dmu_send.c revision 297102
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2012, Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 */
29
30#include <sys/dmu.h>
31#include <sys/dmu_impl.h>
32#include <sys/dmu_tx.h>
33#include <sys/dbuf.h>
34#include <sys/dnode.h>
35#include <sys/zfs_context.h>
36#include <sys/dmu_objset.h>
37#include <sys/dmu_traverse.h>
38#include <sys/dsl_dataset.h>
39#include <sys/dsl_dir.h>
40#include <sys/dsl_prop.h>
41#include <sys/dsl_pool.h>
42#include <sys/dsl_synctask.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zfs_znode.h>
47#include <zfs_fletcher.h>
48#include <sys/avl.h>
49#include <sys/ddt.h>
50#include <sys/zfs_onexit.h>
51#include <sys/dmu_send.h>
52#include <sys/dsl_destroy.h>
53#include <sys/blkptr.h>
54#include <sys/dsl_bookmark.h>
55#include <sys/zfeature.h>
56#include <sys/bqueue.h>
57
58#ifdef __FreeBSD__
59#undef dump_write
60#define dump_write dmu_dump_write
61#endif
62
63/* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
64int zfs_send_corrupt_data = B_FALSE;
65int zfs_send_queue_length = 16 * 1024 * 1024;
66int zfs_recv_queue_length = 16 * 1024 * 1024;
67
68static char *dmu_recv_tag = "dmu_recv_tag";
69const char *recv_clone_name = "%recv";
70
71#define	BP_SPAN(datablkszsec, indblkshift, level) \
72	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
73	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
74
75static void byteswap_record(dmu_replay_record_t *drr);
76
77struct send_thread_arg {
78	bqueue_t	q;
79	dsl_dataset_t	*ds;		/* Dataset to traverse */
80	uint64_t	fromtxg;	/* Traverse from this txg */
81	int		flags;		/* flags to pass to traverse_dataset */
82	int		error_code;
83	boolean_t	cancel;
84	zbookmark_phys_t resume;
85};
86
87struct send_block_record {
88	boolean_t		eos_marker; /* Marks the end of the stream */
89	blkptr_t		bp;
90	zbookmark_phys_t	zb;
91	uint8_t			indblkshift;
92	uint16_t		datablkszsec;
93	bqueue_node_t		ln;
94};
95
96static int
97dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
98{
99	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
100	struct uio auio;
101	struct iovec aiov;
102	ASSERT0(len % 8);
103
104	aiov.iov_base = buf;
105	aiov.iov_len = len;
106	auio.uio_iov = &aiov;
107	auio.uio_iovcnt = 1;
108	auio.uio_resid = len;
109	auio.uio_segflg = UIO_SYSSPACE;
110	auio.uio_rw = UIO_WRITE;
111	auio.uio_offset = (off_t)-1;
112	auio.uio_td = dsp->dsa_td;
113#ifdef _KERNEL
114	if (dsp->dsa_fp->f_type == DTYPE_VNODE)
115		bwillwrite();
116	dsp->dsa_err = fo_write(dsp->dsa_fp, &auio, dsp->dsa_td->td_ucred, 0,
117	    dsp->dsa_td);
118#else
119	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
120	dsp->dsa_err = EOPNOTSUPP;
121#endif
122	mutex_enter(&ds->ds_sendstream_lock);
123	*dsp->dsa_off += len;
124	mutex_exit(&ds->ds_sendstream_lock);
125
126	return (dsp->dsa_err);
127}
128
129/*
130 * For all record types except BEGIN, fill in the checksum (overlaid in
131 * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
132 * up to the start of the checksum itself.
133 */
134static int
135dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
136{
137	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
138	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
139	fletcher_4_incremental_native(dsp->dsa_drr,
140	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
141	    &dsp->dsa_zc);
142	if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
143		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
144		    drr_checksum.drr_checksum));
145		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
146	}
147	fletcher_4_incremental_native(&dsp->dsa_drr->
148	    drr_u.drr_checksum.drr_checksum,
149	    sizeof (zio_cksum_t), &dsp->dsa_zc);
150	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
151		return (SET_ERROR(EINTR));
152	if (payload_len != 0) {
153		fletcher_4_incremental_native(payload, payload_len,
154		    &dsp->dsa_zc);
155		if (dump_bytes(dsp, payload, payload_len) != 0)
156			return (SET_ERROR(EINTR));
157	}
158	return (0);
159}
160
161/*
162 * Fill in the drr_free struct, or perform aggregation if the previous record is
163 * also a free record, and the two are adjacent.
