
5537		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5538		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5539		    !vdev_dtl_required(oldvd))
5540			return (oldvd);
5541
5542		/*
5543		 * If there are more than two spares attached to a disk,
5544		 * and those spares are not required, then we want to
5545		 * attempt to free them up now so that they can be used
5546		 * by other pools.  Once we're back down to a single
5547		 * disk+spare, we stop removing them.
5548		 */
5549		if (vd->vdev_children > 2) {
5550			newvd = vd->vdev_child[1];
5551
5552			if (newvd->vdev_isspare && last->vdev_isspare &&
5553			    vdev_dtl_empty(last, DTL_MISSING) &&
5554			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5555			    !vdev_dtl_required(newvd))
5556				return (newvd);
5557		}
5558	}
5559
5560	return (NULL);
5561}
5562
5563static void
5564spa_vdev_resilver_done(spa_t *spa)
5565{
5566	vdev_t *vd, *pvd, *ppvd;
5567	uint64_t guid, sguid, pguid, ppguid;
5568
5569	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5570
5571	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5572		pvd = vd->vdev_parent;
5573		ppvd = pvd->vdev_parent;
5574		guid = vd->vdev_guid;
5575		pguid = pvd->vdev_guid;
5576		ppguid = ppvd->vdev_guid;
5577		sguid = 0;
5578		/*
5579		 * If we have just finished replacing a hot spared device, then
5580		 * we need to detach the parent's first child (the original hot
5581		 * spare) as well.
5582		 */
5583		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5584		    ppvd->vdev_children == 2) {
5585			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5586			sguid = ppvd->vdev_child[1]->vdev_guid;
5587		}
5588		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5589
5590		spa_config_exit(spa, SCL_ALL, FTAG);
5591		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5592			return;
5593		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5594			return;
5595		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5596	}
5597
5598	spa_config_exit(spa, SCL_ALL, FTAG);
5599}
5600
5601/*
5602 * Update the stored path or FRU for this vdev.
5603 */
5604int
5605spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5606    boolean_t ispath)
5607{
5608	vdev_t *vd;
5609	boolean_t sync = B_FALSE;
5610
5611	ASSERT(spa_writeable(spa));
5612
5613	spa_vdev_state_enter(spa, SCL_ALL);
5614
5615	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5616		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5617
5618	if (!vd->vdev_ops->vdev_op_leaf)
5619		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5620
5621	if (ispath) {
5622		if (strcmp(value, vd->vdev_path) != 0) {
5623			spa_strfree(vd->vdev_path);
5624			vd->vdev_path = spa_strdup(value);
5625			sync = B_TRUE;
5626		}
5627	} else {
5628		if (vd->vdev_fru == NULL) {
5629			vd->vdev_fru = spa_strdup(value);
5630			sync = B_TRUE;
5631		} else if (strcmp(value, vd->vdev_fru) != 0) {
5632			spa_strfree(vd->vdev_fru);
5633			vd->vdev_fru = spa_strdup(value);
5634			sync = B_TRUE;
5635		}
5636	}
5637
5638	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5639}
5640
5641int
5642spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5643{
5644	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5645}
5646
5647int
5648spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5649{
5650	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5651}
5652
5653/*
5654 * ==========================================================================
5655 * SPA Scanning
5656 * ==========================================================================
5657 */
5658
5659int
5660spa_scan_stop(spa_t *spa)
5661{
5662	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5663	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5664		return (SET_ERROR(EBUSY));
5665	return (dsl_scan_cancel(spa->spa_dsl_pool));
5666}
5667
5668int
5669spa_scan(spa_t *spa, pool_scan_func_t func)
5670{
5671	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5672
5673	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5674		return (SET_ERROR(ENOTSUP));
5675
5676	/*
5677	 * If a resilver was requested, but there is no DTL on a
5678	 * writeable leaf device, we have nothing to do.
5679	 */
5680	if (func == POOL_SCAN_RESILVER &&
5681	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5682		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5683		return (0);
5684	}
5685
5686	return (dsl_scan(spa->spa_dsl_pool, func));
5687}
5688
5689/*
5690 * ==========================================================================
5691 * SPA async task processing
5692 * ==========================================================================
5693 */
5694
5695static void
5696spa_async_remove(spa_t *spa, vdev_t *vd)
5697{
5698	if (vd->vdev_remove_wanted) {
5699		vd->vdev_remove_wanted = B_FALSE;
5700		vd->vdev_delayed_close = B_FALSE;
5701		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5702
5703		/*
5704		 * We want to clear the stats, but we don't want to do a full
5705		 * vdev_clear() as that will cause us to throw away
5706		 * degraded/faulted state as well as attempt to reopen the
5707		 * device, all of which is a waste.
