dnode.c revision 277585
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/dbuf.h>
28#include <sys/dnode.h>
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_dataset.h>
35#include <sys/spa.h>
36#include <sys/zio.h>
37#include <sys/dmu_zfetch.h>
38#include <sys/range_tree.h>
39
40static kmem_cache_t *dnode_cache;
41/*
42 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43 * turned on when DEBUG is also defined.
44 */
45#ifdef	DEBUG
46#define	DNODE_STATS
47#endif	/* DEBUG */
48
49#ifdef	DNODE_STATS
50#define	DNODE_STAT_ADD(stat)			((stat)++)
51#else
52#define	DNODE_STAT_ADD(stat)			/* nothing */
53#endif	/* DNODE_STATS */
54
55static dnode_phys_t dnode_phys_zero;
56
57int zfs_default_bs = SPA_MINBLOCKSHIFT;
58int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59
60#ifdef sun
61static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
62#endif
63
64static int
65dbuf_compare(const void *x1, const void *x2)
66{
67	const dmu_buf_impl_t *d1 = x1;
68	const dmu_buf_impl_t *d2 = x2;
69
70	if (d1->db_level < d2->db_level) {
71		return (-1);
72	}
73	if (d1->db_level > d2->db_level) {
74		return (1);
75	}
76
77	if (d1->db_blkid < d2->db_blkid) {
78		return (-1);
79	}
80	if (d1->db_blkid > d2->db_blkid) {
81		return (1);
82	}
83
84	if (d1->db_state < d2->db_state) {
85		return (-1);
86	}
87	if (d1->db_state > d2->db_state) {
88		return (1);
89	}
90
91	ASSERT3S(d1->db_state, !=, DB_SEARCH);
92	ASSERT3S(d2->db_state, !=, DB_SEARCH);
93
94	if ((uintptr_t)d1 < (uintptr_t)d2) {
95		return (-1);
96	}
97	if ((uintptr_t)d1 > (uintptr_t)d2) {
98		return (1);
99	}
100	return (0);
101}
102
103/* ARGSUSED */
104static int
105dnode_cons(void *arg, void *unused, int kmflag)
106{
107	dnode_t *dn = arg;
108	int i;
109
110	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
111	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
112	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
113	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
114
115	/*
116	 * Every dbuf has a reference, and dropping a tracked reference is
117	 * O(number of references), so don't track dn_holds.
118	 */
119	refcount_create_untracked(&dn->dn_holds);
120	refcount_create(&dn->dn_tx_holds);
121	list_link_init(&dn->dn_link);
122
123	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
124	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
125	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
126	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
127	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
128	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
129	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
130
131	for (i = 0; i < TXG_SIZE; i++) {
132		list_link_init(&dn->dn_dirty_link[i]);
133		dn->dn_free_ranges[i] = NULL;
134		list_create(&dn->dn_dirty_records[i],
135		    sizeof (dbuf_dirty_record_t),
136		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
137	}
138
139	dn->dn_allocated_txg = 0;
140	dn->dn_free_txg = 0;
141	dn->dn_assigned_txg = 0;
142	dn->dn_dirtyctx = 0;
143	dn->dn_dirtyctx_firstset = NULL;
144	dn->dn_bonus = NULL;
145	dn->dn_have_spill = B_FALSE;
146	dn->dn_zio = NULL;
147	dn->dn_oldused = 0;
148	dn->dn_oldflags = 0;
149	dn->dn_olduid = 0;
150	dn->dn_oldgid = 0;
151	dn->dn_newuid = 0;
152	dn->dn_newgid = 0;
153	dn->dn_id_flags = 0;
154
155	dn->dn_dbufs_count = 0;
156	dn->dn_unlisted_l0_blkid = 0;
157	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
158	    offsetof(dmu_buf_impl_t, db_link));
159
160	dn->dn_moved = 0;
161	POINTER_INVALIDATE(&dn->dn_objset);
162	return (0);
163}
164
165/* ARGSUSED */
166static void
167dnode_dest(void *arg, void *unused)
168{
169	int i;
170	dnode_t *dn = arg;
171
172	rw_destroy(&dn->dn_struct_rwlock);
173	mutex_destroy(&dn->dn_mtx);
174	mutex_destroy(&dn->dn_dbufs_mtx);
175	cv_destroy(&dn->dn_notxholds);
176	refcount_destroy(&dn->dn_holds);
177	refcount_destroy(&dn->dn_tx_holds);
178	ASSERT(!list_link_active(&dn->dn_link));
179
180	for (i = 0; i < TXG_SIZE; i++) {
181		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
182		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
183		list_destroy(&dn->dn_dirty_records[i]);
184		ASSERT0(dn->dn_next_nblkptr[i]);
185		ASSERT0(dn->dn_next_nlevels[i]);
186		ASSERT0(dn->dn_next_indblkshift[i]);
187		ASSERT0(dn->dn_next_bonustype[i]);
188		ASSERT0(dn->dn_rm_spillblk[i]);
189		ASSERT0(dn->dn_next_bonuslen[i]);
190		ASSERT0(dn->dn_next_blksz[i]);
191	}
192
193	ASSERT0(dn->dn_allocated_txg);
194	ASSERT0(dn->dn_free_txg);
195	ASSERT0(dn->dn_assigned_txg);
196	ASSERT0(dn->dn_dirtyctx);
197	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
198	ASSERT3P(dn->dn_bonus, ==, NULL);
199	ASSERT(!dn->dn_have_spill);
200	ASSERT3P(dn->dn_zio, ==, NULL);
201	ASSERT0(dn->dn_oldused);
202	ASSERT0(dn->dn_oldflags);
203	ASSERT0(dn->dn_olduid);
204	ASSERT0(dn->dn_oldgid);
205	ASSERT0(dn->dn_newuid);
206	ASSERT0(dn->dn_newgid);
207	ASSERT0(dn->dn_id_flags);
208
209	ASSERT0(dn->dn_dbufs_count);
210	ASSERT0(dn->dn_unlisted_l0_blkid);
211	avl_destroy(&dn->dn_dbufs);
212}
213
214void
215dnode_init(void)
216{
217	ASSERT(dnode_cache == NULL);
218	dnode_cache = kmem_cache_create("dnode_t",
219	    sizeof (dnode_t),
220	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
221	kmem_cache_set_move(dnode_cache, dnode_move);
222}
223
224void
225dnode_fini(void)
226{
227	kmem_cache_destroy(dnode_cache);
228	dnode_cache = NULL;
229}
230
231
232#ifdef ZFS_DEBUG
233void
234dnode_verify(dnode_t *dn)
235{
236	int drop_struct_lock = FALSE;
237
238	ASSERT(dn->dn_phys);
239	ASSERT(dn->dn_objset);
240	ASSERT(dn->dn_handle->dnh_dnode == dn);
241
242	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
243
244	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
245		return;
246
247	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
248		rw_enter(&dn->dn_struct_rwlock, RW_READER);
249		drop_struct_lock = TRUE;
250	}
251	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
252		int i;
253		ASSERT3U(dn->dn_indblkshift, >=, 0);
254		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
255		if (dn->dn_datablkshift) {
256			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
257			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
258			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
259		}
260		ASSERT3U(dn->dn_nlevels, <=, 30);
261		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
262		ASSERT3U(dn->dn_nblkptr, >=, 1);
263		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
264		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
265		ASSERT3U(dn->dn_datablksz, ==,
266		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
267		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
268		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
269		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
270		for (i = 0; i < TXG_SIZE; i++) {
271			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
272		}
273	}
274	if (dn->dn_phys->dn_type != DMU_OT_NONE)
275		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
276	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
277	if (dn->dn_dbuf != NULL) {
278		ASSERT3P(dn->dn_phys, ==,
279		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
280		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
281	}
282	if (drop_struct_lock)
283		rw_exit(&dn->dn_struct_rwlock);
284}
285#endif
286
287void
288dnode_byteswap(dnode_phys_t *dnp)
289{
290	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
291	int i;
292
293	if (dnp->dn_type == DMU_OT_NONE) {
294		bzero(dnp, sizeof (dnode_phys_t));
295		return;
296	}
297
298	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
299	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
300	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
301	dnp->dn_used = BSWAP_64(dnp->dn_used);
302
303	/*
304	 * dn_nblkptr is only one byte, so it's OK to read it in either
305	 * byte order.  We can't read dn_bouslen.
