dsl_pool.c revision 271435
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27#include <sys/dsl_pool.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/dsl_synctask.h>
32#include <sys/dsl_scan.h>
33#include <sys/dnode.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/zap.h>
38#include <sys/zio.h>
39#include <sys/zfs_context.h>
40#include <sys/fs/zfs.h>
41#include <sys/zfs_znode.h>
42#include <sys/spa_impl.h>
43#include <sys/dsl_deadlist.h>
44#include <sys/bptree.h>
45#include <sys/zfeature.h>
46#include <sys/zil_impl.h>
47#include <sys/dsl_userhold.h>
48
49#ifdef __FreeBSD__
50#include <sys/sysctl.h>
51#include <sys/types.h>
52#endif
53
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
85 * The zfs_dirty_data_sync tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data.  See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
100 */
101uint64_t zfs_dirty_data_max;
102uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
103int zfs_dirty_data_max_percent = 10;
104
105/*
106 * If there is at least this much dirty data, push out a txg.
107 */
108uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
109
110/*
111 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
112 * and delay each transaction.
113 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
114 */
115int zfs_delay_min_dirty_percent = 60;
116
117/*
118 * This controls how quickly the delay approaches infinity.
119 * Larger values cause it to delay less for a given amount of dirty data.
120 * Therefore larger values will cause there to be more dirty data for a
121 * given throughput.
122 *
123 * For the smoothest delay, this value should be about 1 billion divided
124 * by the maximum number of operations per second.  This will smoothly
125 * handle between 10x and 1/10th this number.
126 *
127 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
128 * multiply in dmu_tx_delay().
129 */
130uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
131
132
133/*
134 * XXX someday maybe turn these into #defines, and you have to tune it on a
135 * per-pool basis using zfs.conf.
136 */
137
138#ifdef __FreeBSD__
139
140extern int zfs_vdev_async_write_active_max_dirty_percent;
141
142SYSCTL_DECL(_vfs_zfs);
143
144TUNABLE_QUAD("vfs.zfs.dirty_data_max", &zfs_dirty_data_max);
145SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max, CTLFLAG_RWTUN,
146    &zfs_dirty_data_max, 0,
147    "The maximum amount of dirty data in bytes after which new writes are "
148    "halted until space becomes available");
149
150TUNABLE_QUAD("vfs.zfs.dirty_data_max_max", &zfs_dirty_data_max_max);
151SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_max_max, CTLFLAG_RDTUN,
152    &zfs_dirty_data_max_max, 0,
153    "The absolute cap on dirty_data_max when auto calculating");
154
155TUNABLE_INT("vfs.zfs.dirty_data_max_percent", &zfs_dirty_data_max_percent);
156SYSCTL_INT(_vfs_zfs, OID_AUTO, dirty_data_max_percent, CTLFLAG_RDTUN,
157    &zfs_dirty_data_max_percent, 0,
158    "The percent of physical memory used to auto calculate dirty_data_max");
159
160TUNABLE_QUAD("vfs.zfs.dirty_data_sync", &zfs_dirty_data_sync);
161SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, dirty_data_sync, CTLFLAG_RWTUN,
162    &zfs_dirty_data_sync, 0,
163    "Force a txg if the number of dirty buffer bytes exceed this value");
164
165static int sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS);
166/* No zfs_delay_min_dirty_percent tunable due to limit requirements */
167SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_min_dirty_percent,
168    CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
169    sysctl_zfs_delay_min_dirty_percent, "I",
170    "The limit of outstanding dirty data before transations are delayed");
171
172static int sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS);
173/* No zfs_delay_scale tunable due to limit requirements */
174SYSCTL_PROC(_vfs_zfs, OID_AUTO, delay_scale,
175    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
176    sysctl_zfs_delay_scale, "QU",
177    "Controls how quickly the delay approaches infinity");
178
179static int
180sysctl_zfs_delay_min_dirty_percent(SYSCTL_HANDLER_ARGS)
181{
182	int val, err;
183
184	val = zfs_delay_min_dirty_percent;
185	err = sysctl_handle_int(oidp, &val, 0, req);
186	if (err != 0 || req->newptr == NULL)
187		return (err);
188
189	if (val < zfs_vdev_async_write_active_max_dirty_percent)
190		return (EINVAL);
191
192	zfs_delay_min_dirty_percent = val;
193
194	return (0);
195}
196
197static int
198sysctl_zfs_delay_scale(SYSCTL_HANDLER_ARGS)
199{
200	uint64_t val;
201	int err;
202
203	val = zfs_delay_scale;