5708		 */
5709		vd->vdev_stat.vs_read_errors = 0;
5710		vd->vdev_stat.vs_write_errors = 0;
5711		vd->vdev_stat.vs_checksum_errors = 0;
5712
5713		vdev_state_dirty(vd->vdev_top);
5714	}
5715
5716	for (int c = 0; c < vd->vdev_children; c++)
5717		spa_async_remove(spa, vd->vdev_child[c]);
5718}
5719
5720static void
5721spa_async_probe(spa_t *spa, vdev_t *vd)
5722{
5723	if (vd->vdev_probe_wanted) {
5724		vd->vdev_probe_wanted = B_FALSE;
5725		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5726	}
5727
5728	for (int c = 0; c < vd->vdev_children; c++)
5729		spa_async_probe(spa, vd->vdev_child[c]);
5730}
5731
5732static void
5733spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5734{
5735	sysevent_id_t eid;
5736	nvlist_t *attr;
5737	char *physpath;
5738
5739	if (!spa->spa_autoexpand)
5740		return;
5741
5742	for (int c = 0; c < vd->vdev_children; c++) {
5743		vdev_t *cvd = vd->vdev_child[c];
5744		spa_async_autoexpand(spa, cvd);
5745	}
5746
5747	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5748		return;
5749
5750	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5751	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5752
5753	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5754	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5755
5756	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5757	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5758
5759	nvlist_free(attr);
5760	kmem_free(physpath, MAXPATHLEN);
5761}
5762
5763static void
5764spa_async_thread(void *arg)
5765{
5766	spa_t *spa = arg;
5767	int tasks;
5768
5769	ASSERT(spa->spa_sync_on);
5770
5771	mutex_enter(&spa->spa_async_lock);
5772	tasks = spa->spa_async_tasks;
5773	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5774	mutex_exit(&spa->spa_async_lock);
5775
5776	/*
5777	 * See if the config needs to be updated.
5778	 */
5779	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5780		uint64_t old_space, new_space;
5781
5782		mutex_enter(&spa_namespace_lock);
5783		old_space = metaslab_class_get_space(spa_normal_class(spa));
5784		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5785		new_space = metaslab_class_get_space(spa_normal_class(spa));
5786		mutex_exit(&spa_namespace_lock);
5787
5788		/*
5789		 * If the pool grew as a result of the config update,
5790		 * then log an internal history event.
5791		 */
5792		if (new_space != old_space) {
5793			spa_history_log_internal(spa, "vdev online", NULL,
5794			    "pool '%s' size: %llu(+%llu)",
5795			    spa_name(spa), new_space, new_space - old_space);
5796		}
5797	}
5798
5799	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5800		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5801		spa_async_autoexpand(spa, spa->spa_root_vdev);
5802		spa_config_exit(spa, SCL_CONFIG, FTAG);
5803	}
5804
5805	/*
5806	 * See if any devices need to be probed.
5807	 */
5808	if (tasks & SPA_ASYNC_PROBE) {
5809		spa_vdev_state_enter(spa, SCL_NONE);
5810		spa_async_probe(spa, spa->spa_root_vdev);
5811		(void) spa_vdev_state_exit(spa, NULL, 0);
5812	}
5813
5814	/*
5815	 * If any devices are done replacing, detach them.
5816	 */
5817	if (tasks & SPA_ASYNC_RESILVER_DONE)
5818		spa_vdev_resilver_done(spa);
5819
5820	/*
5821	 * Kick off a resilver.
5822	 */
5823	if (tasks & SPA_ASYNC_RESILVER)
5824		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5825
5826	/*
5827	 * Let the world know that we're done.
5828	 */
5829	mutex_enter(&spa->spa_async_lock);
5830	spa->spa_async_thread = NULL;
5831	cv_broadcast(&spa->spa_async_cv);
5832	mutex_exit(&spa->spa_async_lock);
5833	thread_exit();
5834}
5835
5836static void
5837spa_async_thread_vd(void *arg)
5838{
5839	spa_t *spa = arg;
5840	int tasks;
5841
5842	ASSERT(spa->spa_sync_on);
5843
5844	mutex_enter(&spa->spa_async_lock);
5845	tasks = spa->spa_async_tasks;
5846retry:
5847	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5848	mutex_exit(&spa->spa_async_lock);
5849
5850	/*
5851	 * See if any devices need to be marked REMOVED.