164 *
165 * Note that we send free records even for a full send, because we want to be
166 * able to receive a full send as a clone, which requires a list of all the free
167 * and freeobject records that were generated on the source.
168 */
169static int
170dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
171    uint64_t length)
172{
173	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
174
175	/*
176	 * When we receive a free record, dbuf_free_range() assumes
177	 * that the receiving system doesn't have any dbufs in the range
178	 * being freed.  This is always true because there is a one-record
179	 * constraint: we only send one WRITE record for any given
180	 * object,offset.  We know that the one-record constraint is
181	 * true because we always send data in increasing order by
182	 * object,offset.
183	 *
184	 * If the increasing-order constraint ever changes, we should find
185	 * another way to assert that the one-record constraint is still
186	 * satisfied.
187	 */
188	ASSERT(object > dsp->dsa_last_data_object ||
189	    (object == dsp->dsa_last_data_object &&
190	    offset > dsp->dsa_last_data_offset));
191
192	if (length != -1ULL && offset + length < offset)
193		length = -1ULL;
194
195	/*
196	 * If there is a pending op, but it's not PENDING_FREE, push it out,
197	 * since free block aggregation can only be done for blocks of the
198	 * same type (i.e., DRR_FREE records can only be aggregated with
199	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
200	 * aggregated with other DRR_FREEOBJECTS records.
201	 */
202	if (dsp->dsa_pending_op != PENDING_NONE &&
203	    dsp->dsa_pending_op != PENDING_FREE) {
204		if (dump_record(dsp, NULL, 0) != 0)
205			return (SET_ERROR(EINTR));
206		dsp->dsa_pending_op = PENDING_NONE;
207	}
208
209	if (dsp->dsa_pending_op == PENDING_FREE) {
210		/*
211		 * There should never be a PENDING_FREE if length is -1
212		 * (because dump_dnode is the only place where this
213		 * function is called with a -1, and only after flushing
214		 * any pending record).
215		 */
216		ASSERT(length != -1ULL);
217		/*
218		 * Check to see whether this free block can be aggregated
219		 * with pending one.
220		 */
221		if (drrf->drr_object == object && drrf->drr_offset +
222		    drrf->drr_length == offset) {
223			drrf->drr_length += length;
224			return (0);
225		} else {
226			/* not a continuation.  Push out pending record */
227			if (dump_record(dsp, NULL, 0) != 0)
228				return (SET_ERROR(EINTR));
229			dsp->dsa_pending_op = PENDING_NONE;
230		}
231	}
232	/* create a FREE record and make it pending */
233	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
234	dsp->dsa_drr->drr_type = DRR_FREE;
235	drrf->drr_object = object;
236	drrf->drr_offset = offset;
237	drrf->drr_length = length;
238	drrf->drr_toguid = dsp->dsa_toguid;
239	if (length == -1ULL) {
240		if (dump_record(dsp, NULL, 0) != 0)
241			return (SET_ERROR(EINTR));
242	} else {
243		dsp->dsa_pending_op = PENDING_FREE;
244	}
245
246	return (0);
247}
248
249static int
250dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
251    uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
252{
253	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
254
255	/*
256	 * We send data in increasing object, offset order.
257	 * See comment in dump_free() for details.
258	 */
259	ASSERT(object > dsp->dsa_last_data_object ||
260	    (object == dsp->dsa_last_data_object &&
261	    offset > dsp->dsa_last_data_offset));
262	dsp->dsa_last_data_object = object;
263	dsp->dsa_last_data_offset = offset + blksz - 1;
264
265	/*
266	 * If there is any kind of pending aggregation (currently either
267	 * a grouping of free objects or free blocks), push it out to
268	 * the stream, since aggregation can't be done across operations
269	 * of different types.
270	 */
271	if (dsp->dsa_pending_op != PENDING_NONE) {
272		if (dump_record(dsp, NULL, 0) != 0)
273			return (SET_ERROR(EINTR));
274		dsp->dsa_pending_op = PENDING_NONE;
275	}
276	/* write a WRITE record */
277	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
278	dsp->dsa_drr->drr_type = DRR_WRITE;
279	drrw->drr_object = object;
280	drrw->drr_type = type;
281	drrw->drr_offset = offset;
282	drrw->drr_length = blksz;
283	drrw->drr_toguid = dsp->dsa_toguid;
284	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
285		/*
286		 * There's no pre-computed checksum for partial-block
287		 * writes or embedded BP's, so (like
288		 * fletcher4-checkummed blocks) userland will have to
289		 * compute a dedup-capable checksum itself.
