dmu_send.c revision 307285
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 * Copyright 2016 RackTop Systems.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32#include <sys/dmu.h>
33#include <sys/dmu_impl.h>
34#include <sys/dmu_tx.h>
35#include <sys/dbuf.h>
36#include <sys/dnode.h>
37#include <sys/zfs_context.h>
38#include <sys/dmu_objset.h>
39#include <sys/dmu_traverse.h>
40#include <sys/dsl_dataset.h>
41#include <sys/dsl_dir.h>
42#include <sys/dsl_prop.h>
43#include <sys/dsl_pool.h>
44#include <sys/dsl_synctask.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/zap.h>
47#include <sys/zio_checksum.h>
48#include <sys/zfs_znode.h>
49#include <zfs_fletcher.h>
50#include <sys/avl.h>
51#include <sys/ddt.h>
52#include <sys/zfs_onexit.h>
53#include <sys/dmu_send.h>
54#include <sys/dsl_destroy.h>
55#include <sys/blkptr.h>
56#include <sys/dsl_bookmark.h>
57#include <sys/zfeature.h>
58#include <sys/bqueue.h>
59
60#ifdef __FreeBSD__
61#undef dump_write
62#define dump_write dmu_dump_write
63#endif
64
65/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
66int zfs_send_corrupt_data = B_FALSE;
67int zfs_send_queue_length = 16 * 1024 * 1024;
68int zfs_recv_queue_length = 16 * 1024 * 1024;
69/* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
70int zfs_send_set_freerecords_bit = B_TRUE;
71
72#ifdef _KERNEL
73TUNABLE_INT("vfs.zfs.send_set_freerecords_bit", &zfs_send_set_freerecords_bit);
74#endif
75
76static char *dmu_recv_tag = "dmu_recv_tag";
77const char *recv_clone_name = "%recv";
78
79#define	BP_SPAN(datablkszsec, indblkshift, level) \
80	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
81	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
82
83static void byteswap_record(dmu_replay_record_t *drr);
84
85struct send_thread_arg {
86	bqueue_t	q;
87	dsl_dataset_t	*ds;		/* Dataset to traverse */
88	uint64_t	fromtxg;	/* Traverse from this txg */
89	int		flags;		/* flags to pass to traverse_dataset */
90	int		error_code;
91	boolean_t	cancel;
92	zbookmark_phys_t resume;
93};
94
95struct send_block_record {
96	boolean_t		eos_marker; /* Marks the end of the stream */
97	blkptr_t		bp;
98	zbookmark_phys_t	zb;
99	uint8_t			indblkshift;
100	uint16_t		datablkszsec;
101	bqueue_node_t		ln;
102};
103
104static int
105dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
106{
107	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
108	struct uio auio;
109	struct iovec aiov;
110
111	/*
112	 * The code does not rely on this (len being a multiple of 8).  We keep
113	 * this assertion because of the corresponding assertion in
114	 * receive_read().  Keeping this assertion ensures that we do not
115	 * inadvertently break backwards compatibility (causing the assertion
116	 * in receive_read() to trigger on old software).
117	 *
118	 * Removing the assertions could be rolled into a new feature that uses
119	 * data that isn't 8-byte aligned; if the assertions were removed, a
120	 * feature flag would have to be added.
121	 */
122
123	ASSERT0(len % 8);
124
125	aiov.iov_base = buf;
126	aiov.iov_len = len;
127	auio.uio_iov = &aiov;
128	auio.uio_iovcnt = 1;
129	auio.uio_resid = len;
130	auio.uio_segflg = UIO_SYSSPACE;
131	auio.uio_rw = UIO_WRITE;
132	auio.uio_offset = (off_t)-1;
133	auio.uio_td = dsp->dsa_td;
134#ifdef _KERNEL
135	if (dsp->dsa_fp->f_type == DTYPE_VNODE)
136		bwillwrite();
137	dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0,
138	    dsp->dsa_td);
139#else
140	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
141	dsp->dsa_err = EOPNOTSUPP;
142#endif
143	mutex_enter(&ds->ds_sendstream_lock);
144	*dsp->dsa_off += len;
145	mutex_exit(&ds->ds_sendstream_lock);
146
147	return (dsp->dsa_err);
148}
149
150/*
151 * For all record types except BEGIN, fill in the checksum (overlaid in
152 * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
153 * up to the start of the checksum itself.
154 */
155static int
156dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
157{
158	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
159	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
160	fletcher_4_incremental_native(dsp->dsa_drr,
161	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
162	    &dsp->dsa_zc);
163	if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
164		dsp->dsa_sent_begin = B_TRUE;
165	} else {
166		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
167		    drr_checksum.drr_checksum));
168		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
169	}
170	if (dsp->dsa_drr->drr_type == DRR_END) {
171		dsp->dsa_sent_end = B_TRUE;
172	}
173	fletcher_4_incremental_native(&dsp->dsa_drr->
174	    drr_u.drr_checksum.drr_checksum,
175	    sizeof (zio_cksum_t), &dsp->dsa_zc);
176	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
177		return (SET_ERROR(EINTR));
178	if (payload_len != 0) {
179		fletcher_4_incremental_native(payload, payload_len,
180		    &dsp->dsa_zc);
181		if (dump_bytes(dsp, payload, payload_len) != 0)
182			return (SET_ERROR(EINTR));
183	}
184	return (0);
185}
186
187/*
188 * Fill in the drr_free struct, or perform aggregation if the previous record is
189 * also a free record, and the two are adjacent.
190 *
191 * Note that we send free records even for a full send, because we want to be
192 * able to receive a full send as a clone, which requires a list of all the free
193 * and freeobject records that were generated on the source.
194 */
195static int
196dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
197    uint64_t length)
198{
199	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
200
201	/*
202	 * When we receive a free record, dbuf_free_range() assumes
203	 * that the receiving system doesn't have any dbufs in the range
204	 * being freed.  This is always true because there is a one-record
205	 * constraint: we only send one WRITE record for any given
206	 * object,offset.  We know that the one-record constraint is
207	 * true because we always send data in increasing order by
208	 * object,offset.
209	 *
210	 * If the increasing-order constraint ever changes, we should find
211	 * another way to assert that the one-record constraint is still
212	 * satisfied.
213	 */
214	ASSERT(object > dsp->dsa_last_data_object ||
215	    (object == dsp->dsa_last_data_object &&
216	    offset > dsp->dsa_last_data_offset));
217
218	if (length != -1ULL && offset + length < offset)
219		length = -1ULL;
220
221	/*
222	 * If there is a pending op, but it's not PENDING_FREE, push it out,
223	 * since free block aggregation can only be done for blocks of the
224	 * same type (i.e., DRR_FREE records can only be aggregated with
225	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
226	 * aggregated with other DRR_FREEOBJECTS records.
227	 */
228	if (dsp->dsa_pending_op != PENDING_NONE &&
229	    dsp->dsa_pending_op != PENDING_FREE) {
230		if (dump_record(dsp, NULL, 0) != 0)
231			return (SET_ERROR(EINTR));
232		dsp->dsa_pending_op = PENDING_NONE;
233	}
234
235	if (dsp->dsa_pending_op == PENDING_FREE) {
236		/*
237		 * There should never be a PENDING_FREE if length is -1
238		 * (because dump_dnode is the only place where this
239		 * function is called with a -1, and only after flushing
240		 * any pending record).
241		 */
242		ASSERT(length != -1ULL);
243		/*
244		 * Check to see whether this free block can be aggregated
245		 * with pending one.
246		 */
247		if (drrf->drr_object == object && drrf->drr_offset +
248		    drrf->drr_length == offset) {
249			drrf->drr_length += length;
250			return (0);
251		} else {
252			/* not a continuation.  Push out pending record */
253			if (dump_record(dsp, NULL, 0) != 0)
254				return (SET_ERROR(EINTR));
255			dsp->dsa_pending_op = PENDING_NONE;
256		}
257	}
258	/* create a FREE record and make it pending */
259	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
260	dsp->dsa_drr->drr_type = DRR_FREE;
261	drrf->drr_object = object;
262	drrf->drr_offset = offset;
263	drrf->drr_length = length;
264	drrf->drr_toguid = dsp->dsa_toguid;
265	if (length == -1ULL) {
266		if (dump_record(dsp, NULL, 0) != 0)
267			return (SET_ERROR(EINTR));
268	} else {
269		dsp->dsa_pending_op = PENDING_FREE;
270	}
271
272	return (0);
273}
274
275static int
276dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
277    uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
278{
279	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
280
281	/*
282	 * We send data in increasing object, offset order.
283	 * See comment in dump_free() for details.
284	 */
285	ASSERT(object > dsp->dsa_last_data_object ||
286	    (object == dsp->dsa_last_data_object &&
287	    offset > dsp->dsa_last_data_offset));
288	dsp->dsa_last_data_object = object;
289	dsp->dsa_last_data_offset = offset + blksz - 1;
290
291	/*
292	 * If there is any kind of pending aggregation (currently either
293	 * a grouping of free objects or free blocks), push it out to
294	 * the stream, since aggregation can't be done across operations
295	 * of different types.
296	 */
297	if (dsp->dsa_pending_op != PENDING_NONE) {
298		if (dump_record(dsp, NULL, 0) != 0)
299			return (SET_ERROR(EINTR));
300		dsp->dsa_pending_op = PENDING_NONE;
301	}
302	/* write a WRITE record */
303	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
304	dsp->dsa_drr->drr_type = DRR_WRITE;
305	drrw->drr_object = object;
306	drrw->drr_type = type;
307	drrw->drr_offset = offset;
308	drrw->drr_length = blksz;
309	drrw->drr_toguid = dsp->dsa_toguid;
310	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
311		/*
312		 * There's no pre-computed checksum for partial-block
313		 * writes or embedded BP's, so (like
314		 * fletcher4-checkummed blocks) userland will have to
315		 * compute a dedup-capable checksum itself.
316		 */
317		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
318	} else {
319		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
320		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
321		    ZCHECKSUM_FLAG_DEDUP)
322			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
323		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
324		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
325		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
326		drrw->drr_key.ddk_cksum = bp->blk_cksum;
327	}
328
329	if (dump_record(dsp, data, blksz) != 0)
330		return (SET_ERROR(EINTR));
331	return (0);
332}
333
334static int
335dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
336    int blksz, const blkptr_t *bp)
337{
338	char buf[BPE_PAYLOAD_SIZE];
339	struct drr_write_embedded *drrw =
340	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
341
342	if (dsp->dsa_pending_op != PENDING_NONE) {
343		if (dump_record(dsp, NULL, 0) != 0)
344			return (EINTR);
345		dsp->dsa_pending_op = PENDING_NONE;
346	}
347
348	ASSERT(BP_IS_EMBEDDED(bp));
349
350	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
351	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
352	drrw->drr_object = object;
353	drrw->drr_offset = offset;
354	drrw->drr_length = blksz;
355	drrw->drr_toguid = dsp->dsa_toguid;
356	drrw->drr_compression = BP_GET_COMPRESS(bp);
357	drrw->drr_etype = BPE_GET_ETYPE(bp);
358	drrw->drr_lsize = BPE_GET_LSIZE(bp);
359	drrw->drr_psize = BPE_GET_PSIZE(bp);
360
361	decode_embedded_bp_compressed(bp, buf);
362
363	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
364		return (EINTR);
365	return (0);
366}
367
368static int
369dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
370{
371	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
372
373	if (dsp->dsa_pending_op != PENDING_NONE) {
374		if (dump_record(dsp, NULL, 0) != 0)
375			return (SET_ERROR(EINTR));
376		dsp->dsa_pending_op = PENDING_NONE;
377	}
378
379	/* write a SPILL record */
380	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
381	dsp->dsa_drr->drr_type = DRR_SPILL;
382	drrs->drr_object = object;
383	drrs->drr_length = blksz;
384	drrs->drr_toguid = dsp->dsa_toguid;
385
386	if (dump_record(dsp, data, blksz) != 0)
387		return (SET_ERROR(EINTR));
388	return (0);
389}
390
391static int
392dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
393{
394	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
395
396	/*
397	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
398	 * push it out, since free block aggregation can only be done for
399	 * blocks of the same type (i.e., DRR_FREE records can only be
400	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
401	 * can only be aggregated with other DRR_FREEOBJECTS records.