5852	 */
5853	if (tasks & SPA_ASYNC_REMOVE) {
5854		spa_vdev_state_enter(spa, SCL_NONE);
5855		spa_async_remove(spa, spa->spa_root_vdev);
5856		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5857			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5858		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5859			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5860		(void) spa_vdev_state_exit(spa, NULL, 0);
5861	}
5862
5863	/*
5864	 * Let the world know that we're done.
5865	 */
5866	mutex_enter(&spa->spa_async_lock);
5867	tasks = spa->spa_async_tasks;
5868	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5869		goto retry;
5870	spa->spa_async_thread_vd = NULL;
5871	cv_broadcast(&spa->spa_async_cv);
5872	mutex_exit(&spa->spa_async_lock);
5873	thread_exit();
5874}
5875
5876void
5877spa_async_suspend(spa_t *spa)
5878{
5879	mutex_enter(&spa->spa_async_lock);
5880	spa->spa_async_suspended++;
5881	while (spa->spa_async_thread != NULL &&
5882	    spa->spa_async_thread_vd != NULL)
5883		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5884	mutex_exit(&spa->spa_async_lock);
5885}
5886
5887void
5888spa_async_resume(spa_t *spa)
5889{
5890	mutex_enter(&spa->spa_async_lock);
5891	ASSERT(spa->spa_async_suspended != 0);
5892	spa->spa_async_suspended--;
5893	mutex_exit(&spa->spa_async_lock);
5894}
5895
5896static boolean_t
5897spa_async_tasks_pending(spa_t *spa)
5898{
5899	uint_t non_config_tasks;
5900	uint_t config_task;
5901	boolean_t config_task_suspended;
5902
5903	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
5904	    SPA_ASYNC_REMOVE);
5905	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5906	if (spa->spa_ccw_fail_time == 0) {
5907		config_task_suspended = B_FALSE;
5908	} else {
5909		config_task_suspended =
5910		    (gethrtime() - spa->spa_ccw_fail_time) <
5911		    (zfs_ccw_retry_interval * NANOSEC);
5912	}
5913
5914	return (non_config_tasks || (config_task && !config_task_suspended));
5915}
5916
5917static void
5918spa_async_dispatch(spa_t *spa)
5919{
5920	mutex_enter(&spa->spa_async_lock);
5921	if (spa_async_tasks_pending(spa) &&
5922	    !spa->spa_async_suspended &&
5923	    spa->spa_async_thread == NULL &&
5924	    rootdir != NULL)
5925		spa->spa_async_thread = thread_create(NULL, 0,
5926		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5927	mutex_exit(&spa->spa_async_lock);
5928}
5929
5930static void
5931spa_async_dispatch_vd(spa_t *spa)
5932{
5933	mutex_enter(&spa->spa_async_lock);
5934	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
5935	    !spa->spa_async_suspended &&
5936	    spa->spa_async_thread_vd == NULL &&
5937	    rootdir != NULL)
5938		spa->spa_async_thread_vd = thread_create(NULL, 0,
5939		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
5940	mutex_exit(&spa->spa_async_lock);
5941}
5942
5943void
5944spa_async_request(spa_t *spa, int task)
5945{
5946	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5947	mutex_enter(&spa->spa_async_lock);
5948	spa->spa_async_tasks |= task;
5949	mutex_exit(&spa->spa_async_lock);
5950	spa_async_dispatch_vd(spa);
5951}
5952
5953/*
5954 * ==========================================================================
5955 * SPA syncing routines
5956 * ==========================================================================
5957 */
5958
5959static int
5960bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5961{
5962	bpobj_t *bpo = arg;
5963	bpobj_enqueue(bpo, bp, tx);
5964	return (0);
5965}
5966
5967static int
5968spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5969{
5970	zio_t *zio = arg;
5971
5972	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5973	    BP_GET_PSIZE(bp), zio->io_flags));
5974	return (0);
5975}
5976
5977static void
5978spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5979{
5980	char *packed = NULL;
5981	size_t bufsize;
5982	size_t nvsize = 0;
5983	dmu_buf_t *db;
5984
5985	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5986
5987	/*
5988	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5989	 * information.  This avoids the dbuf_will_dirty() path and
5990	 * saves us a pre-read to get data we don't actually care about.