204	err = sysctl_handle_64(oidp, &val, 0, req);
205	if (err != 0 || req->newptr == NULL)
206		return (err);
207
208	if (val > UINT64_MAX / zfs_dirty_data_max)
209		return (EINVAL);
210
211	zfs_delay_scale = val;
212
213	return (0);
214}
215#endif
216
217hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
218hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
219
220int
221dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
222{
223	uint64_t obj;
224	int err;
225
226	err = zap_lookup(dp->dp_meta_objset,
227	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
228	    name, sizeof (obj), 1, &obj);
229	if (err)
230		return (err);
231
232	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
233}
234
235static dsl_pool_t *
236dsl_pool_open_impl(spa_t *spa, uint64_t txg)
237{
238	dsl_pool_t *dp;
239	blkptr_t *bp = spa_get_rootblkptr(spa);
240
241	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
242	dp->dp_spa = spa;
243	dp->dp_meta_rootbp = *bp;
244	rrw_init(&dp->dp_config_rwlock, B_TRUE);
245	txg_init(dp, txg);
246
247	txg_list_create(&dp->dp_dirty_datasets,
248	    offsetof(dsl_dataset_t, ds_dirty_link));
249	txg_list_create(&dp->dp_dirty_zilogs,
250	    offsetof(zilog_t, zl_dirty_link));
251	txg_list_create(&dp->dp_dirty_dirs,
252	    offsetof(dsl_dir_t, dd_dirty_link));
253	txg_list_create(&dp->dp_sync_tasks,
254	    offsetof(dsl_sync_task_t, dst_node));
255
256	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
257	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
258
259	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
260	    1, 4, 0);
261
262	return (dp);
263}
264
265int
266dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
267{
268	int err;
269	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
270
271	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
272	    &dp->dp_meta_objset);
273	if (err != 0)
274		dsl_pool_close(dp);
275	else
276		*dpp = dp;
277
278	return (err);
279}
280
281int
282dsl_pool_open(dsl_pool_t *dp)
283{
284	int err;
285	dsl_dir_t *dd;
286	dsl_dataset_t *ds;
287	uint64_t obj;
288
289	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
290	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
291	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
292	    &dp->dp_root_dir_obj);
293	if (err)
294		goto out;
295
296	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
297	    NULL, dp, &dp->dp_root_dir);
298	if (err)
299		goto out;
300
301	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
302	if (err)
303		goto out;
304
305	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
306		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
307		if (err)
308			goto out;
309		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
310		    FTAG, &ds);
311		if (err == 0) {
312			err = dsl_dataset_hold_obj(dp,
313			    ds->ds_phys->ds_prev_snap_obj, dp,
314			    &dp->dp_origin_snap);
315			dsl_dataset_rele(ds, FTAG);
316		}
317		dsl_dir_rele(dd, dp);
318		if (err)
319			goto out;
320	}
321
322	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
323		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
324		    &dp->dp_free_dir);
325		if (err)
326			goto out;
327
328		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
329		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
330		if (err)
331			goto out;
332		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
333		    dp->dp_meta_objset, obj));
334	}
335
336	/*
337	 * Note: errors ignored, because the leak dir will not exist if we
338	 * have not encountered a leak yet.
339	 */
340	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
341	    &dp->dp_leak_dir);
342
343	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
344		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
345		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
346		    &dp->dp_bptree_obj);
347		if (err != 0)
348			goto out;
349	}
350
351	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
352		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
353		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
354		    &dp->dp_empty_bpobj);
355		if (err != 0)
356			goto out;
357	}
358
359	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
360	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
361	    &dp->dp_tmp_userrefs_obj);
362	if (err == ENOENT)
363		err = 0;
364	if (err)
365		goto out;
366
367	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
368
369out:
370	rrw_exit(&dp->dp_config_rwlock, FTAG);
371	return (err);
372}
373
374void
375dsl_pool_close(dsl_pool_t *dp)
376{
377	/*
378	 * Drop our references from dsl_pool_open().
