dsl_pool.c revision 321592
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
31#include <sys/dsl_prop.h>
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
45#include <sys/dsl_deadlist.h>
46#include <sys/bptree.h>
47#include <sys/zfeature.h>
48#include <sys/zil_impl.h>
49#include <sys/dsl_userhold.h>
50
51#ifdef __FreeBSD__
52#include <sys/types.h>
53#include <sys/sysctl.h>
54#endif
55
56/*
57 * ZFS Write Throttle
58 * ------------------
59 *
60 * ZFS must limit the rate of incoming writes to the rate at which it is able
61 * to sync data modifications to the backend storage. Throttling by too much
62 * creates an artificial limit; throttling by too little can only be sustained
63 * for short periods and would lead to highly lumpy performance. On a per-pool
64 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
65 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
66 * of dirty data decreases. When the amount of dirty data exceeds a
67 * predetermined threshold further modifications are blocked until the amount
68 * of dirty data decreases (as data is synced out).
69 *
70 * The limit on dirty data is tunable, and should be adjusted according to
71 * both the IO capacity and available memory of the system. The larger the
72 * window, the more ZFS is able to aggregate and amortize metadata (and data)
73 * changes. However, memory is a limited resource, and allowing for more dirty
74 * data comes at the cost of keeping other useful data in memory (for example
75 * ZFS data cached by the ARC).
76 *
77 * Implementation
78 *
79 * As buffers are modified dsl_pool_willuse_space() increments both the per-
80 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
81 * dirty space used; dsl_pool_dirty_space() decrements those values as data
82 * is synced out from dsl_pool_sync(). While only the poolwide value is
83 * relevant, the per-txg value is useful for debugging. The tunable
84 * zfs_dirty_data_max determines the dirty space limit. Once that value is
85 * exceeded, new writes are halted until space frees up.
86 *
87 * The zfs_dirty_data_sync tunable dictates the threshold at which we
88 * ensure that there is a txg syncing (see the comment in txg.c for a full
89 * description of transaction group stages).
90 *
91 * The IO scheduler uses both the dirty space limit and current amount of
92 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
93 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
94 *
95 * The delay is also calculated based on the amount of dirty data.  See the
96 * comment above dmu_tx_delay() for details.
97 */
98
99/*
100 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
101 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
102 */
103uint64_t zfs_dirty_data_max;
104uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
105int zfs_dirty_data_max_percent = 10;
106
107/*
108 * If there is at least this much dirty data, push out a txg.
109 */
110uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
111
112/*
113 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
114 * and delay each transaction.
115 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
116 */
117int zfs_delay_min_dirty_percent = 60;
118
119/*
120 * This controls how quickly the delay approaches infinity.
121 * Larger values cause it to delay more for a given amount of dirty data.
122 * Therefore larger values will cause there to be less dirty data for a
123 * given throughput.
124 *
125 * For the smoothest delay, this value should be about 1 billion divided
126 * by the maximum number of operations per second.  This will smoothly
127 * handle between 10x and 1/10th this number.
128 *
129 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
130 * multiply in dmu_tx_delay().