306	 */
307	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
308	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
309	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
310		buf64[i] = BSWAP_64(buf64[i]);
311
312	/*
313	 * OK to check dn_bonuslen for zero, because it won't matter if
314	 * we have the wrong byte order.  This is necessary because the
315	 * dnode dnode is smaller than a regular dnode.
316	 */
317	if (dnp->dn_bonuslen != 0) {
318		/*
319		 * Note that the bonus length calculated here may be
320		 * longer than the actual bonus buffer.  This is because
321		 * we always put the bonus buffer after the last block
322		 * pointer (instead of packing it against the end of the
323		 * dnode buffer).
324		 */
325		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
326		size_t len = DN_MAX_BONUSLEN - off;
327		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
328		dmu_object_byteswap_t byteswap =
329		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
330		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
331	}
332
333	/* Swap SPILL block if we have one */
334	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
335		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
336
337}
338
339void
340dnode_buf_byteswap(void *vbuf, size_t size)
341{
342	dnode_phys_t *buf = vbuf;
343	int i;
344
345	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
346	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
347
348	size >>= DNODE_SHIFT;
349	for (i = 0; i < size; i++) {
350		dnode_byteswap(buf);
351		buf++;
352	}
353}
354
355void
356dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
357{
358	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
359
360	dnode_setdirty(dn, tx);
361	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
362	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
363	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
364	dn->dn_bonuslen = newsize;
365	if (newsize == 0)
366		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
367	else
368		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
369	rw_exit(&dn->dn_struct_rwlock);
370}
371
372void
373dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
374{
375	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
376	dnode_setdirty(dn, tx);
377	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
378	dn->dn_bonustype = newtype;
379	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
380	rw_exit(&dn->dn_struct_rwlock);
381}
382
383void
384dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
385{
386	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
387	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
388	dnode_setdirty(dn, tx);
389	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
390	dn->dn_have_spill = B_FALSE;
391}
392
393static void
394dnode_setdblksz(dnode_t *dn, int size)
395{
396	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
397	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
398	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
399	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
400	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
401	dn->dn_datablksz = size;
402	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
403	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
404}
405
406static dnode_t *
407dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
408    uint64_t object, dnode_handle_t *dnh)
409{
410	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
411
412	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
413	dn->dn_moved = 0;
414
415	/*
416	 * Defer setting dn_objset until the dnode is ready to be a candidate
417	 * for the dnode_move() callback.
418	 */
419	dn->dn_object = object;
420	dn->dn_dbuf = db;
421	dn->dn_handle = dnh;
422	dn->dn_phys = dnp;
423
424	if (dnp->dn_datablkszsec) {
425		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
426	} else {
427		dn->dn_datablksz = 0;
428		dn->dn_datablkszsec = 0;
429		dn->dn_datablkshift = 0;
430	}
431	dn->dn_indblkshift = dnp->dn_indblkshift;
432	dn->dn_nlevels = dnp->dn_nlevels;
433	dn->dn_type = dnp->dn_type;
434	dn->dn_nblkptr = dnp->dn_nblkptr;
435	dn->dn_checksum = dnp->dn_checksum;
436	dn->dn_compress = dnp->dn_compress;
437	dn->dn_bonustype = dnp->dn_bonustype;
438	dn->dn_bonuslen = dnp->dn_bonuslen;
439	dn->dn_maxblkid = dnp->dn_maxblkid;
440	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
441	dn->dn_id_flags = 0;
442
443	dmu_zfetch_init(&dn->dn_zfetch, dn);
444
445	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
446
447	mutex_enter(&os->os_lock);
448	list_insert_head(&os->os_dnodes, dn);
449	membar_producer();
450	/*
451	 * Everything else must be valid before assigning dn_objset makes the
452	 * dnode eligible for dnode_move().
453	 */
454	dn->dn_objset = os;
455	mutex_exit(&os->os_lock);
456
457	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
458	return (dn);
459}
460
461/*
462 * Caller must be holding the dnode handle, which is released upon return.
463 */
464static void
465dnode_destroy(dnode_t *dn)
466{
467	objset_t *os = dn->dn_objset;
468
469	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
470
471	mutex_enter(&os->os_lock);
472	POINTER_INVALIDATE(&dn->dn_objset);
473	list_remove(&os->os_dnodes, dn);
474	mutex_exit(&os->os_lock);
475
476	/* the dnode can no longer move, so we can release the handle */
477	zrl_remove(&dn->dn_handle->dnh_zrlock);
478
479	dn->dn_allocated_txg = 0;
480	dn->dn_free_txg = 0;
481	dn->dn_assigned_txg = 0;
482
483	dn->dn_dirtyctx = 0;
484	if (dn->dn_dirtyctx_firstset != NULL) {
485		kmem_free(dn->dn_dirtyctx_firstset, 1);
486		dn->dn_dirtyctx_firstset = NULL;
487	}
488	if (dn->dn_bonus != NULL) {
489		mutex_enter(&dn->dn_bonus->db_mtx);
490		dbuf_evict(dn->dn_bonus);
491		dn->dn_bonus = NULL;
492	}
493	dn->dn_zio = NULL;
494
495	dn->dn_have_spill = B_FALSE;
496	dn->dn_oldused = 0;
497	dn->dn_oldflags = 0;
498	dn->dn_olduid = 0;
499	dn->dn_oldgid = 0;
500	dn->dn_newuid = 0;
501	dn->dn_newgid = 0;
502	dn->dn_id_flags = 0;
503	dn->dn_unlisted_l0_blkid = 0;
504
505	dmu_zfetch_rele(&dn->dn_zfetch);
506	kmem_cache_free(dnode_cache, dn);
507	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
508}
509
510void
511dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
512    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
513{
514	int i;
515
516	ASSERT3U(blocksize, <=,
517	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
518	if (blocksize == 0)
519		blocksize = 1 << zfs_default_bs;
520	else
521		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
522
523	if (ibs == 0)
524		ibs = zfs_default_ibs;
525
526	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
527
528	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
529	    dn->dn_object, tx->tx_txg, blocksize, ibs);
530
531	ASSERT(dn->dn_type == DMU_OT_NONE);
532	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
533	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
534	ASSERT(ot != DMU_OT_NONE);
535	ASSERT(DMU_OT_IS_VALID(ot));
536	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
537	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
538	    (bonustype != DMU_OT_NONE && bonuslen != 0));
539	ASSERT(DMU_OT_IS_VALID(bonustype));
540	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
541	ASSERT(dn->dn_type == DMU_OT_NONE);
542	ASSERT0(dn->dn_maxblkid);
543	ASSERT0(dn->dn_allocated_txg);
544	ASSERT0(dn->dn_assigned_txg);
545	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
546	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
547	ASSERT(avl_is_empty(&dn->dn_dbufs));
548
549	for (i = 0; i < TXG_SIZE; i++) {
550		ASSERT0(dn->dn_next_nblkptr[i]);
551		ASSERT0(dn->dn_next_nlevels[i]);
