dnode.c revision 269218
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/dbuf.h>
28#include <sys/dnode.h>
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dir.h>
34#include <sys/dsl_dataset.h>
35#include <sys/spa.h>
36#include <sys/zio.h>
37#include <sys/dmu_zfetch.h>
38#include <sys/range_tree.h>
39
40static kmem_cache_t *dnode_cache;
41/*
42 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43 * turned on when DEBUG is also defined.
44 */
45#ifdef	DEBUG
46#define	DNODE_STATS
47#endif	/* DEBUG */
48
49#ifdef	DNODE_STATS
50#define	DNODE_STAT_ADD(stat)			((stat)++)
51#else
52#define	DNODE_STAT_ADD(stat)			/* nothing */
53#endif	/* DNODE_STATS */
54
55static dnode_phys_t dnode_phys_zero;
56
57int zfs_default_bs = SPA_MINBLOCKSHIFT;
58int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59
60#ifdef sun
61static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
62#endif
63
64/* ARGSUSED */
65static int
66dnode_cons(void *arg, void *unused, int kmflag)
67{
68	dnode_t *dn = arg;
69	int i;
70
71	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
72	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
73	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
74	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
75
76	/*
77	 * Every dbuf has a reference, and dropping a tracked reference is
78	 * O(number of references), so don't track dn_holds.
79	 */
80	refcount_create_untracked(&dn->dn_holds);
81	refcount_create(&dn->dn_tx_holds);
82	list_link_init(&dn->dn_link);
83
84	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
85	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
86	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
87	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
88	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
89	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
90	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
91
92	for (i = 0; i < TXG_SIZE; i++) {
93		list_link_init(&dn->dn_dirty_link[i]);
94		dn->dn_free_ranges[i] = NULL;
95		list_create(&dn->dn_dirty_records[i],
96		    sizeof (dbuf_dirty_record_t),
97		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
98	}
99
100	dn->dn_allocated_txg = 0;
101	dn->dn_free_txg = 0;
102	dn->dn_assigned_txg = 0;
103	dn->dn_dirtyctx = 0;
104	dn->dn_dirtyctx_firstset = NULL;
105	dn->dn_bonus = NULL;
106	dn->dn_have_spill = B_FALSE;
107	dn->dn_zio = NULL;
108	dn->dn_oldused = 0;
109	dn->dn_oldflags = 0;
110	dn->dn_olduid = 0;
111	dn->dn_oldgid = 0;
112	dn->dn_newuid = 0;
113	dn->dn_newgid = 0;
114	dn->dn_id_flags = 0;
115
116	dn->dn_dbufs_count = 0;
117	dn->dn_unlisted_l0_blkid = 0;
118	list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
119	    offsetof(dmu_buf_impl_t, db_link));
120
121	dn->dn_moved = 0;
122	POINTER_INVALIDATE(&dn->dn_objset);
123	return (0);
124}
125
126/* ARGSUSED */
127static void
128dnode_dest(void *arg, void *unused)
129{
130	int i;
131	dnode_t *dn = arg;
132
133	rw_destroy(&dn->dn_struct_rwlock);
134	mutex_destroy(&dn->dn_mtx);
135	mutex_destroy(&dn->dn_dbufs_mtx);
136	cv_destroy(&dn->dn_notxholds);
137	refcount_destroy(&dn->dn_holds);
138	refcount_destroy(&dn->dn_tx_holds);
139	ASSERT(!list_link_active(&dn->dn_link));
140
141	for (i = 0; i < TXG_SIZE; i++) {
142		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
143		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
144		list_destroy(&dn->dn_dirty_records[i]);
145		ASSERT0(dn->dn_next_nblkptr[i]);
146		ASSERT0(dn->dn_next_nlevels[i]);
147		ASSERT0(dn->dn_next_indblkshift[i]);
148		ASSERT0(dn->dn_next_bonustype[i]);
149		ASSERT0(dn->dn_rm_spillblk[i]);
150		ASSERT0(dn->dn_next_bonuslen[i]);
151		ASSERT0(dn->dn_next_blksz[i]);
152	}
153
154	ASSERT0(dn->dn_allocated_txg);
155	ASSERT0(dn->dn_free_txg);
156	ASSERT0(dn->dn_assigned_txg);
157	ASSERT0(dn->dn_dirtyctx);
158	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
159	ASSERT3P(dn->dn_bonus, ==, NULL);
160	ASSERT(!dn->dn_have_spill);
161	ASSERT3P(dn->dn_zio, ==, NULL);
162	ASSERT0(dn->dn_oldused);
163	ASSERT0(dn->dn_oldflags);
164	ASSERT0(dn->dn_olduid);
165	ASSERT0(dn->dn_oldgid);
166	ASSERT0(dn->dn_newuid);
167	ASSERT0(dn->dn_newgid);
168	ASSERT0(dn->dn_id_flags);
169
170	ASSERT0(dn->dn_dbufs_count);
171	ASSERT0(dn->dn_unlisted_l0_blkid);
172	list_destroy(&dn->dn_dbufs);
173}
174
175void
176dnode_init(void)
177{
178	ASSERT(dnode_cache == NULL);
179	dnode_cache = kmem_cache_create("dnode_t",
180	    sizeof (dnode_t),
181	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
182	kmem_cache_set_move(dnode_cache, dnode_move);
183}
184
185void
186dnode_fini(void)
187{
188	kmem_cache_destroy(dnode_cache);
189	dnode_cache = NULL;
190}
191
192
193#ifdef ZFS_DEBUG
194void
195dnode_verify(dnode_t *dn)
196{
197	int drop_struct_lock = FALSE;
198
199	ASSERT(dn->dn_phys);
200	ASSERT(dn->dn_objset);
201	ASSERT(dn->dn_handle->dnh_dnode == dn);
202
203	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
204
205	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
206		return;
207
208	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
209		rw_enter(&dn->dn_struct_rwlock, RW_READER);
210		drop_struct_lock = TRUE;
211	}
212	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
213		int i;
214		ASSERT3U(dn->dn_indblkshift, >=, 0);
215		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
216		if (dn->dn_datablkshift) {
217			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
218			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
219			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
220		}
221		ASSERT3U(dn->dn_nlevels, <=, 30);
222		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
223		ASSERT3U(dn->dn_nblkptr, >=, 1);
224		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
225		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
226		ASSERT3U(dn->dn_datablksz, ==,
227		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
228		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
229		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
230		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
231		for (i = 0; i < TXG_SIZE; i++) {
232			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
233		}
234	}
235	if (dn->dn_phys->dn_type != DMU_OT_NONE)
236		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
237	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
238	if (dn->dn_dbuf != NULL) {
239		ASSERT3P(dn->dn_phys, ==,
240		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
241		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
242	}
243	if (drop_struct_lock)
244		rw_exit(&dn->dn_struct_rwlock);
245}
246#endif
247
248void
249dnode_byteswap(dnode_phys_t *dnp)
250{
251	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
252	int i;
253
254	if (dnp->dn_type == DMU_OT_NONE) {
255		bzero(dnp, sizeof (dnode_phys_t));
256		return;
257	}
258
259	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
260	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
261	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
262	dnp->dn_used = BSWAP_64(dnp->dn_used);
263
264	/*
265	 * dn_nblkptr is only one byte, so it's OK to read it in either
266	 * byte order.  We can't read dn_bouslen.
267	 */
268	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
269	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
270	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
271		buf64[i] = BSWAP_64(buf64[i]);
272
273	/*
274	 * OK to check dn_bonuslen for zero, because it won't matter if
275	 * we have the wrong byte order.  This is necessary because the
276	 * dnode dnode is smaller than a regular dnode.
