dmu_tx.c revision 269002
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
25 */
26
27#include <sys/dmu.h>
28#include <sys/dmu_impl.h>
29#include <sys/dbuf.h>
30#include <sys/dmu_tx.h>
31#include <sys/dmu_objset.h>
32#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
33#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
34#include <sys/dsl_pool.h>
35#include <sys/zap_impl.h> /* for fzap_default_block_shift */
36#include <sys/spa.h>
37#include <sys/sa.h>
38#include <sys/sa_impl.h>
39#include <sys/zfs_context.h>
40#include <sys/varargs.h>
41
42typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43    uint64_t arg1, uint64_t arg2);
44
45
46dmu_tx_t *
47dmu_tx_create_dd(dsl_dir_t *dd)
48{
49	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
50	tx->tx_dir = dd;
51	if (dd != NULL)
52		tx->tx_pool = dd->dd_pool;
53	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
54	    offsetof(dmu_tx_hold_t, txh_node));
55	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
56	    offsetof(dmu_tx_callback_t, dcb_node));
57	tx->tx_start = gethrtime();
58#ifdef ZFS_DEBUG
59	refcount_create(&tx->tx_space_written);
60	refcount_create(&tx->tx_space_freed);
61#endif
62	return (tx);
63}
64
65dmu_tx_t *
66dmu_tx_create(objset_t *os)
67{
68	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
69	tx->tx_objset = os;
70	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
71	return (tx);
72}
73
74dmu_tx_t *
75dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
76{
77	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
78
79	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
80	tx->tx_pool = dp;
81	tx->tx_txg = txg;
82	tx->tx_anyobj = TRUE;
83
84	return (tx);
85}
86
87int
88dmu_tx_is_syncing(dmu_tx_t *tx)
89{
90	return (tx->tx_anyobj);
91}
92
93int
94dmu_tx_private_ok(dmu_tx_t *tx)
95{
96	return (tx->tx_anyobj);
97}
98
99static dmu_tx_hold_t *
100dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
101    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
102{
103	dmu_tx_hold_t *txh;
104	dnode_t *dn = NULL;
105	int err;
106
107	if (object != DMU_NEW_OBJECT) {
108		err = dnode_hold(os, object, tx, &dn);
109		if (err) {
110			tx->tx_err = err;
111			return (NULL);
112		}
113
114		if (err == 0 && tx->tx_txg != 0) {
115			mutex_enter(&dn->dn_mtx);
116			/*
117			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
118			 * problem, but there's no way for it to happen (for
119			 * now, at least).
120			 */
121			ASSERT(dn->dn_assigned_txg == 0);
122			dn->dn_assigned_txg = tx->tx_txg;
123			(void) refcount_add(&dn->dn_tx_holds, tx);
124			mutex_exit(&dn->dn_mtx);
125		}
126	}
127
128	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
129	txh->txh_tx = tx;
130	txh->txh_dnode = dn;
131#ifdef ZFS_DEBUG
132	txh->txh_type = type;
133	txh->txh_arg1 = arg1;
134	txh->txh_arg2 = arg2;
135#endif
136	list_insert_tail(&tx->tx_holds, txh);
137
138	return (txh);
139}
140
141void
142dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
143{
144	/*
145	 * If we're syncing, they can manipulate any object anyhow, and
146	 * the hold on the dnode_t can cause problems.
147	 */
148	if (!dmu_tx_is_syncing(tx)) {
149		(void) dmu_tx_hold_object_impl(tx, os,
150		    object, THT_NEWOBJECT, 0, 0);
151	}
152}
153
154static int
155dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
156{
157	int err;
158	dmu_buf_impl_t *db;
159
160	rw_enter(&dn->dn_struct_rwlock, RW_READER);
161	db = dbuf_hold_level(dn, level, blkid, FTAG);
162	rw_exit(&dn->dn_struct_rwlock);
163	if (db == NULL)
164		return (SET_ERROR(EIO));
165	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
166	dbuf_rele(db, FTAG);
167	return (err);
168}
169
170static void
171dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
172    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
173{
174	objset_t *os = dn->dn_objset;
175	dsl_dataset_t *ds = os->os_dsl_dataset;
176	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
177	dmu_buf_impl_t *parent = NULL;
178	blkptr_t *bp = NULL;
179	uint64_t space;
180
181	if (level >= dn->dn_nlevels || history[level] == blkid)
182		return;
183
184	history[level] = blkid;
185
186	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
187
188	if (db == NULL || db == dn->dn_dbuf) {
189		ASSERT(level != 0);
190		db = NULL;
191	} else {
192		ASSERT(DB_DNODE(db) == dn);
193		ASSERT(db->db_level == level);
194		ASSERT(db->db.db_size == space);
195		ASSERT(db->db_blkid == blkid);
196		bp = db->db_blkptr;
197		parent = db->db_parent;
198	}
199
200	freeable = (bp && (freeable ||
201	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
202
203	if (freeable)
204		txh->txh_space_tooverwrite += space;
205	else
206		txh->txh_space_towrite += space;
207	if (bp)
208		txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp);
209
210	dmu_tx_count_twig(txh, dn, parent, level + 1,
211	    blkid >> epbs, freeable, history);
212}
213
214/* ARGSUSED */
215static void
216dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
217{
218	dnode_t *dn = txh->txh_dnode;
219	uint64_t start, end, i;
220	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
221	int err = 0;
222
223	if (len == 0)
224		return;
225
226	min_bs = SPA_MINBLOCKSHIFT;
227	max_bs = SPA_MAXBLOCKSHIFT;
228	min_ibs = DN_MIN_INDBLKSHIFT;
229	max_ibs = DN_MAX_INDBLKSHIFT;
230
231	if (dn) {
232		uint64_t history[DN_MAX_LEVELS];
233		int nlvls = dn->dn_nlevels;
234		int delta;
235
236		/*
237		 * For i/o error checking, read the first and last level-0
238		 * blocks (if they are not aligned), and all the level-1 blocks.