402	 */
403	if (dsp->dsa_pending_op != PENDING_NONE &&
404	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
405		if (dump_record(dsp, NULL, 0) != 0)
406			return (SET_ERROR(EINTR));
407		dsp->dsa_pending_op = PENDING_NONE;
408	}
409	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
410		/*
411		 * See whether this free object array can be aggregated
412		 * with pending one
413		 */
414		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
415			drrfo->drr_numobjs += numobjs;
416			return (0);
417		} else {
418			/* can't be aggregated.  Push out pending record */
419			if (dump_record(dsp, NULL, 0) != 0)
420				return (SET_ERROR(EINTR));
421			dsp->dsa_pending_op = PENDING_NONE;
422		}
423	}
424
425	/* write a FREEOBJECTS record */
426	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
427	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
428	drrfo->drr_firstobj = firstobj;
429	drrfo->drr_numobjs = numobjs;
430	drrfo->drr_toguid = dsp->dsa_toguid;
431
432	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
433
434	return (0);
435}
436
437static int
438dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
439{
440	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
441
442	if (object < dsp->dsa_resume_object) {
443		/*
444		 * Note: when resuming, we will visit all the dnodes in
445		 * the block of dnodes that we are resuming from.  In
446		 * this case it's unnecessary to send the dnodes prior to
447		 * the one we are resuming from.  We should be at most one
448		 * block's worth of dnodes behind the resume point.
449		 */
450		ASSERT3U(dsp->dsa_resume_object - object, <,
451		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
452		return (0);
453	}
454
455	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
456		return (dump_freeobjects(dsp, object, 1));
457
458	if (dsp->dsa_pending_op != PENDING_NONE) {
459		if (dump_record(dsp, NULL, 0) != 0)
460			return (SET_ERROR(EINTR));
461		dsp->dsa_pending_op = PENDING_NONE;
462	}
463
464	/* write an OBJECT record */
465	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
466	dsp->dsa_drr->drr_type = DRR_OBJECT;
467	drro->drr_object = object;
468	drro->drr_type = dnp->dn_type;
469	drro->drr_bonustype = dnp->dn_bonustype;
470	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
471	drro->drr_bonuslen = dnp->dn_bonuslen;
472	drro->drr_checksumtype = dnp->dn_checksum;
473	drro->drr_compress = dnp->dn_compress;
474	drro->drr_toguid = dsp->dsa_toguid;
475
476	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
477	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
478		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
479
480	if (dump_record(dsp, DN_BONUS(dnp),
481	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
482		return (SET_ERROR(EINTR));
483	}
484
485	/* Free anything past the end of the file. */
486	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
487	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
488		return (SET_ERROR(EINTR));
489	if (dsp->dsa_err != 0)
490		return (SET_ERROR(EINTR));
491	return (0);
492}
493
494static boolean_t
495backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
496{
497	if (!BP_IS_EMBEDDED(bp))
498		return (B_FALSE);
499
500	/*
501	 * Compression function must be legacy, or explicitly enabled.
502	 */
503	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
504	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
505		return (B_FALSE);
506
507	/*
508	 * Embed type must be explicitly enabled.
509	 */
510	switch (BPE_GET_ETYPE(bp)) {
511	case BP_EMBEDDED_TYPE_DATA:
512		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
513			return (B_TRUE);
514		break;
515	default:
516		return (B_FALSE);
517	}
518	return (B_FALSE);
519}
520
521/*
522 * This is the callback function to traverse_dataset that acts as the worker
523 * thread for dmu_send_impl.
524 */
525/*ARGSUSED*/
526static int
527send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
528    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
529{
530	struct send_thread_arg *sta = arg;
531	struct send_block_record *record;
532	uint64_t record_size;
533	int err = 0;
534
535	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
536	    zb->zb_object >= sta->resume.zb_object);
537
538	if (sta->cancel)
539		return (SET_ERROR(EINTR));
540
541	if (bp == NULL) {
542		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
543		return (0);
544	} else if (zb->zb_level < 0) {
545		return (0);
546	}
547
548	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
549	record->eos_marker = B_FALSE;
550	record->bp = *bp;
551	record->zb = *zb;
552	record->indblkshift = dnp->dn_indblkshift;
553	record->datablkszsec = dnp->dn_datablkszsec;
554	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
555	bqueue_enqueue(&sta->q, record, record_size);
556
557	return (err);
558}
559
560/*
561 * This function kicks off the traverse_dataset.  It also handles setting the
562 * error code of the thread in case something goes wrong, and pushes the End of
563 * Stream record when the traverse_dataset call has finished.  If there is no
564 * dataset to traverse, the thread immediately pushes End of Stream marker.
565 */
566static void
567send_traverse_thread(void *arg)
568{
569	struct send_thread_arg *st_arg = arg;
570	int err;
571	struct send_block_record *data;
572
573	if (st_arg->ds != NULL) {
574		err = traverse_dataset_resume(st_arg->ds,
575		    st_arg->fromtxg, &st_arg->resume,
576		    st_arg->flags, send_cb, st_arg);
577
578		if (err != EINTR)
579			st_arg->error_code = err;
580	}
581	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
582	data->eos_marker = B_TRUE;
583	bqueue_enqueue(&st_arg->q, data, 1);
584	thread_exit();
585}
586
587/*
588 * This function actually handles figuring out what kind of record needs to be
589 * dumped, reading the data (which has hopefully been prefetched), and calling
590 * the appropriate helper function.
591 */
592static int
593do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
594{
595	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
596	const blkptr_t *bp = &data->bp;
597	const zbookmark_phys_t *zb = &data->zb;
598	uint8_t indblkshift = data->indblkshift;
599	uint16_t dblkszsec = data->datablkszsec;
600	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
601	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
602	int err = 0;
603
604	ASSERT3U(zb->zb_level, >=, 0);
605
606	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
607	    zb->zb_object >= dsa->dsa_resume_object);
608
609	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
610	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
611		return (0);
612	} else if (BP_IS_HOLE(bp) &&
613	    zb->zb_object == DMU_META_DNODE_OBJECT) {
614		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
615		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
616		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
617	} else if (BP_IS_HOLE(bp)) {
618		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
619		uint64_t offset = zb->zb_blkid * span;
620		err = dump_free(dsa, zb->zb_object, offset, span);
621	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
622		return (0);
623	} else if (type == DMU_OT_DNODE) {
624		int blksz = BP_GET_LSIZE(bp);
625		arc_flags_t aflags = ARC_FLAG_WAIT;
626		arc_buf_t *abuf;
627
628		ASSERT0(zb->zb_level);
629
630		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
631		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
632		    &aflags, zb) != 0)
633			return (SET_ERROR(EIO));
634
635		dnode_phys_t *blk = abuf->b_data;
636		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
637		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
638			err = dump_dnode(dsa, dnobj + i, blk + i);
639			if (err != 0)
640				break;
641		}
642		arc_buf_destroy(abuf, &abuf);
643	} else if (type == DMU_OT_SA) {
644		arc_flags_t aflags = ARC_FLAG_WAIT;
645		arc_buf_t *abuf;
646		int blksz = BP_GET_LSIZE(bp);
647
648		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
649		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
650		    &aflags, zb) != 0)
651			return (SET_ERROR(EIO));
652
653		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
654		arc_buf_destroy(abuf, &abuf);
655	} else if (backup_do_embed(dsa, bp)) {
656		/* it's an embedded level-0 block of a regular object */
657		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
658		ASSERT0(zb->zb_level);
659		err = dump_write_embedded(dsa, zb->zb_object,
660		    zb->zb_blkid * blksz, blksz, bp);
661	} else {
662		/* it's a level-0 block of a regular object */
663		arc_flags_t aflags = ARC_FLAG_WAIT;
664		arc_buf_t *abuf;
665		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
666		uint64_t offset;
667
668		ASSERT0(zb->zb_level);
669		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
670		    (zb->zb_object == dsa->dsa_resume_object &&
671		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
672
673		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
674		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
675		    &aflags, zb) != 0) {
676			if (zfs_send_corrupt_data) {
677				/* Send a block filled with 0x"zfs badd bloc" */
678				abuf = arc_alloc_buf(spa, blksz, &abuf,
679				    ARC_BUFC_DATA);
680				uint64_t *ptr;
681				for (ptr = abuf->b_data;
682				    (char *)ptr < (char *)abuf->b_data + blksz;
683				    ptr++)
684					*ptr = 0x2f5baddb10cULL;
685			} else {
686				return (SET_ERROR(EIO));
687			}
688		}
689
690		offset = zb->zb_blkid * blksz;
691
692		if (!(dsa->dsa_featureflags &
693		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
694		    blksz > SPA_OLD_MAXBLOCKSIZE) {
695			char *buf = abuf->b_data;
696			while (blksz > 0 && err == 0) {
697				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
698				err = dump_write(dsa, type, zb->zb_object,
699				    offset, n, NULL, buf);
700				offset += n;
701				buf += n;
702				blksz -= n;
703			}
704		} else {
705			err = dump_write(dsa, type, zb->zb_object,
706			    offset, blksz, bp, abuf->b_data);
707		}
708		arc_buf_destroy(abuf, &abuf);
709	}
710
711	ASSERT(err == 0 || err == EINTR);
712	return (err);
713}
714
715/*
716 * Pop the new data off the queue, and free the old data.
717 */
718static struct send_block_record *
719get_next_record(bqueue_t *bq, struct send_block_record *data)
720{
721	struct send_block_record *tmp = bqueue_dequeue(bq);
722	kmem_free(data, sizeof (*data));
723	return (tmp);
724}
725
726/*
727 * Actually do the bulk of the work in a zfs send.
728 *
729 * Note: Releases dp using the specified tag.
