dsl_pool.c revision 288569
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 */
27
28#include <sys/dsl_pool.h>
29#include <sys/dsl_dataset.h>
30#include <sys/dsl_prop.h>
31#include <sys/dsl_dir.h>
32#include <sys/dsl_synctask.h>
33#include <sys/dsl_scan.h>
34#include <sys/dnode.h>
35#include <sys/dmu_tx.h>
36#include <sys/dmu_objset.h>
37#include <sys/arc.h>
38#include <sys/zap.h>
39#include <sys/zio.h>
40#include <sys/zfs_context.h>
41#include <sys/fs/zfs.h>
42#include <sys/zfs_znode.h>
43#include <sys/spa_impl.h>
44#include <sys/dsl_deadlist.h>
45#include <sys/bptree.h>
46#include <sys/zfeature.h>
47#include <sys/zil_impl.h>
48#include <sys/dsl_userhold.h>
49
50#ifdef __FreeBSD__
51#include <sys/sysctl.h>
52#include <sys/types.h>
53#endif
54
55/*
56 * ZFS Write Throttle
57 * ------------------
58 *
59 * ZFS must limit the rate of incoming writes to the rate at which it is able
60 * to sync data modifications to the backend storage. Throttling by too much
61 * creates an artificial limit; throttling by too little can only be sustained
62 * for short periods and would lead to highly lumpy performance. On a per-pool
63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
65 * of dirty data decreases. When the amount of dirty data exceeds a
66 * predetermined threshold further modifications are blocked until the amount
67 * of dirty data decreases (as data is synced out).
68 *
69 * The limit on dirty data is tunable, and should be adjusted according to
70 * both the IO capacity and available memory of the system. The larger the
71 * window, the more ZFS is able to aggregate and amortize metadata (and data)
72 * changes. However, memory is a limited resource, and allowing for more dirty
73 * data comes at the cost of keeping other useful data in memory (for example
74 * ZFS data cached by the ARC).
75 *
76 * Implementation
77 *
78 * As buffers are modified dsl_pool_willuse_space() increments both the per-
79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
80 * dirty space used; dsl_pool_dirty_space() decrements those values as data
81 * is synced out from dsl_pool_sync(). While only the poolwide value is
82 * relevant, the per-txg value is useful for debugging. The tunable
83 * zfs_dirty_data_max determines the dirty space limit. Once that value is
84 * exceeded, new writes are halted until space frees up.
85 *
86 * The zfs_dirty_data_sync tunable dictates the threshold at which we
87 * ensure that there is a txg syncing (see the comment in txg.c for a full
88 * description of transaction group stages).
89 *
90 * The IO scheduler uses both the dirty space limit and current amount of
91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
92 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 *
94 * The delay is also calculated based on the amount of dirty data.  See the
95 * comment above dmu_tx_delay() for details.
96 */
97
98/*
99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
100 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
101 */
102uint64_t zfs_dirty_data_max;
103uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
104int zfs_dirty_data_max_percent = 10;
105
106/*
107 * If there is at least this much dirty data, push out a txg.
108 */
109uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
110
111/*
112 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
113 * and delay each transaction.
114 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
115 */
116int zfs_delay_min_dirty_percent = 60;
117
118/*
119 * This controls how quickly the delay approaches infinity.
120 * Larger values cause it to delay more for a given amount of dirty data.
121 * Therefore larger values will cause there to be less dirty data for a
122 * given throughput.
123 *
124 * For the smoothest delay, this value should be about 1 billion divided
125 * by the maximum number of operations per second.  This will smoothly
126 * handle between 10x and 1/10th this number.
127 *
128 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
129 * multiply in dmu_tx_delay().
