dmu_tx.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27#include <sys/dmu.h>
28#include <sys/dmu_impl.h>
29#include <sys/dbuf.h>
30#include <sys/dmu_tx.h>
31#include <sys/dmu_objset.h>
32#include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */
33#include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */
34#include <sys/dsl_pool.h>
35#include <sys/zap_impl.h> /* for fzap_default_block_shift */
36#include <sys/spa.h>
37#include <sys/sa.h>
38#include <sys/sa_impl.h>
39#include <sys/zfs_context.h>
40#include <sys/varargs.h>
41
42typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43    uint64_t arg1, uint64_t arg2);
44
45
46dmu_tx_t *
47dmu_tx_create_dd(dsl_dir_t *dd)
48{
49	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
50	tx->tx_dir = dd;
51	if (dd != NULL)
52		tx->tx_pool = dd->dd_pool;
53	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
54	    offsetof(dmu_tx_hold_t, txh_node));
55	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
56	    offsetof(dmu_tx_callback_t, dcb_node));
57	tx->tx_start = gethrtime();
58#ifdef ZFS_DEBUG
59	refcount_create(&tx->tx_space_written);
60	refcount_create(&tx->tx_space_freed);
61#endif
62	return (tx);
63}
64
65dmu_tx_t *
66dmu_tx_create(objset_t *os)
67{
68	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
69	tx->tx_objset = os;
70	tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os_dsl_dataset);
71	return (tx);
72}
73
74dmu_tx_t *
75dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
76{
77	dmu_tx_t *tx = dmu_tx_create_dd(NULL);
78
79	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
80	tx->tx_pool = dp;
81	tx->tx_txg = txg;
82	tx->tx_anyobj = TRUE;
83
84	return (tx);
85}
86
87int
88dmu_tx_is_syncing(dmu_tx_t *tx)
89{
90	return (tx->tx_anyobj);
91}
92
93int
94dmu_tx_private_ok(dmu_tx_t *tx)
95{
96	return (tx->tx_anyobj);
97}
98
99static dmu_tx_hold_t *
100dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
101    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
102{
103	dmu_tx_hold_t *txh;
104	dnode_t *dn = NULL;
105	int err;
106
107	if (object != DMU_NEW_OBJECT) {
108		err = dnode_hold(os, object, tx, &dn);
109		if (err) {
110			tx->tx_err = err;
111			return (NULL);
112		}
113
114		if (err == 0 && tx->tx_txg != 0) {
115			mutex_enter(&dn->dn_mtx);
116			/*
117			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
118			 * problem, but there's no way for it to happen (for
119			 * now, at least).
120			 */
121			ASSERT(dn->dn_assigned_txg == 0);
122			dn->dn_assigned_txg = tx->tx_txg;
123			(void) refcount_add(&dn->dn_tx_holds, tx);
124			mutex_exit(&dn->dn_mtx);
125		}
126	}
127
128	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
129	txh->txh_tx = tx;
130	txh->txh_dnode = dn;
131#ifdef ZFS_DEBUG
132	txh->txh_type = type;
133	txh->txh_arg1 = arg1;
134	txh->txh_arg2 = arg2;
135#endif
136	list_insert_tail(&tx->tx_holds, txh);
137
138	return (txh);
139}
140
141void
142dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object)
143{
144	/*
145	 * If we're syncing, they can manipulate any object anyhow, and
146	 * the hold on the dnode_t can cause problems.
147	 */
148	if (!dmu_tx_is_syncing(tx)) {
149		(void) dmu_tx_hold_object_impl(tx, os,
150		    object, THT_NEWOBJECT, 0, 0);
151	}
152}
153
154static int
155dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
156{
157	int err;
158	dmu_buf_impl_t *db;
159
160	rw_enter(&dn->dn_struct_rwlock, RW_READER);
161	db = dbuf_hold_level(dn, level, blkid, FTAG);
162	rw_exit(&dn->dn_struct_rwlock);
163	if (db == NULL)
164		return (SET_ERROR(EIO));
165	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
166	dbuf_rele(db, FTAG);
167	return (err);
168}
169
170static void
171dmu_tx_count_twig(dmu_tx_hold_t *txh, dnode_t *dn, dmu_buf_impl_t *db,
172    int level, uint64_t blkid, boolean_t freeable, uint64_t *history)
173{
174	objset_t *os = dn->dn_objset;
175	dsl_dataset_t *ds = os->os_dsl_dataset;
176	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
177	dmu_buf_impl_t *parent = NULL;
178	blkptr_t *bp = NULL;
179	uint64_t space;
180
181	if (level >= dn->dn_nlevels || history[level] == blkid)
182		return;
183
184	history[level] = blkid;
185
186	space = (level == 0) ? dn->dn_datablksz : (1ULL << dn->dn_indblkshift);
187
188	if (db == NULL || db == dn->dn_dbuf) {
189		ASSERT(level != 0);
190		db = NULL;
191	} else {
192		ASSERT(DB_DNODE(db) == dn);
193		ASSERT(db->db_level == level);
194		ASSERT(db->db.db_size == space);
195		ASSERT(db->db_blkid == blkid);
196		bp = db->db_blkptr;
197		parent = db->db_parent;
198	}
199
200	freeable = (bp && (freeable ||
201	    dsl_dataset_block_freeable(ds, bp, bp->blk_birth)));
202
203	if (freeable)
204		txh->txh_space_tooverwrite += space;
205	else
206		txh->txh_space_towrite += space;
207	if (bp)
208		txh->txh_space_tounref += bp_get_dsize(os->os_spa, bp);
209
210	dmu_tx_count_twig(txh, dn, parent, level + 1,
211	    blkid >> epbs, freeable, history);
212}
213
214/* ARGSUSED */
215static void
216dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
217{
218	dnode_t *dn = txh->txh_dnode;
219	uint64_t start, end, i;
220	int min_bs, max_bs, min_ibs, max_ibs, epbs, bits;
221	int err = 0;
222
223	if (len == 0)
224		return;
225
226	min_bs = SPA_MINBLOCKSHIFT;
227	max_bs = SPA_MAXBLOCKSHIFT;
228	min_ibs = DN_MIN_INDBLKSHIFT;
229	max_ibs = DN_MAX_INDBLKSHIFT;
230
231	if (dn) {
232		uint64_t history[DN_MAX_LEVELS];
233		int nlvls = dn->dn_nlevels;
234		int delta;
235
236		/*
237		 * For i/o error checking, read the first and last level-0
238		 * blocks (if they are not aligned), and all the level-1 blocks.