379	 *
380	 * Since we held the origin_snap from "syncing" context (which
381	 * includes pool-opening context), it actually only got a "ref"
382	 * and not a hold, so just drop that here.
383	 */
384	if (dp->dp_origin_snap)
385		dsl_dataset_rele(dp->dp_origin_snap, dp);
386	if (dp->dp_mos_dir)
387		dsl_dir_rele(dp->dp_mos_dir, dp);
388	if (dp->dp_free_dir)
389		dsl_dir_rele(dp->dp_free_dir, dp);
390	if (dp->dp_leak_dir)
391		dsl_dir_rele(dp->dp_leak_dir, dp);
392	if (dp->dp_root_dir)
393		dsl_dir_rele(dp->dp_root_dir, dp);
394
395	bpobj_close(&dp->dp_free_bpobj);
396
397	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
398	if (dp->dp_meta_objset)
399		dmu_objset_evict(dp->dp_meta_objset);
400
401	txg_list_destroy(&dp->dp_dirty_datasets);
402	txg_list_destroy(&dp->dp_dirty_zilogs);
403	txg_list_destroy(&dp->dp_sync_tasks);
404	txg_list_destroy(&dp->dp_dirty_dirs);
405
406	arc_flush(dp->dp_spa);
407	txg_fini(dp);
408	dsl_scan_fini(dp);
409	rrw_destroy(&dp->dp_config_rwlock);
410	mutex_destroy(&dp->dp_lock);
411	taskq_destroy(dp->dp_vnrele_taskq);
412	if (dp->dp_blkstats)
413		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
414	kmem_free(dp, sizeof (dsl_pool_t));
415}
416
417dsl_pool_t *
418dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
419{
420	int err;
421	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
422	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
423	objset_t *os;
424	dsl_dataset_t *ds;
425	uint64_t obj;
426
427	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
428
429	/* create and open the MOS (meta-objset) */
430	dp->dp_meta_objset = dmu_objset_create_impl(spa,
431	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
432
433	/* create the pool directory */
434	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
435	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
436	ASSERT0(err);
437
438	/* Initialize scan structures */
439	VERIFY0(dsl_scan_init(dp, txg));
440
441	/* create and open the root dir */
442	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
443	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
444	    NULL, dp, &dp->dp_root_dir));
445
446	/* create and open the meta-objset dir */
447	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
448	VERIFY0(dsl_pool_open_special_dir(dp,
449	    MOS_DIR_NAME, &dp->dp_mos_dir));
450
451	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
452		/* create and open the free dir */
453		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
454		    FREE_DIR_NAME, tx);
455		VERIFY0(dsl_pool_open_special_dir(dp,
456		    FREE_DIR_NAME, &dp->dp_free_dir));
457
458		/* create and open the free_bplist */
459		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
460		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
461		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
462		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
463		    dp->dp_meta_objset, obj));
464	}
465
466	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
467		dsl_pool_create_origin(dp, tx);
468
469	/* create the root dataset */
470	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
471
472	/* create the root objset */
473	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
474	os = dmu_objset_create_impl(dp->dp_spa, ds,
475	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
476#ifdef _KERNEL
477	zfs_create_fs(os, kcred, zplprops, tx);
478#endif
479	dsl_dataset_rele(ds, FTAG);
480
481	dmu_tx_commit(tx);
482
483	rrw_exit(&dp->dp_config_rwlock, FTAG);
484
485	return (dp);
486}
487
488/*
489 * Account for the meta-objset space in its placeholder dsl_dir.
490 */
491void
492dsl_pool_mos_diduse_space(dsl_pool_t *dp,
493    int64_t used, int64_t comp, int64_t uncomp)
494{
495	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
496	mutex_enter(&dp->dp_lock);
497	dp->dp_mos_used_delta += used;
498	dp->dp_mos_compressed_delta += comp;
499	dp->dp_mos_uncompressed_delta += uncomp;
500	mutex_exit(&dp->dp_lock);
501}
502
503static int
504deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
505{
506	dsl_deadlist_t *dl = arg;
507	dsl_deadlist_insert(dl, bp, tx);
508	return (0);
509}
510
511static void
512dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
513{
514	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
515	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
516	VERIFY0(zio_wait(zio));
517	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
518	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
519}
520
521static void
522dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
523{
524	ASSERT(MUTEX_HELD(&dp->dp_lock));
525
526	if (delta < 0)
527		ASSERT3U(-delta, <=, dp->dp_dirty_total);
528
529	dp->dp_dirty_total += delta;
530
531	/*
532	 * Note: we signal even when increasing dp_dirty_total.