131 */
132uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
133
134
135#ifdef __FreeBSD__
136
137extern int zfs_vdev_async_write_active_max_dirty_percent;
138
139SYSCTL_DECL(_vfs_zfs);
140
141TUNABLE_QUAD("vfs.zfs.dirty_data_max", &zfs_dirty_data_max);
142SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
143    &zfs_dirty_data_max, 0,
144    "The maximum amount of dirty data in bytes after which new writes are "
145    "halted until space becomes available");
146
147TUNABLE_QUAD("vfs.zfs.dirty_data_max_max", &zfs_dirty_data_max_max);
148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
149    &zfs_dirty_data_max_max, 0,
150    "The absolute cap on dirty_data_max when auto calculating");
151
152TUNABLE_INT("vfs.zfs.dirty_data_max_percent", &zfs_dirty_data_max_percent);
153static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
154SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
155    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
156    sysctl_zfs_dirty_data_max_percent, "I",
157    "The percent of physical memory used to auto calculate dirty_data_max");
158
159TUNABLE_QUAD("vfs.zfs.dirty_data_sync", &zfs_dirty_data_sync);
160SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
161    &zfs_dirty_data_sync, 0,
162    "Force a txg if the number of dirty buffer bytes exceed this value");
163
164static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
165/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
166SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
167    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
168    sysctl_zfs_delay_min_dirty_percent, "I",
169    "The limit of outstanding dirty data before transactions are delayed");
170
171static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
172/* No zfs_delay_scale tunable due to limit requirements */
173SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
174    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
175    sysctl_zfs_delay_scale, "QU",
176    "Controls how quickly the delay approaches infinity");
177
178static int
179sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
180{
181	int val, err;
182
183	val = zfs_dirty_data_max_percent;
184	err = sysctl_handle_int(oidp, &val, 0, req);
185	if (err != 0 || req->newptr == NULL)
186		return (err);
187
188	if (val < 0 || val > 100)
189		return (EINVAL);
190
191	zfs_dirty_data_max_percent = val;
192
193	return (0);
194}
195
196static int
197sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
198{
199	int val, err;
200
201	val = zfs_delay_min_dirty_percent;
202	err = sysctl_handle_int(oidp, &val, 0, req);
203	if (err != 0 || req->newptr == NULL)
204		return (err);
205
206	if (val < zfs_vdev_async_write_active_max_dirty_percent)
207		return (EINVAL);
208
209	zfs_delay_min_dirty_percent = val;
210
211	return (0);
212}
213
214static int
215sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
216{
217	uint64_t val;
218	int err;
219
220	val = zfs_delay_scale;
221	err = sysctl_handle_64(oidp, &val, 0, req);
222	if (err != 0 || req->newptr == NULL)
223		return (err);
224
225	if (val > UINT64_MAX / zfs_dirty_data_max)
226		return (EINVAL);
227
228	zfs_delay_scale = val;
229
230	return (0);
231}
232#endif
233
234int
235dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
236{
237	uint64_t obj;
238	int err;
239
240	err = zap_lookup(dp->dp_meta_objset,
241	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
242	    name, sizeof (obj), 1, &obj);
243	if (err)
244		return (err);
245
246	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
247}
248
249static dsl_pool_t *
250dsl_pool_open_impl(spa_t *spa, uint64_t txg)
251{
252	dsl_pool_t *dp;
253	blkptr_t *bp = spa_get_rootblkptr(spa);
254
255	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
256	dp->dp_spa = spa;
257	dp->dp_meta_rootbp = *bp;
258	rrw_init(&dp->dp_config_rwlock, B_TRUE);
259	txg_init(dp, txg);
260
261	txg_list_create(&dp->dp_dirty_datasets,
262	    offsetof(dsl_dataset_t, ds_dirty_link));
263	txg_list_create(&dp->dp_dirty_zilogs,
264	    offsetof(zilog_t, zl_dirty_link));
265	txg_list_create(&dp->dp_dirty_dirs,
266	    offsetof(dsl_dir_t, dd_dirty_link));
267	txg_list_create(&dp->dp_sync_tasks,
268	    offsetof(dsl_sync_task_t, dst_node));
269
270	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
271	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
272
273	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
274	    1, 4, 0);
275
276	return (dp);
277}
278
279int
280dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
281{
282	int err;
283	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
284
285	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
286	    &dp->dp_meta_objset);
287	if (err != 0)
288		dsl_pool_close(dp);
289	else
290		*dpp = dp;
291
292	return (err);
293}
294
295int
296dsl_pool_open(dsl_pool_t *dp)
297{
298	int err;
299	dsl_dir_t *dd;
300	dsl_dataset_t *ds;
301	uint64_t obj;
302
303	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
304	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
306	    &dp->dp_root_dir_obj);
307	if (err)
308		goto out;
309
310	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
311	    NULL, dp, &dp->dp_root_dir);
312	if (err)
313		goto out;
314
315	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
316	if (err)
317		goto out;
318
319	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
320		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
321		if (err)
322			goto out;
323		err = dsl_dataset_hold_obj(dp,
324		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
325		if (err == 0) {
326			err = dsl_dataset_hold_obj(dp,
327			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
328			    &dp->dp_origin_snap);
329			dsl_dataset_rele(ds, FTAG);
330		}
331		dsl_dir_rele(dd, dp);
332		if (err)
333			goto out;
334	}
335
336	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
337		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
338		    &dp->dp_free_dir);
339		if (err)
340			goto out;
341
342		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
343		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
344		if (err)
345			goto out;
346		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
347		    dp->dp_meta_objset, obj));
348	}
349
350	/*
351	 * Note: errors ignored, because the leak dir will not exist if we
352	 * have not encountered a leak yet.
