dnode.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/dbuf.h>
29#include <sys/dnode.h>
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dmu_objset.h>
34#include <sys/dsl_dir.h>
35#include <sys/dsl_dataset.h>
36#include <sys/spa.h>
37#include <sys/zio.h>
38#include <sys/dmu_zfetch.h>
39#include <sys/range_tree.h>
40
41static kmem_cache_t *dnode_cache;
42/*
43 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
44 * turned on when DEBUG is also defined.
45 */
46#ifdef	DEBUG
47#define	DNODE_STATS
48#endif	/* DEBUG */
49
50#ifdef	DNODE_STATS
51#define	DNODE_STAT_ADD(stat)			((stat)++)
52#else
53#define	DNODE_STAT_ADD(stat)			/* nothing */
54#endif	/* DNODE_STATS */
55
56static dnode_phys_t dnode_phys_zero;
57
58int zfs_default_bs = SPA_MINBLOCKSHIFT;
59int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
60
61#ifdef sun
62static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
63#endif
64
65static int
66dbuf_compare(const void *x1, const void *x2)
67{
68	const dmu_buf_impl_t *d1 = x1;
69	const dmu_buf_impl_t *d2 = x2;
70
71	if (d1->db_level < d2->db_level) {
72		return (-1);
73	}
74	if (d1->db_level > d2->db_level) {
75		return (1);
76	}
77
78	if (d1->db_blkid < d2->db_blkid) {
79		return (-1);
80	}
81	if (d1->db_blkid > d2->db_blkid) {
82		return (1);
83	}
84
85	if (d1->db_state == DB_SEARCH) {
86		ASSERT3S(d2->db_state, !=, DB_SEARCH);
87		return (-1);
88	} else if (d2->db_state == DB_SEARCH) {
89		ASSERT3S(d1->db_state, !=, DB_SEARCH);
90		return (1);
91	}
92
93	if ((uintptr_t)d1 < (uintptr_t)d2) {
94		return (-1);
95	}
96	if ((uintptr_t)d1 > (uintptr_t)d2) {
97		return (1);
98	}
99	return (0);
100}
101
102/* ARGSUSED */
103static int
104dnode_cons(void *arg, void *unused, int kmflag)
105{
106	dnode_t *dn = arg;
107	int i;
108
109	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
110	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
111	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
112	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
113
114	/*
115	 * Every dbuf has a reference, and dropping a tracked reference is
116	 * O(number of references), so don't track dn_holds.
117	 */
118	refcount_create_untracked(&dn->dn_holds);
119	refcount_create(&dn->dn_tx_holds);
120	list_link_init(&dn->dn_link);
121
122	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
123	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
124	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
125	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
126	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
127	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
128	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
129
130	for (i = 0; i < TXG_SIZE; i++) {
131		list_link_init(&dn->dn_dirty_link[i]);
132		dn->dn_free_ranges[i] = NULL;
133		list_create(&dn->dn_dirty_records[i],
134		    sizeof (dbuf_dirty_record_t),
135		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
136	}
137
138	dn->dn_allocated_txg = 0;
139	dn->dn_free_txg = 0;
140	dn->dn_assigned_txg = 0;
141	dn->dn_dirtyctx = 0;
142	dn->dn_dirtyctx_firstset = NULL;
143	dn->dn_bonus = NULL;
144	dn->dn_have_spill = B_FALSE;
145	dn->dn_zio = NULL;
146	dn->dn_oldused = 0;
147	dn->dn_oldflags = 0;
148	dn->dn_olduid = 0;
149	dn->dn_oldgid = 0;
150	dn->dn_newuid = 0;
151	dn->dn_newgid = 0;
152	dn->dn_id_flags = 0;
153
154	dn->dn_dbufs_count = 0;
155	dn->dn_unlisted_l0_blkid = 0;
156	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
157	    offsetof(dmu_buf_impl_t, db_link));
158
159	dn->dn_moved = 0;
160	POINTER_INVALIDATE(&dn->dn_objset);
161	return (0);
162}
163
164/* ARGSUSED */
165static void
166dnode_dest(void *arg, void *unused)
167{
168	int i;
169	dnode_t *dn = arg;
170
171	rw_destroy(&dn->dn_struct_rwlock);
172	mutex_destroy(&dn->dn_mtx);
173	mutex_destroy(&dn->dn_dbufs_mtx);
174	cv_destroy(&dn->dn_notxholds);
175	refcount_destroy(&dn->dn_holds);
176	refcount_destroy(&dn->dn_tx_holds);
177	ASSERT(!list_link_active(&dn->dn_link));
178
179	for (i = 0; i < TXG_SIZE; i++) {
180		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
181		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
182		list_destroy(&dn->dn_dirty_records[i]);
183		ASSERT0(dn->dn_next_nblkptr[i]);
184		ASSERT0(dn->dn_next_nlevels[i]);
185		ASSERT0(dn->dn_next_indblkshift[i]);
186		ASSERT0(dn->dn_next_bonustype[i]);
187		ASSERT0(dn->dn_rm_spillblk[i]);
188		ASSERT0(dn->dn_next_bonuslen[i]);
189		ASSERT0(dn->dn_next_blksz[i]);
190	}
191
192	ASSERT0(dn->dn_allocated_txg);
193	ASSERT0(dn->dn_free_txg);
194	ASSERT0(dn->dn_assigned_txg);
195	ASSERT0(dn->dn_dirtyctx);
196	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
197	ASSERT3P(dn->dn_bonus, ==, NULL);
198	ASSERT(!dn->dn_have_spill);
199	ASSERT3P(dn->dn_zio, ==, NULL);
200	ASSERT0(dn->dn_oldused);
201	ASSERT0(dn->dn_oldflags);
202	ASSERT0(dn->dn_olduid);
203	ASSERT0(dn->dn_oldgid);
204	ASSERT0(dn->dn_newuid);
205	ASSERT0(dn->dn_newgid);
206	ASSERT0(dn->dn_id_flags);
207
208	ASSERT0(dn->dn_dbufs_count);
209	ASSERT0(dn->dn_unlisted_l0_blkid);
210	avl_destroy(&dn->dn_dbufs);
211}
212
213void
214dnode_init(void)
215{
216	ASSERT(dnode_cache == NULL);
217	dnode_cache = kmem_cache_create("dnode_t",
218	    sizeof (dnode_t),
219	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
220	kmem_cache_set_move(dnode_cache, dnode_move);
221}
222
223void
224dnode_fini(void)
225{
226	kmem_cache_destroy(dnode_cache);
227	dnode_cache = NULL;
228}
229
230
231#ifdef ZFS_DEBUG
232void
233dnode_verify(dnode_t *dn)
234{
235	int drop_struct_lock = FALSE;
236
237	ASSERT(dn->dn_phys);
238	ASSERT(dn->dn_objset);
239	ASSERT(dn->dn_handle->dnh_dnode == dn);
240
241	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
242
243	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
244		return;
245
246	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
247		rw_enter(&dn->dn_struct_rwlock, RW_READER);
248		drop_struct_lock = TRUE;
249	}
250	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
251		int i;
252		ASSERT3U(dn->dn_indblkshift, >=, 0);
253		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
254		if (dn->dn_datablkshift) {
255			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
256			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
257			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
258		}
259		ASSERT3U(dn->dn_nlevels, <=, 30);
260		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
261		ASSERT3U(dn->dn_nblkptr, >=, 1);
262		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
263		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
264		ASSERT3U(dn->dn_datablksz, ==,
265		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
266		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
267		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
268		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
269		for (i = 0; i < TXG_SIZE; i++) {
270			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
271		}
272	}
273	if (dn->dn_phys->dn_type != DMU_OT_NONE)
274		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
275	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
276	if (dn->dn_dbuf != NULL) {
277		ASSERT3P(dn->dn_phys, ==,
278		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
279		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
280	}
281	if (drop_struct_lock)
282		rw_exit(&dn->dn_struct_rwlock);
283}
284#endif
285
286void
287dnode_byteswap(dnode_phys_t *dnp)
288{
289	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
290	int i;
291
292	if (dnp->dn_type == DMU_OT_NONE) {
293		bzero(dnp, sizeof (dnode_phys_t));
294		return;
295	}
296
297	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
298	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
299	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
300	dnp->dn_used = BSWAP_64(dnp->dn_used);
301
302	/*
303	 * dn_nblkptr is only one byte, so it's OK to read it in either
304	 * byte order.  We can't read dn_bouslen.
