dsl_pool.c revision 269006
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27#include <sys/dsl_pool.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/dsl_synctask.h>
32#include <sys/dsl_scan.h>
33#include <sys/dnode.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/zap.h>
38#include <sys/zio.h>
39#include <sys/zfs_context.h>
40#include <sys/fs/zfs.h>
41#include <sys/zfs_znode.h>
42#include <sys/spa_impl.h>
43#include <sys/dsl_deadlist.h>
44#include <sys/bptree.h>
45#include <sys/zfeature.h>
46#include <sys/zil_impl.h>
47#include <sys/dsl_userhold.h>
48
49/*
50 * ZFS Write Throttle
51 * ------------------
52 *
53 * ZFS must limit the rate of incoming writes to the rate at which it is able
54 * to sync data modifications to the backend storage. Throttling by too much
55 * creates an artificial limit; throttling by too little can only be sustained
56 * for short periods and would lead to highly lumpy performance. On a per-pool
57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59 * of dirty data decreases. When the amount of dirty data exceeds a
60 * predetermined threshold further modifications are blocked until the amount
61 * of dirty data decreases (as data is synced out).
62 *
63 * The limit on dirty data is tunable, and should be adjusted according to
64 * both the IO capacity and available memory of the system. The larger the
65 * window, the more ZFS is able to aggregate and amortize metadata (and data)
66 * changes. However, memory is a limited resource, and allowing for more dirty
67 * data comes at the cost of keeping other useful data in memory (for example
68 * ZFS data cached by the ARC).
69 *
70 * Implementation
71 *
72 * As buffers are modified dsl_pool_willuse_space() increments both the per-
73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74 * dirty space used; dsl_pool_dirty_space() decrements those values as data
75 * is synced out from dsl_pool_sync(). While only the poolwide value is
76 * relevant, the per-txg value is useful for debugging. The tunable
77 * zfs_dirty_data_max determines the dirty space limit. Once that value is
78 * exceeded, new writes are halted until space frees up.
79 *
80 * The zfs_dirty_data_sync tunable dictates the threshold at which we
81 * ensure that there is a txg syncing (see the comment in txg.c for a full
82 * description of transaction group stages).
83 *
84 * The IO scheduler uses both the dirty space limit and current amount of
85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87 *
88 * The delay is also calculated based on the amount of dirty data.  See the
89 * comment above dmu_tx_delay() for details.
90 */
91
92/*
93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95 */
96uint64_t zfs_dirty_data_max;
97uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98int zfs_dirty_data_max_percent = 10;
99
100/*
101 * If there is at least this much dirty data, push out a txg.
102 */
103uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104
105/*
106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107 * and delay each transaction.
108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109 */
110int zfs_delay_min_dirty_percent = 60;
111
112/*
113 * This controls how quickly the delay approaches infinity.
114 * Larger values cause it to delay less for a given amount of dirty data.
115 * Therefore larger values will cause there to be more dirty data for a
116 * given throughput.
117 *
118 * For the smoothest delay, this value should be about 1 billion divided
119 * by the maximum number of operations per second.  This will smoothly
120 * handle between 10x and 1/10th this number.
121 *
122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123 * multiply in dmu_tx_delay().
124 */
125uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126
127
128/*
129 * XXX someday maybe turn these into #defines, and you have to tune it on a
130 * per-pool basis using zfs.conf.
