dsl_pool.c revision 268650
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 */
26
27#include <sys/dsl_pool.h>
28#include <sys/dsl_dataset.h>
29#include <sys/dsl_prop.h>
30#include <sys/dsl_dir.h>
31#include <sys/dsl_synctask.h>
32#include <sys/dsl_scan.h>
33#include <sys/dnode.h>
34#include <sys/dmu_tx.h>
35#include <sys/dmu_objset.h>
36#include <sys/arc.h>
37#include <sys/zap.h>
38#include <sys/zio.h>
39#include <sys/zfs_context.h>
40#include <sys/fs/zfs.h>
41#include <sys/zfs_znode.h>
42#include <sys/spa_impl.h>
43#include <sys/dsl_deadlist.h>
44#include <sys/bptree.h>
45#include <sys/zfeature.h>
46#include <sys/zil_impl.h>
47#include <sys/dsl_userhold.h>
48
49/*
50 * ZFS Write Throttle
51 * ------------------
52 *
53 * ZFS must limit the rate of incoming writes to the rate at which it is able
54 * to sync data modifications to the backend storage. Throttling by too much
55 * creates an artificial limit; throttling by too little can only be sustained
56 * for short periods and would lead to highly lumpy performance. On a per-pool
57 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
58 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
59 * of dirty data decreases. When the amount of dirty data exceeds a
60 * predetermined threshold further modifications are blocked until the amount
61 * of dirty data decreases (as data is synced out).
62 *
63 * The limit on dirty data is tunable, and should be adjusted according to
64 * both the IO capacity and available memory of the system. The larger the
65 * window, the more ZFS is able to aggregate and amortize metadata (and data)
66 * changes. However, memory is a limited resource, and allowing for more dirty
67 * data comes at the cost of keeping other useful data in memory (for example
68 * ZFS data cached by the ARC).
69 *
70 * Implementation
71 *
72 * As buffers are modified dsl_pool_willuse_space() increments both the per-
73 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
74 * dirty space used; dsl_pool_dirty_space() decrements those values as data
75 * is synced out from dsl_pool_sync(). While only the poolwide value is
76 * relevant, the per-txg value is useful for debugging. The tunable
77 * zfs_dirty_data_max determines the dirty space limit. Once that value is
78 * exceeded, new writes are halted until space frees up.
79 *
80 * The zfs_dirty_data_sync tunable dictates the threshold at which we
81 * ensure that there is a txg syncing (see the comment in txg.c for a full
82 * description of transaction group stages).
83 *
84 * The IO scheduler uses both the dirty space limit and current amount of
85 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
86 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
87 *
88 * The delay is also calculated based on the amount of dirty data.  See the
89 * comment above dmu_tx_delay() for details.
90 */
91
92/*
93 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
94 * capped at zfs_dirty_data_max_max.  It can also be overridden in /etc/system.
95 */
96uint64_t zfs_dirty_data_max;
97uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
98int zfs_dirty_data_max_percent = 10;
99
100/*
101 * If there is at least this much dirty data, push out a txg.
102 */
103uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
104
105/*
106 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
107 * and delay each transaction.
108 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
109 */
110int zfs_delay_min_dirty_percent = 60;
111
112/*
113 * This controls how quickly the delay approaches infinity.
114 * Larger values cause it to delay less for a given amount of dirty data.
115 * Therefore larger values will cause there to be more dirty data for a
116 * given throughput.
117 *
118 * For the smoothest delay, this value should be about 1 billion divided
119 * by the maximum number of operations per second.  This will smoothly
120 * handle between 10x and 1/10th this number.
121 *
122 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
123 * multiply in dmu_tx_delay().
124 */
125uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
126
127
128/*
129 * XXX someday maybe turn these into #defines, and you have to tune it on a
130 * per-pool basis using zfs.conf.