5991	 */
5992	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5993	packed = kmem_alloc(bufsize, KM_SLEEP);
5994
5995	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5996	    KM_SLEEP) == 0);
5997	bzero(packed + nvsize, bufsize - nvsize);
5998
5999	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6000
6001	kmem_free(packed, bufsize);
6002
6003	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6004	dmu_buf_will_dirty(db, tx);
6005	*(uint64_t *)db->db_data = nvsize;
6006	dmu_buf_rele(db, FTAG);
6007}
6008
6009static void
6010spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6011    const char *config, const char *entry)
6012{
6013	nvlist_t *nvroot;
6014	nvlist_t **list;
6015	int i;
6016
6017	if (!sav->sav_sync)
6018		return;
6019
6020	/*
6021	 * Update the MOS nvlist describing the list of available devices.
6022	 * spa_validate_aux() will have already made sure this nvlist is
6023	 * valid and the vdevs are labeled appropriately.
6024	 */
6025	if (sav->sav_object == 0) {
6026		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6027		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6028		    sizeof (uint64_t), tx);
6029		VERIFY(zap_update(spa->spa_meta_objset,
6030		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6031		    &sav->sav_object, tx) == 0);
6032	}
6033
6034	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6035	if (sav->sav_count == 0) {
6036		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6037	} else {
6038		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6039		for (i = 0; i < sav->sav_count; i++)
6040			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6041			    B_FALSE, VDEV_CONFIG_L2CACHE);
6042		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6043		    sav->sav_count) == 0);
6044		for (i = 0; i < sav->sav_count; i++)
6045			nvlist_free(list[i]);
6046		kmem_free(list, sav->sav_count * sizeof (void *));
6047	}
6048
6049	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6050	nvlist_free(nvroot);
6051
6052	sav->sav_sync = B_FALSE;
6053}
6054
6055static void
6056spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6057{
6058	nvlist_t *config;
6059
6060	if (list_is_empty(&spa->spa_config_dirty_list))
6061		return;
6062
6063	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6064
6065	config = spa_config_generate(spa, spa->spa_root_vdev,
6066	    dmu_tx_get_txg(tx), B_FALSE);
6067
6068	/*
6069	 * If we're upgrading the spa version then make sure that
6070	 * the config object gets updated with the correct version.
6071	 */
6072	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6073		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6074		    spa->spa_uberblock.ub_version);
6075
6076	spa_config_exit(spa, SCL_STATE, FTAG);
6077
6078	if (spa->spa_config_syncing)
6079		nvlist_free(spa->spa_config_syncing);
6080	spa->spa_config_syncing = config;
6081
6082	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6083}
6084
6085static void
6086spa_sync_version(void *arg, dmu_tx_t *tx)
6087{
6088	uint64_t *versionp = arg;
6089	uint64_t version = *versionp;
6090	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6091
6092	/*
6093	 * Setting the version is special cased when first creating the pool.
6094	 */
6095	ASSERT(tx->tx_txg != TXG_INITIAL);
6096
6097	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6098	ASSERT(version >= spa_version(spa));
6099
6100	spa->spa_uberblock.ub_version = version;
6101	vdev_config_dirty(spa->spa_root_vdev);
6102	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6103}
6104
6105/*
6106 * Set zpool properties.
6107 */
6108static void
6109spa_sync_props(void *arg, dmu_tx_t *tx)
6110{
6111	nvlist_t *nvp = arg;
6112	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6113	objset_t *mos = spa->spa_meta_objset;
6114	nvpair_t *elem = NULL;
6115
6116	mutex_enter(&spa->spa_props_lock);
6117
6118	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6119		uint64_t intval;
6120		char *strval, *fname;
6121		zpool_prop_t prop;
6122		const char *propname;
6123		zprop_type_t proptype;
6124		zfeature_info_t *feature;
6125
6126		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6127		case ZPROP_INVAL:
6128			/*
6129			 * We checked this earlier in spa_prop_validate().
6130			 */
6131			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6132
6133			fname = strchr(nvpair_name(elem), '@') + 1;
6134			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
6135
6136			spa_feature_enable(spa, feature, tx);
6137			spa_history_log_internal(spa, "set", tx,
6138			    "%s=enabled", nvpair_name(elem));
6139			break;
6140
6141		case ZPOOL_PROP_VERSION:
6142			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6143			/*
6144			 * The version is synced seperatly before other
6145			 * properties and should be correct by now.
6146			 */
6147			ASSERT3U(spa_version(spa), >=, intval);
6148			break;
6149
6150		case ZPOOL_PROP_ALTROOT:
6151			/*
6152			 * 'altroot' is a non-persistent property. It should
6153			 * have been set temporarily at creation or import time.
6154			 */
6155			ASSERT(spa->spa_root != NULL);
6156			break;
6157
6158		case ZPOOL_PROP_READONLY:
6159		case ZPOOL_PROP_CACHEFILE:
6160			/*
6161			 * 'readonly' and 'cachefile' are also non-persisitent
6162			 * properties.