277	 */
278	if (dnp->dn_bonuslen != 0) {
279		/*
280		 * Note that the bonus length calculated here may be
281		 * longer than the actual bonus buffer.  This is because
282		 * we always put the bonus buffer after the last block
283		 * pointer (instead of packing it against the end of the
284		 * dnode buffer).
285		 */
286		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
287		size_t len = DN_MAX_BONUSLEN - off;
288		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
289		dmu_object_byteswap_t byteswap =
290		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
291		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
292	}
293
294	/* Swap SPILL block if we have one */
295	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
296		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
297
298}
299
300void
301dnode_buf_byteswap(void *vbuf, size_t size)
302{
303	dnode_phys_t *buf = vbuf;
304	int i;
305
306	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
307	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
308
309	size >>= DNODE_SHIFT;
310	for (i = 0; i < size; i++) {
311		dnode_byteswap(buf);
312		buf++;
313	}
314}
315
316void
317dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
318{
319	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
320
321	dnode_setdirty(dn, tx);
322	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
323	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
324	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
325	dn->dn_bonuslen = newsize;
326	if (newsize == 0)
327		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
328	else
329		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
330	rw_exit(&dn->dn_struct_rwlock);
331}
332
333void
334dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
335{
336	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
337	dnode_setdirty(dn, tx);
338	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
339	dn->dn_bonustype = newtype;
340	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
341	rw_exit(&dn->dn_struct_rwlock);
342}
343
344void
345dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
346{
347	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
348	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
349	dnode_setdirty(dn, tx);
350	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
351	dn->dn_have_spill = B_FALSE;
352}
353
354static void
355dnode_setdblksz(dnode_t *dn, int size)
356{
357	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
358	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
359	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
360	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
361	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
362	dn->dn_datablksz = size;
363	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
364	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
365}
366
367static dnode_t *
368dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
369    uint64_t object, dnode_handle_t *dnh)
370{
371	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
372
373	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
374	dn->dn_moved = 0;
375
376	/*
377	 * Defer setting dn_objset until the dnode is ready to be a candidate
378	 * for the dnode_move() callback.
379	 */
380	dn->dn_object = object;
381	dn->dn_dbuf = db;
382	dn->dn_handle = dnh;
383	dn->dn_phys = dnp;
384
385	if (dnp->dn_datablkszsec) {
386		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
387	} else {
388		dn->dn_datablksz = 0;
389		dn->dn_datablkszsec = 0;
390		dn->dn_datablkshift = 0;
391	}
392	dn->dn_indblkshift = dnp->dn_indblkshift;
393	dn->dn_nlevels = dnp->dn_nlevels;
394	dn->dn_type = dnp->dn_type;
395	dn->dn_nblkptr = dnp->dn_nblkptr;
396	dn->dn_checksum = dnp->dn_checksum;
397	dn->dn_compress = dnp->dn_compress;
398	dn->dn_bonustype = dnp->dn_bonustype;
399	dn->dn_bonuslen = dnp->dn_bonuslen;
400	dn->dn_maxblkid = dnp->dn_maxblkid;
401	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
402	dn->dn_id_flags = 0;
403
404	dmu_zfetch_init(&dn->dn_zfetch, dn);
405
406	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
407
408	mutex_enter(&os->os_lock);
409	list_insert_head(&os->os_dnodes, dn);
410	membar_producer();
411	/*
412	 * Everything else must be valid before assigning dn_objset makes the
413	 * dnode eligible for dnode_move().
414	 */
415	dn->dn_objset = os;
416	mutex_exit(&os->os_lock);
417
418	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
419	return (dn);
420}
421
422/*
423 * Caller must be holding the dnode handle, which is released upon return.
424 */
425static void
426dnode_destroy(dnode_t *dn)
427{
428	objset_t *os = dn->dn_objset;
429
430	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
431
432	mutex_enter(&os->os_lock);
433	POINTER_INVALIDATE(&dn->dn_objset);
434	list_remove(&os->os_dnodes, dn);
435	mutex_exit(&os->os_lock);
436
437	/* the dnode can no longer move, so we can release the handle */
438	zrl_remove(&dn->dn_handle->dnh_zrlock);
439
440	dn->dn_allocated_txg = 0;
441	dn->dn_free_txg = 0;
442	dn->dn_assigned_txg = 0;
443
444	dn->dn_dirtyctx = 0;
445	if (dn->dn_dirtyctx_firstset != NULL) {
446		kmem_free(dn->dn_dirtyctx_firstset, 1);
447		dn->dn_dirtyctx_firstset = NULL;
448	}
449	if (dn->dn_bonus != NULL) {
450		mutex_enter(&dn->dn_bonus->db_mtx);
451		dbuf_evict(dn->dn_bonus);
452		dn->dn_bonus = NULL;
453	}
454	dn->dn_zio = NULL;
455
456	dn->dn_have_spill = B_FALSE;
457	dn->dn_oldused = 0;
458	dn->dn_oldflags = 0;
459	dn->dn_olduid = 0;
460	dn->dn_oldgid = 0;
461	dn->dn_newuid = 0;
462	dn->dn_newgid = 0;
463	dn->dn_id_flags = 0;
464	dn->dn_unlisted_l0_blkid = 0;
465
466	dmu_zfetch_rele(&dn->dn_zfetch);
467	kmem_cache_free(dnode_cache, dn);
468	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
469}
470
471void
472dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
473    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
474{
475	int i;
476
477	if (blocksize == 0)
478		blocksize = 1 << zfs_default_bs;
479	else if (blocksize > SPA_MAXBLOCKSIZE)
480		blocksize = SPA_MAXBLOCKSIZE;
481	else
482		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
483
484	if (ibs == 0)
485		ibs = zfs_default_ibs;
486
487	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
488
489	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
490	    dn->dn_object, tx->tx_txg, blocksize, ibs);
491
492	ASSERT(dn->dn_type == DMU_OT_NONE);
493	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
494	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
495	ASSERT(ot != DMU_OT_NONE);
496	ASSERT(DMU_OT_IS_VALID(ot));
497	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
498	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
499	    (bonustype != DMU_OT_NONE && bonuslen != 0));
500	ASSERT(DMU_OT_IS_VALID(bonustype));
501	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
502	ASSERT(dn->dn_type == DMU_OT_NONE);
503	ASSERT0(dn->dn_maxblkid);
504	ASSERT0(dn->dn_allocated_txg);
505	ASSERT0(dn->dn_assigned_txg);
506	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
507	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
508	ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
509
510	for (i = 0; i < TXG_SIZE; i++) {
511		ASSERT0(dn->dn_next_nblkptr[i]);
512		ASSERT0(dn->dn_next_nlevels[i]);
513		ASSERT0(dn->dn_next_indblkshift[i]);
514		ASSERT0(dn->dn_next_bonuslen[i]);
515		ASSERT0(dn->dn_next_bonustype[i]);
516		ASSERT0(dn->dn_rm_spillblk[i]);
517		ASSERT0(dn->dn_next_blksz[i]);
518		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
519		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
520		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
521	}
522
523	dn->dn_type = ot;
524	dnode_setdblksz(dn, blocksize);
525	dn->dn_indblkshift = ibs;