552		ASSERT0(dn->dn_next_indblkshift[i]);
553		ASSERT0(dn->dn_next_bonuslen[i]);
554		ASSERT0(dn->dn_next_bonustype[i]);
555		ASSERT0(dn->dn_rm_spillblk[i]);
556		ASSERT0(dn->dn_next_blksz[i]);
557		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
558		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
559		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
560	}
561
562	dn->dn_type = ot;
563	dnode_setdblksz(dn, blocksize);
564	dn->dn_indblkshift = ibs;
565	dn->dn_nlevels = 1;
566	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
567		dn->dn_nblkptr = 1;
568	else
569		dn->dn_nblkptr = 1 +
570		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
571	dn->dn_bonustype = bonustype;
572	dn->dn_bonuslen = bonuslen;
573	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
574	dn->dn_compress = ZIO_COMPRESS_INHERIT;
575	dn->dn_dirtyctx = 0;
576
577	dn->dn_free_txg = 0;
578	if (dn->dn_dirtyctx_firstset) {
579		kmem_free(dn->dn_dirtyctx_firstset, 1);
580		dn->dn_dirtyctx_firstset = NULL;
581	}
582
583	dn->dn_allocated_txg = tx->tx_txg;
584	dn->dn_id_flags = 0;
585
586	dnode_setdirty(dn, tx);
587	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
588	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
589	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
590	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
591}
592
593void
594dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
595    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
596{
597	int nblkptr;
598
599	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
600	ASSERT3U(blocksize, <=,
601	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
602	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
603	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
604	ASSERT(tx->tx_txg != 0);
605	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
606	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
607	    (bonustype == DMU_OT_SA && bonuslen == 0));
608	ASSERT(DMU_OT_IS_VALID(bonustype));
609	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
610
611	/* clean up any unreferenced dbufs */
612	dnode_evict_dbufs(dn);
613
614	dn->dn_id_flags = 0;
615
616	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
617	dnode_setdirty(dn, tx);
618	if (dn->dn_datablksz != blocksize) {
619		/* change blocksize */
620		ASSERT(dn->dn_maxblkid == 0 &&
621		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
622		    dnode_block_freed(dn, 0)));
623		dnode_setdblksz(dn, blocksize);
624		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
625	}
626	if (dn->dn_bonuslen != bonuslen)
627		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
628
629	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
630		nblkptr = 1;
631	else
632		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
633	if (dn->dn_bonustype != bonustype)
634		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
635	if (dn->dn_nblkptr != nblkptr)
636		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
637	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
638		dbuf_rm_spill(dn, tx);
639		dnode_rm_spill(dn, tx);
640	}
641	rw_exit(&dn->dn_struct_rwlock);
642
643	/* change type */
644	dn->dn_type = ot;
645
646	/* change bonus size and type */
647	mutex_enter(&dn->dn_mtx);
648	dn->dn_bonustype = bonustype;
649	dn->dn_bonuslen = bonuslen;
650	dn->dn_nblkptr = nblkptr;
651	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
652	dn->dn_compress = ZIO_COMPRESS_INHERIT;
653	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
654
655	/* fix up the bonus db_size */
656	if (dn->dn_bonus) {
657		dn->dn_bonus->db.db_size =
658		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
659		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
660	}
661
662	dn->dn_allocated_txg = tx->tx_txg;
663	mutex_exit(&dn->dn_mtx);
664}
665
666#ifdef	DNODE_STATS
667static struct {
668	uint64_t dms_dnode_invalid;
669	uint64_t dms_dnode_recheck1;
670	uint64_t dms_dnode_recheck2;
671	uint64_t dms_dnode_special;
672	uint64_t dms_dnode_handle;
673	uint64_t dms_dnode_rwlock;
674	uint64_t dms_dnode_active;
675} dnode_move_stats;
676#endif	/* DNODE_STATS */
677
678static void
679dnode_move_impl(dnode_t *odn, dnode_t *ndn)
680{
681	int i;
682
683	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
684	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
685	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
686	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
687
688	/* Copy fields. */
689	ndn->dn_objset = odn->dn_objset;
690	ndn->dn_object = odn->dn_object;
691	ndn->dn_dbuf = odn->dn_dbuf;
692	ndn->dn_handle = odn->dn_handle;
693	ndn->dn_phys = odn->dn_phys;
694	ndn->dn_type = odn->dn_type;
695	ndn->dn_bonuslen = odn->dn_bonuslen;
696	ndn->dn_bonustype = odn->dn_bonustype;
697	ndn->dn_nblkptr = odn->dn_nblkptr;
698	ndn->dn_checksum = odn->dn_checksum;
699	ndn->dn_compress = odn->dn_compress;
700	ndn->dn_nlevels = odn->dn_nlevels;
701	ndn->dn_indblkshift = odn->dn_indblkshift;
702	ndn->dn_datablkshift = odn->dn_datablkshift;
703	ndn->dn_datablkszsec = odn->dn_datablkszsec;
704	ndn->dn_datablksz = odn->dn_datablksz;
705	ndn->dn_maxblkid = odn->dn_maxblkid;
706	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
707	    sizeof (odn->dn_next_nblkptr));
708	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
709	    sizeof (odn->dn_next_nlevels));
710	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
711	    sizeof (odn->dn_next_indblkshift));
712	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
713	    sizeof (odn->dn_next_bonustype));
714	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
715	    sizeof (odn->dn_rm_spillblk));
716	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
717	    sizeof (odn->dn_next_bonuslen));
718	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
719	    sizeof (odn->dn_next_blksz));
720	for (i = 0; i < TXG_SIZE; i++) {
721		list_move_tail(&ndn->dn_dirty_records[i],
722		    &odn->dn_dirty_records[i]);
723	}
724	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
725	    sizeof (odn->dn_free_ranges));
726	ndn->dn_allocated_txg = odn->dn_allocated_txg;
727	ndn->dn_free_txg = odn->dn_free_txg;
728	ndn->dn_assigned_txg = odn->dn_assigned_txg;
729	ndn->dn_dirtyctx = odn->dn_dirtyctx;
730	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
731	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
732	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
733	ASSERT(avl_is_empty(&ndn->dn_dbufs));
734	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
735	ndn->dn_dbufs_count = odn->dn_dbufs_count;
736	ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
737	ndn->dn_bonus = odn->dn_bonus;
738	ndn->dn_have_spill = odn->dn_have_spill;
739	ndn->dn_zio = odn->dn_zio;
740	ndn->dn_oldused = odn->dn_oldused;
741	ndn->dn_oldflags = odn->dn_oldflags;
742	ndn->dn_olduid = odn->dn_olduid;
743	ndn->dn_oldgid = odn->dn_oldgid;
744	ndn->dn_newuid = odn->dn_newuid;
745	ndn->dn_newgid = odn->dn_newgid;
746	ndn->dn_id_flags = odn->dn_id_flags;
747	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
748	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
749	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
750	ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
751	ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
752
753	/*
754	 * Update back pointers. Updating the handle fixes the back pointer of
755	 * every descendant dbuf as well as the bonus dbuf.
756	 */
757	ASSERT(ndn->dn_handle->dnh_dnode == odn);
758	ndn->dn_handle->dnh_dnode = ndn;
759	if (ndn->dn_zfetch.zf_dnode == odn) {
760		ndn->dn_zfetch.zf_dnode = ndn;
761	}
762
763	/*
764	 * Invalidate the original dnode by clearing all of its back pointers.