239		 */
240		if (dn->dn_maxblkid == 0) {
241			delta = dn->dn_datablksz;
242			start = (off < dn->dn_datablksz) ? 0 : 1;
243			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
244			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
245				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
246				if (err)
247					goto out;
248				delta -= off;
249			}
250		} else {
251			zio_t *zio = zio_root(dn->dn_objset->os_spa,
252			    NULL, NULL, ZIO_FLAG_CANFAIL);
253
254			/* first level-0 block */
255			start = off >> dn->dn_datablkshift;
256			if (P2PHASE(off, dn->dn_datablksz) ||
257			    len < dn->dn_datablksz) {
258				err = dmu_tx_check_ioerr(zio, dn, 0, start);
259				if (err)
260					goto out;
261			}
262
263			/* last level-0 block */
264			end = (off+len-1) >> dn->dn_datablkshift;
265			if (end != start && end <= dn->dn_maxblkid &&
266			    P2PHASE(off+len, dn->dn_datablksz)) {
267				err = dmu_tx_check_ioerr(zio, dn, 0, end);
268				if (err)
269					goto out;
270			}
271
272			/* level-1 blocks */
273			if (nlvls > 1) {
274				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
275				for (i = (start>>shft)+1; i < end>>shft; i++) {
276					err = dmu_tx_check_ioerr(zio, dn, 1, i);
277					if (err)
278						goto out;
279				}
280			}
281
282			err = zio_wait(zio);
283			if (err)
284				goto out;
285			delta = P2NPHASE(off, dn->dn_datablksz);
286		}
287
288		min_ibs = max_ibs = dn->dn_indblkshift;
289		if (dn->dn_maxblkid > 0) {
290			/*
291			 * The blocksize can't change,
292			 * so we can make a more precise estimate.
293			 */
294			ASSERT(dn->dn_datablkshift != 0);
295			min_bs = max_bs = dn->dn_datablkshift;
296		}
297
298		/*
299		 * If this write is not off the end of the file
300		 * we need to account for overwrites/unref.
301		 */
302		if (start <= dn->dn_maxblkid) {
303			for (int l = 0; l < DN_MAX_LEVELS; l++)
304				history[l] = -1ULL;
305		}
306		while (start <= dn->dn_maxblkid) {
307			dmu_buf_impl_t *db;
308
309			rw_enter(&dn->dn_struct_rwlock, RW_READER);
310			err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db);
311			rw_exit(&dn->dn_struct_rwlock);
312
313			if (err) {
314				txh->txh_tx->tx_err = err;
315				return;
316			}
317
318			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
319			    history);
320			dbuf_rele(db, FTAG);
321			if (++start > end) {
322				/*
323				 * Account for new indirects appearing
324				 * before this IO gets assigned into a txg.
325				 */
326				bits = 64 - min_bs;
327				epbs = min_ibs - SPA_BLKPTRSHIFT;
328				for (bits -= epbs * (nlvls - 1);
329				    bits >= 0; bits -= epbs)
330					txh->txh_fudge += 1ULL << max_ibs;
331				goto out;
332			}
333			off += delta;
334			if (len >= delta)
335				len -= delta;
336			delta = dn->dn_datablksz;
337		}
338	}
339
340	/*
341	 * 'end' is the last thing we will access, not one past.
342	 * This way we won't overflow when accessing the last byte.
343	 */
344	start = P2ALIGN(off, 1ULL << max_bs);
345	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
346	txh->txh_space_towrite += end - start + 1;
347
348	start >>= min_bs;
349	end >>= min_bs;
350
351	epbs = min_ibs - SPA_BLKPTRSHIFT;
352
353	/*
354	 * The object contains at most 2^(64 - min_bs) blocks,
355	 * and each indirect level maps 2^epbs.
356	 */
357	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
358		start >>= epbs;
359		end >>= epbs;
360		ASSERT3U(end, >=, start);
361		txh->txh_space_towrite += (end - start + 1) << max_ibs;
362		if (start != 0) {
363			/*
364			 * We also need a new blkid=0 indirect block
365			 * to reference any existing file data.
366			 */
367			txh->txh_space_towrite += 1ULL << max_ibs;
368		}
369	}
370
371out:
372	if (txh->txh_space_towrite + txh->txh_space_tooverwrite >
373	    2 * DMU_MAX_ACCESS)
374		err = SET_ERROR(EFBIG);
375
376	if (err)
377		txh->txh_tx->tx_err = err;
378}
379
380static void
381dmu_tx_count_dnode(dmu_tx_hold_t *txh)
382{
383	dnode_t *dn = txh->txh_dnode;
384	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
385	uint64_t space = mdn->dn_datablksz +
386	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
387
388	if (dn && dn->dn_dbuf->db_blkptr &&
389	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
390	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
391		txh->txh_space_tooverwrite += space;
392		txh->txh_space_tounref += space;
393	} else {
394		txh->txh_space_towrite += space;
395		if (dn && dn->dn_dbuf->db_blkptr)
396			txh->txh_space_tounref += space;
397	}
398}
399
400void
401dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
402{
403	dmu_tx_hold_t *txh;
404
405	ASSERT(tx->tx_txg == 0);
406	ASSERT(len < DMU_MAX_ACCESS);
407	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
408
409	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
410	    object, THT_WRITE, off, len);
411	if (txh == NULL)
412		return;
413
414	dmu_tx_count_write(txh, off, len);
415	dmu_tx_count_dnode(txh);
416}
417
418static void
419dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
420{
421	uint64_t blkid, nblks, lastblk;
422	uint64_t space = 0, unref = 0, skipped = 0;
423	dnode_t *dn = txh->txh_dnode;
424	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
425	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
426	int epbs;
427	uint64_t l0span = 0, nl1blks = 0;
428
429	if (dn->dn_nlevels == 0)
430		return;
431
432	/*
433	 * The struct_rwlock protects us against dn_nlevels
434	 * changing, in case (against all odds) we manage to dirty &
435	 * sync out the changes after we check for being dirty.