533	 * This ensures forward progress -- each thread wakes the next waiter.
534	 */
535	if (dp->dp_dirty_total <= zfs_dirty_data_max)
536		cv_signal(&dp->dp_spaceavail_cv);
537}
538
539void
540dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
541{
542	zio_t *zio;
543	dmu_tx_t *tx;
544	dsl_dir_t *dd;
545	dsl_dataset_t *ds;
546	objset_t *mos = dp->dp_meta_objset;
547	list_t synced_datasets;
548
549	list_create(&synced_datasets, sizeof (dsl_dataset_t),
550	    offsetof(dsl_dataset_t, ds_synced_link));
551
552	tx = dmu_tx_create_assigned(dp, txg);
553
554	/*
555	 * Write out all dirty blocks of dirty datasets.
556	 */
557	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
558	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
559		/*
560		 * We must not sync any non-MOS datasets twice, because
561		 * we may have taken a snapshot of them.  However, we
562		 * may sync newly-created datasets on pass 2.
563		 */
564		ASSERT(!list_link_active(&ds->ds_synced_link));
565		list_insert_tail(&synced_datasets, ds);
566		dsl_dataset_sync(ds, zio, tx);
567	}
568	VERIFY0(zio_wait(zio));
569
570	/*
571	 * We have written all of the accounted dirty data, so our
572	 * dp_space_towrite should now be zero.  However, some seldom-used
573	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
574	 * rounding error in dbuf_write_physdone).
575	 * Shore up the accounting of any dirtied space now.
576	 */
577	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
578
579	/*
580	 * After the data blocks have been written (ensured by the zio_wait()
581	 * above), update the user/group space accounting.
582	 */
583	for (ds = list_head(&synced_datasets); ds != NULL;
584	    ds = list_next(&synced_datasets, ds)) {
585		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
586	}
587
588	/*
589	 * Sync the datasets again to push out the changes due to
590	 * userspace updates.  This must be done before we process the
591	 * sync tasks, so that any snapshots will have the correct
592	 * user accounting information (and we won't get confused
593	 * about which blocks are part of the snapshot).
594	 */
595	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
596	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
597		ASSERT(list_link_active(&ds->ds_synced_link));
598		dmu_buf_rele(ds->ds_dbuf, ds);
599		dsl_dataset_sync(ds, zio, tx);
600	}
601	VERIFY0(zio_wait(zio));
602
603	/*
604	 * Now that the datasets have been completely synced, we can
605	 * clean up our in-memory structures accumulated while syncing:
606	 *
607	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
608	 *  - release hold from dsl_dataset_dirty()
609	 */
610	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
611		objset_t *os = ds->ds_objset;
612		bplist_iterate(&ds->ds_pending_deadlist,
613		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
614		ASSERT(!dmu_objset_is_dirty(os, txg));
615		dmu_buf_rele(ds->ds_dbuf, ds);
616	}
617	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
618		dsl_dir_sync(dd, tx);
619	}
620
621	/*
622	 * The MOS's space is accounted for in the pool/$MOS
623	 * (dp_mos_dir).  We can't modify the mos while we're syncing
624	 * it, so we remember the deltas and apply them here.
625	 */
626	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
627	    dp->dp_mos_uncompressed_delta != 0) {
628		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
629		    dp->dp_mos_used_delta,
630		    dp->dp_mos_compressed_delta,
631		    dp->dp_mos_uncompressed_delta, tx);
632		dp->dp_mos_used_delta = 0;
633		dp->dp_mos_compressed_delta = 0;
634		dp->dp_mos_uncompressed_delta = 0;
635	}
636
637	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
638	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
639		dsl_pool_sync_mos(dp, tx);
640	}
641
642	/*
643	 * If we modify a dataset in the same txg that we want to destroy it,
644	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
645	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
646	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
647	 * and clearing the hold on it) before we process the sync_tasks.