526	dn->dn_nlevels = 1;
527	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
528		dn->dn_nblkptr = 1;
529	else
530		dn->dn_nblkptr = 1 +
531		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
532	dn->dn_bonustype = bonustype;
533	dn->dn_bonuslen = bonuslen;
534	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
535	dn->dn_compress = ZIO_COMPRESS_INHERIT;
536	dn->dn_dirtyctx = 0;
537
538	dn->dn_free_txg = 0;
539	if (dn->dn_dirtyctx_firstset) {
540		kmem_free(dn->dn_dirtyctx_firstset, 1);
541		dn->dn_dirtyctx_firstset = NULL;
542	}
543
544	dn->dn_allocated_txg = tx->tx_txg;
545	dn->dn_id_flags = 0;
546
547	dnode_setdirty(dn, tx);
548	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
549	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
550	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
551	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
552}
553
554void
555dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
556    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
557{
558	int nblkptr;
559
560	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
561	ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
562	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
563	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
564	ASSERT(tx->tx_txg != 0);
565	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
566	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
567	    (bonustype == DMU_OT_SA && bonuslen == 0));
568	ASSERT(DMU_OT_IS_VALID(bonustype));
569	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
570
571	/* clean up any unreferenced dbufs */
572	dnode_evict_dbufs(dn);
573
574	dn->dn_id_flags = 0;
575
576	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
577	dnode_setdirty(dn, tx);
578	if (dn->dn_datablksz != blocksize) {
579		/* change blocksize */
580		ASSERT(dn->dn_maxblkid == 0 &&
581		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
582		    dnode_block_freed(dn, 0)));
583		dnode_setdblksz(dn, blocksize);
584		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
585	}
586	if (dn->dn_bonuslen != bonuslen)
587		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
588
589	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
590		nblkptr = 1;
591	else
592		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
593	if (dn->dn_bonustype != bonustype)
594		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
595	if (dn->dn_nblkptr != nblkptr)
596		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
597	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
598		dbuf_rm_spill(dn, tx);
599		dnode_rm_spill(dn, tx);
600	}
601	rw_exit(&dn->dn_struct_rwlock);
602
603	/* change type */
604	dn->dn_type = ot;
605
606	/* change bonus size and type */
607	mutex_enter(&dn->dn_mtx);
608	dn->dn_bonustype = bonustype;
609	dn->dn_bonuslen = bonuslen;
610	dn->dn_nblkptr = nblkptr;
611	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
612	dn->dn_compress = ZIO_COMPRESS_INHERIT;
613	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
614
615	/* fix up the bonus db_size */
616	if (dn->dn_bonus) {
617		dn->dn_bonus->db.db_size =
618		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
619		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
620	}
621
622	dn->dn_allocated_txg = tx->tx_txg;
623	mutex_exit(&dn->dn_mtx);
624}
625
626#ifdef	DNODE_STATS
627static struct {
628	uint64_t dms_dnode_invalid;
629	uint64_t dms_dnode_recheck1;
630	uint64_t dms_dnode_recheck2;
631	uint64_t dms_dnode_special;
632	uint64_t dms_dnode_handle;
633	uint64_t dms_dnode_rwlock;
634	uint64_t dms_dnode_active;
635} dnode_move_stats;
636#endif	/* DNODE_STATS */
637
638static void
639dnode_move_impl(dnode_t *odn, dnode_t *ndn)
640{
641	int i;
642
643	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
644	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
645	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
646	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
647
648	/* Copy fields. */
649	ndn->dn_objset = odn->dn_objset;
650	ndn->dn_object = odn->dn_object;
651	ndn->dn_dbuf = odn->dn_dbuf;
652	ndn->dn_handle = odn->dn_handle;
653	ndn->dn_phys = odn->dn_phys;
654	ndn->dn_type = odn->dn_type;
655	ndn->dn_bonuslen = odn->dn_bonuslen;
656	ndn->dn_bonustype = odn->dn_bonustype;
657	ndn->dn_nblkptr = odn->dn_nblkptr;
658	ndn->dn_checksum = odn->dn_checksum;
659	ndn->dn_compress = odn->dn_compress;
660	ndn->dn_nlevels = odn->dn_nlevels;
661	ndn->dn_indblkshift = odn->dn_indblkshift;
662	ndn->dn_datablkshift = odn->dn_datablkshift;
663	ndn->dn_datablkszsec = odn->dn_datablkszsec;
664	ndn->dn_datablksz = odn->dn_datablksz;
665	ndn->dn_maxblkid = odn->dn_maxblkid;
666	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
667	    sizeof (odn->dn_next_nblkptr));
668	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
669	    sizeof (odn->dn_next_nlevels));
670	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
671	    sizeof (odn->dn_next_indblkshift));
672	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
673	    sizeof (odn->dn_next_bonustype));
674	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
675	    sizeof (odn->dn_rm_spillblk));
676	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
677	    sizeof (odn->dn_next_bonuslen));
678	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
679	    sizeof (odn->dn_next_blksz));
680	for (i = 0; i < TXG_SIZE; i++) {
681		list_move_tail(&ndn->dn_dirty_records[i],
682		    &odn->dn_dirty_records[i]);
683	}
684	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
685	    sizeof (odn->dn_free_ranges));
686	ndn->dn_allocated_txg = odn->dn_allocated_txg;
687	ndn->dn_free_txg = odn->dn_free_txg;
688	ndn->dn_assigned_txg = odn->dn_assigned_txg;
689	ndn->dn_dirtyctx = odn->dn_dirtyctx;
690	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
691	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
692	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
693	ASSERT(list_is_empty(&ndn->dn_dbufs));
694	list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
695	ndn->dn_dbufs_count = odn->dn_dbufs_count;
696	ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
697	ndn->dn_bonus = odn->dn_bonus;
698	ndn->dn_have_spill = odn->dn_have_spill;
699	ndn->dn_zio = odn->dn_zio;
700	ndn->dn_oldused = odn->dn_oldused;
701	ndn->dn_oldflags = odn->dn_oldflags;
702	ndn->dn_olduid = odn->dn_olduid;
703	ndn->dn_oldgid = odn->dn_oldgid;
704	ndn->dn_newuid = odn->dn_newuid;
705	ndn->dn_newgid = odn->dn_newgid;
706	ndn->dn_id_flags = odn->dn_id_flags;
707	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
708	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
709	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
710	ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
711	ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
712
713	/*
714	 * Update back pointers. Updating the handle fixes the back pointer of
715	 * every descendant dbuf as well as the bonus dbuf.
716	 */
717	ASSERT(ndn->dn_handle->dnh_dnode == odn);
718	ndn->dn_handle->dnh_dnode = ndn;
719	if (ndn->dn_zfetch.zf_dnode == odn) {
720		ndn->dn_zfetch.zf_dnode = ndn;
721	}
722
723	/*
724	 * Invalidate the original dnode by clearing all of its back pointers.
725	 */
726	odn->dn_dbuf = NULL;
727	odn->dn_handle = NULL;
728	list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
729	    offsetof(dmu_buf_impl_t, db_link));
730	odn->dn_dbufs_count = 0;
731	odn->dn_unlisted_l0_blkid = 0;
732	odn->dn_bonus = NULL;
733	odn->dn_zfetch.zf_dnode = NULL;
734
735	/*
736	 * Set the low bit of the objset pointer to ensure that dnode_move()
737	 * recognizes the dnode as invalid in any subsequent callback.
738	 */
739	POINTER_INVALIDATE(&odn->dn_objset);
740
741	/*
742	 * Satisfy the destructor.
