dmu_tx.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 */
26
27#include <sys/dmu.h>
28#include <sys/dmu_impl.h>
29#include <sys/dbuf.h>
30#include <sys/dmu_tx.h>
31#include <sys/dmu_objset.h>
32#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
33#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
34#include <sys/dsl_pool.h>
35#include <sys/zap_impl.h> /* for fzap_default_block_shift */
36#include <sys/spa.h>
37#include <sys/sa.h>
38#include <sys/sa_impl.h>
39#include <sys/zfs_context.h>
40#include <sys/varargs.h>
41
42typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43    uint64_t arg1, uint64_t arg2);
44
45
46dmu_tx_t *
47dmu_tx_create_dd(dsl_dir_t *dd)
48{
49	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
50	tx->tx_dir = dd;
51	if (dd != NULL)
52		tx->tx_pool = dd->dd_pool;
53	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
54	    offsetof(dmu_tx_hold_t, txh_node));
55	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
56	    offsetof(dmu_tx_callback_t, dcb_node));
57	tx->tx_start = gethrtime();
58#ifdef ZFS_DEBUG
59	refcount_create(&tx->tx_space_written);
60	refcount_create(&tx->tx_space_freed);
61#endif
62	return (tx);
63}
64
65dmu_tx_t *
66dmu_tx_create(objset_t *os)
67{
68	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
69	tx->tx_objset = os;
70	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
71	return (tx);
72}
73
74dmu_tx_t *
75dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
76{
77	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
78
79	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
80	tx->tx_pool = dp;
81	tx->tx_txg = txg;
82	tx->tx_anyobj = TRUE;
83
84	return (tx);
85}
86
87int
88dmu_tx_is_syncing(dmu_tx_t *tx)
89{
90	return (tx->tx_anyobj);
91}
92
93int
94dmu_tx_private_ok(dmu_tx_t *tx)
95{
96	return (tx->tx_anyobj);
97}
98
99static dmu_tx_hold_t *
100dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
101    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
102{
103	dmu_tx_hold_t *txh;
104	dnode_t *dn = NULL;
105	int err;
106
107	if (object != DMU_NEW_OBJECT) {
108		err = dnode_hold(os, object, tx, &dn);
109		if (err) {
110			tx->tx_err = err;
111			return (NULL);
112		}
113
114		if (err == 0 && tx->tx_txg != 0) {
115			mutex_enter(&dn->dn_mtx);
116			/*
117			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
118			 * problem, but there's no way for it to happen (for
119			 * now, at least).
120			 */
121			ASSERT(dn->dn_assigned_txg == 0);
122			dn->dn_assigned_txg = tx->tx_txg;
123			(void) refcount_add(&dn->dn_tx_holds, tx);
124			mutex_exit(&dn->dn_mtx);
125		}
126	}
127
128	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
129	txh->txh_tx = tx;
130	txh->txh_dnode = dn;
131#ifdef ZFS_DEBUG
132	txh->txh_type = type;
133	txh->txh_arg1 = arg1;
134	txh->txh_arg2 = arg2;
135#endif
136	list_insert_tail(&tx->tx_holds, txh);
137
138	return (txh);
139}
140
141void
142dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
143{
144	/*
145	 * If we're syncing, they can manipulate any object anyhow, and
146	 * the hold on the dnode_t can cause problems.
147	 */
148	if (!dmu_tx_is_syncing(tx)) {
149		(void) dmu_tx_hold_object_impl(tx, os,
150		    object, THT_NEWOBJECT, 0, 0);
151	}
152}
153
154static int
155dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
156{
157	int err;
158	dmu_buf_impl_t *db;
159
160	rw_enter(&dn->dn_struct_rwlock, RW_READER);
161	db = dbuf_hold_level(dn, level, blkid, FTAG);
162	rw_exit(&dn->dn_struct_rwlock);
163	if (db == NULL)
164		return (SET_ERROR(EIO));
165	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
166	dbuf_rele(db, FTAG);
167	return (err);
168}
169
170static void
171dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
172    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
173{
174	objset_t *os = dn->dn_objset;
175	dsl_dataset_t *ds = os->os_dsl_dataset;
176	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
177	dmu_buf_impl_t *parent = NULL;
178	blkptr_t *bp = NULL;
179	uint64_t space;
180
181	if (level >= dn->dn_nlevels || history[level] == blkid)
182		return;
183
184	history[level] = blkid;
185
186	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
187
188	if (db == NULL || db == dn->dn_dbuf) {
189		ASSERT(level != 0);
190		db = NULL;
191	} else {
192		ASSERT(DB_DNODE(db) == dn);
193		ASSERT(db->db_level == level);
194		ASSERT(db->db.db_size == space);
195		ASSERT(db->db_blkid == blkid);
196		bp = db->db_blkptr;
197		parent = db->db_parent;
198	}
199
200	freeable = (bp && (freeable ||
201	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
202
203	if (freeable)
204		txh->txh_space_tooverwrite += space;
205	else
206		txh->txh_space_towrite += space;
207	if (bp)
208		txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp);
209
210	dmu_tx_count_twig(txh, dn, parent, level + 1,
211	    blkid >> epbs, freeable, history);
212}
213
214/* ARGSUSED */
215static void
216dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
217{
218	dnode_t *dn = txh->txh_dnode;
219	uint64_t start, end, i;
220	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
221	int err = 0;
222
223	if (len == 0)
224		return;
225
226	min_bs = SPA_MINBLOCKSHIFT;
227	max_bs = highbit64(txh->txh_tx->tx_objset->os_recordsize) - 1;
228	min_ibs = DN_MIN_INDBLKSHIFT;
229	max_ibs = DN_MAX_INDBLKSHIFT;
230
231	if (dn) {
232		uint64_t history[DN_MAX_LEVELS];
233		int nlvls = dn->dn_nlevels;
234		int delta;
235
236		/*
237		 * For i/o error checking, read the first and last level-0
238		 * blocks (if they are not aligned), and all the level-1 blocks.