239		 */
240		if (dn->dn_maxblkid == 0) {
241			delta = dn->dn_datablksz;
242			start = (off < dn->dn_datablksz) ? 0 : 1;
243			end = (off+len <= dn->dn_datablksz) ? 0 : 1;
244			if (start == 0 && (off > 0 || len < dn->dn_datablksz)) {
245				err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
246				if (err)
247					goto out;
248				delta -= off;
249			}
250		} else {
251			zio_t *zio = zio_root(dn->dn_objset->os_spa,
252			    NULL, NULL, ZIO_FLAG_CANFAIL);
253
254			/* first level-0 block */
255			start = off >> dn->dn_datablkshift;
256			if (P2PHASE(off, dn->dn_datablksz) ||
257			    len < dn->dn_datablksz) {
258				err = dmu_tx_check_ioerr(zio, dn, 0, start);
259				if (err)
260					goto out;
261			}
262
263			/* last level-0 block */
264			end = (off+len-1) >> dn->dn_datablkshift;
265			if (end != start && end <= dn->dn_maxblkid &&
266			    P2PHASE(off+len, dn->dn_datablksz)) {
267				err = dmu_tx_check_ioerr(zio, dn, 0, end);
268				if (err)
269					goto out;
270			}
271
272			/* level-1 blocks */
273			if (nlvls > 1) {
274				int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
275				for (i = (start>>shft)+1; i < end>>shft; i++) {
276					err = dmu_tx_check_ioerr(zio, dn, 1, i);
277					if (err)
278						goto out;
279				}
280			}
281
282			err = zio_wait(zio);
283			if (err)
284				goto out;
285			delta = P2NPHASE(off, dn->dn_datablksz);
286		}
287
288		min_ibs = max_ibs = dn->dn_indblkshift;
289		if (dn->dn_maxblkid > 0) {
290			/*
291			 * The blocksize can't change,
292			 * so we can make a more precise estimate.
293			 */
294			ASSERT(dn->dn_datablkshift != 0);
295			min_bs = max_bs = dn->dn_datablkshift;
296		}
297
298		/*
299		 * If this write is not off the end of the file
300		 * we need to account for overwrites/unref.
301		 */
302		if (start <= dn->dn_maxblkid) {
303			for (int l = 0; l < DN_MAX_LEVELS; l++)
304				history[l] = -1ULL;
305		}
306		while (start <= dn->dn_maxblkid) {
307			dmu_buf_impl_t *db;
308
309			rw_enter(&dn->dn_struct_rwlock, RW_READER);
310			err = dbuf_hold_impl(dn, 0, start, FALSE, FTAG, &db);
311			rw_exit(&dn->dn_struct_rwlock);
312
313			if (err) {
314				txh->txh_tx->tx_err = err;
315				return;
316			}
317
318			dmu_tx_count_twig(txh, dn, db, 0, start, B_FALSE,
319			    history);
320			dbuf_rele(db, FTAG);
321			if (++start > end) {
322				/*
323				 * Account for new indirects appearing
324				 * before this IO gets assigned into a txg.
325				 */
326				bits = 64 - min_bs;
327				epbs = min_ibs - SPA_BLKPTRSHIFT;
328				for (bits -= epbs * (nlvls - 1);
329				    bits >= 0; bits -= epbs)
330					txh->txh_fudge += 1ULL << max_ibs;
331				goto out;
332			}
333			off += delta;
334			if (len >= delta)
335				len -= delta;
336			delta = dn->dn_datablksz;
337		}
338	}
339
340	/*
341	 * 'end' is the last thing we will access, not one past.
342	 * This way we won't overflow when accessing the last byte.
343	 */
344	start = P2ALIGN(off, 1ULL << max_bs);
345	end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1;
346	txh->txh_space_towrite += end - start + 1;
347
348	start >>= min_bs;
349	end >>= min_bs;
350
351	epbs = min_ibs - SPA_BLKPTRSHIFT;
352
353	/*
354	 * The object contains at most 2^(64 - min_bs) blocks,
355	 * and each indirect level maps 2^epbs.
356	 */
357	for (bits = 64 - min_bs; bits >= 0; bits -= epbs) {
358		start >>= epbs;
359		end >>= epbs;
360		ASSERT3U(end, >=, start);
361		txh->txh_space_towrite += (end - start + 1) << max_ibs;
362		if (start != 0) {
363			/*
364			 * We also need a new blkid=0 indirect block
365			 * to reference any existing file data.
366			 */
367			txh->txh_space_towrite += 1ULL << max_ibs;
368		}
369	}
370
371out:
372	if (txh->txh_space_towrite + txh->txh_space_tooverwrite >
373	    2 * DMU_MAX_ACCESS)
374		err = SET_ERROR(EFBIG);
375
376	if (err)
377		txh->txh_tx->tx_err = err;
378}
379
380static void
381dmu_tx_count_dnode(dmu_tx_hold_t *txh)
382{
383	dnode_t *dn = txh->txh_dnode;
384	dnode_t *mdn = DMU_META_DNODE(txh->txh_tx->tx_objset);
385	uint64_t space = mdn->dn_datablksz +
386	    ((mdn->dn_nlevels-1) << mdn->dn_indblkshift);
387
388	if (dn && dn->dn_dbuf->db_blkptr &&
389	    dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
390	    dn->dn_dbuf->db_blkptr, dn->dn_dbuf->db_blkptr->blk_birth)) {
391		txh->txh_space_tooverwrite += space;
392		txh->txh_space_tounref += space;
393	} else {
394		txh->txh_space_towrite += space;
395		if (dn && dn->dn_dbuf->db_blkptr)
396			txh->txh_space_tounref += space;
397	}
398}
399
400void
401dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
402{
403	dmu_tx_hold_t *txh;
404
405	ASSERT(tx->tx_txg == 0);
406	ASSERT(len < DMU_MAX_ACCESS);
407	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
408
409	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
410	    object, THT_WRITE, off, len);
411	if (txh == NULL)
412		return;
413
414	dmu_tx_count_write(txh, off, len);
415	dmu_tx_count_dnode(txh);
416}
417
418static void
419dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
420{
421	uint64_t blkid, nblks, lastblk;
422	uint64_t space = 0, unref = 0, skipped = 0;
423	dnode_t *dn = txh->txh_dnode;
424	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
425	spa_t *spa = txh->txh_tx->tx_pool->dp_spa;
426	int epbs;
427	uint64_t l0span = 0, nl1blks = 0;
428
429	if (dn->dn_nlevels == 0)
430		return;
431
432	/*
433	 * The struct_rwlock protects us against dn_nlevels
434	 * changing, in case (against all odds) we manage to dirty &
435	 * sync out the changes after we check for being dirty.