730 */
731static int
732dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
733    zfs_bookmark_phys_t *ancestor_zb,
734    boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
735    uint64_t resumeobj, uint64_t resumeoff,
736#ifdef illumos
737    vnode_t *vp, offset_t *off)
738#else
739    struct file *fp, offset_t *off)
740#endif
741{
742	objset_t *os;
743	dmu_replay_record_t *drr;
744	dmu_sendarg_t *dsp;
745	int err;
746	uint64_t fromtxg = 0;
747	uint64_t featureflags = 0;
748	struct send_thread_arg to_arg = { 0 };
749
750	err = dmu_objset_from_ds(to_ds, &os);
751	if (err != 0) {
752		dsl_pool_rele(dp, tag);
753		return (err);
754	}
755
756	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
757	drr->drr_type = DRR_BEGIN;
758	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
759	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
760	    DMU_SUBSTREAM);
761
762#ifdef _KERNEL
763	if (dmu_objset_type(os) == DMU_OST_ZFS) {
764		uint64_t version;
765		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
766			kmem_free(drr, sizeof (dmu_replay_record_t));
767			dsl_pool_rele(dp, tag);
768			return (SET_ERROR(EINVAL));
769		}
770		if (version >= ZPL_VERSION_SA) {
771			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
772		}
773	}
774#endif
775
776	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
777		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
778	if (embedok &&
779	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
780		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
781		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
782			featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
783	}
784
785	if (resumeobj != 0 || resumeoff != 0) {
786		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
787	}
788
789	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
790	    featureflags);
791
792	drr->drr_u.drr_begin.drr_creation_time =
793	    dsl_dataset_phys(to_ds)->ds_creation_time;
794	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
795	if (is_clone)
796		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
797	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
798	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
799		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
800	if (zfs_send_set_freerecords_bit)
801		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
802
803	if (ancestor_zb != NULL) {
804		drr->drr_u.drr_begin.drr_fromguid =
805		    ancestor_zb->zbm_guid;
806		fromtxg = ancestor_zb->zbm_creation_txg;
807	}
808	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
809	if (!to_ds->ds_is_snapshot) {
810		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
811		    sizeof (drr->drr_u.drr_begin.drr_toname));
812	}
813
814	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
815
816	dsp->dsa_drr = drr;
817	dsp->dsa_outfd = outfd;
818	dsp->dsa_proc = curproc;
819	dsp->dsa_td = curthread;
820	dsp->dsa_fp = fp;
821	dsp->dsa_os = os;
822	dsp->dsa_off = off;
823	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
824	dsp->dsa_pending_op = PENDING_NONE;
825	dsp->dsa_featureflags = featureflags;
826	dsp->dsa_resume_object = resumeobj;
827	dsp->dsa_resume_offset = resumeoff;
828
829	mutex_enter(&to_ds->ds_sendstream_lock);
830	list_insert_head(&to_ds->ds_sendstreams, dsp);
831	mutex_exit(&to_ds->ds_sendstream_lock);
832
833	dsl_dataset_long_hold(to_ds, FTAG);
834	dsl_pool_rele(dp, tag);
835
836	void *payload = NULL;
837	size_t payload_len = 0;
838	if (resumeobj != 0 || resumeoff != 0) {
839		dmu_object_info_t to_doi;
840		err = dmu_object_info(os, resumeobj, &to_doi);
841		if (err != 0)
842			goto out;
843		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
844		    resumeoff / to_doi.doi_data_block_size);
845
846		nvlist_t *nvl = fnvlist_alloc();
847		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
848		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
849		payload = fnvlist_pack(nvl, &payload_len);
850		drr->drr_payloadlen = payload_len;
851		fnvlist_free(nvl);
852	}
853
854	err = dump_record(dsp, payload, payload_len);
855	fnvlist_pack_free(payload, payload_len);
856	if (err != 0) {
857		err = dsp->dsa_err;
858		goto out;
859	}
860
861	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
862	    offsetof(struct send_block_record, ln));
863	to_arg.error_code = 0;
864	to_arg.cancel = B_FALSE;
865	to_arg.ds = to_ds;
866	to_arg.fromtxg = fromtxg;
867	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
868	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0,
869	    TS_RUN, minclsyspri);
870
871	struct send_block_record *to_data;
872	to_data = bqueue_dequeue(&to_arg.q);
873
874	while (!to_data->eos_marker && err == 0) {
875		err = do_dump(dsp, to_data);
876		to_data = get_next_record(&to_arg.q, to_data);
877		if (issig(JUSTLOOKING) && issig(FORREAL))
878			err = EINTR;
879	}
880
881	if (err != 0) {
882		to_arg.cancel = B_TRUE;
883		while (!to_data->eos_marker) {
884			to_data = get_next_record(&to_arg.q, to_data);
885		}
886	}
887	kmem_free(to_data, sizeof (*to_data));
888
889	bqueue_destroy(&to_arg.q);
890
891	if (err == 0 && to_arg.error_code != 0)
892		err = to_arg.error_code;
893
894	if (err != 0)
895		goto out;
896
897	if (dsp->dsa_pending_op != PENDING_NONE)
898		if (dump_record(dsp, NULL, 0) != 0)
899			err = SET_ERROR(EINTR);
900
901	if (err != 0) {
902		if (err == EINTR && dsp->dsa_err != 0)
903			err = dsp->dsa_err;
904		goto out;
905	}
906
907	bzero(drr, sizeof (dmu_replay_record_t));
908	drr->drr_type = DRR_END;
909	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
910	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
911
912	if (dump_record(dsp, NULL, 0) != 0)
913		err = dsp->dsa_err;
914
915out:
916	mutex_enter(&to_ds->ds_sendstream_lock);
917	list_remove(&to_ds->ds_sendstreams, dsp);
918	mutex_exit(&to_ds->ds_sendstream_lock);
919
920	VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
921
922	kmem_free(drr, sizeof (dmu_replay_record_t));
923	kmem_free(dsp, sizeof (dmu_sendarg_t));
924
925	dsl_dataset_long_rele(to_ds, FTAG);
926
927	return (err);
928}
929
930int
931dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
932    boolean_t embedok, boolean_t large_block_ok,
933#ifdef illumos
934    int outfd, vnode_t *vp, offset_t *off)
935#else
936    int outfd, struct file *fp, offset_t *off)
937#endif
938{
939	dsl_pool_t *dp;
940	dsl_dataset_t *ds;
941	dsl_dataset_t *fromds = NULL;
942	int err;
943
944	err = dsl_pool_hold(pool, FTAG, &dp);
945	if (err != 0)
946		return (err);
947
948	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
949	if (err != 0) {
950		dsl_pool_rele(dp, FTAG);
951		return (err);
952	}
953
954	if (fromsnap != 0) {
955		zfs_bookmark_phys_t zb;
956		boolean_t is_clone;
957
958		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
959		if (err != 0) {
960			dsl_dataset_rele(ds, FTAG);
961			dsl_pool_rele(dp, FTAG);
962			return (err);
963		}
964		if (!dsl_dataset_is_before(ds, fromds, 0))
965			err = SET_ERROR(EXDEV);
966		zb.zbm_creation_time =
967		    dsl_dataset_phys(fromds)->ds_creation_time;
968		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
969		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
970		is_clone = (fromds->ds_dir != ds->ds_dir);
971		dsl_dataset_rele(fromds, FTAG);
972		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
973		    embedok, large_block_ok, outfd, 0, 0, fp, off);
974	} else {
975		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
976		    embedok, large_block_ok, outfd, 0, 0, fp, off);
977	}
978	dsl_dataset_rele(ds, FTAG);
979	return (err);
980}
981
982int
983dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
984    boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
985#ifdef illumos
986    vnode_t *vp, offset_t *off)
987#else
988    struct file *fp, offset_t *off)
989#endif
990{
991	dsl_pool_t *dp;
992	dsl_dataset_t *ds;
993	int err;
994	boolean_t owned = B_FALSE;
995
996	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
997		return (SET_ERROR(EINVAL));
998
999	err = dsl_pool_hold(tosnap, FTAG, &dp);
1000	if (err != 0)
1001		return (err);
1002
1003	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1004		/*
1005		 * We are sending a filesystem or volume.  Ensure
1006		 * that it doesn't change by owning the dataset.
1007		 */
1008		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1009		owned = B_TRUE;
1010	} else {
1011		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1012	}
1013	if (err != 0) {
1014		dsl_pool_rele(dp, FTAG);
1015		return (err);
1016	}
1017
1018	if (fromsnap != NULL) {
1019		zfs_bookmark_phys_t zb;
1020		boolean_t is_clone = B_FALSE;
1021		int fsnamelen = strchr(tosnap, '@') - tosnap;
1022
1023		/*
1024		 * If the fromsnap is in a different filesystem, then
1025		 * mark the send stream as a clone.
1026		 */
1027		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1028		    (fromsnap[fsnamelen] != '@' &&
1029		    fromsnap[fsnamelen] != '#')) {
1030			is_clone = B_TRUE;
1031		}
1032
1033		if (strchr(fromsnap, '@')) {
1034			dsl_dataset_t *fromds;
1035			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1036			if (err == 0) {
1037				if (!dsl_dataset_is_before(ds, fromds, 0))
1038					err = SET_ERROR(EXDEV);
1039				zb.zbm_creation_time =
1040				    dsl_dataset_phys(fromds)->ds_creation_time;
1041				zb.zbm_creation_txg =
1042				    dsl_dataset_phys(fromds)->ds_creation_txg;
1043				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1044				is_clone = (ds->ds_dir != fromds->ds_dir);
1045				dsl_dataset_rele(fromds, FTAG);
1046			}
1047		} else {
1048			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1049		}
1050		if (err != 0) {
1051			dsl_dataset_rele(ds, FTAG);
1052			dsl_pool_rele(dp, FTAG);
1053			return (err);
1054		}
1055		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1056		    embedok, large_block_ok,
1057		    outfd, resumeobj, resumeoff, fp, off);
1058	} else {
1059		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1060		    embedok, large_block_ok,
1061		    outfd, resumeobj, resumeoff, fp, off);
1062	}
1063	if (owned)
1064		dsl_dataset_disown(ds, FTAG);
1065	else
1066		dsl_dataset_rele(ds, FTAG);
1067	return (err);
1068}
1069
1070static int
1071dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1072    uint64_t *sizep)
1073{
1074	int err;
1075	/*
1076	 * Assume that space (both on-disk and in-stream) is dominated by
1077	 * data.  We will adjust for indirect blocks and the copies property,
1078	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1079	 */
1080
1081	/*
1082	 * Subtract out approximate space used by indirect blocks.
1083	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1084	 * Assume all blocks are recordsize.  Assume ditto blocks and
1085	 * internal fragmentation counter out compression.
1086	 *
1087	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1088	 * block, which we observe in practice.
1089	 */
1090	uint64_t recordsize;
1091	err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1092	if (err != 0)
1093		return (err);
1094	size -= size / recordsize * sizeof (blkptr_t);
1095
1096	/* Add in the space for the record associated with each block. */
1097	size += size / recordsize * sizeof (dmu_replay_record_t);
1098
1099	*sizep = size;
1100
1101	return (0);
1102}
1103
1104int
1105dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1106{
1107	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1108	int err;
1109	uint64_t size;
1110
1111	ASSERT(dsl_pool_config_held(dp));
1112
1113	/* tosnap must be a snapshot */
1114	if (!ds->ds_is_snapshot)
1115		return (SET_ERROR(EINVAL));
1116
1117	/* fromsnap, if provided, must be a snapshot */
1118	if (fromds != NULL && !fromds->ds_is_snapshot)
1119		return (SET_ERROR(EINVAL));
1120
1121	/*
1122	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1123	 * or the origin's fs.
1124	 */
1125	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1126		return (SET_ERROR(EXDEV));
1127
1128	/* Get uncompressed size estimate of changed data. */
1129	if (fromds == NULL) {
1130		size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1131	} else {
1132		uint64_t used, comp;
1133		err = dsl_dataset_space_written(fromds, ds,
1134		    &used, &comp, &size);
1135		if (err != 0)
1136			return (err);
1137	}
1138
1139	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1140	return (err);
1141}
1142
1143/*
1144 * Simple callback used to traverse the blocks of a snapshot and sum their
1145 * uncompressed size
1146 */
1147/* ARGSUSED */
1148static int
1149dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1150    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1151{
1152	uint64_t *spaceptr = arg;
1153	if (bp != NULL && !BP_IS_HOLE(bp)) {
1154		*spaceptr += BP_GET_UCSIZE(bp);
1155	}
1156	return (0);
1157}
1158
1159/*
1160 * Given a desination snapshot and a TXG, calculate the approximate size of a
1161 * send stream sent from that TXG. from_txg may be zero, indicating that the
1162 * whole snapshot will be sent.
1163 */
1164int
1165dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1166    uint64_t *sizep)
1167{
1168	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1169	int err;
1170	uint64_t size = 0;
1171
1172	ASSERT(dsl_pool_config_held(dp));
1173
1174	/* tosnap must be a snapshot */
1175	if (!dsl_dataset_is_snapshot(ds))
1176		return (SET_ERROR(EINVAL));
1177
1178	/* verify that from_txg is before the provided snapshot was taken */
1179	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1180		return (SET_ERROR(EXDEV));
1181	}
1182
1183	/*
1184	 * traverse the blocks of the snapshot with birth times after
1185	 * from_txg, summing their uncompressed size
1186	 */
1187	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1188	    dmu_calculate_send_traversal, &size);
1189	if (err)
1190		return (err);
1191
1192	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1193	return (err);
1194}
1195
1196typedef struct dmu_recv_begin_arg {
1197	const char *drba_origin;
1198	dmu_recv_cookie_t *drba_cookie;
1199	cred_t *drba_cred;
1200	uint64_t drba_snapobj;
1201} dmu_recv_begin_arg_t;
1202
1203static int
1204recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1205    uint64_t fromguid)
1206{
1207	uint64_t val;
1208	int error;
1209	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1210
1211	/* temporary clone name must not exist */
1212	error = zap_lookup(dp->dp_meta_objset,
1213	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1214	    8, 1, &val);
1215	if (error != ENOENT)
1216		return (error == 0 ? EBUSY : error);
1217
1218	/* new snapshot name must not exist */
1219	error = zap_lookup(dp->dp_meta_objset,
1220	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1221	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1222	if (error != ENOENT)
1223		return (error == 0 ? EEXIST : error);
1224
1225	/*
1226	 * Check snapshot limit before receiving. We'll recheck again at the
1227	 * end, but might as well abort before receiving if we're already over
1228	 * the limit.
