dmu_tx.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dbuf.h>
31#include <sys/dmu_tx.h>
32#include <sys/dmu_objset.h>
33#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
34#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
35#include <sys/dsl_pool.h>
36#include <sys/zap_impl.h> /* for fzap_default_block_shift */
37#include <sys/spa.h>
38#include <sys/sa.h>
39#include <sys/sa_impl.h>
40#include <sys/zfs_context.h>
41#include <sys/varargs.h>
42
43typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
44    uint64_t arg1, uint64_t arg2);
45
46
47dmu_tx_t *
48dmu_tx_create_dd(dsl_dir_t *dd)
49{
50	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
51	tx->tx_dir = dd;
52	if (dd != NULL)
53		tx->tx_pool = dd->dd_pool;
54	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
55	    offsetof(dmu_tx_hold_t, txh_node));
56	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
57	    offsetof(dmu_tx_callback_t, dcb_node));
58	tx->tx_start = gethrtime();
59#ifdef ZFS_DEBUG
60	refcount_create(&tx->tx_space_written);
61	refcount_create(&tx->tx_space_freed);
62#endif
63	return (tx);
64}
65
66dmu_tx_t *
67dmu_tx_create(objset_t *os)
68{
69	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
70	tx->tx_objset = os;
71	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
72	return (tx);
73}
74
75dmu_tx_t *
76dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
77{
78	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
79
80	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
81	tx->tx_pool = dp;
82	tx->tx_txg = txg;
83	tx->tx_anyobj = TRUE;
84
85	return (tx);
86}
87
88int
89dmu_tx_is_syncing(dmu_tx_t *tx)
90{
91	return (tx->tx_anyobj);
92}
93
94int
95dmu_tx_private_ok(dmu_tx_t *tx)
96{
97	return (tx->tx_anyobj);
98}
99
100static dmu_tx_hold_t *
101dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
102    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
103{
104	dmu_tx_hold_t *txh;
105	dnode_t *dn = NULL;
106	int err;
107
108	if (object != DMU_NEW_OBJECT) {
109		err = dnode_hold(os, object, tx, &dn);
110		if (err) {
111			tx->tx_err = err;
112			return (NULL);
113		}
114
115		if (err == 0 && tx->tx_txg != 0) {
116			mutex_enter(&dn->dn_mtx);
117			/*
118			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
119			 * problem, but there's no way for it to happen (for
120			 * now, at least).
121			 */
122			ASSERT(dn->dn_assigned_txg == 0);
123			dn->dn_assigned_txg = tx->tx_txg;
124			(void) refcount_add(&dn->dn_tx_holds, tx);
125			mutex_exit(&dn->dn_mtx);
126		}
127	}
128
129	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
130	txh->txh_tx = tx;
131	txh->txh_dnode = dn;
132#ifdef ZFS_DEBUG
133	txh->txh_type = type;
134	txh->txh_arg1 = arg1;
135	txh->txh_arg2 = arg2;
136#endif
137	list_insert_tail(&tx->tx_holds, txh);
138
139	return (txh);
140}
141
142void
143dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
144{
145	/*
146	 * If we're syncing, they can manipulate any object anyhow, and
147	 * the hold on the dnode_t can cause problems.
148	 */
149	if (!dmu_tx_is_syncing(tx)) {
150		(void) dmu_tx_hold_object_impl(tx, os,
151		    object, THT_NEWOBJECT, 0, 0);
152	}
153}
154
155static int
156dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
157{
158	int err;
159	dmu_buf_impl_t *db;
160
161	rw_enter(&dn->dn_struct_rwlock, RW_READER);
162	db = dbuf_hold_level(dn, level, blkid, FTAG);
163	rw_exit(&dn->dn_struct_rwlock);
164	if (db == NULL)
165		return (SET_ERROR(EIO));
166	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
167	dbuf_rele(db, FTAG);
168	return (err);
169}
170
171static void
172dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
173    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
174{
175	objset_t *os = dn->dn_objset;
176	dsl_dataset_t *ds = os->os_dsl_dataset;
177	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
178	dmu_buf_impl_t *parent = NULL;
179	blkptr_t *bp = NULL;
180	uint64_t space;
181
182	if (level >= dn->dn_nlevels || history[level] == blkid)
183		return;
184
185	history[level] = blkid;
186
187	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
188
189	if (db == NULL || db == dn->dn_dbuf) {
190		ASSERT(level != 0);
191		db = NULL;
192	} else {
193		ASSERT(DB_DNODE(db) == dn);
194		ASSERT(db->db_level == level);
195		ASSERT(db->db.db_size == space);
196		ASSERT(db->db_blkid == blkid);
197		bp = db->db_blkptr;
198		parent = db->db_parent;
199	}
200
201	freeable = (bp && (freeable ||
202	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
203
204	if (freeable)
205		txh->txh_space_tooverwrite += space;
206	else
207		txh->txh_space_towrite += space;
208	if (bp)
209		txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp);
210
211	dmu_tx_count_twig(txh, dn, parent, level + 1,
212	    blkid >> epbs, freeable, history);
213}
214
215/* ARGSUSED */
216static void
217dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
218{
219	dnode_t *dn = txh->txh_dnode;
220	uint64_t start, end, i;
221	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
222	int err = 0;
223
224	if (len == 0)
225		return;
226
227	min_bs = SPA_MINBLOCKSHIFT;
228	max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1;
229	min_ibs = DN_MIN_INDBLKSHIFT;
230	max_ibs = DN_MAX_INDBLKSHIFT;
231
232	if (dn) {
233		uint64_t history[DN_MAX_LEVELS];
234		int nlvls = dn->dn_nlevels;
235		int delta;
236
237		/*
238		 * For i/o error checking, read the first and last level-0
239		 * blocks (if they are not aligned), and all the level-1 blocks.
