dsl_dir.c revision 288549
1164856Sdds/*
2164856Sdds * CDDL HEADER START
3164856Sdds *
4164856Sdds * The contents of this file are subject to the terms of the
5164856Sdds * Common Development and Distribution License (the "License").
6164856Sdds * You may not use this file except in compliance with the License.
7164856Sdds *
8164856Sdds * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9164856Sdds * or http://www.opensolaris.org/os/licensing.
10164856Sdds * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
29 */
30
31#include <sys/dmu.h>
32#include <sys/dmu_objset.h>
33#include <sys/dmu_tx.h>
34#include <sys/dsl_dataset.h>
35#include <sys/dsl_dir.h>
36#include <sys/dsl_prop.h>
37#include <sys/dsl_synctask.h>
38#include <sys/dsl_deleg.h>
39#include <sys/dmu_impl.h>
40#include <sys/spa.h>
41#include <sys/metaslab.h>
42#include <sys/zap.h>
43#include <sys/zio.h>
44#include <sys/arc.h>
45#include <sys/sunddi.h>
46#include <sys/zvol.h>
47#ifdef _KERNEL
48#include <sys/zfs_vfsops.h>
49#endif
50#include <sys/zfeature.h>
51#include <sys/policy.h>
52#include <sys/zfs_znode.h>
53#include "zfs_namecheck.h"
54#include "zfs_prop.h"
55
56/*
57 * Filesystem and Snapshot Limits
58 * ------------------------------
59 *
60 * These limits are used to restrict the number of filesystems and/or snapshots
61 * that can be created at a given level in the tree or below. A typical
62 * use-case is with a delegated dataset where the administrator wants to ensure
63 * that a user within the zone is not creating too many additional filesystems
64 * or snapshots, even though they're not exceeding their space quota.
65 *
66 * The filesystem and snapshot counts are stored as extensible properties. This
67 * capability is controlled by a feature flag and must be enabled to be used.
68 * Once enabled, the feature is not active until the first limit is set. At
69 * that point, future operations to create/destroy filesystems or snapshots
70 * will validate and update the counts.
71 *
72 * Because the count properties will not exist before the feature is active,
73 * the counts are updated when a limit is first set on an uninitialized
74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77 * snapshot count properties on a node indicate uninitialized counts on that
78 * node.) When first setting a limit on an uninitialized node, the code starts
79 * at the filesystem with the new limit and descends into all sub-filesystems
80 * to add the count properties.
81 *
82 * In practice this is lightweight since a limit is typically set when the
83 * filesystem is created and thus has no children. Once valid, changing the
84 * limit value won't require a re-traversal since the counts are already valid.
85 * When recursively fixing the counts, if a node with a limit is encountered
86 * during the descent, the counts are known to be valid and there is no need to
87 * descend into that filesystem's children. The counts on filesystems above the
88 * one with the new limit will still be uninitialized, unless a limit is
89 * eventually set on one of those filesystems. The counts are always recursively
90 * updated when a limit is set on a dataset, unless there is already a limit.
91 * When a new limit value is set on a filesystem with an existing limit, it is
92 * possible for the new limit to be less than the current count at that level
93 * since a user who can change the limit is also allowed to exceed the limit.
94 *
95 * Once the feature is active, then whenever a filesystem or snapshot is
96 * created, the code recurses up the tree, validating the new count against the
97 * limit at each initialized level. In practice, most levels will not have a
98 * limit set. If there is a limit at any initialized level up the tree, the
99 * check must pass or the creation will fail. Likewise, when a filesystem or
100 * snapshot is destroyed, the counts are recursively adjusted all the way up
101 * the initizized nodes in the tree. Renaming a filesystem into different point
102 * in the tree will first validate, then update the counts on each branch up to
103 * the common ancestor. A receive will also validate the counts and then update
104 * them.
105 *
106 * An exception to the above behavior is that the limit is not enforced if the
107 * user has permission to modify the limit. This is primarily so that
108 * recursive snapshots in the global zone always work. We want to prevent a
109 * denial-of-service in which a lower level delegated dataset could max out its
110 * limit and thus block recursive snapshots from being taken in the global zone.
111 * Because of this, it is possible for the snapshot count to be over the limit
112 * and snapshots taken in the global zone could cause a lower level dataset to
113 * hit or exceed its limit. The administrator taking the global zone recursive
114 * snapshot should be aware of this side-effect and behave accordingly.
115 * For consistency, the filesystem limit is also not enforced if the user can
116 * modify the limit.
117 *
118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121 * dsl_dir_init_fs_ss_count().
122 *
123 * There is a special case when we receive a filesystem that already exists. In
124 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
125 * never update the filesystem counts for temporary clones.
126 *
127 * Likewise, we do not update the snapshot counts for temporary snapshots,
128 * such as those created by zfs diff.
129 */
130
131extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
132
133static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
134
135static void
136dsl_dir_evict(void *dbu)
137{
138	dsl_dir_t *dd = dbu;
139	dsl_pool_t *dp = dd->dd_pool;
140	int t;
141
142	dd->dd_dbuf = NULL;
143
144	for (t = 0; t < TXG_SIZE; t++) {
145		ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
146		ASSERT(dd->dd_tempreserved[t] == 0);
147		ASSERT(dd->dd_space_towrite[t] == 0);
148	}
149
150	if (dd->dd_parent)
151		dsl_dir_async_rele(dd->dd_parent, dd);
152
153	spa_async_close(dd->dd_pool->dp_spa, dd);
154
155	/*
156	 * The props callback list should have been cleaned up by
157	 * objset_evict().
158	 */
159	list_destroy(&dd->dd_prop_cbs);
160	mutex_destroy(&dd->dd_lock);
161	kmem_free(dd, sizeof (dsl_dir_t));
162}
163
164int
165dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
166    const char *tail, void *tag, dsl_dir_t **ddp)
167{
168	dmu_buf_t *dbuf;
169	dsl_dir_t *dd;
170	int err;
171
172	ASSERT(dsl_pool_config_held(dp));
173
174	err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
175	if (err != 0)
176		return (err);
177	dd = dmu_buf_get_user(dbuf);
178#ifdef ZFS_DEBUG
179	{
180		dmu_object_info_t doi;
181		dmu_object_info_from_db(dbuf, &doi);
182		ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
183		ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
184	}
185#endif
186	if (dd == NULL) {
187		dsl_dir_t *winner;
188
189		dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
190		dd->dd_object = ddobj;
191		dd->dd_dbuf = dbuf;
192		dd->dd_pool = dp;
193		mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
194
195		list_create(&dd->dd_prop_cbs, sizeof (dsl_prop_cb_record_t),
196		    offsetof(dsl_prop_cb_record_t, cbr_node));
197
198		dsl_dir_snap_cmtime_update(dd);
199
200		if (dsl_dir_phys(dd)->dd_parent_obj) {
201			err = dsl_dir_hold_obj(dp,
202			    dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
203			    &dd->dd_parent);
204			if (err != 0)
205				goto errout;
206			if (tail) {
207#ifdef ZFS_DEBUG
208				uint64_t foundobj;
209
210				err = zap_lookup(dp->dp_meta_objset,
211				    dsl_dir_phys(dd->dd_parent)->
212				    dd_child_dir_zapobj, tail,
213				    sizeof (foundobj), 1, &foundobj);
214				ASSERT(err || foundobj == ddobj);
215#endif
216				(void) strcpy(dd->dd_myname, tail);
217			} else {
218				err = zap_value_search(dp->dp_meta_objset,
219				    dsl_dir_phys(dd->dd_parent)->
220				    dd_child_dir_zapobj,
221				    ddobj, 0, dd->dd_myname);
222			}
223			if (err != 0)
224				goto errout;
225		} else {
226			(void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
227		}
228
229		if (dsl_dir_is_clone(dd)) {
230			dmu_buf_t *origin_bonus;
231			dsl_dataset_phys_t *origin_phys;
232
233			/*
234			 * We can't open the origin dataset, because
235			 * that would require opening this dsl_dir.