743	 */
744	for (i = 0; i < TXG_SIZE; i++) {
745		list_create(&odn->dn_dirty_records[i],
746		    sizeof (dbuf_dirty_record_t),
747		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
748		odn->dn_free_ranges[i] = NULL;
749		odn->dn_next_nlevels[i] = 0;
750		odn->dn_next_indblkshift[i] = 0;
751		odn->dn_next_bonustype[i] = 0;
752		odn->dn_rm_spillblk[i] = 0;
753		odn->dn_next_bonuslen[i] = 0;
754		odn->dn_next_blksz[i] = 0;
755	}
756	odn->dn_allocated_txg = 0;
757	odn->dn_free_txg = 0;
758	odn->dn_assigned_txg = 0;
759	odn->dn_dirtyctx = 0;
760	odn->dn_dirtyctx_firstset = NULL;
761	odn->dn_have_spill = B_FALSE;
762	odn->dn_zio = NULL;
763	odn->dn_oldused = 0;
764	odn->dn_oldflags = 0;
765	odn->dn_olduid = 0;
766	odn->dn_oldgid = 0;
767	odn->dn_newuid = 0;
768	odn->dn_newgid = 0;
769	odn->dn_id_flags = 0;
770
771	/*
772	 * Mark the dnode.
773	 */
774	ndn->dn_moved = 1;
775	odn->dn_moved = (uint8_t)-1;
776}
777
778#ifdef sun
779#ifdef	_KERNEL
780/*ARGSUSED*/
781static kmem_cbrc_t
782dnode_move(void *buf, void *newbuf, size_t size, void *arg)
783{
784	dnode_t *odn = buf, *ndn = newbuf;
785	objset_t *os;
786	int64_t refcount;
787	uint32_t dbufs;
788
789	/*
790	 * The dnode is on the objset's list of known dnodes if the objset
791	 * pointer is valid. We set the low bit of the objset pointer when
792	 * freeing the dnode to invalidate it, and the memory patterns written
793	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
794	 * A newly created dnode sets the objset pointer last of all to indicate
795	 * that the dnode is known and in a valid state to be moved by this
796	 * function.
797	 */
798	os = odn->dn_objset;
799	if (!POINTER_IS_VALID(os)) {
800		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
801		return (KMEM_CBRC_DONT_KNOW);
802	}
803
804	/*
805	 * Ensure that the objset does not go away during the move.
806	 */
807	rw_enter(&os_lock, RW_WRITER);
808	if (os != odn->dn_objset) {
809		rw_exit(&os_lock);
810		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
811		return (KMEM_CBRC_DONT_KNOW);
812	}
813
814	/*
815	 * If the dnode is still valid, then so is the objset. We know that no
816	 * valid objset can be freed while we hold os_lock, so we can safely
817	 * ensure that the objset remains in use.
818	 */
819	mutex_enter(&os->os_lock);
820
821	/*
822	 * Recheck the objset pointer in case the dnode was removed just before
823	 * acquiring the lock.
824	 */
825	if (os != odn->dn_objset) {
826		mutex_exit(&os->os_lock);
827		rw_exit(&os_lock);
828		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
829		return (KMEM_CBRC_DONT_KNOW);
830	}
831
832	/*
833	 * At this point we know that as long as we hold os->os_lock, the dnode
834	 * cannot be freed and fields within the dnode can be safely accessed.
835	 * The objset listing this dnode cannot go away as long as this dnode is
836	 * on its list.
837	 */
838	rw_exit(&os_lock);
839	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
840		mutex_exit(&os->os_lock);
841		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
842		return (KMEM_CBRC_NO);
843	}
844	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
845
846	/*
847	 * Lock the dnode handle to prevent the dnode from obtaining any new
848	 * holds. This also prevents the descendant dbufs and the bonus dbuf
849	 * from accessing the dnode, so that we can discount their holds. The
850	 * handle is safe to access because we know that while the dnode cannot
851	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
852	 * safely move any dnode referenced only by dbufs.
853	 */
854	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
855		mutex_exit(&os->os_lock);
856		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
857		return (KMEM_CBRC_LATER);
858	}
859
860	/*
861	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
862	 * We need to guarantee that there is a hold for every dbuf in order to
863	 * determine whether the dnode is actively referenced. Falsely matching
864	 * a dbuf to an active hold would lead to an unsafe move. It's possible
865	 * that a thread already having an active dnode hold is about to add a
866	 * dbuf, and we can't compare hold and dbuf counts while the add is in
867	 * progress.
868	 */
869	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
870		zrl_exit(&odn->dn_handle->dnh_zrlock);
871		mutex_exit(&os->os_lock);
872		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
873		return (KMEM_CBRC_LATER);
874	}
875
876	/*
877	 * A dbuf may be removed (evicted) without an active dnode hold. In that
878	 * case, the dbuf count is decremented under the handle lock before the
879	 * dbuf's hold is released. This order ensures that if we count the hold
880	 * after the dbuf is removed but before its hold is released, we will
881	 * treat the unmatched hold as active and exit safely. If we count the
882	 * hold before the dbuf is removed, the hold is discounted, and the
883	 * removal is blocked until the move completes.
884	 */
885	refcount = refcount_count(&odn->dn_holds);
886	ASSERT(refcount >= 0);
887	dbufs = odn->dn_dbufs_count;
888
889	/* We can't have more dbufs than dnode holds. */
890	ASSERT3U(dbufs, <=, refcount);
891	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
892	    uint32_t, dbufs);
893
894	if (refcount > dbufs) {
895		rw_exit(&odn->dn_struct_rwlock);
896		zrl_exit(&odn->dn_handle->dnh_zrlock);
897		mutex_exit(&os->os_lock);
898		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
899		return (KMEM_CBRC_LATER);
900	}
901
902	rw_exit(&odn->dn_struct_rwlock);
903
904	/*
905	 * At this point we know that anyone with a hold on the dnode is not
906	 * actively referencing it. The dnode is known and in a valid state to
907	 * move. We're holding the locks needed to execute the critical section.
908	 */
909	dnode_move_impl(odn, ndn);
910
911	list_link_replace(&odn->dn_link, &ndn->dn_link);
912	/* If the dnode was safe to move, the refcount cannot have changed. */
913	ASSERT(refcount == refcount_count(&ndn->dn_holds));
914	ASSERT(dbufs == ndn->dn_dbufs_count);
915	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
916	mutex_exit(&os->os_lock);
917
918	return (KMEM_CBRC_YES);
919}
920#endif	/* _KERNEL */
921#endif	/* sun */
922
923void
924dnode_special_close(dnode_handle_t *dnh)
925{
926	dnode_t *dn = dnh->dnh_dnode;
927
928	/*
929	 * Wait for final references to the dnode to clear.  This can
930	 * only happen if the arc is asyncronously evicting state that
931	 * has a hold on this dnode while we are trying to evict this
932	 * dnode.
933	 */
934	while (refcount_count(&dn->dn_holds) > 0)
935		delay(1);
936	zrl_add(&dnh->dnh_zrlock);
937	dnode_destroy(dn); /* implicit zrl_remove() */
938	zrl_destroy(&dnh->dnh_zrlock);
939	dnh->dnh_dnode = NULL;
940}
941
942dnode_t *
943dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
944    dnode_handle_t *dnh)
945{
946	dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
947	dnh->dnh_dnode = dn;
948	zrl_init(&dnh->dnh_zrlock);
949	DNODE_VERIFY(dn);
950	return (dn);
951}
952
953static void
954dnode_buf_pageout(dmu_buf_t *db, void *arg)
955{
956	dnode_children_t *children_dnodes = arg;
957	int i;
958	int epb = db->db_size >> DNODE_SHIFT;
959
960	ASSERT(epb == children_dnodes->dnc_count);
961
962	for (i = 0; i < epb; i++) {
963		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
964		dnode_t *dn;
965
966		/*
967		 * The dnode handle lock guards against the dnode moving to
968		 * another valid address, so there is no need here to guard
969		 * against changes to or from NULL.
