dsl_pool.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
31#include <sys/dsl_prop.h>
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
45#include <sys/dsl_deadlist.h>
46#include <sys/bptree.h>
47#include <sys/zfeature.h>
48#include <sys/zil_impl.h>
49#include <sys/dsl_userhold.h>
50
51#ifdef __FreeBSD__
52#include <sys/sysctl.h>
53#include <sys/types.h>
54#endif
55
56/*
57 * ZFS Write Throttle
58 * ------------------
59 *
60 * ZFS must limit the rate of incoming writes to the rate at which it is able
61 * to sync data modifications to the backend storage. Throttling by too much
62 * creates an artificial limit; throttling by too little can only be sustained
63 * for short periods and would lead to highly lumpy performance. On a per-pool
64 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
65 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
66 * of dirty data decreases. When the amount of dirty data exceeds a
67 * predetermined threshold further modifications are blocked until the amount
68 * of dirty data decreases (as data is synced out).
69 *
70 * The limit on dirty data is tunable, and should be adjusted according to
71 * both the IO capacity and available memory of the system. The larger the
72 * window, the more ZFS is able to aggregate and amortize metadata (and data)
73 * changes. However, memory is a limited resource, and allowing for more dirty
74 * data comes at the cost of keeping other useful data in memory (for example
75 * ZFS data cached by the ARC).
76 *
77 * Implementation
78 *
79 * As buffers are modified dsl_pool_willuse_space() increments both the per-
80 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
81 * dirty space used; dsl_pool_dirty_space() decrements those values as data
82 * is synced out from dsl_pool_sync(). While only the poolwide value is
83 * relevant, the per-txg value is useful for debugging. The tunable
84 * zfs_dirty_data_max determines the dirty space limit. Once that value is
85 * exceeded, new writes are halted until space frees up.
86 *
87 * The zfs_dirty_data_sync tunable dictates the threshold at which we
88 * ensure that there is a txg syncing (see the comment in txg.c for a full
89 * description of transaction group stages).
90 *
91 * The IO scheduler uses both the dirty space limit and current amount of
92 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
93 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
94 *
95 * The delay is also calculated based on the amount of dirty data.  See the
96 * comment above dmu_tx_delay() for details.
97 */
98
99/*
100 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
101 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
102 */
103uint64_t zfs_dirty_data_max;
104uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
105int zfs_dirty_data_max_percent = 10;
106
107/*
108 * If there is at least this much dirty data, push out a txg.
109 */
110uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
111
112/*
113 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
114 * and delay each transaction.
115 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
116 */
117int zfs_delay_min_dirty_percent = 60;
118
119/*
120 * This controls how quickly the delay approaches infinity.
121 * Larger values cause it to delay more for a given amount of dirty data.
122 * Therefore larger values will cause there to be less dirty data for a
123 * given throughput.
124 *
125 * For the smoothest delay, this value should be about 1 billion divided
126 * by the maximum number of operations per second.  This will smoothly
127 * handle between 10x and 1/10th this number.
128 *
129 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
130 * multiply in dmu_tx_delay().