305	 */
306	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
307	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
308	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
309		buf64[i] = BSWAP_64(buf64[i]);
310
311	/*
312	 * OK to check dn_bonuslen for zero, because it won't matter if
313	 * we have the wrong byte order.  This is necessary because the
314	 * dnode dnode is smaller than a regular dnode.
315	 */
316	if (dnp->dn_bonuslen != 0) {
317		/*
318		 * Note that the bonus length calculated here may be
319		 * longer than the actual bonus buffer.  This is because
320		 * we always put the bonus buffer after the last block
321		 * pointer (instead of packing it against the end of the
322		 * dnode buffer).
323		 */
324		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
325		size_t len = DN_MAX_BONUSLEN - off;
326		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
327		dmu_object_byteswap_t byteswap =
328		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
329		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
330	}
331
332	/* Swap SPILL block if we have one */
333	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
334		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
335
336}
337
338void
339dnode_buf_byteswap(void *vbuf, size_t size)
340{
341	dnode_phys_t *buf = vbuf;
342	int i;
343
344	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
345	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
346
347	size >>= DNODE_SHIFT;
348	for (i = 0; i < size; i++) {
349		dnode_byteswap(buf);
350		buf++;
351	}
352}
353
354void
355dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
356{
357	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
358
359	dnode_setdirty(dn, tx);
360	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
362	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
363	dn->dn_bonuslen = newsize;
364	if (newsize == 0)
365		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
366	else
367		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
368	rw_exit(&dn->dn_struct_rwlock);
369}
370
371void
372dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
373{
374	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
375	dnode_setdirty(dn, tx);
376	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
377	dn->dn_bonustype = newtype;
378	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
379	rw_exit(&dn->dn_struct_rwlock);
380}
381
382void
383dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
384{
385	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
386	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
387	dnode_setdirty(dn, tx);
388	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
389	dn->dn_have_spill = B_FALSE;
390}
391
392static void
393dnode_setdblksz(dnode_t *dn, int size)
394{
395	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
396	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
397	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
398	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
399	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
400	dn->dn_datablksz = size;
401	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
402	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
403}
404
405static dnode_t *
406dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
407    uint64_t object, dnode_handle_t *dnh)
408{
409	dnode_t *dn;
410
411	dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
412	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
413	dn->dn_moved = 0;
414
415	/*
416	 * Defer setting dn_objset until the dnode is ready to be a candidate
417	 * for the dnode_move() callback.
418	 */
419	dn->dn_object = object;
420	dn->dn_dbuf = db;
421	dn->dn_handle = dnh;
422	dn->dn_phys = dnp;
423
424	if (dnp->dn_datablkszsec) {
425		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
426	} else {
427		dn->dn_datablksz = 0;
428		dn->dn_datablkszsec = 0;
429		dn->dn_datablkshift = 0;
430	}
431	dn->dn_indblkshift = dnp->dn_indblkshift;
432	dn->dn_nlevels = dnp->dn_nlevels;
433	dn->dn_type = dnp->dn_type;
434	dn->dn_nblkptr = dnp->dn_nblkptr;
435	dn->dn_checksum = dnp->dn_checksum;
436	dn->dn_compress = dnp->dn_compress;
437	dn->dn_bonustype = dnp->dn_bonustype;
438	dn->dn_bonuslen = dnp->dn_bonuslen;
439	dn->dn_maxblkid = dnp->dn_maxblkid;
440	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
441	dn->dn_id_flags = 0;
442
443	dmu_zfetch_init(&dn->dn_zfetch, dn);
444
445	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
446
447	mutex_enter(&os->os_lock);
448	if (dnh->dnh_dnode != NULL) {
449		/* Lost the allocation race. */
450		mutex_exit(&os->os_lock);
451		kmem_cache_free(dnode_cache, dn);
452		return (dnh->dnh_dnode);
453	}
454
455	/*
456	 * Exclude special dnodes from os_dnodes so an empty os_dnodes
457	 * signifies that the special dnodes have no references from
458	 * their children (the entries in os_dnodes).  This allows
459	 * dnode_destroy() to easily determine if the last child has
460	 * been removed and then complete eviction of the objset.
461	 */
462	if (!DMU_OBJECT_IS_SPECIAL(object))
463		list_insert_head(&os->os_dnodes, dn);
464	membar_producer();
465
466	/*
467	 * Everything else must be valid before assigning dn_objset
468	 * makes the dnode eligible for dnode_move().
469	 */
470	dn->dn_objset = os;
471
472	dnh->dnh_dnode = dn;
473	mutex_exit(&os->os_lock);
474
475	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
476	return (dn);
477}
478
479/*
480 * Caller must be holding the dnode handle, which is released upon return.
481 */
482static void
483dnode_destroy(dnode_t *dn)
484{
485	objset_t *os = dn->dn_objset;
486	boolean_t complete_os_eviction = B_FALSE;
487
488	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
489
490	mutex_enter(&os->os_lock);
491	POINTER_INVALIDATE(&dn->dn_objset);
492	if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
493		list_remove(&os->os_dnodes, dn);
494		complete_os_eviction =
495		    list_is_empty(&os->os_dnodes) &&
496		    list_link_active(&os->os_evicting_node);
497	}
498	mutex_exit(&os->os_lock);
499
500	/* the dnode can no longer move, so we can release the handle */
501	zrl_remove(&dn->dn_handle->dnh_zrlock);
502
503	dn->dn_allocated_txg = 0;
504	dn->dn_free_txg = 0;
505	dn->dn_assigned_txg = 0;
506
507	dn->dn_dirtyctx = 0;
508	if (dn->dn_dirtyctx_firstset != NULL) {
509		kmem_free(dn->dn_dirtyctx_firstset, 1);
510		dn->dn_dirtyctx_firstset = NULL;
511	}
512	if (dn->dn_bonus != NULL) {
513		mutex_enter(&dn->dn_bonus->db_mtx);
514		dbuf_evict(dn->dn_bonus);
515		dn->dn_bonus = NULL;
516	}
517	dn->dn_zio = NULL;
518
519	dn->dn_have_spill = B_FALSE;
520	dn->dn_oldused = 0;
521	dn->dn_oldflags = 0;
522	dn->dn_olduid = 0;
523	dn->dn_oldgid = 0;
524	dn->dn_newuid = 0;
525	dn->dn_newgid = 0;
526	dn->dn_id_flags = 0;
527	dn->dn_unlisted_l0_blkid = 0;
528
529	dmu_zfetch_rele(&dn->dn_zfetch);
530	kmem_cache_free(dnode_cache, dn);
531	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
532
533	if (complete_os_eviction)
534		dmu_objset_evict_done(os);
535}
536
537void
538dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
539    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
540{
541	int i;
542
543	ASSERT3U(blocksize, <=,
544	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
545	if (blocksize == 0)
546		blocksize = 1 << zfs_default_bs;
547	else
548		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
549
550	if (ibs == 0)
551		ibs = zfs_default_ibs;
552
553	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
554
555	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
556	    dn->dn_object, tx->tx_txg, blocksize, ibs);
557
558	ASSERT(dn->dn_type == DMU_OT_NONE);
559	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
560	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
561	ASSERT(ot != DMU_OT_NONE);
562	ASSERT(DMU_OT_IS_VALID(ot));
563	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
564	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
565	    (bonustype != DMU_OT_NONE && bonuslen != 0));
566	ASSERT(DMU_OT_IS_VALID(bonustype));
567	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
