dsl_pool.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27#include <sys/dsl_pool.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/dsl_synctask.h>
32#include <sys/dsl_scan.h>
33#include <sys/dnode.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/zap.h>
38#include <sys/zio.h>
39#include <sys/zfs_context.h>
40#include <sys/fs/zfs.h>
41#include <sys/zfs_znode.h>
42#include <sys/spa_impl.h>
43#include <sys/dsl_deadlist.h>
44#include <sys/bptree.h>
45#include <sys/zfeature.h>
46#include <sys/zil_impl.h>
47#include <sys/dsl_userhold.h>
48
49#ifdef __FreeBSD__
50#include <sys/sysctl.h>
51#include <sys/types.h>
52#endif
53
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
85 * The zfs_dirty_data_sync tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data.  See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
100 */
101uint64_t zfs_dirty_data_max;
102uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
103int zfs_dirty_data_max_percent = 10;
104
105/*
106 * If there is at least this much dirty data, push out a txg.
107 */
108uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
109
110/*
111 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
112 * and delay each transaction.
113 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
114 */
115int zfs_delay_min_dirty_percent = 60;
116
117/*
118 * This controls how quickly the delay approaches infinity.
119 * Larger values cause it to delay more for a given amount of dirty data.
120 * Therefore larger values will cause there to be less dirty data for a
121 * given throughput.
122 *
123 * For the smoothest delay, this value should be about 1 billion divided
124 * by the maximum number of operations per second.  This will smoothly
125 * handle between 10x and 1/10th this number.
126 *
127 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
128 * multiply in dmu_tx_delay().
129 */
130uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
131
132
133#ifdef __FreeBSD__
134
135extern int zfs_vdev_async_write_active_max_dirty_percent;
136
137SYSCTL_DECL(_vfs_zfs);
138
139TUNABLE_QUAD("vfs.zfs.dirty_data_max", &zfs_dirty_data_max);
140SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
141    &zfs_dirty_data_max, 0,
142    "The maximum amount of dirty data in bytes after which new writes are "
143    "halted until space becomes available");
144
145TUNABLE_QUAD("vfs.zfs.dirty_data_max_max", &zfs_dirty_data_max_max);
146SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
147    &zfs_dirty_data_max_max, 0,
148    "The absolute cap on dirty_data_max when auto calculating");
149
150TUNABLE_INT("vfs.zfs.dirty_data_max_percent", &zfs_dirty_data_max_percent);
151static int sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS);
152SYSCTL_PROC(_vfs_zfs, OID_AUTO, dirty_data_max_percent,
153    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
154    sysctl_zfs_dirty_data_max_percent, "I",
155    "The percent of physical memory used to auto calculate dirty_data_max");
156
157TUNABLE_QUAD("vfs.zfs.dirty_data_sync", &zfs_dirty_data_sync);
158SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
159    &zfs_dirty_data_sync, 0,
160    "Force a txg if the number of dirty buffer bytes exceed this value");
161
162static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
163/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
164SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
165    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
166    sysctl_zfs_delay_min_dirty_percent, "I",
167    "The limit of outstanding dirty data before transations are delayed");
168
169static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
170/* No zfs_delay_scale tunable due to limit requirements */
171SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
172    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
173    sysctl_zfs_delay_scale, "QU",
174    "Controls how quickly the delay approaches infinity");
175
176static int
177sysctl_zfs_dirty_data_max_percent(SYSCTL_HANDLER_ARGS)
178{
179	int val, err;
180
181	val = zfs_dirty_data_max_percent;
182	err = sysctl_handle_int(oidp, &val, 0, req);
183	if (err != 0 || req->newptr == NULL)
184		return (err);
185
186	if (val < 0 || val > 100)
187		return (EINVAL);
188
189	zfs_dirty_data_max_percent = val;
190
191	return (0);
192}
193
194static int
195sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
196{
197	int val, err;
198
199	val = zfs_delay_min_dirty_percent;
200	err = sysctl_handle_int(oidp, &val, 0, req);
201	if (err != 0 || req->newptr == NULL)
202		return (err);
203
204	if (val < zfs_vdev_async_write_active_max_dirty_percent)
205		return (EINVAL);
206
207	zfs_delay_min_dirty_percent = val;
208
209	return (0);
210}
211
212static int
213sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
214{
215	uint64_t val;
216	int err;
217
218	val = zfs_delay_scale;
219	err = sysctl_handle_64(oidp, &val, 0, req);
220	if (err != 0 || req->newptr == NULL)
221		return (err);
222
223	if (val > UINT64_MAX / zfs_dirty_data_max)
224		return (EINVAL);
225
226	zfs_delay_scale = val;
227
228	return (0);
229}
230#endif
231
232hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
233hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
234
235int
236dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
237{
238	uint64_t obj;
239	int err;
240
241	err = zap_lookup(dp->dp_meta_objset,
242	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
243	    name, sizeof (obj), 1, &obj);
244	if (err)
245		return (err);
246
247	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
248}
249
250static dsl_pool_t *
251dsl_pool_open_impl(spa_t *spa, uint64_t txg)
252{
253	dsl_pool_t *dp;
254	blkptr_t *bp = spa_get_rootblkptr(spa);
255
256	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
257	dp->dp_spa = spa;
258	dp->dp_meta_rootbp = *bp;
259	rrw_init(&dp->dp_config_rwlock, B_TRUE);
260	txg_init(dp, txg);
261
262	txg_list_create(&dp->dp_dirty_datasets,
263	    offsetof(dsl_dataset_t, ds_dirty_link));
264	txg_list_create(&dp->dp_dirty_zilogs,
265	    offsetof(zilog_t, zl_dirty_link));
266	txg_list_create(&dp->dp_dirty_dirs,
267	    offsetof(dsl_dir_t, dd_dirty_link));
268	txg_list_create(&dp->dp_sync_tasks,
269	    offsetof(dsl_sync_task_t, dst_node));
270
271	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
272	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
273
274	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
275	    1, 4, 0);
276
277	return (dp);
278}
279
280int
281dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
282{
283	int err;
284	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
285
286	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
287	    &dp->dp_meta_objset);
288	if (err != 0)
289		dsl_pool_close(dp);
290	else
291		*dpp = dp;
292
293	return (err);
294}
295
296int
297dsl_pool_open(dsl_pool_t *dp)
298{
299	int err;
300	dsl_dir_t *dd;
301	dsl_dataset_t *ds;
302	uint64_t obj;
303
304	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
305	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
306	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
307	    &dp->dp_root_dir_obj);
308	if (err)
309		goto out;
310
311	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
312	    NULL, dp, &dp->dp_root_dir);
313	if (err)
314		goto out;
315
316	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
317	if (err)
318		goto out;
319
320	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
321		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
322		if (err)
323			goto out;
324		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
325		    FTAG, &ds);
326		if (err == 0) {
327			err = dsl_dataset_hold_obj(dp,
328			    ds->ds_phys->ds_prev_snap_obj, dp,
329			    &dp->dp_origin_snap);
330			dsl_dataset_rele(ds, FTAG);
331		}
332		dsl_dir_rele(dd, dp);
333		if (err)
334			goto out;
335	}
336
337	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
338		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
339		    &dp->dp_free_dir);
340		if (err)
341			goto out;
342
343		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
344		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
345		if (err)
346			goto out;
347		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
348		    dp->dp_meta_objset, obj));
349	}
350
351	/*
352	 * Note: errors ignored, because the leak dir will not exist if we
353	 * have not encountered a leak yet.
354	 */
355	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
356	    &dp->dp_leak_dir);
357
358	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
359		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
360		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
361		    &dp->dp_bptree_obj);
362		if (err != 0)
363			goto out;
364	}
365
366	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
367		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
368		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
369		    &dp->dp_empty_bpobj);
370		if (err != 0)
371			goto out;
372	}
373
374	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
375	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
376	    &dp->dp_tmp_userrefs_obj);
377	if (err == ENOENT)
378		err = 0;
379	if (err)
380		goto out;
381
382	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
383
384out:
385	rrw_exit(&dp->dp_config_rwlock, FTAG);
386	return (err);
387}
388
389void
390dsl_pool_close(dsl_pool_t *dp)
391{
392	/*
393	 * Drop our references from dsl_pool_open().