236			 * Just look at its phys directly instead.
237			 */
238			err = dmu_bonus_hold(dp->dp_meta_objset,
239			    dsl_dir_phys(dd)->dd_origin_obj, FTAG,
240			    &origin_bonus);
241			if (err != 0)
242				goto errout;
243			origin_phys = origin_bonus->db_data;
244			dd->dd_origin_txg =
245			    origin_phys->ds_creation_txg;
246			dmu_buf_rele(origin_bonus, FTAG);
247		}
248
249		dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf);
250		winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
251		if (winner != NULL) {
252			if (dd->dd_parent)
253				dsl_dir_rele(dd->dd_parent, dd);
254			mutex_destroy(&dd->dd_lock);
255			kmem_free(dd, sizeof (dsl_dir_t));
256			dd = winner;
257		} else {
258			spa_open_ref(dp->dp_spa, dd);
259		}
260	}
261
262	/*
263	 * The dsl_dir_t has both open-to-close and instantiate-to-evict
264	 * holds on the spa.  We need the open-to-close holds because
265	 * otherwise the spa_refcnt wouldn't change when we open a
266	 * dir which the spa also has open, so we could incorrectly
267	 * think it was OK to unload/export/destroy the pool.  We need
268	 * the instantiate-to-evict hold because the dsl_dir_t has a
269	 * pointer to the dd_pool, which has a pointer to the spa_t.
270	 */
271	spa_open_ref(dp->dp_spa, tag);
272	ASSERT3P(dd->dd_pool, ==, dp);
273	ASSERT3U(dd->dd_object, ==, ddobj);
274	ASSERT3P(dd->dd_dbuf, ==, dbuf);
275	*ddp = dd;
276	return (0);
277
278errout:
279	if (dd->dd_parent)
280		dsl_dir_rele(dd->dd_parent, dd);
281	mutex_destroy(&dd->dd_lock);
282	kmem_free(dd, sizeof (dsl_dir_t));
283	dmu_buf_rele(dbuf, tag);
284	return (err);
285}
286
287void
288dsl_dir_rele(dsl_dir_t *dd, void *tag)
289{
290	dprintf_dd(dd, "%s\n", "");
291	spa_close(dd->dd_pool->dp_spa, tag);
292	dmu_buf_rele(dd->dd_dbuf, tag);
293}
294
295/*
296 * Remove a reference to the given dsl dir that is being asynchronously
297 * released.  Async releases occur from a taskq performing eviction of
298 * dsl datasets and dirs.  This process is identical to a normal release
299 * with the exception of using the async API for releasing the reference on
300 * the spa.
301 */
302void
303dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
304{
305	dprintf_dd(dd, "%s\n", "");
306	spa_async_close(dd->dd_pool->dp_spa, tag);
307	dmu_buf_rele(dd->dd_dbuf, tag);
308}
309
310/* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */
311void
312dsl_dir_name(dsl_dir_t *dd, char *buf)
313{
314	if (dd->dd_parent) {
315		dsl_dir_name(dd->dd_parent, buf);
316		(void) strcat(buf, "/");
317	} else {
318		buf[0] = '\0';
319	}
320	if (!MUTEX_HELD(&dd->dd_lock)) {
321		/*
322		 * recursive mutex so that we can use
323		 * dprintf_dd() with dd_lock held
324		 */
325		mutex_enter(&dd->dd_lock);
326		(void) strcat(buf, dd->dd_myname);
327		mutex_exit(&dd->dd_lock);
328	} else {
329		(void) strcat(buf, dd->dd_myname);
330	}
331}
332
333/* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
334int
335dsl_dir_namelen(dsl_dir_t *dd)
336{
337	int result = 0;
338
339	if (dd->dd_parent) {
340		/* parent's name + 1 for the "/" */
341		result = dsl_dir_namelen(dd->dd_parent) + 1;
342	}
343
344	if (!MUTEX_HELD(&dd->dd_lock)) {
345		/* see dsl_dir_name */
346		mutex_enter(&dd->dd_lock);
347		result += strlen(dd->dd_myname);
348		mutex_exit(&dd->dd_lock);
349	} else {
350		result += strlen(dd->dd_myname);
351	}
352
353	return (result);
354}
355
356static int
357getcomponent(const char *path, char *component, const char **nextp)
358{
359	char *p;
360
361	if ((path == NULL) || (path[0] == '\0'))
362		return (SET_ERROR(ENOENT));
363	/* This would be a good place to reserve some namespace... */
364	p = strpbrk(path, "/@");
365	if (p && (p[1] == '/' || p[1] == '@')) {
366		/* two separators in a row */
367		return (SET_ERROR(EINVAL));
368	}
369	if (p == NULL || p == path) {
370		/*
371		 * if the first thing is an @ or /, it had better be an
372		 * @ and it had better not have any more ats or slashes,
373		 * and it had better have something after the @.
374		 */
375		if (p != NULL &&
376		    (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
377			return (SET_ERROR(EINVAL));
378		if (strlen(path) >= MAXNAMELEN)
379			return (SET_ERROR(ENAMETOOLONG));
380		(void) strcpy(component, path);
381		p = NULL;
382	} else if (p[0] == '/') {
383		if (p - path >= MAXNAMELEN)
384			return (SET_ERROR(ENAMETOOLONG));
385		(void) strncpy(component, path, p - path);
386		component[p - path] = '\0';
387		p++;
388	} else if (p[0] == '@') {
389		/*
390		 * if the next separator is an @, there better not be
391		 * any more slashes.
392		 */
393		if (strchr(path, '/'))
394			return (SET_ERROR(EINVAL));
395		if (p - path >= MAXNAMELEN)
396			return (SET_ERROR(ENAMETOOLONG));
397		(void) strncpy(component, path, p - path);
398		component[p - path] = '\0';
399	} else {
400		panic("invalid p=%p", (void *)p);
401	}
402	*nextp = p;
403	return (0);
404}
405
406/*
407 * Return the dsl_dir_t, and possibly the last component which couldn't
408 * be found in *tail.  The name must be in the specified dsl_pool_t.  This
409 * thread must hold the dp_config_rwlock for the pool.  Returns NULL if the
410 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
411 * (*tail)[0] == '@' means that the last component is a snapshot.
412 */
413int
414dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
415    dsl_dir_t **ddp, const char **tailp)
416{
417	char buf[MAXNAMELEN];
418	const char *spaname, *next, *nextnext = NULL;
419	int err;
420	dsl_dir_t *dd;
421	uint64_t ddobj;
422
423	err = getcomponent(name, buf, &next);
424	if (err != 0)
425		return (err);
426
427	/* Make sure the name is in the specified pool. */
428	spaname = spa_name(dp->dp_spa);
429	if (strcmp(buf, spaname) != 0)
430		return (SET_ERROR(EXDEV));
431
432	ASSERT(dsl_pool_config_held(dp));
433
434	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
435	if (err != 0) {
436		return (err);
437	}
438
439	while (next != NULL) {
440		dsl_dir_t *child_dd;
441		err = getcomponent(next, buf, &nextnext);
442		if (err != 0)
443			break;
444		ASSERT(next[0] != '\0');
445		if (next[0] == '@')
446			break;
447		dprintf("looking up %s in obj%lld\n",
448		    buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
449
450		err = zap_lookup(dp->dp_meta_objset,
451		    dsl_dir_phys(dd)->dd_child_dir_zapobj,
452		    buf, sizeof (ddobj), 1, &ddobj);
453		if (err != 0) {
454			if (err == ENOENT)
455				err = 0;
456			break;
457		}
458
459		err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
460		if (err != 0)
461			break;
462		dsl_dir_rele(dd, tag);
463		dd = child_dd;
464		next = nextnext;
465	}
466
467	if (err != 0) {
468		dsl_dir_rele(dd, tag);
469		return (err);
470	}
471
472	/*
473	 * It's an error if there's more than one component left, or
474	 * tailp==NULL and there's any component left.