436	 * Also, dbuf_hold_impl() wants us to have the struct_rwlock.
437	 */
438	rw_enter(&dn->dn_struct_rwlock, RW_READER);
439	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
440	if (dn->dn_maxblkid == 0) {
441		if (off == 0 && len >= dn->dn_datablksz) {
442			blkid = 0;
443			nblks = 1;
444		} else {
445			rw_exit(&dn->dn_struct_rwlock);
446			return;
447		}
448	} else {
449		blkid = off >> dn->dn_datablkshift;
450		nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift;
451
452		if (blkid > dn->dn_maxblkid) {
453			rw_exit(&dn->dn_struct_rwlock);
454			return;
455		}
456		if (blkid + nblks > dn->dn_maxblkid)
457			nblks = dn->dn_maxblkid - blkid + 1;
458
459	}
460	l0span = nblks;    /* save for later use to calc level > 1 overhead */
461	if (dn->dn_nlevels == 1) {
462		int i;
463		for (i = 0; i < nblks; i++) {
464			blkptr_t *bp = dn->dn_phys->dn_blkptr;
465			ASSERT3U(blkid + i, <, dn->dn_nblkptr);
466			bp += blkid + i;
467			if (dsl_dataset_block_freeable(ds, bp, bp->blk_birth)) {
468				dprintf_bp(bp, "can free old%s", "");
469				space += bp_get_dsize(spa, bp);
470			}
471			unref += BP_GET_ASIZE(bp);
472		}
473		nl1blks = 1;
474		nblks = 0;
475	}
476
477	lastblk = blkid + nblks - 1;
478	while (nblks) {
479		dmu_buf_impl_t *dbuf;
480		uint64_t ibyte, new_blkid;
481		int epb = 1 << epbs;
482		int err, i, blkoff, tochk;
483		blkptr_t *bp;
484
485		ibyte = blkid << dn->dn_datablkshift;
486		err = dnode_next_offset(dn,
487		    DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0);
488		new_blkid = ibyte >> dn->dn_datablkshift;
489		if (err == ESRCH) {
490			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
491			break;
492		}
493		if (err) {
494			txh->txh_tx->tx_err = err;
495			break;
496		}
497		if (new_blkid > lastblk) {
498			skipped += (lastblk >> epbs) - (blkid >> epbs) + 1;
499			break;
500		}
501
502		if (new_blkid > blkid) {
503			ASSERT((new_blkid >> epbs) > (blkid >> epbs));
504			skipped += (new_blkid >> epbs) - (blkid >> epbs) - 1;
505			nblks -= new_blkid - blkid;
506			blkid = new_blkid;
507		}
508		blkoff = P2PHASE(blkid, epb);
509		tochk = MIN(epb - blkoff, nblks);
510
511		err = dbuf_hold_impl(dn, 1, blkid >> epbs, FALSE, FTAG, &dbuf);
512		if (err) {
513			txh->txh_tx->tx_err = err;
514			break;
515		}
516
517		txh->txh_memory_tohold += dbuf->db.db_size;
518
519		/*
520		 * We don't check memory_tohold against DMU_MAX_ACCESS because
521		 * memory_tohold is an over-estimation (especially the >L1
522		 * indirect blocks), so it could fail.  Callers should have
523		 * already verified that they will not be holding too much
524		 * memory.
525		 */
526
527		err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL);
528		if (err != 0) {
529			txh->txh_tx->tx_err = err;
530			dbuf_rele(dbuf, FTAG);
531			break;
532		}
533
534		bp = dbuf->db.db_data;
535		bp += blkoff;
536
537		for (i = 0; i < tochk; i++) {
538			if (dsl_dataset_block_freeable(ds, &bp[i],
539			    bp[i].blk_birth)) {
540				dprintf_bp(&bp[i], "can free old%s", "");
541				space += bp_get_dsize(spa, &bp[i]);
542			}
543			unref += BP_GET_ASIZE(bp);
544		}
545		dbuf_rele(dbuf, FTAG);
546
547		++nl1blks;
548		blkid += tochk;
549		nblks -= tochk;
550	}
551	rw_exit(&dn->dn_struct_rwlock);
552
553	/*
554	 * Add in memory requirements of higher-level indirects.
555	 * This assumes a worst-possible scenario for dn_nlevels and a
556	 * worst-possible distribution of l1-blocks over the region to free.
557	 */
558	{
559		uint64_t blkcnt = 1 + ((l0span >> epbs) >> epbs);
560		int level = 2;
561		/*
562		 * Here we don't use DN_MAX_LEVEL, but calculate it with the
563		 * given datablkshift and indblkshift. This makes the
564		 * difference between 19 and 8 on large files.
565		 */
566		int maxlevel = 2 + (DN_MAX_OFFSET_SHIFT - dn->dn_datablkshift) /
567		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
568
569		while (level++ < maxlevel) {
570			txh->txh_memory_tohold += MAX(MIN(blkcnt, nl1blks), 1)
571			    << dn->dn_indblkshift;
572			blkcnt = 1 + (blkcnt >> epbs);
573		}
574	}
575
576	/* account for new level 1 indirect blocks that might show up */
577	if (skipped > 0) {
578		txh->txh_fudge += skipped << dn->dn_indblkshift;
579		skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs);
580		txh->txh_memory_tohold += skipped << dn->dn_indblkshift;
581	}
582	txh->txh_space_tofree += space;
583	txh->txh_space_tounref += unref;
584}
585
586void
587dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
588{
589	dmu_tx_hold_t *txh;
590	dnode_t *dn;
591	int err;
592	zio_t *zio;
593
594	ASSERT(tx->tx_txg == 0);
595
596	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
597	    object, THT_FREE, off, len);
598	if (txh == NULL)
599		return;
600	dn = txh->txh_dnode;
601	dmu_tx_count_dnode(txh);
602
603	if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
604		return;
605	if (len == DMU_OBJECT_END)
606		len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off;
607
608
609	/*
610	 * For i/o error checking, we read the first and last level-0
611	 * blocks if they are not aligned, and all the level-1 blocks.