394	 *
395	 * Since we held the origin_snap from "syncing" context (which
396	 * includes pool-opening context), it actually only got a "ref"
397	 * and not a hold, so just drop that here.
398	 */
399	if (dp->dp_origin_snap)
400		dsl_dataset_rele(dp->dp_origin_snap, dp);
401	if (dp->dp_mos_dir)
402		dsl_dir_rele(dp->dp_mos_dir, dp);
403	if (dp->dp_free_dir)
404		dsl_dir_rele(dp->dp_free_dir, dp);
405	if (dp->dp_leak_dir)
406		dsl_dir_rele(dp->dp_leak_dir, dp);
407	if (dp->dp_root_dir)
408		dsl_dir_rele(dp->dp_root_dir, dp);
409
410	bpobj_close(&dp->dp_free_bpobj);
411
412	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
413	if (dp->dp_meta_objset)
414		dmu_objset_evict(dp->dp_meta_objset);
415
416	txg_list_destroy(&dp->dp_dirty_datasets);
417	txg_list_destroy(&dp->dp_dirty_zilogs);
418	txg_list_destroy(&dp->dp_sync_tasks);
419	txg_list_destroy(&dp->dp_dirty_dirs);
420
421	arc_flush(dp->dp_spa);
422	txg_fini(dp);
423	dsl_scan_fini(dp);
424	rrw_destroy(&dp->dp_config_rwlock);
425	mutex_destroy(&dp->dp_lock);
426	taskq_destroy(dp->dp_vnrele_taskq);
427	if (dp->dp_blkstats)
428		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
429	kmem_free(dp, sizeof (dsl_pool_t));
430}
431
432dsl_pool_t *
433dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
434{
435	int err;
436	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
437	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
438	objset_t *os;
439	dsl_dataset_t *ds;
440	uint64_t obj;
441
442	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
443
444	/* create and open the MOS (meta-objset) */
445	dp->dp_meta_objset = dmu_objset_create_impl(spa,
446	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
447
448	/* create the pool directory */
449	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
450	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
451	ASSERT0(err);
452
453	/* Initialize scan structures */
454	VERIFY0(dsl_scan_init(dp, txg));
455
456	/* create and open the root dir */
457	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
458	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
459	    NULL, dp, &dp->dp_root_dir));
460
461	/* create and open the meta-objset dir */
462	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
463	VERIFY0(dsl_pool_open_special_dir(dp,
464	    MOS_DIR_NAME, &dp->dp_mos_dir));
465
466	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
467		/* create and open the free dir */
468		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
469		    FREE_DIR_NAME, tx);
470		VERIFY0(dsl_pool_open_special_dir(dp,
471		    FREE_DIR_NAME, &dp->dp_free_dir));
472
473		/* create and open the free_bplist */
474		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
475		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
476		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
477		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
478		    dp->dp_meta_objset, obj));
479	}
480
481	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
482		dsl_pool_create_origin(dp, tx);
483
484	/* create the root dataset */
485	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
486
487	/* create the root objset */
488	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
489	os = dmu_objset_create_impl(dp->dp_spa, ds,
490	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
491#ifdef _KERNEL
492	zfs_create_fs(os, kcred, zplprops, tx);
493#endif
494	dsl_dataset_rele(ds, FTAG);
495
496	dmu_tx_commit(tx);
497
498	rrw_exit(&dp->dp_config_rwlock, FTAG);
499
500	return (dp);
501}
502
503/*
504 * Account for the meta-objset space in its placeholder dsl_dir.
505 */
506void
507dsl_pool_mos_diduse_space(dsl_pool_t *dp,
508    int64_t used, int64_t comp, int64_t uncomp)
509{
510	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
511	mutex_enter(&dp->dp_lock);
512	dp->dp_mos_used_delta += used;
513	dp->dp_mos_compressed_delta += comp;
514	dp->dp_mos_uncompressed_delta += uncomp;
515	mutex_exit(&dp->dp_lock);
516}
517
518static int
519deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
520{
521	dsl_deadlist_t *dl = arg;
522	dsl_deadlist_insert(dl, bp, tx);
523	return (0);
524}
525
526static void
527dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
528{
529	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
530	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
531	VERIFY0(zio_wait(zio));
532	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
533	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
534}
535
536static void
537dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
538{
539	ASSERT(MUTEX_HELD(&dp->dp_lock));
540
541	if (delta < 0)
542		ASSERT3U(-delta, <=, dp->dp_dirty_total);
543
544	dp->dp_dirty_total += delta;
545
546	/*
547	 * Note: we signal even when increasing dp_dirty_total.