970		 */
971		if (dnh->dnh_dnode == NULL) {
972			zrl_destroy(&dnh->dnh_zrlock);
973			continue;
974		}
975
976		zrl_add(&dnh->dnh_zrlock);
977		dn = dnh->dnh_dnode;
978		/*
979		 * If there are holds on this dnode, then there should
980		 * be holds on the dnode's containing dbuf as well; thus
981		 * it wouldn't be eligible for eviction and this function
982		 * would not have been called.
983		 */
984		ASSERT(refcount_is_zero(&dn->dn_holds));
985		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
986
987		dnode_destroy(dn); /* implicit zrl_remove() */
988		zrl_destroy(&dnh->dnh_zrlock);
989		dnh->dnh_dnode = NULL;
990	}
991	kmem_free(children_dnodes, sizeof (dnode_children_t) +
992	    (epb - 1) * sizeof (dnode_handle_t));
993}
994
995/*
996 * errors:
997 * EINVAL - invalid object number.
998 * EIO - i/o error.
999 * succeeds even for free dnodes.
1000 */
1001int
1002dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1003    void *tag, dnode_t **dnp)
1004{
1005	int epb, idx, err;
1006	int drop_struct_lock = FALSE;
1007	int type;
1008	uint64_t blk;
1009	dnode_t *mdn, *dn;
1010	dmu_buf_impl_t *db;
1011	dnode_children_t *children_dnodes;
1012	dnode_handle_t *dnh;
1013
1014	/*
1015	 * If you are holding the spa config lock as writer, you shouldn't
1016	 * be asking the DMU to do *anything* unless it's the root pool
1017	 * which may require us to read from the root filesystem while
1018	 * holding some (not all) of the locks as writer.
1019	 */
1020	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1021	    (spa_is_root(os->os_spa) &&
1022	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1023
1024	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1025		dn = (object == DMU_USERUSED_OBJECT) ?
1026		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1027		if (dn == NULL)
1028			return (SET_ERROR(ENOENT));
1029		type = dn->dn_type;
1030		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1031			return (SET_ERROR(ENOENT));
1032		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1033			return (SET_ERROR(EEXIST));
1034		DNODE_VERIFY(dn);
1035		(void) refcount_add(&dn->dn_holds, tag);
1036		*dnp = dn;
1037		return (0);
1038	}
1039
1040	if (object == 0 || object >= DN_MAX_OBJECT)
1041		return (SET_ERROR(EINVAL));
1042
1043	mdn = DMU_META_DNODE(os);
1044	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1045
1046	DNODE_VERIFY(mdn);
1047
1048	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1049		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1050		drop_struct_lock = TRUE;
1051	}
1052
1053	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1054
1055	db = dbuf_hold(mdn, blk, FTAG);
1056	if (drop_struct_lock)
1057		rw_exit(&mdn->dn_struct_rwlock);
1058	if (db == NULL)
1059		return (SET_ERROR(EIO));
1060	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1061	if (err) {
1062		dbuf_rele(db, FTAG);
1063		return (err);
1064	}
1065
1066	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1067	epb = db->db.db_size >> DNODE_SHIFT;
1068
1069	idx = object & (epb-1);
1070
1071	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1072	children_dnodes = dmu_buf_get_user(&db->db);
1073	if (children_dnodes == NULL) {
1074		int i;
1075		dnode_children_t *winner;
1076		children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1077		    (epb - 1) * sizeof (dnode_handle_t), KM_SLEEP);
1078		children_dnodes->dnc_count = epb;
1079		dnh = &children_dnodes->dnc_children[0];
1080		for (i = 0; i < epb; i++) {
1081			zrl_init(&dnh[i].dnh_zrlock);
1082			dnh[i].dnh_dnode = NULL;
1083		}
1084		if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1085		    dnode_buf_pageout)) {
1086
1087			for (i = 0; i < epb; i++) {
1088				zrl_destroy(&dnh[i].dnh_zrlock);
1089			}
1090
1091			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1092			    (epb - 1) * sizeof (dnode_handle_t));
1093			children_dnodes = winner;
1094		}
1095	}
1096	ASSERT(children_dnodes->dnc_count == epb);
1097
1098	dnh = &children_dnodes->dnc_children[idx];
1099	zrl_add(&dnh->dnh_zrlock);
1100	if ((dn = dnh->dnh_dnode) == NULL) {
1101		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1102		dnode_t *winner;
1103
1104		dn = dnode_create(os, phys, db, object, dnh);
1105		winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1106		if (winner != NULL) {
1107			zrl_add(&dnh->dnh_zrlock);
1108			dnode_destroy(dn); /* implicit zrl_remove() */
1109			dn = winner;
1110		}
1111	}
1112
1113	mutex_enter(&dn->dn_mtx);
1114	type = dn->dn_type;
1115	if (dn->dn_free_txg ||
1116	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1117	    ((flag & DNODE_MUST_BE_FREE) &&
1118	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1119		mutex_exit(&dn->dn_mtx);
1120		zrl_remove(&dnh->dnh_zrlock);
1121		dbuf_rele(db, FTAG);
1122		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1123	}
1124	mutex_exit(&dn->dn_mtx);
1125
1126	if (refcount_add(&dn->dn_holds, tag) == 1)
1127		dbuf_add_ref(db, dnh);
1128	/* Now we can rely on the hold to prevent the dnode from moving. */
1129	zrl_remove(&dnh->dnh_zrlock);
1130
1131	DNODE_VERIFY(dn);
1132	ASSERT3P(dn->dn_dbuf, ==, db);
1133	ASSERT3U(dn->dn_object, ==, object);
1134	dbuf_rele(db, FTAG);
1135
1136	*dnp = dn;
1137	return (0);
1138}
1139
1140/*
1141 * Return held dnode if the object is allocated, NULL if not.
1142 */
1143int
1144dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1145{
1146	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1147}
1148
1149/*
1150 * Can only add a reference if there is already at least one
1151 * reference on the dnode.  Returns FALSE if unable to add a
1152 * new reference.
1153 */
1154boolean_t
1155dnode_add_ref(dnode_t *dn, void *tag)
1156{
1157	mutex_enter(&dn->dn_mtx);
1158	if (refcount_is_zero(&dn->dn_holds)) {
1159		mutex_exit(&dn->dn_mtx);
1160		return (FALSE);
1161	}
1162	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1163	mutex_exit(&dn->dn_mtx);
1164	return (TRUE);
1165}
1166
1167void
1168dnode_rele(dnode_t *dn, void *tag)
1169{
1170	uint64_t refs;
1171	/* Get while the hold prevents the dnode from moving. */
1172	dmu_buf_impl_t *db = dn->dn_dbuf;
1173	dnode_handle_t *dnh = dn->dn_handle;
1174
1175	mutex_enter(&dn->dn_mtx);
1176	refs = refcount_remove(&dn->dn_holds, tag);
1177	mutex_exit(&dn->dn_mtx);
1178
1179	/*
1180	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1181	 * indirectly by dbuf_rele() while relying on the dnode handle to
1182	 * prevent the dnode from moving, since releasing the last hold could
1183	 * result in the dnode's parent dbuf evicting its dnode handles. For
1184	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1185	 * other direct or indirect hold on the dnode must first drop the dnode
1186	 * handle.