131 */
132
133
134SYSCTL_DECL(_vfs_zfs);
135#if 0
136TUNABLE_INT("vfs.zfs.no_write_throttle", &zfs_no_write_throttle);
137SYSCTL_INT(_vfs_zfs, OID_AUTO, no_write_throttle, CTLFLAG_RDTUN,
138    &zfs_no_write_throttle, 0, "");
139TUNABLE_INT("vfs.zfs.write_limit_shift", &zfs_write_limit_shift);
140SYSCTL_INT(_vfs_zfs, OID_AUTO, write_limit_shift, CTLFLAG_RDTUN,
141    &zfs_write_limit_shift, 0, "2^N of physical memory");
142SYSCTL_DECL(_vfs_zfs_txg);
143TUNABLE_INT("vfs.zfs.txg.synctime_ms", &zfs_txg_synctime_ms);
144SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, synctime_ms, CTLFLAG_RDTUN,
145    &zfs_txg_synctime_ms, 0, "Target milliseconds to sync a txg");
146
147TUNABLE_QUAD("vfs.zfs.write_limit_min", &zfs_write_limit_min);
148SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_min, CTLFLAG_RDTUN,
149    &zfs_write_limit_min, 0, "Minimum write limit");
150TUNABLE_QUAD("vfs.zfs.write_limit_max", &zfs_write_limit_max);
151SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_max, CTLFLAG_RDTUN,
152    &zfs_write_limit_max, 0, "Maximum data payload per txg");
153TUNABLE_QUAD("vfs.zfs.write_limit_inflated", &zfs_write_limit_inflated);
154SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_inflated, CTLFLAG_RDTUN,
155    &zfs_write_limit_inflated, 0, "Maximum size of the dynamic write limit");
156TUNABLE_QUAD("vfs.zfs.write_limit_override", &zfs_write_limit_override);
157SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, write_limit_override, CTLFLAG_RDTUN,
158    &zfs_write_limit_override, 0,
159    "Force a txg if dirty buffers exceed this value (bytes)");
160#endif
161
162hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
163hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
164
165int
166dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
167{
168	uint64_t obj;
169	int err;
170
171	err = zap_lookup(dp->dp_meta_objset,
172	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
173	    name, sizeof (obj), 1, &obj);
174	if (err)
175		return (err);
176
177	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
178}
179
180static dsl_pool_t *
181dsl_pool_open_impl(spa_t *spa, uint64_t txg)
182{
183	dsl_pool_t *dp;
184	blkptr_t *bp = spa_get_rootblkptr(spa);
185
186	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
187	dp->dp_spa = spa;
188	dp->dp_meta_rootbp = *bp;
189	rrw_init(&dp->dp_config_rwlock, B_TRUE);
190	txg_init(dp, txg);
191
192	txg_list_create(&dp->dp_dirty_datasets,
193	    offsetof(dsl_dataset_t, ds_dirty_link));
194	txg_list_create(&dp->dp_dirty_zilogs,
195	    offsetof(zilog_t, zl_dirty_link));
196	txg_list_create(&dp->dp_dirty_dirs,
197	    offsetof(dsl_dir_t, dd_dirty_link));
198	txg_list_create(&dp->dp_sync_tasks,
199	    offsetof(dsl_sync_task_t, dst_node));
200
201	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
202	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
203
204	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
205	    1, 4, 0);
206
207	return (dp);
208}
209
210int
211dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
212{
213	int err;
214	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
215
216	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
217	    &dp->dp_meta_objset);
218	if (err != 0)
219		dsl_pool_close(dp);
220	else
221		*dpp = dp;
222
223	return (err);
224}
225
226int
227dsl_pool_open(dsl_pool_t *dp)
228{
229	int err;
230	dsl_dir_t *dd;
231	dsl_dataset_t *ds;
232	uint64_t obj;
233
234	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
235	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
236	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
237	    &dp->dp_root_dir_obj);
238	if (err)
239		goto out;
240
241	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
242	    NULL, dp, &dp->dp_root_dir);
243	if (err)
244		goto out;
245
246	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
247	if (err)
248		goto out;
249
250	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
251		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
252		if (err)
253			goto out;
254		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
255		    FTAG, &ds);
256		if (err == 0) {
257			err = dsl_dataset_hold_obj(dp,
258			    ds->ds_phys->ds_prev_snap_obj, dp,
259			    &dp->dp_origin_snap);
260			dsl_dataset_rele(ds, FTAG);
261		}
262		dsl_dir_rele(dd, dp);
263		if (err)
264			goto out;
265	}
266
267	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
268		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
269		    &dp->dp_free_dir);
270		if (err)
271			goto out;
272
273		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
274		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
275		if (err)
276			goto out;
277		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
278		    dp->dp_meta_objset, obj));
279	}
280
281	/*
282	 * Note: errors ignored, because the leak dir will not exist if we
283	 * have not encountered a leak yet.