548	 * This ensures forward progress -- each thread wakes the next waiter.
549	 */
550	if (dp->dp_dirty_total <= zfs_dirty_data_max)
551		cv_signal(&dp->dp_spaceavail_cv);
552}
553
554void
555dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
556{
557	zio_t *zio;
558	dmu_tx_t *tx;
559	dsl_dir_t *dd;
560	dsl_dataset_t *ds;
561	objset_t *mos = dp->dp_meta_objset;
562	list_t synced_datasets;
563
564	list_create(&synced_datasets, sizeof (dsl_dataset_t),
565	    offsetof(dsl_dataset_t, ds_synced_link));
566
567	tx = dmu_tx_create_assigned(dp, txg);
568
569	/*
570	 * Write out all dirty blocks of dirty datasets.
571	 */
572	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
573	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
574		/*
575		 * We must not sync any non-MOS datasets twice, because
576		 * we may have taken a snapshot of them.  However, we
577		 * may sync newly-created datasets on pass 2.
578		 */
579		ASSERT(!list_link_active(&ds->ds_synced_link));
580		list_insert_tail(&synced_datasets, ds);
581		dsl_dataset_sync(ds, zio, tx);
582	}
583	VERIFY0(zio_wait(zio));
584
585	/*
586	 * We have written all of the accounted dirty data, so our
587	 * dp_space_towrite should now be zero.  However, some seldom-used
588	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
589	 * rounding error in dbuf_write_physdone).
590	 * Shore up the accounting of any dirtied space now.
591	 */
592	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
593
594	/*
595	 * After the data blocks have been written (ensured by the zio_wait()
596	 * above), update the user/group space accounting.
597	 */
598	for (ds = list_head(&synced_datasets); ds != NULL;
599	    ds = list_next(&synced_datasets, ds)) {
600		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
601	}
602
603	/*
604	 * Sync the datasets again to push out the changes due to
605	 * userspace updates.  This must be done before we process the
606	 * sync tasks, so that any snapshots will have the correct
607	 * user accounting information (and we won't get confused
608	 * about which blocks are part of the snapshot).
609	 */
610	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
611	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
612		ASSERT(list_link_active(&ds->ds_synced_link));
613		dmu_buf_rele(ds->ds_dbuf, ds);
614		dsl_dataset_sync(ds, zio, tx);
615	}
616	VERIFY0(zio_wait(zio));
617
618	/*
619	 * Now that the datasets have been completely synced, we can
620	 * clean up our in-memory structures accumulated while syncing:
621	 *
622	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
623	 *  - release hold from dsl_dataset_dirty()
624	 */
625	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
626		objset_t *os = ds->ds_objset;
627		bplist_iterate(&ds->ds_pending_deadlist,
628		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
629		ASSERT(!dmu_objset_is_dirty(os, txg));
630		dmu_buf_rele(ds->ds_dbuf, ds);
631	}
632	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
633		dsl_dir_sync(dd, tx);
634	}
635
636	/*
637	 * The MOS's space is accounted for in the pool/$MOS
638	 * (dp_mos_dir).  We can't modify the mos while we're syncing
639	 * it, so we remember the deltas and apply them here.
640	 */
641	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
642	    dp->dp_mos_uncompressed_delta != 0) {
643		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
644		    dp->dp_mos_used_delta,
645		    dp->dp_mos_compressed_delta,
646		    dp->dp_mos_uncompressed_delta, tx);
647		dp->dp_mos_used_delta = 0;
648		dp->dp_mos_compressed_delta = 0;
649		dp->dp_mos_uncompressed_delta = 0;
650	}
651
652	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
653	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
654		dsl_pool_sync_mos(dp, tx);
655	}
656
657	/*
658	 * If we modify a dataset in the same txg that we want to destroy it,
659	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
660	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
661	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
662	 * and clearing the hold on it) before we process the sync_tasks.