568	ASSERT(dn->dn_type == DMU_OT_NONE);
569	ASSERT0(dn->dn_maxblkid);
570	ASSERT0(dn->dn_allocated_txg);
571	ASSERT0(dn->dn_assigned_txg);
572	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
573	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
574	ASSERT(avl_is_empty(&dn->dn_dbufs));
575
576	for (i = 0; i < TXG_SIZE; i++) {
577		ASSERT0(dn->dn_next_nblkptr[i]);
578		ASSERT0(dn->dn_next_nlevels[i]);
579		ASSERT0(dn->dn_next_indblkshift[i]);
580		ASSERT0(dn->dn_next_bonuslen[i]);
581		ASSERT0(dn->dn_next_bonustype[i]);
582		ASSERT0(dn->dn_rm_spillblk[i]);
583		ASSERT0(dn->dn_next_blksz[i]);
584		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
585		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
586		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
587	}
588
589	dn->dn_type = ot;
590	dnode_setdblksz(dn, blocksize);
591	dn->dn_indblkshift = ibs;
592	dn->dn_nlevels = 1;
593	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
594		dn->dn_nblkptr = 1;
595	else
596		dn->dn_nblkptr = 1 +
597		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
598	dn->dn_bonustype = bonustype;
599	dn->dn_bonuslen = bonuslen;
600	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
601	dn->dn_compress = ZIO_COMPRESS_INHERIT;
602	dn->dn_dirtyctx = 0;
603
604	dn->dn_free_txg = 0;
605	if (dn->dn_dirtyctx_firstset) {
606		kmem_free(dn->dn_dirtyctx_firstset, 1);
607		dn->dn_dirtyctx_firstset = NULL;
608	}
609
610	dn->dn_allocated_txg = tx->tx_txg;
611	dn->dn_id_flags = 0;
612
613	dnode_setdirty(dn, tx);
614	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
615	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
616	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
617	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
618}
619
620void
621dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
622    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
623{
624	int nblkptr;
625
626	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
627	ASSERT3U(blocksize, <=,
628	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
629	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
630	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
631	ASSERT(tx->tx_txg != 0);
632	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
633	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
634	    (bonustype == DMU_OT_SA && bonuslen == 0));
635	ASSERT(DMU_OT_IS_VALID(bonustype));
636	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
637
638	/* clean up any unreferenced dbufs */
639	dnode_evict_dbufs(dn);
640
641	dn->dn_id_flags = 0;
642
643	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
644	dnode_setdirty(dn, tx);
645	if (dn->dn_datablksz != blocksize) {
646		/* change blocksize */
647		ASSERT(dn->dn_maxblkid == 0 &&
648		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
649		    dnode_block_freed(dn, 0)));
650		dnode_setdblksz(dn, blocksize);
651		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
652	}
653	if (dn->dn_bonuslen != bonuslen)
654		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
655
656	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
657		nblkptr = 1;
658	else
659		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
660	if (dn->dn_bonustype != bonustype)
661		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
662	if (dn->dn_nblkptr != nblkptr)
663		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
664	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
665		dbuf_rm_spill(dn, tx);
666		dnode_rm_spill(dn, tx);
667	}
668	rw_exit(&dn->dn_struct_rwlock);
669
670	/* change type */
671	dn->dn_type = ot;
672
673	/* change bonus size and type */
674	mutex_enter(&dn->dn_mtx);
675	dn->dn_bonustype = bonustype;
676	dn->dn_bonuslen = bonuslen;
677	dn->dn_nblkptr = nblkptr;
678	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
679	dn->dn_compress = ZIO_COMPRESS_INHERIT;
680	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
681
682	/* fix up the bonus db_size */
683	if (dn->dn_bonus) {
684		dn->dn_bonus->db.db_size =
685		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
686		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
687	}
688
689	dn->dn_allocated_txg = tx->tx_txg;
690	mutex_exit(&dn->dn_mtx);
691}
692
693#ifdef	DNODE_STATS
694static struct {
695	uint64_t dms_dnode_invalid;
696	uint64_t dms_dnode_recheck1;
697	uint64_t dms_dnode_recheck2;
698	uint64_t dms_dnode_special;
699	uint64_t dms_dnode_handle;
700	uint64_t dms_dnode_rwlock;
701	uint64_t dms_dnode_active;
702} dnode_move_stats;
703#endif	/* DNODE_STATS */
704
705static void
706dnode_move_impl(dnode_t *odn, dnode_t *ndn)
707{
708	int i;
709
710	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
711	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
712	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
713	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
714
715	/* Copy fields. */
716	ndn->dn_objset = odn->dn_objset;
717	ndn->dn_object = odn->dn_object;
718	ndn->dn_dbuf = odn->dn_dbuf;
719	ndn->dn_handle = odn->dn_handle;
720	ndn->dn_phys = odn->dn_phys;
721	ndn->dn_type = odn->dn_type;
722	ndn->dn_bonuslen = odn->dn_bonuslen;
723	ndn->dn_bonustype = odn->dn_bonustype;
724	ndn->dn_nblkptr = odn->dn_nblkptr;
725	ndn->dn_checksum = odn->dn_checksum;
726	ndn->dn_compress = odn->dn_compress;
727	ndn->dn_nlevels = odn->dn_nlevels;
728	ndn->dn_indblkshift = odn->dn_indblkshift;
729	ndn->dn_datablkshift = odn->dn_datablkshift;
730	ndn->dn_datablkszsec = odn->dn_datablkszsec;
731	ndn->dn_datablksz = odn->dn_datablksz;
732	ndn->dn_maxblkid = odn->dn_maxblkid;
733	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
734	    sizeof (odn->dn_next_nblkptr));
735	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
736	    sizeof (odn->dn_next_nlevels));
737	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
738	    sizeof (odn->dn_next_indblkshift));
739	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
740	    sizeof (odn->dn_next_bonustype));
741	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
742	    sizeof (odn->dn_rm_spillblk));
743	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
744	    sizeof (odn->dn_next_bonuslen));
745	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
746	    sizeof (odn->dn_next_blksz));
747	for (i = 0; i < TXG_SIZE; i++) {
748		list_move_tail(&ndn->dn_dirty_records[i],
749		    &odn->dn_dirty_records[i]);
750	}
751	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
752	    sizeof (odn->dn_free_ranges));
753	ndn->dn_allocated_txg = odn->dn_allocated_txg;
754	ndn->dn_free_txg = odn->dn_free_txg;
755	ndn->dn_assigned_txg = odn->dn_assigned_txg;
756	ndn->dn_dirtyctx = odn->dn_dirtyctx;
757	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
758	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
759	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
760	ASSERT(avl_is_empty(&ndn->dn_dbufs));
761	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
762	ndn->dn_dbufs_count = odn->dn_dbufs_count;
763	ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
764	ndn->dn_bonus = odn->dn_bonus;
765	ndn->dn_have_spill = odn->dn_have_spill;
766	ndn->dn_zio = odn->dn_zio;
767	ndn->dn_oldused = odn->dn_oldused;
768	ndn->dn_oldflags = odn->dn_oldflags;
769	ndn->dn_olduid = odn->dn_olduid;
770	ndn->dn_oldgid = odn->dn_oldgid;
771	ndn->dn_newuid = odn->dn_newuid;
772	ndn->dn_newgid = odn->dn_newgid;
773	ndn->dn_id_flags = odn->dn_id_flags;
774	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
775	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
776	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
777	ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
778	ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
779
780	/*
781	 * Update back pointers. Updating the handle fixes the back pointer of
782	 * every descendant dbuf as well as the bonus dbuf.
783	 */
784	ASSERT(ndn->dn_handle->dnh_dnode == odn);
785	ndn->dn_handle->dnh_dnode = ndn;
786	if (ndn->dn_zfetch.zf_dnode == odn) {
787		ndn->dn_zfetch.zf_dnode = ndn;
788	}
789
790	/*
791	 * Invalidate the original dnode by clearing all of its back pointers.