284	 */
285	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
286	    &dp->dp_leak_dir);
287
288	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
289		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
290		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
291		    &dp->dp_bptree_obj);
292		if (err != 0)
293			goto out;
294	}
295
296	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
297		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
298		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
299		    &dp->dp_empty_bpobj);
300		if (err != 0)
301			goto out;
302	}
303
304	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
306	    &dp->dp_tmp_userrefs_obj);
307	if (err == ENOENT)
308		err = 0;
309	if (err)
310		goto out;
311
312	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
313
314out:
315	rrw_exit(&dp->dp_config_rwlock, FTAG);
316	return (err);
317}
318
319void
320dsl_pool_close(dsl_pool_t *dp)
321{
322	/*
323	 * Drop our references from dsl_pool_open().
324	 *
325	 * Since we held the origin_snap from "syncing" context (which
326	 * includes pool-opening context), it actually only got a "ref"
327	 * and not a hold, so just drop that here.
328	 */
329	if (dp->dp_origin_snap)
330		dsl_dataset_rele(dp->dp_origin_snap, dp);
331	if (dp->dp_mos_dir)
332		dsl_dir_rele(dp->dp_mos_dir, dp);
333	if (dp->dp_free_dir)
334		dsl_dir_rele(dp->dp_free_dir, dp);
335	if (dp->dp_leak_dir)
336		dsl_dir_rele(dp->dp_leak_dir, dp);
337	if (dp->dp_root_dir)
338		dsl_dir_rele(dp->dp_root_dir, dp);
339
340	bpobj_close(&dp->dp_free_bpobj);
341
342	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
343	if (dp->dp_meta_objset)
344		dmu_objset_evict(dp->dp_meta_objset);
345
346	txg_list_destroy(&dp->dp_dirty_datasets);
347	txg_list_destroy(&dp->dp_dirty_zilogs);
348	txg_list_destroy(&dp->dp_sync_tasks);
349	txg_list_destroy(&dp->dp_dirty_dirs);
350
351	arc_flush(dp->dp_spa);
352	txg_fini(dp);
353	dsl_scan_fini(dp);
354	rrw_destroy(&dp->dp_config_rwlock);
355	mutex_destroy(&dp->dp_lock);
356	taskq_destroy(dp->dp_vnrele_taskq);
357	if (dp->dp_blkstats)
358		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
359	kmem_free(dp, sizeof (dsl_pool_t));
360}
361
362dsl_pool_t *
363dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
364{
365	int err;
366	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
367	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
368	objset_t *os;
369	dsl_dataset_t *ds;
370	uint64_t obj;
371
372	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
373
374	/* create and open the MOS (meta-objset) */
375	dp->dp_meta_objset = dmu_objset_create_impl(spa,
376	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
377
378	/* create the pool directory */
379	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
380	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
381	ASSERT0(err);
382
383	/* Initialize scan structures */
384	VERIFY0(dsl_scan_init(dp, txg));
385
386	/* create and open the root dir */
387	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
388	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
389	    NULL, dp, &dp->dp_root_dir));
390
391	/* create and open the meta-objset dir */
392	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
393	VERIFY0(dsl_pool_open_special_dir(dp,
394	    MOS_DIR_NAME, &dp->dp_mos_dir));
395
396	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
397		/* create and open the free dir */
398		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
399		    FREE_DIR_NAME, tx);
400		VERIFY0(dsl_pool_open_special_dir(dp,
401		    FREE_DIR_NAME, &dp->dp_free_dir));
402
403		/* create and open the free_bplist */
404		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
405		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
406		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
407		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
408		    dp->dp_meta_objset, obj));
409	}
410
411	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
412		dsl_pool_create_origin(dp, tx);
413
414	/* create the root dataset */
415	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
416
417	/* create the root objset */
418	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
419	os = dmu_objset_create_impl(dp->dp_spa, ds,
420	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
421#ifdef _KERNEL
422	zfs_create_fs(os, kcred, zplprops, tx);
423#endif
424	dsl_dataset_rele(ds, FTAG);
425
426	dmu_tx_commit(tx);
427
428	rrw_exit(&dp->dp_config_rwlock, FTAG);
429
430	return (dp);
431}
432
433/*
434 * Account for the meta-objset space in its placeholder dsl_dir.