1229	 *
1230	 * Note that we do not check the file system limit with
1231	 * dsl_dir_fscount_check because the temporary %clones don't count
1232	 * against that limit.
1233	 */
1234	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1235	    NULL, drba->drba_cred);
1236	if (error != 0)
1237		return (error);
1238
1239	if (fromguid != 0) {
1240		dsl_dataset_t *snap;
1241		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1242
1243		/* Find snapshot in this dir that matches fromguid. */
1244		while (obj != 0) {
1245			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1246			    &snap);
1247			if (error != 0)
1248				return (SET_ERROR(ENODEV));
1249			if (snap->ds_dir != ds->ds_dir) {
1250				dsl_dataset_rele(snap, FTAG);
1251				return (SET_ERROR(ENODEV));
1252			}
1253			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1254				break;
1255			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1256			dsl_dataset_rele(snap, FTAG);
1257		}
1258		if (obj == 0)
1259			return (SET_ERROR(ENODEV));
1260
1261		if (drba->drba_cookie->drc_force) {
1262			drba->drba_snapobj = obj;
1263		} else {
1264			/*
1265			 * If we are not forcing, there must be no
1266			 * changes since fromsnap.
1267			 */
1268			if (dsl_dataset_modified_since_snap(ds, snap)) {
1269				dsl_dataset_rele(snap, FTAG);
1270				return (SET_ERROR(ETXTBSY));
1271			}
1272			drba->drba_snapobj = ds->ds_prev->ds_object;
1273		}
1274
1275		dsl_dataset_rele(snap, FTAG);
1276	} else {
1277		/* if full, then must be forced */
1278		if (!drba->drba_cookie->drc_force)
1279			return (SET_ERROR(EEXIST));
1280		/* start from $ORIGIN@$ORIGIN, if supported */
1281		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1282		    dp->dp_origin_snap->ds_object : 0;
1283	}
1284
1285	return (0);
1286
1287}
1288
1289static int
1290dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1291{
1292	dmu_recv_begin_arg_t *drba = arg;
1293	dsl_pool_t *dp = dmu_tx_pool(tx);
1294	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1295	uint64_t fromguid = drrb->drr_fromguid;
1296	int flags = drrb->drr_flags;
1297	int error;
1298	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1299	dsl_dataset_t *ds;
1300	const char *tofs = drba->drba_cookie->drc_tofs;
1301
1302	/* already checked */
1303	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1304	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1305
1306	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1307	    DMU_COMPOUNDSTREAM ||
1308	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1309	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1310		return (SET_ERROR(EINVAL));
1311
1312	/* Verify pool version supports SA if SA_SPILL feature set */
1313	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1314	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1315		return (SET_ERROR(ENOTSUP));
1316
1317	if (drba->drba_cookie->drc_resumable &&
1318	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1319		return (SET_ERROR(ENOTSUP));
1320
1321	/*
1322	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1323	 * record to a plan WRITE record, so the pool must have the
1324	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1325	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1326	 */
1327	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1328	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1329		return (SET_ERROR(ENOTSUP));
1330	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1331	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1332		return (SET_ERROR(ENOTSUP));
1333
1334	/*
1335	 * The receiving code doesn't know how to translate large blocks
1336	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1337	 * feature enabled if the stream has LARGE_BLOCKS.
1338	 */
1339	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1340	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1341		return (SET_ERROR(ENOTSUP));
1342
1343	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1344	if (error == 0) {
1345		/* target fs already exists; recv into temp clone */
1346
1347		/* Can't recv a clone into an existing fs */
1348		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1349			dsl_dataset_rele(ds, FTAG);
1350			return (SET_ERROR(EINVAL));
1351		}
1352
1353		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1354		dsl_dataset_rele(ds, FTAG);
1355	} else if (error == ENOENT) {
1356		/* target fs does not exist; must be a full backup or clone */
1357		char buf[ZFS_MAX_DATASET_NAME_LEN];
1358
1359		/*
1360		 * If it's a non-clone incremental, we are missing the
1361		 * target fs, so fail the recv.
1362		 */
1363		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1364		    drba->drba_origin))
1365			return (SET_ERROR(ENOENT));
1366
1367		/*
1368		 * If we're receiving a full send as a clone, and it doesn't
1369		 * contain all the necessary free records and freeobject
1370		 * records, reject it.
1371		 */
1372		if (fromguid == 0 && drba->drba_origin &&
1373		    !(flags & DRR_FLAG_FREERECORDS))
1374			return (SET_ERROR(EINVAL));
1375
1376		/* Open the parent of tofs */
1377		ASSERT3U(strlen(tofs), <, sizeof (buf));
1378		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1379		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1380		if (error != 0)
1381			return (error);
1382
1383		/*
1384		 * Check filesystem and snapshot limits before receiving. We'll
1385		 * recheck snapshot limits again at the end (we create the
1386		 * filesystems and increment those counts during begin_sync).
1387		 */
1388		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1389		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1390		if (error != 0) {
1391			dsl_dataset_rele(ds, FTAG);
1392			return (error);
1393		}
1394
1395		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1396		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1397		if (error != 0) {
1398			dsl_dataset_rele(ds, FTAG);
1399			return (error);
1400		}
1401
1402		if (drba->drba_origin != NULL) {
1403			dsl_dataset_t *origin;
1404			error = dsl_dataset_hold(dp, drba->drba_origin,
1405			    FTAG, &origin);
1406			if (error != 0) {
1407				dsl_dataset_rele(ds, FTAG);
1408				return (error);
1409			}
1410			if (!origin->ds_is_snapshot) {
1411				dsl_dataset_rele(origin, FTAG);
1412				dsl_dataset_rele(ds, FTAG);
1413				return (SET_ERROR(EINVAL));
1414			}
1415			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1416			    fromguid != 0) {
1417				dsl_dataset_rele(origin, FTAG);
1418				dsl_dataset_rele(ds, FTAG);
1419				return (SET_ERROR(ENODEV));
1420			}
1421			dsl_dataset_rele(origin, FTAG);
1422		}
1423		dsl_dataset_rele(ds, FTAG);
1424		error = 0;
1425	}
1426	return (error);
1427}
1428
1429static void
1430dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1431{
1432	dmu_recv_begin_arg_t *drba = arg;
1433	dsl_pool_t *dp = dmu_tx_pool(tx);
1434	objset_t *mos = dp->dp_meta_objset;
1435	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1436	const char *tofs = drba->drba_cookie->drc_tofs;
1437	dsl_dataset_t *ds, *newds;
1438	uint64_t dsobj;
1439	int error;
1440	uint64_t crflags = 0;
1441
1442	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1443		crflags |= DS_FLAG_CI_DATASET;
1444
1445	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1446	if (error == 0) {
1447		/* create temporary clone */
1448		dsl_dataset_t *snap = NULL;
1449		if (drba->drba_snapobj != 0) {
1450			VERIFY0(dsl_dataset_hold_obj(dp,
1451			    drba->drba_snapobj, FTAG, &snap));
1452		}
1453		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1454		    snap, crflags, drba->drba_cred, tx);
1455		if (drba->drba_snapobj != 0)
1456			dsl_dataset_rele(snap, FTAG);
1457		dsl_dataset_rele(ds, FTAG);
1458	} else {
1459		dsl_dir_t *dd;
1460		const char *tail;
1461		dsl_dataset_t *origin = NULL;
1462
1463		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1464
1465		if (drba->drba_origin != NULL) {
1466			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1467			    FTAG, &origin));
1468		}
1469
1470		/* Create new dataset. */
1471		dsobj = dsl_dataset_create_sync(dd,
1472		    strrchr(tofs, '/') + 1,
1473		    origin, crflags, drba->drba_cred, tx);
1474		if (origin != NULL)
1475			dsl_dataset_rele(origin, FTAG);
1476		dsl_dir_rele(dd, FTAG);
1477		drba->drba_cookie->drc_newfs = B_TRUE;
1478	}
1479	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1480
1481	if (drba->drba_cookie->drc_resumable) {
1482		dsl_dataset_zapify(newds, tx);
1483		if (drrb->drr_fromguid != 0) {
1484			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1485			    8, 1, &drrb->drr_fromguid, tx));
1486		}
1487		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1488		    8, 1, &drrb->drr_toguid, tx));
1489		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1490		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1491		uint64_t one = 1;
1492		uint64_t zero = 0;
1493		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1494		    8, 1, &one, tx));
1495		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1496		    8, 1, &zero, tx));
1497		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1498		    8, 1, &zero, tx));
1499		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1500		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1501			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1502			    8, 1, &one, tx));
1503		}
1504	}
1505
1506	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1507	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1508
1509	/*
1510	 * If we actually created a non-clone, we need to create the
1511	 * objset in our new dataset.
1512	 */
1513	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1514		(void) dmu_objset_create_impl(dp->dp_spa,
1515		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1516	}
1517
1518	drba->drba_cookie->drc_ds = newds;
1519
1520	spa_history_log_internal_ds(newds, "receive", tx, "");
1521}
1522
1523static int
1524dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1525{
1526	dmu_recv_begin_arg_t *drba = arg;
1527	dsl_pool_t *dp = dmu_tx_pool(tx);
1528	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1529	int error;
1530	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1531	dsl_dataset_t *ds;
1532	const char *tofs = drba->drba_cookie->drc_tofs;
1533
1534	/* already checked */
1535	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1536	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1537
1538	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1539	    DMU_COMPOUNDSTREAM ||
1540	    drrb->drr_type >= DMU_OST_NUMTYPES)
1541		return (SET_ERROR(EINVAL));
1542
1543	/* Verify pool version supports SA if SA_SPILL feature set */
1544	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1545	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1546		return (SET_ERROR(ENOTSUP));
1547
1548	/*
1549	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1550	 * record to a plain WRITE record, so the pool must have the
1551	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1552	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1553	 */
1554	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1555	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1556		return (SET_ERROR(ENOTSUP));
1557	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1558	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1559		return (SET_ERROR(ENOTSUP));
1560
1561	/* 6 extra bytes for /%recv */
1562	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1563
1564	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1565	    tofs, recv_clone_name);
1566
1567	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1568		/* %recv does not exist; continue in tofs */
1569		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1570		if (error != 0)
1571			return (error);
1572	}
1573
1574	/* check that ds is marked inconsistent */
1575	if (!DS_IS_INCONSISTENT(ds)) {
1576		dsl_dataset_rele(ds, FTAG);
1577		return (SET_ERROR(EINVAL));
1578	}
1579
1580	/* check that there is resuming data, and that the toguid matches */
1581	if (!dsl_dataset_is_zapified(ds)) {
1582		dsl_dataset_rele(ds, FTAG);
1583		return (SET_ERROR(EINVAL));
1584	}
1585	uint64_t val;
1586	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1587	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1588	if (error != 0 || drrb->drr_toguid != val) {
1589		dsl_dataset_rele(ds, FTAG);
1590		return (SET_ERROR(EINVAL));
1591	}
1592
1593	/*
1594	 * Check if the receive is still running.  If so, it will be owned.
1595	 * Note that nothing else can own the dataset (e.g. after the receive
1596	 * fails) because it will be marked inconsistent.
1597	 */
1598	if (dsl_dataset_has_owner(ds)) {
1599		dsl_dataset_rele(ds, FTAG);
1600		return (SET_ERROR(EBUSY));
1601	}
1602
1603	/* There should not be any snapshots of this fs yet. */
1604	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1605		dsl_dataset_rele(ds, FTAG);
1606		return (SET_ERROR(EINVAL));
1607	}
1608
1609	/*
1610	 * Note: resume point will be checked when we process the first WRITE
1611	 * record.