130 */
131uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
132
133
134#ifdef __FreeBSD__
135
136extern int zfs_vdev_async_write_active_max_dirty_percent;
137
138SYSCTL_DECL(_vfs_zfs);
139
140TUNABLE_QUAD("vfs.zfs.dirty_data_max", &zfs_dirty_data_max);
141SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
142    &zfs_dirty_data_max, 0,
143    "The maximum amount of dirty data in bytes after which new writes are "
144    "halted until space becomes available");
145
146TUNABLE_QUAD("vfs.zfs.dirty_data_max_max", &zfs_dirty_data_max_max);
147SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
148    &zfs_dirty_data_max_max, 0,
149    "The absolute cap on dirty_data_max when auto calculating");
150
151TUNABLE_INT("vfs.zfs.dirty_data_max_percent", &zfs_dirty_data_max_percent);
152static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
153SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
154    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
155    sysctl_zfs_dirty_data_max_percent, "I",
156    "The percent of physical memory used to auto calculate dirty_data_max");
157
158TUNABLE_QUAD("vfs.zfs.dirty_data_sync", &zfs_dirty_data_sync);
159SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
160    &zfs_dirty_data_sync, 0,
161    "Force a txg if the number of dirty buffer bytes exceed this value");
162
163static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
164/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
165SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
166    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
167    sysctl_zfs_delay_min_dirty_percent, "I",
168    "The limit of outstanding dirty data before transations are delayed");
169
170static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
171/* No zfs_delay_scale tunable due to limit requirements */
172SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
173    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
174    sysctl_zfs_delay_scale, "QU",
175    "Controls how quickly the delay approaches infinity");
176
177static int
178sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
179{
180	int val, err;
181
182	val = zfs_dirty_data_max_percent;
183	err = sysctl_handle_int(oidp, &val, 0, req);
184	if (err != 0 || req->newptr == NULL)
185		return (err);
186
187	if (val < 0 || val > 100)
188		return (EINVAL);
189
190	zfs_dirty_data_max_percent = val;
191
192	return (0);
193}
194
195static int
196sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
197{
198	int val, err;
199
200	val = zfs_delay_min_dirty_percent;
201	err = sysctl_handle_int(oidp, &val, 0, req);
202	if (err != 0 || req->newptr == NULL)
203		return (err);
204
205	if (val < zfs_vdev_async_write_active_max_dirty_percent)
206		return (EINVAL);
207
208	zfs_delay_min_dirty_percent = val;
209
210	return (0);
211}
212
213static int
214sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
215{
216	uint64_t val;
217	int err;
218
219	val = zfs_delay_scale;
220	err = sysctl_handle_64(oidp, &val, 0, req);
221	if (err != 0 || req->newptr == NULL)
222		return (err);
223
224	if (val > UINT64_MAX / zfs_dirty_data_max)
225		return (EINVAL);
226
227	zfs_delay_scale = val;
228
229	return (0);
230}
231#endif
232
233hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
234hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
235
236int
237dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
238{
239	uint64_t obj;
240	int err;
241
242	err = zap_lookup(dp->dp_meta_objset,
243	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
244	    name, sizeof (obj), 1, &obj);
245	if (err)
246		return (err);
247
248	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
249}
250
251static dsl_pool_t *
252dsl_pool_open_impl(spa_t *spa, uint64_t txg)
253{
254	dsl_pool_t *dp;
255	blkptr_t *bp = spa_get_rootblkptr(spa);
256
257	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
258	dp->dp_spa = spa;
259	dp->dp_meta_rootbp = *bp;
260	rrw_init(&dp->dp_config_rwlock, B_TRUE);
261	txg_init(dp, txg);
262
263	txg_list_create(&dp->dp_dirty_datasets,
264	    offsetof(dsl_dataset_t, ds_dirty_link));
265	txg_list_create(&dp->dp_dirty_zilogs,
266	    offsetof(zilog_t, zl_dirty_link));
267	txg_list_create(&dp->dp_dirty_dirs,
268	    offsetof(dsl_dir_t, dd_dirty_link));
269	txg_list_create(&dp->dp_sync_tasks,
270	    offsetof(dsl_sync_task_t, dst_node));
271
272	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