765	 */
766	odn->dn_dbuf = NULL;
767	odn->dn_handle = NULL;
768	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
769	    offsetof(dmu_buf_impl_t, db_link));
770	odn->dn_dbufs_count = 0;
771	odn->dn_unlisted_l0_blkid = 0;
772	odn->dn_bonus = NULL;
773	odn->dn_zfetch.zf_dnode = NULL;
774
775	/*
776	 * Set the low bit of the objset pointer to ensure that dnode_move()
777	 * recognizes the dnode as invalid in any subsequent callback.
778	 */
779	POINTER_INVALIDATE(&odn->dn_objset);
780
781	/*
782	 * Satisfy the destructor.
783	 */
784	for (i = 0; i < TXG_SIZE; i++) {
785		list_create(&odn->dn_dirty_records[i],
786		    sizeof (dbuf_dirty_record_t),
787		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
788		odn->dn_free_ranges[i] = NULL;
789		odn->dn_next_nlevels[i] = 0;
790		odn->dn_next_indblkshift[i] = 0;
791		odn->dn_next_bonustype[i] = 0;
792		odn->dn_rm_spillblk[i] = 0;
793		odn->dn_next_bonuslen[i] = 0;
794		odn->dn_next_blksz[i] = 0;
795	}
796	odn->dn_allocated_txg = 0;
797	odn->dn_free_txg = 0;
798	odn->dn_assigned_txg = 0;
799	odn->dn_dirtyctx = 0;
800	odn->dn_dirtyctx_firstset = NULL;
801	odn->dn_have_spill = B_FALSE;
802	odn->dn_zio = NULL;
803	odn->dn_oldused = 0;
804	odn->dn_oldflags = 0;
805	odn->dn_olduid = 0;
806	odn->dn_oldgid = 0;
807	odn->dn_newuid = 0;
808	odn->dn_newgid = 0;
809	odn->dn_id_flags = 0;
810
811	/*
812	 * Mark the dnode.
813	 */
814	ndn->dn_moved = 1;
815	odn->dn_moved = (uint8_t)-1;
816}
817
818#ifdef sun
819#ifdef	_KERNEL
820/*ARGSUSED*/
821static kmem_cbrc_t
822dnode_move(void *buf, void *newbuf, size_t size, void *arg)
823{
824	dnode_t *odn = buf, *ndn = newbuf;
825	objset_t *os;
826	int64_t refcount;
827	uint32_t dbufs;
828
829	/*
830	 * The dnode is on the objset's list of known dnodes if the objset
831	 * pointer is valid. We set the low bit of the objset pointer when
832	 * freeing the dnode to invalidate it, and the memory patterns written
833	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
834	 * A newly created dnode sets the objset pointer last of all to indicate
835	 * that the dnode is known and in a valid state to be moved by this
836	 * function.
837	 */
838	os = odn->dn_objset;
839	if (!POINTER_IS_VALID(os)) {
840		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
841		return (KMEM_CBRC_DONT_KNOW);
842	}
843
844	/*
845	 * Ensure that the objset does not go away during the move.
846	 */
847	rw_enter(&os_lock, RW_WRITER);
848	if (os != odn->dn_objset) {
849		rw_exit(&os_lock);
850		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
851		return (KMEM_CBRC_DONT_KNOW);
852	}
853
854	/*
855	 * If the dnode is still valid, then so is the objset. We know that no
856	 * valid objset can be freed while we hold os_lock, so we can safely
857	 * ensure that the objset remains in use.
858	 */
859	mutex_enter(&os->os_lock);
860
861	/*
862	 * Recheck the objset pointer in case the dnode was removed just before
863	 * acquiring the lock.
864	 */
865	if (os != odn->dn_objset) {
866		mutex_exit(&os->os_lock);
867		rw_exit(&os_lock);
868		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
869		return (KMEM_CBRC_DONT_KNOW);
870	}
871
872	/*
873	 * At this point we know that as long as we hold os->os_lock, the dnode
874	 * cannot be freed and fields within the dnode can be safely accessed.
875	 * The objset listing this dnode cannot go away as long as this dnode is
876	 * on its list.
877	 */
878	rw_exit(&os_lock);
879	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
880		mutex_exit(&os->os_lock);
881		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
882		return (KMEM_CBRC_NO);
883	}
884	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
885
886	/*
887	 * Lock the dnode handle to prevent the dnode from obtaining any new
888	 * holds. This also prevents the descendant dbufs and the bonus dbuf
889	 * from accessing the dnode, so that we can discount their holds. The
890	 * handle is safe to access because we know that while the dnode cannot
891	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
892	 * safely move any dnode referenced only by dbufs.
893	 */
894	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
895		mutex_exit(&os->os_lock);
896		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
897		return (KMEM_CBRC_LATER);
898	}
899
900	/*
901	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
902	 * We need to guarantee that there is a hold for every dbuf in order to
903	 * determine whether the dnode is actively referenced. Falsely matching
904	 * a dbuf to an active hold would lead to an unsafe move. It's possible
905	 * that a thread already having an active dnode hold is about to add a
906	 * dbuf, and we can't compare hold and dbuf counts while the add is in
907	 * progress.
908	 */
909	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
910		zrl_exit(&odn->dn_handle->dnh_zrlock);
911		mutex_exit(&os->os_lock);
912		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
913		return (KMEM_CBRC_LATER);
914	}
915
916	/*
917	 * A dbuf may be removed (evicted) without an active dnode hold. In that
918	 * case, the dbuf count is decremented under the handle lock before the
919	 * dbuf's hold is released. This order ensures that if we count the hold
920	 * after the dbuf is removed but before its hold is released, we will
921	 * treat the unmatched hold as active and exit safely. If we count the
922	 * hold before the dbuf is removed, the hold is discounted, and the
923	 * removal is blocked until the move completes.
924	 */
925	refcount = refcount_count(&odn->dn_holds);
926	ASSERT(refcount >= 0);
927	dbufs = odn->dn_dbufs_count;
928
929	/* We can't have more dbufs than dnode holds. */
930	ASSERT3U(dbufs, <=, refcount);
931	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
932	    uint32_t, dbufs);
933
934	if (refcount > dbufs) {
935		rw_exit(&odn->dn_struct_rwlock);
936		zrl_exit(&odn->dn_handle->dnh_zrlock);
937		mutex_exit(&os->os_lock);
938		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
939		return (KMEM_CBRC_LATER);
940	}
941
942	rw_exit(&odn->dn_struct_rwlock);
943
944	/*
945	 * At this point we know that anyone with a hold on the dnode is not
946	 * actively referencing it. The dnode is known and in a valid state to
947	 * move. We're holding the locks needed to execute the critical section.
948	 */
949	dnode_move_impl(odn, ndn);
950
951	list_link_replace(&odn->dn_link, &ndn->dn_link);
952	/* If the dnode was safe to move, the refcount cannot have changed. */
953	ASSERT(refcount == refcount_count(&ndn->dn_holds));
954	ASSERT(dbufs == ndn->dn_dbufs_count);
955	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
956	mutex_exit(&os->os_lock);
957
958	return (KMEM_CBRC_YES);
959}
960#endif	/* _KERNEL */
961#endif	/* sun */
962
963void
964dnode_special_close(dnode_handle_t *dnh)
965{
966	dnode_t *dn = dnh->dnh_dnode;
967
968	/*
969	 * Wait for final references to the dnode to clear.  This can
970	 * only happen if the arc is asyncronously evicting state that
971	 * has a hold on this dnode while we are trying to evict this
972	 * dnode.