435 */
436void
437dsl_pool_mos_diduse_space(dsl_pool_t *dp,
438    int64_t used, int64_t comp, int64_t uncomp)
439{
440	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
441	mutex_enter(&dp->dp_lock);
442	dp->dp_mos_used_delta += used;
443	dp->dp_mos_compressed_delta += comp;
444	dp->dp_mos_uncompressed_delta += uncomp;
445	mutex_exit(&dp->dp_lock);
446}
447
448static int
449deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
450{
451	dsl_deadlist_t *dl = arg;
452	dsl_deadlist_insert(dl, bp, tx);
453	return (0);
454}
455
456static void
457dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
458{
459	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
460	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
461	VERIFY0(zio_wait(zio));
462	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
463	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
464}
465
466static void
467dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
468{
469	ASSERT(MUTEX_HELD(&dp->dp_lock));
470
471	if (delta < 0)
472		ASSERT3U(-delta, <=, dp->dp_dirty_total);
473
474	dp->dp_dirty_total += delta;
475
476	/*
477	 * Note: we signal even when increasing dp_dirty_total.
478	 * This ensures forward progress -- each thread wakes the next waiter.
479	 */
480	if (dp->dp_dirty_total <= zfs_dirty_data_max)
481		cv_signal(&dp->dp_spaceavail_cv);
482}
483
484void
485dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
486{
487	zio_t *zio;
488	dmu_tx_t *tx;
489	dsl_dir_t *dd;
490	dsl_dataset_t *ds;
491	objset_t *mos = dp->dp_meta_objset;
492	list_t synced_datasets;
493
494	list_create(&synced_datasets, sizeof (dsl_dataset_t),
495	    offsetof(dsl_dataset_t, ds_synced_link));
496
497	tx = dmu_tx_create_assigned(dp, txg);
498
499	/*
500	 * Write out all dirty blocks of dirty datasets.
501	 */
502	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
503	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
504		/*
505		 * We must not sync any non-MOS datasets twice, because
506		 * we may have taken a snapshot of them.  However, we
507		 * may sync newly-created datasets on pass 2.
508		 */
509		ASSERT(!list_link_active(&ds->ds_synced_link));
510		list_insert_tail(&synced_datasets, ds);
511		dsl_dataset_sync(ds, zio, tx);
512	}
513	VERIFY0(zio_wait(zio));
514
515	/*
516	 * We have written all of the accounted dirty data, so our
517	 * dp_space_towrite should now be zero.  However, some seldom-used
518	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
519	 * rounding error in dbuf_write_physdone).
520	 * Shore up the accounting of any dirtied space now.
521	 */
522	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
523
524	/*
525	 * After the data blocks have been written (ensured by the zio_wait()
526	 * above), update the user/group space accounting.
527	 */
528	for (ds = list_head(&synced_datasets); ds != NULL;
529	    ds = list_next(&synced_datasets, ds)) {
530		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
531	}
532
533	/*
534	 * Sync the datasets again to push out the changes due to
535	 * userspace updates.  This must be done before we process the
536	 * sync tasks, so that any snapshots will have the correct
537	 * user accounting information (and we won't get confused
538	 * about which blocks are part of the snapshot).
539	 */
540	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
541	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
542		ASSERT(list_link_active(&ds->ds_synced_link));
543		dmu_buf_rele(ds->ds_dbuf, ds);
544		dsl_dataset_sync(ds, zio, tx);
545	}
546	VERIFY0(zio_wait(zio));
547
548	/*
549	 * Now that the datasets have been completely synced, we can
550	 * clean up our in-memory structures accumulated while syncing:
551	 *
552	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
553	 *  - release hold from dsl_dataset_dirty()
554	 */
555	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
556		objset_t *os = ds->ds_objset;
557		bplist_iterate(&ds->ds_pending_deadlist,
558		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
559		ASSERT(!dmu_objset_is_dirty(os, txg));
560		dmu_buf_rele(ds->ds_dbuf, ds);
561	}
562	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
563		dsl_dir_sync(dd, tx);
564	}
565
566	/*
567	 * The MOS's space is accounted for in the pool/$MOS
568	 * (dp_mos_dir).  We can't modify the mos while we're syncing
569	 * it, so we remember the deltas and apply them here.