273	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
274
275	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
276	    1, 4, 0);
277
278	return (dp);
279}
280
281int
282dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
283{
284	int err;
285	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
286
287	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
288	    &dp->dp_meta_objset);
289	if (err != 0)
290		dsl_pool_close(dp);
291	else
292		*dpp = dp;
293
294	return (err);
295}
296
297int
298dsl_pool_open(dsl_pool_t *dp)
299{
300	int err;
301	dsl_dir_t *dd;
302	dsl_dataset_t *ds;
303	uint64_t obj;
304
305	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
306	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
307	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
308	    &dp->dp_root_dir_obj);
309	if (err)
310		goto out;
311
312	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
313	    NULL, dp, &dp->dp_root_dir);
314	if (err)
315		goto out;
316
317	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
318	if (err)
319		goto out;
320
321	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
322		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
323		if (err)
324			goto out;
325		err = dsl_dataset_hold_obj(dp,
326		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
327		if (err == 0) {
328			err = dsl_dataset_hold_obj(dp,
329			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
330			    &dp->dp_origin_snap);
331			dsl_dataset_rele(ds, FTAG);
332		}
333		dsl_dir_rele(dd, dp);
334		if (err)
335			goto out;
336	}
337
338	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
339		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
340		    &dp->dp_free_dir);
341		if (err)
342			goto out;
343
344		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
345		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
346		if (err)
347			goto out;
348		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
349		    dp->dp_meta_objset, obj));
350	}
351
352	/*
353	 * Note: errors ignored, because the leak dir will not exist if we
354	 * have not encountered a leak yet.
355	 */
356	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
357	    &dp->dp_leak_dir);
358
359	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
360		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
361		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
362		    &dp->dp_bptree_obj);
363		if (err != 0)
364			goto out;
365	}
366
367	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
368		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
369		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
370		    &dp->dp_empty_bpobj);
371		if (err != 0)
372			goto out;
373	}
374
375	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
376	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
377	    &dp->dp_tmp_userrefs_obj);
378	if (err == ENOENT)
379		err = 0;
380	if (err)
381		goto out;
382
383	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
384
385out:
386	rrw_exit(&dp->dp_config_rwlock, FTAG);
387	return (err);
388}
389
390void
391dsl_pool_close(dsl_pool_t *dp)
392{
393	/*
394	 * Drop our references from dsl_pool_open().
395	 *
396	 * Since we held the origin_snap from "syncing" context (which
397	 * includes pool-opening context), it actually only got a "ref"
398	 * and not a hold, so just drop that here.
399	 */
400	if (dp->dp_origin_snap)
401		dsl_dataset_rele(dp->dp_origin_snap, dp);
402	if (dp->dp_mos_dir)
403		dsl_dir_rele(dp->dp_mos_dir, dp);
404	if (dp->dp_free_dir)
405		dsl_dir_rele(dp->dp_free_dir, dp);
406	if (dp->dp_leak_dir)
407		dsl_dir_rele(dp->dp_leak_dir, dp);
408	if (dp->dp_root_dir)
409		dsl_dir_rele(dp->dp_root_dir, dp);
410
411	bpobj_close(&dp->dp_free_bpobj);
412
413	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
414	if (dp->dp_meta_objset)
415		dmu_objset_evict(dp->dp_meta_objset);
416
417	txg_list_destroy(&dp->dp_dirty_datasets);
418	txg_list_destroy(&dp->dp_dirty_zilogs);
419	txg_list_destroy(&dp->dp_sync_tasks);
420	txg_list_destroy(&dp->dp_dirty_dirs);
421
422	arc_flush(dp->dp_spa);
423	txg_fini(dp);
424	dsl_scan_fini(dp);
425	dmu_buf_user_evict_wait();
426
427	rrw_destroy(&dp->dp_config_rwlock);
428	mutex_destroy(&dp->dp_lock);
429	taskq_destroy(dp->dp_vnrele_taskq);
430	if (dp->dp_blkstats)
431		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
432	kmem_free(dp, sizeof (dsl_pool_t));
433}
434
435dsl_pool_t *
436dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