290		 */
291		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
292	} else {
293		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
294		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
295		    ZCHECKSUM_FLAG_DEDUP)
296			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
297		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
298		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
299		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
300		drrw->drr_key.ddk_cksum = bp->blk_cksum;
301	}
302
303	if (dump_record(dsp, data, blksz) != 0)
304		return (SET_ERROR(EINTR));
305	return (0);
306}
307
308static int
309dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
310    int blksz, const blkptr_t *bp)
311{
312	char buf[BPE_PAYLOAD_SIZE];
313	struct drr_write_embedded *drrw =
314	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
315
316	if (dsp->dsa_pending_op != PENDING_NONE) {
317		if (dump_record(dsp, NULL, 0) != 0)
318			return (EINTR);
319		dsp->dsa_pending_op = PENDING_NONE;
320	}
321
322	ASSERT(BP_IS_EMBEDDED(bp));
323
324	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
325	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
326	drrw->drr_object = object;
327	drrw->drr_offset = offset;
328	drrw->drr_length = blksz;
329	drrw->drr_toguid = dsp->dsa_toguid;
330	drrw->drr_compression = BP_GET_COMPRESS(bp);
331	drrw->drr_etype = BPE_GET_ETYPE(bp);
332	drrw->drr_lsize = BPE_GET_LSIZE(bp);
333	drrw->drr_psize = BPE_GET_PSIZE(bp);
334
335	decode_embedded_bp_compressed(bp, buf);
336
337	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
338		return (EINTR);
339	return (0);
340}
341
342static int
343dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
344{
345	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
346
347	if (dsp->dsa_pending_op != PENDING_NONE) {
348		if (dump_record(dsp, NULL, 0) != 0)
349			return (SET_ERROR(EINTR));
350		dsp->dsa_pending_op = PENDING_NONE;
351	}
352
353	/* write a SPILL record */
354	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
355	dsp->dsa_drr->drr_type = DRR_SPILL;
356	drrs->drr_object = object;
357	drrs->drr_length = blksz;
358	drrs->drr_toguid = dsp->dsa_toguid;
359
360	if (dump_record(dsp, data, blksz) != 0)
361		return (SET_ERROR(EINTR));
362	return (0);
363}
364
365static int
366dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
367{
368	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
369
370	/*
371	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
372	 * push it out, since free block aggregation can only be done for
373	 * blocks of the same type (i.e., DRR_FREE records can only be
374	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
375	 * can only be aggregated with other DRR_FREEOBJECTS records.
376	 */
377	if (dsp->dsa_pending_op != PENDING_NONE &&
378	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
379		if (dump_record(dsp, NULL, 0) != 0)
380			return (SET_ERROR(EINTR));
381		dsp->dsa_pending_op = PENDING_NONE;
382	}
383	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
384		/*
385		 * See whether this free object array can be aggregated
386		 * with pending one
387		 */
388		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
389			drrfo->drr_numobjs += numobjs;
390			return (0);
391		} else {
392			/* can't be aggregated.  Push out pending record */
393			if (dump_record(dsp, NULL, 0) != 0)
394				return (SET_ERROR(EINTR));
395			dsp->dsa_pending_op = PENDING_NONE;
396		}
397	}
398
399	/* write a FREEOBJECTS record */
400	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
401	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
402	drrfo->drr_firstobj = firstobj;
403	drrfo->drr_numobjs = numobjs;
404	drrfo->drr_toguid = dsp->dsa_toguid;
405
406	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
407
408	return (0);
409}
410
411static int
412dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
413{
414	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
415
416	if (object < dsp->dsa_resume_object) {
417		/*
418		 * Note: when resuming, we will visit all the dnodes in
419		 * the block of dnodes that we are resuming from.  In
420		 * this case it's unnecessary to send the dnodes prior to
421		 * the one we are resuming from.  We should be at most one
422		 * block's worth of dnodes behind the resume point.