131 */
132
133
134SYSCTL_DECL(_vfs_zfs);
135#if 0
136TUNABLE_INT("vfs.zfs.no_write_throttle", &zfs_no_write_throttle);
137SYSCTL_INT(_vfs_zfs, OID_AUTO, no_write_throttle, CTLFLAG_RDTUN,
138    &zfs_no_write_throttle, 0, "");
139TUNABLE_INT("vfs.zfs.write_limit_shift", &zfs_write_limit_shift);
140SYSCTL_INT(_vfs_zfs, OID_AUTO, write_limit_shift, CTLFLAG_RDTUN,
141    &zfs_write_limit_shift, 0, "2^N of physical memory");
142SYSCTL_DECL(_vfs_zfs_txg);
143TUNABLE_INT("vfs.zfs.txg.synctime_ms", &zfs_txg_synctime_ms);
144SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, synctime_ms, CTLFLAG_RDTUN,
145    &zfs_txg_synctime_ms, 0, "Target milliseconds to sync a txg");
146
147TUNABLE_QUAD("vfs.zfs.write_limit_min", &zfs_write_limit_min);
148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_min, CTLFLAG_RDTUN,
149    &zfs_write_limit_min, 0, "Minimum write limit");
150TUNABLE_QUAD("vfs.zfs.write_limit_max", &zfs_write_limit_max);
151SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_max, CTLFLAG_RDTUN,
152    &zfs_write_limit_max, 0, "Maximum data payload per txg");
153TUNABLE_QUAD("vfs.zfs.write_limit_inflated", &zfs_write_limit_inflated);
154SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_inflated, CTLFLAG_RDTUN,
155    &zfs_write_limit_inflated, 0, "Maximum size of the dynamic write limit");
156TUNABLE_QUAD("vfs.zfs.write_limit_override", &zfs_write_limit_override);
157SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_override, CTLFLAG_RDTUN,
158    &zfs_write_limit_override, 0,
159    "Force a txg if dirty buffers exceed this value (bytes)");
160#endif
161
162hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
163hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
164
165int
166dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
167{
168	uint64_t obj;
169	int err;
170
171	err = zap_lookup(dp->dp_meta_objset,
172	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
173	    name, sizeof (obj), 1, &obj);
174	if (err)
175		return (err);
176
177	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
178}
179
180static dsl_pool_t *
181dsl_pool_open_impl(spa_t *spa, uint64_t txg)
182{
183	dsl_pool_t *dp;
184	blkptr_t *bp = spa_get_rootblkptr(spa);
185
186	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187	dp->dp_spa = spa;
188	dp->dp_meta_rootbp = *bp;
189	rrw_init(&dp->dp_config_rwlock, B_TRUE);
190	txg_init(dp, txg);
191
192	txg_list_create(&dp->dp_dirty_datasets,
193	    offsetof(dsl_dataset_t, ds_dirty_link));
194	txg_list_create(&dp->dp_dirty_zilogs,
195	    offsetof(zilog_t, zl_dirty_link));
196	txg_list_create(&dp->dp_dirty_dirs,
197	    offsetof(dsl_dir_t, dd_dirty_link));
198	txg_list_create(&dp->dp_sync_tasks,
199	    offsetof(dsl_sync_task_t, dst_node));
200
201	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
202	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
203
204	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
205	    1, 4, 0);
206
207	return (dp);
208}
209
210int
211dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
212{
213	int err;
214	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
215
216	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
217	    &dp->dp_meta_objset);
218	if (err != 0)
219		dsl_pool_close(dp);
220	else
221		*dpp = dp;
222
223	return (err);
224}
225
226int
227dsl_pool_open(dsl_pool_t *dp)
228{
229	int err;
230	dsl_dir_t *dd;
231	dsl_dataset_t *ds;
232	uint64_t obj;
233
234	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
235	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
236	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
237	    &dp->dp_root_dir_obj);
238	if (err)
239		goto out;
240
241	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
242	    NULL, dp, &dp->dp_root_dir);
243	if (err)
244		goto out;
245
246	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
247	if (err)
248		goto out;
249
250	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
251		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
252		if (err)
253			goto out;
254		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
255		    FTAG, &ds);
256		if (err == 0) {
257			err = dsl_dataset_hold_obj(dp,
258			    ds->ds_phys->ds_prev_snap_obj, dp,
259			    &dp->dp_origin_snap);
260			dsl_dataset_rele(ds, FTAG);
261		}
262		dsl_dir_rele(dd, dp);
263		if (err)
264			goto out;
265	}
266
267	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
268		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
269		    &dp->dp_free_dir);
270		if (err)
271			goto out;
272
273		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
274		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
275		if (err)
276			goto out;
277		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
278		    dp->dp_meta_objset, obj));
279	}
280
281	/*
282	 * Note: errors ignored, because the leak dir will not exist if we
283	 * have not encountered a leak yet.