973	 */
974	while (refcount_count(&dn->dn_holds) > 0)
975		delay(1);
976	zrl_add(&dnh->dnh_zrlock);
977	dnode_destroy(dn); /* implicit zrl_remove() */
978	zrl_destroy(&dnh->dnh_zrlock);
979	dnh->dnh_dnode = NULL;
980}
981
982dnode_t *
983dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
984    dnode_handle_t *dnh)
985{
986	dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
987	dnh->dnh_dnode = dn;
988	zrl_init(&dnh->dnh_zrlock);
989	DNODE_VERIFY(dn);
990	return (dn);
991}
992
993static void
994dnode_buf_pageout(dmu_buf_t *db, void *arg)
995{
996	dnode_children_t *children_dnodes = arg;
997	int i;
998	int epb = db->db_size >> DNODE_SHIFT;
999
1000	ASSERT(epb == children_dnodes->dnc_count);
1001
1002	for (i = 0; i < epb; i++) {
1003		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1004		dnode_t *dn;
1005
1006		/*
1007		 * The dnode handle lock guards against the dnode moving to
1008		 * another valid address, so there is no need here to guard
1009		 * against changes to or from NULL.
1010		 */
1011		if (dnh->dnh_dnode == NULL) {
1012			zrl_destroy(&dnh->dnh_zrlock);
1013			continue;
1014		}
1015
1016		zrl_add(&dnh->dnh_zrlock);
1017		dn = dnh->dnh_dnode;
1018		/*
1019		 * If there are holds on this dnode, then there should
1020		 * be holds on the dnode's containing dbuf as well; thus
1021		 * it wouldn't be eligible for eviction and this function
1022		 * would not have been called.
1023		 */
1024		ASSERT(refcount_is_zero(&dn->dn_holds));
1025		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1026
1027		dnode_destroy(dn); /* implicit zrl_remove() */
1028		zrl_destroy(&dnh->dnh_zrlock);
1029		dnh->dnh_dnode = NULL;
1030	}
1031	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1032	    epb * sizeof (dnode_handle_t));
1033}
1034
1035/*
1036 * errors:
1037 * EINVAL - invalid object number.
1038 * EIO - i/o error.
1039 * succeeds even for free dnodes.
1040 */
1041int
1042dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1043    void *tag, dnode_t **dnp)
1044{
1045	int epb, idx, err;
1046	int drop_struct_lock = FALSE;
1047	int type;
1048	uint64_t blk;
1049	dnode_t *mdn, *dn;
1050	dmu_buf_impl_t *db;
1051	dnode_children_t *children_dnodes;
1052	dnode_handle_t *dnh;
1053
1054	/*
1055	 * If you are holding the spa config lock as writer, you shouldn't
1056	 * be asking the DMU to do *anything* unless it's the root pool
1057	 * which may require us to read from the root filesystem while
1058	 * holding some (not all) of the locks as writer.
1059	 */
1060	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1061	    (spa_is_root(os->os_spa) &&
1062	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1063
1064	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1065		dn = (object == DMU_USERUSED_OBJECT) ?
1066		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1067		if (dn == NULL)
1068			return (SET_ERROR(ENOENT));
1069		type = dn->dn_type;
1070		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1071			return (SET_ERROR(ENOENT));
1072		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1073			return (SET_ERROR(EEXIST));
1074		DNODE_VERIFY(dn);
1075		(void) refcount_add(&dn->dn_holds, tag);
1076		*dnp = dn;
1077		return (0);
1078	}
1079
1080	if (object == 0 || object >= DN_MAX_OBJECT)
1081		return (SET_ERROR(EINVAL));
1082
1083	mdn = DMU_META_DNODE(os);
1084	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1085
1086	DNODE_VERIFY(mdn);
1087
1088	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1089		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1090		drop_struct_lock = TRUE;
1091	}
1092
1093	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1094
1095	db = dbuf_hold(mdn, blk, FTAG);
1096	if (drop_struct_lock)
1097		rw_exit(&mdn->dn_struct_rwlock);
1098	if (db == NULL)
1099		return (SET_ERROR(EIO));
1100	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1101	if (err) {
1102		dbuf_rele(db, FTAG);
1103		return (err);
1104	}
1105
1106	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1107	epb = db->db.db_size >> DNODE_SHIFT;
1108
1109	idx = object & (epb-1);
1110
1111	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1112	children_dnodes = dmu_buf_get_user(&db->db);
1113	if (children_dnodes == NULL) {
1114		int i;
1115		dnode_children_t *winner;
1116		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1117		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1118		children_dnodes->dnc_count = epb;
1119		dnh = &children_dnodes->dnc_children[0];
1120		for (i = 0; i < epb; i++) {
1121			zrl_init(&dnh[i].dnh_zrlock);
1122			dnh[i].dnh_dnode = NULL;
1123		}
1124		if (winner = dmu_buf_set_user(&db->db, children_dnodes,
1125		    dnode_buf_pageout)) {
1126
1127			for (i = 0; i < epb; i++) {
1128				zrl_destroy(&dnh[i].dnh_zrlock);
1129			}
1130
1131			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1132			    epb * sizeof (dnode_handle_t));
1133			children_dnodes = winner;
1134		}
1135	}
1136	ASSERT(children_dnodes->dnc_count == epb);
1137
1138	dnh = &children_dnodes->dnc_children[idx];
1139	zrl_add(&dnh->dnh_zrlock);
1140	if ((dn = dnh->dnh_dnode) == NULL) {
1141		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1142		dnode_t *winner;
1143
1144		dn = dnode_create(os, phys, db, object, dnh);
1145		winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1146		if (winner != NULL) {
1147			zrl_add(&dnh->dnh_zrlock);
1148			dnode_destroy(dn); /* implicit zrl_remove() */
1149			dn = winner;
1150		}
1151	}
1152
1153	mutex_enter(&dn->dn_mtx);
1154	type = dn->dn_type;
1155	if (dn->dn_free_txg ||
1156	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1157	    ((flag & DNODE_MUST_BE_FREE) &&
1158	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1159		mutex_exit(&dn->dn_mtx);
1160		zrl_remove(&dnh->dnh_zrlock);
1161		dbuf_rele(db, FTAG);
1162		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1163	}
1164	mutex_exit(&dn->dn_mtx);
1165
1166	if (refcount_add(&dn->dn_holds, tag) == 1)
1167		dbuf_add_ref(db, dnh);
1168	/* Now we can rely on the hold to prevent the dnode from moving. */
1169	zrl_remove(&dnh->dnh_zrlock);
1170
1171	DNODE_VERIFY(dn);
1172	ASSERT3P(dn->dn_dbuf, ==, db);
1173	ASSERT3U(dn->dn_object, ==, object);
1174	dbuf_rele(db, FTAG);
1175
1176	*dnp = dn;
1177	return (0);
1178}
1179
1180/*
1181 * Return held dnode if the object is allocated, NULL if not.
1182 */
1183int
1184dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1185{
1186	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1187}
1188
1189/*
1190 * Can only add a reference if there is already at least one
1191 * reference on the dnode.  Returns FALSE if unable to add a
1192 * new reference.
1193 */
1194boolean_t
1195dnode_add_ref(dnode_t *dn, void *tag)
1196{
1197	mutex_enter(&dn->dn_mtx);
1198	if (refcount_is_zero(&dn->dn_holds)) {
1199		mutex_exit(&dn->dn_mtx);
1200		return (FALSE);
1201	}
1202	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1203	mutex_exit(&dn->dn_mtx);
1204	return (TRUE);
1205}
1206
1207void
1208dnode_rele(dnode_t *dn, void *tag)
1209{
1210	uint64_t refs;
1211	/* Get while the hold prevents the dnode from moving. */
1212	dmu_buf_impl_t *db = dn->dn_dbuf;
1213	dnode_handle_t *dnh = dn->dn_handle;
1214
1215	mutex_enter(&dn->dn_mtx);
1216	refs = refcount_remove(&dn->dn_holds, tag);
1217	mutex_exit(&dn->dn_mtx);
1218
1219	/*
1220	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1221	 * indirectly by dbuf_rele() while relying on the dnode handle to
1222	 * prevent the dnode from moving, since releasing the last hold could
1223	 * result in the dnode's parent dbuf evicting its dnode handles. For
1224	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1225	 * other direct or indirect hold on the dnode must first drop the dnode
1226	 * handle.