612	 *
613	 * Note:  dbuf_free_range() assumes that we have not instantiated
614	 * any level-0 dbufs that will be completely freed.  Therefore we must
615	 * exercise care to not read or count the first and last blocks
616	 * if they are blocksize-aligned.
617	 */
618	if (dn->dn_datablkshift == 0) {
619		if (off != 0 || len < dn->dn_datablksz)
620			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
621	} else {
622		/* first block will be modified if it is not aligned */
623		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
624			dmu_tx_count_write(txh, off, 1);
625		/* last block will be modified if it is not aligned */
626		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
627			dmu_tx_count_write(txh, off+len, 1);
628	}
629
630	/*
631	 * Check level-1 blocks.
632	 */
633	if (dn->dn_nlevels > 1) {
634		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
635		    SPA_BLKPTRSHIFT;
636		uint64_t start = off >> shift;
637		uint64_t end = (off + len) >> shift;
638
639		ASSERT(dn->dn_indblkshift != 0);
640
641		/*
642		 * dnode_reallocate() can result in an object with indirect
643		 * blocks having an odd data block size.  In this case,
644		 * just check the single block.
645		 */
646		if (dn->dn_datablkshift == 0)
647			start = end = 0;
648
649		zio = zio_root(tx->tx_pool->dp_spa,
650		    NULL, NULL, ZIO_FLAG_CANFAIL);
651		for (uint64_t i = start; i <= end; i++) {
652			uint64_t ibyte = i << shift;
653			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
654			i = ibyte >> shift;
655			if (err == ESRCH)
656				break;
657			if (err) {
658				tx->tx_err = err;
659				return;
660			}
661
662			err = dmu_tx_check_ioerr(zio, dn, 1, i);
663			if (err) {
664				tx->tx_err = err;
665				return;
666			}
667		}
668		err = zio_wait(zio);
669		if (err) {
670			tx->tx_err = err;
671			return;
672		}
673	}
674
675	dmu_tx_count_free(txh, off, len);
676}
677
678void
679dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
680{
681	dmu_tx_hold_t *txh;
682	dnode_t *dn;
683	uint64_t nblocks;
684	int epbs, err;
685
686	ASSERT(tx->tx_txg == 0);
687
688	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
689	    object, THT_ZAP, add, (uintptr_t)name);
690	if (txh == NULL)
691		return;
692	dn = txh->txh_dnode;
693
694	dmu_tx_count_dnode(txh);
695
696	if (dn == NULL) {
697		/*
698		 * We will be able to fit a new object's entries into one leaf
699		 * block.  So there will be at most 2 blocks total,
700		 * including the header block.
701		 */
702		dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift);
703		return;
704	}
705
706	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
707
708	if (dn->dn_maxblkid == 0 && !add) {
709		blkptr_t *bp;
710
711		/*
712		 * If there is only one block  (i.e. this is a micro-zap)
713		 * and we are not adding anything, the accounting is simple.
714		 */
715		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
716		if (err) {
717			tx->tx_err = err;
718			return;
719		}
720
721		/*
722		 * Use max block size here, since we don't know how much
723		 * the size will change between now and the dbuf dirty call.
724		 */
725		bp = &dn->dn_phys->dn_blkptr[0];
726		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
727		    bp, bp->blk_birth))
728			txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
729		else
730			txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
731		if (!BP_IS_HOLE(bp))
732			txh->txh_space_tounref += SPA_MAXBLOCKSIZE;
733		return;
734	}
735
736	if (dn->dn_maxblkid > 0 && name) {
737		/*
738		 * access the name in this fat-zap so that we'll check
739		 * for i/o errors to the leaf blocks, etc.
740		 */
741		err = zap_lookup(dn->dn_objset, dn->dn_object, name,
742		    8, 0, NULL);
743		if (err == EIO) {
744			tx->tx_err = err;
745			return;
746		}
747	}
748
749	err = zap_count_write(dn->dn_objset, dn->dn_object, name, add,
750	    &txh->txh_space_towrite, &txh->txh_space_tooverwrite);
751
752	/*
753	 * If the modified blocks are scattered to the four winds,
754	 * we'll have to modify an indirect twig for each.
755	 */
756	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
757	for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs)
758		if (dn->dn_objset->os_dsl_dataset->ds_phys->ds_prev_snap_obj)
759			txh->txh_space_towrite += 3 << dn->dn_indblkshift;
760		else
761			txh->txh_space_tooverwrite += 3 << dn->dn_indblkshift;
762}
763
764void
765dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
766{
767	dmu_tx_hold_t *txh;
768
769	ASSERT(tx->tx_txg == 0);
770
771	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
772	    object, THT_BONUS, 0, 0);
773	if (txh)
774		dmu_tx_count_dnode(txh);
775}
776
777void
778dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
779{
780	dmu_tx_hold_t *txh;
781	ASSERT(tx->tx_txg == 0);
782
783	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
784	    DMU_NEW_OBJECT, THT_SPACE, space, 0);
785
786	txh->txh_space_towrite += space;
787}
788
789int
790dmu_tx_holds(dmu_tx_t *tx, uint64_t object)
791{
792	dmu_tx_hold_t *txh;
793	int holds = 0;
794
795	/*
796	 * By asserting that the tx is assigned, we're counting the
797	 * number of dn_tx_holds, which is the same as the number of
798	 * dn_holds.  Otherwise, we'd be counting dn_holds, but
799	 * dn_tx_holds could be 0.
800	 */
801	ASSERT(tx->tx_txg != 0);
802
803	/* if (tx->tx_anyobj == TRUE) */
804		/* return (0); */
805
806	for (txh = list_head(&tx->tx_holds); txh;
807	    txh = list_next(&tx->tx_holds, txh)) {
808		if (txh->txh_dnode && txh->txh_dnode->dn_object == object)
809			holds++;
810	}
811
812	return (holds);
813}
814
815#ifdef ZFS_DEBUG
816void
817dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
818{
819	dmu_tx_hold_t *txh;
820	int match_object = FALSE, match_offset = FALSE;
821	dnode_t *dn;
822
823	DB_DNODE_ENTER(db);
824	dn = DB_DNODE(db);
825	ASSERT(tx->tx_txg != 0);
826	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
827	ASSERT3U(dn->dn_object, ==, db->db.db_object);
828
829	if (tx->tx_anyobj) {
830		DB_DNODE_EXIT(db);
831		return;
832	}
833
834	/* XXX No checking on the meta dnode for now */
835	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
836		DB_DNODE_EXIT(db);
837		return;
838	}
839
840	for (txh = list_head(&tx->tx_holds); txh;
841	    txh = list_next(&tx->tx_holds, txh)) {
842		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
843		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
844			match_object = TRUE;
845		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
846			int datablkshift = dn->dn_datablkshift ?