437{
438	int err;
439	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
440	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
441	objset_t *os;
442	dsl_dataset_t *ds;
443	uint64_t obj;
444
445	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
446
447	/* create and open the MOS (meta-objset) */
448	dp->dp_meta_objset = dmu_objset_create_impl(spa,
449	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
450
451	/* create the pool directory */
452	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
453	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
454	ASSERT0(err);
455
456	/* Initialize scan structures */
457	VERIFY0(dsl_scan_init(dp, txg));
458
459	/* create and open the root dir */
460	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
461	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
462	    NULL, dp, &dp->dp_root_dir));
463
464	/* create and open the meta-objset dir */
465	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
466	VERIFY0(dsl_pool_open_special_dir(dp,
467	    MOS_DIR_NAME, &dp->dp_mos_dir));
468
469	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
470		/* create and open the free dir */
471		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
472		    FREE_DIR_NAME, tx);
473		VERIFY0(dsl_pool_open_special_dir(dp,
474		    FREE_DIR_NAME, &dp->dp_free_dir));
475
476		/* create and open the free_bplist */
477		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
478		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
479		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
480		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
481		    dp->dp_meta_objset, obj));
482	}
483
484	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
485		dsl_pool_create_origin(dp, tx);
486
487	/* create the root dataset */
488	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
489
490	/* create the root objset */
491	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
492	os = dmu_objset_create_impl(dp->dp_spa, ds,
493	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
494#ifdef _KERNEL
495	zfs_create_fs(os, kcred, zplprops, tx);
496#endif
497	dsl_dataset_rele(ds, FTAG);
498
499	dmu_tx_commit(tx);
500
501	rrw_exit(&dp->dp_config_rwlock, FTAG);
502
503	return (dp);
504}
505
506/*
507 * Account for the meta-objset space in its placeholder dsl_dir.
508 */
509void
510dsl_pool_mos_diduse_space(dsl_pool_t *dp,
511    int64_t used, int64_t comp, int64_t uncomp)
512{
513	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
514	mutex_enter(&dp->dp_lock);
515	dp->dp_mos_used_delta += used;
516	dp->dp_mos_compressed_delta += comp;
517	dp->dp_mos_uncompressed_delta += uncomp;
518	mutex_exit(&dp->dp_lock);
519}
520
521static int
522deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
523{
524	dsl_deadlist_t *dl = arg;
525	dsl_deadlist_insert(dl, bp, tx);
526	return (0);
527}
528
529static void
530dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
531{
532	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
533	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
534	VERIFY0(zio_wait(zio));
535	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
536	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
537}
538
539static void
540dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
541{
542	ASSERT(MUTEX_HELD(&dp->dp_lock));
543
544	if (delta < 0)
545		ASSERT3U(-delta, <=, dp->dp_dirty_total);
546
547	dp->dp_dirty_total += delta;
548
549	/*
550	 * Note: we signal even when increasing dp_dirty_total.
551	 * This ensures forward progress -- each thread wakes the next waiter.
552	 */
553	if (dp->dp_dirty_total <= zfs_dirty_data_max)
554		cv_signal(&dp->dp_spaceavail_cv);
555}
556
557void
558dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
559{
560	zio_t *zio;
561	dmu_tx_t *tx;
562	dsl_dir_t *dd;
563	dsl_dataset_t *ds;
564	objset_t *mos = dp->dp_meta_objset;
565	list_t synced_datasets;
566
567	list_create(&synced_datasets, sizeof (dsl_dataset_t),
568	    offsetof(dsl_dataset_t, ds_synced_link));
569
570	tx = dmu_tx_create_assigned(dp, txg);
571
572	/*
573	 * Write out all dirty blocks of dirty datasets.
574	 */
575	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
576	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
577		/*
578		 * We must not sync any non-MOS datasets twice, because
579		 * we may have taken a snapshot of them.  However, we
580		 * may sync newly-created datasets on pass 2.