240		 */
241		if (dn->dn_maxblkid == 0) {
242			delta = dn->dn_datablksz;
243			start = (off < dn->dn_datablksz) ? 0 : 1;
244			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
245			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
246				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
247				if (err)
248					goto out;
249				delta -= off;
250			}
251		} else {
252			zio_t *zio = zio_root(dn->dn_objset->os_spa,
253			    NULL, NULL, ZIO_FLAG_CANFAIL);
254
255			/* first level-0 block */
256			start = off >> dn->dn_datablkshift;
257			if (P2PHASE(off, dn->dn_datablksz) ||
258			    len < dn->dn_datablksz) {
259				err = dmu_tx_check_ioerr(zio, dn, 0, start);
260				if (err)
261					goto out;
262			}
263
264			/* last level-0 block */
265			end = (off+len-1) >> dn->dn_datablkshift;
266			if (end != start && end <= dn->dn_maxblkid &&
267			    P2PHASE(off+len, dn->dn_datablksz)) {
268				err = dmu_tx_check_ioerr(zio, dn, 0, end);
269				if (err)
270					goto out;
271			}
272
273			/* level-1 blocks */
274			if (nlvls > 1) {
275				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
276				for (i = (start>>shft)+1; i < end>>shft; i++) {
277					err = dmu_tx_check_ioerr(zio, dn, 1, i);
278					if (err)
279						goto out;
280				}
281			}
282
283			err = zio_wait(zio);
284			if (err)
285				goto out;
286			delta = P2NPHASE(off, dn->dn_datablksz);
287		}
288
289		min_ibs = max_ibs = dn->dn_indblkshift;
290		if (dn->dn_maxblkid > 0) {
291			/*
292			 * The blocksize can't change,
293			 * so we can make a more precise estimate.
294			 */
295			ASSERT(dn->dn_datablkshift != 0);
296			min_bs = max_bs = dn->dn_datablkshift;
297		} else {
298			/*
299			 * The blocksize can increase up to the recordsize,
300			 * or if it is already more than the recordsize,
301			 * up to the next power of 2.
302			 */
303			min_bs = highbit64(dn->dn_datablksz - 1);
304			max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1));
305		}
306
307		/*
308		 * If this write is not off the end of the file
309		 * we need to account for overwrites/unref.
310		 */
311		if (start <= dn->dn_maxblkid) {
312			for (int l = 0; l < DN_MAX_LEVELS; l++)
313				history[l] = -1ULL;
314		}
315		while (start <= dn->dn_maxblkid) {
316			dmu_buf_impl_t *db;
317
318			rw_enter(&dn->dn_struct_rwlock, RW_READER);
319			err = dbuf_hold_impl(dn, 0, start,
320			    FALSE, FALSE, FTAG, &db);
321			rw_exit(&dn->dn_struct_rwlock);
322
323			if (err) {
324				txh->txh_tx->tx_err = err;
325				return;
326			}
327
328			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
329			    history);
330			dbuf_rele(db, FTAG);
331			if (++start > end) {
332				/*
333				 * Account for new indirects appearing
334				 * before this IO gets assigned into a txg.
335				 */
336				bits = 64 - min_bs;
337				epbs = min_ibs - SPA_BLKPTRSHIFT;
338				for (bits -= epbs * (nlvls - 1);
339				    bits >= 0; bits -= epbs)
340					txh->txh_fudge += 1ULL << max_ibs;
341				goto out;
342			}
343			off += delta;
344			if (len >= delta)
345				len -= delta;
346			delta = dn->dn_datablksz;
347		}
348	}
349
350	/*
351	 * 'end' is the last thing we will access, not one past.
352	 * This way we won't overflow when accessing the last byte.
353	 */
354	start = P2ALIGN(off, 1ULL << max_bs);
355	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
356	txh->txh_space_towrite += end - start + 1;
357
358	start >>= min_bs;
359	end >>= min_bs;
360
361	epbs = min_ibs - SPA_BLKPTRSHIFT;
362
363	/*
364	 * The object contains at most 2^(64 - min_bs) blocks,
365	 * and each indirect level maps 2^epbs.
366	 */
367	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
368		start >>= epbs;
369		end >>= epbs;
370		ASSERT3U(end, >=, start);
371		txh->txh_space_towrite += (end - start + 1) << max_ibs;
372		if (start != 0) {
373			/*
374			 * We also need a new blkid=0 indirect block
375			 * to reference any existing file data.
376			 */
377			txh->txh_space_towrite += 1ULL << max_ibs;
378		}
379	}
380
381out:
382	if (txh->txh_space_towrite + txh->txh_space_tooverwrite >
383	    2 * DMU_MAX_ACCESS)
384		err = SET_ERROR(EFBIG);
385
386	if (err)
387		txh->txh_tx->tx_err = err;
388}
389
390static void
391dmu_tx_count_dnode(dmu_tx_hold_t *txh)
392{
393	dnode_t *dn = txh->txh_dnode;
394	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
395	uint64_t space = mdn->dn_datablksz +
396	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
397
398	if (dn && dn->dn_dbuf->db_blkptr &&
399	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
400	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
401		txh->txh_space_tooverwrite += space;
402		txh->txh_space_tounref += space;
403	} else {
404		txh->txh_space_towrite += space;
405		if (dn && dn->dn_dbuf->db_blkptr)
406			txh->txh_space_tounref += space;
407	}
408}
409
410void
411dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
412{
413	dmu_tx_hold_t *txh;
414
415	ASSERT(tx->tx_txg == 0);
416	ASSERT(len < DMU_MAX_ACCESS);
417	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
418
419	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
420	    object, THT_WRITE, off, len);
421	if (txh == NULL)
422		return;
423
424	dmu_tx_count_write(txh, off, len);
425	dmu_tx_count_dnode(txh);
426}
427
428static void
429dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
430{
431	uint64_t blkid, nblks, lastblk;
432	uint64_t space = 0, unref = 0, skipped = 0;
433	dnode_t *dn = txh->txh_dnode;
434	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
435	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
436	int epbs;
437	uint64_t l0span = 0, nl1blks = 0;
438
439	if (dn->dn_nlevels == 0)
440		return;
441
442	/*
443	 * The struct_rwlock protects us against dn_nlevels
444	 * changing, in case (against all odds) we manage to dirty &
445	 * sync out the changes after we check for being dirty.