423		 */
424		ASSERT3U(dsp->dsa_resume_object - object, <,
425		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
426		return (0);
427	}
428
429	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
430		return (dump_freeobjects(dsp, object, 1));
431
432	if (dsp->dsa_pending_op != PENDING_NONE) {
433		if (dump_record(dsp, NULL, 0) != 0)
434			return (SET_ERROR(EINTR));
435		dsp->dsa_pending_op = PENDING_NONE;
436	}
437
438	/* write an OBJECT record */
439	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
440	dsp->dsa_drr->drr_type = DRR_OBJECT;
441	drro->drr_object = object;
442	drro->drr_type = dnp->dn_type;
443	drro->drr_bonustype = dnp->dn_bonustype;
444	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
445	drro->drr_bonuslen = dnp->dn_bonuslen;
446	drro->drr_checksumtype = dnp->dn_checksum;
447	drro->drr_compress = dnp->dn_compress;
448	drro->drr_toguid = dsp->dsa_toguid;
449
450	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
451	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
452		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
453
454	if (dump_record(dsp, DN_BONUS(dnp),
455	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
456		return (SET_ERROR(EINTR));
457	}
458
459	/* Free anything past the end of the file. */
460	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
461	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
462		return (SET_ERROR(EINTR));
463	if (dsp->dsa_err != 0)
464		return (SET_ERROR(EINTR));
465	return (0);
466}
467
468static boolean_t
469backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
470{
471	if (!BP_IS_EMBEDDED(bp))
472		return (B_FALSE);
473
474	/*
475	 * Compression function must be legacy, or explicitly enabled.
476	 */
477	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
478	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
479		return (B_FALSE);
480
481	/*
482	 * Embed type must be explicitly enabled.
483	 */
484	switch (BPE_GET_ETYPE(bp)) {
485	case BP_EMBEDDED_TYPE_DATA:
486		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
487			return (B_TRUE);
488		break;
489	default:
490		return (B_FALSE);
491	}
492	return (B_FALSE);
493}
494
495/*
496 * This is the callback function to traverse_dataset that acts as the worker
497 * thread for dmu_send_impl.
498 */
499/*ARGSUSED*/
500static int
501send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
502    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
503{
504	struct send_thread_arg *sta = arg;
505	struct send_block_record *record;
506	uint64_t record_size;
507	int err = 0;
508
509	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
510	    zb->zb_object >= sta->resume.zb_object);
511
512	if (sta->cancel)
513		return (SET_ERROR(EINTR));
514
515	if (bp == NULL) {
516		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
517		return (0);
518	} else if (zb->zb_level < 0) {
519		return (0);
520	}
521
522	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
523	record->eos_marker = B_FALSE;
524	record->bp = *bp;
525	record->zb = *zb;
526	record->indblkshift = dnp->dn_indblkshift;
527	record->datablkszsec = dnp->dn_datablkszsec;
528	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
529	bqueue_enqueue(&sta->q, record, record_size);
530
531	return (err);
532}
533
534/*
535 * This function kicks off the traverse_dataset.  It also handles setting the
536 * error code of the thread in case something goes wrong, and pushes the End of
537 * Stream record when the traverse_dataset call has finished.  If there is no
538 * dataset to traverse, the thread immediately pushes End of Stream marker.
539 */
540static void
541send_traverse_thread(void *arg)
542{
543	struct send_thread_arg *st_arg = arg;
544	int err;
545	struct send_block_record *data;
546
547	if (st_arg->ds != NULL) {
548		err = traverse_dataset_resume(st_arg->ds,
549		    st_arg->fromtxg, &st_arg->resume,
550		    st_arg->flags, send_cb, st_arg);
551
552		if (err != EINTR)
553			st_arg->error_code = err;
554	}
555	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
556	data->eos_marker = B_TRUE;
557	bqueue_enqueue(&st_arg->q, data, 1);
558	thread_exit();
559}
560
561/*
562 * This function actually handles figuring out what kind of record needs to be
563 * dumped, reading the data (which has hopefully been prefetched), and calling
564 * the appropriate helper function.