792	 */
793	odn->dn_dbuf = NULL;
794	odn->dn_handle = NULL;
795	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
796	    offsetof(dmu_buf_impl_t, db_link));
797	odn->dn_dbufs_count = 0;
798	odn->dn_unlisted_l0_blkid = 0;
799	odn->dn_bonus = NULL;
800	odn->dn_zfetch.zf_dnode = NULL;
801
802	/*
803	 * Set the low bit of the objset pointer to ensure that dnode_move()
804	 * recognizes the dnode as invalid in any subsequent callback.
805	 */
806	POINTER_INVALIDATE(&odn->dn_objset);
807
808	/*
809	 * Satisfy the destructor.
810	 */
811	for (i = 0; i < TXG_SIZE; i++) {
812		list_create(&odn->dn_dirty_records[i],
813		    sizeof (dbuf_dirty_record_t),
814		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
815		odn->dn_free_ranges[i] = NULL;
816		odn->dn_next_nlevels[i] = 0;
817		odn->dn_next_indblkshift[i] = 0;
818		odn->dn_next_bonustype[i] = 0;
819		odn->dn_rm_spillblk[i] = 0;
820		odn->dn_next_bonuslen[i] = 0;
821		odn->dn_next_blksz[i] = 0;
822	}
823	odn->dn_allocated_txg = 0;
824	odn->dn_free_txg = 0;
825	odn->dn_assigned_txg = 0;
826	odn->dn_dirtyctx = 0;
827	odn->dn_dirtyctx_firstset = NULL;
828	odn->dn_have_spill = B_FALSE;
829	odn->dn_zio = NULL;
830	odn->dn_oldused = 0;
831	odn->dn_oldflags = 0;
832	odn->dn_olduid = 0;
833	odn->dn_oldgid = 0;
834	odn->dn_newuid = 0;
835	odn->dn_newgid = 0;
836	odn->dn_id_flags = 0;
837
838	/*
839	 * Mark the dnode.
840	 */
841	ndn->dn_moved = 1;
842	odn->dn_moved = (uint8_t)-1;
843}
844
845#ifdef sun
846#ifdef	_KERNEL
847/*ARGSUSED*/
848static kmem_cbrc_t
849dnode_move(void *buf, void *newbuf, size_t size, void *arg)
850{
851	dnode_t *odn = buf, *ndn = newbuf;
852	objset_t *os;
853	int64_t refcount;
854	uint32_t dbufs;
855
856	/*
857	 * The dnode is on the objset's list of known dnodes if the objset
858	 * pointer is valid. We set the low bit of the objset pointer when
859	 * freeing the dnode to invalidate it, and the memory patterns written
860	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
861	 * A newly created dnode sets the objset pointer last of all to indicate
862	 * that the dnode is known and in a valid state to be moved by this
863	 * function.
864	 */
865	os = odn->dn_objset;
866	if (!POINTER_IS_VALID(os)) {
867		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
868		return (KMEM_CBRC_DONT_KNOW);
869	}
870
871	/*
872	 * Ensure that the objset does not go away during the move.
873	 */
874	rw_enter(&os_lock, RW_WRITER);
875	if (os != odn->dn_objset) {
876		rw_exit(&os_lock);
877		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
878		return (KMEM_CBRC_DONT_KNOW);
879	}
880
881	/*
882	 * If the dnode is still valid, then so is the objset. We know that no
883	 * valid objset can be freed while we hold os_lock, so we can safely
884	 * ensure that the objset remains in use.
885	 */
886	mutex_enter(&os->os_lock);
887
888	/*
889	 * Recheck the objset pointer in case the dnode was removed just before
890	 * acquiring the lock.
891	 */
892	if (os != odn->dn_objset) {
893		mutex_exit(&os->os_lock);
894		rw_exit(&os_lock);
895		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
896		return (KMEM_CBRC_DONT_KNOW);
897	}
898
899	/*
900	 * At this point we know that as long as we hold os->os_lock, the dnode
901	 * cannot be freed and fields within the dnode can be safely accessed.
902	 * The objset listing this dnode cannot go away as long as this dnode is
903	 * on its list.
904	 */
905	rw_exit(&os_lock);
906	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
907		mutex_exit(&os->os_lock);
908		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
909		return (KMEM_CBRC_NO);
910	}
911	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
912
913	/*
914	 * Lock the dnode handle to prevent the dnode from obtaining any new
915	 * holds. This also prevents the descendant dbufs and the bonus dbuf
916	 * from accessing the dnode, so that we can discount their holds. The
917	 * handle is safe to access because we know that while the dnode cannot
918	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
919	 * safely move any dnode referenced only by dbufs.
920	 */
921	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
922		mutex_exit(&os->os_lock);
923		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
924		return (KMEM_CBRC_LATER);
925	}
926
927	/*
928	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
929	 * We need to guarantee that there is a hold for every dbuf in order to
930	 * determine whether the dnode is actively referenced. Falsely matching
931	 * a dbuf to an active hold would lead to an unsafe move. It's possible
932	 * that a thread already having an active dnode hold is about to add a
933	 * dbuf, and we can't compare hold and dbuf counts while the add is in
934	 * progress.
935	 */
936	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
937		zrl_exit(&odn->dn_handle->dnh_zrlock);
938		mutex_exit(&os->os_lock);
939		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
940		return (KMEM_CBRC_LATER);
941	}
942
943	/*
944	 * A dbuf may be removed (evicted) without an active dnode hold. In that
945	 * case, the dbuf count is decremented under the handle lock before the
946	 * dbuf's hold is released. This order ensures that if we count the hold
947	 * after the dbuf is removed but before its hold is released, we will
948	 * treat the unmatched hold as active and exit safely. If we count the
949	 * hold before the dbuf is removed, the hold is discounted, and the
950	 * removal is blocked until the move completes.
951	 */
952	refcount = refcount_count(&odn->dn_holds);
953	ASSERT(refcount >= 0);
954	dbufs = odn->dn_dbufs_count;
955
956	/* We can't have more dbufs than dnode holds. */
957	ASSERT3U(dbufs, <=, refcount);
958	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
959	    uint32_t, dbufs);
960
961	if (refcount > dbufs) {
962		rw_exit(&odn->dn_struct_rwlock);
963		zrl_exit(&odn->dn_handle->dnh_zrlock);
964		mutex_exit(&os->os_lock);
965		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
966		return (KMEM_CBRC_LATER);
967	}
968
969	rw_exit(&odn->dn_struct_rwlock);
970
971	/*
972	 * At this point we know that anyone with a hold on the dnode is not
973	 * actively referencing it. The dnode is known and in a valid state to
974	 * move. We're holding the locks needed to execute the critical section.
975	 */
976	dnode_move_impl(odn, ndn);
977
978	list_link_replace(&odn->dn_link, &ndn->dn_link);
979	/* If the dnode was safe to move, the refcount cannot have changed. */
980	ASSERT(refcount == refcount_count(&ndn->dn_holds));
981	ASSERT(dbufs == ndn->dn_dbufs_count);
982	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
983	mutex_exit(&os->os_lock);
984
985	return (KMEM_CBRC_YES);
986}
987#endif	/* _KERNEL */
988#endif	/* sun */
989
990void
991dnode_special_close(dnode_handle_t *dnh)
992{
993	dnode_t *dn = dnh->dnh_dnode;
994
995	/*
996	 * Wait for final references to the dnode to clear.  This can
997	 * only happen if the arc is asyncronously evicting state that
998	 * has a hold on this dnode while we are trying to evict this
999	 * dnode.
1000	 */
1001	while (refcount_count(&dn->dn_holds) > 0)
1002		delay(1);
1003	ASSERT(dn->dn_dbuf == NULL ||
1004	    dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1005	zrl_add(&dnh->dnh_zrlock);
1006	dnode_destroy(dn); /* implicit zrl_remove() */
1007	zrl_destroy(&dnh->dnh_zrlock);
1008	dnh->dnh_dnode = NULL;
1009}
1010
1011void
1012dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1013    dnode_handle_t *dnh)
1014{
1015	dnode_t *dn;
1016
1017	dn = dnode_create(os, dnp, NULL, object, dnh);
1018	zrl_init(&dnh->dnh_zrlock);
1019	DNODE_VERIFY(dn);
1020}
1021
1022static void
1023dnode_buf_pageout(void *dbu)
1024{
1025	dnode_children_t *children_dnodes = dbu;
1026	int i;
1027
1028	for (i = 0; i < children_dnodes->dnc_count; i++) {
1029		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1030		dnode_t *dn;
1031
1032		/*
1033		 * The dnode handle lock guards against the dnode moving to
1034		 * another valid address, so there is no need here to guard
1035		 * against changes to or from NULL.