131 */
132uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
133
134
135#ifdef __FreeBSD__
136
137extern int zfs_vdev_async_write_active_max_dirty_percent;
138
139SYSCTL_DECL(_vfs_zfs);
140
141TUNABLE_QUAD("vfs.zfs.dirty_data_max", &zfs_dirty_data_max);
142SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
143    &zfs_dirty_data_max, 0,
144    "The maximum amount of dirty data in bytes after which new writes are "
145    "halted until space becomes available");
146
147TUNABLE_QUAD("vfs.zfs.dirty_data_max_max", &zfs_dirty_data_max_max);
148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
149    &zfs_dirty_data_max_max, 0,
150    "The absolute cap on dirty_data_max when auto calculating");
151
152TUNABLE_INT("vfs.zfs.dirty_data_max_percent", &zfs_dirty_data_max_percent);
153static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
154SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
155    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
156    sysctl_zfs_dirty_data_max_percent, "I",
157    "The percent of physical memory used to auto calculate dirty_data_max");
158
159TUNABLE_QUAD("vfs.zfs.dirty_data_sync", &zfs_dirty_data_sync);
160SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
161    &zfs_dirty_data_sync, 0,
162    "Force a txg if the number of dirty buffer bytes exceed this value");
163
164static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
165/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
166SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
167    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
168    sysctl_zfs_delay_min_dirty_percent, "I",
169    "The limit of outstanding dirty data before transations are delayed");
170
171static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
172/* No zfs_delay_scale tunable due to limit requirements */
173SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
174    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
175    sysctl_zfs_delay_scale, "QU",
176    "Controls how quickly the delay approaches infinity");
177
178static int
179sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
180{
181	int val, err;
182
183	val = zfs_dirty_data_max_percent;
184	err = sysctl_handle_int(oidp, &val, 0, req);
185	if (err != 0 || req->newptr == NULL)
186		return (err);
187
188	if (val < 0 || val > 100)
189		return (EINVAL);
190
191	zfs_dirty_data_max_percent = val;
192
193	return (0);
194}
195
196static int
197sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
198{
199	int val, err;
200
201	val = zfs_delay_min_dirty_percent;
202	err = sysctl_handle_int(oidp, &val, 0, req);
203	if (err != 0 || req->newptr == NULL)
204		return (err);
205
206	if (val < zfs_vdev_async_write_active_max_dirty_percent)
207		return (EINVAL);
208
209	zfs_delay_min_dirty_percent = val;
210
211	return (0);
212}
213
214static int
215sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
216{
217	uint64_t val;
218	int err;
219
220	val = zfs_delay_scale;
221	err = sysctl_handle_64(oidp, &val, 0, req);
222	if (err != 0 || req->newptr == NULL)
223		return (err);
224
225	if (val > UINT64_MAX / zfs_dirty_data_max)
226		return (EINVAL);
227
228	zfs_delay_scale = val;
229
230	return (0);
231}
232#endif
233
234hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
235hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
236
237int
238dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
239{
240	uint64_t obj;
241	int err;
242
243	err = zap_lookup(dp->dp_meta_objset,
244	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
245	    name, sizeof (obj), 1, &obj);
246	if (err)
247		return (err);
248
249	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
250}
251
252static dsl_pool_t *
253dsl_pool_open_impl(spa_t *spa, uint64_t txg)
254{
255	dsl_pool_t *dp;
256	blkptr_t *bp = spa_get_rootblkptr(spa);
257
258	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
259	dp->dp_spa = spa;
260	dp->dp_meta_rootbp = *bp;
261	rrw_init(&dp->dp_config_rwlock, B_TRUE);
262	txg_init(dp, txg);
263
264	txg_list_create(&dp->dp_dirty_datasets,
265	    offsetof(dsl_dataset_t, ds_dirty_link));
266	txg_list_create(&dp->dp_dirty_zilogs,
267	    offsetof(zilog_t, zl_dirty_link));
268	txg_list_create(&dp->dp_dirty_dirs,
269	    offsetof(dsl_dir_t, dd_dirty_link));
270	txg_list_create(&dp->dp_sync_tasks,
271	    offsetof(dsl_sync_task_t, dst_node));
272
273	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
274	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
275
276	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
277	    1, 4, 0);
278
279	return (dp);
280}
281
282int
283dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
284{
285	int err;
286	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
287
288	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
289	    &dp->dp_meta_objset);
290	if (err != 0)
291		dsl_pool_close(dp);
292	else
293		*dpp = dp;
294
295	return (err);
296}
297
298int
299dsl_pool_open(dsl_pool_t *dp)
300{
301	int err;
302	dsl_dir_t *dd;
303	dsl_dataset_t *ds;
304	uint64_t obj;
305
306	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
307	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
308	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
309	    &dp->dp_root_dir_obj);
310	if (err)
311		goto out;
312
313	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
314	    NULL, dp, &dp->dp_root_dir);
315	if (err)
316		goto out;
317
318	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
319	if (err)
320		goto out;
321
322	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
323		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
324		if (err)
325			goto out;
326		err = dsl_dataset_hold_obj(dp,
327		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
328		if (err == 0) {
329			err = dsl_dataset_hold_obj(dp,
330			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
331			    &dp->dp_origin_snap);
332			dsl_dataset_rele(ds, FTAG);
333		}
334		dsl_dir_rele(dd, dp);
335		if (err)
336			goto out;
337	}
338
339	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
340		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
341		    &dp->dp_free_dir);
342		if (err)
343			goto out;
344
345		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
346		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
347		if (err)
348			goto out;
349		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
350		    dp->dp_meta_objset, obj));
351	}
352
353	/*
354	 * Note: errors ignored, because the leak dir will not exist if we
355	 * have not encountered a leak yet.