581		 */
582		ASSERT(!list_link_active(&ds->ds_synced_link));
583		list_insert_tail(&synced_datasets, ds);
584		dsl_dataset_sync(ds, zio, tx);
585	}
586	VERIFY0(zio_wait(zio));
587
588	/*
589	 * We have written all of the accounted dirty data, so our
590	 * dp_space_towrite should now be zero.  However, some seldom-used
591	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
592	 * rounding error in dbuf_write_physdone).
593	 * Shore up the accounting of any dirtied space now.
594	 */
595	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
596
597	/*
598	 * After the data blocks have been written (ensured by the zio_wait()
599	 * above), update the user/group space accounting.
600	 */
601	for (ds = list_head(&synced_datasets); ds != NULL;
602	    ds = list_next(&synced_datasets, ds)) {
603		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
604	}
605
606	/*
607	 * Sync the datasets again to push out the changes due to
608	 * userspace updates.  This must be done before we process the
609	 * sync tasks, so that any snapshots will have the correct
610	 * user accounting information (and we won't get confused
611	 * about which blocks are part of the snapshot).
612	 */
613	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
614	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
615		ASSERT(list_link_active(&ds->ds_synced_link));
616		dmu_buf_rele(ds->ds_dbuf, ds);
617		dsl_dataset_sync(ds, zio, tx);
618	}
619	VERIFY0(zio_wait(zio));
620
621	/*
622	 * Now that the datasets have been completely synced, we can
623	 * clean up our in-memory structures accumulated while syncing:
624	 *
625	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
626	 *  - release hold from dsl_dataset_dirty()
627	 */
628	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
629		objset_t *os = ds->ds_objset;
630		bplist_iterate(&ds->ds_pending_deadlist,
631		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
632		ASSERT(!dmu_objset_is_dirty(os, txg));
633		dmu_buf_rele(ds->ds_dbuf, ds);
634	}
635	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
636		dsl_dir_sync(dd, tx);
637	}
638
639	/*
640	 * The MOS's space is accounted for in the pool/$MOS
641	 * (dp_mos_dir).  We can't modify the mos while we're syncing
642	 * it, so we remember the deltas and apply them here.
643	 */
644	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
645	    dp->dp_mos_uncompressed_delta != 0) {
646		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
647		    dp->dp_mos_used_delta,
648		    dp->dp_mos_compressed_delta,
649		    dp->dp_mos_uncompressed_delta, tx);
650		dp->dp_mos_used_delta = 0;
651		dp->dp_mos_compressed_delta = 0;
652		dp->dp_mos_uncompressed_delta = 0;
653	}
654
655	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
656	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
657		dsl_pool_sync_mos(dp, tx);
658	}
659
660	/*
661	 * If we modify a dataset in the same txg that we want to destroy it,
662	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
663	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
664	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
665	 * and clearing the hold on it) before we process the sync_tasks.
666	 * The MOS data dirtied by the sync_tasks will be synced on the next
667	 * pass.
668	 */
669	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
670		dsl_sync_task_t *dst;
671		/*
672		 * No more sync tasks should have been added while we
673		 * were syncing.
674		 */
675		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
676		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
677			dsl_sync_task_sync(dst, tx);
678	}
679
680	dmu_tx_commit(tx);
681
682	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
683}
684
685void
686dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
687{
688	zilog_t *zilog;
689
690	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
691		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
692		zil_clean(zilog, txg);
693		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
694		dmu_buf_rele(ds->ds_dbuf, zilog);
695	}
696	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
697}
698
699/*
700 * TRUE if the current thread is the tx_sync_thread or if we
701 * are being called from SPA context during pool initialization.