6163			 */
6164			break;
6165		case ZPOOL_PROP_COMMENT:
6166			VERIFY(nvpair_value_string(elem, &strval) == 0);
6167			if (spa->spa_comment != NULL)
6168				spa_strfree(spa->spa_comment);
6169			spa->spa_comment = spa_strdup(strval);
6170			/*
6171			 * We need to dirty the configuration on all the vdevs
6172			 * so that their labels get updated.  It's unnecessary
6173			 * to do this for pool creation since the vdev's
6174			 * configuratoin has already been dirtied.
6175			 */
6176			if (tx->tx_txg != TXG_INITIAL)
6177				vdev_config_dirty(spa->spa_root_vdev);
6178			spa_history_log_internal(spa, "set", tx,
6179			    "%s=%s", nvpair_name(elem), strval);
6180			break;
6181		default:
6182			/*
6183			 * Set pool property values in the poolprops mos object.
6184			 */
6185			if (spa->spa_pool_props_object == 0) {
6186				spa->spa_pool_props_object =
6187				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6188				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6189				    tx);
6190			}
6191
6192			/* normalize the property name */
6193			propname = zpool_prop_to_name(prop);
6194			proptype = zpool_prop_get_type(prop);
6195
6196			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6197				ASSERT(proptype == PROP_TYPE_STRING);
6198				VERIFY(nvpair_value_string(elem, &strval) == 0);
6199				VERIFY(zap_update(mos,
6200				    spa->spa_pool_props_object, propname,
6201				    1, strlen(strval) + 1, strval, tx) == 0);
6202				spa_history_log_internal(spa, "set", tx,
6203				    "%s=%s", nvpair_name(elem), strval);
6204			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6205				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6206
6207				if (proptype == PROP_TYPE_INDEX) {
6208					const char *unused;
6209					VERIFY(zpool_prop_index_to_string(
6210					    prop, intval, &unused) == 0);
6211				}
6212				VERIFY(zap_update(mos,
6213				    spa->spa_pool_props_object, propname,
6214				    8, 1, &intval, tx) == 0);
6215				spa_history_log_internal(spa, "set", tx,
6216				    "%s=%lld", nvpair_name(elem), intval);
6217			} else {
6218				ASSERT(0); /* not allowed */
6219			}
6220
6221			switch (prop) {
6222			case ZPOOL_PROP_DELEGATION:
6223				spa->spa_delegation = intval;
6224				break;
6225			case ZPOOL_PROP_BOOTFS:
6226				spa->spa_bootfs = intval;
6227				break;
6228			case ZPOOL_PROP_FAILUREMODE:
6229				spa->spa_failmode = intval;
6230				break;
6231			case ZPOOL_PROP_AUTOEXPAND:
6232				spa->spa_autoexpand = intval;
6233				if (tx->tx_txg != TXG_INITIAL)
6234					spa_async_request(spa,
6235					    SPA_ASYNC_AUTOEXPAND);
6236				break;
6237			case ZPOOL_PROP_DEDUPDITTO:
6238				spa->spa_dedup_ditto = intval;
6239				break;
6240			default:
6241				break;
6242			}
6243		}
6244
6245	}
6246
6247	mutex_exit(&spa->spa_props_lock);
6248}
6249
6250/*
6251 * Perform one-time upgrade on-disk changes.  spa_version() does not
6252 * reflect the new version this txg, so there must be no changes this
6253 * txg to anything that the upgrade code depends on after it executes.
6254 * Therefore this must be called after dsl_pool_sync() does the sync
6255 * tasks.
6256 */
6257static void
6258spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6259{
6260	dsl_pool_t *dp = spa->spa_dsl_pool;
6261
6262	ASSERT(spa->spa_sync_pass == 1);
6263
6264	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6265
6266	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6267	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6268		dsl_pool_create_origin(dp, tx);
6269
6270		/* Keeping the origin open increases spa_minref */
6271		spa->spa_minref += 3;
6272	}
6273
6274	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6275	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6276		dsl_pool_upgrade_clones(dp, tx);
6277	}
6278
6279	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6280	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6281		dsl_pool_upgrade_dir_clones(dp, tx);
6282
6283		/* Keeping the freedir open increases spa_minref */
6284		spa->spa_minref += 3;
6285	}
6286
6287	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6288	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6289		spa_feature_create_zap_objects(spa, tx);
6290	}
6291	rrw_exit(&dp->dp_config_rwlock, FTAG);
6292}
6293
6294/*
6295 * Sync the specified transaction group.  New blocks may be dirtied as
6296 * part of the process, so we iterate until it converges.