475	 */
476	if (next != NULL &&
477	    (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
478		/* bad path name */
479		dsl_dir_rele(dd, tag);
480		dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
481		err = SET_ERROR(ENOENT);
482	}
483	if (tailp != NULL)
484		*tailp = next;
485	*ddp = dd;
486	return (err);
487}
488
489/*
490 * If the counts are already initialized for this filesystem and its
491 * descendants then do nothing, otherwise initialize the counts.
492 *
493 * The counts on this filesystem, and those below, may be uninitialized due to
494 * either the use of a pre-existing pool which did not support the
495 * filesystem/snapshot limit feature, or one in which the feature had not yet
496 * been enabled.
497 *
498 * Recursively descend the filesystem tree and update the filesystem/snapshot
499 * counts on each filesystem below, then update the cumulative count on the
500 * current filesystem. If the filesystem already has a count set on it,
501 * then we know that its counts, and the counts on the filesystems below it,
502 * are already correct, so we don't have to update this filesystem.
503 */
504static void
505dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
506{
507	uint64_t my_fs_cnt = 0;
508	uint64_t my_ss_cnt = 0;
509	dsl_pool_t *dp = dd->dd_pool;
510	objset_t *os = dp->dp_meta_objset;
511	zap_cursor_t *zc;
512	zap_attribute_t *za;
513	dsl_dataset_t *ds;
514
515	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
516	ASSERT(dsl_pool_config_held(dp));
517	ASSERT(dmu_tx_is_syncing(tx));
518
519	dsl_dir_zapify(dd, tx);
520
521	/*
522	 * If the filesystem count has already been initialized then we
523	 * don't need to recurse down any further.
524	 */
525	if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
526		return;
527
528	zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
529	za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
530
531	/* Iterate my child dirs */
532	for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
533	    zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
534		dsl_dir_t *chld_dd;
535		uint64_t count;
536
537		VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
538		    &chld_dd));
539
540		/*
541		 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
542		 * temporary datasets.
543		 */
544		if (chld_dd->dd_myname[0] == '$' ||
545		    chld_dd->dd_myname[0] == '%') {
546			dsl_dir_rele(chld_dd, FTAG);
547			continue;
548		}
549
550		my_fs_cnt++;	/* count this child */
551
552		dsl_dir_init_fs_ss_count(chld_dd, tx);
553
554		VERIFY0(zap_lookup(os, chld_dd->dd_object,
555		    DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
556		my_fs_cnt += count;
557		VERIFY0(zap_lookup(os, chld_dd->dd_object,
558		    DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
559		my_ss_cnt += count;
560
561		dsl_dir_rele(chld_dd, FTAG);
562	}
563	zap_cursor_fini(zc);
564	/* Count my snapshots (we counted children's snapshots above) */
565	VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
566	    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
567
568	for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
569	    zap_cursor_retrieve(zc, za) == 0;
570	    zap_cursor_advance(zc)) {
571		/* Don't count temporary snapshots */
572		if (za->za_name[0] != '%')
573			my_ss_cnt++;
574	}
575	zap_cursor_fini(zc);
576
577	dsl_dataset_rele(ds, FTAG);
578
579	kmem_free(zc, sizeof (zap_cursor_t));
580	kmem_free(za, sizeof (zap_attribute_t));
581
582	/* we're in a sync task, update counts */
583	dmu_buf_will_dirty(dd->dd_dbuf, tx);
584	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
585	    sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
586	VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
587	    sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
588}
589
590static int
591dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
592{
593	char *ddname = (char *)arg;
594	dsl_pool_t *dp = dmu_tx_pool(tx);
595	dsl_dataset_t *ds;
596	dsl_dir_t *dd;
597	int error;
598
599	error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
600	if (error != 0)
601		return (error);
602
603	if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
604		dsl_dataset_rele(ds, FTAG);
605		return (SET_ERROR(ENOTSUP));
606	}
607
608	dd = ds->ds_dir;
609	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
610	    dsl_dir_is_zapified(dd) &&
611	    zap_contains(dp->dp_meta_objset, dd->dd_object,
612	    DD_FIELD_FILESYSTEM_COUNT) == 0) {
613		dsl_dataset_rele(ds, FTAG);
614		return (SET_ERROR(EALREADY));
615	}
616
617	dsl_dataset_rele(ds, FTAG);
618	return (0);
619}
620
621static void
622dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
623{
624	char *ddname = (char *)arg;
625	dsl_pool_t *dp = dmu_tx_pool(tx);
626	dsl_dataset_t *ds;
627	spa_t *spa;
628
629	VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
630
631	spa = dsl_dataset_get_spa(ds);
632
633	if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
634		/*
635		 * Since the feature was not active and we're now setting a
636		 * limit, increment the feature-active counter so that the
637		 * feature becomes active for the first time.
638		 *
639		 * We are already in a sync task so we can update the MOS.
640		 */
641		spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
642	}
643
644	/*
645	 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
646	 * we need to ensure the counts are correct. Descend down the tree from
647	 * this point and update all of the counts to be accurate.
648	 */
649	dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
650
651	dsl_dataset_rele(ds, FTAG);
652}
653
654/*
655 * Make sure the feature is enabled and activate it if necessary.
656 * Since we're setting a limit, ensure the on-disk counts are valid.
657 * This is only called by the ioctl path when setting a limit value.
658 *
659 * We do not need to validate the new limit, since users who can change the
660 * limit are also allowed to exceed the limit.
661 */
662int
663dsl_dir_activate_fs_ss_limit(const char *ddname)
664{
665	int error;
666
667	error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
668	    dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
669	    ZFS_SPACE_CHECK_RESERVED);
670
671	if (error == EALREADY)
672		error = 0;
673
674	return (error);
675}
676
677/*
678 * Used to determine if the filesystem_limit or snapshot_limit should be
679 * enforced. We allow the limit to be exceeded if the user has permission to
680 * write the property value. We pass in the creds that we got in the open
681 * context since we will always be the GZ root in syncing context. We also have
682 * to handle the case where we are allowed to change the limit on the current
683 * dataset, but there may be another limit in the tree above.
684 *
685 * We can never modify these two properties within a non-global zone. In
686 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
687 * can't use that function since we are already holding the dp_config_rwlock.
688 * In addition, we already have the dd and dealing with snapshots is simplified
689 * in this code.
690 */
691
692typedef enum {
693	ENFORCE_ALWAYS,
694	ENFORCE_NEVER,
695	ENFORCE_ABOVE
696} enforce_res_t;
697
698static enforce_res_t
699dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
700{
701	enforce_res_t enforce = ENFORCE_ALWAYS;
702	uint64_t obj;
703	dsl_dataset_t *ds;
704	uint64_t zoned;
705
706	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
707	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
708
709#ifdef _KERNEL
710#ifdef __FreeBSD__
711	if (jailed(cr))
712#else
713	if (crgetzoneid(cr) != GLOBAL_ZONEID)
714#endif
715		return (ENFORCE_ALWAYS);
716
717	if (secpolicy_zfs(cr) == 0)
718		return (ENFORCE_NEVER);
719#endif
720
721	if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
722		return (ENFORCE_ALWAYS);
723
724	ASSERT(dsl_pool_config_held(dd->dd_pool));
725
726	if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
727		return (ENFORCE_ALWAYS);
728
729	if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
730		/* Only root can access zoned fs's from the GZ */
731		enforce = ENFORCE_ALWAYS;
732	} else {
733		if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
734			enforce = ENFORCE_ABOVE;
735	}
736
737	dsl_dataset_rele(ds, FTAG);
738	return (enforce);
739}
740
741/*
742 * Check if adding additional child filesystem(s) would exceed any filesystem
743 * limits or adding additional snapshot(s) would exceed any snapshot limits.