446	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
447	 */
448	rw_enter(&dn->dn_struct_rwlock, RW_READER);
449	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
450	if (dn->dn_maxblkid == 0) {
451		if (off == 0 && len >= dn->dn_datablksz) {
452			blkid = 0;
453			nblks = 1;
454		} else {
455			rw_exit(&dn->dn_struct_rwlock);
456			return;
457		}
458	} else {
459		blkid = off >> dn->dn_datablkshift;
460		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
461
462		if (blkid > dn->dn_maxblkid) {
463			rw_exit(&dn->dn_struct_rwlock);
464			return;
465		}
466		if (blkid + nblks > dn->dn_maxblkid)
467			nblks = dn->dn_maxblkid - blkid + 1;
468
469	}
470	l0span = nblks;    /* save for later use to calc level > 1 overhead */
471	if (dn->dn_nlevels == 1) {
472		int i;
473		for (i = 0; i < nblks; i++) {
474			blkptr_t *bp = dn->dn_phys->dn_blkptr;
475			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
476			bp += blkid + i;
477			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
478				dprintf_bp(bp, "can free old%s", "");
479				space += bp_get_dsize(spa, bp);
480			}
481			unref += BP_GET_ASIZE(bp);
482		}
483		nl1blks = 1;
484		nblks = 0;
485	}
486
487	lastblk = blkid + nblks - 1;
488	while (nblks) {
489		dmu_buf_impl_t *dbuf;
490		uint64_t ibyte, new_blkid;
491		int epb = 1 << epbs;
492		int err, i, blkoff, tochk;
493		blkptr_t *bp;
494
495		ibyte = blkid << dn->dn_datablkshift;
496		err = dnode_next_offset(dn,
497		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
498		new_blkid = ibyte >> dn->dn_datablkshift;
499		if (err == ESRCH) {
500			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
501			break;
502		}
503		if (err) {
504			txh->txh_tx->tx_err = err;
505			break;
506		}
507		if (new_blkid > lastblk) {
508			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
509			break;
510		}
511
512		if (new_blkid > blkid) {
513			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
514			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
515			nblks -= new_blkid - blkid;
516			blkid = new_blkid;
517		}
518		blkoff = P2PHASE(blkid, epb);
519		tochk = MIN(epb - blkoff, nblks);
520
521		err = dbuf_hold_impl(dn, 1, blkid >> epbs,
522		    FALSE, FALSE, FTAG, &dbuf);
523		if (err) {
524			txh->txh_tx->tx_err = err;
525			break;
526		}
527
528		txh->txh_memory_tohold += dbuf->db.db_size;
529
530		/*
531		 * We don't check memory_tohold against DMU_MAX_ACCESS because
532		 * memory_tohold is an over-estimation (especially the >L1
533		 * indirect blocks), so it could fail.  Callers should have
534		 * already verified that they will not be holding too much
535		 * memory.
536		 */
537
538		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
539		if (err != 0) {
540			txh->txh_tx->tx_err = err;
541			dbuf_rele(dbuf, FTAG);
542			break;
543		}
544
545		bp = dbuf->db.db_data;
546		bp += blkoff;
547
548		for (i = 0; i < tochk; i++) {
549			if (dsl_dataset_block_freeable(ds, &bp[i],
550			    bp[i].blk_birth)) {
551				dprintf_bp(&bp[i], "can free old%s", "");
552				space += bp_get_dsize(spa, &bp[i]);
553			}
554			unref += BP_GET_ASIZE(bp);
555		}
556		dbuf_rele(dbuf, FTAG);
557
558		++nl1blks;
559		blkid += tochk;
560		nblks -= tochk;
561	}
562	rw_exit(&dn->dn_struct_rwlock);
563
564	/*
565	 * Add in memory requirements of higher-level indirects.
566	 * This assumes a worst-possible scenario for dn_nlevels and a
567	 * worst-possible distribution of l1-blocks over the region to free.
568	 */
569	{
570		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
571		int level = 2;
572		/*
573		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
574		 * given datablkshift and indblkshift. This makes the
575		 * difference between 19 and 8 on large files.
576		 */
577		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
578		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
579
580		while (level++ < maxlevel) {
581			txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1)
582			    << dn->dn_indblkshift;
583			blkcnt = 1 + (blkcnt >> epbs);
584		}
585	}
586
587	/* account for new level 1 indirect blocks that might show up */
588	if (skipped > 0) {
589		txh->txh_fudge += skipped << dn->dn_indblkshift;
590		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
591		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
592	}
593	txh->txh_space_tofree += space;
594	txh->txh_space_tounref += unref;
595}
596
597/*
598 * This function marks the transaction as being a "net free".  The end
599 * result is that refquotas will be disabled for this transaction, and
600 * this transaction will be able to use half of the pool space overhead
601 * (see dsl_pool_adjustedsize()).  Therefore this function should only
602 * be called for transactions that we expect will not cause a net increase
603 * in the amount of space used (but it's OK if that is occasionally not true).
604 */
605void
606dmu_tx_mark_netfree(dmu_tx_t *tx)
607{
608	dmu_tx_hold_t *txh;
609
610	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
611	    DMU_NEW_OBJECT, THT_FREE, 0, 0);
612
613	/*
614	 * Pretend that this operation will free 1GB of space.  This
615	 * should be large enough to cancel out the largest write.
616	 * We don't want to use something like UINT64_MAX, because that would
617	 * cause overflows when doing math with these values (e.g. in
618	 * dmu_tx_try_assign()).
619	 */
620	txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024;
621}
622
623void
624dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
625{
626	dmu_tx_hold_t *txh;
627	dnode_t *dn;
628	int err;
629	zio_t *zio;
630
631	ASSERT(tx->tx_txg == 0);
632
633	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
634	    object, THT_FREE, off, len);
635	if (txh == NULL)
636		return;
637	dn = txh->txh_dnode;
638	dmu_tx_count_dnode(txh);
639
640	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
641		return;
642	if (len == DMU_OBJECT_END)
643		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
644
645
646	/*
647	 * For i/o error checking, we read the first and last level-0
648	 * blocks if they are not aligned, and all the level-1 blocks.
649	 *
650	 * Note:  dbuf_free_range() assumes that we have not instantiated
651	 * any level-0 dbufs that will be completely freed.  Therefore we must
652	 * exercise care to not read or count the first and last blocks
653	 * if they are blocksize-aligned.