284	 */
285	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
286	    &dp->dp_leak_dir);
287
288	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
289		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
290		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
291		    &dp->dp_bptree_obj);
292		if (err != 0)
293			goto out;
294	}
295
296	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
297		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
298		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
299		    &dp->dp_empty_bpobj);
300		if (err != 0)
301			goto out;
302	}
303
304	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
306	    &dp->dp_tmp_userrefs_obj);
307	if (err == ENOENT)
308		err = 0;
309	if (err)
310		goto out;
311
312	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
313
314out:
315	rrw_exit(&dp->dp_config_rwlock, FTAG);
316	return (err);
317}
318
319void
320dsl_pool_close(dsl_pool_t *dp)
321{
322	/*
323	 * Drop our references from dsl_pool_open().
324	 *
325	 * Since we held the origin_snap from "syncing" context (which
326	 * includes pool-opening context), it actually only got a "ref"
327	 * and not a hold, so just drop that here.
328	 */
329	if (dp->dp_origin_snap)
330		dsl_dataset_rele(dp->dp_origin_snap, dp);
331	if (dp->dp_mos_dir)
332		dsl_dir_rele(dp->dp_mos_dir, dp);
333	if (dp->dp_free_dir)
334		dsl_dir_rele(dp->dp_free_dir, dp);
335	if (dp->dp_leak_dir)
336		dsl_dir_rele(dp->dp_leak_dir, dp);
337	if (dp->dp_root_dir)
338		dsl_dir_rele(dp->dp_root_dir, dp);
339
340	bpobj_close(&dp->dp_free_bpobj);
341
342	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
343	if (dp->dp_meta_objset)
344		dmu_objset_evict(dp->dp_meta_objset);
345
346	txg_list_destroy(&dp->dp_dirty_datasets);
347	txg_list_destroy(&dp->dp_dirty_zilogs);
348	txg_list_destroy(&dp->dp_sync_tasks);
349	txg_list_destroy(&dp->dp_dirty_dirs);
350
351	arc_flush(dp->dp_spa);
352	txg_fini(dp);
353	dsl_scan_fini(dp);
354	rrw_destroy(&dp->dp_config_rwlock);
355	mutex_destroy(&dp->dp_lock);
356	taskq_destroy(dp->dp_vnrele_taskq);
357	if (dp->dp_blkstats)
358		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
359	kmem_free(dp, sizeof (dsl_pool_t));
360}
361
362dsl_pool_t *
363dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
364{
365	int err;
366	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
367	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
368	objset_t *os;
369	dsl_dataset_t *ds;
370	uint64_t obj;
371
372	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
373
374	/* create and open the MOS (meta-objset) */
375	dp->dp_meta_objset = dmu_objset_create_impl(spa,
376	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
377
378	/* create the pool directory */
379	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
380	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
381	ASSERT0(err);
382
383	/* Initialize scan structures */
384	VERIFY0(dsl_scan_init(dp, txg));
385
386	/* create and open the root dir */
387	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
388	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
389	    NULL, dp, &dp->dp_root_dir));
390
391	/* create and open the meta-objset dir */
392	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
393	VERIFY0(dsl_pool_open_special_dir(dp,
394	    MOS_DIR_NAME, &dp->dp_mos_dir));
395
396	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
397		/* create and open the free dir */
398		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
399		    FREE_DIR_NAME, tx);
400		VERIFY0(dsl_pool_open_special_dir(dp,
401		    FREE_DIR_NAME, &dp->dp_free_dir));
402
403		/* create and open the free_bplist */
404		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
405		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
406		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
407		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
408		    dp->dp_meta_objset, obj));
409	}
410
411	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
412		dsl_pool_create_origin(dp, tx);
413
414	/* create the root dataset */
415	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
416
417	/* create the root objset */
418	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
419	os = dmu_objset_create_impl(dp->dp_spa, ds,
420	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
421#ifdef _KERNEL
422	zfs_create_fs(os, kcred, zplprops, tx);
423#endif
424	dsl_dataset_rele(ds, FTAG);
425
426	dmu_tx_commit(tx);
427
428	rrw_exit(&dp->dp_config_rwlock, FTAG);
429
430	return (dp);
431}
432
433/*
434 * Account for the meta-objset space in its placeholder dsl_dir.