702 */
703int
704dsl_pool_sync_context(dsl_pool_t *dp)
705{
706	return (curthread == dp->dp_tx.tx_sync_thread ||
707	    spa_is_initializing(dp->dp_spa));
708}
709
710uint64_t
711dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
712{
713	uint64_t space, resv;
714
715	/*
716	 * If we're trying to assess whether it's OK to do a free,
717	 * cut the reservation in half to allow forward progress
718	 * (e.g. make it possible to rm(1) files from a full pool).
719	 */
720	space = spa_get_dspace(dp->dp_spa);
721	resv = spa_get_slop_space(dp->dp_spa);
722	if (netfree)
723		resv >>= 1;
724
725	return (space - resv);
726}
727
728boolean_t
729dsl_pool_need_dirty_delay(dsl_pool_t *dp)
730{
731	uint64_t delay_min_bytes =
732	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
733	boolean_t rv;
734
735	mutex_enter(&dp->dp_lock);
736	if (dp->dp_dirty_total > zfs_dirty_data_sync)
737		txg_kick(dp);
738	rv = (dp->dp_dirty_total > delay_min_bytes);
739	mutex_exit(&dp->dp_lock);
740	return (rv);
741}
742
743void
744dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
745{
746	if (space > 0) {
747		mutex_enter(&dp->dp_lock);
748		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
749		dsl_pool_dirty_delta(dp, space);
750		mutex_exit(&dp->dp_lock);
751	}
752}
753
754void
755dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
756{
757	ASSERT3S(space, >=, 0);
758	if (space == 0)
759		return;
760	mutex_enter(&dp->dp_lock);
761	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
762		/* XXX writing something we didn't dirty? */
763		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
764	}
765	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
766	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
767	ASSERT3U(dp->dp_dirty_total, >=, space);
768	dsl_pool_dirty_delta(dp, -space);
769	mutex_exit(&dp->dp_lock);
770}
771
772/* ARGSUSED */
773static int
774upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
775{
776	dmu_tx_t *tx = arg;
777	dsl_dataset_t *ds, *prev = NULL;
778	int err;
779
780	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
781	if (err)
782		return (err);
783
784	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
785		err = dsl_dataset_hold_obj(dp,
786		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
787		if (err) {
788			dsl_dataset_rele(ds, FTAG);
789			return (err);
790		}
791
792		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
793			break;
794		dsl_dataset_rele(ds, FTAG);
795		ds = prev;
796		prev = NULL;
797	}
798
799	if (prev == NULL) {
800		prev = dp->dp_origin_snap;
801
802		/*
803		 * The $ORIGIN can't have any data, or the accounting
804		 * will be wrong.
805		 */
806		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
807
808		/* The origin doesn't get attached to itself */
809		if (ds->ds_object == prev->ds_object) {
810			dsl_dataset_rele(ds, FTAG);
811			return (0);
812		}
813
814		dmu_buf_will_dirty(ds->ds_dbuf, tx);
815		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
816		dsl_dataset_phys(ds)->ds_prev_snap_txg =
817		    dsl_dataset_phys(prev)->ds_creation_txg;
818
819		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
820		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
821
822		dmu_buf_will_dirty(prev->ds_dbuf, tx);
823		dsl_dataset_phys(prev)->ds_num_children++;
824
825		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
826			ASSERT(ds->ds_prev == NULL);
827			VERIFY0(dsl_dataset_hold_obj(dp,
828			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
829			    ds, &ds->ds_prev));
830		}
831	}
832
833	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
834	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
835
836	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
837		dmu_buf_will_dirty(prev->ds_dbuf, tx);
838		dsl_dataset_phys(prev)->ds_next_clones_obj =
839		    zap_create(dp->dp_meta_objset,
840		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
841	}
842	VERIFY0(zap_add_int(dp->dp_meta_objset,
843	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
844
845	dsl_dataset_rele(ds, FTAG);
846	if (prev != dp->dp_origin_snap)
847		dsl_dataset_rele(prev, FTAG);
848	return (0);
849}
850
851void
852dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
853{
854	ASSERT(dmu_tx_is_syncing(tx));
855	ASSERT(dp->dp_origin_snap != NULL);
856
857	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
858	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
859}
860
861/* ARGSUSED */