1612	 */
1613
1614	/* check that the origin matches */
1615	val = 0;
1616	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1617	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1618	if (drrb->drr_fromguid != val) {
1619		dsl_dataset_rele(ds, FTAG);
1620		return (SET_ERROR(EINVAL));
1621	}
1622
1623	dsl_dataset_rele(ds, FTAG);
1624	return (0);
1625}
1626
1627static void
1628dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1629{
1630	dmu_recv_begin_arg_t *drba = arg;
1631	dsl_pool_t *dp = dmu_tx_pool(tx);
1632	const char *tofs = drba->drba_cookie->drc_tofs;
1633	dsl_dataset_t *ds;
1634	uint64_t dsobj;
1635	/* 6 extra bytes for /%recv */
1636	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1637
1638	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1639	    tofs, recv_clone_name);
1640
1641	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1642		/* %recv does not exist; continue in tofs */
1643		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1644		drba->drba_cookie->drc_newfs = B_TRUE;
1645	}
1646
1647	/* clear the inconsistent flag so that we can own it */
1648	ASSERT(DS_IS_INCONSISTENT(ds));
1649	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1650	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1651	dsobj = ds->ds_object;
1652	dsl_dataset_rele(ds, FTAG);
1653
1654	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1655
1656	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1657	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1658
1659	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1660
1661	drba->drba_cookie->drc_ds = ds;
1662
1663	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1664}
1665
1666/*
1667 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1668 * succeeds; otherwise we will leak the holds on the datasets.
1669 */
1670int
1671dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1672    boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1673{
1674	dmu_recv_begin_arg_t drba = { 0 };
1675
1676	bzero(drc, sizeof (dmu_recv_cookie_t));
1677	drc->drc_drr_begin = drr_begin;
1678	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1679	drc->drc_tosnap = tosnap;
1680	drc->drc_tofs = tofs;
1681	drc->drc_force = force;
1682	drc->drc_resumable = resumable;
1683	drc->drc_cred = CRED();
1684
1685	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1686		drc->drc_byteswap = B_TRUE;
1687		fletcher_4_incremental_byteswap(drr_begin,
1688		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1689		byteswap_record(drr_begin);
1690	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1691		fletcher_4_incremental_native(drr_begin,
1692		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1693	} else {
1694		return (SET_ERROR(EINVAL));
1695	}
1696
1697	drba.drba_origin = origin;
1698	drba.drba_cookie = drc;
1699	drba.drba_cred = CRED();
1700
1701	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1702	    DMU_BACKUP_FEATURE_RESUMING) {
1703		return (dsl_sync_task(tofs,
1704		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1705		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1706	} else  {
1707		return (dsl_sync_task(tofs,
1708		    dmu_recv_begin_check, dmu_recv_begin_sync,
1709		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1710	}
1711}
1712
1713struct receive_record_arg {
1714	dmu_replay_record_t header;
1715	void *payload; /* Pointer to a buffer containing the payload */
1716	/*
1717	 * If the record is a write, pointer to the arc_buf_t containing the
1718	 * payload.
1719	 */
1720	arc_buf_t *write_buf;
1721	int payload_size;
1722	uint64_t bytes_read; /* bytes read from stream when record created */
1723	boolean_t eos_marker; /* Marks the end of the stream */
1724	bqueue_node_t node;
1725};
1726
1727struct receive_writer_arg {
1728	objset_t *os;
1729	boolean_t byteswap;
1730	bqueue_t q;
1731
1732	/*
1733	 * These three args are used to signal to the main thread that we're
1734	 * done.
1735	 */
1736	kmutex_t mutex;
1737	kcondvar_t cv;
1738	boolean_t done;
1739
1740	int err;
1741	/* A map from guid to dataset to help handle dedup'd streams. */
1742	avl_tree_t *guid_to_ds_map;
1743	boolean_t resumable;
1744	uint64_t last_object, last_offset;
1745	uint64_t bytes_read; /* bytes read when current record created */
1746};
1747
1748struct objlist {
1749	list_t list; /* List of struct receive_objnode. */
1750	/*
1751	 * Last object looked up. Used to assert that objects are being looked
1752	 * up in ascending order.
1753	 */
1754	uint64_t last_lookup;
1755};
1756
1757struct receive_objnode {
1758	list_node_t node;
1759	uint64_t object;
1760};
1761
1762struct receive_arg  {
1763	objset_t *os;
1764	kthread_t *td;
1765	struct file *fp;
1766	uint64_t voff; /* The current offset in the stream */
1767	uint64_t bytes_read;
1768	/*
1769	 * A record that has had its payload read in, but hasn't yet been handed
1770	 * off to the worker thread.
1771	 */
1772	struct receive_record_arg *rrd;
1773	/* A record that has had its header read in, but not its payload. */
1774	struct receive_record_arg *next_rrd;
1775	zio_cksum_t cksum;
1776	zio_cksum_t prev_cksum;
1777	int err;
1778	boolean_t byteswap;
1779	/* Sorted list of objects not to issue prefetches for. */
1780	struct objlist ignore_objlist;
1781};
1782
1783typedef struct guid_map_entry {
1784	uint64_t	guid;
1785	dsl_dataset_t	*gme_ds;
1786	avl_node_t	avlnode;
1787} guid_map_entry_t;
1788
1789static int
1790guid_compare(const void *arg1, const void *arg2)
1791{
1792	const guid_map_entry_t *gmep1 = arg1;
1793	const guid_map_entry_t *gmep2 = arg2;
1794
1795	if (gmep1->guid < gmep2->guid)
1796		return (-1);
1797	else if (gmep1->guid > gmep2->guid)
1798		return (1);
1799	return (0);
1800}
1801
1802static void
1803free_guid_map_onexit(void *arg)
1804{
1805	avl_tree_t *ca = arg;
1806	void *cookie = NULL;
1807	guid_map_entry_t *gmep;
1808
1809	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1810		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1811		dsl_dataset_rele(gmep->gme_ds, gmep);
1812		kmem_free(gmep, sizeof (guid_map_entry_t));
1813	}
1814	avl_destroy(ca);
1815	kmem_free(ca, sizeof (avl_tree_t));
1816}
1817
1818static int
1819restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid)
1820{
1821	struct uio auio;
1822	struct iovec aiov;
1823	int error;
1824
1825	aiov.iov_base = buf;
1826	aiov.iov_len = len;
1827	auio.uio_iov = &aiov;
1828	auio.uio_iovcnt = 1;
1829	auio.uio_resid = len;
1830	auio.uio_segflg = UIO_SYSSPACE;
1831	auio.uio_rw = UIO_READ;
1832	auio.uio_offset = off;
1833	auio.uio_td = ra->td;
1834#ifdef _KERNEL
1835	error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td);
1836#else
1837	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
1838	error = EOPNOTSUPP;
1839#endif
1840	*resid = auio.uio_resid;
1841	return (error);
1842}
1843
1844static int
1845receive_read(struct receive_arg *ra, int len, void *buf)
1846{
1847	int done = 0;
1848
1849	/*
1850	 * The code doesn't rely on this (lengths being multiples of 8).  See
1851	 * comment in dump_bytes.
1852	 */
1853	ASSERT0(len % 8);
1854
1855	while (done < len) {
1856		ssize_t resid;
1857
1858		ra->err = restore_bytes(ra, buf + done,
1859		    len - done, ra->voff, &resid);
1860
1861		if (resid == len - done) {
1862			/*
1863			 * Note: ECKSUM indicates that the receive
1864			 * was interrupted and can potentially be resumed.
1865			 */
1866			ra->err = SET_ERROR(ECKSUM);
1867		}
1868		ra->voff += len - done - resid;
1869		done = len - resid;
1870		if (ra->err != 0)
1871			return (ra->err);
1872	}
1873
1874	ra->bytes_read += len;
1875
1876	ASSERT3U(done, ==, len);
1877	return (0);
1878}
1879
1880static void
1881byteswap_record(dmu_replay_record_t *drr)
1882{
1883#define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1884#define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1885	drr->drr_type = BSWAP_32(drr->drr_type);
1886	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1887
1888	switch (drr->drr_type) {
1889	case DRR_BEGIN:
1890		DO64(drr_begin.drr_magic);
1891		DO64(drr_begin.drr_versioninfo);
1892		DO64(drr_begin.drr_creation_time);
1893		DO32(drr_begin.drr_type);
1894		DO32(drr_begin.drr_flags);
1895		DO64(drr_begin.drr_toguid);
1896		DO64(drr_begin.drr_fromguid);
1897		break;
1898	case DRR_OBJECT:
1899		DO64(drr_object.drr_object);
1900		DO32(drr_object.drr_type);
1901		DO32(drr_object.drr_bonustype);
1902		DO32(drr_object.drr_blksz);
1903		DO32(drr_object.drr_bonuslen);
1904		DO64(drr_object.drr_toguid);
1905		break;
1906	case DRR_FREEOBJECTS:
1907		DO64(drr_freeobjects.drr_firstobj);
1908		DO64(drr_freeobjects.drr_numobjs);
1909		DO64(drr_freeobjects.drr_toguid);
1910		break;
1911	case DRR_WRITE:
1912		DO64(drr_write.drr_object);
1913		DO32(drr_write.drr_type);
1914		DO64(drr_write.drr_offset);
1915		DO64(drr_write.drr_length);
1916		DO64(drr_write.drr_toguid);
1917		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1918		DO64(drr_write.drr_key.ddk_prop);
1919		break;
1920	case DRR_WRITE_BYREF:
1921		DO64(drr_write_byref.drr_object);
1922		DO64(drr_write_byref.drr_offset);
1923		DO64(drr_write_byref.drr_length);
1924		DO64(drr_write_byref.drr_toguid);
1925		DO64(drr_write_byref.drr_refguid);
1926		DO64(drr_write_byref.drr_refobject);
1927		DO64(drr_write_byref.drr_refoffset);
1928		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1929		    drr_key.ddk_cksum);
1930		DO64(drr_write_byref.drr_key.ddk_prop);
1931		break;
1932	case DRR_WRITE_EMBEDDED:
1933		DO64(drr_write_embedded.drr_object);
1934		DO64(drr_write_embedded.drr_offset);
1935		DO64(drr_write_embedded.drr_length);
1936		DO64(drr_write_embedded.drr_toguid);
1937		DO32(drr_write_embedded.drr_lsize);
1938		DO32(drr_write_embedded.drr_psize);
1939		break;
1940	case DRR_FREE:
1941		DO64(drr_free.drr_object);
1942		DO64(drr_free.drr_offset);
1943		DO64(drr_free.drr_length);
1944		DO64(drr_free.drr_toguid);
1945		break;
1946	case DRR_SPILL:
1947		DO64(drr_spill.drr_object);
1948		DO64(drr_spill.drr_length);
1949		DO64(drr_spill.drr_toguid);
1950		break;
1951	case DRR_END:
1952		DO64(drr_end.drr_toguid);
1953		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1954		break;
1955	}
1956
1957	if (drr->drr_type != DRR_BEGIN) {
1958		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1959	}
1960
1961#undef DO64
1962#undef DO32
1963}
1964
1965static inline uint8_t
1966deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1967{
1968	if (bonus_type == DMU_OT_SA) {
1969		return (1);
1970	} else {
1971		return (1 +
1972		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1973	}
1974}
1975
1976static void
1977save_resume_state(struct receive_writer_arg *rwa,
1978    uint64_t object, uint64_t offset, dmu_tx_t *tx)
1979{
1980	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1981
1982	if (!rwa->resumable)
1983		return;
1984
1985	/*
1986	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1987	 * update this on disk, so it must not be 0.
1988	 */
1989	ASSERT(rwa->bytes_read != 0);
1990
1991	/*
1992	 * We only resume from write records, which have a valid
1993	 * (non-meta-dnode) object number.
1994	 */
1995	ASSERT(object != 0);
1996
1997	/*
1998	 * For resuming to work correctly, we must receive records in order,
1999	 * sorted by object,offset.  This is checked by the callers, but
2000	 * assert it here for good measure.
2001	 */
2002	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2003	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2004	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2005	ASSERT3U(rwa->bytes_read, >=,
2006	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2007
2008	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2009	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2010	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2011}
2012
2013static int
2014receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2015    void *data)
2016{
2017	dmu_object_info_t doi;
2018	dmu_tx_t *tx;
2019	uint64_t object;
2020	int err;
2021
2022	if (drro->drr_type == DMU_OT_NONE ||
2023	    !DMU_OT_IS_VALID(drro->drr_type) ||
2024	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2025	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2026	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2027	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2028	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
2029	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2030	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2031		return (SET_ERROR(EINVAL));
2032	}
2033
2034	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2035
2036	if (err != 0 && err != ENOENT)
2037		return (SET_ERROR(EINVAL));
2038	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2039
2040	/*
2041	 * If we are losing blkptrs or changing the block size this must
2042	 * be a new file instance.  We must clear out the previous file
2043	 * contents before we can change this type of metadata in the dnode.