663	 * The MOS data dirtied by the sync_tasks will be synced on the next
664	 * pass.
665	 */
666	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
667		dsl_sync_task_t *dst;
668		/*
669		 * No more sync tasks should have been added while we
670		 * were syncing.
671		 */
672		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
673		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
674			dsl_sync_task_sync(dst, tx);
675	}
676
677	dmu_tx_commit(tx);
678
679	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
680}
681
682void
683dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
684{
685	zilog_t *zilog;
686
687	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
688		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
689		zil_clean(zilog, txg);
690		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
691		dmu_buf_rele(ds->ds_dbuf, zilog);
692	}
693	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
694}
695
696/*
697 * TRUE if the current thread is the tx_sync_thread or if we
698 * are being called from SPA context during pool initialization.
699 */
700int
701dsl_pool_sync_context(dsl_pool_t *dp)
702{
703	return (curthread == dp->dp_tx.tx_sync_thread ||
704	    spa_is_initializing(dp->dp_spa));
705}
706
707uint64_t
708dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
709{
710	uint64_t space, resv;
711
712	/*
713	 * If we're trying to assess whether it's OK to do a free,
714	 * cut the reservation in half to allow forward progress
715	 * (e.g. make it possible to rm(1) files from a full pool).
716	 */
717	space = spa_get_dspace(dp->dp_spa);
718	resv = spa_get_slop_space(dp->dp_spa);
719	if (netfree)
720		resv >>= 1;
721
722	return (space - resv);
723}
724
725boolean_t
726dsl_pool_need_dirty_delay(dsl_pool_t *dp)
727{
728	uint64_t delay_min_bytes =
729	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
730	boolean_t rv;
731
732	mutex_enter(&dp->dp_lock);
733	if (dp->dp_dirty_total > zfs_dirty_data_sync)
734		txg_kick(dp);
735	rv = (dp->dp_dirty_total > delay_min_bytes);
736	mutex_exit(&dp->dp_lock);
737	return (rv);
738}
739
740void
741dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
742{
743	if (space > 0) {
744		mutex_enter(&dp->dp_lock);
745		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
746		dsl_pool_dirty_delta(dp, space);
747		mutex_exit(&dp->dp_lock);
748	}
749}
750
751void
752dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
753{
754	ASSERT3S(space, >=, 0);
755	if (space == 0)
756		return;
757	mutex_enter(&dp->dp_lock);
758	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
759		/* XXX writing something we didn't dirty? */
760		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
761	}
762	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
763	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
764	ASSERT3U(dp->dp_dirty_total, >=, space);
765	dsl_pool_dirty_delta(dp, -space);
766	mutex_exit(&dp->dp_lock);
767}
768
769/* ARGSUSED */
770static int
771upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
772{
773	dmu_tx_t *tx = arg;
774	dsl_dataset_t *ds, *prev = NULL;
775	int err;
776
777	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
778	if (err)
779		return (err);
780
781	while (ds->ds_phys->ds_prev_snap_obj != 0) {
782		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
783		    FTAG, &prev);
784		if (err) {
785			dsl_dataset_rele(ds, FTAG);
786			return (err);
787		}
788
789		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
790			break;
791		dsl_dataset_rele(ds, FTAG);
792		ds = prev;
793		prev = NULL;
794	}
795
796	if (prev == NULL) {
797		prev = dp->dp_origin_snap;
798
799		/*
800		 * The $ORIGIN can't have any data, or the accounting
801		 * will be wrong.