6297 */
6298void
6299spa_sync(spa_t *spa, uint64_t txg)
6300{
6301	dsl_pool_t *dp = spa->spa_dsl_pool;
6302	objset_t *mos = spa->spa_meta_objset;
6303	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6304	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6305	vdev_t *rvd = spa->spa_root_vdev;
6306	vdev_t *vd;
6307	dmu_tx_t *tx;
6308	int error;
6309
6310	VERIFY(spa_writeable(spa));
6311
6312	/*
6313	 * Lock out configuration changes.
6314	 */
6315	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6316
6317	spa->spa_syncing_txg = txg;
6318	spa->spa_sync_pass = 0;
6319
6320	/*
6321	 * If there are any pending vdev state changes, convert them
6322	 * into config changes that go out with this transaction group.
6323	 */
6324	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6325	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6326		/*
6327		 * We need the write lock here because, for aux vdevs,
6328		 * calling vdev_config_dirty() modifies sav_config.
6329		 * This is ugly and will become unnecessary when we
6330		 * eliminate the aux vdev wart by integrating all vdevs
6331		 * into the root vdev tree.
6332		 */
6333		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6334		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6335		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6336			vdev_state_clean(vd);
6337			vdev_config_dirty(vd);
6338		}
6339		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6340		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6341	}
6342	spa_config_exit(spa, SCL_STATE, FTAG);
6343
6344	tx = dmu_tx_create_assigned(dp, txg);
6345
6346	spa->spa_sync_starttime = gethrtime();
6347#ifdef illumos
6348	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6349	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6350#else	/* FreeBSD */
6351#ifdef _KERNEL
6352	callout_reset(&spa->spa_deadman_cycid,
6353	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6354#endif
6355#endif
6356
6357	/*
6358	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6359	 * set spa_deflate if we have no raid-z vdevs.
6360	 */
6361	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6362	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6363		int i;
6364
6365		for (i = 0; i < rvd->vdev_children; i++) {
6366			vd = rvd->vdev_child[i];
6367			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6368				break;
6369		}
6370		if (i == rvd->vdev_children) {
6371			spa->spa_deflate = TRUE;
6372			VERIFY(0 == zap_add(spa->spa_meta_objset,
6373			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6374			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6375		}
6376	}
6377
6378	/*
6379	 * If anything has changed in this txg, or if someone is waiting
6380	 * for this txg to sync (eg, spa_vdev_remove()), push the
6381	 * deferred frees from the previous txg.  If not, leave them
6382	 * alone so that we don't generate work on an otherwise idle
6383	 * system.
6384	 */
6385	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6386	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6387	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6388	    ((dsl_scan_active(dp->dp_scan) ||
6389	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6390		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6391		VERIFY3U(bpobj_iterate(defer_bpo,
6392		    spa_free_sync_cb, zio, tx), ==, 0);
6393		VERIFY0(zio_wait(zio));
6394	}
6395
6396	/*
6397	 * Iterate to convergence.
6398	 */
6399	do {
6400		int pass = ++spa->spa_sync_pass;
6401
6402		spa_sync_config_object(spa, tx);
6403		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6404		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6405		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6406		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6407		spa_errlog_sync(spa, txg);
6408		dsl_pool_sync(dp, txg);
6409
6410		if (pass < zfs_sync_pass_deferred_free) {
6411			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6412			bplist_iterate(free_bpl, spa_free_sync_cb,
6413			    zio, tx);
6414			VERIFY(zio_wait(zio) == 0);
6415		} else {
6416			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6417			    defer_bpo, tx);
6418		}
6419
6420		ddt_sync(spa, txg);
6421		dsl_scan_sync(dp, tx);
6422
6423		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6424			vdev_sync(vd, txg);
6425
6426		if (pass == 1)
6427			spa_sync_upgrades(spa, tx);
6428
6429	} while (dmu_objset_is_dirty(mos, txg));
6430
6431	/*
6432	 * Rewrite the vdev configuration (which includes the uberblock)
6433	 * to commit the transaction group.
6434	 *
6435	 * If there are no dirty vdevs, we sync the uberblock to a few
6436	 * random top-level vdevs that are known to be visible in the
6437	 * config cache (see spa_vdev_add() for a complete description).
6438	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6439	 */
6440	for (;;) {
6441		/*
6442		 * We hold SCL_STATE to prevent vdev open/close/etc.
6443		 * while we're attempting to write the vdev labels.