570	 */
571	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
572	    dp->dp_mos_uncompressed_delta != 0) {
573		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
574		    dp->dp_mos_used_delta,
575		    dp->dp_mos_compressed_delta,
576		    dp->dp_mos_uncompressed_delta, tx);
577		dp->dp_mos_used_delta = 0;
578		dp->dp_mos_compressed_delta = 0;
579		dp->dp_mos_uncompressed_delta = 0;
580	}
581
582	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
583	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
584		dsl_pool_sync_mos(dp, tx);
585	}
586
587	/*
588	 * If we modify a dataset in the same txg that we want to destroy it,
589	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
590	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
591	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
592	 * and clearing the hold on it) before we process the sync_tasks.
593	 * The MOS data dirtied by the sync_tasks will be synced on the next
594	 * pass.
595	 */
596	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
597		dsl_sync_task_t *dst;
598		/*
599		 * No more sync tasks should have been added while we
600		 * were syncing.
601		 */
602		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
603		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
604			dsl_sync_task_sync(dst, tx);
605	}
606
607	dmu_tx_commit(tx);
608
609	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
610}
611
612void
613dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
614{
615	zilog_t *zilog;
616
617	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
618		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
619		zil_clean(zilog, txg);
620		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
621		dmu_buf_rele(ds->ds_dbuf, zilog);
622	}
623	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
624}
625
626/*
627 * TRUE if the current thread is the tx_sync_thread or if we
628 * are being called from SPA context during pool initialization.
629 */
630int
631dsl_pool_sync_context(dsl_pool_t *dp)
632{
633	return (curthread == dp->dp_tx.tx_sync_thread ||
634	    spa_is_initializing(dp->dp_spa));
635}
636
637uint64_t
638dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
639{
640	uint64_t space, resv;
641
642	/*
643	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
644	 * efficiency.
645	 * XXX The intent log is not accounted for, so it must fit
646	 * within this slop.
647	 *
648	 * If we're trying to assess whether it's OK to do a free,
649	 * cut the reservation in half to allow forward progress
650	 * (e.g. make it possible to rm(1) files from a full pool).
651	 */
652	space = spa_get_dspace(dp->dp_spa);
653	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
654	if (netfree)
655		resv >>= 1;
656
657	return (space - resv);
658}
659
660boolean_t
661dsl_pool_need_dirty_delay(dsl_pool_t *dp)
662{
663	uint64_t delay_min_bytes =
664	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
665	boolean_t rv;
666
667	mutex_enter(&dp->dp_lock);
668	if (dp->dp_dirty_total > zfs_dirty_data_sync)
669		txg_kick(dp);
670	rv = (dp->dp_dirty_total > delay_min_bytes);
671	mutex_exit(&dp->dp_lock);
672	return (rv);
673}
674
675void
676dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
677{
678	if (space > 0) {
679		mutex_enter(&dp->dp_lock);
680		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
681		dsl_pool_dirty_delta(dp, space);
682		mutex_exit(&dp->dp_lock);
683	}
684}
685
686void
687dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
688{
689	ASSERT3S(space, >=, 0);
690	if (space == 0)
691		return;
692	mutex_enter(&dp->dp_lock);
693	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
694		/* XXX writing something we didn't dirty? */
695		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
696	}
697	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
698	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
699	ASSERT3U(dp->dp_dirty_total, >=, space);
700	dsl_pool_dirty_delta(dp, -space);
701	mutex_exit(&dp->dp_lock);
702}
703
704/* ARGSUSED */
705static int
706upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
707{
708	dmu_tx_t *tx = arg;
709	dsl_dataset_t *ds, *prev = NULL;
710	int err;
711
712	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
713	if (err)
714		return (err);
715
716	while (ds->ds_phys->ds_prev_snap_obj != 0) {
717		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
718		    FTAG, &prev);
719		if (err) {
720			dsl_dataset_rele(ds, FTAG);
721			return (err);
722		}
723
724		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
725			break;
726		dsl_dataset_rele(ds, FTAG);
727		ds = prev;
728		prev = NULL;
729	}
730
731	if (prev == NULL) {
732		prev = dp->dp_origin_snap;
733
734		/*
735		 * The $ORIGIN can't have any data, or the accounting
736		 * will be wrong.