847			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
848			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
849			int shift = datablkshift + epbs * db->db_level;
850			uint64_t beginblk = shift >= 64 ? 0 :
851			    (txh->txh_arg1 >> shift);
852			uint64_t endblk = shift >= 64 ? 0 :
853			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
854			uint64_t blkid = db->db_blkid;
855
856			/* XXX txh_arg2 better not be zero... */
857
858			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
859			    txh->txh_type, beginblk, endblk);
860
861			switch (txh->txh_type) {
862			case THT_WRITE:
863				if (blkid >= beginblk && blkid <= endblk)
864					match_offset = TRUE;
865				/*
866				 * We will let this hold work for the bonus
867				 * or spill buffer so that we don't need to
868				 * hold it when creating a new object.
869				 */
870				if (blkid == DMU_BONUS_BLKID ||
871				    blkid == DMU_SPILL_BLKID)
872					match_offset = TRUE;
873				/*
874				 * They might have to increase nlevels,
875				 * thus dirtying the new TLIBs.  Or the
876				 * might have to change the block size,
877				 * thus dirying the new lvl=0 blk=0.
878				 */
879				if (blkid == 0)
880					match_offset = TRUE;
881				break;
882			case THT_FREE:
883				/*
884				 * We will dirty all the level 1 blocks in
885				 * the free range and perhaps the first and
886				 * last level 0 block.
887				 */
888				if (blkid >= beginblk && (blkid <= endblk ||
889				    txh->txh_arg2 == DMU_OBJECT_END))
890					match_offset = TRUE;
891				break;
892			case THT_SPILL:
893				if (blkid == DMU_SPILL_BLKID)
894					match_offset = TRUE;
895				break;
896			case THT_BONUS:
897				if (blkid == DMU_BONUS_BLKID)
898					match_offset = TRUE;
899				break;
900			case THT_ZAP:
901				match_offset = TRUE;
902				break;
903			case THT_NEWOBJECT:
904				match_object = TRUE;
905				break;
906			default:
907				ASSERT(!"bad txh_type");
908			}
909		}
910		if (match_object && match_offset) {
911			DB_DNODE_EXIT(db);
912			return;
913		}
914	}
915	DB_DNODE_EXIT(db);
916	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
917	    (u_longlong_t)db->db.db_object, db->db_level,
918	    (u_longlong_t)db->db_blkid);
919}
920#endif
921
922/*
923 * If we can't do 10 iops, something is wrong.  Let us go ahead
924 * and hit zfs_dirty_data_max.
925 */
926hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
927int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
928
929/*
930 * We delay transactions when we've determined that the backend storage
931 * isn't able to accommodate the rate of incoming writes.
932 *
933 * If there is already a transaction waiting, we delay relative to when
934 * that transaction finishes waiting.  This way the calculated min_time
935 * is independent of the number of threads concurrently executing
936 * transactions.
937 *
938 * If we are the only waiter, wait relative to when the transaction
939 * started, rather than the current time.  This credits the transaction for
940 * "time already served", e.g. reading indirect blocks.
941 *
942 * The minimum time for a transaction to take is calculated as:
943 *     min_time = scale * (dirty - min) / (max - dirty)
944 *     min_time is then capped at zfs_delay_max_ns.
945 *
946 * The delay has two degrees of freedom that can be adjusted via tunables.
947 * The percentage of dirty data at which we start to delay is defined by
948 * zfs_delay_min_dirty_percent. This should typically be at or above
949 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
950 * delay after writing at full speed has failed to keep up with the incoming
951 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
952 * speaking, this variable determines the amount of delay at the midpoint of
953 * the curve.
954 *
955 * delay
956 *  10ms +-------------------------------------------------------------*+
957 *       |                                                             *|
958 *   9ms +                                                             *+
959 *       |                                                             *|
960 *   8ms +                                                             *+
961 *       |                                                            * |
962 *   7ms +                                                            * +
963 *       |                                                            * |
964 *   6ms +                                                            * +
965 *       |                                                            * |
966 *   5ms +                                                           *  +
967 *       |                                                           *  |
968 *   4ms +                                                           *  +
969 *       |                                                           *  |
970 *   3ms +                                                          *   +
971 *       |                                                          *   |
972 *   2ms +                                              (midpoint) *    +
973 *       |                                                  |    **     |
974 *   1ms +                                                  v ***       +
975 *       |             zfs_delay_scale ---------->     ********         |
976 *     0 +-------------------------------------*********----------------+
977 *       0%                    <- zfs_dirty_data_max ->               100%
978 *
979 * Note that since the delay is added to the outstanding time remaining on the
980 * most recent transaction, the delay is effectively the inverse of IOPS.
981 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
982 * was chosen such that small changes in the amount of accumulated dirty data
983 * in the first 3/4 of the curve yield relatively small differences in the
984 * amount of delay.
985 *
986 * The effects can be easier to understand when the amount of delay is
987 * represented on a log scale:
988 *
989 * delay
990 * 100ms +-------------------------------------------------------------++
991 *       +                                                              +
992 *       |                                                              |
993 *       +                                                             *+
994 *  10ms +                                                             *+
995 *       +                                                           ** +
996 *       |                                              (midpoint)  **  |
997 *       +                                                  |     **    +
998 *   1ms +                                                  v ****      +
999 *       +             zfs_delay_scale ---------->        *****         +
1000 *       |                                             ****             |
1001 *       +                                          ****                +
1002 * 100us +                                        **                    +
1003 *       +                                       *                      +
1004 *       |                                      *                       |
1005 *       +                                     *                        +
1006 *  10us +                                     *                        +
1007 *       +                                                              +
1008 *       |                                                              |
1009 *       +                                                              +
1010 *       +--------------------------------------------------------------+
1011 *       0%                    <- zfs_dirty_data_max ->               100%
1012 *
1013 * Note here that only as the amount of dirty data approaches its limit does
1014 * the delay start to increase rapidly. The goal of a properly tuned system
1015 * should be to keep the amount of dirty data out of that range by first
1016 * ensuring that the appropriate limits are set for the I/O scheduler to reach
1017 * optimal throughput on the backend storage, and then by changing the value
1018 * of zfs_delay_scale to increase the steepness of the curve.