654	 */
655	if (dn->dn_datablkshift == 0) {
656		if (off != 0 || len < dn->dn_datablksz)
657			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
658	} else {
659		/* first block will be modified if it is not aligned */
660		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
661			dmu_tx_count_write(txh, off, 1);
662		/* last block will be modified if it is not aligned */
663		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
664			dmu_tx_count_write(txh, off+len, 1);
665	}
666
667	/*
668	 * Check level-1 blocks.
669	 */
670	if (dn->dn_nlevels > 1) {
671		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
672		    SPA_BLKPTRSHIFT;
673		uint64_t start = off >> shift;
674		uint64_t end = (off + len) >> shift;
675
676		ASSERT(dn->dn_indblkshift != 0);
677
678		/*
679		 * dnode_reallocate() can result in an object with indirect
680		 * blocks having an odd data block size.  In this case,
681		 * just check the single block.
682		 */
683		if (dn->dn_datablkshift == 0)
684			start = end = 0;
685
686		zio = zio_root(tx->tx_pool->dp_spa,
687		    NULL, NULL, ZIO_FLAG_CANFAIL);
688		for (uint64_t i = start; i <= end; i++) {
689			uint64_t ibyte = i << shift;
690			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
691			i = ibyte >> shift;
692			if (err == ESRCH || i > end)
693				break;
694			if (err) {
695				tx->tx_err = err;
696				return;
697			}
698
699			err = dmu_tx_check_ioerr(zio, dn, 1, i);
700			if (err) {
701				tx->tx_err = err;
702				return;
703			}
704		}
705		err = zio_wait(zio);
706		if (err) {
707			tx->tx_err = err;
708			return;
709		}
710	}
711
712	dmu_tx_count_free(txh, off, len);
713}
714
715void
716dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
717{
718	dmu_tx_hold_t *txh;
719	dnode_t *dn;
720	dsl_dataset_phys_t *ds_phys;
721	uint64_t nblocks;
722	int epbs, err;
723
724	ASSERT(tx->tx_txg == 0);
725
726	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
727	    object, THT_ZAP, add, (uintptr_t)name);
728	if (txh == NULL)
729		return;
730	dn = txh->txh_dnode;
731
732	dmu_tx_count_dnode(txh);
733
734	if (dn == NULL) {
735		/*
736		 * We will be able to fit a new object's entries into one leaf
737		 * block.  So there will be at most 2 blocks total,
738		 * including the header block.
739		 */
740		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
741		return;
742	}
743
744	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
745
746	if (dn->dn_maxblkid == 0 && !add) {
747		blkptr_t *bp;
748
749		/*
750		 * If there is only one block  (i.e. this is a micro-zap)
751		 * and we are not adding anything, the accounting is simple.
752		 */
753		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
754		if (err) {
755			tx->tx_err = err;
756			return;
757		}
758
759		/*
760		 * Use max block size here, since we don't know how much
761		 * the size will change between now and the dbuf dirty call.
762		 */
763		bp = &dn->dn_phys->dn_blkptr[0];
764		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
765		    bp, bp->blk_birth))
766			txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ;
767		else
768			txh->txh_space_towrite += MZAP_MAX_BLKSZ;
769		if (!BP_IS_HOLE(bp))
770			txh->txh_space_tounref += MZAP_MAX_BLKSZ;
771		return;
772	}
773
774	if (dn->dn_maxblkid > 0 && name) {
775		/*
776		 * access the name in this fat-zap so that we'll check
777		 * for i/o errors to the leaf blocks, etc.
778		 */
779		err = zap_lookup(dn->dn_objset, dn->dn_object, name,
780		    8, 0, NULL);
781		if (err == EIO) {
782			tx->tx_err = err;
783			return;
784		}
785	}
786
787	err = zap_count_write(dn->dn_objset, dn->dn_object, name, add,
788	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
789
790	/*
791	 * If the modified blocks are scattered to the four winds,
792	 * we'll have to modify an indirect twig for each.
793	 */
794	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
795	ds_phys = dsl_dataset_phys(dn->dn_objset->os_dsl_dataset);
796	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
797		if (ds_phys->ds_prev_snap_obj)
798			txh->txh_space_towrite += 3 << dn->dn_indblkshift;
799		else
800			txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift;
801}
802
803void
804dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
805{
806	dmu_tx_hold_t *txh;
807
808	ASSERT(tx->tx_txg == 0);
809
810	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
811	    object, THT_BONUS, 0, 0);
812	if (txh)
813		dmu_tx_count_dnode(txh);
814}
815
816void
817dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
818{
819	dmu_tx_hold_t *txh;
820	ASSERT(tx->tx_txg == 0);
821
822	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
823	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
824
825	txh->txh_space_towrite += space;
826}
827
828int
829dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
830{
831	dmu_tx_hold_t *txh;
832	int holds = 0;
833
834	/*
835	 * By asserting that the tx is assigned, we're counting the
836	 * number of dn_tx_holds, which is the same as the number of
837	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
838	 * dn_tx_holds could be 0.
839	 */
840	ASSERT(tx->tx_txg != 0);
841
842	/* if (tx->tx_anyobj == TRUE) */
843		/* return (0); */
844
845	for (txh = list_head(&tx->tx_holds); txh;
846	    txh = list_next(&tx->tx_holds, txh)) {
847		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
848			holds++;
849	}
850
851	return (holds);
852}
853
854#ifdef ZFS_DEBUG
855void
856dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
857{
858	dmu_tx_hold_t *txh;
859	int match_object = FALSE, match_offset = FALSE;
860	dnode_t *dn;
861
862	DB_DNODE_ENTER(db);
863	dn = DB_DNODE(db);
864	ASSERT(tx->tx_txg != 0);
865	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
866	ASSERT3U(dn->dn_object, ==, db->db.db_object);
867
868	if (tx->tx_anyobj) {
869		DB_DNODE_EXIT(db);
870		return;
871	}
872
873	/* XXX No checking on the meta dnode for now */
874	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
875		DB_DNODE_EXIT(db);
876		return;
877	}
878
879	for (txh = list_head(&tx->tx_holds); txh;
880	    txh = list_next(&tx->tx_holds, txh)) {
881		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
882		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
883			match_object = TRUE;
884		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
885			int datablkshift = dn->dn_datablkshift ?