1187	 */
1188	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1189
1190	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1191	if (refs == 0 && db != NULL) {
1192		/*
1193		 * Another thread could add a hold to the dnode handle in
1194		 * dnode_hold_impl() while holding the parent dbuf. Since the
1195		 * hold on the parent dbuf prevents the handle from being
1196		 * destroyed, the hold on the handle is OK. We can't yet assert
1197		 * that the handle has zero references, but that will be
1198		 * asserted anyway when the handle gets destroyed.
1199		 */
1200		dbuf_rele(db, dnh);
1201	}
1202}
1203
1204void
1205dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1206{
1207	objset_t *os = dn->dn_objset;
1208	uint64_t txg = tx->tx_txg;
1209
1210	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1211		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1212		return;
1213	}
1214
1215	DNODE_VERIFY(dn);
1216
1217#ifdef ZFS_DEBUG
1218	mutex_enter(&dn->dn_mtx);
1219	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1220	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1221	mutex_exit(&dn->dn_mtx);
1222#endif
1223
1224	/*
1225	 * Determine old uid/gid when necessary
1226	 */
1227	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1228
1229	mutex_enter(&os->os_lock);
1230
1231	/*
1232	 * If we are already marked dirty, we're done.
1233	 */
1234	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1235		mutex_exit(&os->os_lock);
1236		return;
1237	}
1238
1239	ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1240	ASSERT(dn->dn_datablksz != 0);
1241	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1242	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1243	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1244
1245	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1246	    dn->dn_object, txg);
1247
1248	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1249		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1250	} else {
1251		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1252	}
1253
1254	mutex_exit(&os->os_lock);
1255
1256	/*
1257	 * The dnode maintains a hold on its containing dbuf as
1258	 * long as there are holds on it.  Each instantiated child
1259	 * dbuf maintains a hold on the dnode.  When the last child
1260	 * drops its hold, the dnode will drop its hold on the
1261	 * containing dbuf. We add a "dirty hold" here so that the
1262	 * dnode will hang around after we finish processing its
1263	 * children.
1264	 */
1265	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1266
1267	(void) dbuf_dirty(dn->dn_dbuf, tx);
1268
1269	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1270}
1271
1272void
1273dnode_free(dnode_t *dn, dmu_tx_t *tx)
1274{
1275	int txgoff = tx->tx_txg & TXG_MASK;
1276
1277	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1278
1279	/* we should be the only holder... hopefully */
1280	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1281
1282	mutex_enter(&dn->dn_mtx);
1283	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1284		mutex_exit(&dn->dn_mtx);
1285		return;
1286	}
1287	dn->dn_free_txg = tx->tx_txg;
1288	mutex_exit(&dn->dn_mtx);
1289
1290	/*
1291	 * If the dnode is already dirty, it needs to be moved from
1292	 * the dirty list to the free list.
1293	 */
1294	mutex_enter(&dn->dn_objset->os_lock);
1295	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1296		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1297		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1298		mutex_exit(&dn->dn_objset->os_lock);
1299	} else {
1300		mutex_exit(&dn->dn_objset->os_lock);
1301		dnode_setdirty(dn, tx);
1302	}
1303}
1304
1305/*
1306 * Try to change the block size for the indicated dnode.  This can only
1307 * succeed if there are no blocks allocated or dirty beyond first block
1308 */
1309int
1310dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1311{
1312	dmu_buf_impl_t *db, *db_next;
1313	int err;
1314
1315	if (size == 0)
1316		size = SPA_MINBLOCKSIZE;
1317	if (size > SPA_MAXBLOCKSIZE)
1318		size = SPA_MAXBLOCKSIZE;
1319	else
1320		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1321
1322	if (ibs == dn->dn_indblkshift)
1323		ibs = 0;
1324
1325	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1326		return (0);
1327
1328	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1329
1330	/* Check for any allocated blocks beyond the first */
1331	if (dn->dn_maxblkid != 0)
1332		goto fail;
1333
1334	mutex_enter(&dn->dn_dbufs_mtx);
1335	for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
1336		db_next = list_next(&dn->dn_dbufs, db);
1337
1338		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1339		    db->db_blkid != DMU_SPILL_BLKID) {
1340			mutex_exit(&dn->dn_dbufs_mtx);
1341			goto fail;
1342		}
1343	}
1344	mutex_exit(&dn->dn_dbufs_mtx);
1345
1346	if (ibs && dn->dn_nlevels != 1)
1347		goto fail;
1348
1349	/* resize the old block */
1350	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1351	if (err == 0)
1352		dbuf_new_size(db, size, tx);
1353	else if (err != ENOENT)
1354		goto fail;
1355
1356	dnode_setdblksz(dn, size);
1357	dnode_setdirty(dn, tx);
1358	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1359	if (ibs) {
1360		dn->dn_indblkshift = ibs;
1361		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1362	}
1363	/* rele after we have fixed the blocksize in the dnode */
1364	if (db)
1365		dbuf_rele(db, FTAG);
1366
1367	rw_exit(&dn->dn_struct_rwlock);
1368	return (0);
1369
1370fail:
1371	rw_exit(&dn->dn_struct_rwlock);
1372	return (SET_ERROR(ENOTSUP));
1373}
1374
1375/* read-holding callers must not rely on the lock being continuously held */
1376void
1377dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1378{
1379	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1380	int epbs, new_nlevels;
1381	uint64_t sz;
1382
1383	ASSERT(blkid != DMU_BONUS_BLKID);
1384
1385	ASSERT(have_read ?
1386	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1387	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1388
1389	/*
1390	 * if we have a read-lock, check to see if we need to do any work
1391	 * before upgrading to a write-lock.
1392	 */
1393	if (have_read) {
1394		if (blkid <= dn->dn_maxblkid)
1395			return;
1396
1397		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1398			rw_exit(&dn->dn_struct_rwlock);
1399			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1400		}
1401	}
1402
1403	if (blkid <= dn->dn_maxblkid)
1404		goto out;
1405
1406	dn->dn_maxblkid = blkid;
1407
1408	/*
1409	 * Compute the number of levels necessary to support the new maxblkid.
1410	 */
1411	new_nlevels = 1;
1412	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1413	for (sz = dn->dn_nblkptr;
1414	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1415		new_nlevels++;
1416
1417	if (new_nlevels > dn->dn_nlevels) {
1418		int old_nlevels = dn->dn_nlevels;
1419		dmu_buf_impl_t *db;
1420		list_t *list;
1421		dbuf_dirty_record_t *new, *dr, *dr_next;
1422
1423		dn->dn_nlevels = new_nlevels;
1424
1425		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1426		dn->dn_next_nlevels[txgoff] = new_nlevels;
1427
1428		/* dirty the left indirects */
1429		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1430		ASSERT(db != NULL);
1431		new = dbuf_dirty(db, tx);
1432		dbuf_rele(db, FTAG);
1433
1434		/* transfer the dirty records to the new indirect */
1435		mutex_enter(&dn->dn_mtx);
1436		mutex_enter(&new->dt.di.dr_mtx);
1437		list = &dn->dn_dirty_records[txgoff];
1438		for (dr = list_head(list); dr; dr = dr_next) {
1439			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1440			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1441			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1442			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1443				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1444				list_remove(&dn->dn_dirty_records[txgoff], dr);
1445				list_insert_tail(&new->dt.di.dr_children, dr);
1446				dr->dr_parent = new;
1447			}
1448		}
1449		mutex_exit(&new->dt.di.dr_mtx);
1450		mutex_exit(&dn->dn_mtx);
1451	}
1452
1453out:
1454	if (have_read)
1455		rw_downgrade(&dn->dn_struct_rwlock);
1456}
1457
1458void
1459dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1460{
1461	dmu_buf_impl_t *db;
1462	uint64_t blkoff, blkid, nblks;
1463	int blksz, blkshift, head, tail;
1464	int trunc = FALSE;
1465	int epbs;
1466
1467	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1468	blksz = dn->dn_datablksz;
1469	blkshift = dn->dn_datablkshift;
1470	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1471
1472	if (len == DMU_OBJECT_END) {
1473		len = UINT64_MAX - off;
1474		trunc = TRUE;
1475	}
1476
1477	/*
1478	 * First, block align the region to free:
1479	 */
1480	if (ISP2(blksz)) {
1481		head = P2NPHASE(off, blksz);
1482		blkoff = P2PHASE(off, blksz);
1483		if ((off >> blkshift) > dn->dn_maxblkid)
1484			goto out;
1485	} else {
1486		ASSERT(dn->dn_maxblkid == 0);
1487		if (off == 0 && len >= blksz) {
1488			/*
1489			 * Freeing the whole block; fast-track this request.