435 */
436void
437dsl_pool_mos_diduse_space(dsl_pool_t *dp,
438    int64_t used, int64_t comp, int64_t uncomp)
439{
440	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
441	mutex_enter(&dp->dp_lock);
442	dp->dp_mos_used_delta += used;
443	dp->dp_mos_compressed_delta += comp;
444	dp->dp_mos_uncompressed_delta += uncomp;
445	mutex_exit(&dp->dp_lock);
446}
447
448static int
449deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
450{
451	dsl_deadlist_t *dl = arg;
452	dsl_deadlist_insert(dl, bp, tx);
453	return (0);
454}
455
456static void
457dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
458{
459	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
460	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
461	VERIFY0(zio_wait(zio));
462	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
463	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
464}
465
466static void
467dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
468{
469	ASSERT(MUTEX_HELD(&dp->dp_lock));
470
471	if (delta < 0)
472		ASSERT3U(-delta, <=, dp->dp_dirty_total);
473
474	dp->dp_dirty_total += delta;
475
476	/*
477	 * Note: we signal even when increasing dp_dirty_total.
478	 * This ensures forward progress -- each thread wakes the next waiter.
479	 */
480	if (dp->dp_dirty_total <= zfs_dirty_data_max)
481		cv_signal(&dp->dp_spaceavail_cv);
482}
483
484void
485dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
486{
487	zio_t *zio;
488	dmu_tx_t *tx;
489	dsl_dir_t *dd;
490	dsl_dataset_t *ds;
491	objset_t *mos = dp->dp_meta_objset;
492	list_t synced_datasets;
493
494	list_create(&synced_datasets, sizeof (dsl_dataset_t),
495	    offsetof(dsl_dataset_t, ds_synced_link));
496
497	tx = dmu_tx_create_assigned(dp, txg);
498
499	/*
500	 * Write out all dirty blocks of dirty datasets.
501	 */
502	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
503	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
504		/*
505		 * We must not sync any non-MOS datasets twice, because
506		 * we may have taken a snapshot of them.  However, we
507		 * may sync newly-created datasets on pass 2.
508		 */
509		ASSERT(!list_link_active(&ds->ds_synced_link));
510		list_insert_tail(&synced_datasets, ds);
511		dsl_dataset_sync(ds, zio, tx);
512	}
513	VERIFY0(zio_wait(zio));
514
515	/*
516	 * We have written all of the accounted dirty data, so our
517	 * dp_space_towrite should now be zero.  However, some seldom-used
518	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
519	 * rounding error in dbuf_write_physdone).
520	 * Shore up the accounting of any dirtied space now.
521	 */
522	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
523
524	/*
525	 * After the data blocks have been written (ensured by the zio_wait()
526	 * above), update the user/group space accounting.
527	 */
528	for (ds = list_head(&synced_datasets); ds != NULL;
529	    ds = list_next(&synced_datasets, ds)) {
530		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
531	}
532
533	/*
534	 * Sync the datasets again to push out the changes due to
535	 * userspace updates.  This must be done before we process the
536	 * sync tasks, so that any snapshots will have the correct
537	 * user accounting information (and we won't get confused
538	 * about which blocks are part of the snapshot).
539	 */
540	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
541	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
542		ASSERT(list_link_active(&ds->ds_synced_link));
543		dmu_buf_rele(ds->ds_dbuf, ds);
544		dsl_dataset_sync(ds, zio, tx);
545	}
546	VERIFY0(zio_wait(zio));
547
548	/*
549	 * Now that the datasets have been completely synced, we can
550	 * clean up our in-memory structures accumulated while syncing:
551	 *
552	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
553	 *  - release hold from dsl_dataset_dirty()
554	 */
555	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
556		objset_t *os = ds->ds_objset;
557		bplist_iterate(&ds->ds_pending_deadlist,
558		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
559		ASSERT(!dmu_objset_is_dirty(os, txg));
560		dmu_buf_rele(ds->ds_dbuf, ds);
561	}
562	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
563		dsl_dir_sync(dd, tx);
564	}
565
566	/*
567	 * The MOS's space is accounted for in the pool/$MOS
568	 * (dp_mos_dir).  We can't modify the mos while we're syncing
569	 * it, so we remember the deltas and apply them here.
570	 */
571	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
572	    dp->dp_mos_uncompressed_delta != 0) {
573		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
574		    dp->dp_mos_used_delta,
575		    dp->dp_mos_compressed_delta,
576		    dp->dp_mos_uncompressed_delta, tx);
577		dp->dp_mos_used_delta = 0;
578		dp->dp_mos_compressed_delta = 0;
579		dp->dp_mos_uncompressed_delta = 0;
580	}
581
582	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
583	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
584		dsl_pool_sync_mos(dp, tx);
585	}
586
587	/*
588	 * If we modify a dataset in the same txg that we want to destroy it,
589	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
590	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
591	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
592	 * and clearing the hold on it) before we process the sync_tasks.