886			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
887			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
888			int shift = datablkshift + epbs * db->db_level;
889			uint64_t beginblk = shift >= 64 ? 0 :
890			    (txh->txh_arg1 >> shift);
891			uint64_t endblk = shift >= 64 ? 0 :
892			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
893			uint64_t blkid = db->db_blkid;
894
895			/* XXX txh_arg2 better not be zero... */
896
897			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
898			    txh->txh_type, beginblk, endblk);
899
900			switch (txh->txh_type) {
901			case THT_WRITE:
902				if (blkid >= beginblk && blkid <= endblk)
903					match_offset = TRUE;
904				/*
905				 * We will let this hold work for the bonus
906				 * or spill buffer so that we don't need to
907				 * hold it when creating a new object.
908				 */
909				if (blkid == DMU_BONUS_BLKID ||
910				    blkid == DMU_SPILL_BLKID)
911					match_offset = TRUE;
912				/*
913				 * They might have to increase nlevels,
914				 * thus dirtying the new TLIBs.  Or the
915				 * might have to change the block size,
916				 * thus dirying the new lvl=0 blk=0.
917				 */
918				if (blkid == 0)
919					match_offset = TRUE;
920				break;
921			case THT_FREE:
922				/*
923				 * We will dirty all the level 1 blocks in
924				 * the free range and perhaps the first and
925				 * last level 0 block.
926				 */
927				if (blkid >= beginblk && (blkid <= endblk ||
928				    txh->txh_arg2 == DMU_OBJECT_END))
929					match_offset = TRUE;
930				break;
931			case THT_SPILL:
932				if (blkid == DMU_SPILL_BLKID)
933					match_offset = TRUE;
934				break;
935			case THT_BONUS:
936				if (blkid == DMU_BONUS_BLKID)
937					match_offset = TRUE;
938				break;
939			case THT_ZAP:
940				match_offset = TRUE;
941				break;
942			case THT_NEWOBJECT:
943				match_object = TRUE;
944				break;
945			default:
946				ASSERT(!"bad txh_type");
947			}
948		}
949		if (match_object && match_offset) {
950			DB_DNODE_EXIT(db);
951			return;
952		}
953	}
954	DB_DNODE_EXIT(db);
955	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
956	    (u_longlong_t)db->db.db_object, db->db_level,
957	    (u_longlong_t)db->db_blkid);
958}
959#endif
960
961/*
962 * If we can't do 10 iops, something is wrong.  Let us go ahead
963 * and hit zfs_dirty_data_max.
964 */
965hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
966int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
967
968/*
969 * We delay transactions when we've determined that the backend storage
970 * isn't able to accommodate the rate of incoming writes.
971 *
972 * If there is already a transaction waiting, we delay relative to when
973 * that transaction finishes waiting.  This way the calculated min_time
974 * is independent of the number of threads concurrently executing
975 * transactions.
976 *
977 * If we are the only waiter, wait relative to when the transaction
978 * started, rather than the current time.  This credits the transaction for
979 * "time already served", e.g. reading indirect blocks.
980 *
981 * The minimum time for a transaction to take is calculated as:
982 *     min_time = scale * (dirty - min) / (max - dirty)
983 *     min_time is then capped at zfs_delay_max_ns.
984 *
985 * The delay has two degrees of freedom that can be adjusted via tunables.
986 * The percentage of dirty data at which we start to delay is defined by
987 * zfs_delay_min_dirty_percent. This should typically be at or above
988 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
989 * delay after writing at full speed has failed to keep up with the incoming
990 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
991 * speaking, this variable determines the amount of delay at the midpoint of
992 * the curve.
993 *
994 * delay
995 *  10ms +-------------------------------------------------------------*+
996 *       |                                                             *|
997 *   9ms +                                                             *+
998 *       |                                                             *|
999 *   8ms +                                                             *+
1000 *       |                                                            * |
1001 *   7ms +                                                            * +
1002 *       |                                                            * |
1003 *   6ms +                                                            * +
1004 *       |                                                            * |
1005 *   5ms +                                                           *  +
1006 *       |                                                           *  |
1007 *   4ms +                                                           *  +
1008 *       |                                                           *  |
1009 *   3ms +                                                          *   +
1010 *       |                                                          *   |
1011 *   2ms +                                              (midpoint) *    +
1012 *       |                                                  |    **     |
1013 *   1ms +                                                  v ***       +
1014 *       |             zfs_delay_scale ---------->     ********         |
1015 *     0 +-------------------------------------*********----------------+
1016 *       0%                    <- zfs_dirty_data_max ->               100%
1017 *
1018 * Note that since the delay is added to the outstanding time remaining on the
1019 * most recent transaction, the delay is effectively the inverse of IOPS.
1020 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
1021 * was chosen such that small changes in the amount of accumulated dirty data
1022 * in the first 3/4 of the curve yield relatively small differences in the
1023 * amount of delay.
1024 *
1025 * The effects can be easier to understand when the amount of delay is
1026 * represented on a log scale:
1027 *
1028 * delay
1029 * 100ms +-------------------------------------------------------------++
1030 *       +                                                              +
1031 *       |                                                              |
1032 *       +                                                             *+
1033 *  10ms +                                                             *+
1034 *       +                                                           ** +
1035 *       |                                              (midpoint)  **  |
1036 *       +                                                  |     **    +
1037 *   1ms +                                                  v ****      +
1038 *       +             zfs_delay_scale ---------->        *****         +
1039 *       |                                             ****             |
1040 *       +                                          ****                +
1041 * 100us +                                        **                    +
1042 *       +                                       *                      +
1043 *       |                                      *                       |
1044 *       +                                     *                        +
1045 *  10us +                                     *                        +
1046 *       +                                                              +
1047 *       |                                                              |
1048 *       +                                                              +
1049 *       +--------------------------------------------------------------+
1050 *       0%                    <- zfs_dirty_data_max ->               100%
1051 *
1052 * Note here that only as the amount of dirty data approaches its limit does
1053 * the delay start to increase rapidly. The goal of a properly tuned system
1054 * should be to keep the amount of dirty data out of that range by first
1055 * ensuring that the appropriate limits are set for the I/O scheduler to reach
1056 * optimal throughput on the backend storage, and then by changing the value
1057 * of zfs_delay_scale to increase the steepness of the curve.