436	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
437	 */
438	rw_enter(&dn->dn_struct_rwlock, RW_READER);
439	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
440	if (dn->dn_maxblkid == 0) {
441		if (off == 0 && len >= dn->dn_datablksz) {
442			blkid = 0;
443			nblks = 1;
444		} else {
445			rw_exit(&dn->dn_struct_rwlock);
446			return;
447		}
448	} else {
449		blkid = off >> dn->dn_datablkshift;
450		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
451
452		if (blkid > dn->dn_maxblkid) {
453			rw_exit(&dn->dn_struct_rwlock);
454			return;
455		}
456		if (blkid + nblks > dn->dn_maxblkid)
457			nblks = dn->dn_maxblkid - blkid + 1;
458
459	}
460	l0span = nblks;    /* save for later use to calc level > 1 overhead */
461	if (dn->dn_nlevels == 1) {
462		int i;
463		for (i = 0; i < nblks; i++) {
464			blkptr_t *bp = dn->dn_phys->dn_blkptr;
465			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
466			bp += blkid + i;
467			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
468				dprintf_bp(bp, "can free old%s", "");
469				space += bp_get_dsize(spa, bp);
470			}
471			unref += BP_GET_ASIZE(bp);
472		}
473		nl1blks = 1;
474		nblks = 0;
475	}
476
477	lastblk = blkid + nblks - 1;
478	while (nblks) {
479		dmu_buf_impl_t *dbuf;
480		uint64_t ibyte, new_blkid;
481		int epb = 1 << epbs;
482		int err, i, blkoff, tochk;
483		blkptr_t *bp;
484
485		ibyte = blkid << dn->dn_datablkshift;
486		err = dnode_next_offset(dn,
487		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
488		new_blkid = ibyte >> dn->dn_datablkshift;
489		if (err == ESRCH) {
490			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
491			break;
492		}
493		if (err) {
494			txh->txh_tx->tx_err = err;
495			break;
496		}
497		if (new_blkid > lastblk) {
498			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
499			break;
500		}
501
502		if (new_blkid > blkid) {
503			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
504			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
505			nblks -= new_blkid - blkid;
506			blkid = new_blkid;
507		}
508		blkoff = P2PHASE(blkid, epb);
509		tochk = MIN(epb - blkoff, nblks);
510
511		err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf);
512		if (err) {
513			txh->txh_tx->tx_err = err;
514			break;
515		}
516
517		txh->txh_memory_tohold += dbuf->db.db_size;
518
519		/*
520		 * We don't check memory_tohold against DMU_MAX_ACCESS because
521		 * memory_tohold is an over-estimation (especially the >L1
522		 * indirect blocks), so it could fail.  Callers should have
523		 * already verified that they will not be holding too much
524		 * memory.
525		 */
526
527		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
528		if (err != 0) {
529			txh->txh_tx->tx_err = err;
530			dbuf_rele(dbuf, FTAG);
531			break;
532		}
533
534		bp = dbuf->db.db_data;
535		bp += blkoff;
536
537		for (i = 0; i < tochk; i++) {
538			if (dsl_dataset_block_freeable(ds, &bp[i],
539			    bp[i].blk_birth)) {
540				dprintf_bp(&bp[i], "can free old%s", "");
541				space += bp_get_dsize(spa, &bp[i]);
542			}
543			unref += BP_GET_ASIZE(bp);
544		}
545		dbuf_rele(dbuf, FTAG);
546
547		++nl1blks;
548		blkid += tochk;
549		nblks -= tochk;
550	}
551	rw_exit(&dn->dn_struct_rwlock);
552
553	/*
554	 * Add in memory requirements of higher-level indirects.
555	 * This assumes a worst-possible scenario for dn_nlevels and a
556	 * worst-possible distribution of l1-blocks over the region to free.
557	 */
558	{
559		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
560		int level = 2;
561		/*
562		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
563		 * given datablkshift and indblkshift. This makes the
564		 * difference between 19 and 8 on large files.
565		 */
566		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
567		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
568
569		while (level++ < maxlevel) {
570			txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1)
571			    << dn->dn_indblkshift;
572			blkcnt = 1 + (blkcnt >> epbs);
573		}
574	}
575
576	/* account for new level 1 indirect blocks that might show up */
577	if (skipped > 0) {
578		txh->txh_fudge += skipped << dn->dn_indblkshift;
579		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
580		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
581	}
582	txh->txh_space_tofree += space;
583	txh->txh_space_tounref += unref;
584}
585
586/*
587 * This function marks the transaction as being a "net free".  The end
588 * result is that refquotas will be disabled for this transaction, and
589 * this transaction will be able to use half of the pool space overhead
590 * (see dsl_pool_adjustedsize()).  Therefore this function should only
591 * be called for transactions that we expect will not cause a net increase
592 * in the amount of space used (but it's OK if that is occasionally not true).
593 */
594void
595dmu_tx_mark_netfree(dmu_tx_t *tx)
596{
597	dmu_tx_hold_t *txh;
598
599	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
600	    DMU_NEW_OBJECT, THT_FREE, 0, 0);
601
602	/*
603	 * Pretend that this operation will free 1GB of space.  This
604	 * should be large enough to cancel out the largest write.
605	 * We don't want to use something like UINT64_MAX, because that would
606	 * cause overflows when doing math with these values (e.g. in
607	 * dmu_tx_try_assign()).
608	 */
609	txh->txh_space_tofree = txh->txh_space_tounref = 1024 * 1024 * 1024;
610}
611
612void
613dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
614{
615	dmu_tx_hold_t *txh;
616	dnode_t *dn;
617	int err;
618	zio_t *zio;
619
620	ASSERT(tx->tx_txg == 0);
621
622	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
623	    object, THT_FREE, off, len);
624	if (txh == NULL)
625		return;
626	dn = txh->txh_dnode;
627	dmu_tx_count_dnode(txh);
628
629	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
630		return;
631	if (len == DMU_OBJECT_END)
632		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
633
634
635	/*
636	 * For i/o error checking, we read the first and last level-0
637	 * blocks if they are not aligned, and all the level-1 blocks.
638	 *
639	 * Note:  dbuf_free_range() assumes that we have not instantiated
640	 * any level-0 dbufs that will be completely freed.  Therefore we must
641	 * exercise care to not read or count the first and last blocks
642	 * if they are blocksize-aligned.