1036		 */
1037		if (dnh->dnh_dnode == NULL) {
1038			zrl_destroy(&dnh->dnh_zrlock);
1039			continue;
1040		}
1041
1042		zrl_add(&dnh->dnh_zrlock);
1043		dn = dnh->dnh_dnode;
1044		/*
1045		 * If there are holds on this dnode, then there should
1046		 * be holds on the dnode's containing dbuf as well; thus
1047		 * it wouldn't be eligible for eviction and this function
1048		 * would not have been called.
1049		 */
1050		ASSERT(refcount_is_zero(&dn->dn_holds));
1051		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1052
1053		dnode_destroy(dn); /* implicit zrl_remove() */
1054		zrl_destroy(&dnh->dnh_zrlock);
1055		dnh->dnh_dnode = NULL;
1056	}
1057	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1058	    children_dnodes->dnc_count * sizeof (dnode_handle_t));
1059}
1060
1061/*
1062 * errors:
1063 * EINVAL - invalid object number.
1064 * EIO - i/o error.
1065 * succeeds even for free dnodes.
1066 */
1067int
1068dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1069    void *tag, dnode_t **dnp)
1070{
1071	int epb, idx, err;
1072	int drop_struct_lock = FALSE;
1073	int type;
1074	uint64_t blk;
1075	dnode_t *mdn, *dn;
1076	dmu_buf_impl_t *db;
1077	dnode_children_t *children_dnodes;
1078	dnode_handle_t *dnh;
1079
1080	/*
1081	 * If you are holding the spa config lock as writer, you shouldn't
1082	 * be asking the DMU to do *anything* unless it's the root pool
1083	 * which may require us to read from the root filesystem while
1084	 * holding some (not all) of the locks as writer.
1085	 */
1086	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1087	    (spa_is_root(os->os_spa) &&
1088	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1089
1090	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1091		dn = (object == DMU_USERUSED_OBJECT) ?
1092		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1093		if (dn == NULL)
1094			return (SET_ERROR(ENOENT));
1095		type = dn->dn_type;
1096		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1097			return (SET_ERROR(ENOENT));
1098		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1099			return (SET_ERROR(EEXIST));
1100		DNODE_VERIFY(dn);
1101		(void) refcount_add(&dn->dn_holds, tag);
1102		*dnp = dn;
1103		return (0);
1104	}
1105
1106	if (object == 0 || object >= DN_MAX_OBJECT)
1107		return (SET_ERROR(EINVAL));
1108
1109	mdn = DMU_META_DNODE(os);
1110	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1111
1112	DNODE_VERIFY(mdn);
1113
1114	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1115		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1116		drop_struct_lock = TRUE;
1117	}
1118
1119	blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1120
1121	db = dbuf_hold(mdn, blk, FTAG);
1122	if (drop_struct_lock)
1123		rw_exit(&mdn->dn_struct_rwlock);
1124	if (db == NULL)
1125		return (SET_ERROR(EIO));
1126	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1127	if (err) {
1128		dbuf_rele(db, FTAG);
1129		return (err);
1130	}
1131
1132	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1133	epb = db->db.db_size >> DNODE_SHIFT;
1134
1135	idx = object & (epb-1);
1136
1137	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1138	children_dnodes = dmu_buf_get_user(&db->db);
1139	if (children_dnodes == NULL) {
1140		int i;
1141		dnode_children_t *winner;
1142		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1143		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1144		children_dnodes->dnc_count = epb;
1145		dnh = &children_dnodes->dnc_children[0];
1146		for (i = 0; i < epb; i++) {
1147			zrl_init(&dnh[i].dnh_zrlock);
1148		}
1149		dmu_buf_init_user(&children_dnodes->dnc_dbu,
1150		    dnode_buf_pageout, NULL);
1151		winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1152		if (winner != NULL) {
1153
1154			for (i = 0; i < epb; i++) {
1155				zrl_destroy(&dnh[i].dnh_zrlock);
1156			}
1157
1158			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1159			    epb * sizeof (dnode_handle_t));
1160			children_dnodes = winner;
1161		}
1162	}
1163	ASSERT(children_dnodes->dnc_count == epb);
1164
1165	dnh = &children_dnodes->dnc_children[idx];
1166	zrl_add(&dnh->dnh_zrlock);
1167	dn = dnh->dnh_dnode;
1168	if (dn == NULL) {
1169		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1170
1171		dn = dnode_create(os, phys, db, object, dnh);
1172	}
1173
1174	mutex_enter(&dn->dn_mtx);
1175	type = dn->dn_type;
1176	if (dn->dn_free_txg ||
1177	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1178	    ((flag & DNODE_MUST_BE_FREE) &&
1179	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1180		mutex_exit(&dn->dn_mtx);
1181		zrl_remove(&dnh->dnh_zrlock);
1182		dbuf_rele(db, FTAG);
1183		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1184	}
1185	if (refcount_add(&dn->dn_holds, tag) == 1)
1186		dbuf_add_ref(db, dnh);
1187	mutex_exit(&dn->dn_mtx);
1188
1189	/* Now we can rely on the hold to prevent the dnode from moving. */
1190	zrl_remove(&dnh->dnh_zrlock);
1191
1192	DNODE_VERIFY(dn);
1193	ASSERT3P(dn->dn_dbuf, ==, db);
1194	ASSERT3U(dn->dn_object, ==, object);
1195	dbuf_rele(db, FTAG);
1196
1197	*dnp = dn;
1198	return (0);
1199}
1200
1201/*
1202 * Return held dnode if the object is allocated, NULL if not.
1203 */
1204int
1205dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1206{
1207	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1208}
1209
1210/*
1211 * Can only add a reference if there is already at least one
1212 * reference on the dnode.  Returns FALSE if unable to add a
1213 * new reference.
1214 */
1215boolean_t
1216dnode_add_ref(dnode_t *dn, void *tag)
1217{
1218	mutex_enter(&dn->dn_mtx);
1219	if (refcount_is_zero(&dn->dn_holds)) {
1220		mutex_exit(&dn->dn_mtx);
1221		return (FALSE);
1222	}
1223	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1224	mutex_exit(&dn->dn_mtx);
1225	return (TRUE);
1226}
1227
1228void
1229dnode_rele(dnode_t *dn, void *tag)
1230{
1231	mutex_enter(&dn->dn_mtx);
1232	dnode_rele_and_unlock(dn, tag);
1233}
1234
1235void
1236dnode_rele_and_unlock(dnode_t *dn, void *tag)
1237{
1238	uint64_t refs;
1239	/* Get while the hold prevents the dnode from moving. */
1240	dmu_buf_impl_t *db = dn->dn_dbuf;
1241	dnode_handle_t *dnh = dn->dn_handle;
1242
1243	refs = refcount_remove(&dn->dn_holds, tag);
1244	mutex_exit(&dn->dn_mtx);
1245
1246	/*
1247	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1248	 * indirectly by dbuf_rele() while relying on the dnode handle to
1249	 * prevent the dnode from moving, since releasing the last hold could
1250	 * result in the dnode's parent dbuf evicting its dnode handles. For
1251	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1252	 * other direct or indirect hold on the dnode must first drop the dnode
1253	 * handle.
1254	 */
1255	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1256
1257	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1258	if (refs == 0 && db != NULL) {
1259		/*
1260		 * Another thread could add a hold to the dnode handle in
1261		 * dnode_hold_impl() while holding the parent dbuf. Since the
1262		 * hold on the parent dbuf prevents the handle from being
1263		 * destroyed, the hold on the handle is OK. We can't yet assert
1264		 * that the handle has zero references, but that will be
1265		 * asserted anyway when the handle gets destroyed.