862static int
863upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
864{
865	dmu_tx_t *tx = arg;
866	objset_t *mos = dp->dp_meta_objset;
867
868	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
869		dsl_dataset_t *origin;
870
871		VERIFY0(dsl_dataset_hold_obj(dp,
872		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
873
874		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
875			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
876			dsl_dir_phys(origin->ds_dir)->dd_clones =
877			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
878			    0, tx);
879		}
880
881		VERIFY0(zap_add_int(dp->dp_meta_objset,
882		    dsl_dir_phys(origin->ds_dir)->dd_clones,
883		    ds->ds_object, tx));
884
885		dsl_dataset_rele(origin, FTAG);
886	}
887	return (0);
888}
889
890void
891dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
892{
893	ASSERT(dmu_tx_is_syncing(tx));
894	uint64_t obj;
895
896	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
897	VERIFY0(dsl_pool_open_special_dir(dp,
898	    FREE_DIR_NAME, &dp->dp_free_dir));
899
900	/*
901	 * We can't use bpobj_alloc(), because spa_version() still
902	 * returns the old version, and we need a new-version bpobj with
903	 * subobj support.  So call dmu_object_alloc() directly.
904	 */
905	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
906	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
907	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
908	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
909	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
910
911	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
912	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
913}
914
915void
916dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
917{
918	uint64_t dsobj;
919	dsl_dataset_t *ds;
920
921	ASSERT(dmu_tx_is_syncing(tx));
922	ASSERT(dp->dp_origin_snap == NULL);
923	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
924
925	/* create the origin dir, ds, & snap-ds */
926	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
927	    NULL, 0, kcred, tx);
928	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
929	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
930	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
931	    dp, &dp->dp_origin_snap));
932	dsl_dataset_rele(ds, FTAG);
933}
934
935taskq_t *
936dsl_pool_vnrele_taskq(dsl_pool_t *dp)
937{
938	return (dp->dp_vnrele_taskq);
939}
940
941/*
942 * Walk through the pool-wide zap object of temporary snapshot user holds
943 * and release them.
944 */
945void
946dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
947{
948	zap_attribute_t za;
949	zap_cursor_t zc;
950	objset_t *mos = dp->dp_meta_objset;
951	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
952	nvlist_t *holds;
953
954	if (zapobj == 0)
955		return;
956	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
957
958	holds = fnvlist_alloc();
959
960	for (zap_cursor_init(&zc, mos, zapobj);
961	    zap_cursor_retrieve(&zc, &za) == 0;
962	    zap_cursor_advance(&zc)) {
963		char *htag;
964		nvlist_t *tags;
965
966		htag = strchr(za.za_name, '-');
967		*htag = '\0';
968		++htag;
969		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
970			tags = fnvlist_alloc();
971			fnvlist_add_boolean(tags, htag);
972			fnvlist_add_nvlist(holds, za.za_name, tags);
973			fnvlist_free(tags);
974		} else {
975			fnvlist_add_boolean(tags, htag);
976		}
977	}
978	dsl_dataset_user_release_tmp(dp, holds);
979	fnvlist_free(holds);
980	zap_cursor_fini(&zc);
981}
982
983/*
984 * Create the pool-wide zap object for storing temporary snapshot holds.
985 */
986void
987dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
988{
989	objset_t *mos = dp->dp_meta_objset;
990
991	ASSERT(dp->dp_tmp_userrefs_obj == 0);
992	ASSERT(dmu_tx_is_syncing(tx));
993
994	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
995	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
996}
997
998static int
999dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1000    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1001{
1002	objset_t *mos = dp->dp_meta_objset;
1003	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1004	char *name;
1005	int error;
1006
1007	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1008	ASSERT(dmu_tx_is_syncing(tx));
1009
1010	/*
1011	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1012	 * zap object for temporary holds might not exist yet.