2044	 */
2045	if (err == 0) {
2046		int nblkptr;
2047
2048		nblkptr = deduce_nblkptr(drro->drr_bonustype,
2049		    drro->drr_bonuslen);
2050
2051		if (drro->drr_blksz != doi.doi_data_block_size ||
2052		    nblkptr < doi.doi_nblkptr) {
2053			err = dmu_free_long_range(rwa->os, drro->drr_object,
2054			    0, DMU_OBJECT_END);
2055			if (err != 0)
2056				return (SET_ERROR(EINVAL));
2057		}
2058	}
2059
2060	tx = dmu_tx_create(rwa->os);
2061	dmu_tx_hold_bonus(tx, object);
2062	err = dmu_tx_assign(tx, TXG_WAIT);
2063	if (err != 0) {
2064		dmu_tx_abort(tx);
2065		return (err);
2066	}
2067
2068	if (object == DMU_NEW_OBJECT) {
2069		/* currently free, want to be allocated */
2070		err = dmu_object_claim(rwa->os, drro->drr_object,
2071		    drro->drr_type, drro->drr_blksz,
2072		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2073	} else if (drro->drr_type != doi.doi_type ||
2074	    drro->drr_blksz != doi.doi_data_block_size ||
2075	    drro->drr_bonustype != doi.doi_bonus_type ||
2076	    drro->drr_bonuslen != doi.doi_bonus_size) {
2077		/* currently allocated, but with different properties */
2078		err = dmu_object_reclaim(rwa->os, drro->drr_object,
2079		    drro->drr_type, drro->drr_blksz,
2080		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2081	}
2082	if (err != 0) {
2083		dmu_tx_commit(tx);
2084		return (SET_ERROR(EINVAL));
2085	}
2086
2087	dmu_object_set_checksum(rwa->os, drro->drr_object,
2088	    drro->drr_checksumtype, tx);
2089	dmu_object_set_compress(rwa->os, drro->drr_object,
2090	    drro->drr_compress, tx);
2091
2092	if (data != NULL) {
2093		dmu_buf_t *db;
2094
2095		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2096		dmu_buf_will_dirty(db, tx);
2097
2098		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2099		bcopy(data, db->db_data, drro->drr_bonuslen);
2100		if (rwa->byteswap) {
2101			dmu_object_byteswap_t byteswap =
2102			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2103			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2104			    drro->drr_bonuslen);
2105		}
2106		dmu_buf_rele(db, FTAG);
2107	}
2108	dmu_tx_commit(tx);
2109
2110	return (0);
2111}
2112
2113/* ARGSUSED */
2114static int
2115receive_freeobjects(struct receive_writer_arg *rwa,
2116    struct drr_freeobjects *drrfo)
2117{
2118	uint64_t obj;
2119	int next_err = 0;
2120
2121	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2122		return (SET_ERROR(EINVAL));
2123
2124	for (obj = drrfo->drr_firstobj;
2125	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2126	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2127		int err;
2128
2129		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2130			continue;
2131
2132		err = dmu_free_long_object(rwa->os, obj);
2133		if (err != 0)
2134			return (err);
2135	}
2136	if (next_err != ESRCH)
2137		return (next_err);
2138	return (0);
2139}
2140
2141static int
2142receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2143    arc_buf_t *abuf)
2144{
2145	dmu_tx_t *tx;
2146	int err;
2147
2148	if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2149	    !DMU_OT_IS_VALID(drrw->drr_type))
2150		return (SET_ERROR(EINVAL));
2151
2152	/*
2153	 * For resuming to work, records must be in increasing order
2154	 * by (object, offset).
2155	 */
2156	if (drrw->drr_object < rwa->last_object ||
2157	    (drrw->drr_object == rwa->last_object &&
2158	    drrw->drr_offset < rwa->last_offset)) {
2159		return (SET_ERROR(EINVAL));
2160	}
2161	rwa->last_object = drrw->drr_object;
2162	rwa->last_offset = drrw->drr_offset;
2163
2164	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2165		return (SET_ERROR(EINVAL));
2166
2167	tx = dmu_tx_create(rwa->os);
2168
2169	dmu_tx_hold_write(tx, drrw->drr_object,
2170	    drrw->drr_offset, drrw->drr_length);
2171	err = dmu_tx_assign(tx, TXG_WAIT);
2172	if (err != 0) {
2173		dmu_tx_abort(tx);
2174		return (err);
2175	}
2176	if (rwa->byteswap) {
2177		dmu_object_byteswap_t byteswap =
2178		    DMU_OT_BYTESWAP(drrw->drr_type);
2179		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2180		    drrw->drr_length);
2181	}
2182
2183	dmu_buf_t *bonus;
2184	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2185		return (SET_ERROR(EINVAL));
2186	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2187
2188	/*
2189	 * Note: If the receive fails, we want the resume stream to start
2190	 * with the same record that we last successfully received (as opposed
2191	 * to the next record), so that we can verify that we are
2192	 * resuming from the correct location.
2193	 */
2194	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2195	dmu_tx_commit(tx);
2196	dmu_buf_rele(bonus, FTAG);
2197
2198	return (0);
2199}
2200
2201/*
2202 * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2203 * streams to refer to a copy of the data that is already on the
2204 * system because it came in earlier in the stream.  This function
2205 * finds the earlier copy of the data, and uses that copy instead of
2206 * data from the stream to fulfill this write.
2207 */
2208static int
2209receive_write_byref(struct receive_writer_arg *rwa,
2210    struct drr_write_byref *drrwbr)
2211{
2212	dmu_tx_t *tx;
2213	int err;
2214	guid_map_entry_t gmesrch;
2215	guid_map_entry_t *gmep;
2216	avl_index_t where;
2217	objset_t *ref_os = NULL;
2218	dmu_buf_t *dbp;
2219
2220	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2221		return (SET_ERROR(EINVAL));
2222
2223	/*
2224	 * If the GUID of the referenced dataset is different from the
2225	 * GUID of the target dataset, find the referenced dataset.
2226	 */
2227	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2228		gmesrch.guid = drrwbr->drr_refguid;
2229		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2230		    &where)) == NULL) {
2231			return (SET_ERROR(EINVAL));
2232		}
2233		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2234			return (SET_ERROR(EINVAL));
2235	} else {
2236		ref_os = rwa->os;
2237	}
2238
2239	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2240	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2241	if (err != 0)
2242		return (err);
2243
2244	tx = dmu_tx_create(rwa->os);
2245
2246	dmu_tx_hold_write(tx, drrwbr->drr_object,
2247	    drrwbr->drr_offset, drrwbr->drr_length);
2248	err = dmu_tx_assign(tx, TXG_WAIT);
2249	if (err != 0) {
2250		dmu_tx_abort(tx);
2251		return (err);
2252	}
2253	dmu_write(rwa->os, drrwbr->drr_object,
2254	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2255	dmu_buf_rele(dbp, FTAG);
2256
2257	/* See comment in restore_write. */
2258	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2259	dmu_tx_commit(tx);
2260	return (0);
2261}
2262
2263static int
2264receive_write_embedded(struct receive_writer_arg *rwa,
2265    struct drr_write_embedded *drrwe, void *data)
2266{
2267	dmu_tx_t *tx;
2268	int err;
2269
2270	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2271		return (EINVAL);
2272
2273	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2274		return (EINVAL);
2275
2276	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2277		return (EINVAL);
2278	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2279		return (EINVAL);
2280
2281	tx = dmu_tx_create(rwa->os);
2282
2283	dmu_tx_hold_write(tx, drrwe->drr_object,
2284	    drrwe->drr_offset, drrwe->drr_length);
2285	err = dmu_tx_assign(tx, TXG_WAIT);
2286	if (err != 0) {
2287		dmu_tx_abort(tx);
2288		return (err);
2289	}
2290
2291	dmu_write_embedded(rwa->os, drrwe->drr_object,
2292	    drrwe->drr_offset, data, drrwe->drr_etype,
2293	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2294	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2295
2296	/* See comment in restore_write. */
2297	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2298	dmu_tx_commit(tx);
2299	return (0);
2300}
2301
2302static int
2303receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2304    void *data)
2305{
2306	dmu_tx_t *tx;
2307	dmu_buf_t *db, *db_spill;
2308	int err;
2309
2310	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2311	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2312		return (SET_ERROR(EINVAL));
2313
2314	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2315		return (SET_ERROR(EINVAL));
2316
2317	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2318	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2319		dmu_buf_rele(db, FTAG);
2320		return (err);
2321	}
2322
2323	tx = dmu_tx_create(rwa->os);
2324
2325	dmu_tx_hold_spill(tx, db->db_object);
2326
2327	err = dmu_tx_assign(tx, TXG_WAIT);
2328	if (err != 0) {
2329		dmu_buf_rele(db, FTAG);
2330		dmu_buf_rele(db_spill, FTAG);
2331		dmu_tx_abort(tx);
2332		return (err);
2333	}
2334	dmu_buf_will_dirty(db_spill, tx);
2335
2336	if (db_spill->db_size < drrs->drr_length)
2337		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2338		    drrs->drr_length, tx));
2339	bcopy(data, db_spill->db_data, drrs->drr_length);
2340
2341	dmu_buf_rele(db, FTAG);
2342	dmu_buf_rele(db_spill, FTAG);
2343
2344	dmu_tx_commit(tx);
2345	return (0);
2346}
2347
2348/* ARGSUSED */
2349static int
2350receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2351{
2352	int err;
2353
2354	if (drrf->drr_length != -1ULL &&
2355	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2356		return (SET_ERROR(EINVAL));
2357
2358	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2359		return (SET_ERROR(EINVAL));
2360
2361	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2362	    drrf->drr_offset, drrf->drr_length);
2363
2364	return (err);
2365}
2366
2367/* used to destroy the drc_ds on error */
2368static void
2369dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2370{
2371	if (drc->drc_resumable) {
2372		/* wait for our resume state to be written to disk */
2373		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2374		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2375	} else {
2376		char name[ZFS_MAX_DATASET_NAME_LEN];
2377		dsl_dataset_name(drc->drc_ds, name);
2378		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2379		(void) dsl_destroy_head(name);
2380	}
2381}
2382
2383static void
2384receive_cksum(struct receive_arg *ra, int len, void *buf)
2385{
2386	if (ra->byteswap) {
2387		fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2388	} else {
2389		fletcher_4_incremental_native(buf, len, &ra->cksum);
2390	}
2391}
2392
2393/*
2394 * Read the payload into a buffer of size len, and update the current record's
2395 * payload field.
2396 * Allocate ra->next_rrd and read the next record's header into
2397 * ra->next_rrd->header.
2398 * Verify checksum of payload and next record.
2399 */
2400static int
2401receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2402{
2403	int err;
2404
2405	if (len != 0) {
2406		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2407		err = receive_read(ra, len, buf);
2408		if (err != 0)
2409			return (err);
2410		receive_cksum(ra, len, buf);
2411
2412		/* note: rrd is NULL when reading the begin record's payload */
2413		if (ra->rrd != NULL) {
2414			ra->rrd->payload = buf;
2415			ra->rrd->payload_size = len;
2416			ra->rrd->bytes_read = ra->bytes_read;
2417		}
2418	}
2419
2420	ra->prev_cksum = ra->cksum;
2421
2422	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2423	err = receive_read(ra, sizeof (ra->next_rrd->header),
2424	    &ra->next_rrd->header);
2425	ra->next_rrd->bytes_read = ra->bytes_read;
2426	if (err != 0) {
2427		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2428		ra->next_rrd = NULL;
2429		return (err);
2430	}
2431	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2432		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2433		ra->next_rrd = NULL;
2434		return (SET_ERROR(EINVAL));
2435	}
2436
2437	/*
2438	 * Note: checksum is of everything up to but not including the
2439	 * checksum itself.