737		 */
738		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
739
740		/* The origin doesn't get attached to itself */
741		if (ds->ds_object == prev->ds_object) {
742			dsl_dataset_rele(ds, FTAG);
743			return (0);
744		}
745
746		dmu_buf_will_dirty(ds->ds_dbuf, tx);
747		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
748		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
749
750		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
751		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
752
753		dmu_buf_will_dirty(prev->ds_dbuf, tx);
754		prev->ds_phys->ds_num_children++;
755
756		if (ds->ds_phys->ds_next_snap_obj == 0) {
757			ASSERT(ds->ds_prev == NULL);
758			VERIFY0(dsl_dataset_hold_obj(dp,
759			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
760		}
761	}
762
763	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
764	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
765
766	if (prev->ds_phys->ds_next_clones_obj == 0) {
767		dmu_buf_will_dirty(prev->ds_dbuf, tx);
768		prev->ds_phys->ds_next_clones_obj =
769		    zap_create(dp->dp_meta_objset,
770		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
771	}
772	VERIFY0(zap_add_int(dp->dp_meta_objset,
773	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
774
775	dsl_dataset_rele(ds, FTAG);
776	if (prev != dp->dp_origin_snap)
777		dsl_dataset_rele(prev, FTAG);
778	return (0);
779}
780
781void
782dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
783{
784	ASSERT(dmu_tx_is_syncing(tx));
785	ASSERT(dp->dp_origin_snap != NULL);
786
787	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
788	    tx, DS_FIND_CHILDREN));
789}
790
791/* ARGSUSED */
792static int
793upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
794{
795	dmu_tx_t *tx = arg;
796	objset_t *mos = dp->dp_meta_objset;
797
798	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
799		dsl_dataset_t *origin;
800
801		VERIFY0(dsl_dataset_hold_obj(dp,
802		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
803
804		if (origin->ds_dir->dd_phys->dd_clones == 0) {
805			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
806			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
807			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
808		}
809
810		VERIFY0(zap_add_int(dp->dp_meta_objset,
811		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
812
813		dsl_dataset_rele(origin, FTAG);
814	}
815	return (0);
816}
817
818void
819dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
820{
821	ASSERT(dmu_tx_is_syncing(tx));
822	uint64_t obj;
823
824	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
825	VERIFY0(dsl_pool_open_special_dir(dp,
826	    FREE_DIR_NAME, &dp->dp_free_dir));
827
828	/*
829	 * We can't use bpobj_alloc(), because spa_version() still
830	 * returns the old version, and we need a new-version bpobj with
831	 * subobj support.  So call dmu_object_alloc() directly.
832	 */
833	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
834	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
835	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
836	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
837	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
838
839	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
840	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
841}
842
843void
844dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
845{
846	uint64_t dsobj;
847	dsl_dataset_t *ds;
848
849	ASSERT(dmu_tx_is_syncing(tx));
850	ASSERT(dp->dp_origin_snap == NULL);
851	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
852
853	/* create the origin dir, ds, & snap-ds */
854	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
855	    NULL, 0, kcred, tx);
856	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
857	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
858	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
859	    dp, &dp->dp_origin_snap));
860	dsl_dataset_rele(ds, FTAG);
861}
862
863taskq_t *
864dsl_pool_vnrele_taskq(dsl_pool_t *dp)
865{
866	return (dp->dp_vnrele_taskq);
867}
868
869/*
870 * Walk through the pool-wide zap object of temporary snapshot user holds
871 * and release them.
872 */
873void
874dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
875{
876	zap_attribute_t za;
877	zap_cursor_t zc;
878	objset_t *mos = dp->dp_meta_objset;
879	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
880	nvlist_t *holds;
881
882	if (zapobj == 0)
883		return;
884	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
885
886	holds = fnvlist_alloc();
887
888	for (zap_cursor_init(&zc, mos, zapobj);
889	    zap_cursor_retrieve(&zc, &za) == 0;
890	    zap_cursor_advance(&zc)) {
891		char *htag;
892		nvlist_t *tags;
893
894		htag = strchr(za.za_name, '-');
895		*htag = '\0';
896		++htag;
897		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
898			tags = fnvlist_alloc();
899			fnvlist_add_boolean(tags, htag);
900			fnvlist_add_nvlist(holds, za.za_name, tags);
901			fnvlist_free(tags);
902		} else {
903			fnvlist_add_boolean(tags, htag);
904		}
905	}
906	dsl_dataset_user_release_tmp(dp, holds);
907	fnvlist_free(holds);
908	zap_cursor_fini(&zc);
909}
910
911/*
912 * Create the pool-wide zap object for storing temporary snapshot holds.