239		 */
240		if (dn->dn_maxblkid == 0) {
241			delta = dn->dn_datablksz;
242			start = (off < dn->dn_datablksz) ? 0 : 1;
243			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
244			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
245				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
246				if (err)
247					goto out;
248				delta -= off;
249			}
250		} else {
251			zio_t *zio = zio_root(dn->dn_objset->os_spa,
252			    NULL, NULL, ZIO_FLAG_CANFAIL);
253
254			/* first level-0 block */
255			start = off >> dn->dn_datablkshift;
256			if (P2PHASE(off, dn->dn_datablksz) ||
257			    len < dn->dn_datablksz) {
258				err = dmu_tx_check_ioerr(zio, dn, 0, start);
259				if (err)
260					goto out;
261			}
262
263			/* last level-0 block */
264			end = (off+len-1) >> dn->dn_datablkshift;
265			if (end != start && end <= dn->dn_maxblkid &&
266			    P2PHASE(off+len, dn->dn_datablksz)) {
267				err = dmu_tx_check_ioerr(zio, dn, 0, end);
268				if (err)
269					goto out;
270			}
271
272			/* level-1 blocks */
273			if (nlvls > 1) {
274				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
275				for (i = (start>>shft)+1; i < end>>shft; i++) {
276					err = dmu_tx_check_ioerr(zio, dn, 1, i);
277					if (err)
278						goto out;
279				}
280			}
281
282			err = zio_wait(zio);
283			if (err)
284				goto out;
285			delta = P2NPHASE(off, dn->dn_datablksz);
286		}
287
288		min_ibs = max_ibs = dn->dn_indblkshift;
289		if (dn->dn_maxblkid > 0) {
290			/*
291			 * The blocksize can't change,
292			 * so we can make a more precise estimate.
293			 */
294			ASSERT(dn->dn_datablkshift != 0);
295			min_bs = max_bs = dn->dn_datablkshift;
296		} else {
297			/*
298			 * The blocksize can increase up to the recordsize,
299			 * or if it is already more than the recordsize,
300			 * up to the next power of 2.
301			 */
302			min_bs = highbit64(dn->dn_datablksz - 1);
303			max_bs = MAX(max_bs, highbit64(dn->dn_datablksz - 1));
304		}
305
306		/*
307		 * If this write is not off the end of the file
308		 * we need to account for overwrites/unref.
309		 */
310		if (start <= dn->dn_maxblkid) {
311			for (int l = 0; l < DN_MAX_LEVELS; l++)
312				history[l] = -1ULL;
313		}
314		while (start <= dn->dn_maxblkid) {
315			dmu_buf_impl_t *db;
316
317			rw_enter(&dn->dn_struct_rwlock, RW_READER);
318			err = dbuf_hold_impl(dn, 0, start,
319			    FALSE, FALSE, FTAG, &db);
320			rw_exit(&dn->dn_struct_rwlock);
321
322			if (err) {
323				txh->txh_tx->tx_err = err;
324				return;
325			}
326
327			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
328			    history);
329			dbuf_rele(db, FTAG);
330			if (++start > end) {
331				/*
332				 * Account for new indirects appearing
333				 * before this IO gets assigned into a txg.
334				 */
335				bits = 64 - min_bs;
336				epbs = min_ibs - SPA_BLKPTRSHIFT;
337				for (bits -= epbs * (nlvls - 1);
338				    bits >= 0; bits -= epbs)
339					txh->txh_fudge += 1ULL << max_ibs;
340				goto out;
341			}
342			off += delta;
343			if (len >= delta)
344				len -= delta;
345			delta = dn->dn_datablksz;
346		}
347	}
348
349	/*
350	 * 'end' is the last thing we will access, not one past.
351	 * This way we won't overflow when accessing the last byte.
352	 */
353	start = P2ALIGN(off, 1ULL << max_bs);
354	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
355	txh->txh_space_towrite += end - start + 1;
356
357	start >>= min_bs;
358	end >>= min_bs;
359
360	epbs = min_ibs - SPA_BLKPTRSHIFT;
361
362	/*
363	 * The object contains at most 2^(64 - min_bs) blocks,
364	 * and each indirect level maps 2^epbs.
365	 */
366	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
367		start >>= epbs;
368		end >>= epbs;
369		ASSERT3U(end, >=, start);
370		txh->txh_space_towrite += (end - start + 1) << max_ibs;
371		if (start != 0) {
372			/*
373			 * We also need a new blkid=0 indirect block
374			 * to reference any existing file data.
375			 */
376			txh->txh_space_towrite += 1ULL << max_ibs;
377		}
378	}
379
380out:
381	if (txh->txh_space_towrite + txh->txh_space_tooverwrite >
382	    2 * DMU_MAX_ACCESS)
383		err = SET_ERROR(EFBIG);
384
385	if (err)
386		txh->txh_tx->tx_err = err;
387}
388
389static void
390dmu_tx_count_dnode(dmu_tx_hold_t *txh)
391{
392	dnode_t *dn = txh->txh_dnode;
393	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
394	uint64_t space = mdn->dn_datablksz +
395	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
396
397	if (dn && dn->dn_dbuf->db_blkptr &&
398	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
399	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
400		txh->txh_space_tooverwrite += space;
401		txh->txh_space_tounref += space;
402	} else {
403		txh->txh_space_towrite += space;
404		if (dn && dn->dn_dbuf->db_blkptr)
405			txh->txh_space_tounref += space;
406	}
407}
408
409void
410dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
411{
412	dmu_tx_hold_t *txh;
413
414	ASSERT(tx->tx_txg == 0);
415	ASSERT(len < DMU_MAX_ACCESS);
416	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
417
418	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
419	    object, THT_WRITE, off, len);
420	if (txh == NULL)
421		return;
422
423	dmu_tx_count_write(txh, off, len);
424	dmu_tx_count_dnode(txh);
425}
426
427static void
428dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
429{
430	uint64_t blkid, nblks, lastblk;
431	uint64_t space = 0, unref = 0, skipped = 0;
432	dnode_t *dn = txh->txh_dnode;
433	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
434	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
435	int epbs;
436	uint64_t l0span = 0, nl1blks = 0;
437
438	if (dn->dn_nlevels == 0)
439		return;
440
441	/*
442	 * The struct_rwlock protects us against dn_nlevels
443	 * changing, in case (against all odds) we manage to dirty &
444	 * sync out the changes after we check for being dirty.