6444		 */
6445		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6446
6447		if (list_is_empty(&spa->spa_config_dirty_list)) {
6448			vdev_t *svd[SPA_DVAS_PER_BP];
6449			int svdcount = 0;
6450			int children = rvd->vdev_children;
6451			int c0 = spa_get_random(children);
6452
6453			for (int c = 0; c < children; c++) {
6454				vd = rvd->vdev_child[(c0 + c) % children];
6455				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6456					continue;
6457				svd[svdcount++] = vd;
6458				if (svdcount == SPA_DVAS_PER_BP)
6459					break;
6460			}
6461			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6462			if (error != 0)
6463				error = vdev_config_sync(svd, svdcount, txg,
6464				    B_TRUE);
6465		} else {
6466			error = vdev_config_sync(rvd->vdev_child,
6467			    rvd->vdev_children, txg, B_FALSE);
6468			if (error != 0)
6469				error = vdev_config_sync(rvd->vdev_child,
6470				    rvd->vdev_children, txg, B_TRUE);
6471		}
6472
6473		if (error == 0)
6474			spa->spa_last_synced_guid = rvd->vdev_guid;
6475
6476		spa_config_exit(spa, SCL_STATE, FTAG);
6477
6478		if (error == 0)
6479			break;
6480		zio_suspend(spa, NULL);
6481		zio_resume_wait(spa);
6482	}
6483	dmu_tx_commit(tx);
6484
6485#ifdef illumos
6486	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6487#else	/* FreeBSD */
6488#ifdef _KERNEL
6489	callout_drain(&spa->spa_deadman_cycid);
6490#endif
6491#endif
6492
6493	/*
6494	 * Clear the dirty config list.
6495	 */
6496	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6497		vdev_config_clean(vd);
6498
6499	/*
6500	 * Now that the new config has synced transactionally,
6501	 * let it become visible to the config cache.
6502	 */
6503	if (spa->spa_config_syncing != NULL) {
6504		spa_config_set(spa, spa->spa_config_syncing);
6505		spa->spa_config_txg = txg;
6506		spa->spa_config_syncing = NULL;
6507	}
6508
6509	spa->spa_ubsync = spa->spa_uberblock;
6510
6511	dsl_pool_sync_done(dp, txg);
6512
6513	/*
6514	 * Update usable space statistics.
6515	 */
6516	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6517		vdev_sync_done(vd, txg);
6518
6519	spa_update_dspace(spa);
6520
6521	/*
6522	 * It had better be the case that we didn't dirty anything
6523	 * since vdev_config_sync().
6524	 */
6525	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6526	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6527	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6528
6529	spa->spa_sync_pass = 0;
6530
6531	spa_config_exit(spa, SCL_CONFIG, FTAG);
6532
6533	spa_handle_ignored_writes(spa);
6534
6535	/*
6536	 * If any async tasks have been requested, kick them off.
6537	 */
6538	spa_async_dispatch(spa);
6539	spa_async_dispatch_vd(spa);
6540}
6541
6542/*
6543 * Sync all pools.  We don't want to hold the namespace lock across these
6544 * operations, so we take a reference on the spa_t and drop the lock during the
6545 * sync.
6546 */
6547void
6548spa_sync_allpools(void)
6549{
6550	spa_t *spa = NULL;
6551	mutex_enter(&spa_namespace_lock);
6552	while ((spa = spa_next(spa)) != NULL) {
6553		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6554		    !spa_writeable(spa) || spa_suspended(spa))
6555			continue;
6556		spa_open_ref(spa, FTAG);
6557		mutex_exit(&spa_namespace_lock);
6558		txg_wait_synced(spa_get_dsl(spa), 0);
6559		mutex_enter(&spa_namespace_lock);
6560		spa_close(spa, FTAG);
6561	}
6562	mutex_exit(&spa_namespace_lock);
6563}
6564
6565/*
6566 * ==========================================================================
6567 * Miscellaneous routines
6568 * ==========================================================================
6569 */
6570
6571/*
6572 * Remove all pools in the system.
6573 */
6574void
6575spa_evict_all(void)
6576{
6577	spa_t *spa;
6578
6579	/*
6580	 * Remove all cached state.  All pools should be closed now,
6581	 * so every spa in the AVL tree should be unreferenced.
6582	 */
6583	mutex_enter(&spa_namespace_lock);
6584	while ((spa = spa_next(NULL)) != NULL) {
6585		/*
6586		 * Stop async tasks.  The async thread may need to detach
6587		 * a device that's been replaced, which requires grabbing
6588		 * spa_namespace_lock, so we must drop it here.