1227	 */
1228	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1229
1230	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1231	if (refs == 0 && db != NULL) {
1232		/*
1233		 * Another thread could add a hold to the dnode handle in
1234		 * dnode_hold_impl() while holding the parent dbuf. Since the
1235		 * hold on the parent dbuf prevents the handle from being
1236		 * destroyed, the hold on the handle is OK. We can't yet assert
1237		 * that the handle has zero references, but that will be
1238		 * asserted anyway when the handle gets destroyed.
1239		 */
1240		dbuf_rele(db, dnh);
1241	}
1242}
1243
1244void
1245dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1246{
1247	objset_t *os = dn->dn_objset;
1248	uint64_t txg = tx->tx_txg;
1249
1250	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1251		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1252		return;
1253	}
1254
1255	DNODE_VERIFY(dn);
1256
1257#ifdef ZFS_DEBUG
1258	mutex_enter(&dn->dn_mtx);
1259	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1260	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1261	mutex_exit(&dn->dn_mtx);
1262#endif
1263
1264	/*
1265	 * Determine old uid/gid when necessary
1266	 */
1267	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1268
1269	mutex_enter(&os->os_lock);
1270
1271	/*
1272	 * If we are already marked dirty, we're done.
1273	 */
1274	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1275		mutex_exit(&os->os_lock);
1276		return;
1277	}
1278
1279	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1280	    !avl_is_empty(&dn->dn_dbufs));
1281	ASSERT(dn->dn_datablksz != 0);
1282	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1283	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1284	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1285
1286	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1287	    dn->dn_object, txg);
1288
1289	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1290		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1291	} else {
1292		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1293	}
1294
1295	mutex_exit(&os->os_lock);
1296
1297	/*
1298	 * The dnode maintains a hold on its containing dbuf as
1299	 * long as there are holds on it.  Each instantiated child
1300	 * dbuf maintains a hold on the dnode.  When the last child
1301	 * drops its hold, the dnode will drop its hold on the
1302	 * containing dbuf. We add a "dirty hold" here so that the
1303	 * dnode will hang around after we finish processing its
1304	 * children.
1305	 */
1306	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1307
1308	(void) dbuf_dirty(dn->dn_dbuf, tx);
1309
1310	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1311}
1312
1313void
1314dnode_free(dnode_t *dn, dmu_tx_t *tx)
1315{
1316	int txgoff = tx->tx_txg & TXG_MASK;
1317
1318	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1319
1320	/* we should be the only holder... hopefully */
1321	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1322
1323	mutex_enter(&dn->dn_mtx);
1324	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1325		mutex_exit(&dn->dn_mtx);
1326		return;
1327	}
1328	dn->dn_free_txg = tx->tx_txg;
1329	mutex_exit(&dn->dn_mtx);
1330
1331	/*
1332	 * If the dnode is already dirty, it needs to be moved from
1333	 * the dirty list to the free list.
1334	 */
1335	mutex_enter(&dn->dn_objset->os_lock);
1336	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1337		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1338		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1339		mutex_exit(&dn->dn_objset->os_lock);
1340	} else {
1341		mutex_exit(&dn->dn_objset->os_lock);
1342		dnode_setdirty(dn, tx);
1343	}
1344}
1345
1346/*
1347 * Try to change the block size for the indicated dnode.  This can only
1348 * succeed if there are no blocks allocated or dirty beyond first block
1349 */
1350int
1351dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1352{
1353	dmu_buf_impl_t *db;
1354	int err;
1355
1356	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1357	if (size == 0)
1358		size = SPA_MINBLOCKSIZE;
1359	else
1360		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1361
1362	if (ibs == dn->dn_indblkshift)
1363		ibs = 0;
1364
1365	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1366		return (0);
1367
1368	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1369
1370	/* Check for any allocated blocks beyond the first */
1371	if (dn->dn_maxblkid != 0)
1372		goto fail;
1373
1374	mutex_enter(&dn->dn_dbufs_mtx);
1375	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1376	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1377		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1378		    db->db_blkid != DMU_SPILL_BLKID) {
1379			mutex_exit(&dn->dn_dbufs_mtx);
1380			goto fail;
1381		}
1382	}
1383	mutex_exit(&dn->dn_dbufs_mtx);
1384
1385	if (ibs && dn->dn_nlevels != 1)
1386		goto fail;
1387
1388	/* resize the old block */
1389	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1390	if (err == 0)
1391		dbuf_new_size(db, size, tx);
1392	else if (err != ENOENT)
1393		goto fail;
1394
1395	dnode_setdblksz(dn, size);
1396	dnode_setdirty(dn, tx);
1397	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1398	if (ibs) {
1399		dn->dn_indblkshift = ibs;
1400		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1401	}
1402	/* rele after we have fixed the blocksize in the dnode */
1403	if (db)
1404		dbuf_rele(db, FTAG);
1405
1406	rw_exit(&dn->dn_struct_rwlock);
1407	return (0);
1408
1409fail:
1410	rw_exit(&dn->dn_struct_rwlock);
1411	return (SET_ERROR(ENOTSUP));
1412}
1413
1414/* read-holding callers must not rely on the lock being continuously held */
1415void
1416dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1417{
1418	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1419	int epbs, new_nlevels;
1420	uint64_t sz;
1421
1422	ASSERT(blkid != DMU_BONUS_BLKID);
1423
1424	ASSERT(have_read ?
1425	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1426	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1427
1428	/*
1429	 * if we have a read-lock, check to see if we need to do any work
1430	 * before upgrading to a write-lock.
1431	 */
1432	if (have_read) {
1433		if (blkid <= dn->dn_maxblkid)
1434			return;
1435
1436		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1437			rw_exit(&dn->dn_struct_rwlock);
1438			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1439		}
1440	}
1441
1442	if (blkid <= dn->dn_maxblkid)
1443		goto out;
1444
1445	dn->dn_maxblkid = blkid;
1446
1447	/*
1448	 * Compute the number of levels necessary to support the new maxblkid.
1449	 */
1450	new_nlevels = 1;
1451	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1452	for (sz = dn->dn_nblkptr;
1453	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1454		new_nlevels++;
1455
1456	if (new_nlevels > dn->dn_nlevels) {
1457		int old_nlevels = dn->dn_nlevels;
1458		dmu_buf_impl_t *db;
1459		list_t *list;
1460		dbuf_dirty_record_t *new, *dr, *dr_next;
1461
1462		dn->dn_nlevels = new_nlevels;
1463
1464		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1465		dn->dn_next_nlevels[txgoff] = new_nlevels;
1466
1467		/* dirty the left indirects */
1468		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1469		ASSERT(db != NULL);
1470		new = dbuf_dirty(db, tx);
1471		dbuf_rele(db, FTAG);
1472
1473		/* transfer the dirty records to the new indirect */
1474		mutex_enter(&dn->dn_mtx);
1475		mutex_enter(&new->dt.di.dr_mtx);
1476		list = &dn->dn_dirty_records[txgoff];
1477		for (dr = list_head(list); dr; dr = dr_next) {
1478			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1479			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1480			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1481			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1482				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1483				list_remove(&dn->dn_dirty_records[txgoff], dr);
1484				list_insert_tail(&new->dt.di.dr_children, dr);
1485				dr->dr_parent = new;
1486			}
1487		}
1488		mutex_exit(&new->dt.di.dr_mtx);
1489		mutex_exit(&dn->dn_mtx);
1490	}
1491
1492out:
1493	if (have_read)
1494		rw_downgrade(&dn->dn_struct_rwlock);
1495}
1496
1497void
1498dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1499{
1500	dmu_buf_impl_t *db;
1501	uint64_t blkoff, blkid, nblks;
1502	int blksz, blkshift, head, tail;
1503	int trunc = FALSE;
1504	int epbs;
1505
1506	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1507	blksz = dn->dn_datablksz;
1508	blkshift = dn->dn_datablkshift;
1509	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1510
1511	if (len == DMU_OBJECT_END) {
1512		len = UINT64_MAX - off;
1513		trunc = TRUE;
1514	}
1515
1516	/*
1517	 * First, block align the region to free:
1518	 */
1519	if (ISP2(blksz)) {
1520		head = P2NPHASE(off, blksz);
1521		blkoff = P2PHASE(off, blksz);
1522		if ((off >> blkshift) > dn->dn_maxblkid)
1523			goto out;
1524	} else {
1525		ASSERT(dn->dn_maxblkid == 0);
1526		if (off == 0 && len >= blksz) {
1527			/*
1528			 * Freeing the whole block; fast-track this request.