356	 */
357	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
358	    &dp->dp_leak_dir);
359
360	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
361		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
362		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
363		    &dp->dp_bptree_obj);
364		if (err != 0)
365			goto out;
366	}
367
368	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
369		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
370		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
371		    &dp->dp_empty_bpobj);
372		if (err != 0)
373			goto out;
374	}
375
376	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
377	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
378	    &dp->dp_tmp_userrefs_obj);
379	if (err == ENOENT)
380		err = 0;
381	if (err)
382		goto out;
383
384	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
385
386out:
387	rrw_exit(&dp->dp_config_rwlock, FTAG);
388	return (err);
389}
390
391void
392dsl_pool_close(dsl_pool_t *dp)
393{
394	/*
395	 * Drop our references from dsl_pool_open().
396	 *
397	 * Since we held the origin_snap from "syncing" context (which
398	 * includes pool-opening context), it actually only got a "ref"
399	 * and not a hold, so just drop that here.
400	 */
401	if (dp->dp_origin_snap)
402		dsl_dataset_rele(dp->dp_origin_snap, dp);
403	if (dp->dp_mos_dir)
404		dsl_dir_rele(dp->dp_mos_dir, dp);
405	if (dp->dp_free_dir)
406		dsl_dir_rele(dp->dp_free_dir, dp);
407	if (dp->dp_leak_dir)
408		dsl_dir_rele(dp->dp_leak_dir, dp);
409	if (dp->dp_root_dir)
410		dsl_dir_rele(dp->dp_root_dir, dp);
411
412	bpobj_close(&dp->dp_free_bpobj);
413
414	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
415	if (dp->dp_meta_objset)
416		dmu_objset_evict(dp->dp_meta_objset);
417
418	txg_list_destroy(&dp->dp_dirty_datasets);
419	txg_list_destroy(&dp->dp_dirty_zilogs);
420	txg_list_destroy(&dp->dp_sync_tasks);
421	txg_list_destroy(&dp->dp_dirty_dirs);
422
423	/*
424	 * We can't set retry to TRUE since we're explicitly specifying
425	 * a spa to flush. This is good enough; any missed buffers for
426	 * this spa won't cause trouble, and they'll eventually fall
427	 * out of the ARC just like any other unused buffer.