744 * The prop argument indicates which limit to check.
745 *
746 * Note that all filesystem limits up to the root (or the highest
747 * initialized) filesystem or the given ancestor must be satisfied.
748 */
749int
750dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
751    dsl_dir_t *ancestor, cred_t *cr)
752{
753	objset_t *os = dd->dd_pool->dp_meta_objset;
754	uint64_t limit, count;
755	char *count_prop;
756	enforce_res_t enforce;
757	int err = 0;
758
759	ASSERT(dsl_pool_config_held(dd->dd_pool));
760	ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
761	    prop == ZFS_PROP_SNAPSHOT_LIMIT);
762
763	/*
764	 * If we're allowed to change the limit, don't enforce the limit
765	 * e.g. this can happen if a snapshot is taken by an administrative
766	 * user in the global zone (i.e. a recursive snapshot by root).
767	 * However, we must handle the case of delegated permissions where we
768	 * are allowed to change the limit on the current dataset, but there
769	 * is another limit in the tree above.
770	 */
771	enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
772	if (enforce == ENFORCE_NEVER)
773		return (0);
774
775	/*
776	 * e.g. if renaming a dataset with no snapshots, count adjustment
777	 * is 0.
778	 */
779	if (delta == 0)
780		return (0);
781
782	if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
783		/*
784		 * We don't enforce the limit for temporary snapshots. This is
785		 * indicated by a NULL cred_t argument.
786		 */
787		if (cr == NULL)
788			return (0);
789
790		count_prop = DD_FIELD_SNAPSHOT_COUNT;
791	} else {
792		count_prop = DD_FIELD_FILESYSTEM_COUNT;
793	}
794
795	/*
796	 * If an ancestor has been provided, stop checking the limit once we
797	 * hit that dir. We need this during rename so that we don't overcount
798	 * the check once we recurse up to the common ancestor.
799	 */
800	if (ancestor == dd)
801		return (0);
802
803	/*
804	 * If we hit an uninitialized node while recursing up the tree, we can
805	 * stop since we know there is no limit here (or above). The counts are
806	 * not valid on this node and we know we won't touch this node's counts.
807	 */
808	if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
809	    count_prop, sizeof (count), 1, &count) == ENOENT)
810		return (0);
811
812	err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
813	    B_FALSE);
814	if (err != 0)
815		return (err);
816
817	/* Is there a limit which we've hit? */
818	if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
819		return (SET_ERROR(EDQUOT));
820
821	if (dd->dd_parent != NULL)
822		err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
823		    ancestor, cr);
824
825	return (err);
826}
827
828/*
829 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
830 * parents. When a new filesystem/snapshot is created, increment the count on
831 * all parents, and when a filesystem/snapshot is destroyed, decrement the
832 * count.
833 */
834void
835dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
836    dmu_tx_t *tx)
837{
838	int err;
839	objset_t *os = dd->dd_pool->dp_meta_objset;
840	uint64_t count;
841
842	ASSERT(dsl_pool_config_held(dd->dd_pool));
843	ASSERT(dmu_tx_is_syncing(tx));
844	ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
845	    strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
846
847	/*
848	 * When we receive an incremental stream into a filesystem that already
849	 * exists, a temporary clone is created.  We don't count this temporary
850	 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
851	 * $MOS & $ORIGIN) objsets.
852	 */
853	if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
854	    strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
855		return;
856
857	/*
858	 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
859	 */
860	if (delta == 0)
861		return;
862
863	/*
864	 * If we hit an uninitialized node while recursing up the tree, we can
865	 * stop since we know the counts are not valid on this node and we
866	 * know we shouldn't touch this node's counts. An uninitialized count
867	 * on the node indicates that either the feature has not yet been
868	 * activated or there are no limits on this part of the tree.
869	 */
870	if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
871	    prop, sizeof (count), 1, &count)) == ENOENT)
872		return;
873	VERIFY0(err);
874
875	count += delta;
876	/* Use a signed verify to make sure we're not neg. */
877	VERIFY3S(count, >=, 0);
878
879	VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
880	    tx));
881
882	/* Roll up this additional count into our ancestors */
883	if (dd->dd_parent != NULL)
884		dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
885}
886
887uint64_t
888dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
889    dmu_tx_t *tx)
890{
891	objset_t *mos = dp->dp_meta_objset;
892	uint64_t ddobj;
893	dsl_dir_phys_t *ddphys;
894	dmu_buf_t *dbuf;
895
896	ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
897	    DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
898	if (pds) {
899		VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
900		    name, sizeof (uint64_t), 1, &ddobj, tx));
901	} else {
902		/* it's the root dir */
903		VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
904		    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
905	}
906	VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
907	dmu_buf_will_dirty(dbuf, tx);
908	ddphys = dbuf->db_data;
909
910	ddphys->dd_creation_time = gethrestime_sec();
911	if (pds) {
912		ddphys->dd_parent_obj = pds->dd_object;
913
914		/* update the filesystem counts */
915		dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
916	}
917	ddphys->dd_props_zapobj = zap_create(mos,
918	    DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
919	ddphys->dd_child_dir_zapobj = zap_create(mos,
920	    DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
921	if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
922		ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
923	dmu_buf_rele(dbuf, FTAG);
924
925	return (ddobj);
926}
927
928boolean_t
929dsl_dir_is_clone(dsl_dir_t *dd)
930{
931	return (dsl_dir_phys(dd)->dd_origin_obj &&
932	    (dd->dd_pool->dp_origin_snap == NULL ||
933	    dsl_dir_phys(dd)->dd_origin_obj !=
934	    dd->dd_pool->dp_origin_snap->ds_object));
935}
936
937void
938dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
939{
940	mutex_enter(&dd->dd_lock);
941	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
942	    dsl_dir_phys(dd)->dd_used_bytes);
943	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
944	    dsl_dir_phys(dd)->dd_quota);
945	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
946	    dsl_dir_phys(dd)->dd_reserved);
947	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
948	    dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
949	    (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
950	    dsl_dir_phys(dd)->dd_compressed_bytes));
951	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
952	    dsl_dir_phys(dd)->dd_uncompressed_bytes);
953	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
954		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
955		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
956		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
957		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
958		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
959		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
960		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
961		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
962		    dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
963	}
964	mutex_exit(&dd->dd_lock);
965
966	if (dsl_dir_is_zapified(dd)) {
967		uint64_t count;
968		objset_t *os = dd->dd_pool->dp_meta_objset;
969
970		if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
971		    sizeof (count), 1, &count) == 0) {
972			dsl_prop_nvlist_add_uint64(nv,
973			    ZFS_PROP_FILESYSTEM_COUNT, count);
974		}
975		if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
976		    sizeof (count), 1, &count) == 0) {
977			dsl_prop_nvlist_add_uint64(nv,
978			    ZFS_PROP_SNAPSHOT_COUNT, count);
979		}
980	}
981
982	if (dsl_dir_is_clone(dd)) {
983		dsl_dataset_t *ds;
984		char buf[MAXNAMELEN];
985
986		VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
987		    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
988		dsl_dataset_name(ds, buf);
989		dsl_dataset_rele(ds, FTAG);
990		dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
991	}
992}
993
994void
995dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
996{
997	dsl_pool_t *dp = dd->dd_pool;
998
999	ASSERT(dsl_dir_phys(dd));
1000
1001	if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1002		/* up the hold count until we can be written out */
1003		dmu_buf_add_ref(dd->dd_dbuf, dd);
1004	}
1005}
1006
1007static int64_t
1008parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1009{
1010	uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1011	uint64_t new_accounted =
1012	    MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1013	return (new_accounted - old_accounted);
1014}
1015
1016void
1017dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1018{
1019	ASSERT(dmu_tx_is_syncing(tx));
1020
1021	mutex_enter(&dd->dd_lock);
1022	ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1023	dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1024	    dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1025	dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1026	mutex_exit(&dd->dd_lock);
1027
1028	/* release the hold from dsl_dir_dirty */
1029	dmu_buf_rele(dd->dd_dbuf, dd);
1030}
1031
1032static uint64_t
1033dsl_dir_space_towrite(dsl_dir_t *dd)
1034{
1035	uint64_t space = 0;
1036	int i;
1037
1038	ASSERT(MUTEX_HELD(&dd->dd_lock));
1039
1040	for (i = 0; i < TXG_SIZE; i++) {
1041		space += dd->dd_space_towrite[i&TXG_MASK];
1042		ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1043	}
1044	return (space);
1045}
1046
1047/*
1048 * How much space would dd have available if ancestor had delta applied
1049 * to it?  If ondiskonly is set, we're only interested in what's
1050 * on-disk, not estimated pending changes.