1019 */
1020static void
1021dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
1022{
1023	dsl_pool_t *dp = tx->tx_pool;
1024	uint64_t delay_min_bytes =
1025	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
1026	hrtime_t wakeup, min_tx_time, now;
1027
1028	if (dirty <= delay_min_bytes)
1029		return;
1030
1031	/*
1032	 * The caller has already waited until we are under the max.
1033	 * We make them pass us the amount of dirty data so we don't
1034	 * have to handle the case of it being >= the max, which could
1035	 * cause a divide-by-zero if it's == the max.
1036	 */
1037	ASSERT3U(dirty, <, zfs_dirty_data_max);
1038
1039	now = gethrtime();
1040	min_tx_time = zfs_delay_scale *
1041	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
1042	if (now > tx->tx_start + min_tx_time)
1043		return;
1044
1045	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
1046
1047	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
1048	    uint64_t, min_tx_time);
1049
1050	mutex_enter(&dp->dp_lock);
1051	wakeup = MAX(tx->tx_start + min_tx_time,
1052	    dp->dp_last_wakeup + min_tx_time);
1053	dp->dp_last_wakeup = wakeup;
1054	mutex_exit(&dp->dp_lock);
1055
1056#ifdef _KERNEL
1057#ifdef illumos
1058	mutex_enter(&curthread->t_delay_lock);
1059	while (cv_timedwait_hires(&curthread->t_delay_cv,
1060	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
1061	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
1062		continue;
1063	mutex_exit(&curthread->t_delay_lock);
1064#else
1065	pause_sbt("dmu_tx_delay", wakeup * SBT_1NS,
1066	    zfs_delay_resolution_ns * SBT_1NS, C_ABSOLUTE);
1067#endif
1068#else
1069	hrtime_t delta = wakeup - gethrtime();
1070	struct timespec ts;
1071	ts.tv_sec = delta / NANOSEC;
1072	ts.tv_nsec = delta % NANOSEC;
1073	(void) nanosleep(&ts, NULL);
1074#endif
1075}
1076
1077static int
1078dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
1079{
1080	dmu_tx_hold_t *txh;
1081	spa_t *spa = tx->tx_pool->dp_spa;
1082	uint64_t memory, asize, fsize, usize;
1083	uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;
1084
1085	ASSERT0(tx->tx_txg);
1086
1087	if (tx->tx_err)
1088		return (tx->tx_err);
1089
1090	if (spa_suspended(spa)) {
1091		/*
1092		 * If the user has indicated a blocking failure mode
1093		 * then return ERESTART which will block in dmu_tx_wait().
1094		 * Otherwise, return EIO so that an error can get
1095		 * propagated back to the VOP calls.
1096		 *
1097		 * Note that we always honor the txg_how flag regardless
1098		 * of the failuremode setting.
1099		 */
1100		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
1101		    txg_how != TXG_WAIT)
1102			return (SET_ERROR(EIO));
1103
1104		return (SET_ERROR(ERESTART));
1105	}
1106
1107	if (!tx->tx_waited &&
1108	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
1109		tx->tx_wait_dirty = B_TRUE;
1110		return (SET_ERROR(ERESTART));
1111	}
1112
1113	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
1114	tx->tx_needassign_txh = NULL;
1115
1116	/*
1117	 * NB: No error returns are allowed after txg_hold_open, but
1118	 * before processing the dnode holds, due to the
1119	 * dmu_tx_unassign() logic.
1120	 */
1121
1122	towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
1123	for (txh = list_head(&tx->tx_holds); txh;
1124	    txh = list_next(&tx->tx_holds, txh)) {
1125		dnode_t *dn = txh->txh_dnode;
1126		if (dn != NULL) {
1127			mutex_enter(&dn->dn_mtx);
1128			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
1129				mutex_exit(&dn->dn_mtx);
1130				tx->tx_needassign_txh = txh;
1131				return (SET_ERROR(ERESTART));
1132			}
1133			if (dn->dn_assigned_txg == 0)
1134				dn->dn_assigned_txg = tx->tx_txg;
1135			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1136			(void) refcount_add(&dn->dn_tx_holds, tx);
1137			mutex_exit(&dn->dn_mtx);
1138		}
1139		towrite += txh->txh_space_towrite;
1140		tofree += txh->txh_space_tofree;
1141		tooverwrite += txh->txh_space_tooverwrite;
1142		tounref += txh->txh_space_tounref;
1143		tohold += txh->txh_memory_tohold;
1144		fudge += txh->txh_fudge;
1145	}
1146
1147	/*
1148	 * If a snapshot has been taken since we made our estimates,
1149	 * assume that we won't be able to free or overwrite anything.
1150	 */
1151	if (tx->tx_objset &&
1152	    dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
1153	    tx->tx_lastsnap_txg) {
1154		towrite += tooverwrite;
1155		tooverwrite = tofree = 0;
1156	}
1157
1158	/* needed allocation: worst-case estimate of write space */
1159	asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
1160	/* freed space estimate: worst-case overwrite + free estimate */
1161	fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
1162	/* convert unrefd space to worst-case estimate */
1163	usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
1164	/* calculate memory footprint estimate */
1165	memory = towrite + tooverwrite + tohold;
1166
1167#ifdef ZFS_DEBUG
1168	/*
1169	 * Add in 'tohold' to account for our dirty holds on this memory
1170	 * XXX - the "fudge" factor is to account for skipped blocks that
1171	 * we missed because dnode_next_offset() misses in-core-only blocks.
1172	 */
1173	tx->tx_space_towrite = asize +
1174	    spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
1175	tx->tx_space_tofree = tofree;
1176	tx->tx_space_tooverwrite = tooverwrite;
1177	tx->tx_space_tounref = tounref;
1178#endif
1179
1180	if (tx->tx_dir && asize != 0) {
1181		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
1182		    asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1183		if (err)
1184			return (err);
1185	}
1186
1187	return (0);
1188}
1189
1190static void
1191dmu_tx_unassign(dmu_tx_t *tx)
1192{
1193	dmu_tx_hold_t *txh;
1194
1195	if (tx->tx_txg == 0)
1196		return;
1197
1198	txg_rele_to_quiesce(&tx->tx_txgh);
1199
1200	/*
1201	 * Walk the transaction's hold list, removing the hold on the
1202	 * associated dnode, and notifying waiters if the refcount drops to 0.