428	 */
429	arc_flush(dp->dp_spa, FALSE);
430
431	txg_fini(dp);
432	dsl_scan_fini(dp);
433	dmu_buf_user_evict_wait();
434
435	rrw_destroy(&dp->dp_config_rwlock);
436	mutex_destroy(&dp->dp_lock);
437	taskq_destroy(dp->dp_vnrele_taskq);
438	if (dp->dp_blkstats)
439		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
440	kmem_free(dp, sizeof (dsl_pool_t));
441}
442
443dsl_pool_t *
444dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
445{
446	int err;
447	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
448	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
449	objset_t *os;
450	dsl_dataset_t *ds;
451	uint64_t obj;
452
453	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
454
455	/* create and open the MOS (meta-objset) */
456	dp->dp_meta_objset = dmu_objset_create_impl(spa,
457	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
458
459	/* create the pool directory */
460	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
461	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
462	ASSERT0(err);
463
464	/* Initialize scan structures */
465	VERIFY0(dsl_scan_init(dp, txg));
466
467	/* create and open the root dir */
468	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
469	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
470	    NULL, dp, &dp->dp_root_dir));
471
472	/* create and open the meta-objset dir */
473	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
474	VERIFY0(dsl_pool_open_special_dir(dp,
475	    MOS_DIR_NAME, &dp->dp_mos_dir));
476
477	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
478		/* create and open the free dir */
479		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
480		    FREE_DIR_NAME, tx);
481		VERIFY0(dsl_pool_open_special_dir(dp,
482		    FREE_DIR_NAME, &dp->dp_free_dir));
483
484		/* create and open the free_bplist */
485		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
486		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
487		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
488		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
489		    dp->dp_meta_objset, obj));
490	}
491
492	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
493		dsl_pool_create_origin(dp, tx);
494
495	/* create the root dataset */
496	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
497
498	/* create the root objset */
499	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
500	os = dmu_objset_create_impl(dp->dp_spa, ds,
501	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
502#ifdef _KERNEL
503	zfs_create_fs(os, kcred, zplprops, tx);
504#endif
505	dsl_dataset_rele(ds, FTAG);
506
507	dmu_tx_commit(tx);
508
509	rrw_exit(&dp->dp_config_rwlock, FTAG);
510
511	return (dp);
512}
513
514/*
515 * Account for the meta-objset space in its placeholder dsl_dir.
516 */
517void
518dsl_pool_mos_diduse_space(dsl_pool_t *dp,
519    int64_t used, int64_t comp, int64_t uncomp)
520{
521	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
522	mutex_enter(&dp->dp_lock);
523	dp->dp_mos_used_delta += used;
524	dp->dp_mos_compressed_delta += comp;
525	dp->dp_mos_uncompressed_delta += uncomp;
526	mutex_exit(&dp->dp_lock);
527}
528
529static int
530deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
531{
532	dsl_deadlist_t *dl = arg;
533	dsl_deadlist_insert(dl, bp, tx);
534	return (0);
535}
536
537static void
538dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
539{
540	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
541	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
542	VERIFY0(zio_wait(zio));
543	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
544	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
545}
546
547static void
548dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
549{
550	ASSERT(MUTEX_HELD(&dp->dp_lock));
551
552	if (delta < 0)
553		ASSERT3U(-delta, <=, dp->dp_dirty_total);
554
555	dp->dp_dirty_total += delta;
556
557	/*
558	 * Note: we signal even when increasing dp_dirty_total.
559	 * This ensures forward progress -- each thread wakes the next waiter.
560	 */
561	if (dp->dp_dirty_total <= zfs_dirty_data_max)
562		cv_signal(&dp->dp_spaceavail_cv);
563}
564
565void
566dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
567{
568	zio_t *zio;
569	dmu_tx_t *tx;
570	dsl_dir_t *dd;
571	dsl_dataset_t *ds;
572	objset_t *mos = dp->dp_meta_objset;
573	list_t synced_datasets;
574
575	list_create(&synced_datasets, sizeof (dsl_dataset_t),
576	    offsetof(dsl_dataset_t, ds_synced_link));
577
578	tx = dmu_tx_create_assigned(dp, txg);
579
580	/*
581	 * Write out all dirty blocks of dirty datasets.
582	 */
583	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
584	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
585		/*
586		 * We must not sync any non-MOS datasets twice, because
587		 * we may have taken a snapshot of them.  However, we
588		 * may sync newly-created datasets on pass 2.
