dmu_zfetch.c revision 288594
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/dnode.h>
32#include <sys/dmu_objset.h>
33#include <sys/dmu_zfetch.h>
34#include <sys/dmu.h>
35#include <sys/dbuf.h>
36#include <sys/kstat.h>
37
38/*
39 * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
43 */
44boolean_t zfs_prefetch_disable = B_FALSE;
45
46/* max # of streams per zfetch */
47uint32_t	zfetch_max_streams = 8;
48/* min time before stream reclaim */
49uint32_t	zfetch_min_sec_reap = 2;
50/* max bytes to prefetch per stream (default 8MB) */
51uint32_t	zfetch_max_distance = 8 * 1024 * 1024;
52/* number of bytes in a array_read at which we stop prefetching (1MB) */
53uint64_t	zfetch_array_rd_sz = 1024 * 1024;
54
55SYSCTL_DECL(_vfs_zfs);
56SYSCTL_INT(_vfs_zfs, OID_AUTO, prefetch_disable, CTLFLAG_RW,
57    &zfs_prefetch_disable, 0, "Disable prefetch");
58SYSCTL_NODE(_vfs_zfs, OID_AUTO, zfetch, CTLFLAG_RW, 0, "ZFS ZFETCH");
59TUNABLE_INT("vfs.zfs.zfetch.max_streams", &zfetch_max_streams);
60SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_streams, CTLFLAG_RW,
61    &zfetch_max_streams, 0, "Max # of streams per zfetch");
62TUNABLE_INT("vfs.zfs.zfetch.min_sec_reap", &zfetch_min_sec_reap);
63SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, min_sec_reap, CTLFLAG_RWTUN,
64    &zfetch_min_sec_reap, 0, "Min time before stream reclaim");
65TUNABLE_INT("vfs.zfs.zfetch.max_distance", &zfetch_max_distance);
66SYSCTL_UINT(_vfs_zfs_zfetch, OID_AUTO, max_distance, CTLFLAG_RWTUN,
67    &zfetch_max_distance, 0, "Max bytes to prefetch per stream");
68TUNABLE_QUAD("vfs.zfs.zfetch.array_rd_sz", &zfetch_array_rd_sz);
69SYSCTL_UQUAD(_vfs_zfs_zfetch, OID_AUTO, array_rd_sz, CTLFLAG_RWTUN,
70    &zfetch_array_rd_sz, 0,
71    "Number of bytes in a array_read at which we stop prefetching");
72
73typedef struct zfetch_stats {
74	kstat_named_t zfetchstat_hits;
75	kstat_named_t zfetchstat_misses;
76	kstat_named_t zfetchstat_max_streams;
77} zfetch_stats_t;
78
79static zfetch_stats_t zfetch_stats = {
80	{ "hits",			KSTAT_DATA_UINT64 },
81	{ "misses",			KSTAT_DATA_UINT64 },
82	{ "max_streams",		KSTAT_DATA_UINT64 },
83};
84
85#define	ZFETCHSTAT_BUMP(stat) \
86	atomic_inc_64(&zfetch_stats.stat.value.ui64);
87
88kstat_t		*zfetch_ksp;
89
90void
91zfetch_init(void)
92{
93	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
94	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
95	    KSTAT_FLAG_VIRTUAL);
96
97	if (zfetch_ksp != NULL) {
98		zfetch_ksp->ks_data = &zfetch_stats;
99		kstat_install(zfetch_ksp);
100	}
101}
102
103void
104zfetch_fini(void)
105{
106	if (zfetch_ksp != NULL) {
107		kstat_delete(zfetch_ksp);
108		zfetch_ksp = NULL;
109	}
110}
111
112/*
113 * This takes a pointer to a zfetch structure and a dnode.  It performs the
114 * necessary setup for the zfetch structure, grokking data from the
115 * associated dnode.
116 */
117void
118dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
119{
120	if (zf == NULL)
121		return;
122
123	zf->zf_dnode = dno;
124
125	list_create(&zf->zf_stream, sizeof (zstream_t),
126	    offsetof(zstream_t, zs_node));
127
128	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
129}
130
131static void
132dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
133{
134	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
135	list_remove(&zf->zf_stream, zs);
136	mutex_destroy(&zs->zs_lock);
137	kmem_free(zs, sizeof (*zs));
138}
139
140/*
141 * Clean-up state associated with a zfetch structure (e.g. destroy the
142 * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
143 */
144void
145dmu_zfetch_fini(zfetch_t *zf)
146{
147	zstream_t *zs;
148
149	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
150
151	rw_enter(&zf->zf_rwlock, RW_WRITER);
152	while ((zs = list_head(&zf->zf_stream)) != NULL)
153		dmu_zfetch_stream_remove(zf, zs);
154	rw_exit(&zf->zf_rwlock);
155	list_destroy(&zf->zf_stream);
156	rw_destroy(&zf->zf_rwlock);
157
158	zf->zf_dnode = NULL;
159}
160
161/*
162 * If there aren't too many streams already, create a new stream.