1529			 * Note that we won't dirty any indirect blocks,
1530			 * which is fine because we will be freeing the entire
1531			 * file and thus all indirect blocks will be freed
1532			 * by free_children().
1533			 */
1534			blkid = 0;
1535			nblks = 1;
1536			goto done;
1537		} else if (off >= blksz) {
1538			/* Freeing past end-of-data */
1539			goto out;
1540		} else {
1541			/* Freeing part of the block. */
1542			head = blksz - off;
1543			ASSERT3U(head, >, 0);
1544		}
1545		blkoff = off;
1546	}
1547	/* zero out any partial block data at the start of the range */
1548	if (head) {
1549		ASSERT3U(blkoff + head, ==, blksz);
1550		if (len < head)
1551			head = len;
1552		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1553		    FTAG, &db) == 0) {
1554			caddr_t data;
1555
1556			/* don't dirty if it isn't on disk and isn't dirty */
1557			if (db->db_last_dirty ||
1558			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1559				rw_exit(&dn->dn_struct_rwlock);
1560				dmu_buf_will_dirty(&db->db, tx);
1561				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1562				data = db->db.db_data;
1563				bzero(data + blkoff, head);
1564			}
1565			dbuf_rele(db, FTAG);
1566		}
1567		off += head;
1568		len -= head;
1569	}
1570
1571	/* If the range was less than one block, we're done */
1572	if (len == 0)
1573		goto out;
1574
1575	/* If the remaining range is past end of file, we're done */
1576	if ((off >> blkshift) > dn->dn_maxblkid)
1577		goto out;
1578
1579	ASSERT(ISP2(blksz));
1580	if (trunc)
1581		tail = 0;
1582	else
1583		tail = P2PHASE(len, blksz);
1584
1585	ASSERT0(P2PHASE(off, blksz));
1586	/* zero out any partial block data at the end of the range */
1587	if (tail) {
1588		if (len < tail)
1589			tail = len;
1590		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1591		    TRUE, FTAG, &db) == 0) {
1592			/* don't dirty if not on disk and not dirty */
1593			if (db->db_last_dirty ||
1594			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1595				rw_exit(&dn->dn_struct_rwlock);
1596				dmu_buf_will_dirty(&db->db, tx);
1597				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1598				bzero(db->db.db_data, tail);
1599			}
1600			dbuf_rele(db, FTAG);
1601		}
1602		len -= tail;
1603	}
1604
1605	/* If the range did not include a full block, we are done */
1606	if (len == 0)
1607		goto out;
1608
1609	ASSERT(IS_P2ALIGNED(off, blksz));
1610	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1611	blkid = off >> blkshift;
1612	nblks = len >> blkshift;
1613	if (trunc)
1614		nblks += 1;
1615
1616	/*
1617	 * Dirty the first and last indirect blocks, as they (and/or their
1618	 * parents) will need to be written out if they were only
1619	 * partially freed.  Interior indirect blocks will be themselves freed,
1620	 * by free_children(), so they need not be dirtied.  Note that these
1621	 * interior blocks have already been prefetched by dmu_tx_hold_free().
1622	 */
1623	if (dn->dn_nlevels > 1) {
1624		uint64_t first, last;
1625
1626		first = blkid >> epbs;
1627		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1628			dmu_buf_will_dirty(&db->db, tx);
1629			dbuf_rele(db, FTAG);
1630		}
1631		if (trunc)
1632			last = dn->dn_maxblkid >> epbs;
1633		else
1634			last = (blkid + nblks - 1) >> epbs;
1635		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1636			dmu_buf_will_dirty(&db->db, tx);
1637			dbuf_rele(db, FTAG);
1638		}
1639	}
1640
1641done:
1642	/*
1643	 * Add this range to the dnode range list.
1644	 * We will finish up this free operation in the syncing phase.
1645	 */
1646	mutex_enter(&dn->dn_mtx);
1647	int txgoff = tx->tx_txg & TXG_MASK;
1648	if (dn->dn_free_ranges[txgoff] == NULL) {
1649		dn->dn_free_ranges[txgoff] =
1650		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1651	}
1652	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1653	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1654	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1655	    blkid, nblks, tx->tx_txg);
1656	mutex_exit(&dn->dn_mtx);
1657
1658	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1659	dnode_setdirty(dn, tx);
1660out:
1661
1662	rw_exit(&dn->dn_struct_rwlock);
1663}
1664
1665static boolean_t
1666dnode_spill_freed(dnode_t *dn)
1667{
1668	int i;
1669
1670	mutex_enter(&dn->dn_mtx);
1671	for (i = 0; i < TXG_SIZE; i++) {
1672		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1673			break;
1674	}
1675	mutex_exit(&dn->dn_mtx);
1676	return (i < TXG_SIZE);
1677}
1678
1679/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1680uint64_t
1681dnode_block_freed(dnode_t *dn, uint64_t blkid)
1682{
1683	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1684	int i;
1685
1686	if (blkid == DMU_BONUS_BLKID)
1687		return (FALSE);
1688
1689	/*
1690	 * If we're in the process of opening the pool, dp will not be
1691	 * set yet, but there shouldn't be anything dirty.
1692	 */
1693	if (dp == NULL)
1694		return (FALSE);
1695
1696	if (dn->dn_free_txg)
1697		return (TRUE);
1698
1699	if (blkid == DMU_SPILL_BLKID)
1700		return (dnode_spill_freed(dn));
1701
1702	mutex_enter(&dn->dn_mtx);
1703	for (i = 0; i < TXG_SIZE; i++) {
1704		if (dn->dn_free_ranges[i] != NULL &&
1705		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1706			break;
1707	}
1708	mutex_exit(&dn->dn_mtx);
1709	return (i < TXG_SIZE);
1710}
1711
1712/* call from syncing context when we actually write/free space for this dnode */
1713void
1714dnode_diduse_space(dnode_t *dn, int64_t delta)
1715{
1716	uint64_t space;
1717	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1718	    dn, dn->dn_phys,
1719	    (u_longlong_t)dn->dn_phys->dn_used,
1720	    (longlong_t)delta);
1721
1722	mutex_enter(&dn->dn_mtx);
1723	space = DN_USED_BYTES(dn->dn_phys);
1724	if (delta > 0) {
1725		ASSERT3U(space + delta, >=, space); /* no overflow */
1726	} else {
1727		ASSERT3U(space, >=, -delta); /* no underflow */
1728	}
1729	space += delta;
1730	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1731		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1732		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1733		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1734	} else {
1735		dn->dn_phys->dn_used = space;
1736		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1737	}
1738	mutex_exit(&dn->dn_mtx);
1739}
1740
1741/*
1742 * Call when we think we're going to write/free space in open context to track
1743 * the amount of memory in use by the currently open txg.