589		 */
590		ASSERT(!list_link_active(&ds->ds_synced_link));
591		list_insert_tail(&synced_datasets, ds);
592		dsl_dataset_sync(ds, zio, tx);
593	}
594	VERIFY0(zio_wait(zio));
595
596	/*
597	 * We have written all of the accounted dirty data, so our
598	 * dp_space_towrite should now be zero.  However, some seldom-used
599	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
600	 * rounding error in dbuf_write_physdone).
601	 * Shore up the accounting of any dirtied space now.
602	 */
603	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
604
605	/*
606	 * After the data blocks have been written (ensured by the zio_wait()
607	 * above), update the user/group space accounting.
608	 */
609	for (ds = list_head(&synced_datasets); ds != NULL;
610	    ds = list_next(&synced_datasets, ds)) {
611		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
612	}
613
614	/*
615	 * Sync the datasets again to push out the changes due to
616	 * userspace updates.  This must be done before we process the
617	 * sync tasks, so that any snapshots will have the correct
618	 * user accounting information (and we won't get confused
619	 * about which blocks are part of the snapshot).
620	 */
621	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
622	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
623		ASSERT(list_link_active(&ds->ds_synced_link));
624		dmu_buf_rele(ds->ds_dbuf, ds);
625		dsl_dataset_sync(ds, zio, tx);
626	}
627	VERIFY0(zio_wait(zio));
628
629	/*
630	 * Now that the datasets have been completely synced, we can
631	 * clean up our in-memory structures accumulated while syncing:
632	 *
633	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
634	 *  - release hold from dsl_dataset_dirty()
635	 */
636	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
637		objset_t *os = ds->ds_objset;
638		bplist_iterate(&ds->ds_pending_deadlist,
639		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
640		ASSERT(!dmu_objset_is_dirty(os, txg));
641		dmu_buf_rele(ds->ds_dbuf, ds);
642	}
643	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
644		dsl_dir_sync(dd, tx);
645	}
646
647	/*
648	 * The MOS's space is accounted for in the pool/$MOS
649	 * (dp_mos_dir).  We can't modify the mos while we're syncing
650	 * it, so we remember the deltas and apply them here.
651	 */
652	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
653	    dp->dp_mos_uncompressed_delta != 0) {
654		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
655		    dp->dp_mos_used_delta,
656		    dp->dp_mos_compressed_delta,
657		    dp->dp_mos_uncompressed_delta, tx);
658		dp->dp_mos_used_delta = 0;
659		dp->dp_mos_compressed_delta = 0;
660		dp->dp_mos_uncompressed_delta = 0;
661	}
662
663	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
664	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
665		dsl_pool_sync_mos(dp, tx);
666	}
667
668	/*
669	 * If we modify a dataset in the same txg that we want to destroy it,
670	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
671	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
672	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
673	 * and clearing the hold on it) before we process the sync_tasks.
674	 * The MOS data dirtied by the sync_tasks will be synced on the next
675	 * pass.
676	 */
677	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
678		dsl_sync_task_t *dst;
679		/*
680		 * No more sync tasks should have been added while we
681		 * were syncing.
682		 */
683		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
684		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
685			dsl_sync_task_sync(dst, tx);
686	}
687
688	dmu_tx_commit(tx);
689
690	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
691}
692
693void
694dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
695{
696	zilog_t *zilog;
697
698	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
699		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
700		zil_clean(zilog, txg);
701		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
702		dmu_buf_rele(ds->ds_dbuf, zilog);
703	}
704	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
705}
706
707/*
708 * TRUE if the current thread is the tx_sync_thread or if we
709 * are being called from SPA context during pool initialization.
710 */
711int
712dsl_pool_sync_context(dsl_pool_t *dp)
713{
714	return (curthread == dp->dp_tx.tx_sync_thread ||
715	    spa_is_initializing(dp->dp_spa));
716}
717
718uint64_t
719dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
720{
721	uint64_t space, resv;
722
723	/*
724	 * If we're trying to assess whether it's OK to do a free,
725	 * cut the reservation in half to allow forward progress
726	 * (e.g. make it possible to rm(1) files from a full pool).