1058 */
1059static void
1060dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
1061{
1062	dsl_pool_t *dp = tx->tx_pool;
1063	uint64_t delay_min_bytes =
1064	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
1065	hrtime_t wakeup, min_tx_time, now;
1066
1067	if (dirty <= delay_min_bytes)
1068		return;
1069
1070	/*
1071	 * The caller has already waited until we are under the max.
1072	 * We make them pass us the amount of dirty data so we don't
1073	 * have to handle the case of it being >= the max, which could
1074	 * cause a divide-by-zero if it's == the max.
1075	 */
1076	ASSERT3U(dirty, <, zfs_dirty_data_max);
1077
1078	now = gethrtime();
1079	min_tx_time = zfs_delay_scale *
1080	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
1081	if (now > tx->tx_start + min_tx_time)
1082		return;
1083
1084	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
1085
1086	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
1087	    uint64_t, min_tx_time);
1088
1089	mutex_enter(&dp->dp_lock);
1090	wakeup = MAX(tx->tx_start + min_tx_time,
1091	    dp->dp_last_wakeup + min_tx_time);
1092	dp->dp_last_wakeup = wakeup;
1093	mutex_exit(&dp->dp_lock);
1094
1095#ifdef _KERNEL
1096#ifdef illumos
1097	mutex_enter(&curthread->t_delay_lock);
1098	while (cv_timedwait_hires(&curthread->t_delay_cv,
1099	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
1100	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
1101		continue;
1102	mutex_exit(&curthread->t_delay_lock);
1103#else
1104	pause_sbt("dmu_tx_delay", wakeup * SBT_1NS,
1105	    zfs_delay_resolution_ns * SBT_1NS, C_ABSOLUTE);
1106#endif
1107#else
1108	hrtime_t delta = wakeup - gethrtime();
1109	struct timespec ts;
1110	ts.tv_sec = delta / NANOSEC;
1111	ts.tv_nsec = delta % NANOSEC;
1112	(void) nanosleep(&ts, NULL);
1113#endif
1114}
1115
1116static int
1117dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
1118{
1119	dmu_tx_hold_t *txh;
1120	spa_t *spa = tx->tx_pool->dp_spa;
1121	uint64_t memory, asize, fsize, usize;
1122	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
1123
1124	ASSERT0(tx->tx_txg);
1125
1126	if (tx->tx_err)
1127		return (tx->tx_err);
1128
1129	if (spa_suspended(spa)) {
1130		/*
1131		 * If the user has indicated a blocking failure mode
1132		 * then return ERESTART which will block in dmu_tx_wait().
1133		 * Otherwise, return EIO so that an error can get
1134		 * propagated back to the VOP calls.
1135		 *
1136		 * Note that we always honor the txg_how flag regardless
1137		 * of the failuremode setting.
1138		 */
1139		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1140		    txg_how != TXG_WAIT)
1141			return (SET_ERROR(EIO));
1142
1143		return (SET_ERROR(ERESTART));
1144	}
1145
1146	if (!tx->tx_waited &&
1147	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1148		tx->tx_wait_dirty = B_TRUE;
1149		return (SET_ERROR(ERESTART));
1150	}
1151
1152	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1153	tx->tx_needassign_txh = NULL;
1154
1155	/*
1156	 * NB: No error returns are allowed after txg_hold_open, but
1157	 * before processing the dnode holds, due to the
1158	 * dmu_tx_unassign() logic.
1159	 */
1160
1161	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
1162	for (txh = list_head(&tx->tx_holds); txh;
1163	    txh = list_next(&tx->tx_holds, txh)) {
1164		dnode_t *dn = txh->txh_dnode;
1165		if (dn != NULL) {
1166			mutex_enter(&dn->dn_mtx);
1167			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1168				mutex_exit(&dn->dn_mtx);
1169				tx->tx_needassign_txh = txh;
1170				return (SET_ERROR(ERESTART));
1171			}
1172			if (dn->dn_assigned_txg == 0)
1173				dn->dn_assigned_txg = tx->tx_txg;
1174			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1175			(void) refcount_add(&dn->dn_tx_holds, tx);
1176			mutex_exit(&dn->dn_mtx);
1177		}
1178		towrite += txh->txh_space_towrite;
1179		tofree += txh->txh_space_tofree;
1180		tooverwrite += txh->txh_space_tooverwrite;
1181		tounref += txh->txh_space_tounref;
1182		tohold += txh->txh_memory_tohold;
1183		fudge += txh->txh_fudge;
1184	}
1185
1186	/*
1187	 * If a snapshot has been taken since we made our estimates,
1188	 * assume that we won't be able to free or overwrite anything.
1189	 */
1190	if (tx->tx_objset &&
1191	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
1192	    tx->tx_lastsnap_txg) {
1193		towrite += tooverwrite;
1194		tooverwrite = tofree = 0;
1195	}
1196
1197	/* needed allocation: worst-case estimate of write space */
1198	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
1199	/* freed space estimate: worst-case overwrite + free estimate */
1200	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
1201	/* convert unrefd space to worst-case estimate */
1202	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
1203	/* calculate memory footprint estimate */
1204	memory = towrite + tooverwrite + tohold;
1205
1206#ifdef ZFS_DEBUG
1207	/*
1208	 * Add in 'tohold' to account for our dirty holds on this memory
1209	 * XXX - the "fudge" factor is to account for skipped blocks that
1210	 * we missed because dnode_next_offset() misses in-core-only blocks.