643	 */
644	if (dn->dn_datablkshift == 0) {
645		if (off != 0 || len < dn->dn_datablksz)
646			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
647	} else {
648		/* first block will be modified if it is not aligned */
649		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
650			dmu_tx_count_write(txh, off, 1);
651		/* last block will be modified if it is not aligned */
652		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
653			dmu_tx_count_write(txh, off+len, 1);
654	}
655
656	/*
657	 * Check level-1 blocks.
658	 */
659	if (dn->dn_nlevels > 1) {
660		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
661		    SPA_BLKPTRSHIFT;
662		uint64_t start = off >> shift;
663		uint64_t end = (off + len) >> shift;
664
665		ASSERT(dn->dn_indblkshift != 0);
666
667		/*
668		 * dnode_reallocate() can result in an object with indirect
669		 * blocks having an odd data block size.  In this case,
670		 * just check the single block.
671		 */
672		if (dn->dn_datablkshift == 0)
673			start = end = 0;
674
675		zio = zio_root(tx->tx_pool->dp_spa,
676		    NULL, NULL, ZIO_FLAG_CANFAIL);
677		for (uint64_t i = start; i <= end; i++) {
678			uint64_t ibyte = i << shift;
679			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
680			i = ibyte >> shift;
681			if (err == ESRCH)
682				break;
683			if (err) {
684				tx->tx_err = err;
685				return;
686			}
687
688			err = dmu_tx_check_ioerr(zio, dn, 1, i);
689			if (err) {
690				tx->tx_err = err;
691				return;
692			}
693		}
694		err = zio_wait(zio);
695		if (err) {
696			tx->tx_err = err;
697			return;
698		}
699	}
700
701	dmu_tx_count_free(txh, off, len);
702}
703
704void
705dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
706{
707	dmu_tx_hold_t *txh;
708	dnode_t *dn;
709	uint64_t nblocks;
710	int epbs, err;
711
712	ASSERT(tx->tx_txg == 0);
713
714	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
715	    object, THT_ZAP, add, (uintptr_t)name);
716	if (txh == NULL)
717		return;
718	dn = txh->txh_dnode;
719
720	dmu_tx_count_dnode(txh);
721
722	if (dn == NULL) {
723		/*
724		 * We will be able to fit a new object's entries into one leaf
725		 * block.  So there will be at most 2 blocks total,
726		 * including the header block.
727		 */
728		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
729		return;
730	}
731
732	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
733
734	if (dn->dn_maxblkid == 0 && !add) {
735		blkptr_t *bp;
736
737		/*
738		 * If there is only one block  (i.e. this is a micro-zap)
739		 * and we are not adding anything, the accounting is simple.
740		 */
741		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
742		if (err) {
743			tx->tx_err = err;
744			return;
745		}
746
747		/*
748		 * Use max block size here, since we don't know how much
749		 * the size will change between now and the dbuf dirty call.
750		 */
751		bp = &dn->dn_phys->dn_blkptr[0];
752		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
753		    bp, bp->blk_birth))
754			txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
755		else
756			txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
757		if (!BP_IS_HOLE(bp))
758			txh->txh_space_tounref += SPA_MAXBLOCKSIZE;
759		return;
760	}
761
762	if (dn->dn_maxblkid > 0 && name) {
763		/*
764		 * access the name in this fat-zap so that we'll check
765		 * for i/o errors to the leaf blocks, etc.
766		 */
767		err = zap_lookup(dn->dn_objset, dn->dn_object, name,
768		    8, 0, NULL);
769		if (err == EIO) {
770			tx->tx_err = err;
771			return;
772		}
773	}
774
775	err = zap_count_write(dn->dn_objset, dn->dn_object, name, add,
776	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
777
778	/*
779	 * If the modified blocks are scattered to the four winds,
780	 * we'll have to modify an indirect twig for each.
781	 */
782	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
783	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
784		if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj)
785			txh->txh_space_towrite += 3 << dn->dn_indblkshift;
786		else
787			txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift;
788}
789
790void
791dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
792{
793	dmu_tx_hold_t *txh;
794
795	ASSERT(tx->tx_txg == 0);
796
797	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
798	    object, THT_BONUS, 0, 0);
799	if (txh)
800		dmu_tx_count_dnode(txh);
801}
802
803void
804dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
805{
806	dmu_tx_hold_t *txh;
807	ASSERT(tx->tx_txg == 0);
808
809	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
810	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
811
812	txh->txh_space_towrite += space;
813}
814
815int
816dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
817{
818	dmu_tx_hold_t *txh;
819	int holds = 0;
820
821	/*
822	 * By asserting that the tx is assigned, we're counting the
823	 * number of dn_tx_holds, which is the same as the number of
824	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
825	 * dn_tx_holds could be 0.
826	 */
827	ASSERT(tx->tx_txg != 0);
828
829	/* if (tx->tx_anyobj == TRUE) */
830		/* return (0); */
831
832	for (txh = list_head(&tx->tx_holds); txh;
833	    txh = list_next(&tx->tx_holds, txh)) {
834		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
835			holds++;
836	}
837
838	return (holds);
839}
840
841#ifdef ZFS_DEBUG
842void
843dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
844{
845	dmu_tx_hold_t *txh;
846	int match_object = FALSE, match_offset = FALSE;
847	dnode_t *dn;
848
849	DB_DNODE_ENTER(db);
850	dn = DB_DNODE(db);
851	ASSERT(tx->tx_txg != 0);
852	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
853	ASSERT3U(dn->dn_object, ==, db->db.db_object);
854
855	if (tx->tx_anyobj) {
856		DB_DNODE_EXIT(db);
857		return;
858	}
859
860	/* XXX No checking on the meta dnode for now */
861	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
862		DB_DNODE_EXIT(db);
863		return;
864	}
865
866	for (txh = list_head(&tx->tx_holds); txh;
867	    txh = list_next(&tx->tx_holds, txh)) {
868		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
869		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
870			match_object = TRUE;
871		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
872			int datablkshift = dn->dn_datablkshift ?