727	 */
728	space = spa_get_dspace(dp->dp_spa);
729	resv = spa_get_slop_space(dp->dp_spa);
730	if (netfree)
731		resv >>= 1;
732
733	return (space - resv);
734}
735
736boolean_t
737dsl_pool_need_dirty_delay(dsl_pool_t *dp)
738{
739	uint64_t delay_min_bytes =
740	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
741	boolean_t rv;
742
743	mutex_enter(&dp->dp_lock);
744	if (dp->dp_dirty_total > zfs_dirty_data_sync)
745		txg_kick(dp);
746	rv = (dp->dp_dirty_total > delay_min_bytes);
747	mutex_exit(&dp->dp_lock);
748	return (rv);
749}
750
751void
752dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
753{
754	if (space > 0) {
755		mutex_enter(&dp->dp_lock);
756		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
757		dsl_pool_dirty_delta(dp, space);
758		mutex_exit(&dp->dp_lock);
759	}
760}
761
762void
763dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
764{
765	ASSERT3S(space, >=, 0);
766	if (space == 0)
767		return;
768	mutex_enter(&dp->dp_lock);
769	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
770		/* XXX writing something we didn't dirty? */
771		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
772	}
773	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
774	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
775	ASSERT3U(dp->dp_dirty_total, >=, space);
776	dsl_pool_dirty_delta(dp, -space);
777	mutex_exit(&dp->dp_lock);
778}
779
780/* ARGSUSED */
781static int
782upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
783{
784	dmu_tx_t *tx = arg;
785	dsl_dataset_t *ds, *prev = NULL;
786	int err;
787
788	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
789	if (err)
790		return (err);
791
792	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
793		err = dsl_dataset_hold_obj(dp,
794		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
795		if (err) {
796			dsl_dataset_rele(ds, FTAG);
797			return (err);
798		}
799
800		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
801			break;
802		dsl_dataset_rele(ds, FTAG);
803		ds = prev;
804		prev = NULL;
805	}
806
807	if (prev == NULL) {
808		prev = dp->dp_origin_snap;
809
810		/*
811		 * The $ORIGIN can't have any data, or the accounting
812		 * will be wrong.
813		 */
814		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
815
816		/* The origin doesn't get attached to itself */
817		if (ds->ds_object == prev->ds_object) {
818			dsl_dataset_rele(ds, FTAG);
819			return (0);
820		}
821
822		dmu_buf_will_dirty(ds->ds_dbuf, tx);
823		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
824		dsl_dataset_phys(ds)->ds_prev_snap_txg =
825		    dsl_dataset_phys(prev)->ds_creation_txg;
826
827		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
828		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
829
830		dmu_buf_will_dirty(prev->ds_dbuf, tx);
831		dsl_dataset_phys(prev)->ds_num_children++;
832
833		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
834			ASSERT(ds->ds_prev == NULL);
835			VERIFY0(dsl_dataset_hold_obj(dp,
836			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
837			    ds, &ds->ds_prev));
838		}
839	}
840
841	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
842	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
843
844	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
845		dmu_buf_will_dirty(prev->ds_dbuf, tx);
846		dsl_dataset_phys(prev)->ds_next_clones_obj =
847		    zap_create(dp->dp_meta_objset,
848		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
849	}
850	VERIFY0(zap_add_int(dp->dp_meta_objset,
851	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
852
853	dsl_dataset_rele(ds, FTAG);
854	if (prev != dp->dp_origin_snap)
855		dsl_dataset_rele(prev, FTAG);
856	return (0);
857}
858
859void
860dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
861{
862	ASSERT(dmu_tx_is_syncing(tx));
863	ASSERT(dp->dp_origin_snap != NULL);
864
865	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
866	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
867}
868
869/* ARGSUSED */
870static int
871upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
872{
873	dmu_tx_t *tx = arg;
874	objset_t *mos = dp->dp_meta_objset;
875
876	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
877		dsl_dataset_t *origin;
878
879		VERIFY0(dsl_dataset_hold_obj(dp,
880		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
881
882		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
883			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
884			dsl_dir_phys(origin->ds_dir)->dd_clones =
885			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
886			    0, tx);
887		}
888
889		VERIFY0(zap_add_int(dp->dp_meta_objset,
890		    dsl_dir_phys(origin->ds_dir)->dd_clones,
891		    ds->ds_object, tx));
892
893		dsl_dataset_rele(origin, FTAG);
894	}
895	return (0);
896}
897
898void
899dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
900{
901	ASSERT(dmu_tx_is_syncing(tx));
902	uint64_t obj;
903
904	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
905	VERIFY0(dsl_pool_open_special_dir(dp,
906	    FREE_DIR_NAME, &dp->dp_free_dir));
907
908	/*
909	 * We can't use bpobj_alloc(), because spa_version() still
910	 * returns the old version, and we need a new-version bpobj with
911	 * subobj support.  So call dmu_object_alloc() directly.