913 */
914void
915dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
916{
917	objset_t *mos = dp->dp_meta_objset;
918
919	ASSERT(dp->dp_tmp_userrefs_obj == 0);
920	ASSERT(dmu_tx_is_syncing(tx));
921
922	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
923	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
924}
925
926static int
927dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
928    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
929{
930	objset_t *mos = dp->dp_meta_objset;
931	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
932	char *name;
933	int error;
934
935	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
936	ASSERT(dmu_tx_is_syncing(tx));
937
938	/*
939	 * If the pool was created prior to SPA_VERSION_USERREFS, the
940	 * zap object for temporary holds might not exist yet.
941	 */
942	if (zapobj == 0) {
943		if (holding) {
944			dsl_pool_user_hold_create_obj(dp, tx);
945			zapobj = dp->dp_tmp_userrefs_obj;
946		} else {
947			return (SET_ERROR(ENOENT));
948		}
949	}
950
951	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
952	if (holding)
953		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
954	else
955		error = zap_remove(mos, zapobj, name, tx);
956	strfree(name);
957
958	return (error);
959}
960
961/*
962 * Add a temporary hold for the given dataset object and tag.
963 */
964int
965dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
966    uint64_t now, dmu_tx_t *tx)
967{
968	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
969}
970
971/*
972 * Release a temporary hold for the given dataset object and tag.
973 */
974int
975dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
976    dmu_tx_t *tx)
977{
978	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
979	    tx, B_FALSE));
980}
981
982/*
983 * DSL Pool Configuration Lock
984 *
985 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
986 * creation / destruction / rename / property setting).  It must be held for
987 * read to hold a dataset or dsl_dir.  I.e. you must call
988 * dsl_pool_config_enter() or dsl_pool_hold() before calling
989 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
990 * must be held continuously until all datasets and dsl_dirs are released.
991 *
992 * The only exception to this rule is that if a "long hold" is placed on
993 * a dataset, then the dp_config_rwlock may be dropped while the dataset
994 * is still held.  The long hold will prevent the dataset from being
995 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
996 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
997 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
998 *
999 * Legitimate long-holders (including owners) should be long-running, cancelable
1000 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1001 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1002 * "zfs send", and "zfs diff".  There are several other long-holders whose
1003 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1004 *
1005 * The usual formula for long-holding would be:
1006 * dsl_pool_hold()
1007 * dsl_dataset_hold()
1008 * ... perform checks ...
1009 * dsl_dataset_long_hold()
1010 * dsl_pool_rele()
1011 * ... perform long-running task ...
1012 * dsl_dataset_long_rele()
1013 * dsl_dataset_rele()
1014 *
1015 * Note that when the long hold is released, the dataset is still held but
1016 * the pool is not held.  The dataset may change arbitrarily during this time
1017 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1018 * dataset except release it.
1019 *
1020 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1021 * or modifying operations.
1022 *
1023 * Modifying operations should generally use dsl_sync_task().  The synctask
1024 * infrastructure enforces proper locking strategy with respect to the
1025 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1026 *
1027 * Read-only operations will manually hold the pool, then the dataset, obtain
1028 * information from the dataset, then release the pool and dataset.
1029 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1030 * hold/rele.
1031 */
1032
1033int
1034dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1035{
1036	spa_t *spa;
1037	int error;
1038
1039	error = spa_open(name, &spa, tag);
1040	if (error == 0) {
1041		*dp = spa_get_dsl(spa);
1042		dsl_pool_config_enter(*dp, tag);
1043	}
1044	return (error);
1045}
1046
1047void
1048dsl_pool_rele(dsl_pool_t *dp, void *tag)
1049{
1050	dsl_pool_config_exit(dp, tag);
1051	spa_close(dp->dp_spa, tag);
1052}
1053
1054void
1055dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1056{
1057	/*
1058	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1059	 *
1060	 * The rrwlock can (with the track_all flag) track all reading threads,
1061	 * which is very useful for debugging which code path failed to release
1062	 * the lock, and for verifying that the *current* thread does hold
1063	 * the lock.
1064	 *
1065	 * (Unlike a rwlock, which knows that N threads hold it for
1066	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1067	 * if any thread holds it for read, even if this thread doesn't).
1068	 */
1069	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1070	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1071}
1072
1073void
1074dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1075{
1076	rrw_exit(&dp->dp_config_rwlock, tag);
1077}
1078
1079boolean_t
1080dsl_pool_config_held(dsl_pool_t *dp)
1081{
1082	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1083}
1084