802		 */
803		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
804
805		/* The origin doesn't get attached to itself */
806		if (ds->ds_object == prev->ds_object) {
807			dsl_dataset_rele(ds, FTAG);
808			return (0);
809		}
810
811		dmu_buf_will_dirty(ds->ds_dbuf, tx);
812		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
813		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
814
815		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
816		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
817
818		dmu_buf_will_dirty(prev->ds_dbuf, tx);
819		prev->ds_phys->ds_num_children++;
820
821		if (ds->ds_phys->ds_next_snap_obj == 0) {
822			ASSERT(ds->ds_prev == NULL);
823			VERIFY0(dsl_dataset_hold_obj(dp,
824			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
825		}
826	}
827
828	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
829	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
830
831	if (prev->ds_phys->ds_next_clones_obj == 0) {
832		dmu_buf_will_dirty(prev->ds_dbuf, tx);
833		prev->ds_phys->ds_next_clones_obj =
834		    zap_create(dp->dp_meta_objset,
835		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
836	}
837	VERIFY0(zap_add_int(dp->dp_meta_objset,
838	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
839
840	dsl_dataset_rele(ds, FTAG);
841	if (prev != dp->dp_origin_snap)
842		dsl_dataset_rele(prev, FTAG);
843	return (0);
844}
845
846void
847dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
848{
849	ASSERT(dmu_tx_is_syncing(tx));
850	ASSERT(dp->dp_origin_snap != NULL);
851
852	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
853	    tx, DS_FIND_CHILDREN));
854}
855
856/* ARGSUSED */
857static int
858upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
859{
860	dmu_tx_t *tx = arg;
861	objset_t *mos = dp->dp_meta_objset;
862
863	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
864		dsl_dataset_t *origin;
865
866		VERIFY0(dsl_dataset_hold_obj(dp,
867		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
868
869		if (origin->ds_dir->dd_phys->dd_clones == 0) {
870			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
871			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
872			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
873		}
874
875		VERIFY0(zap_add_int(dp->dp_meta_objset,
876		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
877
878		dsl_dataset_rele(origin, FTAG);
879	}
880	return (0);
881}
882
883void
884dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
885{
886	ASSERT(dmu_tx_is_syncing(tx));
887	uint64_t obj;
888
889	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
890	VERIFY0(dsl_pool_open_special_dir(dp,
891	    FREE_DIR_NAME, &dp->dp_free_dir));
892
893	/*
894	 * We can't use bpobj_alloc(), because spa_version() still
895	 * returns the old version, and we need a new-version bpobj with
896	 * subobj support.  So call dmu_object_alloc() directly.
897	 */
898	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
899	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
900	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
901	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
902	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
903
904	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
905	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
906}
907
908void
909dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
910{
911	uint64_t dsobj;
912	dsl_dataset_t *ds;
913
914	ASSERT(dmu_tx_is_syncing(tx));
915	ASSERT(dp->dp_origin_snap == NULL);
916	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
917
918	/* create the origin dir, ds, & snap-ds */
919	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
920	    NULL, 0, kcred, tx);
921	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
922	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
923	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
924	    dp, &dp->dp_origin_snap));
925	dsl_dataset_rele(ds, FTAG);
926}
927
928taskq_t *
929dsl_pool_vnrele_taskq(dsl_pool_t *dp)
930{
931	return (dp->dp_vnrele_taskq);
932}
933
934/*
935 * Walk through the pool-wide zap object of temporary snapshot user holds
936 * and release them.
937 */
938void
939dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
940{
941	zap_attribute_t za;
942	zap_cursor_t zc;
943	objset_t *mos = dp->dp_meta_objset;
944	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
945	nvlist_t *holds;
946
947	if (zapobj == 0)
948		return;
949	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
950
951	holds = fnvlist_alloc();
952
953	for (zap_cursor_init(&zc, mos, zapobj);
954	    zap_cursor_retrieve(&zc, &za) == 0;
955	    zap_cursor_advance(&zc)) {
956		char *htag;
957		nvlist_t *tags;
958
959		htag = strchr(za.za_name, '-');
960		*htag = '\0';
961		++htag;
962		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
963			tags = fnvlist_alloc();
964			fnvlist_add_boolean(tags, htag);
965			fnvlist_add_nvlist(holds, za.za_name, tags);
966			fnvlist_free(tags);
967		} else {
968			fnvlist_add_boolean(tags, htag);
969		}
970	}
971	dsl_dataset_user_release_tmp(dp, holds);
972	fnvlist_free(holds);
973	zap_cursor_fini(&zc);
974}
975
976/*
977 * Create the pool-wide zap object for storing temporary snapshot holds.