1490			 * Note that we won't dirty any indirect blocks,
1491			 * which is fine because we will be freeing the entire
1492			 * file and thus all indirect blocks will be freed
1493			 * by free_children().
1494			 */
1495			blkid = 0;
1496			nblks = 1;
1497			goto done;
1498		} else if (off >= blksz) {
1499			/* Freeing past end-of-data */
1500			goto out;
1501		} else {
1502			/* Freeing part of the block. */
1503			head = blksz - off;
1504			ASSERT3U(head, >, 0);
1505		}
1506		blkoff = off;
1507	}
1508	/* zero out any partial block data at the start of the range */
1509	if (head) {
1510		ASSERT3U(blkoff + head, ==, blksz);
1511		if (len < head)
1512			head = len;
1513		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1514		    FTAG, &db) == 0) {
1515			caddr_t data;
1516
1517			/* don't dirty if it isn't on disk and isn't dirty */
1518			if (db->db_last_dirty ||
1519			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1520				rw_exit(&dn->dn_struct_rwlock);
1521				dmu_buf_will_dirty(&db->db, tx);
1522				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1523				data = db->db.db_data;
1524				bzero(data + blkoff, head);
1525			}
1526			dbuf_rele(db, FTAG);
1527		}
1528		off += head;
1529		len -= head;
1530	}
1531
1532	/* If the range was less than one block, we're done */
1533	if (len == 0)
1534		goto out;
1535
1536	/* If the remaining range is past end of file, we're done */
1537	if ((off >> blkshift) > dn->dn_maxblkid)
1538		goto out;
1539
1540	ASSERT(ISP2(blksz));
1541	if (trunc)
1542		tail = 0;
1543	else
1544		tail = P2PHASE(len, blksz);
1545
1546	ASSERT0(P2PHASE(off, blksz));
1547	/* zero out any partial block data at the end of the range */
1548	if (tail) {
1549		if (len < tail)
1550			tail = len;
1551		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1552		    TRUE, FTAG, &db) == 0) {
1553			/* don't dirty if not on disk and not dirty */
1554			if (db->db_last_dirty ||
1555			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1556				rw_exit(&dn->dn_struct_rwlock);
1557				dmu_buf_will_dirty(&db->db, tx);
1558				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1559				bzero(db->db.db_data, tail);
1560			}
1561			dbuf_rele(db, FTAG);
1562		}
1563		len -= tail;
1564	}
1565
1566	/* If the range did not include a full block, we are done */
1567	if (len == 0)
1568		goto out;
1569
1570	ASSERT(IS_P2ALIGNED(off, blksz));
1571	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1572	blkid = off >> blkshift;
1573	nblks = len >> blkshift;
1574	if (trunc)
1575		nblks += 1;
1576
1577	/*
1578	 * Dirty the first and last indirect blocks, as they (and/or their
1579	 * parents) will need to be written out if they were only
1580	 * partially freed.  Interior indirect blocks will be themselves freed,
1581	 * by free_children(), so they need not be dirtied.  Note that these
1582	 * interior blocks have already been prefetched by dmu_tx_hold_free().
1583	 */
1584	if (dn->dn_nlevels > 1) {
1585		uint64_t first, last;
1586
1587		first = blkid >> epbs;
1588		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1589			dmu_buf_will_dirty(&db->db, tx);
1590			dbuf_rele(db, FTAG);
1591		}
1592		if (trunc)
1593			last = dn->dn_maxblkid >> epbs;
1594		else
1595			last = (blkid + nblks - 1) >> epbs;
1596		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1597			dmu_buf_will_dirty(&db->db, tx);
1598			dbuf_rele(db, FTAG);
1599		}
1600	}
1601
1602done:
1603	/*
1604	 * Add this range to the dnode range list.
1605	 * We will finish up this free operation in the syncing phase.
1606	 */
1607	mutex_enter(&dn->dn_mtx);
1608	int txgoff = tx->tx_txg & TXG_MASK;
1609	if (dn->dn_free_ranges[txgoff] == NULL) {
1610		dn->dn_free_ranges[txgoff] =
1611		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1612	}
1613	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1614	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1615	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1616	    blkid, nblks, tx->tx_txg);
1617	mutex_exit(&dn->dn_mtx);
1618
1619	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1620	dnode_setdirty(dn, tx);
1621out:
1622
1623	rw_exit(&dn->dn_struct_rwlock);
1624}
1625
1626static boolean_t
1627dnode_spill_freed(dnode_t *dn)
1628{
1629	int i;
1630
1631	mutex_enter(&dn->dn_mtx);
1632	for (i = 0; i < TXG_SIZE; i++) {
1633		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1634			break;
1635	}
1636	mutex_exit(&dn->dn_mtx);
1637	return (i < TXG_SIZE);
1638}
1639
1640/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1641uint64_t
1642dnode_block_freed(dnode_t *dn, uint64_t blkid)
1643{
1644	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1645	int i;
1646
1647	if (blkid == DMU_BONUS_BLKID)
1648		return (FALSE);
1649
1650	/*
1651	 * If we're in the process of opening the pool, dp will not be
1652	 * set yet, but there shouldn't be anything dirty.
1653	 */
1654	if (dp == NULL)
1655		return (FALSE);
1656
1657	if (dn->dn_free_txg)
1658		return (TRUE);
1659
1660	if (blkid == DMU_SPILL_BLKID)
1661		return (dnode_spill_freed(dn));
1662
1663	mutex_enter(&dn->dn_mtx);
1664	for (i = 0; i < TXG_SIZE; i++) {
1665		if (dn->dn_free_ranges[i] != NULL &&
1666		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1667			break;
1668	}
1669	mutex_exit(&dn->dn_mtx);
1670	return (i < TXG_SIZE);
1671}
1672
1673/* call from syncing context when we actually write/free space for this dnode */
1674void
1675dnode_diduse_space(dnode_t *dn, int64_t delta)
1676{
1677	uint64_t space;
1678	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1679	    dn, dn->dn_phys,
1680	    (u_longlong_t)dn->dn_phys->dn_used,
1681	    (longlong_t)delta);
1682
1683	mutex_enter(&dn->dn_mtx);
1684	space = DN_USED_BYTES(dn->dn_phys);
1685	if (delta > 0) {
1686		ASSERT3U(space + delta, >=, space); /* no overflow */
1687	} else {
1688		ASSERT3U(space, >=, -delta); /* no underflow */
1689	}
1690	space += delta;
1691	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1692		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1693		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1694		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1695	} else {
1696		dn->dn_phys->dn_used = space;
1697		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1698	}
1699	mutex_exit(&dn->dn_mtx);
1700}
1701
1702/*
1703 * Call when we think we're going to write/free space in open context to track
1704 * the amount of memory in use by the currently open txg.