1211	 */
1212	tx->tx_space_towrite = asize +
1213	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
1214	tx->tx_space_tofree = tofree;
1215	tx->tx_space_tooverwrite = tooverwrite;
1216	tx->tx_space_tounref = tounref;
1217#endif
1218
1219	if (tx->tx_dir && asize != 0) {
1220		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1221		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1222		if (err)
1223			return (err);
1224	}
1225
1226	return (0);
1227}
1228
1229static void
1230dmu_tx_unassign(dmu_tx_t *tx)
1231{
1232	dmu_tx_hold_t *txh;
1233
1234	if (tx->tx_txg == 0)
1235		return;
1236
1237	txg_rele_to_quiesce(&tx->tx_txgh);
1238
1239	/*
1240	 * Walk the transaction's hold list, removing the hold on the
1241	 * associated dnode, and notifying waiters if the refcount drops to 0.
1242	 */
1243	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1244	    txh = list_next(&tx->tx_holds, txh)) {
1245		dnode_t *dn = txh->txh_dnode;
1246
1247		if (dn == NULL)
1248			continue;
1249		mutex_enter(&dn->dn_mtx);
1250		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1251
1252		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1253			dn->dn_assigned_txg = 0;
1254			cv_broadcast(&dn->dn_notxholds);
1255		}
1256		mutex_exit(&dn->dn_mtx);
1257	}
1258
1259	txg_rele_to_sync(&tx->tx_txgh);
1260
1261	tx->tx_lasttried_txg = tx->tx_txg;
1262	tx->tx_txg = 0;
1263}
1264
1265/*
1266 * Assign tx to a transaction group.  txg_how can be one of:
1267 *
1268 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
1269 *	a new one.  This should be used when you're not holding locks.
1270 *	It will only fail if we're truly out of space (or over quota).
1271 *
1272 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
1273 *	blocking, returns immediately with ERESTART.  This should be used
1274 *	whenever you're holding locks.  On an ERESTART error, the caller
1275 *	should drop locks, do a dmu_tx_wait(tx), and try again.
1276 *
1277 * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
1278 *      has already been called on behalf of this operation (though
1279 *      most likely on a different tx).
1280 */
1281int
1282dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1283{
1284	int err;
1285
1286	ASSERT(tx->tx_txg == 0);
1287	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1288	    txg_how == TXG_WAITED);
1289	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1290
1291	/* If we might wait, we must not hold the config lock. */
1292	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1293
1294	if (txg_how == TXG_WAITED)
1295		tx->tx_waited = B_TRUE;
1296
1297	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1298		dmu_tx_unassign(tx);
1299
1300		if (err != ERESTART || txg_how != TXG_WAIT)
1301			return (err);
1302
1303		dmu_tx_wait(tx);
1304	}
1305
1306	txg_rele_to_quiesce(&tx->tx_txgh);
1307
1308	return (0);
1309}
1310
1311void
1312dmu_tx_wait(dmu_tx_t *tx)
1313{
1314	spa_t *spa = tx->tx_pool->dp_spa;
1315	dsl_pool_t *dp = tx->tx_pool;
1316
1317	ASSERT(tx->tx_txg == 0);
1318	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1319
1320	if (tx->tx_wait_dirty) {
1321		/*
1322		 * dmu_tx_try_assign() has determined that we need to wait
1323		 * because we've consumed much or all of the dirty buffer
1324		 * space.
1325		 */
1326		mutex_enter(&dp->dp_lock);
1327		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1328			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1329		uint64_t dirty = dp->dp_dirty_total;
1330		mutex_exit(&dp->dp_lock);
1331
1332		dmu_tx_delay(tx, dirty);
1333
1334		tx->tx_wait_dirty = B_FALSE;
1335
1336		/*
1337		 * Note: setting tx_waited only has effect if the caller
1338		 * used TX_WAIT.  Otherwise they are going to destroy
1339		 * this tx and try again.  The common case, zfs_write(),
1340		 * uses TX_WAIT.
1341		 */
1342		tx->tx_waited = B_TRUE;
1343	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1344		/*
1345		 * If the pool is suspended we need to wait until it
1346		 * is resumed.  Note that it's possible that the pool
1347		 * has become active after this thread has tried to
1348		 * obtain a tx.  If that's the case then tx_lasttried_txg
1349		 * would not have been set.
1350		 */
1351		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1352	} else if (tx->tx_needassign_txh) {
1353		/*
1354		 * A dnode is assigned to the quiescing txg.  Wait for its
1355		 * transaction to complete.
1356		 */
1357		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1358
1359		mutex_enter(&dn->dn_mtx);
1360		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1361			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1362		mutex_exit(&dn->dn_mtx);
1363		tx->tx_needassign_txh = NULL;
1364	} else {
1365		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1366	}
1367}
1368
1369void
1370dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1371{
1372#ifdef ZFS_DEBUG
1373	if (tx->tx_dir == NULL || delta == 0)
1374		return;
1375
1376	if (delta > 0) {
1377		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1378		    tx->tx_space_towrite);
1379		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1380	} else {
1381		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1382	}
1383#endif
1384}
1385
1386void
1387dmu_tx_commit(dmu_tx_t *tx)
1388{
1389	dmu_tx_hold_t *txh;
1390
1391	ASSERT(tx->tx_txg != 0);
1392
1393	/*
1394	 * Go through the transaction's hold list and remove holds on
1395	 * associated dnodes, notifying waiters if no holds remain.