912	 */
913	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
914	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
915	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
916	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
917	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
918
919	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
920	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
921}
922
923void
924dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
925{
926	uint64_t dsobj;
927	dsl_dataset_t *ds;
928
929	ASSERT(dmu_tx_is_syncing(tx));
930	ASSERT(dp->dp_origin_snap == NULL);
931	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
932
933	/* create the origin dir, ds, & snap-ds */
934	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
935	    NULL, 0, kcred, tx);
936	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
937	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
938	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
939	    dp, &dp->dp_origin_snap));
940	dsl_dataset_rele(ds, FTAG);
941}
942
943taskq_t *
944dsl_pool_vnrele_taskq(dsl_pool_t *dp)
945{
946	return (dp->dp_vnrele_taskq);
947}
948
949/*
950 * Walk through the pool-wide zap object of temporary snapshot user holds
951 * and release them.
952 */
953void
954dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
955{
956	zap_attribute_t za;
957	zap_cursor_t zc;
958	objset_t *mos = dp->dp_meta_objset;
959	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
960	nvlist_t *holds;
961
962	if (zapobj == 0)
963		return;
964	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
965
966	holds = fnvlist_alloc();
967
968	for (zap_cursor_init(&zc, mos, zapobj);
969	    zap_cursor_retrieve(&zc, &za) == 0;
970	    zap_cursor_advance(&zc)) {
971		char *htag;
972		nvlist_t *tags;
973
974		htag = strchr(za.za_name, '-');
975		*htag = '\0';
976		++htag;
977		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
978			tags = fnvlist_alloc();
979			fnvlist_add_boolean(tags, htag);
980			fnvlist_add_nvlist(holds, za.za_name, tags);
981			fnvlist_free(tags);
982		} else {
983			fnvlist_add_boolean(tags, htag);
984		}
985	}
986	dsl_dataset_user_release_tmp(dp, holds);
987	fnvlist_free(holds);
988	zap_cursor_fini(&zc);
989}
990
991/*
992 * Create the pool-wide zap object for storing temporary snapshot holds.
993 */
994void
995dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
996{
997	objset_t *mos = dp->dp_meta_objset;
998
999	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1000	ASSERT(dmu_tx_is_syncing(tx));
1001
1002	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1003	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1004}
1005
1006static int
1007dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1008    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1009{
1010	objset_t *mos = dp->dp_meta_objset;
1011	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1012	char *name;
1013	int error;
1014
1015	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1016	ASSERT(dmu_tx_is_syncing(tx));
1017
1018	/*
1019	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1020	 * zap object for temporary holds might not exist yet.