1705 */
1706void
1707dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1708{
1709	objset_t *os = dn->dn_objset;
1710	dsl_dataset_t *ds = os->os_dsl_dataset;
1711	int64_t aspace = spa_get_asize(os->os_spa, space);
1712
1713	if (ds != NULL) {
1714		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1715		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1716	}
1717
1718	dmu_tx_willuse_space(tx, aspace);
1719}
1720
1721/*
1722 * Scans a block at the indicated "level" looking for a hole or data,
1723 * depending on 'flags'.
1724 *
1725 * If level > 0, then we are scanning an indirect block looking at its
1726 * pointers.  If level == 0, then we are looking at a block of dnodes.
1727 *
1728 * If we don't find what we are looking for in the block, we return ESRCH.
1729 * Otherwise, return with *offset pointing to the beginning (if searching
1730 * forwards) or end (if searching backwards) of the range covered by the
1731 * block pointer we matched on (or dnode).
1732 *
1733 * The basic search algorithm used below by dnode_next_offset() is to
1734 * use this function to search up the block tree (widen the search) until
1735 * we find something (i.e., we don't return ESRCH) and then search back
1736 * down the tree (narrow the search) until we reach our original search
1737 * level.
1738 */
1739static int
1740dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1741	int lvl, uint64_t blkfill, uint64_t txg)
1742{
1743	dmu_buf_impl_t *db = NULL;
1744	void *data = NULL;
1745	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1746	uint64_t epb = 1ULL << epbs;
1747	uint64_t minfill, maxfill;
1748	boolean_t hole;
1749	int i, inc, error, span;
1750
1751	dprintf("probing object %llu offset %llx level %d of %u\n",
1752	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1753
1754	hole = ((flags & DNODE_FIND_HOLE) != 0);
1755	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1756	ASSERT(txg == 0 || !hole);
1757
1758	if (lvl == dn->dn_phys->dn_nlevels) {
1759		error = 0;
1760		epb = dn->dn_phys->dn_nblkptr;
1761		data = dn->dn_phys->dn_blkptr;
1762	} else {
1763		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1764		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1765		if (error) {
1766			if (error != ENOENT)
1767				return (error);
1768			if (hole)
1769				return (0);
1770			/*
1771			 * This can only happen when we are searching up
1772			 * the block tree for data.  We don't really need to
1773			 * adjust the offset, as we will just end up looking
1774			 * at the pointer to this block in its parent, and its
1775			 * going to be unallocated, so we will skip over it.
1776			 */
1777			return (SET_ERROR(ESRCH));
1778		}
1779		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1780		if (error) {
1781			dbuf_rele(db, FTAG);
1782			return (error);
1783		}
1784		data = db->db.db_data;
1785	}
1786
1787
1788	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1789	    db->db_blkptr->blk_birth <= txg ||
1790	    BP_IS_HOLE(db->db_blkptr))) {
1791		/*
1792		 * This can only happen when we are searching up the tree
1793		 * and these conditions mean that we need to keep climbing.
1794		 */
1795		error = SET_ERROR(ESRCH);
1796	} else if (lvl == 0) {
1797		dnode_phys_t *dnp = data;
1798		span = DNODE_SHIFT;
1799		ASSERT(dn->dn_type == DMU_OT_DNODE);
1800
1801		for (i = (*offset >> span) & (blkfill - 1);
1802		    i >= 0 && i < blkfill; i += inc) {
1803			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1804				break;
1805			*offset += (1ULL << span) * inc;
1806		}
1807		if (i < 0 || i == blkfill)
1808			error = SET_ERROR(ESRCH);
1809	} else {
1810		blkptr_t *bp = data;
1811		uint64_t start = *offset;
1812		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1813		minfill = 0;
1814		maxfill = blkfill << ((lvl - 1) * epbs);
1815
1816		if (hole)
1817			maxfill--;
1818		else
1819			minfill++;
1820
1821		*offset = *offset >> span;
1822		for (i = BF64_GET(*offset, 0, epbs);
1823		    i >= 0 && i < epb; i += inc) {
1824			if (BP_GET_FILL(&bp[i]) >= minfill &&
1825			    BP_GET_FILL(&bp[i]) <= maxfill &&
1826			    (hole || bp[i].blk_birth > txg))
1827				break;
1828			if (inc > 0 || *offset > 0)
1829				*offset += inc;
1830		}
1831		*offset = *offset << span;
1832		if (inc < 0) {
1833			/* traversing backwards; position offset at the end */
1834			ASSERT3U(*offset, <=, start);
1835			*offset = MIN(*offset + (1ULL << span) - 1, start);
1836		} else if (*offset < start) {
1837			*offset = start;
1838		}
1839		if (i < 0 || i >= epb)
1840			error = SET_ERROR(ESRCH);
1841	}
1842
1843	if (db)
1844		dbuf_rele(db, FTAG);
1845
1846	return (error);
1847}
1848
1849/*
1850 * Find the next hole, data, or sparse region at or after *offset.
1851 * The value 'blkfill' tells us how many items we expect to find
1852 * in an L0 data block; this value is 1 for normal objects,
1853 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1854 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1855 *
1856 * Examples:
1857 *
1858 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1859 *	Finds the next/previous hole/data in a file.
1860 *	Used in dmu_offset_next().
1861 *
1862 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1863 *	Finds the next free/allocated dnode an objset's meta-dnode.
1864 *	Only finds objects that have new contents since txg (ie.
1865 *	bonus buffer changes and content removal are ignored).
1866 *	Used in dmu_object_next().
1867 *
1868 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1869 *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1870 *	Used in dmu_object_alloc().
1871 */
1872int
1873dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1874    int minlvl, uint64_t blkfill, uint64_t txg)
1875{
1876	uint64_t initial_offset = *offset;
1877	int lvl, maxlvl;
1878	int error = 0;
1879
1880	if (!(flags & DNODE_FIND_HAVELOCK))
1881		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1882
1883	if (dn->dn_phys->dn_nlevels == 0) {
1884		error = SET_ERROR(ESRCH);
1885		goto out;
1886	}
1887
1888	if (dn->dn_datablkshift == 0) {
1889		if (*offset < dn->dn_datablksz) {
1890			if (flags & DNODE_FIND_HOLE)
1891				*offset = dn->dn_datablksz;
1892		} else {
1893			error = SET_ERROR(ESRCH);
1894		}
1895		goto out;
1896	}
1897
1898	maxlvl = dn->dn_phys->dn_nlevels;
1899
1900	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1901		error = dnode_next_offset_level(dn,
1902		    flags, offset, lvl, blkfill, txg);
1903		if (error != ESRCH)
1904			break;
1905	}
1906
1907	while (error == 0 && --lvl >= minlvl) {
1908		error = dnode_next_offset_level(dn,
1909		    flags, offset, lvl, blkfill, txg);
1910	}
1911
1912	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1913	    initial_offset < *offset : initial_offset > *offset))
1914		error = SET_ERROR(ESRCH);
1915out:
1916	if (!(flags & DNODE_FIND_HAVELOCK))
1917		rw_exit(&dn->dn_struct_rwlock);
1918
1919	return (error);
1920}
1921