1203	 */
1204	for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh;
1205	    txh = list_next(&tx->tx_holds, txh)) {
1206		dnode_t *dn = txh->txh_dnode;
1207
1208		if (dn == NULL)
1209			continue;
1210		mutex_enter(&dn->dn_mtx);
1211		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1212
1213		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1214			dn->dn_assigned_txg = 0;
1215			cv_broadcast(&dn->dn_notxholds);
1216		}
1217		mutex_exit(&dn->dn_mtx);
1218	}
1219
1220	txg_rele_to_sync(&tx->tx_txgh);
1221
1222	tx->tx_lasttried_txg = tx->tx_txg;
1223	tx->tx_txg = 0;
1224}
1225
1226/*
1227 * Assign tx to a transaction group.  txg_how can be one of:
1228 *
1229 * (1)	TXG_WAIT.  If the current open txg is full, waits until there's
1230 *	a new one.  This should be used when you're not holding locks.
1231 *	It will only fail if we're truly out of space (or over quota).
1232 *
1233 * (2)	TXG_NOWAIT.  If we can't assign into the current open txg without
1234 *	blocking, returns immediately with ERESTART.  This should be used
1235 *	whenever you're holding locks.  On an ERESTART error, the caller
1236 *	should drop locks, do a dmu_tx_wait(tx), and try again.
1237 *
1238 * (3)  TXG_WAITED.  Like TXG_NOWAIT, but indicates that dmu_tx_wait()
1239 *      has already been called on behalf of this operation (though
1240 *      most likely on a different tx).
1241 */
1242int
1243dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
1244{
1245	int err;
1246
1247	ASSERT(tx->tx_txg == 0);
1248	ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
1249	    txg_how == TXG_WAITED);
1250	ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1251
1252	/* If we might wait, we must not hold the config lock. */
1253	ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
1254
1255	if (txg_how == TXG_WAITED)
1256		tx->tx_waited = B_TRUE;
1257
1258	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1259		dmu_tx_unassign(tx);
1260
1261		if (err != ERESTART || txg_how != TXG_WAIT)
1262			return (err);
1263
1264		dmu_tx_wait(tx);
1265	}
1266
1267	txg_rele_to_quiesce(&tx->tx_txgh);
1268
1269	return (0);
1270}
1271
1272void
1273dmu_tx_wait(dmu_tx_t *tx)
1274{
1275	spa_t *spa = tx->tx_pool->dp_spa;
1276	dsl_pool_t *dp = tx->tx_pool;
1277
1278	ASSERT(tx->tx_txg == 0);
1279	ASSERT(!dsl_pool_config_held(tx->tx_pool));
1280
1281	if (tx->tx_wait_dirty) {
1282		/*
1283		 * dmu_tx_try_assign() has determined that we need to wait
1284		 * because we've consumed much or all of the dirty buffer
1285		 * space.
1286		 */
1287		mutex_enter(&dp->dp_lock);
1288		while (dp->dp_dirty_total >= zfs_dirty_data_max)
1289			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1290		uint64_t dirty = dp->dp_dirty_total;
1291		mutex_exit(&dp->dp_lock);
1292
1293		dmu_tx_delay(tx, dirty);
1294
1295		tx->tx_wait_dirty = B_FALSE;
1296
1297		/*
1298		 * Note: setting tx_waited only has effect if the caller
1299		 * used TX_WAIT.  Otherwise they are going to destroy
1300		 * this tx and try again.  The common case, zfs_write(),
1301		 * uses TX_WAIT.
1302		 */
1303		tx->tx_waited = B_TRUE;
1304	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1305		/*
1306		 * If the pool is suspended we need to wait until it
1307		 * is resumed.  Note that it's possible that the pool
1308		 * has become active after this thread has tried to
1309		 * obtain a tx.  If that's the case then tx_lasttried_txg
1310		 * would not have been set.
1311		 */
1312		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1313	} else if (tx->tx_needassign_txh) {
1314		/*
1315		 * A dnode is assigned to the quiescing txg.  Wait for its
1316		 * transaction to complete.
1317		 */
1318		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1319
1320		mutex_enter(&dn->dn_mtx);
1321		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1322			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1323		mutex_exit(&dn->dn_mtx);
1324		tx->tx_needassign_txh = NULL;
1325	} else {
1326		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
1327	}
1328}
1329
1330void
1331dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta)
1332{
1333#ifdef ZFS_DEBUG
1334	if (tx->tx_dir == NULL || delta == 0)
1335		return;
1336
1337	if (delta > 0) {
1338		ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=,
1339		    tx->tx_space_towrite);
1340		(void) refcount_add_many(&tx->tx_space_written, delta, NULL);
1341	} else {
1342		(void) refcount_add_many(&tx->tx_space_freed, -delta, NULL);
1343	}
1344#endif
1345}
1346
1347void
1348dmu_tx_commit(dmu_tx_t *tx)
1349{
1350	dmu_tx_hold_t *txh;
1351
1352	ASSERT(tx->tx_txg != 0);
1353
1354	/*
1355	 * Go through the transaction's hold list and remove holds on
1356	 * associated dnodes, notifying waiters if no holds remain.
1357	 */
1358	while (txh = list_head(&tx->tx_holds)) {
1359		dnode_t *dn = txh->txh_dnode;
1360
1361		list_remove(&tx->tx_holds, txh);
1362		kmem_free(txh, sizeof (dmu_tx_hold_t));
1363		if (dn == NULL)
1364			continue;
1365		mutex_enter(&dn->dn_mtx);
1366		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1367
1368		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1369			dn->dn_assigned_txg = 0;
1370			cv_broadcast(&dn->dn_notxholds);
1371		}
1372		mutex_exit(&dn->dn_mtx);
1373		dnode_rele(dn, tx);
1374	}
1375
1376	if (tx->tx_tempreserve_cookie)
1377		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1378
1379	if (!list_is_empty(&tx->tx_callbacks))
1380		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1381
1382	if (tx->tx_anyobj == FALSE)
1383		txg_rele_to_sync(&tx->tx_txgh);
1384
1385	list_destroy(&tx->tx_callbacks);
1386	list_destroy(&tx->tx_holds);
1387#ifdef ZFS_DEBUG
1388	dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n",
1389	    tx->tx_space_towrite, refcount_count(&tx->tx_space_written),
1390	    tx->tx_space_tofree, refcount_count(&tx->tx_space_freed));
1391	refcount_destroy_many(&tx->tx_space_written,
1392	    refcount_count(&tx->tx_space_written));
1393	refcount_destroy_many(&tx->tx_space_freed,
1394	    refcount_count(&tx->tx_space_freed));
1395#endif
1396	kmem_free(tx, sizeof (dmu_tx_t));
1397}
1398
1399void
1400dmu_tx_abort(dmu_tx_t *tx)
1401{
1402	dmu_tx_hold_t *txh;
1403
1404	ASSERT(tx->tx_txg == 0);
1405
1406	while (txh = list_head(&tx->tx_holds)) {
1407		dnode_t *dn = txh->txh_dnode;
1408
1409		list_remove(&tx->tx_holds, txh);
1410		kmem_free(txh, sizeof (dmu_tx_hold_t));
1411		if (dn != NULL)
1412			dnode_rele(dn, tx);
1413	}
1414
1415	/*
1416	 * Call any registered callbacks with an error code.