648	 * The MOS data dirtied by the sync_tasks will be synced on the next
649	 * pass.
650	 */
651	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
652		dsl_sync_task_t *dst;
653		/*
654		 * No more sync tasks should have been added while we
655		 * were syncing.
656		 */
657		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
658		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
659			dsl_sync_task_sync(dst, tx);
660	}
661
662	dmu_tx_commit(tx);
663
664	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
665}
666
667void
668dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
669{
670	zilog_t *zilog;
671
672	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
673		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
674		zil_clean(zilog, txg);
675		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
676		dmu_buf_rele(ds->ds_dbuf, zilog);
677	}
678	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
679}
680
681/*
682 * TRUE if the current thread is the tx_sync_thread or if we
683 * are being called from SPA context during pool initialization.
684 */
685int
686dsl_pool_sync_context(dsl_pool_t *dp)
687{
688	return (curthread == dp->dp_tx.tx_sync_thread ||
689	    spa_is_initializing(dp->dp_spa));
690}
691
692uint64_t
693dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
694{
695	uint64_t space, resv;
696
697	/*
698	 * If we're trying to assess whether it's OK to do a free,
699	 * cut the reservation in half to allow forward progress
700	 * (e.g. make it possible to rm(1) files from a full pool).
701	 */
702	space = spa_get_dspace(dp->dp_spa);
703	resv = spa_get_slop_space(dp->dp_spa);
704	if (netfree)
705		resv >>= 1;
706
707	return (space - resv);
708}
709
710boolean_t
711dsl_pool_need_dirty_delay(dsl_pool_t *dp)
712{
713	uint64_t delay_min_bytes =
714	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
715	boolean_t rv;
716
717	mutex_enter(&dp->dp_lock);
718	if (dp->dp_dirty_total > zfs_dirty_data_sync)
719		txg_kick(dp);
720	rv = (dp->dp_dirty_total > delay_min_bytes);
721	mutex_exit(&dp->dp_lock);
722	return (rv);
723}
724
725void
726dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
727{
728	if (space > 0) {
729		mutex_enter(&dp->dp_lock);
730		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
731		dsl_pool_dirty_delta(dp, space);
732		mutex_exit(&dp->dp_lock);
733	}
734}
735
736void
737dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
738{
739	ASSERT3S(space, >=, 0);
740	if (space == 0)
741		return;
742	mutex_enter(&dp->dp_lock);
743	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
744		/* XXX writing something we didn't dirty? */
745		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
746	}
747	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
748	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
749	ASSERT3U(dp->dp_dirty_total, >=, space);
750	dsl_pool_dirty_delta(dp, -space);
751	mutex_exit(&dp->dp_lock);
752}
753
754/* ARGSUSED */
755static int
756upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
757{
758	dmu_tx_t *tx = arg;
759	dsl_dataset_t *ds, *prev = NULL;
760	int err;
761
762	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
763	if (err)
764		return (err);
765
766	while (ds->ds_phys->ds_prev_snap_obj != 0) {
767		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
768		    FTAG, &prev);
769		if (err) {
770			dsl_dataset_rele(ds, FTAG);
771			return (err);
772		}
773
774		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
775			break;
776		dsl_dataset_rele(ds, FTAG);
777		ds = prev;
778		prev = NULL;
779	}
780
781	if (prev == NULL) {
782		prev = dp->dp_origin_snap;
783
784		/*
785		 * The $ORIGIN can't have any data, or the accounting
786		 * will be wrong.