1396	 */
1397	while (txh = list_head(&tx->tx_holds)) {
1398		dnode_t *dn = txh->txh_dnode;
1399
1400		list_remove(&tx->tx_holds, txh);
1401		kmem_free(txh, sizeof (dmu_tx_hold_t));
1402		if (dn == NULL)
1403			continue;
1404		mutex_enter(&dn->dn_mtx);
1405		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1406
1407		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1408			dn->dn_assigned_txg = 0;
1409			cv_broadcast(&dn->dn_notxholds);
1410		}
1411		mutex_exit(&dn->dn_mtx);
1412		dnode_rele(dn, tx);
1413	}
1414
1415	if (tx->tx_tempreserve_cookie)
1416		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1417
1418	if (!list_is_empty(&tx->tx_callbacks))
1419		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1420
1421	if (tx->tx_anyobj == FALSE)
1422		txg_rele_to_sync(&tx->tx_txgh);
1423
1424	list_destroy(&tx->tx_callbacks);
1425	list_destroy(&tx->tx_holds);
1426#ifdef ZFS_DEBUG
1427	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1428	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1429	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1430	refcount_destroy_many(&tx->tx_space_written,
1431	    refcount_count(&tx->tx_space_written));
1432	refcount_destroy_many(&tx->tx_space_freed,
1433	    refcount_count(&tx->tx_space_freed));
1434#endif
1435	kmem_free(tx, sizeof (dmu_tx_t));
1436}
1437
1438void
1439dmu_tx_abort(dmu_tx_t *tx)
1440{
1441	dmu_tx_hold_t *txh;
1442
1443	ASSERT(tx->tx_txg == 0);
1444
1445	while (txh = list_head(&tx->tx_holds)) {
1446		dnode_t *dn = txh->txh_dnode;
1447
1448		list_remove(&tx->tx_holds, txh);
1449		kmem_free(txh, sizeof (dmu_tx_hold_t));
1450		if (dn != NULL)
1451			dnode_rele(dn, tx);
1452	}
1453
1454	/*
1455	 * Call any registered callbacks with an error code.
1456	 */
1457	if (!list_is_empty(&tx->tx_callbacks))
1458		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1459
1460	list_destroy(&tx->tx_callbacks);
1461	list_destroy(&tx->tx_holds);
1462#ifdef ZFS_DEBUG
1463	refcount_destroy_many(&tx->tx_space_written,
1464	    refcount_count(&tx->tx_space_written));
1465	refcount_destroy_many(&tx->tx_space_freed,
1466	    refcount_count(&tx->tx_space_freed));
1467#endif
1468	kmem_free(tx, sizeof (dmu_tx_t));
1469}
1470
1471uint64_t
1472dmu_tx_get_txg(dmu_tx_t *tx)
1473{
1474	ASSERT(tx->tx_txg != 0);
1475	return (tx->tx_txg);
1476}
1477
1478dsl_pool_t *
1479dmu_tx_pool(dmu_tx_t *tx)
1480{
1481	ASSERT(tx->tx_pool != NULL);
1482	return (tx->tx_pool);
1483}
1484
1485
1486void
1487dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1488{
1489	dmu_tx_callback_t *dcb;
1490
1491	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1492
1493	dcb->dcb_func = func;
1494	dcb->dcb_data = data;
1495
1496	list_insert_tail(&tx->tx_callbacks, dcb);
1497}
1498
1499/*
1500 * Call all the commit callbacks on a list, with a given error code.
1501 */
1502void
1503dmu_tx_do_callbacks(list_t *cb_list, int error)
1504{
1505	dmu_tx_callback_t *dcb;
1506
1507	while (dcb = list_head(cb_list)) {
1508		list_remove(cb_list, dcb);
1509		dcb->dcb_func(dcb->dcb_data, error);
1510		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1511	}
1512}
1513
1514/*
1515 * Interface to hold a bunch of attributes.
1516 * used for creating new files.
1517 * attrsize is the total size of all attributes
1518 * to be added during object creation
1519 *
1520 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1521 */
1522
1523/*
1524 * hold necessary attribute name for attribute registration.
1525 * should be a very rare case where this is needed.  If it does
1526 * happen it would only happen on the first write to the file system.
1527 */
1528static void
1529dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1530{
1531	int i;
1532
1533	if (!sa->sa_need_attr_registration)
1534		return;
1535
1536	for (i = 0; i != sa->sa_num_attrs; i++) {
1537		if (!sa->sa_attr_table[i].sa_registered) {
1538			if (sa->sa_reg_attr_obj)
1539				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1540				    B_TRUE, sa->sa_attr_table[i].sa_name);
1541			else
1542				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1543				    B_TRUE, sa->sa_attr_table[i].sa_name);
1544		}
1545	}
1546}
1547
1548
1549void
1550dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1551{
1552	dnode_t *dn;
1553	dmu_tx_hold_t *txh;
1554
1555	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1556	    THT_SPILL, 0, 0);
1557
1558	dn = txh->txh_dnode;
1559
1560	if (dn == NULL)
1561		return;
1562
1563	/* If blkptr doesn't exist then add space to towrite */
1564	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1565		txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
1566	} else {
1567		blkptr_t *bp;
1568
1569		bp = &dn->dn_phys->dn_spill;
1570		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1571		    bp, bp->blk_birth))
1572			txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE;
1573		else
1574			txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
1575		if (!BP_IS_HOLE(bp))
1576			txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE;
1577	}
1578}
1579
1580void
1581dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1582{
1583	sa_os_t *sa = tx->tx_objset->os_sa;
1584
1585	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1586
1587	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1588		return;
1589
1590	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1591		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1592	else {
1593		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1594		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1595		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1596		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1597	}
1598
1599	dmu_tx_sa_registration_hold(sa, tx);
1600
1601	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1602		return;
1603
1604	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1605	    THT_SPILL, 0, 0);
1606}
1607
1608/*
1609 * Hold SA attribute
1610 *
1611 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1612 *
1613 * variable_size is the total size of all variable sized attributes
1614 * passed to this function.  It is not the total size of all
1615 * variable size attributes that *may* exist on this object.
1616 */
1617void
1618dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1619{
1620	uint64_t object;
1621	sa_os_t *sa = tx->tx_objset->os_sa;
1622
1623	ASSERT(hdl != NULL);
1624
1625	object = sa_handle_object(hdl);
1626
1627	dmu_tx_hold_bonus(tx, object);
1628
1629	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1630		return;
1631
1632	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1633	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1634		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1635		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1636		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1637		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1638	}
1639
1640	dmu_tx_sa_registration_hold(sa, tx);
1641
1642	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1643		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1644
1645	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1646		ASSERT(tx->tx_txg == 0);
1647		dmu_tx_hold_spill(tx, object);
1648	} else {
1649		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1650		dnode_t *dn;
1651
1652		DB_DNODE_ENTER(db);
1653		dn = DB_DNODE(db);
1654		if (dn->dn_have_spill) {
1655			ASSERT(tx->tx_txg == 0);
1656			dmu_tx_hold_spill(tx, object);
1657		}
1658		DB_DNODE_EXIT(db);
1659	}
1660}
1661