1417	 */
1418	if (!list_is_empty(&tx->tx_callbacks))
1419		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1420
1421	list_destroy(&tx->tx_callbacks);
1422	list_destroy(&tx->tx_holds);
1423#ifdef ZFS_DEBUG
1424	refcount_destroy_many(&tx->tx_space_written,
1425	    refcount_count(&tx->tx_space_written));
1426	refcount_destroy_many(&tx->tx_space_freed,
1427	    refcount_count(&tx->tx_space_freed));
1428#endif
1429	kmem_free(tx, sizeof (dmu_tx_t));
1430}
1431
1432uint64_t
1433dmu_tx_get_txg(dmu_tx_t *tx)
1434{
1435	ASSERT(tx->tx_txg != 0);
1436	return (tx->tx_txg);
1437}
1438
1439dsl_pool_t *
1440dmu_tx_pool(dmu_tx_t *tx)
1441{
1442	ASSERT(tx->tx_pool != NULL);
1443	return (tx->tx_pool);
1444}
1445
1446
1447void
1448dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1449{
1450	dmu_tx_callback_t *dcb;
1451
1452	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1453
1454	dcb->dcb_func = func;
1455	dcb->dcb_data = data;
1456
1457	list_insert_tail(&tx->tx_callbacks, dcb);
1458}
1459
1460/*
1461 * Call all the commit callbacks on a list, with a given error code.
1462 */
1463void
1464dmu_tx_do_callbacks(list_t *cb_list, int error)
1465{
1466	dmu_tx_callback_t *dcb;
1467
1468	while (dcb = list_head(cb_list)) {
1469		list_remove(cb_list, dcb);
1470		dcb->dcb_func(dcb->dcb_data, error);
1471		kmem_free(dcb, sizeof (dmu_tx_callback_t));
1472	}
1473}
1474
1475/*
1476 * Interface to hold a bunch of attributes.
1477 * used for creating new files.
1478 * attrsize is the total size of all attributes
1479 * to be added during object creation
1480 *
1481 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1482 */
1483
1484/*
1485 * hold necessary attribute name for attribute registration.
1486 * should be a very rare case where this is needed.  If it does
1487 * happen it would only happen on the first write to the file system.
1488 */
1489static void
1490dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1491{
1492	int i;
1493
1494	if (!sa->sa_need_attr_registration)
1495		return;
1496
1497	for (i = 0; i != sa->sa_num_attrs; i++) {
1498		if (!sa->sa_attr_table[i].sa_registered) {
1499			if (sa->sa_reg_attr_obj)
1500				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1501				    B_TRUE, sa->sa_attr_table[i].sa_name);
1502			else
1503				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1504				    B_TRUE, sa->sa_attr_table[i].sa_name);
1505		}
1506	}
1507}
1508
1509
1510void
1511dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1512{
1513	dnode_t *dn;
1514	dmu_tx_hold_t *txh;
1515
1516	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1517	    THT_SPILL, 0, 0);
1518
1519	dn = txh->txh_dnode;
1520
1521	if (dn == NULL)
1522		return;
1523
1524	/* If blkptr doesn't exist then add space to towrite */
1525	if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
1526		txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1527	} else {
1528		blkptr_t *bp;
1529
1530		bp = &dn->dn_phys->dn_spill;
1531		if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset,
1532		    bp, bp->blk_birth))
1533			txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE;
1534		else
1535			txh->txh_space_towrite += SPA_MAXBLOCKSIZE;
1536		if (!BP_IS_HOLE(bp))
1537			txh->txh_space_tounref += SPA_MAXBLOCKSIZE;
1538	}
1539}
1540
1541void
1542dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1543{
1544	sa_os_t *sa = tx->tx_objset->os_sa;
1545
1546	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1547
1548	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1549		return;
1550
1551	if (tx->tx_objset->os_sa->sa_layout_attr_obj)
1552		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1553	else {
1554		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1555		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1556		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1557		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1558	}
1559
1560	dmu_tx_sa_registration_hold(sa, tx);
1561
1562	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
1563		return;
1564
1565	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1566	    THT_SPILL, 0, 0);
1567}
1568
1569/*
1570 * Hold SA attribute
1571 *
1572 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1573 *
1574 * variable_size is the total size of all variable sized attributes
1575 * passed to this function.  It is not the total size of all
1576 * variable size attributes that *may* exist on this object.
1577 */
1578void
1579dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1580{
1581	uint64_t object;
1582	sa_os_t *sa = tx->tx_objset->os_sa;
1583
1584	ASSERT(hdl != NULL);
1585
1586	object = sa_handle_object(hdl);
1587
1588	dmu_tx_hold_bonus(tx, object);
1589
1590	if (tx->tx_objset->os_sa->sa_master_obj == 0)
1591		return;
1592
1593	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1594	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1595		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1596		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1597		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1598		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1599	}
1600
1601	dmu_tx_sa_registration_hold(sa, tx);
1602
1603	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1604		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1605
1606	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1607		ASSERT(tx->tx_txg == 0);
1608		dmu_tx_hold_spill(tx, object);
1609	} else {
1610		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1611		dnode_t *dn;
1612
1613		DB_DNODE_ENTER(db);
1614		dn = DB_DNODE(db);
1615		if (dn->dn_have_spill) {
1616			ASSERT(tx->tx_txg == 0);
1617			dmu_tx_hold_spill(tx, object);
1618		}
1619		DB_DNODE_EXIT(db);
1620	}
1621}
1622