1051 */
1052uint64_t
1053dsl_dir_space_available(dsl_dir_t *dd,
1054    dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1055{
1056	uint64_t parentspace, myspace, quota, used;
1057
1058	/*
1059	 * If there are no restrictions otherwise, assume we have
1060	 * unlimited space available.
1061	 */
1062	quota = UINT64_MAX;
1063	parentspace = UINT64_MAX;
1064
1065	if (dd->dd_parent != NULL) {
1066		parentspace = dsl_dir_space_available(dd->dd_parent,
1067		    ancestor, delta, ondiskonly);
1068	}
1069
1070	mutex_enter(&dd->dd_lock);
1071	if (dsl_dir_phys(dd)->dd_quota != 0)
1072		quota = dsl_dir_phys(dd)->dd_quota;
1073	used = dsl_dir_phys(dd)->dd_used_bytes;
1074	if (!ondiskonly)
1075		used += dsl_dir_space_towrite(dd);
1076
1077	if (dd->dd_parent == NULL) {
1078		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1079		quota = MIN(quota, poolsize);
1080	}
1081
1082	if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1083		/*
1084		 * We have some space reserved, in addition to what our
1085		 * parent gave us.
1086		 */
1087		parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1088	}
1089
1090	if (dd == ancestor) {
1091		ASSERT(delta <= 0);
1092		ASSERT(used >= -delta);
1093		used += delta;
1094		if (parentspace != UINT64_MAX)
1095			parentspace -= delta;
1096	}
1097
1098	if (used > quota) {
1099		/* over quota */
1100		myspace = 0;
1101	} else {
1102		/*
1103		 * the lesser of the space provided by our parent and
1104		 * the space left in our quota
1105		 */
1106		myspace = MIN(parentspace, quota - used);
1107	}
1108
1109	mutex_exit(&dd->dd_lock);
1110
1111	return (myspace);
1112}
1113
1114struct tempreserve {
1115	list_node_t tr_node;
1116	dsl_dir_t *tr_ds;
1117	uint64_t tr_size;
1118};
1119
1120static int
1121dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1122    boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1123    dmu_tx_t *tx, boolean_t first)
1124{
1125	uint64_t txg = tx->tx_txg;
1126	uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1127	uint64_t deferred = 0;
1128	struct tempreserve *tr;
1129	int retval = EDQUOT;
1130	int txgidx = txg & TXG_MASK;
1131	int i;
1132	uint64_t ref_rsrv = 0;
1133
1134	ASSERT3U(txg, !=, 0);
1135	ASSERT3S(asize, >, 0);
1136
1137	mutex_enter(&dd->dd_lock);
1138
1139	/*
1140	 * Check against the dsl_dir's quota.  We don't add in the delta
1141	 * when checking for over-quota because they get one free hit.
1142	 */
1143	est_inflight = dsl_dir_space_towrite(dd);
1144	for (i = 0; i < TXG_SIZE; i++)
1145		est_inflight += dd->dd_tempreserved[i];
1146	used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1147
1148	/*
1149	 * On the first iteration, fetch the dataset's used-on-disk and
1150	 * refreservation values. Also, if checkrefquota is set, test if
1151	 * allocating this space would exceed the dataset's refquota.
1152	 */
1153	if (first && tx->tx_objset) {
1154		int error;
1155		dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1156
1157		error = dsl_dataset_check_quota(ds, checkrefquota,
1158		    asize, est_inflight, &used_on_disk, &ref_rsrv);
1159		if (error) {
1160			mutex_exit(&dd->dd_lock);
1161			return (error);
1162		}
1163	}
1164
1165	/*
1166	 * If this transaction will result in a net free of space,
1167	 * we want to let it through.
1168	 */
1169	if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1170		quota = UINT64_MAX;
1171	else
1172		quota = dsl_dir_phys(dd)->dd_quota;
1173
1174	/*
1175	 * Adjust the quota against the actual pool size at the root
1176	 * minus any outstanding deferred frees.
1177	 * To ensure that it's possible to remove files from a full
1178	 * pool without inducing transient overcommits, we throttle
1179	 * netfree transactions against a quota that is slightly larger,
1180	 * but still within the pool's allocation slop.  In cases where
1181	 * we're very close to full, this will allow a steady trickle of
1182	 * removes to get through.
1183	 */
1184	if (dd->dd_parent == NULL) {
1185		spa_t *spa = dd->dd_pool->dp_spa;
1186		uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1187		deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1188		if (poolsize - deferred < quota) {
1189			quota = poolsize - deferred;
1190			retval = ENOSPC;
1191		}
1192	}
1193
1194	/*
1195	 * If they are requesting more space, and our current estimate
1196	 * is over quota, they get to try again unless the actual
1197	 * on-disk is over quota and there are no pending changes (which
1198	 * may free up space for us).
1199	 */
1200	if (used_on_disk + est_inflight >= quota) {
1201		if (est_inflight > 0 || used_on_disk < quota ||
1202		    (retval == ENOSPC && used_on_disk < quota + deferred))
1203			retval = ERESTART;
1204		dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1205		    "quota=%lluK tr=%lluK err=%d\n",
1206		    used_on_disk>>10, est_inflight>>10,
1207		    quota>>10, asize>>10, retval);
1208		mutex_exit(&dd->dd_lock);
1209		return (SET_ERROR(retval));
1210	}
1211
1212	/* We need to up our estimated delta before dropping dd_lock */
1213	dd->dd_tempreserved[txgidx] += asize;
1214
1215	parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1216	    asize - ref_rsrv);
1217	mutex_exit(&dd->dd_lock);
1218
1219	tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1220	tr->tr_ds = dd;
1221	tr->tr_size = asize;
1222	list_insert_tail(tr_list, tr);
1223
1224	/* see if it's OK with our parent */
1225	if (dd->dd_parent && parent_rsrv) {
1226		boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1227
1228		return (dsl_dir_tempreserve_impl(dd->dd_parent,
1229		    parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1230	} else {
1231		return (0);
1232	}
1233}
1234
1235/*
1236 * Reserve space in this dsl_dir, to be used in this tx's txg.
1237 * After the space has been dirtied (and dsl_dir_willuse_space()
1238 * has been called), the reservation should be canceled, using
1239 * dsl_dir_tempreserve_clear().