2440	 */
2441	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2442	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2443	receive_cksum(ra,
2444	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2445	    &ra->next_rrd->header);
2446
2447	zio_cksum_t cksum_orig =
2448	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2449	zio_cksum_t *cksump =
2450	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2451
2452	if (ra->byteswap)
2453		byteswap_record(&ra->next_rrd->header);
2454
2455	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2456	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2457		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2458		ra->next_rrd = NULL;
2459		return (SET_ERROR(ECKSUM));
2460	}
2461
2462	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2463
2464	return (0);
2465}
2466
2467static void
2468objlist_create(struct objlist *list)
2469{
2470	list_create(&list->list, sizeof (struct receive_objnode),
2471	    offsetof(struct receive_objnode, node));
2472	list->last_lookup = 0;
2473}
2474
2475static void
2476objlist_destroy(struct objlist *list)
2477{
2478	for (struct receive_objnode *n = list_remove_head(&list->list);
2479	    n != NULL; n = list_remove_head(&list->list)) {
2480		kmem_free(n, sizeof (*n));
2481	}
2482	list_destroy(&list->list);
2483}
2484
2485/*
2486 * This function looks through the objlist to see if the specified object number
2487 * is contained in the objlist.  In the process, it will remove all object
2488 * numbers in the list that are smaller than the specified object number.  Thus,
2489 * any lookup of an object number smaller than a previously looked up object
2490 * number will always return false; therefore, all lookups should be done in
2491 * ascending order.
2492 */
2493static boolean_t
2494objlist_exists(struct objlist *list, uint64_t object)
2495{
2496	struct receive_objnode *node = list_head(&list->list);
2497	ASSERT3U(object, >=, list->last_lookup);
2498	list->last_lookup = object;
2499	while (node != NULL && node->object < object) {
2500		VERIFY3P(node, ==, list_remove_head(&list->list));
2501		kmem_free(node, sizeof (*node));
2502		node = list_head(&list->list);
2503	}
2504	return (node != NULL && node->object == object);
2505}
2506
2507/*
2508 * The objlist is a list of object numbers stored in ascending order.  However,
2509 * the insertion of new object numbers does not seek out the correct location to
2510 * store a new object number; instead, it appends it to the list for simplicity.
2511 * Thus, any users must take care to only insert new object numbers in ascending
2512 * order.
2513 */
2514static void
2515objlist_insert(struct objlist *list, uint64_t object)
2516{
2517	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2518	node->object = object;
2519#ifdef ZFS_DEBUG
2520	struct receive_objnode *last_object = list_tail(&list->list);
2521	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2522	ASSERT3U(node->object, >, last_objnum);
2523#endif
2524	list_insert_tail(&list->list, node);
2525}
2526
2527/*
2528 * Issue the prefetch reads for any necessary indirect blocks.
2529 *
2530 * We use the object ignore list to tell us whether or not to issue prefetches
2531 * for a given object.  We do this for both correctness (in case the blocksize
2532 * of an object has changed) and performance (if the object doesn't exist, don't
2533 * needlessly try to issue prefetches).  We also trim the list as we go through
2534 * the stream to prevent it from growing to an unbounded size.
2535 *
2536 * The object numbers within will always be in sorted order, and any write
2537 * records we see will also be in sorted order, but they're not sorted with
2538 * respect to each other (i.e. we can get several object records before
2539 * receiving each object's write records).  As a result, once we've reached a
2540 * given object number, we can safely remove any reference to lower object
2541 * numbers in the ignore list. In practice, we receive up to 32 object records
2542 * before receiving write records, so the list can have up to 32 nodes in it.
2543 */
2544/* ARGSUSED */
2545static void
2546receive_read_prefetch(struct receive_arg *ra,
2547    uint64_t object, uint64_t offset, uint64_t length)
2548{
2549	if (!objlist_exists(&ra->ignore_objlist, object)) {
2550		dmu_prefetch(ra->os, object, 1, offset, length,
2551		    ZIO_PRIORITY_SYNC_READ);
2552	}
2553}
2554
2555/*
2556 * Read records off the stream, issuing any necessary prefetches.
2557 */
2558static int
2559receive_read_record(struct receive_arg *ra)
2560{
2561	int err;
2562
2563	switch (ra->rrd->header.drr_type) {
2564	case DRR_OBJECT:
2565	{
2566		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2567		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2568		void *buf = kmem_zalloc(size, KM_SLEEP);
2569		dmu_object_info_t doi;
2570		err = receive_read_payload_and_next_header(ra, size, buf);
2571		if (err != 0) {
2572			kmem_free(buf, size);
2573			return (err);
2574		}
2575		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2576		/*
2577		 * See receive_read_prefetch for an explanation why we're
2578		 * storing this object in the ignore_obj_list.
2579		 */
2580		if (err == ENOENT ||
2581		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2582			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2583			err = 0;
2584		}
2585		return (err);
2586	}
2587	case DRR_FREEOBJECTS:
2588	{
2589		err = receive_read_payload_and_next_header(ra, 0, NULL);
2590		return (err);
2591	}
2592	case DRR_WRITE:
2593	{
2594		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2595		arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2596		    drrw->drr_length);
2597
2598		err = receive_read_payload_and_next_header(ra,
2599		    drrw->drr_length, abuf->b_data);
2600		if (err != 0) {
2601			dmu_return_arcbuf(abuf);
2602			return (err);
2603		}
2604		ra->rrd->write_buf = abuf;
2605		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2606		    drrw->drr_length);
2607		return (err);
2608	}
2609	case DRR_WRITE_BYREF:
2610	{
2611		struct drr_write_byref *drrwb =
2612		    &ra->rrd->header.drr_u.drr_write_byref;
2613		err = receive_read_payload_and_next_header(ra, 0, NULL);
2614		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2615		    drrwb->drr_length);
2616		return (err);
2617	}
2618	case DRR_WRITE_EMBEDDED:
2619	{
2620		struct drr_write_embedded *drrwe =
2621		    &ra->rrd->header.drr_u.drr_write_embedded;
2622		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2623		void *buf = kmem_zalloc(size, KM_SLEEP);
2624
2625		err = receive_read_payload_and_next_header(ra, size, buf);
2626		if (err != 0) {
2627			kmem_free(buf, size);
2628			return (err);
2629		}
2630
2631		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2632		    drrwe->drr_length);
2633		return (err);
2634	}
2635	case DRR_FREE:
2636	{
2637		/*
2638		 * It might be beneficial to prefetch indirect blocks here, but
2639		 * we don't really have the data to decide for sure.
2640		 */
2641		err = receive_read_payload_and_next_header(ra, 0, NULL);
2642		return (err);
2643	}
2644	case DRR_END:
2645	{
2646		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2647		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2648			return (SET_ERROR(ECKSUM));
2649		return (0);
2650	}
2651	case DRR_SPILL:
2652	{
2653		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2654		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2655		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2656		    buf);
2657		if (err != 0)
2658			kmem_free(buf, drrs->drr_length);
2659		return (err);
2660	}
2661	default:
2662		return (SET_ERROR(EINVAL));
2663	}
2664}
2665
2666/*
2667 * Commit the records to the pool.
2668 */
2669static int
2670receive_process_record(struct receive_writer_arg *rwa,
2671    struct receive_record_arg *rrd)
2672{
2673	int err;
2674
2675	/* Processing in order, therefore bytes_read should be increasing. */
2676	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2677	rwa->bytes_read = rrd->bytes_read;
2678
2679	switch (rrd->header.drr_type) {
2680	case DRR_OBJECT:
2681	{
2682		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2683		err = receive_object(rwa, drro, rrd->payload);
2684		kmem_free(rrd->payload, rrd->payload_size);
2685		rrd->payload = NULL;
2686		return (err);
2687	}
2688	case DRR_FREEOBJECTS:
2689	{
2690		struct drr_freeobjects *drrfo =
2691		    &rrd->header.drr_u.drr_freeobjects;
2692		return (receive_freeobjects(rwa, drrfo));
2693	}
2694	case DRR_WRITE:
2695	{
2696		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2697		err = receive_write(rwa, drrw, rrd->write_buf);
2698		/* if receive_write() is successful, it consumes the arc_buf */
2699		if (err != 0)
2700			dmu_return_arcbuf(rrd->write_buf);
2701		rrd->write_buf = NULL;
2702		rrd->payload = NULL;
2703		return (err);
2704	}
2705	case DRR_WRITE_BYREF:
2706	{
2707		struct drr_write_byref *drrwbr =
2708		    &rrd->header.drr_u.drr_write_byref;
2709		return (receive_write_byref(rwa, drrwbr));
2710	}
2711	case DRR_WRITE_EMBEDDED:
2712	{
2713		struct drr_write_embedded *drrwe =
2714		    &rrd->header.drr_u.drr_write_embedded;
2715		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2716		kmem_free(rrd->payload, rrd->payload_size);
2717		rrd->payload = NULL;
2718		return (err);
2719	}
2720	case DRR_FREE:
2721	{
2722		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2723		return (receive_free(rwa, drrf));
2724	}
2725	case DRR_SPILL:
2726	{
2727		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2728		err = receive_spill(rwa, drrs, rrd->payload);
2729		kmem_free(rrd->payload, rrd->payload_size);
2730		rrd->payload = NULL;
2731		return (err);
2732	}
2733	default:
2734		return (SET_ERROR(EINVAL));
2735	}
2736}
2737
2738/*
2739 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2740 * receive_process_record  When we're done, signal the main thread and exit.
2741 */
2742static void
2743receive_writer_thread(void *arg)
2744{
2745	struct receive_writer_arg *rwa = arg;
2746	struct receive_record_arg *rrd;
2747	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2748	    rrd = bqueue_dequeue(&rwa->q)) {
2749		/*
2750		 * If there's an error, the main thread will stop putting things
2751		 * on the queue, but we need to clear everything in it before we
2752		 * can exit.
2753		 */
2754		if (rwa->err == 0) {
2755			rwa->err = receive_process_record(rwa, rrd);
2756		} else if (rrd->write_buf != NULL) {
2757			dmu_return_arcbuf(rrd->write_buf);
2758			rrd->write_buf = NULL;
2759			rrd->payload = NULL;
2760		} else if (rrd->payload != NULL) {
2761			kmem_free(rrd->payload, rrd->payload_size);
2762			rrd->payload = NULL;
2763		}
2764		kmem_free(rrd, sizeof (*rrd));
2765	}
2766	kmem_free(rrd, sizeof (*rrd));
2767	mutex_enter(&rwa->mutex);
2768	rwa->done = B_TRUE;
2769	cv_signal(&rwa->cv);
2770	mutex_exit(&rwa->mutex);
2771	thread_exit();
2772}
2773
2774static int
2775resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2776{
2777	uint64_t val;
2778	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2779	uint64_t dsobj = dmu_objset_id(ra->os);
2780	uint64_t resume_obj, resume_off;
2781
2782	if (nvlist_lookup_uint64(begin_nvl,
2783	    "resume_object", &resume_obj) != 0 ||
2784	    nvlist_lookup_uint64(begin_nvl,
2785	    "resume_offset", &resume_off) != 0) {
2786		return (SET_ERROR(EINVAL));
2787	}
2788	VERIFY0(zap_lookup(mos, dsobj,
2789	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2790	if (resume_obj != val)
2791		return (SET_ERROR(EINVAL));
2792	VERIFY0(zap_lookup(mos, dsobj,
2793	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2794	if (resume_off != val)
2795		return (SET_ERROR(EINVAL));
2796
2797	return (0);
2798}
2799
2800/*
2801 * Read in the stream's records, one by one, and apply them to the pool.  There
2802 * are two threads involved; the thread that calls this function will spin up a
2803 * worker thread, read the records off the stream one by one, and issue
2804 * prefetches for any necessary indirect blocks.  It will then push the records
2805 * onto an internal blocking queue.  The worker thread will pull the records off
2806 * the queue, and actually write the data into the DMU.  This way, the worker
2807 * thread doesn't have to wait for reads to complete, since everything it needs
2808 * (the indirect blocks) will be prefetched.
2809 *
2810 * NB: callers *must* call dmu_recv_end() if this succeeds.
2811 */
2812int
2813dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp,
2814    int cleanup_fd, uint64_t *action_handlep)
2815{
2816	int err = 0;
2817	struct receive_arg ra = { 0 };
2818	struct receive_writer_arg rwa = { 0 };
2819	int featureflags;
2820	nvlist_t *begin_nvl = NULL;
2821
2822	ra.byteswap = drc->drc_byteswap;
2823	ra.cksum = drc->drc_cksum;
2824	ra.td = curthread;
2825	ra.fp = fp;
2826	ra.voff = *voffp;
2827
2828	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2829		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2830		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2831		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2832	}
2833
2834	objlist_create(&ra.ignore_objlist);
2835
2836	/* these were verified in dmu_recv_begin */
2837	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2838	    DMU_SUBSTREAM);
2839	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2840
2841	/*
2842	 * Open the objset we are modifying.