978 */
979void
980dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
981{
982	objset_t *mos = dp->dp_meta_objset;
983
984	ASSERT(dp->dp_tmp_userrefs_obj == 0);
985	ASSERT(dmu_tx_is_syncing(tx));
986
987	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
988	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
989}
990
991static int
992dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
993    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
994{
995	objset_t *mos = dp->dp_meta_objset;
996	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
997	char *name;
998	int error;
999
1000	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1001	ASSERT(dmu_tx_is_syncing(tx));
1002
1003	/*
1004	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1005	 * zap object for temporary holds might not exist yet.
1006	 */
1007	if (zapobj == 0) {
1008		if (holding) {
1009			dsl_pool_user_hold_create_obj(dp, tx);
1010			zapobj = dp->dp_tmp_userrefs_obj;
1011		} else {
1012			return (SET_ERROR(ENOENT));
1013		}
1014	}
1015
1016	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1017	if (holding)
1018		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1019	else
1020		error = zap_remove(mos, zapobj, name, tx);
1021	strfree(name);
1022
1023	return (error);
1024}
1025
1026/*
1027 * Add a temporary hold for the given dataset object and tag.
1028 */
1029int
1030dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1031    uint64_t now, dmu_tx_t *tx)
1032{
1033	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1034}
1035
1036/*
1037 * Release a temporary hold for the given dataset object and tag.
1038 */
1039int
1040dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1041    dmu_tx_t *tx)
1042{
1043	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1044	    tx, B_FALSE));
1045}
1046
1047/*
1048 * DSL Pool Configuration Lock
1049 *
1050 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1051 * creation / destruction / rename / property setting).  It must be held for
1052 * read to hold a dataset or dsl_dir.  I.e. you must call
1053 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1054 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1055 * must be held continuously until all datasets and dsl_dirs are released.
1056 *
1057 * The only exception to this rule is that if a "long hold" is placed on
1058 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1059 * is still held.  The long hold will prevent the dataset from being
1060 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1061 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1062 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1063 *
1064 * Legitimate long-holders (including owners) should be long-running, cancelable
1065 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1066 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1067 * "zfs send", and "zfs diff".  There are several other long-holders whose
1068 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1069 *
1070 * The usual formula for long-holding would be:
1071 * dsl_pool_hold()
1072 * dsl_dataset_hold()
1073 * ... perform checks ...
1074 * dsl_dataset_long_hold()
1075 * dsl_pool_rele()
1076 * ... perform long-running task ...
1077 * dsl_dataset_long_rele()
1078 * dsl_dataset_rele()
1079 *
1080 * Note that when the long hold is released, the dataset is still held but
1081 * the pool is not held.  The dataset may change arbitrarily during this time
1082 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1083 * dataset except release it.
1084 *
1085 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1086 * or modifying operations.
1087 *
1088 * Modifying operations should generally use dsl_sync_task().  The synctask
1089 * infrastructure enforces proper locking strategy with respect to the
1090 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1091 *
1092 * Read-only operations will manually hold the pool, then the dataset, obtain
1093 * information from the dataset, then release the pool and dataset.
1094 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1095 * hold/rele.
1096 */
1097
1098int
1099dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1100{
1101	spa_t *spa;
1102	int error;
1103
1104	error = spa_open(name, &spa, tag);
1105	if (error == 0) {
1106		*dp = spa_get_dsl(spa);
1107		dsl_pool_config_enter(*dp, tag);
1108	}
1109	return (error);
1110}
1111
1112void
1113dsl_pool_rele(dsl_pool_t *dp, void *tag)
1114{
1115	dsl_pool_config_exit(dp, tag);
1116	spa_close(dp->dp_spa, tag);
1117}
1118
1119void
1120dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1121{
1122	/*
1123	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1124	 *
1125	 * The rrwlock can (with the track_all flag) track all reading threads,
1126	 * which is very useful for debugging which code path failed to release
1127	 * the lock, and for verifying that the *current* thread does hold
1128	 * the lock.
1129	 *
1130	 * (Unlike a rwlock, which knows that N threads hold it for
1131	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1132	 * if any thread holds it for read, even if this thread doesn't).
1133	 */
1134	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1135	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1136}
1137
1138void
1139dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1140{
1141	rrw_exit(&dp->dp_config_rwlock, tag);
1142}
1143
1144boolean_t
1145dsl_pool_config_held(dsl_pool_t *dp)
1146{
1147	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1148}
1149