1240 */
1241int
1242dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1243    uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1244{
1245	int err;
1246	list_t *tr_list;
1247
1248	if (asize == 0) {
1249		*tr_cookiep = NULL;
1250		return (0);
1251	}
1252
1253	tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1254	list_create(tr_list, sizeof (struct tempreserve),
1255	    offsetof(struct tempreserve, tr_node));
1256	ASSERT3S(asize, >, 0);
1257	ASSERT3S(fsize, >=, 0);
1258
1259	err = arc_tempreserve_space(lsize, tx->tx_txg);
1260	if (err == 0) {
1261		struct tempreserve *tr;
1262
1263		tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1264		tr->tr_size = lsize;
1265		list_insert_tail(tr_list, tr);
1266	} else {
1267		if (err == EAGAIN) {
1268			/*
1269			 * If arc_memory_throttle() detected that pageout
1270			 * is running and we are low on memory, we delay new
1271			 * non-pageout transactions to give pageout an
1272			 * advantage.
1273			 *
1274			 * It is unfortunate to be delaying while the caller's
1275			 * locks are held.
1276			 */
1277			txg_delay(dd->dd_pool, tx->tx_txg,
1278			    MSEC2NSEC(10), MSEC2NSEC(10));
1279			err = SET_ERROR(ERESTART);
1280		}
1281	}
1282
1283	if (err == 0) {
1284		err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1285		    FALSE, asize > usize, tr_list, tx, TRUE);
1286	}
1287
1288	if (err != 0)
1289		dsl_dir_tempreserve_clear(tr_list, tx);
1290	else
1291		*tr_cookiep = tr_list;
1292
1293	return (err);
1294}
1295
1296/*
1297 * Clear a temporary reservation that we previously made with
1298 * dsl_dir_tempreserve_space().
1299 */
1300void
1301dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1302{
1303	int txgidx = tx->tx_txg & TXG_MASK;
1304	list_t *tr_list = tr_cookie;
1305	struct tempreserve *tr;
1306
1307	ASSERT3U(tx->tx_txg, !=, 0);
1308
1309	if (tr_cookie == NULL)
1310		return;
1311
1312	while ((tr = list_head(tr_list)) != NULL) {
1313		if (tr->tr_ds) {
1314			mutex_enter(&tr->tr_ds->dd_lock);
1315			ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1316			    tr->tr_size);
1317			tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1318			mutex_exit(&tr->tr_ds->dd_lock);
1319		} else {
1320			arc_tempreserve_clear(tr->tr_size);
1321		}
1322		list_remove(tr_list, tr);
1323		kmem_free(tr, sizeof (struct tempreserve));
1324	}
1325
1326	kmem_free(tr_list, sizeof (list_t));
1327}
1328
1329/*
1330 * This should be called from open context when we think we're going to write
1331 * or free space, for example when dirtying data. Be conservative; it's okay
1332 * to write less space or free more, but we don't want to write more or free
1333 * less than the amount specified.
1334 */
1335void
1336dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1337{
1338	int64_t parent_space;
1339	uint64_t est_used;
1340
1341	mutex_enter(&dd->dd_lock);
1342	if (space > 0)
1343		dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1344
1345	est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1346	parent_space = parent_delta(dd, est_used, space);
1347	mutex_exit(&dd->dd_lock);
1348
1349	/* Make sure that we clean up dd_space_to* */
1350	dsl_dir_dirty(dd, tx);
1351
1352	/* XXX this is potentially expensive and unnecessary... */
1353	if (parent_space && dd->dd_parent)
1354		dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1355}
1356
1357/* call from syncing context when we actually write/free space for this dd */
1358void
1359dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1360    int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1361{
1362	int64_t accounted_delta;
1363
1364	/*
1365	 * dsl_dataset_set_refreservation_sync_impl() calls this with
1366	 * dd_lock held, so that it can atomically update
1367	 * ds->ds_reserved and the dsl_dir accounting, so that
1368	 * dsl_dataset_check_quota() can see dataset and dir accounting
1369	 * consistently.
1370	 */
1371	boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1372
1373	ASSERT(dmu_tx_is_syncing(tx));
1374	ASSERT(type < DD_USED_NUM);
1375
1376	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1377
1378	if (needlock)
1379		mutex_enter(&dd->dd_lock);
1380	accounted_delta =
1381	    parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1382	ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1383	ASSERT(compressed >= 0 ||
1384	    dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1385	ASSERT(uncompressed >= 0 ||
1386	    dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1387	dsl_dir_phys(dd)->dd_used_bytes += used;
1388	dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1389	dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1390
1391	if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1392		ASSERT(used > 0 ||
1393		    dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1394		dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1395#ifdef DEBUG
1396		dd_used_t t;
1397		uint64_t u = 0;
1398		for (t = 0; t < DD_USED_NUM; t++)
1399			u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1400		ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1401#endif
1402	}
1403	if (needlock)
1404		mutex_exit(&dd->dd_lock);
1405
1406	if (dd->dd_parent != NULL) {
1407		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1408		    accounted_delta, compressed, uncompressed, tx);
1409		dsl_dir_transfer_space(dd->dd_parent,
1410		    used - accounted_delta,
1411		    DD_USED_CHILD_RSRV, DD_USED_CHILD, NULL);
1412	}
1413}
1414
1415void
1416dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1417    dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1418{
1419	ASSERT(tx == NULL || dmu_tx_is_syncing(tx));
1420	ASSERT(oldtype < DD_USED_NUM);
1421	ASSERT(newtype < DD_USED_NUM);
1422
1423	if (delta == 0 ||
1424	    !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1425		return;
1426
1427	if (tx != NULL)
1428		dmu_buf_will_dirty(dd->dd_dbuf, tx);
1429	mutex_enter(&dd->dd_lock);
1430	ASSERT(delta > 0 ?
1431	    dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1432	    dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1433	ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1434	dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1435	dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1436	mutex_exit(&dd->dd_lock);
1437}
1438
1439typedef struct dsl_dir_set_qr_arg {
1440	const char *ddsqra_name;
1441	zprop_source_t ddsqra_source;
1442	uint64_t ddsqra_value;
1443} dsl_dir_set_qr_arg_t;
1444
1445static int
1446dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1447{
1448	dsl_dir_set_qr_arg_t *ddsqra = arg;
1449	dsl_pool_t *dp = dmu_tx_pool(tx);
1450	dsl_dataset_t *ds;
1451	int error;
1452	uint64_t towrite, newval;
1453
1454	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1455	if (error != 0)
1456		return (error);
1457
1458	error = dsl_prop_predict(ds->ds_dir, "quota",
1459	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1460	if (error != 0) {
1461		dsl_dataset_rele(ds, FTAG);
1462		return (error);
1463	}
1464
1465	if (newval == 0) {
1466		dsl_dataset_rele(ds, FTAG);
1467		return (0);
1468	}
1469
1470	mutex_enter(&ds->ds_dir->dd_lock);
1471	/*
1472	 * If we are doing the preliminary check in open context, and
1473	 * there are pending changes, then don't fail it, since the
1474	 * pending changes could under-estimate the amount of space to be
1475	 * freed up.