2843	 */
2844	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2845
2846	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2847
2848	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2849
2850	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2851	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2852		minor_t minor;
2853
2854		if (cleanup_fd == -1) {
2855			ra.err = SET_ERROR(EBADF);
2856			goto out;
2857		}
2858		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2859		if (ra.err != 0) {
2860			cleanup_fd = -1;
2861			goto out;
2862		}
2863
2864		if (*action_handlep == 0) {
2865			rwa.guid_to_ds_map =
2866			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2867			avl_create(rwa.guid_to_ds_map, guid_compare,
2868			    sizeof (guid_map_entry_t),
2869			    offsetof(guid_map_entry_t, avlnode));
2870			err = zfs_onexit_add_cb(minor,
2871			    free_guid_map_onexit, rwa.guid_to_ds_map,
2872			    action_handlep);
2873			if (ra.err != 0)
2874				goto out;
2875		} else {
2876			err = zfs_onexit_cb_data(minor, *action_handlep,
2877			    (void **)&rwa.guid_to_ds_map);
2878			if (ra.err != 0)
2879				goto out;
2880		}
2881
2882		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2883	}
2884
2885	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2886	void *payload = NULL;
2887	if (payloadlen != 0)
2888		payload = kmem_alloc(payloadlen, KM_SLEEP);
2889
2890	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2891	if (err != 0) {
2892		if (payloadlen != 0)
2893			kmem_free(payload, payloadlen);
2894		goto out;
2895	}
2896	if (payloadlen != 0) {
2897		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2898		kmem_free(payload, payloadlen);
2899		if (err != 0)
2900			goto out;
2901	}
2902
2903	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2904		err = resume_check(&ra, begin_nvl);
2905		if (err != 0)
2906			goto out;
2907	}
2908
2909	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2910	    offsetof(struct receive_record_arg, node));
2911	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2912	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2913	rwa.os = ra.os;
2914	rwa.byteswap = drc->drc_byteswap;
2915	rwa.resumable = drc->drc_resumable;
2916
2917	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0,
2918	    TS_RUN, minclsyspri);
2919	/*
2920	 * We're reading rwa.err without locks, which is safe since we are the
2921	 * only reader, and the worker thread is the only writer.  It's ok if we
2922	 * miss a write for an iteration or two of the loop, since the writer
2923	 * thread will keep freeing records we send it until we send it an eos
2924	 * marker.
2925	 *
2926	 * We can leave this loop in 3 ways:  First, if rwa.err is
2927	 * non-zero.  In that case, the writer thread will free the rrd we just
2928	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2929	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2930	 * has been handed off to the writer thread who will free it.  Finally,
2931	 * if receive_read_record fails or we're at the end of the stream, then
2932	 * we free ra.rrd and exit.
2933	 */
2934	while (rwa.err == 0) {
2935		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2936			err = SET_ERROR(EINTR);
2937			break;
2938		}
2939
2940		ASSERT3P(ra.rrd, ==, NULL);
2941		ra.rrd = ra.next_rrd;
2942		ra.next_rrd = NULL;
2943		/* Allocates and loads header into ra.next_rrd */
2944		err = receive_read_record(&ra);
2945
2946		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2947			kmem_free(ra.rrd, sizeof (*ra.rrd));
2948			ra.rrd = NULL;
2949			break;
2950		}
2951
2952		bqueue_enqueue(&rwa.q, ra.rrd,
2953		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2954		ra.rrd = NULL;
2955	}
2956	if (ra.next_rrd == NULL)
2957		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2958	ra.next_rrd->eos_marker = B_TRUE;
2959	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2960
2961	mutex_enter(&rwa.mutex);
2962	while (!rwa.done) {
2963		cv_wait(&rwa.cv, &rwa.mutex);
2964	}
2965	mutex_exit(&rwa.mutex);
2966
2967	cv_destroy(&rwa.cv);
2968	mutex_destroy(&rwa.mutex);
2969	bqueue_destroy(&rwa.q);
2970	if (err == 0)
2971		err = rwa.err;
2972
2973out:
2974	nvlist_free(begin_nvl);
2975	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2976		zfs_onexit_fd_rele(cleanup_fd);
2977
2978	if (err != 0) {
2979		/*
2980		 * Clean up references. If receive is not resumable,
2981		 * destroy what we created, so we don't leave it in
2982		 * the inconsistent state.
2983		 */
2984		dmu_recv_cleanup_ds(drc);
2985	}
2986
2987	*voffp = ra.voff;
2988	objlist_destroy(&ra.ignore_objlist);
2989	return (err);
2990}
2991
2992static int
2993dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2994{
2995	dmu_recv_cookie_t *drc = arg;
2996	dsl_pool_t *dp = dmu_tx_pool(tx);
2997	int error;
2998
2999	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3000
3001	if (!drc->drc_newfs) {
3002		dsl_dataset_t *origin_head;
3003
3004		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3005		if (error != 0)
3006			return (error);
3007		if (drc->drc_force) {
3008			/*
3009			 * We will destroy any snapshots in tofs (i.e. before
3010			 * origin_head) that are after the origin (which is
3011			 * the snap before drc_ds, because drc_ds can not
3012			 * have any snaps of its own).
3013			 */
3014			uint64_t obj;
3015
3016			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3017			while (obj !=
3018			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3019				dsl_dataset_t *snap;
3020				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3021				    &snap);
3022				if (error != 0)
3023					break;
3024				if (snap->ds_dir != origin_head->ds_dir)
3025					error = SET_ERROR(EINVAL);
3026				if (error == 0)  {
3027					error = dsl_destroy_snapshot_check_impl(
3028					    snap, B_FALSE);
3029				}
3030				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3031				dsl_dataset_rele(snap, FTAG);
3032				if (error != 0)
3033					break;
3034			}
3035			if (error != 0) {
3036				dsl_dataset_rele(origin_head, FTAG);
3037				return (error);
3038			}
3039		}
3040		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3041		    origin_head, drc->drc_force, drc->drc_owner, tx);
3042		if (error != 0) {
3043			dsl_dataset_rele(origin_head, FTAG);
3044			return (error);
3045		}
3046		error = dsl_dataset_snapshot_check_impl(origin_head,
3047		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3048		dsl_dataset_rele(origin_head, FTAG);
3049		if (error != 0)
3050			return (error);
3051
3052		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3053	} else {
3054		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3055		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3056	}
3057	return (error);
3058}
3059
3060static void
3061dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3062{
3063	dmu_recv_cookie_t *drc = arg;
3064	dsl_pool_t *dp = dmu_tx_pool(tx);
3065
3066	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3067	    tx, "snap=%s", drc->drc_tosnap);
3068
3069	if (!drc->drc_newfs) {
3070		dsl_dataset_t *origin_head;
3071
3072		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3073		    &origin_head));
3074
3075		if (drc->drc_force) {
3076			/*
3077			 * Destroy any snapshots of drc_tofs (origin_head)
3078			 * after the origin (the snap before drc_ds).
3079			 */
3080			uint64_t obj;
3081
3082			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3083			while (obj !=
3084			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3085				dsl_dataset_t *snap;
3086				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3087				    &snap));
3088				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3089				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3090				dsl_destroy_snapshot_sync_impl(snap,
3091				    B_FALSE, tx);
3092				dsl_dataset_rele(snap, FTAG);
3093			}
3094		}
3095		VERIFY3P(drc->drc_ds->ds_prev, ==,
3096		    origin_head->ds_prev);
3097
3098		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3099		    origin_head, tx);
3100		dsl_dataset_snapshot_sync_impl(origin_head,
3101		    drc->drc_tosnap, tx);
3102
3103		/* set snapshot's creation time and guid */
3104		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3105		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3106		    drc->drc_drrb->drr_creation_time;
3107		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3108		    drc->drc_drrb->drr_toguid;
3109		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3110		    ~DS_FLAG_INCONSISTENT;
3111
3112		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3113		dsl_dataset_phys(origin_head)->ds_flags &=
3114		    ~DS_FLAG_INCONSISTENT;
3115
3116		dsl_dataset_rele(origin_head, FTAG);
3117		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3118
3119		if (drc->drc_owner != NULL)
3120			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3121	} else {
3122		dsl_dataset_t *ds = drc->drc_ds;
3123
3124		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3125
3126		/* set snapshot's creation time and guid */
3127		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3128		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3129		    drc->drc_drrb->drr_creation_time;
3130		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3131		    drc->drc_drrb->drr_toguid;
3132		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3133		    ~DS_FLAG_INCONSISTENT;
3134
3135		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3136		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3137		if (dsl_dataset_has_resume_receive_state(ds)) {
3138			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3139			    DS_FIELD_RESUME_FROMGUID, tx);
3140			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3141			    DS_FIELD_RESUME_OBJECT, tx);
3142			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3143			    DS_FIELD_RESUME_OFFSET, tx);
3144			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3145			    DS_FIELD_RESUME_BYTES, tx);
3146			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3147			    DS_FIELD_RESUME_TOGUID, tx);
3148			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3149			    DS_FIELD_RESUME_TONAME, tx);
3150		}
3151	}
3152	drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3153	/*
3154	 * Release the hold from dmu_recv_begin.  This must be done before
3155	 * we return to open context, so that when we free the dataset's dnode,
3156	 * we can evict its bonus buffer.
3157	 */
3158	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3159	drc->drc_ds = NULL;
3160}
3161
3162static int
3163add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3164{
3165	dsl_pool_t *dp;
3166	dsl_dataset_t *snapds;
3167	guid_map_entry_t *gmep;
3168	int err;
3169
3170	ASSERT(guid_map != NULL);
3171
3172	err = dsl_pool_hold(name, FTAG, &dp);
3173	if (err != 0)
3174		return (err);
3175	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3176	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3177	if (err == 0) {
3178		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3179		gmep->gme_ds = snapds;
3180		avl_add(guid_map, gmep);
3181		dsl_dataset_long_hold(snapds, gmep);
3182	} else
3183		kmem_free(gmep, sizeof (*gmep));
3184
3185	dsl_pool_rele(dp, FTAG);
3186	return (err);
3187}
3188
3189static int dmu_recv_end_modified_blocks = 3;
3190
3191static int
3192dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3193{
3194	int error;
3195
3196#ifdef _KERNEL
3197	/*
3198	 * We will be destroying the ds; make sure its origin is unmounted if
3199	 * necessary.
3200	 */
3201	char name[ZFS_MAX_DATASET_NAME_LEN];
3202	dsl_dataset_name(drc->drc_ds, name);
3203	zfs_destroy_unmount_origin(name);
3204#endif
3205
3206	error = dsl_sync_task(drc->drc_tofs,
3207	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3208	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3209
3210	if (error != 0)
3211		dmu_recv_cleanup_ds(drc);
3212	return (error);
3213}
3214
3215static int
3216dmu_recv_new_end(dmu_recv_cookie_t *drc)
3217{
3218	int error;
3219
3220	error = dsl_sync_task(drc->drc_tofs,
3221	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3222	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3223
3224	if (error != 0) {
3225		dmu_recv_cleanup_ds(drc);
3226	} else if (drc->drc_guid_to_ds_map != NULL) {
3227		(void) add_ds_to_guidmap(drc->drc_tofs,
3228		    drc->drc_guid_to_ds_map,
3229		    drc->drc_newsnapobj);
3230	}
3231	return (error);
3232}
3233
3234int
3235dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3236{
3237	drc->drc_owner = owner;
3238
3239	if (drc->drc_newfs)
3240		return (dmu_recv_new_end(drc));
3241	else
3242		return (dmu_recv_existing_end(drc));
3243}
3244
3245/*
3246 * Return TRUE if this objset is currently being received into.
3247 */
3248boolean_t
3249dmu_objset_is_receiving(objset_t *os)
3250{
3251	return (os->os_dsl_dataset != NULL &&
3252	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3253}
3254