445	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
446	 */
447	rw_enter(&dn->dn_struct_rwlock, RW_READER);
448	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
449	if (dn->dn_maxblkid == 0) {
450		if (off == 0 && len >= dn->dn_datablksz) {
451			blkid = 0;
452			nblks = 1;
453		} else {
454			rw_exit(&dn->dn_struct_rwlock);
455			return;
456		}
457	} else {
458		blkid = off >> dn->dn_datablkshift;
459		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
460
461		if (blkid > dn->dn_maxblkid) {
462			rw_exit(&dn->dn_struct_rwlock);
463			return;
464		}
465		if (blkid + nblks > dn->dn_maxblkid)
466			nblks = dn->dn_maxblkid - blkid + 1;
467
468	}
469	l0span = nblks;    /* save for later use to calc level > 1 overhead */
470	if (dn->dn_nlevels == 1) {
471		int i;
472		for (i = 0; i < nblks; i++) {
473			blkptr_t *bp = dn->dn_phys->dn_blkptr;
474			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
475			bp += blkid + i;
476			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
477				dprintf_bp(bp, "can free old%s", "");
478				space += bp_get_dsize(spa, bp);
479			}
480			unref += BP_GET_ASIZE(bp);
481		}
482		nl1blks = 1;
483		nblks = 0;
484	}
485
486	lastblk = blkid + nblks - 1;
487	while (nblks) {
488		dmu_buf_impl_t *dbuf;
489		uint64_t ibyte, new_blkid;
490		int epb = 1 << epbs;
491		int err, i, blkoff, tochk;
492		blkptr_t *bp;
493
494		ibyte = blkid << dn->dn_datablkshift;
495		err = dnode_next_offset(dn,
496		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
497		new_blkid = ibyte >> dn->dn_datablkshift;
498		if (err == ESRCH) {
499			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
500			break;
501		}
502		if (err) {
503			txh->txh_tx->tx_err = err;
504			break;
505		}
506		if (new_blkid > lastblk) {
507			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
508			break;
509		}
510
511		if (new_blkid > blkid) {
512			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
513			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
514			nblks -= new_blkid - blkid;
515			blkid = new_blkid;
516		}
517		blkoff = P2PHASE(blkid, epb);
518		tochk = MIN(epb - blkoff, nblks);
519
520		err = dbuf_hold_impl(dn, 1, blkid >> epbs,
521		    FALSE, FALSE, FTAG, &dbuf);
522		if (err) {
523			txh->txh_tx->tx_err = err;
524			break;
525		}
526
527		txh->txh_memory_tohold += dbuf->db.db_size;
528
529		/*
530		 * We don't check memory_tohold against DMU_MAX_ACCESS because
531		 * memory_tohold is an over-estimation (especially the >L1
532		 * indirect blocks), so it could fail.  Callers should have
533		 * already verified that they will not be holding too much
534		 * memory.
535		 */
536
537		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
538		if (err != 0) {
539			txh->txh_tx->tx_err = err;
540			dbuf_rele(dbuf, FTAG);
541			break;
542		}
543
544		bp = dbuf->db.db_data;
545		bp += blkoff;
546
547		for (i = 0; i < tochk; i++) {
548			if (dsl_dataset_block_freeable(ds, &bp[i],
549			    bp[i].blk_birth)) {
550				dprintf_bp(&bp[i], "can free old%s", "");
551				space += bp_get_dsize(spa, &bp[i]);
552			}
553			unref += BP_GET_ASIZE(bp);
554		}
555		dbuf_rele(dbuf, FTAG);
556
557		++nl1blks;
558		blkid += tochk;
559		nblks -= tochk;
560	}
561	rw_exit(&dn->dn_struct_rwlock);
562
563	/*
564	 * Add in memory requirements of higher-level indirects.
565	 * This assumes a worst-possible scenario for dn_nlevels and a
566	 * worst-possible distribution of l1-blocks over the region to free.
567	 */
568	{
569		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
570		int level = 2;
571		/*
572		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
573		 * given datablkshift and indblkshift. This makes the
574		 * difference between 19 and 8 on large files.
575		 */
576		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
577		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
578
579		while (level++ < maxlevel) {
580			txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1)
581			    << dn->dn_indblkshift;
582			blkcnt = 1 + (blkcnt >> epbs);
583		}
584	}
585
586	/* account for new level 1 indirect blocks that might show up */
587	if (skipped > 0) {
588		txh->txh_fudge += skipped << dn->dn_indblkshift;
589		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
590		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
591	}
592	txh->txh_space_tofree += space;
593	txh->txh_space_tounref += unref;
594}
595
596/*
597 * This function marks the transaction as being a "net free".  The end
598 * result is that refquotas will be disabled for this transaction, and
599 * this transaction will be able to use half of the pool space overhead
600 * (see dsl_pool_adjustedsize()).  Therefore this function should only
601 * be called for transactions that we expect will not cause a net increase
602 * in the amount of space used (but it's OK if that is occasionally not true).
603 */
604void
605dmu_tx_mark_netfree(dmu_tx_t *tx)
606{
607	dmu_tx_hold_t *txh;
608
609	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
610	    DMU_NEW_OBJECT, THT_FREE, 0, 0);
611
612	/*
613	 * Pretend that this operation will free 1GB of space.  This
614	 * should be large enough to cancel out the largest write.
615	 * We don't want to use something like UINT64_MAX, because that would
616	 * cause overflows when doing math with these values (e.g. in
617	 * dmu_tx_try_assign()).
618	 */
619	txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024;
620}
621
622void
623dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
624{
625	dmu_tx_hold_t *txh;
626	dnode_t *dn;
627	int err;
628	zio_t *zio;
629
630	ASSERT(tx->tx_txg == 0);
631
632	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
633	    object, THT_FREE, off, len);
634	if (txh == NULL)
635		return;
636	dn = txh->txh_dnode;
637	dmu_tx_count_dnode(txh);
638
639	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
640		return;
641	if (len == DMU_OBJECT_END)
642		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
643
644
645	/*
646	 * For i/o error checking, we read the first and last level-0
647	 * blocks if they are not aligned, and all the level-1 blocks.