1476	 */
1477	towrite = dsl_dir_space_towrite(ds->ds_dir);
1478	if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1479	    (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1480	    newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1481		error = SET_ERROR(ENOSPC);
1482	}
1483	mutex_exit(&ds->ds_dir->dd_lock);
1484	dsl_dataset_rele(ds, FTAG);
1485	return (error);
1486}
1487
1488static void
1489dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1490{
1491	dsl_dir_set_qr_arg_t *ddsqra = arg;
1492	dsl_pool_t *dp = dmu_tx_pool(tx);
1493	dsl_dataset_t *ds;
1494	uint64_t newval;
1495
1496	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1497
1498	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1499		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1500		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1501		    &ddsqra->ddsqra_value, tx);
1502
1503		VERIFY0(dsl_prop_get_int_ds(ds,
1504		    zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1505	} else {
1506		newval = ddsqra->ddsqra_value;
1507		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1508		    zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1509	}
1510
1511	dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1512	mutex_enter(&ds->ds_dir->dd_lock);
1513	dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1514	mutex_exit(&ds->ds_dir->dd_lock);
1515	dsl_dataset_rele(ds, FTAG);
1516}
1517
1518int
1519dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1520{
1521	dsl_dir_set_qr_arg_t ddsqra;
1522
1523	ddsqra.ddsqra_name = ddname;
1524	ddsqra.ddsqra_source = source;
1525	ddsqra.ddsqra_value = quota;
1526
1527	return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1528	    dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1529}
1530
1531int
1532dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1533{
1534	dsl_dir_set_qr_arg_t *ddsqra = arg;
1535	dsl_pool_t *dp = dmu_tx_pool(tx);
1536	dsl_dataset_t *ds;
1537	dsl_dir_t *dd;
1538	uint64_t newval, used, avail;
1539	int error;
1540
1541	error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1542	if (error != 0)
1543		return (error);
1544	dd = ds->ds_dir;
1545
1546	/*
1547	 * If we are doing the preliminary check in open context, the
1548	 * space estimates may be inaccurate.
1549	 */
1550	if (!dmu_tx_is_syncing(tx)) {
1551		dsl_dataset_rele(ds, FTAG);
1552		return (0);
1553	}
1554
1555	error = dsl_prop_predict(ds->ds_dir,
1556	    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1557	    ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1558	if (error != 0) {
1559		dsl_dataset_rele(ds, FTAG);
1560		return (error);
1561	}
1562
1563	mutex_enter(&dd->dd_lock);
1564	used = dsl_dir_phys(dd)->dd_used_bytes;
1565	mutex_exit(&dd->dd_lock);
1566
1567	if (dd->dd_parent) {
1568		avail = dsl_dir_space_available(dd->dd_parent,
1569		    NULL, 0, FALSE);
1570	} else {
1571		avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1572	}
1573
1574	if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1575		uint64_t delta = MAX(used, newval) -
1576		    MAX(used, dsl_dir_phys(dd)->dd_reserved);
1577
1578		if (delta > avail ||
1579		    (dsl_dir_phys(dd)->dd_quota > 0 &&
1580		    newval > dsl_dir_phys(dd)->dd_quota))
1581			error = SET_ERROR(ENOSPC);
1582	}
1583
1584	dsl_dataset_rele(ds, FTAG);
1585	return (error);
1586}
1587
1588void
1589dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1590{
1591	uint64_t used;
1592	int64_t delta;
1593
1594	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1595
1596	mutex_enter(&dd->dd_lock);
1597	used = dsl_dir_phys(dd)->dd_used_bytes;
1598	delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1599	dsl_dir_phys(dd)->dd_reserved = value;
1600
1601	if (dd->dd_parent != NULL) {
1602		/* Roll up this additional usage into our ancestors */
1603		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1604		    delta, 0, 0, tx);
1605	}
1606	mutex_exit(&dd->dd_lock);
1607}
1608
1609static void
1610dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1611{
1612	dsl_dir_set_qr_arg_t *ddsqra = arg;
1613	dsl_pool_t *dp = dmu_tx_pool(tx);
1614	dsl_dataset_t *ds;
1615	uint64_t newval;
1616
1617	VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1618
1619	if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1620		dsl_prop_set_sync_impl(ds,
1621		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1622		    ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1623		    &ddsqra->ddsqra_value, tx);
1624
1625		VERIFY0(dsl_prop_get_int_ds(ds,
1626		    zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1627	} else {
1628		newval = ddsqra->ddsqra_value;
1629		spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1630		    zfs_prop_to_name(ZFS_PROP_RESERVATION),
1631		    (longlong_t)newval);
1632	}
1633
1634	dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1635	dsl_dataset_rele(ds, FTAG);
1636}
1637
1638int
1639dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1640    uint64_t reservation)
1641{
1642	dsl_dir_set_qr_arg_t ddsqra;
1643
1644	ddsqra.ddsqra_name = ddname;
1645	ddsqra.ddsqra_source = source;
1646	ddsqra.ddsqra_value = reservation;
1647
1648	return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1649	    dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1650}
1651
1652static dsl_dir_t *
1653closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1654{
1655	for (; ds1; ds1 = ds1->dd_parent) {
1656		dsl_dir_t *dd;
1657		for (dd = ds2; dd; dd = dd->dd_parent) {
1658			if (ds1 == dd)
1659				return (dd);
1660		}
1661	}
1662	return (NULL);
1663}
1664
1665/*
1666 * If delta is applied to dd, how much of that delta would be applied to
1667 * ancestor?  Syncing context only.
1668 */
1669static int64_t
1670would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1671{
1672	if (dd == ancestor)
1673		return (delta);
1674
1675	mutex_enter(&dd->dd_lock);
1676	delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1677	mutex_exit(&dd->dd_lock);
1678	return (would_change(dd->dd_parent, delta, ancestor));
1679}
1680
1681typedef struct dsl_dir_rename_arg {
1682	const char *ddra_oldname;
1683	const char *ddra_newname;
1684	cred_t *ddra_cred;
1685} dsl_dir_rename_arg_t;
1686
1687/* ARGSUSED */
1688static int
1689dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1690{
1691	int *deltap = arg;
1692	char namebuf[MAXNAMELEN];
1693
1694	dsl_dataset_name(ds, namebuf);
1695
1696	if (strlen(namebuf) + *deltap >= MAXNAMELEN)
1697		return (SET_ERROR(ENAMETOOLONG));
1698	return (0);
1699}
1700
1701static int
1702dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1703{
1704	dsl_dir_rename_arg_t *ddra = arg;
1705	dsl_pool_t *dp = dmu_tx_pool(tx);
1706	dsl_dir_t *dd, *newparent;
1707	const char *mynewname;
1708	int error;
1709	int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1710
1711	/* target dir should exist */
1712	error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1713	if (error != 0)
1714		return (error);
1715
1716	/* new parent should exist */
1717	error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1718	    &newparent, &mynewname);
1719	if (error != 0) {
1720		dsl_dir_rele(dd, FTAG);
1721		return (error);
1722	}
1723
1724	/* can't rename to different pool */
1725	if (dd->dd_pool != newparent->dd_pool) {
1726		dsl_dir_rele(newparent, FTAG);
1727		dsl_dir_rele(dd, FTAG);
1728		return (SET_ERROR(EXDEV));
1729	}
1730
1731	/* new name should not already exist */
1732	if (mynewname == NULL) {
1733		dsl_dir_rele(newparent, FTAG);
1734		dsl_dir_rele(dd, FTAG);
1735		return (SET_ERROR(EEXIST));
1736	}
1737
1738	/* if the name length is growing, validate child name lengths */
1739	if (delta > 0) {
1740		error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1741		    &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1742		if (error != 0) {
1743			dsl_dir_rele(newparent, FTAG);
1744			dsl_dir_rele(dd, FTAG);
1745			return (error);
1746		}
1747	}
1748
1749	if (dmu_tx_is_syncing(tx)) {
1750		if (spa_feature_is_active(dp->dp_spa,
1751		    SPA_FEATURE_FS_SS_LIMIT)) {
1752			/*
1753			 * Although this is the check function and we don't
1754			 * normally make on-disk changes in check functions,
1755			 * we need to do that here.
1756			 *
1757			 * Ensure this portion of the tree's counts have been
1758			 * initialized in case the new parent has limits set.