1021	 */
1022	if (zapobj == 0) {
1023		if (holding) {
1024			dsl_pool_user_hold_create_obj(dp, tx);
1025			zapobj = dp->dp_tmp_userrefs_obj;
1026		} else {
1027			return (SET_ERROR(ENOENT));
1028		}
1029	}
1030
1031	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1032	if (holding)
1033		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1034	else
1035		error = zap_remove(mos, zapobj, name, tx);
1036	strfree(name);
1037
1038	return (error);
1039}
1040
1041/*
1042 * Add a temporary hold for the given dataset object and tag.
1043 */
1044int
1045dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1046    uint64_t now, dmu_tx_t *tx)
1047{
1048	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1049}
1050
1051/*
1052 * Release a temporary hold for the given dataset object and tag.
1053 */
1054int
1055dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1056    dmu_tx_t *tx)
1057{
1058	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1059	    tx, B_FALSE));
1060}
1061
1062/*
1063 * DSL Pool Configuration Lock
1064 *
1065 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1066 * creation / destruction / rename / property setting).  It must be held for
1067 * read to hold a dataset or dsl_dir.  I.e. you must call
1068 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1069 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1070 * must be held continuously until all datasets and dsl_dirs are released.
1071 *
1072 * The only exception to this rule is that if a "long hold" is placed on
1073 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1074 * is still held.  The long hold will prevent the dataset from being
1075 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1076 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1077 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1078 *
1079 * Legitimate long-holders (including owners) should be long-running, cancelable
1080 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1081 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1082 * "zfs send", and "zfs diff".  There are several other long-holders whose
1083 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1084 *
1085 * The usual formula for long-holding would be:
1086 * dsl_pool_hold()
1087 * dsl_dataset_hold()
1088 * ... perform checks ...
1089 * dsl_dataset_long_hold()
1090 * dsl_pool_rele()
1091 * ... perform long-running task ...
1092 * dsl_dataset_long_rele()
1093 * dsl_dataset_rele()
1094 *
1095 * Note that when the long hold is released, the dataset is still held but
1096 * the pool is not held.  The dataset may change arbitrarily during this time
1097 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1098 * dataset except release it.
1099 *
1100 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1101 * or modifying operations.
1102 *
1103 * Modifying operations should generally use dsl_sync_task().  The synctask
1104 * infrastructure enforces proper locking strategy with respect to the
1105 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1106 *
1107 * Read-only operations will manually hold the pool, then the dataset, obtain
1108 * information from the dataset, then release the pool and dataset.
1109 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1110 * hold/rele.
1111 */
1112
1113int
1114dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1115{
1116	spa_t *spa;
1117	int error;
1118
1119	error = spa_open(name, &spa, tag);
1120	if (error == 0) {
1121		*dp = spa_get_dsl(spa);
1122		dsl_pool_config_enter(*dp, tag);
1123	}
1124	return (error);
1125}
1126
1127void
1128dsl_pool_rele(dsl_pool_t *dp, void *tag)
1129{
1130	dsl_pool_config_exit(dp, tag);
1131	spa_close(dp->dp_spa, tag);
1132}
1133
1134void
1135dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1136{
1137	/*
1138	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1139	 *
1140	 * The rrwlock can (with the track_all flag) track all reading threads,
1141	 * which is very useful for debugging which code path failed to release
1142	 * the lock, and for verifying that the *current* thread does hold
1143	 * the lock.
1144	 *
1145	 * (Unlike a rwlock, which knows that N threads hold it for
1146	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1147	 * if any thread holds it for read, even if this thread doesn't).
1148	 */
1149	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1150	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1151}
1152
1153void
1154dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1155{
1156	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1157	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1158}
1159
1160void
1161dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1162{
1163	rrw_exit(&dp->dp_config_rwlock, tag);
1164}
1165
1166boolean_t
1167dsl_pool_config_held(dsl_pool_t *dp)
1168{
1169	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1170}
1171
1172boolean_t
1173dsl_pool_config_held_writer(dsl_pool_t *dp)
1174{
1175	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1176}
1177