648	 *
649	 * Note:  dbuf_free_range() assumes that we have not instantiated
650	 * any level-0 dbufs that will be completely freed.  Therefore we must
651	 * exercise care to not read or count the first and last blocks
652	 * if they are blocksize-aligned.
653	 */
654	if (dn->dn_datablkshift == 0) {
655		if (off != 0 || len < dn->dn_datablksz)
656			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
657	} else {
658		/* first block will be modified if it is not aligned */
659		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
660			dmu_tx_count_write(txh, off, 1);
661		/* last block will be modified if it is not aligned */
662		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
663			dmu_tx_count_write(txh, off+len, 1);
664	}
665
666	/*
667	 * Check level-1 blocks.
668	 */
669	if (dn->dn_nlevels > 1) {
670		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
671		    SPA_BLKPTRSHIFT;
672		uint64_t start = off >> shift;
673		uint64_t end = (off + len) >> shift;
674
675		ASSERT(dn->dn_indblkshift != 0);
676
677		/*
678		 * dnode_reallocate() can result in an object with indirect
679		 * blocks having an odd data block size.  In this case,
680		 * just check the single block.
681		 */
682		if (dn->dn_datablkshift == 0)
683			start = end = 0;
684
685		zio = zio_root(tx->tx_pool->dp_spa,
686		    NULL, NULL, ZIO_FLAG_CANFAIL);
687		for (uint64_t i = start; i <= end; i++) {
688			uint64_t ibyte = i << shift;
689			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
690			i = ibyte >> shift;
691			if (err == ESRCH || i > end)
692				break;
693			if (err) {
694				tx->tx_err = err;
695				return;
696			}
697
698			err = dmu_tx_check_ioerr(zio, dn, 1, i);
699			if (err) {
700				tx->tx_err = err;
701				return;
702			}
703		}
704		err = zio_wait(zio);
705		if (err) {
706			tx->tx_err = err;
707			return;
708		}
709	}
710
711	dmu_tx_count_free(txh, off, len);
712}
713
714void
715dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
716{
717	dmu_tx_hold_t *txh;
718	dnode_t *dn;
719	dsl_dataset_phys_t *ds_phys;
720	uint64_t nblocks;
721	int epbs, err;
722
723	ASSERT(tx->tx_txg == 0);
724
725	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
726	    object, THT_ZAP, add, (uintptr_t)name);
727	if (txh == NULL)
728		return;
729	dn = txh->txh_dnode;
730
731	dmu_tx_count_dnode(txh);
732
733	if (dn == NULL) {
734		/*
735		 * We will be able to fit a new object's entries into one leaf
736		 * block.  So there will be at most 2 blocks total,
737		 * including the header block.
738		 */
739		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
740		return;
741	}
742
743	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
744
745	if (dn->dn_maxblkid == 0 && !add) {
746		blkptr_t *bp;
747
748		/*
749		 * If there is only one block  (i.e. this is a micro-zap)
750		 * and we are not adding anything, the accounting is simple.
751		 */
752		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
753		if (err) {
754			tx->tx_err = err;
755			return;
756		}
757
758		/*
759		 * Use max block size here, since we don't know how much
760		 * the size will change between now and the dbuf dirty call.
761		 */
762		bp = &dn->dn_phys->dn_blkptr[0];
763		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
764		    bp, bp->blk_birth))
765			txh->txh_space_tooverwrite += MZAP_MAX_BLKSZ;
766		else
767			txh->txh_space_towrite += MZAP_MAX_BLKSZ;
768		if (!BP_IS_HOLE(bp))
769			txh->txh_space_tounref += MZAP_MAX_BLKSZ;
770		return;
771	}
772
773	if (dn->dn_maxblkid > 0 && name) {
774		/*
775		 * access the name in this fat-zap so that we'll check
776		 * for i/o errors to the leaf blocks, etc.
777		 */
778		err = zap_lookup(dn->dn_objset, dn->dn_object, name,
779		    8, 0, NULL);
780		if (err == EIO) {
781			tx->tx_err = err;
782			return;
783		}
784	}
785
786	err = zap_count_write(dn->dn_objset, dn->dn_object, name, add,
787	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
788
789	/*
790	 * If the modified blocks are scattered to the four winds,
791	 * we'll have to modify an indirect twig for each.
792	 */
793	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
794	ds_phys = dsl_dataset_phys(dn->dn_objset->os_dsl_dataset);
795	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
796		if (ds_phys->ds_prev_snap_obj)
797			txh->txh_space_towrite += 3 << dn->dn_indblkshift;
798		else
799			txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift;
800}
801
802void
803dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
804{
805	dmu_tx_hold_t *txh;
806
807	ASSERT(tx->tx_txg == 0);
808
809	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
810	    object, THT_BONUS, 0, 0);
811	if (txh)
812		dmu_tx_count_dnode(txh);
813}
814
815void
816dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
817{
818	dmu_tx_hold_t *txh;
819	ASSERT(tx->tx_txg == 0);
820
821	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
822	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
823
824	txh->txh_space_towrite += space;
825}
826
827int
828dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
829{
830	dmu_tx_hold_t *txh;
831	int holds = 0;
832
833	/*
834	 * By asserting that the tx is assigned, we're counting the
835	 * number of dn_tx_holds, which is the same as the number of
836	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
837	 * dn_tx_holds could be 0.
838	 */
839	ASSERT(tx->tx_txg != 0);
840
841	/* if (tx->tx_anyobj == TRUE) */
842		/* return (0); */
843
844	for (txh = list_head(&tx->tx_holds); txh;
845	    txh = list_next(&tx->tx_holds, txh)) {
846		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
847			holds++;
848	}
849
850	return (holds);
851}
852
853#ifdef ZFS_DEBUG
854void
855dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
856{
857	dmu_tx_hold_t *txh;
858	int match_object = FALSE, match_offset = FALSE;
859	dnode_t *dn;
860
861	DB_DNODE_ENTER(db);
862	dn = DB_DNODE(db);
863	ASSERT(tx->tx_txg != 0);
864	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
865	ASSERT3U(dn->dn_object, ==, db->db.db_object);
866
867	if (tx->tx_anyobj) {
868		DB_DNODE_EXIT(db);
869		return;
870	}
871
872	/* XXX No checking on the meta dnode for now */
873	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
874		DB_DNODE_EXIT(db);
875		return;
876	}
877
878	for (txh = list_head(&tx->tx_holds); txh;
879	    txh = list_next(&tx->tx_holds, txh)) {
880		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
881		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
882			match_object = TRUE;
883		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
884			int datablkshift = dn->dn_datablkshift ?