1759			 */
1760			dsl_dir_init_fs_ss_count(dd, tx);
1761		}
1762	}
1763
1764	if (newparent != dd->dd_parent) {
1765		/* is there enough space? */
1766		uint64_t myspace =
1767		    MAX(dsl_dir_phys(dd)->dd_used_bytes,
1768		    dsl_dir_phys(dd)->dd_reserved);
1769		objset_t *os = dd->dd_pool->dp_meta_objset;
1770		uint64_t fs_cnt = 0;
1771		uint64_t ss_cnt = 0;
1772
1773		if (dsl_dir_is_zapified(dd)) {
1774			int err;
1775
1776			err = zap_lookup(os, dd->dd_object,
1777			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1778			    &fs_cnt);
1779			if (err != ENOENT && err != 0) {
1780				dsl_dir_rele(newparent, FTAG);
1781				dsl_dir_rele(dd, FTAG);
1782				return (err);
1783			}
1784
1785			/*
1786			 * have to add 1 for the filesystem itself that we're
1787			 * moving
1788			 */
1789			fs_cnt++;
1790
1791			err = zap_lookup(os, dd->dd_object,
1792			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1793			    &ss_cnt);
1794			if (err != ENOENT && err != 0) {
1795				dsl_dir_rele(newparent, FTAG);
1796				dsl_dir_rele(dd, FTAG);
1797				return (err);
1798			}
1799		}
1800
1801		/* no rename into our descendant */
1802		if (closest_common_ancestor(dd, newparent) == dd) {
1803			dsl_dir_rele(newparent, FTAG);
1804			dsl_dir_rele(dd, FTAG);
1805			return (SET_ERROR(EINVAL));
1806		}
1807
1808		error = dsl_dir_transfer_possible(dd->dd_parent,
1809		    newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1810		if (error != 0) {
1811			dsl_dir_rele(newparent, FTAG);
1812			dsl_dir_rele(dd, FTAG);
1813			return (error);
1814		}
1815	}
1816
1817	dsl_dir_rele(newparent, FTAG);
1818	dsl_dir_rele(dd, FTAG);
1819	return (0);
1820}
1821
1822static void
1823dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1824{
1825	dsl_dir_rename_arg_t *ddra = arg;
1826	dsl_pool_t *dp = dmu_tx_pool(tx);
1827	dsl_dir_t *dd, *newparent;
1828	const char *mynewname;
1829	int error;
1830	objset_t *mos = dp->dp_meta_objset;
1831
1832	VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1833	VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1834	    &mynewname));
1835
1836	/* Log this before we change the name. */
1837	spa_history_log_internal_dd(dd, "rename", tx,
1838	    "-> %s", ddra->ddra_newname);
1839
1840	if (newparent != dd->dd_parent) {
1841		objset_t *os = dd->dd_pool->dp_meta_objset;
1842		uint64_t fs_cnt = 0;
1843		uint64_t ss_cnt = 0;
1844
1845		/*
1846		 * We already made sure the dd counts were initialized in the
1847		 * check function.
1848		 */
1849		if (spa_feature_is_active(dp->dp_spa,
1850		    SPA_FEATURE_FS_SS_LIMIT)) {
1851			VERIFY0(zap_lookup(os, dd->dd_object,
1852			    DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1853			    &fs_cnt));
1854			/* add 1 for the filesystem itself that we're moving */
1855			fs_cnt++;
1856
1857			VERIFY0(zap_lookup(os, dd->dd_object,
1858			    DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1859			    &ss_cnt));
1860		}
1861
1862		dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1863		    DD_FIELD_FILESYSTEM_COUNT, tx);
1864		dsl_fs_ss_count_adjust(newparent, fs_cnt,
1865		    DD_FIELD_FILESYSTEM_COUNT, tx);
1866
1867		dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1868		    DD_FIELD_SNAPSHOT_COUNT, tx);
1869		dsl_fs_ss_count_adjust(newparent, ss_cnt,
1870		    DD_FIELD_SNAPSHOT_COUNT, tx);
1871
1872		dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1873		    -dsl_dir_phys(dd)->dd_used_bytes,
1874		    -dsl_dir_phys(dd)->dd_compressed_bytes,
1875		    -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1876		dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1877		    dsl_dir_phys(dd)->dd_used_bytes,
1878		    dsl_dir_phys(dd)->dd_compressed_bytes,
1879		    dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1880
1881		if (dsl_dir_phys(dd)->dd_reserved >
1882		    dsl_dir_phys(dd)->dd_used_bytes) {
1883			uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1884			    dsl_dir_phys(dd)->dd_used_bytes;
1885
1886			dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1887			    -unused_rsrv, 0, 0, tx);
1888			dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1889			    unused_rsrv, 0, 0, tx);
1890		}
1891	}
1892
1893	dmu_buf_will_dirty(dd->dd_dbuf, tx);
1894
1895	/* remove from old parent zapobj */
1896	error = zap_remove(mos,
1897	    dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1898	    dd->dd_myname, tx);
1899	ASSERT0(error);
1900
1901	(void) strcpy(dd->dd_myname, mynewname);
1902	dsl_dir_rele(dd->dd_parent, dd);
1903	dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1904	VERIFY0(dsl_dir_hold_obj(dp,
1905	    newparent->dd_object, NULL, dd, &dd->dd_parent));
1906
1907	/* add to new parent zapobj */
1908	VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1909	    dd->dd_myname, 8, 1, &dd->dd_object, tx));
1910
1911#ifdef __FreeBSD__
1912#ifdef _KERNEL
1913	zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
1914	zvol_rename_minors(ddra->ddra_oldname, ddra->ddra_newname);
1915#endif
1916#endif
1917
1918	dsl_prop_notify_all(dd);
1919
1920	dsl_dir_rele(newparent, FTAG);
1921	dsl_dir_rele(dd, FTAG);
1922}
1923
1924int
1925dsl_dir_rename(const char *oldname, const char *newname)
1926{
1927	dsl_dir_rename_arg_t ddra;
1928
1929	ddra.ddra_oldname = oldname;
1930	ddra.ddra_newname = newname;
1931	ddra.ddra_cred = CRED();
1932
1933	return (dsl_sync_task(oldname,
1934	    dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1935	    3, ZFS_SPACE_CHECK_RESERVED));
1936}
1937
1938int
1939dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1940    uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1941{
1942	dsl_dir_t *ancestor;
1943	int64_t adelta;
1944	uint64_t avail;
1945	int err;
1946
1947	ancestor = closest_common_ancestor(sdd, tdd);
1948	adelta = would_change(sdd, -space, ancestor);
1949	avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1950	if (avail < space)
1951		return (SET_ERROR(ENOSPC));
1952
1953	err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1954	    ancestor, cr);
1955	if (err != 0)
1956		return (err);
1957	err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1958	    ancestor, cr);
1959	if (err != 0)
1960		return (err);
1961
1962	return (0);
1963}
1964
1965timestruc_t
1966dsl_dir_snap_cmtime(dsl_dir_t *dd)
1967{
1968	timestruc_t t;
1969
1970	mutex_enter(&dd->dd_lock);
1971	t = dd->dd_snap_cmtime;
1972	mutex_exit(&dd->dd_lock);
1973
1974	return (t);
1975}
1976
1977void
1978dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1979{
1980	timestruc_t t;
1981
1982	gethrestime(&t);
1983	mutex_enter(&dd->dd_lock);
1984	dd->dd_snap_cmtime = t;
1985	mutex_exit(&dd->dd_lock);
1986}
1987
1988void
1989dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1990{
1991	objset_t *mos = dd->dd_pool->dp_meta_objset;
1992	dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1993}
1994
1995boolean_t
1996dsl_dir_is_zapified(dsl_dir_t *dd)
1997{
1998	dmu_object_info_t doi;
1999
2000	dmu_object_info_from_db(dd->dd_dbuf, &doi);
2001	return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2002}
2003