353	 */
354	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
355	    &dp->dp_leak_dir);
356
357	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
358		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
359		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
360		    &dp->dp_bptree_obj);
361		if (err != 0)
362			goto out;
363	}
364
365	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
366		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
367		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
368		    &dp->dp_empty_bpobj);
369		if (err != 0)
370			goto out;
371	}
372
373	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
374	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
375	    &dp->dp_tmp_userrefs_obj);
376	if (err == ENOENT)
377		err = 0;
378	if (err)
379		goto out;
380
381	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
382
383out:
384	rrw_exit(&dp->dp_config_rwlock, FTAG);
385	return (err);
386}
387
388void
389dsl_pool_close(dsl_pool_t *dp)
390{
391	/*
392	 * Drop our references from dsl_pool_open().
393	 *
394	 * Since we held the origin_snap from "syncing" context (which
395	 * includes pool-opening context), it actually only got a "ref"
396	 * and not a hold, so just drop that here.
397	 */
398	if (dp->dp_origin_snap)
399		dsl_dataset_rele(dp->dp_origin_snap, dp);
400	if (dp->dp_mos_dir)
401		dsl_dir_rele(dp->dp_mos_dir, dp);
402	if (dp->dp_free_dir)
403		dsl_dir_rele(dp->dp_free_dir, dp);
404	if (dp->dp_leak_dir)
405		dsl_dir_rele(dp->dp_leak_dir, dp);
406	if (dp->dp_root_dir)
407		dsl_dir_rele(dp->dp_root_dir, dp);
408
409	bpobj_close(&dp->dp_free_bpobj);
410
411	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
412	if (dp->dp_meta_objset)
413		dmu_objset_evict(dp->dp_meta_objset);
414
415	txg_list_destroy(&dp->dp_dirty_datasets);
416	txg_list_destroy(&dp->dp_dirty_zilogs);
417	txg_list_destroy(&dp->dp_sync_tasks);
418	txg_list_destroy(&dp->dp_dirty_dirs);
419
420	/*
421	 * We can't set retry to TRUE since we're explicitly specifying
422	 * a spa to flush. This is good enough; any missed buffers for
423	 * this spa won't cause trouble, and they'll eventually fall
424	 * out of the ARC just like any other unused buffer.