885			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
886			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
887			int shift = datablkshift + epbs * db->db_level;
888			uint64_t beginblk = shift >= 64 ? 0 :
889			    (txh->txh_arg1 >> shift);
890			uint64_t endblk = shift >= 64 ? 0 :
891			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
892			uint64_t blkid = db->db_blkid;
893
894			/* XXX txh_arg2 better not be zero... */
895
896			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
897			    txh->txh_type, beginblk, endblk);
898
899			switch (txh->txh_type) {
900			case THT_WRITE:
901				if (blkid >= beginblk && blkid <= endblk)
902					match_offset = TRUE;
903				/*
904				 * We will let this hold work for the bonus
905				 * or spill buffer so that we don't need to
906				 * hold it when creating a new object.
907				 */
908				if (blkid == DMU_BONUS_BLKID ||
909				    blkid == DMU_SPILL_BLKID)
910					match_offset = TRUE;
911				/*
912				 * They might have to increase nlevels,
913				 * thus dirtying the new TLIBs.  Or the
914				 * might have to change the block size,
915				 * thus dirying the new lvl=0 blk=0.
916				 */
917				if (blkid == 0)
918					match_offset = TRUE;
919				break;
920			case THT_FREE:
921				/*
922				 * We will dirty all the level 1 blocks in
923				 * the free range and perhaps the first and
924				 * last level 0 block.
925				 */
926				if (blkid >= beginblk && (blkid <= endblk ||
927				    txh->txh_arg2 == DMU_OBJECT_END))
928					match_offset = TRUE;
929				break;
930			case THT_SPILL:
931				if (blkid == DMU_SPILL_BLKID)
932					match_offset = TRUE;
933				break;
934			case THT_BONUS:
935				if (blkid == DMU_BONUS_BLKID)
936					match_offset = TRUE;
937				break;
938			case THT_ZAP:
939				match_offset = TRUE;
940				break;
941			case THT_NEWOBJECT:
942				match_object = TRUE;
943				break;
944			default:
945				ASSERT(!"bad txh_type");
946			}
947		}
948		if (match_object && match_offset) {
949			DB_DNODE_EXIT(db);
950			return;
951		}
952	}
953	DB_DNODE_EXIT(db);
954	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
955	    (u_longlong_t)db->db.db_object, db->db_level,
956	    (u_longlong_t)db->db_blkid);
957}
958#endif
959
960/*
961 * If we can't do 10 iops, something is wrong.  Let us go ahead
962 * and hit zfs_dirty_data_max.
963 */
964hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
965int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
966
967/*
968 * We delay transactions when we've determined that the backend storage
969 * isn't able to accommodate the rate of incoming writes.
970 *
971 * If there is already a transaction waiting, we delay relative to when
972 * that transaction finishes waiting.  This way the calculated min_time
973 * is independent of the number of threads concurrently executing
974 * transactions.
975 *
976 * If we are the only waiter, wait relative to when the transaction
977 * started, rather than the current time.  This credits the transaction for
978 * "time already served", e.g. reading indirect blocks.
979 *
980 * The minimum time for a transaction to take is calculated as:
981 *     min_time = scale * (dirty - min) / (max - dirty)
982 *     min_time is then capped at zfs_delay_max_ns.
983 *
984 * The delay has two degrees of freedom that can be adjusted via tunables.
985 * The percentage of dirty data at which we start to delay is defined by
986 * zfs_delay_min_dirty_percent. This should typically be at or above
987 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
988 * delay after writing at full speed has failed to keep up with the incoming
989 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
990 * speaking, this variable determines the amount of delay at the midpoint of
991 * the curve.
992 *
993 * delay
994 *  10ms +-------------------------------------------------------------*+
995 *       |                                                             *|
996 *   9ms +                                                             *+
997 *       |                                                             *|
998 *   8ms +                                                             *+
999 *       |                                                            * |
1000 *   7ms +                                                            * +
1001 *       |                                                            * |
1002 *   6ms +                                                            * +
1003 *       |                                                            * |
1004 *   5ms +                                                           *  +
1005 *       |                                                           *  |
1006 *   4ms +                                                           *  +
1007 *       |                                                           *  |
1008 *   3ms +                                                          *   +
1009 *       |                                                          *   |
1010 *   2ms +                                              (midpoint) *    +
1011 *       |                                                  |    **     |
1012 *   1ms +                                                  v ***       +
1013 *       |             zfs_delay_scale ---------->     ********         |
1014 *     0 +-------------------------------------*********----------------+
1015 *       0%                    <- zfs_dirty_data_max ->               100%
1016 *
1017 * Note that since the delay is added to the outstanding time remaining on the
1018 * most recent transaction, the delay is effectively the inverse of IOPS.
1019 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
1020 * was chosen such that small changes in the amount of accumulated dirty data
1021 * in the first 3/4 of the curve yield relatively small differences in the
1022 * amount of delay.
1023 *
1024 * The effects can be easier to understand when the amount of delay is
1025 * represented on a log scale:
1026 *
1027 * delay
1028 * 100ms +-------------------------------------------------------------++
1029 *       +                                                              +
1030 *       |                                                              |
1031 *       +                                                             *+
1032 *  10ms +                                                             *+
1033 *       +                                                           ** +
1034 *       |                                              (midpoint)  **  |
1035 *       +                                                  |     **    +
1036 *   1ms +                                                  v ****      +
1037 *       +             zfs_delay_scale ---------->        *****         +
1038 *       |                                             ****             |
1039 *       +                                          ****                +
1040 * 100us +                                        **                    +
1041 *       +                                       *                      +
1042 *       |                                      *                       |
1043 *       +                                     *                        +
1044 *  10us +                                     *                        +
1045 *       +                                                              +
1046 *       |                                                              |
1047 *       +                                                              +
1048 *       +--------------------------------------------------------------+
1049 *       0%                    <- zfs_dirty_data_max ->               100%
1050 *
1051 * Note here that only as the amount of dirty data approaches its limit does
1052 * the delay start to increase rapidly. The goal of a properly tuned system
1053 * should be to keep the amount of dirty data out of that range by first
1054 * ensuring that the appropriate limits are set for the I/O scheduler to reach
1055 * optimal throughput on the backend storage, and then by changing the value
1056 * of zfs_delay_scale to increase the steepness of the curve.