873			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
874			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
875			int shift = datablkshift + epbs * db->db_level;
876			uint64_t beginblk = shift >= 64 ? 0 :
877			    (txh->txh_arg1 >> shift);
878			uint64_t endblk = shift >= 64 ? 0 :
879			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
880			uint64_t blkid = db->db_blkid;
881
882			/* XXX txh_arg2 better not be zero... */
883
884			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
885			    txh->txh_type, beginblk, endblk);
886
887			switch (txh->txh_type) {
888			case THT_WRITE:
889				if (blkid >= beginblk && blkid <= endblk)
890					match_offset = TRUE;
891				/*
892				 * We will let this hold work for the bonus
893				 * or spill buffer so that we don't need to
894				 * hold it when creating a new object.
895				 */
896				if (blkid == DMU_BONUS_BLKID ||
897				    blkid == DMU_SPILL_BLKID)
898					match_offset = TRUE;
899				/*
900				 * They might have to increase nlevels,
901				 * thus dirtying the new TLIBs.  Or the
902				 * might have to change the block size,
903				 * thus dirying the new lvl=0 blk=0.
904				 */
905				if (blkid == 0)
906					match_offset = TRUE;
907				break;
908			case THT_FREE:
909				/*
910				 * We will dirty all the level 1 blocks in
911				 * the free range and perhaps the first and
912				 * last level 0 block.
913				 */
914				if (blkid >= beginblk && (blkid <= endblk ||
915				    txh->txh_arg2 == DMU_OBJECT_END))
916					match_offset = TRUE;
917				break;
918			case THT_SPILL:
919				if (blkid == DMU_SPILL_BLKID)
920					match_offset = TRUE;
921				break;
922			case THT_BONUS:
923				if (blkid == DMU_BONUS_BLKID)
924					match_offset = TRUE;
925				break;
926			case THT_ZAP:
927				match_offset = TRUE;
928				break;
929			case THT_NEWOBJECT:
930				match_object = TRUE;
931				break;
932			default:
933				ASSERT(!"bad txh_type");
934			}
935		}
936		if (match_object && match_offset) {
937			DB_DNODE_EXIT(db);
938			return;
939		}
940	}
941	DB_DNODE_EXIT(db);
942	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
943	    (u_longlong_t)db->db.db_object, db->db_level,
944	    (u_longlong_t)db->db_blkid);
945}
946#endif
947
948/*
949 * If we can't do 10 iops, something is wrong.  Let us go ahead
950 * and hit zfs_dirty_data_max.
951 */
952hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
953int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
954
955/*
956 * We delay transactions when we've determined that the backend storage
957 * isn't able to accommodate the rate of incoming writes.
958 *
959 * If there is already a transaction waiting, we delay relative to when
960 * that transaction finishes waiting.  This way the calculated min_time
961 * is independent of the number of threads concurrently executing
962 * transactions.
963 *
964 * If we are the only waiter, wait relative to when the transaction
965 * started, rather than the current time.  This credits the transaction for
966 * "time already served", e.g. reading indirect blocks.
967 *
968 * The minimum time for a transaction to take is calculated as:
969 *     min_time = scale * (dirty - min) / (max - dirty)
970 *     min_time is then capped at zfs_delay_max_ns.
971 *
972 * The delay has two degrees of freedom that can be adjusted via tunables.
973 * The percentage of dirty data at which we start to delay is defined by
974 * zfs_delay_min_dirty_percent. This should typically be at or above
975 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
976 * delay after writing at full speed has failed to keep up with the incoming
977 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
978 * speaking, this variable determines the amount of delay at the midpoint of
979 * the curve.
980 *
981 * delay
982 *  10ms +-------------------------------------------------------------*+
983 *       |                                                             *|
984 *   9ms +                                                             *+
985 *       |                                                             *|
986 *   8ms +                                                             *+
987 *       |                                                            * |
988 *   7ms +                                                            * +
989 *       |                                                            * |
990 *   6ms +                                                            * +
991 *       |                                                            * |
992 *   5ms +                                                           *  +
993 *       |                                                           *  |
994 *   4ms +                                                           *  +
995 *       |                                                           *  |
996 *   3ms +                                                          *   +
997 *       |                                                          *   |
998 *   2ms +                                              (midpoint) *    +
999 *       |                                                  |    **     |
1000 *   1ms +                                                  v ***       +
1001 *       |             zfs_delay_scale ---------->     ********         |
1002 *     0 +-------------------------------------*********----------------+
1003 *       0%                    <- zfs_dirty_data_max ->               100%
1004 *
1005 * Note that since the delay is added to the outstanding time remaining on the
1006 * most recent transaction, the delay is effectively the inverse of IOPS.
1007 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
1008 * was chosen such that small changes in the amount of accumulated dirty data
1009 * in the first 3/4 of the curve yield relatively small differences in the
1010 * amount of delay.
1011 *
1012 * The effects can be easier to understand when the amount of delay is
1013 * represented on a log scale:
1014 *
1015 * delay
1016 * 100ms +-------------------------------------------------------------++
1017 *       +                                                              +
1018 *       |                                                              |
1019 *       +                                                             *+
1020 *  10ms +                                                             *+
1021 *       +                                                           ** +
1022 *       |                                              (midpoint)  **  |
1023 *       +                                                  |     **    +
1024 *   1ms +                                                  v ****      +
1025 *       +             zfs_delay_scale ---------->        *****         +
1026 *       |                                             ****             |
1027 *       +                                          ****                +
1028 * 100us +                                        **                    +
1029 *       +                                       *                      +
1030 *       |                                      *                       |
1031 *       +                                     *                        +
1032 *  10us +                                     *                        +
1033 *       +                                                              +
1034 *       |                                                              |
1035 *       +                                                              +
1036 *       +--------------------------------------------------------------+
1037 *       0%                    <- zfs_dirty_data_max ->               100%
1038 *
1039 * Note here that only as the amount of dirty data approaches its limit does
1040 * the delay start to increase rapidly. The goal of a properly tuned system
1041 * should be to keep the amount of dirty data out of that range by first
1042 * ensuring that the appropriate limits are set for the I/O scheduler to reach
1043 * optimal throughput on the backend storage, and then by changing the value
1044 * of zfs_delay_scale to increase the steepness of the curve.