1013	 */
1014	if (zapobj == 0) {
1015		if (holding) {
1016			dsl_pool_user_hold_create_obj(dp, tx);
1017			zapobj = dp->dp_tmp_userrefs_obj;
1018		} else {
1019			return (SET_ERROR(ENOENT));
1020		}
1021	}
1022
1023	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1024	if (holding)
1025		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1026	else
1027		error = zap_remove(mos, zapobj, name, tx);
1028	strfree(name);
1029
1030	return (error);
1031}
1032
1033/*
1034 * Add a temporary hold for the given dataset object and tag.
1035 */
1036int
1037dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1038    uint64_t now, dmu_tx_t *tx)
1039{
1040	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1041}
1042
1043/*
1044 * Release a temporary hold for the given dataset object and tag.
1045 */
1046int
1047dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1048    dmu_tx_t *tx)
1049{
1050	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1051	    tx, B_FALSE));
1052}
1053
1054/*
1055 * DSL Pool Configuration Lock
1056 *
1057 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1058 * creation / destruction / rename / property setting).  It must be held for
1059 * read to hold a dataset or dsl_dir.  I.e. you must call
1060 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1061 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1062 * must be held continuously until all datasets and dsl_dirs are released.
1063 *
1064 * The only exception to this rule is that if a "long hold" is placed on
1065 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1066 * is still held.  The long hold will prevent the dataset from being
1067 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1068 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1069 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1070 *
1071 * Legitimate long-holders (including owners) should be long-running, cancelable
1072 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1073 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1074 * "zfs send", and "zfs diff".  There are several other long-holders whose
1075 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1076 *
1077 * The usual formula for long-holding would be:
1078 * dsl_pool_hold()
1079 * dsl_dataset_hold()
1080 * ... perform checks ...
1081 * dsl_dataset_long_hold()
1082 * dsl_pool_rele()
1083 * ... perform long-running task ...
1084 * dsl_dataset_long_rele()
1085 * dsl_dataset_rele()
1086 *
1087 * Note that when the long hold is released, the dataset is still held but
1088 * the pool is not held.  The dataset may change arbitrarily during this time
1089 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1090 * dataset except release it.
1091 *
1092 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1093 * or modifying operations.
1094 *
1095 * Modifying operations should generally use dsl_sync_task().  The synctask
1096 * infrastructure enforces proper locking strategy with respect to the
1097 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1098 *
1099 * Read-only operations will manually hold the pool, then the dataset, obtain
1100 * information from the dataset, then release the pool and dataset.
1101 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1102 * hold/rele.
1103 */
1104
1105int
1106dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1107{
1108	spa_t *spa;
1109	int error;
1110
1111	error = spa_open(name, &spa, tag);
1112	if (error == 0) {
1113		*dp = spa_get_dsl(spa);
1114		dsl_pool_config_enter(*dp, tag);
1115	}
1116	return (error);
1117}
1118
1119void
1120dsl_pool_rele(dsl_pool_t *dp, void *tag)
1121{
1122	dsl_pool_config_exit(dp, tag);
1123	spa_close(dp->dp_spa, tag);
1124}
1125
1126void
1127dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1128{
1129	/*
1130	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1131	 *
1132	 * The rrwlock can (with the track_all flag) track all reading threads,
1133	 * which is very useful for debugging which code path failed to release
1134	 * the lock, and for verifying that the *current* thread does hold
1135	 * the lock.
1136	 *
1137	 * (Unlike a rwlock, which knows that N threads hold it for
1138	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1139	 * if any thread holds it for read, even if this thread doesn't).
1140	 */
1141	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1142	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1143}
1144
1145void
1146dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1147{
1148	rrw_exit(&dp->dp_config_rwlock, tag);
1149}
1150
1151boolean_t
1152dsl_pool_config_held(dsl_pool_t *dp)
1153{
1154	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1155}
1156
1157boolean_t
1158dsl_pool_config_held_writer(dsl_pool_t *dp)
1159{
1160	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1161}
1162