6589		 */
6590		spa_open_ref(spa, FTAG);
6591		mutex_exit(&spa_namespace_lock);
6592		spa_async_suspend(spa);
6593		mutex_enter(&spa_namespace_lock);
6594		spa_close(spa, FTAG);
6595
6596		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6597			spa_unload(spa);
6598			spa_deactivate(spa);
6599		}
6600		spa_remove(spa);
6601	}
6602	mutex_exit(&spa_namespace_lock);
6603}
6604
6605vdev_t *
6606spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6607{
6608	vdev_t *vd;
6609	int i;
6610
6611	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6612		return (vd);
6613
6614	if (aux) {
6615		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6616			vd = spa->spa_l2cache.sav_vdevs[i];
6617			if (vd->vdev_guid == guid)
6618				return (vd);
6619		}
6620
6621		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6622			vd = spa->spa_spares.sav_vdevs[i];
6623			if (vd->vdev_guid == guid)
6624				return (vd);
6625		}
6626	}
6627
6628	return (NULL);
6629}
6630
6631void
6632spa_upgrade(spa_t *spa, uint64_t version)
6633{
6634	ASSERT(spa_writeable(spa));
6635
6636	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6637
6638	/*
6639	 * This should only be called for a non-faulted pool, and since a
6640	 * future version would result in an unopenable pool, this shouldn't be
6641	 * possible.
6642	 */
6643	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6644	ASSERT(version >= spa->spa_uberblock.ub_version);
6645
6646	spa->spa_uberblock.ub_version = version;
6647	vdev_config_dirty(spa->spa_root_vdev);
6648
6649	spa_config_exit(spa, SCL_ALL, FTAG);
6650
6651	txg_wait_synced(spa_get_dsl(spa), 0);
6652}
6653
6654boolean_t
6655spa_has_spare(spa_t *spa, uint64_t guid)
6656{
6657	int i;
6658	uint64_t spareguid;
6659	spa_aux_vdev_t *sav = &spa->spa_spares;
6660
6661	for (i = 0; i < sav->sav_count; i++)
6662		if (sav->sav_vdevs[i]->vdev_guid == guid)
6663			return (B_TRUE);
6664
6665	for (i = 0; i < sav->sav_npending; i++) {
6666		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6667		    &spareguid) == 0 && spareguid == guid)
6668			return (B_TRUE);
6669	}
6670
6671	return (B_FALSE);
6672}
6673
6674/*
6675 * Check if a pool has an active shared spare device.
6676 * Note: reference count of an active spare is 2, as a spare and as a replace
6677 */
6678static boolean_t
6679spa_has_active_shared_spare(spa_t *spa)
6680{
6681	int i, refcnt;
6682	uint64_t pool;
6683	spa_aux_vdev_t *sav = &spa->spa_spares;
6684
6685	for (i = 0; i < sav->sav_count; i++) {
6686		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6687		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6688		    refcnt > 2)
6689			return (B_TRUE);
6690	}
6691
6692	return (B_FALSE);
6693}
6694
6695/*
6696 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6697 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6698 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6699 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6700 * or zdb as real changes.
6701 */
6702void
6703spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6704{
6705#ifdef _KERNEL
6706	sysevent_t		*ev;
6707	sysevent_attr_list_t	*attr = NULL;
6708	sysevent_value_t	value;
6709	sysevent_id_t		eid;
6710
6711	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6712	    SE_SLEEP);
6713
6714	value.value_type = SE_DATA_TYPE_STRING;
6715	value.value.sv_string = spa_name(spa);
6716	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6717		goto done;
6718
6719	value.value_type = SE_DATA_TYPE_UINT64;
6720	value.value.sv_uint64 = spa_guid(spa);
6721	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6722		goto done;
6723
6724	if (vd) {
6725		value.value_type = SE_DATA_TYPE_UINT64;
6726		value.value.sv_uint64 = vd->vdev_guid;
6727		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6728		    SE_SLEEP) != 0)
6729			goto done;
6730
6731		if (vd->vdev_path) {
6732			value.value_type = SE_DATA_TYPE_STRING;
6733			value.value.sv_string = vd->vdev_path;
6734			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6735			    &value, SE_SLEEP) != 0)
6736				goto done;
6737		}
6738	}
6739
6740	if (sysevent_attach_attributes(ev, attr) != 0)
6741		goto done;
6742	attr = NULL;
6743
6744	(void) log_sysevent(ev, SE_SLEEP, &eid);
6745
6746done:
6747	if (attr)
6748		sysevent_free_attr(attr);
6749	sysevent_free(ev);
6750#endif
6751}
6752