565 */
566static int
567do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
568{
569	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
570	const blkptr_t *bp = &data->bp;
571	const zbookmark_phys_t *zb = &data->zb;
572	uint8_t indblkshift = data->indblkshift;
573	uint16_t dblkszsec = data->datablkszsec;
574	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
575	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
576	int err = 0;
577
578	ASSERT3U(zb->zb_level, >=, 0);
579
580	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
581	    zb->zb_object >= dsa->dsa_resume_object);
582
583	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
584	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
585		return (0);
586	} else if (BP_IS_HOLE(bp) &&
587	    zb->zb_object == DMU_META_DNODE_OBJECT) {
588		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
589		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
590		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
591	} else if (BP_IS_HOLE(bp)) {
592		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
593		uint64_t offset = zb->zb_blkid * span;
594		err = dump_free(dsa, zb->zb_object, offset, span);
595	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
596		return (0);
597	} else if (type == DMU_OT_DNODE) {
598		int blksz = BP_GET_LSIZE(bp);
599		arc_flags_t aflags = ARC_FLAG_WAIT;
600		arc_buf_t *abuf;
601
602		ASSERT0(zb->zb_level);
603
604		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
605		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
606		    &aflags, zb) != 0)
607			return (SET_ERROR(EIO));
608
609		dnode_phys_t *blk = abuf->b_data;
610		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
611		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
612			err = dump_dnode(dsa, dnobj + i, blk + i);
613			if (err != 0)
614				break;
615		}
616		(void) arc_buf_remove_ref(abuf, &abuf);
617	} else if (type == DMU_OT_SA) {
618		arc_flags_t aflags = ARC_FLAG_WAIT;
619		arc_buf_t *abuf;
620		int blksz = BP_GET_LSIZE(bp);
621
622		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
623		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
624		    &aflags, zb) != 0)
625			return (SET_ERROR(EIO));
626
627		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
628		(void) arc_buf_remove_ref(abuf, &abuf);
629	} else if (backup_do_embed(dsa, bp)) {
630		/* it's an embedded level-0 block of a regular object */
631		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
632		ASSERT0(zb->zb_level);
633		err = dump_write_embedded(dsa, zb->zb_object,
634		    zb->zb_blkid * blksz, blksz, bp);
635	} else {
636		/* it's a level-0 block of a regular object */
637		arc_flags_t aflags = ARC_FLAG_WAIT;
638		arc_buf_t *abuf;
639		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
640		uint64_t offset;
641
642		ASSERT0(zb->zb_level);
643		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
644		    (zb->zb_object == dsa->dsa_resume_object &&
645		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
646
647		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
648		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
649		    &aflags, zb) != 0) {
650			if (zfs_send_corrupt_data) {
651				/* Send a block filled with 0x"zfs badd bloc" */
652				abuf = arc_buf_alloc(spa, blksz, &abuf,
653				    ARC_BUFC_DATA);
654				uint64_t *ptr;
655				for (ptr = abuf->b_data;
656				    (char *)ptr < (char *)abuf->b_data + blksz;
657				    ptr++)
658					*ptr = 0x2f5baddb10cULL;
659			} else {
660				return (SET_ERROR(EIO));
661			}
662		}
663
664		offset = zb->zb_blkid * blksz;
665
666		if (!(dsa->dsa_featureflags &
667		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
668		    blksz > SPA_OLD_MAXBLOCKSIZE) {
669			char *buf = abuf->b_data;
670			while (blksz > 0 && err == 0) {
671				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
672				err = dump_write(dsa, type, zb->zb_object,
673				    offset, n, NULL, buf);
674				offset += n;
675				buf += n;
676				blksz -= n;
677			}
678		} else {
679			err = dump_write(dsa, type, zb->zb_object,
680			    offset, blksz, bp, abuf->b_data);
681		}
682		(void) arc_buf_remove_ref(abuf, &abuf);
683	}
684
685	ASSERT(err == 0 || err == EINTR);
686	return (err);
687}
688
689/*
690 * Pop the new data off the queue, and free the old data.
691 */
692static struct send_block_record *
693get_next_record(bqueue_t *bq, struct send_block_record *data)
694{
695	struct send_block_record *tmp = bqueue_dequeue(bq);
696	kmem_free(data, sizeof (*data));
697	return (tmp);
698}
699
700/*
701 * Actually do the bulk of the work in a zfs send.
702 *
703 * Note: Releases dp using the specified tag.