1266		 */
1267		dbuf_rele(db, dnh);
1268	}
1269}
1270
1271void
1272dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1273{
1274	objset_t *os = dn->dn_objset;
1275	uint64_t txg = tx->tx_txg;
1276
1277	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1278		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1279		return;
1280	}
1281
1282	DNODE_VERIFY(dn);
1283
1284#ifdef ZFS_DEBUG
1285	mutex_enter(&dn->dn_mtx);
1286	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1287	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1288	mutex_exit(&dn->dn_mtx);
1289#endif
1290
1291	/*
1292	 * Determine old uid/gid when necessary
1293	 */
1294	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1295
1296	mutex_enter(&os->os_lock);
1297
1298	/*
1299	 * If we are already marked dirty, we're done.
1300	 */
1301	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1302		mutex_exit(&os->os_lock);
1303		return;
1304	}
1305
1306	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1307	    !avl_is_empty(&dn->dn_dbufs));
1308	ASSERT(dn->dn_datablksz != 0);
1309	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1310	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1311	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1312
1313	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1314	    dn->dn_object, txg);
1315
1316	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1317		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1318	} else {
1319		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1320	}
1321
1322	mutex_exit(&os->os_lock);
1323
1324	/*
1325	 * The dnode maintains a hold on its containing dbuf as
1326	 * long as there are holds on it.  Each instantiated child
1327	 * dbuf maintains a hold on the dnode.  When the last child
1328	 * drops its hold, the dnode will drop its hold on the
1329	 * containing dbuf. We add a "dirty hold" here so that the
1330	 * dnode will hang around after we finish processing its
1331	 * children.
1332	 */
1333	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1334
1335	(void) dbuf_dirty(dn->dn_dbuf, tx);
1336
1337	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1338}
1339
1340void
1341dnode_free(dnode_t *dn, dmu_tx_t *tx)
1342{
1343	int txgoff = tx->tx_txg & TXG_MASK;
1344
1345	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1346
1347	/* we should be the only holder... hopefully */
1348	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1349
1350	mutex_enter(&dn->dn_mtx);
1351	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1352		mutex_exit(&dn->dn_mtx);
1353		return;
1354	}
1355	dn->dn_free_txg = tx->tx_txg;
1356	mutex_exit(&dn->dn_mtx);
1357
1358	/*
1359	 * If the dnode is already dirty, it needs to be moved from
1360	 * the dirty list to the free list.
1361	 */
1362	mutex_enter(&dn->dn_objset->os_lock);
1363	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1364		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1365		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1366		mutex_exit(&dn->dn_objset->os_lock);
1367	} else {
1368		mutex_exit(&dn->dn_objset->os_lock);
1369		dnode_setdirty(dn, tx);
1370	}
1371}
1372
1373/*
1374 * Try to change the block size for the indicated dnode.  This can only
1375 * succeed if there are no blocks allocated or dirty beyond first block
1376 */
1377int
1378dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1379{
1380	dmu_buf_impl_t *db;
1381	int err;
1382
1383	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1384	if (size == 0)
1385		size = SPA_MINBLOCKSIZE;
1386	else
1387		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1388
1389	if (ibs == dn->dn_indblkshift)
1390		ibs = 0;
1391
1392	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1393		return (0);
1394
1395	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1396
1397	/* Check for any allocated blocks beyond the first */
1398	if (dn->dn_maxblkid != 0)
1399		goto fail;
1400
1401	mutex_enter(&dn->dn_dbufs_mtx);
1402	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1403	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1404		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1405		    db->db_blkid != DMU_SPILL_BLKID) {
1406			mutex_exit(&dn->dn_dbufs_mtx);
1407			goto fail;
1408		}
1409	}
1410	mutex_exit(&dn->dn_dbufs_mtx);
1411
1412	if (ibs && dn->dn_nlevels != 1)
1413		goto fail;
1414
1415	/* resize the old block */
1416	err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1417	if (err == 0)
1418		dbuf_new_size(db, size, tx);
1419	else if (err != ENOENT)
1420		goto fail;
1421
1422	dnode_setdblksz(dn, size);
1423	dnode_setdirty(dn, tx);
1424	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1425	if (ibs) {
1426		dn->dn_indblkshift = ibs;
1427		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1428	}
1429	/* rele after we have fixed the blocksize in the dnode */
1430	if (db)
1431		dbuf_rele(db, FTAG);
1432
1433	rw_exit(&dn->dn_struct_rwlock);
1434	return (0);
1435
1436fail:
1437	rw_exit(&dn->dn_struct_rwlock);
1438	return (SET_ERROR(ENOTSUP));
1439}
1440
1441/* read-holding callers must not rely on the lock being continuously held */
1442void
1443dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1444{
1445	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1446	int epbs, new_nlevels;
1447	uint64_t sz;
1448
1449	ASSERT(blkid != DMU_BONUS_BLKID);
1450
1451	ASSERT(have_read ?
1452	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1453	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1454
1455	/*
1456	 * if we have a read-lock, check to see if we need to do any work
1457	 * before upgrading to a write-lock.
1458	 */
1459	if (have_read) {
1460		if (blkid <= dn->dn_maxblkid)
1461			return;
1462
1463		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1464			rw_exit(&dn->dn_struct_rwlock);
1465			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1466		}
1467	}
1468
1469	if (blkid <= dn->dn_maxblkid)
1470		goto out;
1471
1472	dn->dn_maxblkid = blkid;
1473
1474	/*
1475	 * Compute the number of levels necessary to support the new maxblkid.
1476	 */
1477	new_nlevels = 1;
1478	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1479	for (sz = dn->dn_nblkptr;
1480	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1481		new_nlevels++;
1482
1483	if (new_nlevels > dn->dn_nlevels) {
1484		int old_nlevels = dn->dn_nlevels;
1485		dmu_buf_impl_t *db;
1486		list_t *list;
1487		dbuf_dirty_record_t *new, *dr, *dr_next;
1488
1489		dn->dn_nlevels = new_nlevels;
1490
1491		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1492		dn->dn_next_nlevels[txgoff] = new_nlevels;
1493
1494		/* dirty the left indirects */
1495		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1496		ASSERT(db != NULL);
1497		new = dbuf_dirty(db, tx);
1498		dbuf_rele(db, FTAG);
1499
1500		/* transfer the dirty records to the new indirect */
1501		mutex_enter(&dn->dn_mtx);
1502		mutex_enter(&new->dt.di.dr_mtx);
1503		list = &dn->dn_dirty_records[txgoff];
1504		for (dr = list_head(list); dr; dr = dr_next) {
1505			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1506			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1507			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1508			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1509				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1510				list_remove(&dn->dn_dirty_records[txgoff], dr);
1511				list_insert_tail(&new->dt.di.dr_children, dr);
1512				dr->dr_parent = new;
1513			}
1514		}
1515		mutex_exit(&new->dt.di.dr_mtx);
1516		mutex_exit(&dn->dn_mtx);
1517	}
1518
1519out:
1520	if (have_read)
1521		rw_downgrade(&dn->dn_struct_rwlock);
1522}
1523
1524static void
1525dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1526{
1527	dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1528	if (db != NULL) {
1529		dmu_buf_will_dirty(&db->db, tx);
1530		dbuf_rele(db, FTAG);
1531	}
1532}
1533
1534void
1535dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1536{
1537	dmu_buf_impl_t *db;
1538	uint64_t blkoff, blkid, nblks;
1539	int blksz, blkshift, head, tail;
1540	int trunc = FALSE;
1541	int epbs;
1542
1543	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1544	blksz = dn->dn_datablksz;
1545	blkshift = dn->dn_datablkshift;
1546	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1547
1548	if (len == DMU_OBJECT_END) {
1549		len = UINT64_MAX - off;
1550		trunc = TRUE;
1551	}
1552
1553	/*
1554	 * First, block align the region to free:
1555	 */
1556	if (ISP2(blksz)) {
1557		head = P2NPHASE(off, blksz);
1558		blkoff = P2PHASE(off, blksz);
1559		if ((off >> blkshift) > dn->dn_maxblkid)
1560			goto out;
1561	} else {
1562		ASSERT(dn->dn_maxblkid == 0);
1563		if (off == 0 && len >= blksz) {
1564			/*
1565			 * Freeing the whole block; fast-track this request.