1744 */
1745void
1746dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1747{
1748	objset_t *os = dn->dn_objset;
1749	dsl_dataset_t *ds = os->os_dsl_dataset;
1750	int64_t aspace = spa_get_asize(os->os_spa, space);
1751
1752	if (ds != NULL) {
1753		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1754		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1755	}
1756
1757	dmu_tx_willuse_space(tx, aspace);
1758}
1759
1760/*
1761 * Scans a block at the indicated "level" looking for a hole or data,
1762 * depending on 'flags'.
1763 *
1764 * If level > 0, then we are scanning an indirect block looking at its
1765 * pointers.  If level == 0, then we are looking at a block of dnodes.
1766 *
1767 * If we don't find what we are looking for in the block, we return ESRCH.
1768 * Otherwise, return with *offset pointing to the beginning (if searching
1769 * forwards) or end (if searching backwards) of the range covered by the
1770 * block pointer we matched on (or dnode).
1771 *
1772 * The basic search algorithm used below by dnode_next_offset() is to
1773 * use this function to search up the block tree (widen the search) until
1774 * we find something (i.e., we don't return ESRCH) and then search back
1775 * down the tree (narrow the search) until we reach our original search
1776 * level.
1777 */
1778static int
1779dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1780	int lvl, uint64_t blkfill, uint64_t txg)
1781{
1782	dmu_buf_impl_t *db = NULL;
1783	void *data = NULL;
1784	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1785	uint64_t epb = 1ULL << epbs;
1786	uint64_t minfill, maxfill;
1787	boolean_t hole;
1788	int i, inc, error, span;
1789
1790	dprintf("probing object %llu offset %llx level %d of %u\n",
1791	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1792
1793	hole = ((flags & DNODE_FIND_HOLE) != 0);
1794	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1795	ASSERT(txg == 0 || !hole);
1796
1797	if (lvl == dn->dn_phys->dn_nlevels) {
1798		error = 0;
1799		epb = dn->dn_phys->dn_nblkptr;
1800		data = dn->dn_phys->dn_blkptr;
1801	} else {
1802		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1803		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1804		if (error) {
1805			if (error != ENOENT)
1806				return (error);
1807			if (hole)
1808				return (0);
1809			/*
1810			 * This can only happen when we are searching up
1811			 * the block tree for data.  We don't really need to
1812			 * adjust the offset, as we will just end up looking
1813			 * at the pointer to this block in its parent, and its
1814			 * going to be unallocated, so we will skip over it.
1815			 */
1816			return (SET_ERROR(ESRCH));
1817		}
1818		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1819		if (error) {
1820			dbuf_rele(db, FTAG);
1821			return (error);
1822		}
1823		data = db->db.db_data;
1824	}
1825
1826
1827	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1828	    db->db_blkptr->blk_birth <= txg ||
1829	    BP_IS_HOLE(db->db_blkptr))) {
1830		/*
1831		 * This can only happen when we are searching up the tree
1832		 * and these conditions mean that we need to keep climbing.
1833		 */
1834		error = SET_ERROR(ESRCH);
1835	} else if (lvl == 0) {
1836		dnode_phys_t *dnp = data;
1837		span = DNODE_SHIFT;
1838		ASSERT(dn->dn_type == DMU_OT_DNODE);
1839
1840		for (i = (*offset >> span) & (blkfill - 1);
1841		    i >= 0 && i < blkfill; i += inc) {
1842			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1843				break;
1844			*offset += (1ULL << span) * inc;
1845		}
1846		if (i < 0 || i == blkfill)
1847			error = SET_ERROR(ESRCH);
1848	} else {
1849		blkptr_t *bp = data;
1850		uint64_t start = *offset;
1851		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1852		minfill = 0;
1853		maxfill = blkfill << ((lvl - 1) * epbs);
1854
1855		if (hole)
1856			maxfill--;
1857		else
1858			minfill++;
1859
1860		*offset = *offset >> span;
1861		for (i = BF64_GET(*offset, 0, epbs);
1862		    i >= 0 && i < epb; i += inc) {
1863			if (BP_GET_FILL(&bp[i]) >= minfill &&
1864			    BP_GET_FILL(&bp[i]) <= maxfill &&
1865			    (hole || bp[i].blk_birth > txg))
1866				break;
1867			if (inc > 0 || *offset > 0)
1868				*offset += inc;
1869		}
1870		*offset = *offset << span;
1871		if (inc < 0) {
1872			/* traversing backwards; position offset at the end */
1873			ASSERT3U(*offset, <=, start);
1874			*offset = MIN(*offset + (1ULL << span) - 1, start);
1875		} else if (*offset < start) {
1876			*offset = start;
1877		}
1878		if (i < 0 || i >= epb)
1879			error = SET_ERROR(ESRCH);
1880	}
1881
1882	if (db)
1883		dbuf_rele(db, FTAG);
1884
1885	return (error);
1886}
1887
1888/*
1889 * Find the next hole, data, or sparse region at or after *offset.
1890 * The value 'blkfill' tells us how many items we expect to find
1891 * in an L0 data block; this value is 1 for normal objects,
1892 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1893 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1894 *
1895 * Examples:
1896 *
1897 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1898 *	Finds the next/previous hole/data in a file.
1899 *	Used in dmu_offset_next().
1900 *
1901 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1902 *	Finds the next free/allocated dnode an objset's meta-dnode.
1903 *	Only finds objects that have new contents since txg (ie.
1904 *	bonus buffer changes and content removal are ignored).
1905 *	Used in dmu_object_next().
1906 *
1907 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1908 *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1909 *	Used in dmu_object_alloc().
1910 */
1911int
1912dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1913    int minlvl, uint64_t blkfill, uint64_t txg)
1914{
1915	uint64_t initial_offset = *offset;
1916	int lvl, maxlvl;
1917	int error = 0;
1918
1919	if (!(flags & DNODE_FIND_HAVELOCK))
1920		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1921
1922	if (dn->dn_phys->dn_nlevels == 0) {
1923		error = SET_ERROR(ESRCH);
1924		goto out;
1925	}
1926
1927	if (dn->dn_datablkshift == 0) {
1928		if (*offset < dn->dn_datablksz) {
1929			if (flags & DNODE_FIND_HOLE)
1930				*offset = dn->dn_datablksz;
1931		} else {
1932			error = SET_ERROR(ESRCH);
1933		}
1934		goto out;
1935	}
1936
1937	maxlvl = dn->dn_phys->dn_nlevels;
1938
1939	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1940		error = dnode_next_offset_level(dn,
1941		    flags, offset, lvl, blkfill, txg);
1942		if (error != ESRCH)
1943			break;
1944	}
1945
1946	while (error == 0 && --lvl >= minlvl) {
1947		error = dnode_next_offset_level(dn,
1948		    flags, offset, lvl, blkfill, txg);
1949	}
1950
1951	/*
1952	 * There's always a "virtual hole" at the end of the object, even
1953	 * if all BP's which physically exist are non-holes.
1954	 */
1955	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1956	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1957		error = 0;
1958	}
1959
1960	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1961	    initial_offset < *offset : initial_offset > *offset))
1962		error = SET_ERROR(ESRCH);
1963out:
1964	if (!(flags & DNODE_FIND_HAVELOCK))
1965		rw_exit(&dn->dn_struct_rwlock);
1966
1967	return (error);
1968}
1969