787		 */
788		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
789
790		/* The origin doesn't get attached to itself */
791		if (ds->ds_object == prev->ds_object) {
792			dsl_dataset_rele(ds, FTAG);
793			return (0);
794		}
795
796		dmu_buf_will_dirty(ds->ds_dbuf, tx);
797		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
798		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
799
800		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
801		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
802
803		dmu_buf_will_dirty(prev->ds_dbuf, tx);
804		prev->ds_phys->ds_num_children++;
805
806		if (ds->ds_phys->ds_next_snap_obj == 0) {
807			ASSERT(ds->ds_prev == NULL);
808			VERIFY0(dsl_dataset_hold_obj(dp,
809			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
810		}
811	}
812
813	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
814	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
815
816	if (prev->ds_phys->ds_next_clones_obj == 0) {
817		dmu_buf_will_dirty(prev->ds_dbuf, tx);
818		prev->ds_phys->ds_next_clones_obj =
819		    zap_create(dp->dp_meta_objset,
820		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
821	}
822	VERIFY0(zap_add_int(dp->dp_meta_objset,
823	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
824
825	dsl_dataset_rele(ds, FTAG);
826	if (prev != dp->dp_origin_snap)
827		dsl_dataset_rele(prev, FTAG);
828	return (0);
829}
830
831void
832dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
833{
834	ASSERT(dmu_tx_is_syncing(tx));
835	ASSERT(dp->dp_origin_snap != NULL);
836
837	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
838	    tx, DS_FIND_CHILDREN));
839}
840
841/* ARGSUSED */
842static int
843upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
844{
845	dmu_tx_t *tx = arg;
846	objset_t *mos = dp->dp_meta_objset;
847
848	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
849		dsl_dataset_t *origin;
850
851		VERIFY0(dsl_dataset_hold_obj(dp,
852		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
853
854		if (origin->ds_dir->dd_phys->dd_clones == 0) {
855			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
856			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
857			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
858		}
859
860		VERIFY0(zap_add_int(dp->dp_meta_objset,
861		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
862
863		dsl_dataset_rele(origin, FTAG);
864	}
865	return (0);
866}
867
868void
869dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
870{
871	ASSERT(dmu_tx_is_syncing(tx));
872	uint64_t obj;
873
874	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
875	VERIFY0(dsl_pool_open_special_dir(dp,
876	    FREE_DIR_NAME, &dp->dp_free_dir));
877
878	/*
879	 * We can't use bpobj_alloc(), because spa_version() still
880	 * returns the old version, and we need a new-version bpobj with
881	 * subobj support.  So call dmu_object_alloc() directly.
882	 */
883	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
884	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
885	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
886	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
887	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
888
889	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
890	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
891}
892
893void
894dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
895{
896	uint64_t dsobj;
897	dsl_dataset_t *ds;
898
899	ASSERT(dmu_tx_is_syncing(tx));
900	ASSERT(dp->dp_origin_snap == NULL);
901	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
902
903	/* create the origin dir, ds, & snap-ds */
904	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
905	    NULL, 0, kcred, tx);
906	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
907	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
908	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
909	    dp, &dp->dp_origin_snap));
910	dsl_dataset_rele(ds, FTAG);
911}
912
913taskq_t *
914dsl_pool_vnrele_taskq(dsl_pool_t *dp)
915{
916	return (dp->dp_vnrele_taskq);
917}
918
919/*
920 * Walk through the pool-wide zap object of temporary snapshot user holds
921 * and release them.
922 */
923void
924dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
925{
926	zap_attribute_t za;
927	zap_cursor_t zc;
928	objset_t *mos = dp->dp_meta_objset;
929	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
930	nvlist_t *holds;
931
932	if (zapobj == 0)
933		return;
934	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
935
936	holds = fnvlist_alloc();
937
938	for (zap_cursor_init(&zc, mos, zapobj);
939	    zap_cursor_retrieve(&zc, &za) == 0;
940	    zap_cursor_advance(&zc)) {
941		char *htag;
942		nvlist_t *tags;
943
944		htag = strchr(za.za_name, '-');
945		*htag = '\0';
946		++htag;
947		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
948			tags = fnvlist_alloc();
949			fnvlist_add_boolean(tags, htag);
950			fnvlist_add_nvlist(holds, za.za_name, tags);
951			fnvlist_free(tags);
952		} else {
953			fnvlist_add_boolean(tags, htag);
954		}
955	}
956	dsl_dataset_user_release_tmp(dp, holds);
957	fnvlist_free(holds);
958	zap_cursor_fini(&zc);
959}
960
961/*
962 * Create the pool-wide zap object for storing temporary snapshot holds.