425	 */
426	arc_flush(dp->dp_spa, FALSE);
427
428	txg_fini(dp);
429	dsl_scan_fini(dp);
430	dmu_buf_user_evict_wait();
431
432	rrw_destroy(&dp->dp_config_rwlock);
433	mutex_destroy(&dp->dp_lock);
434	taskq_destroy(dp->dp_vnrele_taskq);
435	if (dp->dp_blkstats)
436		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
437	kmem_free(dp, sizeof (dsl_pool_t));
438}
439
440dsl_pool_t *
441dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
442{
443	int err;
444	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
445	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
446	objset_t *os;
447	dsl_dataset_t *ds;
448	uint64_t obj;
449
450	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
451
452	/* create and open the MOS (meta-objset) */
453	dp->dp_meta_objset = dmu_objset_create_impl(spa,
454	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
455
456	/* create the pool directory */
457	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
458	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
459	ASSERT0(err);
460
461	/* Initialize scan structures */
462	VERIFY0(dsl_scan_init(dp, txg));
463
464	/* create and open the root dir */
465	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
466	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
467	    NULL, dp, &dp->dp_root_dir));
468
469	/* create and open the meta-objset dir */
470	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
471	VERIFY0(dsl_pool_open_special_dir(dp,
472	    MOS_DIR_NAME, &dp->dp_mos_dir));
473
474	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
475		/* create and open the free dir */
476		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
477		    FREE_DIR_NAME, tx);
478		VERIFY0(dsl_pool_open_special_dir(dp,
479		    FREE_DIR_NAME, &dp->dp_free_dir));
480
481		/* create and open the free_bplist */
482		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
483		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
484		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
485		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
486		    dp->dp_meta_objset, obj));
487	}
488
489	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
490		dsl_pool_create_origin(dp, tx);
491
492	/* create the root dataset */
493	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
494
495	/* create the root objset */
496	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
497	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
498	os = dmu_objset_create_impl(dp->dp_spa, ds,
499	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
500	rrw_exit(&ds->ds_bp_rwlock, FTAG);
501#ifdef _KERNEL
502	zfs_create_fs(os, kcred, zplprops, tx);
503#endif
504	dsl_dataset_rele(ds, FTAG);
505
506	dmu_tx_commit(tx);
507
508	rrw_exit(&dp->dp_config_rwlock, FTAG);
509
510	return (dp);
511}
512
513/*
514 * Account for the meta-objset space in its placeholder dsl_dir.
515 */
516void
517dsl_pool_mos_diduse_space(dsl_pool_t *dp,
518    int64_t used, int64_t comp, int64_t uncomp)
519{
520	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
521	mutex_enter(&dp->dp_lock);
522	dp->dp_mos_used_delta += used;
523	dp->dp_mos_compressed_delta += comp;
524	dp->dp_mos_uncompressed_delta += uncomp;
525	mutex_exit(&dp->dp_lock);
526}
527
528static void
529dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
530{
531	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
532	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
533	VERIFY0(zio_wait(zio));
534	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
535	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
536}
537
538static void
539dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
540{
541	ASSERT(MUTEX_HELD(&dp->dp_lock));
542
543	if (delta < 0)
544		ASSERT3U(-delta, <=, dp->dp_dirty_total);
545
546	dp->dp_dirty_total += delta;
547
548	/*
549	 * Note: we signal even when increasing dp_dirty_total.
550	 * This ensures forward progress -- each thread wakes the next waiter.
551	 */
552	if (dp->dp_dirty_total < zfs_dirty_data_max)
553		cv_signal(&dp->dp_spaceavail_cv);
554}
555
556void
557dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
558{
559	zio_t *zio;
560	dmu_tx_t *tx;
561	dsl_dir_t *dd;
562	dsl_dataset_t *ds;
563	objset_t *mos = dp->dp_meta_objset;
564	list_t synced_datasets;
565
566	list_create(&synced_datasets, sizeof (dsl_dataset_t),
567	    offsetof(dsl_dataset_t, ds_synced_link));
568
569	tx = dmu_tx_create_assigned(dp, txg);
570
571	/*
572	 * Write out all dirty blocks of dirty datasets.
573	 */
574	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
575	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
576		/*
577		 * We must not sync any non-MOS datasets twice, because
578		 * we may have taken a snapshot of them.  However, we
579		 * may sync newly-created datasets on pass 2.
580		 */
581		ASSERT(!list_link_active(&ds->ds_synced_link));
582		list_insert_tail(&synced_datasets, ds);
583		dsl_dataset_sync(ds, zio, tx);
584	}
585	VERIFY0(zio_wait(zio));
586
587	/*
588	 * We have written all of the accounted dirty data, so our
589	 * dp_space_towrite should now be zero.  However, some seldom-used
590	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
591	 * rounding error in dbuf_write_physdone).