163 * The "blkid" argument is the next block that we expect this stream to access.
164 * While we're here, clean up old streams (which haven't been
165 * accessed for at least zfetch_min_sec_reap seconds).
166 */
167static void
168dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
169{
170	zstream_t *zs_next;
171	int numstreams = 0;
172
173	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
174
175	/*
176	 * Clean up old streams.
177	 */
178	for (zstream_t *zs = list_head(&zf->zf_stream);
179	    zs != NULL; zs = zs_next) {
180		zs_next = list_next(&zf->zf_stream, zs);
181		if (((gethrtime() - zs->zs_atime) / NANOSEC) >
182		    zfetch_min_sec_reap)
183			dmu_zfetch_stream_remove(zf, zs);
184		else
185			numstreams++;
186	}
187
188	/*
189	 * The maximum number of streams is normally zfetch_max_streams,
190	 * but for small files we lower it such that it's at least possible
191	 * for all the streams to be non-overlapping.
192	 *
193	 * If we are already at the maximum number of streams for this file,
194	 * even after removing old streams, then don't create this stream.
195	 */
196	uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
197	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
198	    zfetch_max_distance));
199	if (numstreams >= max_streams) {
200		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
201		return;
202	}
203
204	zstream_t *zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
205	zs->zs_blkid = blkid;
206	zs->zs_pf_blkid = blkid;
207	zs->zs_atime = gethrtime();
208	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
209
210	list_insert_head(&zf->zf_stream, zs);
211}
212
213/*
214 * This is the prefetch entry point.  It calls all of the other dmu_zfetch
215 * routines to create, delete, find, or operate upon prefetch streams.
216 */
217void
218dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
219{
220	zstream_t *zs;
221
222	if (zfs_prefetch_disable)
223		return;
224
225	/*
226	 * As a fast path for small (single-block) files, ignore access
227	 * to the first block.
228	 */
229	if (blkid == 0)
230		return;
231
232	rw_enter(&zf->zf_rwlock, RW_READER);
233
234	for (zs = list_head(&zf->zf_stream); zs != NULL;
235	    zs = list_next(&zf->zf_stream, zs)) {
236		if (blkid == zs->zs_blkid) {
237			mutex_enter(&zs->zs_lock);
238			/*
239			 * zs_blkid could have changed before we
240			 * acquired zs_lock; re-check them here.
241			 */
242			if (blkid != zs->zs_blkid) {
243				mutex_exit(&zs->zs_lock);
244				continue;
245			}
246			break;
247		}
248	}
249
250	if (zs == NULL) {
251		/*
252		 * This access is not part of any existing stream.  Create
253		 * a new stream for it.
254		 */
255		ZFETCHSTAT_BUMP(zfetchstat_misses);
256		if (rw_tryupgrade(&zf->zf_rwlock))
257			dmu_zfetch_stream_create(zf, blkid + nblks);
258		rw_exit(&zf->zf_rwlock);
259		return;
260	}
261
262	/*
263	 * This access was to a block that we issued a prefetch for on
264	 * behalf of this stream. Issue further prefetches for this stream.
265	 *
266	 * Normally, we start prefetching where we stopped
267	 * prefetching last (zs_pf_blkid).  But when we get our first
268	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
269	 * want to prefetch to block we just accessed.  In this case,
270	 * start just after the block we just accessed.
271	 */
272	int64_t pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
273
274	/*
275	 * Double our amount of prefetched data, but don't let the
276	 * prefetch get further ahead than zfetch_max_distance.
277	 */
278	int pf_nblks =
279	    MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
280	    zs->zs_blkid + nblks +
281	    (zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
282
283	zs->zs_pf_blkid = pf_start + pf_nblks;
284	zs->zs_atime = gethrtime();
285	zs->zs_blkid = blkid + nblks;
286
287	/*
288	 * dbuf_prefetch() issues the prefetch i/o
289	 * asynchronously, but it may need to wait for an
290	 * indirect block to be read from disk.  Therefore
291	 * we do not want to hold any locks while we call it.
292	 */
293	mutex_exit(&zs->zs_lock);
294	rw_exit(&zf->zf_rwlock);
295	for (int i = 0; i < pf_nblks; i++) {
296		dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
297		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
298	}
299	ZFETCHSTAT_BUMP(zfetchstat_hits);
300}
301