1045 */
1046static void
1047dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
1048{
1049	dsl_pool_t *dp = tx->tx_pool;
1050	uint64_t delay_min_bytes =
1051	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
1052	hrtime_t wakeup, min_tx_time, now;
1053
1054	if (dirty <= delay_min_bytes)
1055		return;
1056
1057	/*
1058	 * The caller has already waited until we are under the max.
1059	 * We make them pass us the amount of dirty data so we don't
1060	 * have to handle the case of it being >= the max, which could
1061	 * cause a divide-by-zero if it's == the max.
1062	 */
1063	ASSERT3U(dirty, <, zfs_dirty_data_max);
1064
1065	now = gethrtime();
1066	min_tx_time = zfs_delay_scale *
1067	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
1068	if (now > tx->tx_start + min_tx_time)
1069		return;
1070
1071	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
1072
1073	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
1074	    uint64_t, min_tx_time);
1075
1076	mutex_enter(&dp->dp_lock);
1077	wakeup = MAX(tx->tx_start + min_tx_time,
1078	    dp->dp_last_wakeup + min_tx_time);
1079	dp->dp_last_wakeup = wakeup;
1080	mutex_exit(&dp->dp_lock);
1081
1082#ifdef _KERNEL
1083#ifdef illumos
1084	mutex_enter(&curthread->t_delay_lock);
1085	while (cv_timedwait_hires(&curthread->t_delay_cv,
1086	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
1087	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
1088		continue;
1089	mutex_exit(&curthread->t_delay_lock);
1090#else
1091	pause_sbt("dmu_tx_delay", wakeup * SBT_1NS,
1092	    zfs_delay_resolution_ns * SBT_1NS, C_ABSOLUTE);
1093#endif
1094#else
1095	hrtime_t delta = wakeup - gethrtime();
1096	struct timespec ts;
1097	ts.tv_sec = delta / NANOSEC;
1098	ts.tv_nsec = delta % NANOSEC;
1099	(void) nanosleep(&ts, NULL);
1100#endif
1101}
1102
1103static int
1104dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
1105{
1106	dmu_tx_hold_t *txh;
1107	spa_t *spa = tx->tx_pool->dp_spa;
1108	uint64_t memory, asize, fsize, usize;
1109	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
1110
1111	ASSERT0(tx->tx_txg);
1112
1113	if (tx->tx_err)
1114		return (tx->tx_err);
1115
1116	if (spa_suspended(spa)) {
1117		/*
1118		 * If the user has indicated a blocking failure mode
1119		 * then return ERESTART which will block in dmu_tx_wait().
1120		 * Otherwise, return EIO so that an error can get
1121		 * propagated back to the VOP calls.
1122		 *
1123		 * Note that we always honor the txg_how flag regardless
1124		 * of the failuremode setting.
1125		 */
1126		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1127		    txg_how != TXG_WAIT)
1128			return (SET_ERROR(EIO));
1129
1130		return (SET_ERROR(ERESTART));
1131	}
1132
1133	if (!tx->tx_waited &&
1134	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1135		tx->tx_wait_dirty = B_TRUE;
1136		return (SET_ERROR(ERESTART));
1137	}
1138
1139	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1140	tx->tx_needassign_txh = NULL;
1141
1142	/*
1143	 * NB: No error returns are allowed after txg_hold_open, but
1144	 * before processing the dnode holds, due to the
1145	 * dmu_tx_unassign() logic.
1146	 */
1147
1148	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
1149	for (txh = list_head(&tx->tx_holds); txh;
1150	    txh = list_next(&tx->tx_holds, txh)) {
1151		dnode_t *dn = txh->txh_dnode;
1152		if (dn != NULL) {
1153			mutex_enter(&dn->dn_mtx);
1154			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1155				mutex_exit(&dn->dn_mtx);
1156				tx->tx_needassign_txh = txh;
1157				return (SET_ERROR(ERESTART));
1158			}
1159			if (dn->dn_assigned_txg == 0)
1160				dn->dn_assigned_txg = tx->tx_txg;
1161			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1162			(void) refcount_add(&dn->dn_tx_holds, tx);
1163			mutex_exit(&dn->dn_mtx);
1164		}
1165		towrite += txh->txh_space_towrite;
1166		tofree += txh->txh_space_tofree;
1167		tooverwrite += txh->txh_space_tooverwrite;
1168		tounref += txh->txh_space_tounref;
1169		tohold += txh->txh_memory_tohold;
1170		fudge += txh->txh_fudge;
1171	}
1172
1173	/*
1174	 * If a snapshot has been taken since we made our estimates,
1175	 * assume that we won't be able to free or overwrite anything.
1176	 */
1177	if (tx->tx_objset &&
1178	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
1179	    tx->tx_lastsnap_txg) {
1180		towrite += tooverwrite;
1181		tooverwrite = tofree = 0;
1182	}
1183
1184	/* needed allocation: worst-case estimate of write space */
1185	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
1186	/* freed space estimate: worst-case overwrite + free estimate */
1187	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
1188	/* convert unrefd space to worst-case estimate */
1189	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
1190	/* calculate memory footprint estimate */
1191	memory = towrite + tooverwrite + tohold;
1192
1193#ifdef ZFS_DEBUG
1194	/*
1195	 * Add in 'tohold' to account for our dirty holds on this memory
1196	 * XXX - the "fudge" factor is to account for skipped blocks that
1197	 * we missed because dnode_next_offset() misses in-core-only blocks.
1198	 */
1199	tx->tx_space_towrite = asize +
1200	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
1201	tx->tx_space_tofree = tofree;
1202	tx->tx_space_tooverwrite = tooverwrite;
1203	tx->tx_space_tounref = tounref;
1204#endif
1205
1206	if (tx->tx_dir && asize != 0) {
1207		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1208		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1209		if (err)
1210			return (err);
1211	}
1212
1213	return (0);
1214}
1215
1216static void
1217dmu_tx_unassign(dmu_tx_t *tx)
1218{
1219	dmu_tx_hold_t *txh;
1220
1221	if (tx->tx_txg == 0)
1222		return;
1223
1224	txg_rele_to_quiesce(&tx->tx_txgh);
1225
1226	/*
1227	 * Walk the transaction's hold list, removing the hold on the
1228	 * associated dnode, and notifying waiters if the refcount drops to 0.