592	 * Shore up the accounting of any dirtied space now.
593	 */
594	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
595
596	/*
597	 * After the data blocks have been written (ensured by the zio_wait()
598	 * above), update the user/group space accounting.
599	 */
600	for (ds = list_head(&synced_datasets); ds != NULL;
601	    ds = list_next(&synced_datasets, ds)) {
602		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
603	}
604
605	/*
606	 * Sync the datasets again to push out the changes due to
607	 * userspace updates.  This must be done before we process the
608	 * sync tasks, so that any snapshots will have the correct
609	 * user accounting information (and we won't get confused
610	 * about which blocks are part of the snapshot).
611	 */
612	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
613	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
614		ASSERT(list_link_active(&ds->ds_synced_link));
615		dmu_buf_rele(ds->ds_dbuf, ds);
616		dsl_dataset_sync(ds, zio, tx);
617	}
618	VERIFY0(zio_wait(zio));
619
620	/*
621	 * Now that the datasets have been completely synced, we can
622	 * clean up our in-memory structures accumulated while syncing:
623	 *
624	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
625	 *  - release hold from dsl_dataset_dirty()
626	 */
627	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
628		dsl_dataset_sync_done(ds, tx);
629	}
630	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
631		dsl_dir_sync(dd, tx);
632	}
633
634	/*
635	 * The MOS's space is accounted for in the pool/$MOS
636	 * (dp_mos_dir).  We can't modify the mos while we're syncing
637	 * it, so we remember the deltas and apply them here.
638	 */
639	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
640	    dp->dp_mos_uncompressed_delta != 0) {
641		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
642		    dp->dp_mos_used_delta,
643		    dp->dp_mos_compressed_delta,
644		    dp->dp_mos_uncompressed_delta, tx);
645		dp->dp_mos_used_delta = 0;
646		dp->dp_mos_compressed_delta = 0;
647		dp->dp_mos_uncompressed_delta = 0;
648	}
649
650	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
651	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
652		dsl_pool_sync_mos(dp, tx);
653	}
654
655	/*
656	 * If we modify a dataset in the same txg that we want to destroy it,
657	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
658	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
659	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
660	 * and clearing the hold on it) before we process the sync_tasks.
661	 * The MOS data dirtied by the sync_tasks will be synced on the next
662	 * pass.
663	 */
664	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
665		dsl_sync_task_t *dst;
666		/*
667		 * No more sync tasks should have been added while we
668		 * were syncing.
669		 */
670		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
671		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
672			dsl_sync_task_sync(dst, tx);
673	}
674
675	dmu_tx_commit(tx);
676
677	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
678}
679
680void
681dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
682{
683	zilog_t *zilog;
684
685	while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
686		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
687		/*
688		 * We don't remove the zilog from the dp_dirty_zilogs
689		 * list until after we've cleaned it. This ensures that
690		 * callers of zilog_is_dirty() receive an accurate
691		 * answer when they are racing with the spa sync thread.
692		 */
693		zil_clean(zilog, txg);
694		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
695		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
696		dmu_buf_rele(ds->ds_dbuf, zilog);
697	}
698	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
699}
700
701/*
702 * TRUE if the current thread is the tx_sync_thread or if we
703 * are being called from SPA context during pool initialization.
704 */
705int
706dsl_pool_sync_context(dsl_pool_t *dp)
707{
708	return (curthread == dp->dp_tx.tx_sync_thread ||
709	    spa_is_initializing(dp->dp_spa));
710}
711
712uint64_t
713dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
714{
715	uint64_t space, resv;
716
717	/*
718	 * If we're trying to assess whether it's OK to do a free,
719	 * cut the reservation in half to allow forward progress
720	 * (e.g. make it possible to rm(1) files from a full pool).