963 */
964void
965dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
966{
967	objset_t *mos = dp->dp_meta_objset;
968
969	ASSERT(dp->dp_tmp_userrefs_obj == 0);
970	ASSERT(dmu_tx_is_syncing(tx));
971
972	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
973	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
974}
975
976static int
977dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
978    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
979{
980	objset_t *mos = dp->dp_meta_objset;
981	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
982	char *name;
983	int error;
984
985	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
986	ASSERT(dmu_tx_is_syncing(tx));
987
988	/*
989	 * If the pool was created prior to SPA_VERSION_USERREFS, the
990	 * zap object for temporary holds might not exist yet.
991	 */
992	if (zapobj == 0) {
993		if (holding) {
994			dsl_pool_user_hold_create_obj(dp, tx);
995			zapobj = dp->dp_tmp_userrefs_obj;
996		} else {
997			return (SET_ERROR(ENOENT));
998		}
999	}
1000
1001	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1002	if (holding)
1003		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1004	else
1005		error = zap_remove(mos, zapobj, name, tx);
1006	strfree(name);
1007
1008	return (error);
1009}
1010
1011/*
1012 * Add a temporary hold for the given dataset object and tag.
1013 */
1014int
1015dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1016    uint64_t now, dmu_tx_t *tx)
1017{
1018	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1019}
1020
1021/*
1022 * Release a temporary hold for the given dataset object and tag.
1023 */
1024int
1025dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1026    dmu_tx_t *tx)
1027{
1028	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1029	    tx, B_FALSE));
1030}
1031
1032/*
1033 * DSL Pool Configuration Lock
1034 *
1035 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1036 * creation / destruction / rename / property setting).  It must be held for
1037 * read to hold a dataset or dsl_dir.  I.e. you must call
1038 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1039 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1040 * must be held continuously until all datasets and dsl_dirs are released.
1041 *
1042 * The only exception to this rule is that if a "long hold" is placed on
1043 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1044 * is still held.  The long hold will prevent the dataset from being
1045 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1046 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1047 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1048 *
1049 * Legitimate long-holders (including owners) should be long-running, cancelable
1050 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1051 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1052 * "zfs send", and "zfs diff".  There are several other long-holders whose
1053 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1054 *
1055 * The usual formula for long-holding would be:
1056 * dsl_pool_hold()
1057 * dsl_dataset_hold()
1058 * ... perform checks ...
1059 * dsl_dataset_long_hold()
1060 * dsl_pool_rele()
1061 * ... perform long-running task ...
1062 * dsl_dataset_long_rele()
1063 * dsl_dataset_rele()
1064 *
1065 * Note that when the long hold is released, the dataset is still held but
1066 * the pool is not held.  The dataset may change arbitrarily during this time
1067 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1068 * dataset except release it.
1069 *
1070 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1071 * or modifying operations.
1072 *
1073 * Modifying operations should generally use dsl_sync_task().  The synctask
1074 * infrastructure enforces proper locking strategy with respect to the
1075 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1076 *
1077 * Read-only operations will manually hold the pool, then the dataset, obtain
1078 * information from the dataset, then release the pool and dataset.
1079 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1080 * hold/rele.
1081 */
1082
1083int
1084dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1085{
1086	spa_t *spa;
1087	int error;
1088
1089	error = spa_open(name, &spa, tag);
1090	if (error == 0) {
1091		*dp = spa_get_dsl(spa);
1092		dsl_pool_config_enter(*dp, tag);
1093	}
1094	return (error);
1095}
1096
1097void
1098dsl_pool_rele(dsl_pool_t *dp, void *tag)
1099{
1100	dsl_pool_config_exit(dp, tag);
1101	spa_close(dp->dp_spa, tag);
1102}
1103
1104void
1105dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1106{
1107	/*
1108	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1109	 *
1110	 * The rrwlock can (with the track_all flag) track all reading threads,
1111	 * which is very useful for debugging which code path failed to release
1112	 * the lock, and for verifying that the *current* thread does hold
1113	 * the lock.
1114	 *
1115	 * (Unlike a rwlock, which knows that N threads hold it for
1116	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1117	 * if any thread holds it for read, even if this thread doesn't).
1118	 */
1119	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1120	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1121}
1122
1123void
1124dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1125{
1126	rrw_exit(&dp->dp_config_rwlock, tag);
1127}
1128
1129boolean_t
1130dsl_pool_config_held(dsl_pool_t *dp)
1131{
1132	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1133}
1134