593	 * The MOS data dirtied by the sync_tasks will be synced on the next
594	 * pass.
595	 */
596	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
597		dsl_sync_task_t *dst;
598		/*
599		 * No more sync tasks should have been added while we
600		 * were syncing.
601		 */
602		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
603		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
604			dsl_sync_task_sync(dst, tx);
605	}
606
607	dmu_tx_commit(tx);
608
609	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
610}
611
612void
613dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
614{
615	zilog_t *zilog;
616
617	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
618		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
619		zil_clean(zilog, txg);
620		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
621		dmu_buf_rele(ds->ds_dbuf, zilog);
622	}
623	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
624}
625
626/*
627 * TRUE if the current thread is the tx_sync_thread or if we
628 * are being called from SPA context during pool initialization.
629 */
630int
631dsl_pool_sync_context(dsl_pool_t *dp)
632{
633	return (curthread == dp->dp_tx.tx_sync_thread ||
634	    spa_is_initializing(dp->dp_spa));
635}
636
637uint64_t
638dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
639{
640	uint64_t space, resv;
641
642	/*
643	 * If we're trying to assess whether it's OK to do a free,
644	 * cut the reservation in half to allow forward progress
645	 * (e.g. make it possible to rm(1) files from a full pool).
646	 */
647	space = spa_get_dspace(dp->dp_spa);
648	resv = spa_get_slop_space(dp->dp_spa);
649	if (netfree)
650		resv >>= 1;
651
652	return (space - resv);
653}
654
655boolean_t
656dsl_pool_need_dirty_delay(dsl_pool_t *dp)
657{
658	uint64_t delay_min_bytes =
659	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
660	boolean_t rv;
661
662	mutex_enter(&dp->dp_lock);
663	if (dp->dp_dirty_total > zfs_dirty_data_sync)
664		txg_kick(dp);
665	rv = (dp->dp_dirty_total > delay_min_bytes);
666	mutex_exit(&dp->dp_lock);
667	return (rv);
668}
669
670void
671dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
672{
673	if (space > 0) {
674		mutex_enter(&dp->dp_lock);
675		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
676		dsl_pool_dirty_delta(dp, space);
677		mutex_exit(&dp->dp_lock);
678	}
679}
680
681void
682dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
683{
684	ASSERT3S(space, >=, 0);
685	if (space == 0)
686		return;
687	mutex_enter(&dp->dp_lock);
688	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
689		/* XXX writing something we didn't dirty? */
690		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
691	}
692	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
693	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
694	ASSERT3U(dp->dp_dirty_total, >=, space);
695	dsl_pool_dirty_delta(dp, -space);
696	mutex_exit(&dp->dp_lock);
697}
698
699/* ARGSUSED */
700static int
701upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
702{
703	dmu_tx_t *tx = arg;
704	dsl_dataset_t *ds, *prev = NULL;
705	int err;
706
707	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
708	if (err)
709		return (err);
710
711	while (ds->ds_phys->ds_prev_snap_obj != 0) {
712		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
713		    FTAG, &prev);
714		if (err) {
715			dsl_dataset_rele(ds, FTAG);
716			return (err);
717		}
718
719		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
720			break;
721		dsl_dataset_rele(ds, FTAG);
722		ds = prev;
723		prev = NULL;
724	}
725
726	if (prev == NULL) {
727		prev = dp->dp_origin_snap;
728
729		/*
730		 * The $ORIGIN can't have any data, or the accounting
731		 * will be wrong.