721	 */
722	space = spa_get_dspace(dp->dp_spa);
723	resv = spa_get_slop_space(dp->dp_spa);
724	if (netfree)
725		resv >>= 1;
726
727	return (space - resv);
728}
729
730boolean_t
731dsl_pool_need_dirty_delay(dsl_pool_t *dp)
732{
733	uint64_t delay_min_bytes =
734	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
735	boolean_t rv;
736
737	mutex_enter(&dp->dp_lock);
738	if (dp->dp_dirty_total > zfs_dirty_data_sync)
739		txg_kick(dp);
740	rv = (dp->dp_dirty_total > delay_min_bytes);
741	mutex_exit(&dp->dp_lock);
742	return (rv);
743}
744
745void
746dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
747{
748	if (space > 0) {
749		mutex_enter(&dp->dp_lock);
750		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
751		dsl_pool_dirty_delta(dp, space);
752		mutex_exit(&dp->dp_lock);
753	}
754}
755
756void
757dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
758{
759	ASSERT3S(space, >=, 0);
760	if (space == 0)
761		return;
762	mutex_enter(&dp->dp_lock);
763	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
764		/* XXX writing something we didn't dirty? */
765		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
766	}
767	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
768	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
769	ASSERT3U(dp->dp_dirty_total, >=, space);
770	dsl_pool_dirty_delta(dp, -space);
771	mutex_exit(&dp->dp_lock);
772}
773
774/* ARGSUSED */
775static int
776upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
777{
778	dmu_tx_t *tx = arg;
779	dsl_dataset_t *ds, *prev = NULL;
780	int err;
781
782	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
783	if (err)
784		return (err);
785
786	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
787		err = dsl_dataset_hold_obj(dp,
788		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
789		if (err) {
790			dsl_dataset_rele(ds, FTAG);
791			return (err);
792		}
793
794		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
795			break;
796		dsl_dataset_rele(ds, FTAG);
797		ds = prev;
798		prev = NULL;
799	}
800
801	if (prev == NULL) {
802		prev = dp->dp_origin_snap;
803
804		/*
805		 * The $ORIGIN can't have any data, or the accounting
806		 * will be wrong.
807		 */
808		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
809		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
810		rrw_exit(&ds->ds_bp_rwlock, FTAG);
811
812		/* The origin doesn't get attached to itself */
813		if (ds->ds_object == prev->ds_object) {
814			dsl_dataset_rele(ds, FTAG);
815			return (0);
816		}
817
818		dmu_buf_will_dirty(ds->ds_dbuf, tx);
819		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
820		dsl_dataset_phys(ds)->ds_prev_snap_txg =
821		    dsl_dataset_phys(prev)->ds_creation_txg;
822
823		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
824		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
825
826		dmu_buf_will_dirty(prev->ds_dbuf, tx);
827		dsl_dataset_phys(prev)->ds_num_children++;
828
829		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
830			ASSERT(ds->ds_prev == NULL);
831			VERIFY0(dsl_dataset_hold_obj(dp,
832			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
833			    ds, &ds->ds_prev));
834		}
835	}
836
837	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
838	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
839
840	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
841		dmu_buf_will_dirty(prev->ds_dbuf, tx);
842		dsl_dataset_phys(prev)->ds_next_clones_obj =
843		    zap_create(dp->dp_meta_objset,
844		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
845	}
846	VERIFY0(zap_add_int(dp->dp_meta_objset,
847	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
848
849	dsl_dataset_rele(ds, FTAG);
850	if (prev != dp->dp_origin_snap)
851		dsl_dataset_rele(prev, FTAG);
852	return (0);
853}
854
855void
856dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
857{
858	ASSERT(dmu_tx_is_syncing(tx));
859	ASSERT(dp->dp_origin_snap != NULL);
860
861	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
862	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
863}
864
865/* ARGSUSED */
866static int
867upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
868{
869	dmu_tx_t *tx = arg;
870	objset_t *mos = dp->dp_meta_objset;
871
872	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
873		dsl_dataset_t *origin;
874
875		VERIFY0(dsl_dataset_hold_obj(dp,
876		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
877
878		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
879			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
880			dsl_dir_phys(origin->ds_dir)->dd_clones =
881			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
882			    0, tx);
883		}
884
885		VERIFY0(zap_add_int(dp->dp_meta_objset,
886		    dsl_dir_phys(origin->ds_dir)->dd_clones,
887		    ds->ds_object, tx));
888
889		dsl_dataset_rele(origin, FTAG);
890	}
891	return (0);
892}
893
894void
895dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
896{
897	ASSERT(dmu_tx_is_syncing(tx));
898	uint64_t obj;
899
900	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
901	VERIFY0(dsl_pool_open_special_dir(dp,
902	    FREE_DIR_NAME, &dp->dp_free_dir));
903
904	/*
905	 * We can't use bpobj_alloc(), because spa_version() still
906	 * returns the old version, and we need a new-version bpobj with
907	 * subobj support.  So call dmu_object_alloc() directly.