1229	 */
1230	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1231	    txh = list_next(&tx->tx_holds, txh)) {
1232		dnode_t *dn = txh->txh_dnode;
1233
1234		if (dn == NULL)
1235			continue;
1236		mutex_enter(&dn->dn_mtx);
1237		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1238
1239		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1240			dn->dn_assigned_txg = 0;
1241			cv_broadcast(&dn->dn_notxholds);
1242		}
1243		mutex_exit(&dn->dn_mtx);
1244	}
1245
1246	txg_rele_to_sync(&tx->tx_txgh);
1247
1248	tx->tx_lasttried_txg = tx->tx_txg;
1249	tx->tx_txg = 0;
1250}
1251
1252/*
1253 * Assign tx to a transaction group.  txg_how can be one of:
1254 *
1255 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
1256 *	a new one.  This should be used when you're not holding locks.
1257 *	It will only fail if we're truly out of space (or over quota).
1258 *
1259 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
1260 *	blocking, returns immediately with ERESTART.  This should be used
1261 *	whenever you're holding locks.  On an ERESTART error, the caller
1262 *	should drop locks, do a dmu_tx_wait(tx), and try again.
1263 *
1264 * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
1265 *      has already been called on behalf of this operation (though
1266 *      most likely on a different tx).
1267 */
1268int
1269dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1270{
1271	int err;
1272
1273	ASSERT(tx->tx_txg == 0);
1274	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1275	    txg_how == TXG_WAITED);
1276	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1277
1278	/* If we might wait, we must not hold the config lock. */
1279	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1280
1281	if (txg_how == TXG_WAITED)
1282		tx->tx_waited = B_TRUE;
1283
1284	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1285		dmu_tx_unassign(tx);
1286
1287		if (err != ERESTART || txg_how != TXG_WAIT)
1288			return (err);
1289
1290		dmu_tx_wait(tx);
1291	}
1292
1293	txg_rele_to_quiesce(&tx->tx_txgh);
1294
1295	return (0);
1296}
1297
1298void
1299dmu_tx_wait(dmu_tx_t *tx)
1300{
1301	spa_t *spa = tx->tx_pool->dp_spa;
1302	dsl_pool_t *dp = tx->tx_pool;
1303
1304	ASSERT(tx->tx_txg == 0);
1305	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1306
1307	if (tx->tx_wait_dirty) {
1308		/*
1309		 * dmu_tx_try_assign() has determined that we need to wait
1310		 * because we've consumed much or all of the dirty buffer
1311		 * space.
1312		 */
1313		mutex_enter(&dp->dp_lock);
1314		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1315			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1316		uint64_t dirty = dp->dp_dirty_total;
1317		mutex_exit(&dp->dp_lock);
1318
1319		dmu_tx_delay(tx, dirty);
1320
1321		tx->tx_wait_dirty = B_FALSE;
1322
1323		/*
1324		 * Note: setting tx_waited only has effect if the caller
1325		 * used TX_WAIT.  Otherwise they are going to destroy
1326		 * this tx and try again.  The common case, zfs_write(),
1327		 * uses TX_WAIT.
1328		 */
1329		tx->tx_waited = B_TRUE;
1330	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1331		/*
1332		 * If the pool is suspended we need to wait until it
1333		 * is resumed.  Note that it's possible that the pool
1334		 * has become active after this thread has tried to
1335		 * obtain a tx.  If that's the case then tx_lasttried_txg
1336		 * would not have been set.
1337		 */
1338		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1339	} else if (tx->tx_needassign_txh) {
1340		/*
1341		 * A dnode is assigned to the quiescing txg.  Wait for its
1342		 * transaction to complete.
1343		 */
1344		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1345
1346		mutex_enter(&dn->dn_mtx);
1347		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1348			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1349		mutex_exit(&dn->dn_mtx);
1350		tx->tx_needassign_txh = NULL;
1351	} else {
1352		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1353	}
1354}
1355
1356void
1357dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1358{
1359#ifdef ZFS_DEBUG
1360	if (tx->tx_dir == NULL || delta == 0)
1361		return;
1362
1363	if (delta > 0) {
1364		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1365		    tx->tx_space_towrite);
1366		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1367	} else {
1368		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1369	}
1370#endif
1371}
1372
1373void
1374dmu_tx_commit(dmu_tx_t *tx)
1375{
1376	dmu_tx_hold_t *txh;
1377
1378	ASSERT(tx->tx_txg != 0);
1379
1380	/*
1381	 * Go through the transaction's hold list and remove holds on
1382	 * associated dnodes, notifying waiters if no holds remain.
1383	 */
1384	while (txh = list_head(&tx->tx_holds)) {
1385		dnode_t *dn = txh->txh_dnode;
1386
1387		list_remove(&tx->tx_holds, txh);
1388		kmem_free(txh, sizeof (dmu_tx_hold_t));
1389		if (dn == NULL)
1390			continue;
1391		mutex_enter(&dn->dn_mtx);
1392		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1393
1394		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1395			dn->dn_assigned_txg = 0;
1396			cv_broadcast(&dn->dn_notxholds);
1397		}
1398		mutex_exit(&dn->dn_mtx);
1399		dnode_rele(dn, tx);
1400	}
1401
1402	if (tx->tx_tempreserve_cookie)
1403		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1404
1405	if (!list_is_empty(&tx->tx_callbacks))
1406		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1407
1408	if (tx->tx_anyobj == FALSE)
1409		txg_rele_to_sync(&tx->tx_txgh);
1410
1411	list_destroy(&tx->tx_callbacks);
1412	list_destroy(&tx->tx_holds);
1413#ifdef ZFS_DEBUG
1414	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1415	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1416	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1417	refcount_destroy_many(&tx->tx_space_written,
1418	    refcount_count(&tx->tx_space_written));
1419	refcount_destroy_many(&tx->tx_space_freed,
1420	    refcount_count(&tx->tx_space_freed));
1421#endif
1422	kmem_free(tx, sizeof (dmu_tx_t));
1423}
1424
1425void
1426dmu_tx_abort(dmu_tx_t *tx)
1427{
1428	dmu_tx_hold_t *txh;
1429
1430	ASSERT(tx->tx_txg == 0);
1431
1432	while (txh = list_head(&tx->tx_holds)) {
1433		dnode_t *dn = txh->txh_dnode;
1434
1435		list_remove(&tx->tx_holds, txh);
1436		kmem_free(txh, sizeof (dmu_tx_hold_t));
1437		if (dn != NULL)
1438			dnode_rele(dn, tx);
1439	}
1440
1441	/*
1442	 * Call any registered callbacks with an error code.