1057 */
1058static void
1059dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
1060{
1061	dsl_pool_t *dp = tx->tx_pool;
1062	uint64_t delay_min_bytes =
1063	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
1064	hrtime_t wakeup, min_tx_time, now;
1065
1066	if (dirty <= delay_min_bytes)
1067		return;
1068
1069	/*
1070	 * The caller has already waited until we are under the max.
1071	 * We make them pass us the amount of dirty data so we don't
1072	 * have to handle the case of it being >= the max, which could
1073	 * cause a divide-by-zero if it's == the max.
1074	 */
1075	ASSERT3U(dirty, <, zfs_dirty_data_max);
1076
1077	now = gethrtime();
1078	min_tx_time = zfs_delay_scale *
1079	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
1080	if (now > tx->tx_start + min_tx_time)
1081		return;
1082
1083	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
1084
1085	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
1086	    uint64_t, min_tx_time);
1087
1088	mutex_enter(&dp->dp_lock);
1089	wakeup = MAX(tx->tx_start + min_tx_time,
1090	    dp->dp_last_wakeup + min_tx_time);
1091	dp->dp_last_wakeup = wakeup;
1092	mutex_exit(&dp->dp_lock);
1093
1094#ifdef _KERNEL
1095#ifdef illumos
1096	mutex_enter(&curthread->t_delay_lock);
1097	while (cv_timedwait_hires(&curthread->t_delay_cv,
1098	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
1099	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
1100		continue;
1101	mutex_exit(&curthread->t_delay_lock);
1102#else
1103	pause_sbt("dmu_tx_delay", wakeup * SBT_1NS,
1104	    zfs_delay_resolution_ns * SBT_1NS, C_ABSOLUTE);
1105#endif
1106#else
1107	hrtime_t delta = wakeup - gethrtime();
1108	struct timespec ts;
1109	ts.tv_sec = delta / NANOSEC;
1110	ts.tv_nsec = delta % NANOSEC;
1111	(void) nanosleep(&ts, NULL);
1112#endif
1113}
1114
1115static int
1116dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
1117{
1118	dmu_tx_hold_t *txh;
1119	spa_t *spa = tx->tx_pool->dp_spa;
1120	uint64_t memory, asize, fsize, usize;
1121	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
1122
1123	ASSERT0(tx->tx_txg);
1124
1125	if (tx->tx_err)
1126		return (tx->tx_err);
1127
1128	if (spa_suspended(spa)) {
1129		/*
1130		 * If the user has indicated a blocking failure mode
1131		 * then return ERESTART which will block in dmu_tx_wait().
1132		 * Otherwise, return EIO so that an error can get
1133		 * propagated back to the VOP calls.
1134		 *
1135		 * Note that we always honor the txg_how flag regardless
1136		 * of the failuremode setting.
1137		 */
1138		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1139		    txg_how != TXG_WAIT)
1140			return (SET_ERROR(EIO));
1141
1142		return (SET_ERROR(ERESTART));
1143	}
1144
1145	if (!tx->tx_waited &&
1146	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1147		tx->tx_wait_dirty = B_TRUE;
1148		return (SET_ERROR(ERESTART));
1149	}
1150
1151	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1152	tx->tx_needassign_txh = NULL;
1153
1154	/*
1155	 * NB: No error returns are allowed after txg_hold_open, but
1156	 * before processing the dnode holds, due to the
1157	 * dmu_tx_unassign() logic.
1158	 */
1159
1160	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
1161	for (txh = list_head(&tx->tx_holds); txh;
1162	    txh = list_next(&tx->tx_holds, txh)) {
1163		dnode_t *dn = txh->txh_dnode;
1164		if (dn != NULL) {
1165			mutex_enter(&dn->dn_mtx);
1166			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1167				mutex_exit(&dn->dn_mtx);
1168				tx->tx_needassign_txh = txh;
1169				return (SET_ERROR(ERESTART));
1170			}
1171			if (dn->dn_assigned_txg == 0)
1172				dn->dn_assigned_txg = tx->tx_txg;
1173			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1174			(void) refcount_add(&dn->dn_tx_holds, tx);
1175			mutex_exit(&dn->dn_mtx);
1176		}
1177		towrite += txh->txh_space_towrite;
1178		tofree += txh->txh_space_tofree;
1179		tooverwrite += txh->txh_space_tooverwrite;
1180		tounref += txh->txh_space_tounref;
1181		tohold += txh->txh_memory_tohold;
1182		fudge += txh->txh_fudge;
1183	}
1184
1185	/*
1186	 * If a snapshot has been taken since we made our estimates,
1187	 * assume that we won't be able to free or overwrite anything.
1188	 */
1189	if (tx->tx_objset &&
1190	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
1191	    tx->tx_lastsnap_txg) {
1192		towrite += tooverwrite;
1193		tooverwrite = tofree = 0;
1194	}
1195
1196	/* needed allocation: worst-case estimate of write space */
1197	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
1198	/* freed space estimate: worst-case overwrite + free estimate */
1199	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
1200	/* convert unrefd space to worst-case estimate */
1201	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
1202	/* calculate memory footprint estimate */
1203	memory = towrite + tooverwrite + tohold;
1204
1205#ifdef ZFS_DEBUG
1206	/*
1207	 * Add in 'tohold' to account for our dirty holds on this memory
1208	 * XXX - the "fudge" factor is to account for skipped blocks that
1209	 * we missed because dnode_next_offset() misses in-core-only blocks.