908	 */
909	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
910	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
911	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
912	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
913	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
914
915	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
916	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
917}
918
919void
920dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
921{
922	uint64_t dsobj;
923	dsl_dataset_t *ds;
924
925	ASSERT(dmu_tx_is_syncing(tx));
926	ASSERT(dp->dp_origin_snap == NULL);
927	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
928
929	/* create the origin dir, ds, & snap-ds */
930	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
931	    NULL, 0, kcred, tx);
932	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
933	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
934	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
935	    dp, &dp->dp_origin_snap));
936	dsl_dataset_rele(ds, FTAG);
937}
938
939taskq_t *
940dsl_pool_vnrele_taskq(dsl_pool_t *dp)
941{
942	return (dp->dp_vnrele_taskq);
943}
944
945/*
946 * Walk through the pool-wide zap object of temporary snapshot user holds
947 * and release them.
948 */
949void
950dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
951{
952	zap_attribute_t za;
953	zap_cursor_t zc;
954	objset_t *mos = dp->dp_meta_objset;
955	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
956	nvlist_t *holds;
957
958	if (zapobj == 0)
959		return;
960	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
961
962	holds = fnvlist_alloc();
963
964	for (zap_cursor_init(&zc, mos, zapobj);
965	    zap_cursor_retrieve(&zc, &za) == 0;
966	    zap_cursor_advance(&zc)) {
967		char *htag;
968		nvlist_t *tags;
969
970		htag = strchr(za.za_name, '-');
971		*htag = '\0';
972		++htag;
973		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
974			tags = fnvlist_alloc();
975			fnvlist_add_boolean(tags, htag);
976			fnvlist_add_nvlist(holds, za.za_name, tags);
977			fnvlist_free(tags);
978		} else {
979			fnvlist_add_boolean(tags, htag);
980		}
981	}
982	dsl_dataset_user_release_tmp(dp, holds);
983	fnvlist_free(holds);
984	zap_cursor_fini(&zc);
985}
986
987/*
988 * Create the pool-wide zap object for storing temporary snapshot holds.
989 */
990void
991dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
992{
993	objset_t *mos = dp->dp_meta_objset;
994
995	ASSERT(dp->dp_tmp_userrefs_obj == 0);
996	ASSERT(dmu_tx_is_syncing(tx));
997
998	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
999	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1000}
1001
1002static int
1003dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1004    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1005{
1006	objset_t *mos = dp->dp_meta_objset;
1007	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1008	char *name;
1009	int error;
1010
1011	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1012	ASSERT(dmu_tx_is_syncing(tx));
1013
1014	/*
1015	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1016	 * zap object for temporary holds might not exist yet.