1443	 */
1444	if (!list_is_empty(&tx->tx_callbacks))
1445		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1446
1447	list_destroy(&tx->tx_callbacks);
1448	list_destroy(&tx->tx_holds);
1449#ifdef ZFS_DEBUG
1450	refcount_destroy_many(&tx->tx_space_written,
1451	    refcount_count(&tx->tx_space_written));
1452	refcount_destroy_many(&tx->tx_space_freed,
1453	    refcount_count(&tx->tx_space_freed));
1454#endif
1455	kmem_free(tx, sizeof (dmu_tx_t));
1456}
1457
1458uint64_t
1459dmu_tx_get_txg(dmu_tx_t *tx)
1460{
1461	ASSERT(tx->tx_txg != 0);
1462	return (tx->tx_txg);
1463}
1464
1465dsl_pool_t *
1466dmu_tx_pool(dmu_tx_t *tx)
1467{
1468	ASSERT(tx->tx_pool != NULL);
1469	return (tx->tx_pool);
1470}
1471
1472
1473void
1474dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1475{
1476	dmu_tx_callback_t *dcb;
1477
1478	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1479
1480	dcb->dcb_func = func;
1481	dcb->dcb_data = data;
1482
1483	list_insert_tail(&tx->tx_callbacks, dcb);
1484}
1485
1486/*
1487 * Call all the commit callbacks on a list, with a given error code.
1488 */
1489void
1490dmu_tx_do_callbacks(list_t *cb_list, int error)
1491{
1492	dmu_tx_callback_t *dcb;
1493
1494	while (dcb = list_head(cb_list)) {
1495		list_remove(cb_list, dcb);
1496		dcb->dcb_func(dcb->dcb_data, error);
1497		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1498	}
1499}
1500
1501/*
1502 * Interface to hold a bunch of attributes.
1503 * used for creating new files.
1504 * attrsize is the total size of all attributes
1505 * to be added during object creation
1506 *
1507 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1508 */
1509
1510/*
1511 * hold necessary attribute name for attribute registration.
1512 * should be a very rare case where this is needed.  If it does
1513 * happen it would only happen on the first write to the file system.
1514 */
1515static void
1516dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1517{
1518	int i;
1519
1520	if (!sa->sa_need_attr_registration)
1521		return;
1522
1523	for (i = 0; i != sa->sa_num_attrs; i++) {
1524		if (!sa->sa_attr_table[i].sa_registered) {
1525			if (sa->sa_reg_attr_obj)
1526				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1527				    B_TRUE, sa->sa_attr_table[i].sa_name);
1528			else
1529				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1530				    B_TRUE, sa->sa_attr_table[i].sa_name);
1531		}
1532	}
1533}
1534
1535
1536void
1537dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1538{
1539	dnode_t *dn;
1540	dmu_tx_hold_t *txh;
1541
1542	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1543	    THT_SPILL, 0, 0);
1544
1545	dn = txh->txh_dnode;
1546
1547	if (dn == NULL)
1548		return;
1549
1550	/* If blkptr doesn't exist then add space to towrite */
1551	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1552		txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1553	} else {
1554		blkptr_t *bp;
1555
1556		bp = &dn->dn_phys->dn_spill;
1557		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1558		    bp, bp->blk_birth))
1559			txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
1560		else
1561			txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1562		if (!BP_IS_HOLE(bp))
1563			txh->txh_space_tounref += SPA_MAXBLOCKSIZE;
1564	}
1565}
1566
1567void
1568dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1569{
1570	sa_os_t *sa = tx->tx_objset->os_sa;
1571
1572	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1573
1574	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1575		return;
1576
1577	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1578		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1579	else {
1580		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1581		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1582		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1583		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1584	}
1585
1586	dmu_tx_sa_registration_hold(sa, tx);
1587
1588	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1589		return;
1590
1591	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1592	    THT_SPILL, 0, 0);
1593}
1594
1595/*
1596 * Hold SA attribute
1597 *
1598 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1599 *
1600 * variable_size is the total size of all variable sized attributes
1601 * passed to this function.  It is not the total size of all
1602 * variable size attributes that *may* exist on this object.
1603 */
1604void
1605dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1606{
1607	uint64_t object;
1608	sa_os_t *sa = tx->tx_objset->os_sa;
1609
1610	ASSERT(hdl != NULL);
1611
1612	object = sa_handle_object(hdl);
1613
1614	dmu_tx_hold_bonus(tx, object);
1615
1616	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1617		return;
1618
1619	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1620	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1621		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1622		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1623		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1624		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1625	}
1626
1627	dmu_tx_sa_registration_hold(sa, tx);
1628
1629	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1630		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1631
1632	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1633		ASSERT(tx->tx_txg == 0);
1634		dmu_tx_hold_spill(tx, object);
1635	} else {
1636		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1637		dnode_t *dn;
1638
1639		DB_DNODE_ENTER(db);
1640		dn = DB_DNODE(db);
1641		if (dn->dn_have_spill) {
1642			ASSERT(tx->tx_txg == 0);
1643			dmu_tx_hold_spill(tx, object);
1644		}
1645		DB_DNODE_EXIT(db);
1646	}
1647}
1648