1566			 * Note that we won't dirty any indirect blocks,
1567			 * which is fine because we will be freeing the entire
1568			 * file and thus all indirect blocks will be freed
1569			 * by free_children().
1570			 */
1571			blkid = 0;
1572			nblks = 1;
1573			goto done;
1574		} else if (off >= blksz) {
1575			/* Freeing past end-of-data */
1576			goto out;
1577		} else {
1578			/* Freeing part of the block. */
1579			head = blksz - off;
1580			ASSERT3U(head, >, 0);
1581		}
1582		blkoff = off;
1583	}
1584	/* zero out any partial block data at the start of the range */
1585	if (head) {
1586		ASSERT3U(blkoff + head, ==, blksz);
1587		if (len < head)
1588			head = len;
1589		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1590		    TRUE, FALSE, FTAG, &db) == 0) {
1591			caddr_t data;
1592
1593			/* don't dirty if it isn't on disk and isn't dirty */
1594			if (db->db_last_dirty ||
1595			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1596				rw_exit(&dn->dn_struct_rwlock);
1597				dmu_buf_will_dirty(&db->db, tx);
1598				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1599				data = db->db.db_data;
1600				bzero(data + blkoff, head);
1601			}
1602			dbuf_rele(db, FTAG);
1603		}
1604		off += head;
1605		len -= head;
1606	}
1607
1608	/* If the range was less than one block, we're done */
1609	if (len == 0)
1610		goto out;
1611
1612	/* If the remaining range is past end of file, we're done */
1613	if ((off >> blkshift) > dn->dn_maxblkid)
1614		goto out;
1615
1616	ASSERT(ISP2(blksz));
1617	if (trunc)
1618		tail = 0;
1619	else
1620		tail = P2PHASE(len, blksz);
1621
1622	ASSERT0(P2PHASE(off, blksz));
1623	/* zero out any partial block data at the end of the range */
1624	if (tail) {
1625		if (len < tail)
1626			tail = len;
1627		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1628		    TRUE, FALSE, FTAG, &db) == 0) {
1629			/* don't dirty if not on disk and not dirty */
1630			if (db->db_last_dirty ||
1631			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1632				rw_exit(&dn->dn_struct_rwlock);
1633				dmu_buf_will_dirty(&db->db, tx);
1634				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1635				bzero(db->db.db_data, tail);
1636			}
1637			dbuf_rele(db, FTAG);
1638		}
1639		len -= tail;
1640	}
1641
1642	/* If the range did not include a full block, we are done */
1643	if (len == 0)
1644		goto out;
1645
1646	ASSERT(IS_P2ALIGNED(off, blksz));
1647	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1648	blkid = off >> blkshift;
1649	nblks = len >> blkshift;
1650	if (trunc)
1651		nblks += 1;
1652
1653	/*
1654	 * Dirty all the indirect blocks in this range.  Note that only
1655	 * the first and last indirect blocks can actually be written
1656	 * (if they were partially freed) -- they must be dirtied, even if
1657	 * they do not exist on disk yet.  The interior blocks will
1658	 * be freed by free_children(), so they will not actually be written.
1659	 * Even though these interior blocks will not be written, we
1660	 * dirty them for two reasons:
1661	 *
1662	 *  - It ensures that the indirect blocks remain in memory until
1663	 *    syncing context.  (They have already been prefetched by
1664	 *    dmu_tx_hold_free(), so we don't have to worry about reading
1665	 *    them serially here.)
1666	 *
1667	 *  - The dirty space accounting will put pressure on the txg sync
1668	 *    mechanism to begin syncing, and to delay transactions if there
1669	 *    is a large amount of freeing.  Even though these indirect
1670	 *    blocks will not be written, we could need to write the same
1671	 *    amount of space if we copy the freed BPs into deadlists.
1672	 */
1673	if (dn->dn_nlevels > 1) {
1674		uint64_t first, last;
1675
1676		first = blkid >> epbs;
1677		dnode_dirty_l1(dn, first, tx);
1678		if (trunc)
1679			last = dn->dn_maxblkid >> epbs;
1680		else
1681			last = (blkid + nblks - 1) >> epbs;
1682		if (last != first)
1683			dnode_dirty_l1(dn, last, tx);
1684
1685		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
1686		    SPA_BLKPTRSHIFT;
1687		for (uint64_t i = first + 1; i < last; i++) {
1688			/*
1689			 * Set i to the blockid of the next non-hole
1690			 * level-1 indirect block at or after i.  Note
1691			 * that dnode_next_offset() operates in terms of
1692			 * level-0-equivalent bytes.
1693			 */
1694			uint64_t ibyte = i << shift;
1695			int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1696			    &ibyte, 2, 1, 0);
1697			i = ibyte >> shift;
1698			if (i >= last)
1699				break;
1700
1701			/*
1702			 * Normally we should not see an error, either
1703			 * from dnode_next_offset() or dbuf_hold_level()
1704			 * (except for ESRCH from dnode_next_offset).
1705			 * If there is an i/o error, then when we read
1706			 * this block in syncing context, it will use
1707			 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1708			 * to the "failmode" property.  dnode_next_offset()
1709			 * doesn't have a flag to indicate MUSTSUCCEED.
1710			 */
1711			if (err != 0)
1712				break;
1713
1714			dnode_dirty_l1(dn, i, tx);
1715		}
1716	}
1717
1718done:
1719	/*
1720	 * Add this range to the dnode range list.
1721	 * We will finish up this free operation in the syncing phase.
1722	 */
1723	mutex_enter(&dn->dn_mtx);
1724	int txgoff = tx->tx_txg & TXG_MASK;
1725	if (dn->dn_free_ranges[txgoff] == NULL) {
1726		dn->dn_free_ranges[txgoff] =
1727		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1728	}
1729	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1730	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1731	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1732	    blkid, nblks, tx->tx_txg);
1733	mutex_exit(&dn->dn_mtx);
1734
1735	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1736	dnode_setdirty(dn, tx);
1737out:
1738
1739	rw_exit(&dn->dn_struct_rwlock);
1740}
1741
1742static boolean_t
1743dnode_spill_freed(dnode_t *dn)
1744{
1745	int i;
1746
1747	mutex_enter(&dn->dn_mtx);
1748	for (i = 0; i < TXG_SIZE; i++) {
1749		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1750			break;
1751	}
1752	mutex_exit(&dn->dn_mtx);
1753	return (i < TXG_SIZE);
1754}
1755
1756/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1757uint64_t
1758dnode_block_freed(dnode_t *dn, uint64_t blkid)
1759{
1760	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1761	int i;
1762
1763	if (blkid == DMU_BONUS_BLKID)
1764		return (FALSE);
1765
1766	/*
1767	 * If we're in the process of opening the pool, dp will not be
1768	 * set yet, but there shouldn't be anything dirty.
1769	 */
1770	if (dp == NULL)
1771		return (FALSE);
1772
1773	if (dn->dn_free_txg)
1774		return (TRUE);
1775
1776	if (blkid == DMU_SPILL_BLKID)
1777		return (dnode_spill_freed(dn));
1778
1779	mutex_enter(&dn->dn_mtx);
1780	for (i = 0; i < TXG_SIZE; i++) {
1781		if (dn->dn_free_ranges[i] != NULL &&
1782		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1783			break;
1784	}
1785	mutex_exit(&dn->dn_mtx);
1786	return (i < TXG_SIZE);
1787}
1788
1789/* call from syncing context when we actually write/free space for this dnode */
1790void
1791dnode_diduse_space(dnode_t *dn, int64_t delta)
1792{
1793	uint64_t space;
1794	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1795	    dn, dn->dn_phys,
1796	    (u_longlong_t)dn->dn_phys->dn_used,
1797	    (longlong_t)delta);
1798
1799	mutex_enter(&dn->dn_mtx);
1800	space = DN_USED_BYTES(dn->dn_phys);
1801	if (delta > 0) {
1802		ASSERT3U(space + delta, >=, space); /* no overflow */
1803	} else {
1804		ASSERT3U(space, >=, -delta); /* no underflow */
1805	}
1806	space += delta;
1807	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1808		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1809		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1810		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1811	} else {
1812		dn->dn_phys->dn_used = space;
1813		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1814	}
1815	mutex_exit(&dn->dn_mtx);
1816}
1817
1818/*
1819 * Call when we think we're going to write/free space in open context to track
1820 * the amount of memory in use by the currently open txg.