732		 */
733		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
734
735		/* The origin doesn't get attached to itself */
736		if (ds->ds_object == prev->ds_object) {
737			dsl_dataset_rele(ds, FTAG);
738			return (0);
739		}
740
741		dmu_buf_will_dirty(ds->ds_dbuf, tx);
742		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
743		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
744
745		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
746		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
747
748		dmu_buf_will_dirty(prev->ds_dbuf, tx);
749		prev->ds_phys->ds_num_children++;
750
751		if (ds->ds_phys->ds_next_snap_obj == 0) {
752			ASSERT(ds->ds_prev == NULL);
753			VERIFY0(dsl_dataset_hold_obj(dp,
754			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
755		}
756	}
757
758	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
759	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
760
761	if (prev->ds_phys->ds_next_clones_obj == 0) {
762		dmu_buf_will_dirty(prev->ds_dbuf, tx);
763		prev->ds_phys->ds_next_clones_obj =
764		    zap_create(dp->dp_meta_objset,
765		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
766	}
767	VERIFY0(zap_add_int(dp->dp_meta_objset,
768	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
769
770	dsl_dataset_rele(ds, FTAG);
771	if (prev != dp->dp_origin_snap)
772		dsl_dataset_rele(prev, FTAG);
773	return (0);
774}
775
776void
777dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
778{
779	ASSERT(dmu_tx_is_syncing(tx));
780	ASSERT(dp->dp_origin_snap != NULL);
781
782	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
783	    tx, DS_FIND_CHILDREN));
784}
785
786/* ARGSUSED */
787static int
788upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
789{
790	dmu_tx_t *tx = arg;
791	objset_t *mos = dp->dp_meta_objset;
792
793	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
794		dsl_dataset_t *origin;
795
796		VERIFY0(dsl_dataset_hold_obj(dp,
797		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
798
799		if (origin->ds_dir->dd_phys->dd_clones == 0) {
800			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
801			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
802			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
803		}
804
805		VERIFY0(zap_add_int(dp->dp_meta_objset,
806		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
807
808		dsl_dataset_rele(origin, FTAG);
809	}
810	return (0);
811}
812
813void
814dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
815{
816	ASSERT(dmu_tx_is_syncing(tx));
817	uint64_t obj;
818
819	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
820	VERIFY0(dsl_pool_open_special_dir(dp,
821	    FREE_DIR_NAME, &dp->dp_free_dir));
822
823	/*
824	 * We can't use bpobj_alloc(), because spa_version() still
825	 * returns the old version, and we need a new-version bpobj with
826	 * subobj support.  So call dmu_object_alloc() directly.
827	 */
828	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
829	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
830	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
831	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
832	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
833
834	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
835	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
836}
837
838void
839dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
840{
841	uint64_t dsobj;
842	dsl_dataset_t *ds;
843
844	ASSERT(dmu_tx_is_syncing(tx));
845	ASSERT(dp->dp_origin_snap == NULL);
846	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
847
848	/* create the origin dir, ds, & snap-ds */
849	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
850	    NULL, 0, kcred, tx);
851	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
852	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
853	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
854	    dp, &dp->dp_origin_snap));
855	dsl_dataset_rele(ds, FTAG);
856}
857
858taskq_t *
859dsl_pool_vnrele_taskq(dsl_pool_t *dp)
860{
861	return (dp->dp_vnrele_taskq);
862}
863
864/*
865 * Walk through the pool-wide zap object of temporary snapshot user holds
866 * and release them.
867 */
868void
869dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
870{
871	zap_attribute_t za;
872	zap_cursor_t zc;
873	objset_t *mos = dp->dp_meta_objset;
874	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
875	nvlist_t *holds;
876
877	if (zapobj == 0)
878		return;
879	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
880
881	holds = fnvlist_alloc();
882
883	for (zap_cursor_init(&zc, mos, zapobj);
884	    zap_cursor_retrieve(&zc, &za) == 0;
885	    zap_cursor_advance(&zc)) {
886		char *htag;
887		nvlist_t *tags;
888
889		htag = strchr(za.za_name, '-');
890		*htag = '\0';
891		++htag;
892		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
893			tags = fnvlist_alloc();
894			fnvlist_add_boolean(tags, htag);
895			fnvlist_add_nvlist(holds, za.za_name, tags);
896			fnvlist_free(tags);
897		} else {
898			fnvlist_add_boolean(tags, htag);
899		}
900	}
901	dsl_dataset_user_release_tmp(dp, holds);
902	fnvlist_free(holds);
903	zap_cursor_fini(&zc);
904}
905
906/*
907 * Create the pool-wide zap object for storing temporary snapshot holds.