1210	 */
1211	tx->tx_space_towrite = asize +
1212	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
1213	tx->tx_space_tofree = tofree;
1214	tx->tx_space_tooverwrite = tooverwrite;
1215	tx->tx_space_tounref = tounref;
1216#endif
1217
1218	if (tx->tx_dir && asize != 0) {
1219		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1220		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1221		if (err)
1222			return (err);
1223	}
1224
1225	return (0);
1226}
1227
1228static void
1229dmu_tx_unassign(dmu_tx_t *tx)
1230{
1231	dmu_tx_hold_t *txh;
1232
1233	if (tx->tx_txg == 0)
1234		return;
1235
1236	txg_rele_to_quiesce(&tx->tx_txgh);
1237
1238	/*
1239	 * Walk the transaction's hold list, removing the hold on the
1240	 * associated dnode, and notifying waiters if the refcount drops to 0.
1241	 */
1242	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1243	    txh = list_next(&tx->tx_holds, txh)) {
1244		dnode_t *dn = txh->txh_dnode;
1245
1246		if (dn == NULL)
1247			continue;
1248		mutex_enter(&dn->dn_mtx);
1249		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1250
1251		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1252			dn->dn_assigned_txg = 0;
1253			cv_broadcast(&dn->dn_notxholds);
1254		}
1255		mutex_exit(&dn->dn_mtx);
1256	}
1257
1258	txg_rele_to_sync(&tx->tx_txgh);
1259
1260	tx->tx_lasttried_txg = tx->tx_txg;
1261	tx->tx_txg = 0;
1262}
1263
1264/*
1265 * Assign tx to a transaction group.  txg_how can be one of:
1266 *
1267 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
1268 *	a new one.  This should be used when you're not holding locks.
1269 *	It will only fail if we're truly out of space (or over quota).
1270 *
1271 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
1272 *	blocking, returns immediately with ERESTART.  This should be used
1273 *	whenever you're holding locks.  On an ERESTART error, the caller
1274 *	should drop locks, do a dmu_tx_wait(tx), and try again.
1275 *
1276 * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
1277 *      has already been called on behalf of this operation (though
1278 *      most likely on a different tx).
1279 */
1280int
1281dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1282{
1283	int err;
1284
1285	ASSERT(tx->tx_txg == 0);
1286	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1287	    txg_how == TXG_WAITED);
1288	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1289
1290	/* If we might wait, we must not hold the config lock. */
1291	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1292
1293	if (txg_how == TXG_WAITED)
1294		tx->tx_waited = B_TRUE;
1295
1296	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1297		dmu_tx_unassign(tx);
1298
1299		if (err != ERESTART || txg_how != TXG_WAIT)
1300			return (err);
1301
1302		dmu_tx_wait(tx);
1303	}
1304
1305	txg_rele_to_quiesce(&tx->tx_txgh);
1306
1307	return (0);
1308}
1309
1310void
1311dmu_tx_wait(dmu_tx_t *tx)
1312{
1313	spa_t *spa = tx->tx_pool->dp_spa;
1314	dsl_pool_t *dp = tx->tx_pool;
1315
1316	ASSERT(tx->tx_txg == 0);
1317	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1318
1319	if (tx->tx_wait_dirty) {
1320		/*
1321		 * dmu_tx_try_assign() has determined that we need to wait
1322		 * because we've consumed much or all of the dirty buffer
1323		 * space.
1324		 */
1325		mutex_enter(&dp->dp_lock);
1326		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1327			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1328		uint64_t dirty = dp->dp_dirty_total;
1329		mutex_exit(&dp->dp_lock);
1330
1331		dmu_tx_delay(tx, dirty);
1332
1333		tx->tx_wait_dirty = B_FALSE;
1334
1335		/*
1336		 * Note: setting tx_waited only has effect if the caller
1337		 * used TX_WAIT.  Otherwise they are going to destroy
1338		 * this tx and try again.  The common case, zfs_write(),
1339		 * uses TX_WAIT.
1340		 */
1341		tx->tx_waited = B_TRUE;
1342	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1343		/*
1344		 * If the pool is suspended we need to wait until it
1345		 * is resumed.  Note that it's possible that the pool
1346		 * has become active after this thread has tried to
1347		 * obtain a tx.  If that's the case then tx_lasttried_txg
1348		 * would not have been set.
1349		 */
1350		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1351	} else if (tx->tx_needassign_txh) {
1352		/*
1353		 * A dnode is assigned to the quiescing txg.  Wait for its
1354		 * transaction to complete.
1355		 */
1356		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1357
1358		mutex_enter(&dn->dn_mtx);
1359		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1360			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1361		mutex_exit(&dn->dn_mtx);
1362		tx->tx_needassign_txh = NULL;
1363	} else {
1364		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1365	}
1366}
1367
1368void
1369dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1370{
1371#ifdef ZFS_DEBUG
1372	if (tx->tx_dir == NULL || delta == 0)
1373		return;
1374
1375	if (delta > 0) {
1376		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1377		    tx->tx_space_towrite);
1378		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1379	} else {
1380		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1381	}
1382#endif
1383}
1384
1385void
1386dmu_tx_commit(dmu_tx_t *tx)
1387{
1388	dmu_tx_hold_t *txh;
1389
1390	ASSERT(tx->tx_txg != 0);
1391
1392	/*
1393	 * Go through the transaction's hold list and remove holds on
1394	 * associated dnodes, notifying waiters if no holds remain.
1395	 */
1396	while (txh = list_head(&tx->tx_holds)) {
1397		dnode_t *dn = txh->txh_dnode;
1398
1399		list_remove(&tx->tx_holds, txh);
1400		kmem_free(txh, sizeof (dmu_tx_hold_t));
1401		if (dn == NULL)
1402			continue;
1403		mutex_enter(&dn->dn_mtx);
1404		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1405
1406		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1407			dn->dn_assigned_txg = 0;
1408			cv_broadcast(&dn->dn_notxholds);
1409		}
1410		mutex_exit(&dn->dn_mtx);
1411		dnode_rele(dn, tx);
1412	}
1413
1414	if (tx->tx_tempreserve_cookie)
1415		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1416
1417	if (!list_is_empty(&tx->tx_callbacks))
1418		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1419
1420	if (tx->tx_anyobj == FALSE)
1421		txg_rele_to_sync(&tx->tx_txgh);
1422
1423	list_destroy(&tx->tx_callbacks);
1424	list_destroy(&tx->tx_holds);
1425#ifdef ZFS_DEBUG
1426	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1427	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1428	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1429	refcount_destroy_many(&tx->tx_space_written,
1430	    refcount_count(&tx->tx_space_written));
1431	refcount_destroy_many(&tx->tx_space_freed,
1432	    refcount_count(&tx->tx_space_freed));
1433#endif
1434	kmem_free(tx, sizeof (dmu_tx_t));
1435}
1436
1437void
1438dmu_tx_abort(dmu_tx_t *tx)
1439{
1440	dmu_tx_hold_t *txh;
1441
1442	ASSERT(tx->tx_txg == 0);
1443
1444	while (txh = list_head(&tx->tx_holds)) {
1445		dnode_t *dn = txh->txh_dnode;
1446
1447		list_remove(&tx->tx_holds, txh);
1448		kmem_free(txh, sizeof (dmu_tx_hold_t));
1449		if (dn != NULL)
1450			dnode_rele(dn, tx);
1451	}
1452
1453	/*
1454	 * Call any registered callbacks with an error code.