1017	 */
1018	if (zapobj == 0) {
1019		if (holding) {
1020			dsl_pool_user_hold_create_obj(dp, tx);
1021			zapobj = dp->dp_tmp_userrefs_obj;
1022		} else {
1023			return (SET_ERROR(ENOENT));
1024		}
1025	}
1026
1027	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1028	if (holding)
1029		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1030	else
1031		error = zap_remove(mos, zapobj, name, tx);
1032	strfree(name);
1033
1034	return (error);
1035}
1036
1037/*
1038 * Add a temporary hold for the given dataset object and tag.
1039 */
1040int
1041dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1042    uint64_t now, dmu_tx_t *tx)
1043{
1044	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1045}
1046
1047/*
1048 * Release a temporary hold for the given dataset object and tag.
1049 */
1050int
1051dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1052    dmu_tx_t *tx)
1053{
1054	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1055	    tx, B_FALSE));
1056}
1057
1058/*
1059 * DSL Pool Configuration Lock
1060 *
1061 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1062 * creation / destruction / rename / property setting).  It must be held for
1063 * read to hold a dataset or dsl_dir.  I.e. you must call
1064 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1065 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1066 * must be held continuously until all datasets and dsl_dirs are released.
1067 *
1068 * The only exception to this rule is that if a "long hold" is placed on
1069 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1070 * is still held.  The long hold will prevent the dataset from being
1071 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1072 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1073 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1074 *
1075 * Legitimate long-holders (including owners) should be long-running, cancelable
1076 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1077 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1078 * "zfs send", and "zfs diff".  There are several other long-holders whose
1079 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1080 *
1081 * The usual formula for long-holding would be:
1082 * dsl_pool_hold()
1083 * dsl_dataset_hold()
1084 * ... perform checks ...
1085 * dsl_dataset_long_hold()
1086 * dsl_pool_rele()
1087 * ... perform long-running task ...
1088 * dsl_dataset_long_rele()
1089 * dsl_dataset_rele()
1090 *
1091 * Note that when the long hold is released, the dataset is still held but
1092 * the pool is not held.  The dataset may change arbitrarily during this time
1093 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1094 * dataset except release it.
1095 *
1096 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1097 * or modifying operations.
1098 *
1099 * Modifying operations should generally use dsl_sync_task().  The synctask
1100 * infrastructure enforces proper locking strategy with respect to the
1101 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1102 *
1103 * Read-only operations will manually hold the pool, then the dataset, obtain
1104 * information from the dataset, then release the pool and dataset.
1105 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1106 * hold/rele.
1107 */
1108
1109int
1110dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1111{
1112	spa_t *spa;
1113	int error;
1114
1115	error = spa_open(name, &spa, tag);
1116	if (error == 0) {
1117		*dp = spa_get_dsl(spa);
1118		dsl_pool_config_enter(*dp, tag);
1119	}
1120	return (error);
1121}
1122
1123void
1124dsl_pool_rele(dsl_pool_t *dp, void *tag)
1125{
1126	dsl_pool_config_exit(dp, tag);
1127	spa_close(dp->dp_spa, tag);
1128}
1129
1130void
1131dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1132{
1133	/*
1134	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1135	 *
1136	 * The rrwlock can (with the track_all flag) track all reading threads,
1137	 * which is very useful for debugging which code path failed to release
1138	 * the lock, and for verifying that the *current* thread does hold
1139	 * the lock.
1140	 *
1141	 * (Unlike a rwlock, which knows that N threads hold it for
1142	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1143	 * if any thread holds it for read, even if this thread doesn't).
1144	 */
1145	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1146	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1147}
1148
1149void
1150dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1151{
1152	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1153	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1154}
1155
1156void
1157dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1158{
1159	rrw_exit(&dp->dp_config_rwlock, tag);
1160}
1161
1162boolean_t
1163dsl_pool_config_held(dsl_pool_t *dp)
1164{
1165	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1166}
1167
1168boolean_t
1169dsl_pool_config_held_writer(dsl_pool_t *dp)
1170{
1171	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1172}
1173