908 */
909void
910dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
911{
912	objset_t *mos = dp->dp_meta_objset;
913
914	ASSERT(dp->dp_tmp_userrefs_obj == 0);
915	ASSERT(dmu_tx_is_syncing(tx));
916
917	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
918	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
919}
920
921static int
922dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
923    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
924{
925	objset_t *mos = dp->dp_meta_objset;
926	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
927	char *name;
928	int error;
929
930	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
931	ASSERT(dmu_tx_is_syncing(tx));
932
933	/*
934	 * If the pool was created prior to SPA_VERSION_USERREFS, the
935	 * zap object for temporary holds might not exist yet.
936	 */
937	if (zapobj == 0) {
938		if (holding) {
939			dsl_pool_user_hold_create_obj(dp, tx);
940			zapobj = dp->dp_tmp_userrefs_obj;
941		} else {
942			return (SET_ERROR(ENOENT));
943		}
944	}
945
946	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
947	if (holding)
948		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
949	else
950		error = zap_remove(mos, zapobj, name, tx);
951	strfree(name);
952
953	return (error);
954}
955
956/*
957 * Add a temporary hold for the given dataset object and tag.
958 */
959int
960dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
961    uint64_t now, dmu_tx_t *tx)
962{
963	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
964}
965
966/*
967 * Release a temporary hold for the given dataset object and tag.
968 */
969int
970dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
971    dmu_tx_t *tx)
972{
973	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
974	    tx, B_FALSE));
975}
976
977/*
978 * DSL Pool Configuration Lock
979 *
980 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
981 * creation / destruction / rename / property setting).  It must be held for
982 * read to hold a dataset or dsl_dir.  I.e. you must call
983 * dsl_pool_config_enter() or dsl_pool_hold() before calling
984 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
985 * must be held continuously until all datasets and dsl_dirs are released.
986 *
987 * The only exception to this rule is that if a "long hold" is placed on
988 * a dataset, then the dp_config_rwlock may be dropped while the dataset
989 * is still held.  The long hold will prevent the dataset from being
990 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
991 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
992 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
993 *
994 * Legitimate long-holders (including owners) should be long-running, cancelable
995 * tasks that should cause "zfs destroy" to fail.  This includes DMU
996 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
997 * "zfs send", and "zfs diff".  There are several other long-holders whose
998 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
999 *
1000 * The usual formula for long-holding would be:
1001 * dsl_pool_hold()
1002 * dsl_dataset_hold()
1003 * ... perform checks ...
1004 * dsl_dataset_long_hold()
1005 * dsl_pool_rele()
1006 * ... perform long-running task ...
1007 * dsl_dataset_long_rele()
1008 * dsl_dataset_rele()
1009 *
1010 * Note that when the long hold is released, the dataset is still held but
1011 * the pool is not held.  The dataset may change arbitrarily during this time
1012 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1013 * dataset except release it.
1014 *
1015 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1016 * or modifying operations.
1017 *
1018 * Modifying operations should generally use dsl_sync_task().  The synctask
1019 * infrastructure enforces proper locking strategy with respect to the
1020 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1021 *
1022 * Read-only operations will manually hold the pool, then the dataset, obtain
1023 * information from the dataset, then release the pool and dataset.
1024 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1025 * hold/rele.
1026 */
1027
1028int
1029dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1030{
1031	spa_t *spa;
1032	int error;
1033
1034	error = spa_open(name, &spa, tag);
1035	if (error == 0) {
1036		*dp = spa_get_dsl(spa);
1037		dsl_pool_config_enter(*dp, tag);
1038	}
1039	return (error);
1040}
1041
1042void
1043dsl_pool_rele(dsl_pool_t *dp, void *tag)
1044{
1045	dsl_pool_config_exit(dp, tag);
1046	spa_close(dp->dp_spa, tag);
1047}
1048
1049void
1050dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1051{
1052	/*
1053	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1054	 *
1055	 * The rrwlock can (with the track_all flag) track all reading threads,
1056	 * which is very useful for debugging which code path failed to release
1057	 * the lock, and for verifying that the *current* thread does hold
1058	 * the lock.
1059	 *
1060	 * (Unlike a rwlock, which knows that N threads hold it for
1061	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1062	 * if any thread holds it for read, even if this thread doesn't).
1063	 */
1064	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1065	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1066}
1067
1068void
1069dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1070{
1071	rrw_exit(&dp->dp_config_rwlock, tag);
1072}
1073
1074boolean_t
1075dsl_pool_config_held(dsl_pool_t *dp)
1076{
1077	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1078}
1079