1455	 */
1456	if (!list_is_empty(&tx->tx_callbacks))
1457		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1458
1459	list_destroy(&tx->tx_callbacks);
1460	list_destroy(&tx->tx_holds);
1461#ifdef ZFS_DEBUG
1462	refcount_destroy_many(&tx->tx_space_written,
1463	    refcount_count(&tx->tx_space_written));
1464	refcount_destroy_many(&tx->tx_space_freed,
1465	    refcount_count(&tx->tx_space_freed));
1466#endif
1467	kmem_free(tx, sizeof (dmu_tx_t));
1468}
1469
1470uint64_t
1471dmu_tx_get_txg(dmu_tx_t *tx)
1472{
1473	ASSERT(tx->tx_txg != 0);
1474	return (tx->tx_txg);
1475}
1476
1477dsl_pool_t *
1478dmu_tx_pool(dmu_tx_t *tx)
1479{
1480	ASSERT(tx->tx_pool != NULL);
1481	return (tx->tx_pool);
1482}
1483
1484
1485void
1486dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1487{
1488	dmu_tx_callback_t *dcb;
1489
1490	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1491
1492	dcb->dcb_func = func;
1493	dcb->dcb_data = data;
1494
1495	list_insert_tail(&tx->tx_callbacks, dcb);
1496}
1497
1498/*
1499 * Call all the commit callbacks on a list, with a given error code.
1500 */
1501void
1502dmu_tx_do_callbacks(list_t *cb_list, int error)
1503{
1504	dmu_tx_callback_t *dcb;
1505
1506	while (dcb = list_head(cb_list)) {
1507		list_remove(cb_list, dcb);
1508		dcb->dcb_func(dcb->dcb_data, error);
1509		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1510	}
1511}
1512
1513/*
1514 * Interface to hold a bunch of attributes.
1515 * used for creating new files.
1516 * attrsize is the total size of all attributes
1517 * to be added during object creation
1518 *
1519 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1520 */
1521
1522/*
1523 * hold necessary attribute name for attribute registration.
1524 * should be a very rare case where this is needed.  If it does
1525 * happen it would only happen on the first write to the file system.
1526 */
1527static void
1528dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1529{
1530	int i;
1531
1532	if (!sa->sa_need_attr_registration)
1533		return;
1534
1535	for (i = 0; i != sa->sa_num_attrs; i++) {
1536		if (!sa->sa_attr_table[i].sa_registered) {
1537			if (sa->sa_reg_attr_obj)
1538				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1539				    B_TRUE, sa->sa_attr_table[i].sa_name);
1540			else
1541				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1542				    B_TRUE, sa->sa_attr_table[i].sa_name);
1543		}
1544	}
1545}
1546
1547
1548void
1549dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1550{
1551	dnode_t *dn;
1552	dmu_tx_hold_t *txh;
1553
1554	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1555	    THT_SPILL, 0, 0);
1556
1557	dn = txh->txh_dnode;
1558
1559	if (dn == NULL)
1560		return;
1561
1562	/* If blkptr doesn't exist then add space to towrite */
1563	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1564		txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
1565	} else {
1566		blkptr_t *bp;
1567
1568		bp = &dn->dn_phys->dn_spill;
1569		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1570		    bp, bp->blk_birth))
1571			txh->txh_space_tooverwrite += SPA_OLD_MAXBLOCKSIZE;
1572		else
1573			txh->txh_space_towrite += SPA_OLD_MAXBLOCKSIZE;
1574		if (!BP_IS_HOLE(bp))
1575			txh->txh_space_tounref += SPA_OLD_MAXBLOCKSIZE;
1576	}
1577}
1578
1579void
1580dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1581{
1582	sa_os_t *sa = tx->tx_objset->os_sa;
1583
1584	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1585
1586	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1587		return;
1588
1589	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1590		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1591	else {
1592		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1593		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1594		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1595		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1596	}
1597
1598	dmu_tx_sa_registration_hold(sa, tx);
1599
1600	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1601		return;
1602
1603	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1604	    THT_SPILL, 0, 0);
1605}
1606
1607/*
1608 * Hold SA attribute
1609 *
1610 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1611 *
1612 * variable_size is the total size of all variable sized attributes
1613 * passed to this function.  It is not the total size of all
1614 * variable size attributes that *may* exist on this object.
1615 */
1616void
1617dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1618{
1619	uint64_t object;
1620	sa_os_t *sa = tx->tx_objset->os_sa;
1621
1622	ASSERT(hdl != NULL);
1623
1624	object = sa_handle_object(hdl);
1625
1626	dmu_tx_hold_bonus(tx, object);
1627
1628	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1629		return;
1630
1631	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1632	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1633		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1634		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1635		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1636		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1637	}
1638
1639	dmu_tx_sa_registration_hold(sa, tx);
1640
1641	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1642		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1643
1644	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1645		ASSERT(tx->tx_txg == 0);
1646		dmu_tx_hold_spill(tx, object);
1647	} else {
1648		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1649		dnode_t *dn;
1650
1651		DB_DNODE_ENTER(db);
1652		dn = DB_DNODE(db);
1653		if (dn->dn_have_spill) {
1654			ASSERT(tx->tx_txg == 0);
1655			dmu_tx_hold_spill(tx, object);
1656		}
1657		DB_DNODE_EXIT(db);
1658	}
1659}
1660