1821 */
1822void
1823dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1824{
1825	objset_t *os = dn->dn_objset;
1826	dsl_dataset_t *ds = os->os_dsl_dataset;
1827	int64_t aspace = spa_get_asize(os->os_spa, space);
1828
1829	if (ds != NULL) {
1830		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1831		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1832	}
1833
1834	dmu_tx_willuse_space(tx, aspace);
1835}
1836
1837/*
1838 * Scans a block at the indicated "level" looking for a hole or data,
1839 * depending on 'flags'.
1840 *
1841 * If level > 0, then we are scanning an indirect block looking at its
1842 * pointers.  If level == 0, then we are looking at a block of dnodes.
1843 *
1844 * If we don't find what we are looking for in the block, we return ESRCH.
1845 * Otherwise, return with *offset pointing to the beginning (if searching
1846 * forwards) or end (if searching backwards) of the range covered by the
1847 * block pointer we matched on (or dnode).
1848 *
1849 * The basic search algorithm used below by dnode_next_offset() is to
1850 * use this function to search up the block tree (widen the search) until
1851 * we find something (i.e., we don't return ESRCH) and then search back
1852 * down the tree (narrow the search) until we reach our original search
1853 * level.
1854 */
1855static int
1856dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1857    int lvl, uint64_t blkfill, uint64_t txg)
1858{
1859	dmu_buf_impl_t *db = NULL;
1860	void *data = NULL;
1861	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1862	uint64_t epb = 1ULL << epbs;
1863	uint64_t minfill, maxfill;
1864	boolean_t hole;
1865	int i, inc, error, span;
1866
1867	dprintf("probing object %llu offset %llx level %d of %u\n",
1868	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1869
1870	hole = ((flags & DNODE_FIND_HOLE) != 0);
1871	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1872	ASSERT(txg == 0 || !hole);
1873
1874	if (lvl == dn->dn_phys->dn_nlevels) {
1875		error = 0;
1876		epb = dn->dn_phys->dn_nblkptr;
1877		data = dn->dn_phys->dn_blkptr;
1878	} else {
1879		uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
1880		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
1881		if (error) {
1882			if (error != ENOENT)
1883				return (error);
1884			if (hole)
1885				return (0);
1886			/*
1887			 * This can only happen when we are searching up
1888			 * the block tree for data.  We don't really need to
1889			 * adjust the offset, as we will just end up looking
1890			 * at the pointer to this block in its parent, and its
1891			 * going to be unallocated, so we will skip over it.
1892			 */
1893			return (SET_ERROR(ESRCH));
1894		}
1895		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1896		if (error) {
1897			dbuf_rele(db, FTAG);
1898			return (error);
1899		}
1900		data = db->db.db_data;
1901	}
1902
1903
1904	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1905	    db->db_blkptr->blk_birth <= txg ||
1906	    BP_IS_HOLE(db->db_blkptr))) {
1907		/*
1908		 * This can only happen when we are searching up the tree
1909		 * and these conditions mean that we need to keep climbing.
1910		 */
1911		error = SET_ERROR(ESRCH);
1912	} else if (lvl == 0) {
1913		dnode_phys_t *dnp = data;
1914		span = DNODE_SHIFT;
1915		ASSERT(dn->dn_type == DMU_OT_DNODE);
1916
1917		for (i = (*offset >> span) & (blkfill - 1);
1918		    i >= 0 && i < blkfill; i += inc) {
1919			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1920				break;
1921			*offset += (1ULL << span) * inc;
1922		}
1923		if (i < 0 || i == blkfill)
1924			error = SET_ERROR(ESRCH);
1925	} else {
1926		blkptr_t *bp = data;
1927		uint64_t start = *offset;
1928		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1929		minfill = 0;
1930		maxfill = blkfill << ((lvl - 1) * epbs);
1931
1932		if (hole)
1933			maxfill--;
1934		else
1935			minfill++;
1936
1937		*offset = *offset >> span;
1938		for (i = BF64_GET(*offset, 0, epbs);
1939		    i >= 0 && i < epb; i += inc) {
1940			if (BP_GET_FILL(&bp[i]) >= minfill &&
1941			    BP_GET_FILL(&bp[i]) <= maxfill &&
1942			    (hole || bp[i].blk_birth > txg))
1943				break;
1944			if (inc > 0 || *offset > 0)
1945				*offset += inc;
1946		}
1947		*offset = *offset << span;
1948		if (inc < 0) {
1949			/* traversing backwards; position offset at the end */
1950			ASSERT3U(*offset, <=, start);
1951			*offset = MIN(*offset + (1ULL << span) - 1, start);
1952		} else if (*offset < start) {
1953			*offset = start;
1954		}
1955		if (i < 0 || i >= epb)
1956			error = SET_ERROR(ESRCH);
1957	}
1958
1959	if (db)
1960		dbuf_rele(db, FTAG);
1961
1962	return (error);
1963}
1964
1965/*
1966 * Find the next hole, data, or sparse region at or after *offset.
1967 * The value 'blkfill' tells us how many items we expect to find
1968 * in an L0 data block; this value is 1 for normal objects,
1969 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1970 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1971 *
1972 * Examples:
1973 *
1974 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1975 *	Finds the next/previous hole/data in a file.
1976 *	Used in dmu_offset_next().
1977 *
1978 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1979 *	Finds the next free/allocated dnode an objset's meta-dnode.
1980 *	Only finds objects that have new contents since txg (ie.
1981 *	bonus buffer changes and content removal are ignored).
1982 *	Used in dmu_object_next().
1983 *
1984 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1985 *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1986 *	Used in dmu_object_alloc().
1987 */
1988int
1989dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1990    int minlvl, uint64_t blkfill, uint64_t txg)
1991{
1992	uint64_t initial_offset = *offset;
1993	int lvl, maxlvl;
1994	int error = 0;
1995
1996	if (!(flags & DNODE_FIND_HAVELOCK))
1997		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1998
1999	if (dn->dn_phys->dn_nlevels == 0) {
2000		error = SET_ERROR(ESRCH);
2001		goto out;
2002	}
2003
2004	if (dn->dn_datablkshift == 0) {
2005		if (*offset < dn->dn_datablksz) {
2006			if (flags & DNODE_FIND_HOLE)
2007				*offset = dn->dn_datablksz;
2008		} else {
2009			error = SET_ERROR(ESRCH);
2010		}
2011		goto out;
2012	}
2013
2014	maxlvl = dn->dn_phys->dn_nlevels;
2015
2016	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2017		error = dnode_next_offset_level(dn,
2018		    flags, offset, lvl, blkfill, txg);
2019		if (error != ESRCH)
2020			break;
2021	}
2022
2023	while (error == 0 && --lvl >= minlvl) {
2024		error = dnode_next_offset_level(dn,
2025		    flags, offset, lvl, blkfill, txg);
2026	}
2027
2028	/*
2029	 * There's always a "virtual hole" at the end of the object, even
2030	 * if all BP's which physically exist are non-holes.
2031	 */
2032	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2033	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2034		error = 0;
2035	}
2036
2037	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2038	    initial_offset < *offset : initial_offset > *offset))
2039		error = SET_ERROR(ESRCH);
2040out:
2041	if (!(flags & DNODE_FIND_HAVELOCK))
2042		rw_exit(&dn->dn_struct_rwlock);
2043
2044	return (error);
2045}
2046