704 */
705static int
706dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
707    zfs_bookmark_phys_t *ancestor_zb,
708    boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
709    uint64_t resumeobj, uint64_t resumeoff,
710#ifdef illumos
711    vnode_t *vp, offset_t *off)
712#else
713    struct file *fp, offset_t *off)
714#endif
715{
716	objset_t *os;
717	dmu_replay_record_t *drr;
718	dmu_sendarg_t *dsp;
719	int err;
720	uint64_t fromtxg = 0;
721	uint64_t featureflags = 0;
722	struct send_thread_arg to_arg = { 0 };
723
724	err = dmu_objset_from_ds(to_ds, &os);
725	if (err != 0) {
726		dsl_pool_rele(dp, tag);
727		return (err);
728	}
729
730	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
731	drr->drr_type = DRR_BEGIN;
732	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
733	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
734	    DMU_SUBSTREAM);
735
736#ifdef _KERNEL
737	if (dmu_objset_type(os) == DMU_OST_ZFS) {
738		uint64_t version;
739		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
740			kmem_free(drr, sizeof (dmu_replay_record_t));
741			dsl_pool_rele(dp, tag);
742			return (SET_ERROR(EINVAL));
743		}
744		if (version >= ZPL_VERSION_SA) {
745			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
746		}
747	}
748#endif
749
750	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
751		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
752	if (embedok &&
753	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
754		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
755		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
756			featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
757	}
758
759	if (resumeobj != 0 || resumeoff != 0) {
760		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
761	}
762
763	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
764	    featureflags);
765
766	drr->drr_u.drr_begin.drr_creation_time =
767	    dsl_dataset_phys(to_ds)->ds_creation_time;
768	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
769	if (is_clone)
770		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
771	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
772	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
773		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
774	drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
775
776	if (ancestor_zb != NULL) {
777		drr->drr_u.drr_begin.drr_fromguid =
778		    ancestor_zb->zbm_guid;
779		fromtxg = ancestor_zb->zbm_creation_txg;
780	}
781	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
782	if (!to_ds->ds_is_snapshot) {
783		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
784		    sizeof (drr->drr_u.drr_begin.drr_toname));
785	}
786
787	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
788
789	dsp->dsa_drr = drr;
790	dsp->dsa_outfd = outfd;
791	dsp->dsa_proc = curproc;
792	dsp->dsa_td = curthread;
793	dsp->dsa_fp = fp;
794	dsp->dsa_os = os;
795	dsp->dsa_off = off;
796	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
797	dsp->dsa_pending_op = PENDING_NONE;
798	dsp->dsa_featureflags = featureflags;
799	dsp->dsa_resume_object = resumeobj;
800	dsp->dsa_resume_offset = resumeoff;
801
802	mutex_enter(&to_ds->ds_sendstream_lock);
803	list_insert_head(&to_ds->ds_sendstreams, dsp);
804	mutex_exit(&to_ds->ds_sendstream_lock);
805
806	dsl_dataset_long_hold(to_ds, FTAG);
807	dsl_pool_rele(dp, tag);
808
809	void *payload = NULL;
810	size_t payload_len = 0;
811	if (resumeobj != 0 || resumeoff != 0) {
812		dmu_object_info_t to_doi;
813		err = dmu_object_info(os, resumeobj, &to_doi);
814		if (err != 0)
815			goto out;
816		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
817		    resumeoff / to_doi.doi_data_block_size);
818
819		nvlist_t *nvl = fnvlist_alloc();
820		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
821		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
822		payload = fnvlist_pack(nvl, &payload_len);
823		drr->drr_payloadlen = payload_len;
824		fnvlist_free(nvl);
825	}
826
827	err = dump_record(dsp, payload, payload_len);
828	fnvlist_pack_free(payload, payload_len);
829	if (err != 0) {
830		err = dsp->dsa_err;
831		goto out;
832	}
833
834	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
835	    offsetof(struct send_block_record, ln));
836	to_arg.error_code = 0;
837	to_arg.cancel = B_FALSE;
838	to_arg.ds = to_ds;
839	to_arg.fromtxg = fromtxg;
840	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
841	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, &p0,
842	    TS_RUN, minclsyspri);
843
844	struct send_block_record *to_data;
845	to_data = bqueue_dequeue(&to_arg.q);
846
847	while (!to_data->eos_marker && err == 0) {
848		err = do_dump(dsp, to_data);
849		to_data = get_next_record(&to_arg.q, to_data);
850		if (issig(JUSTLOOKING) && issig(FORREAL))
851			err = EINTR;
852	}
853
854	if (err != 0) {
855		to_arg.cancel = B_TRUE;
856		while (!to_data->eos_marker) {
857			to_data = get_next_record(&to_arg.q, to_data);
858		}
859	}
860	kmem_free(to_data, sizeof (*to_data));
861
862	bqueue_destroy(&to_arg.q);
863
864	if (err == 0 && to_arg.error_code != 0)
865		err = to_arg.error_code;
866
867	if (err != 0)
868		goto out;
869
870	if (dsp->dsa_pending_op != PENDING_NONE)
871		if (dump_record(dsp, NULL, 0) != 0)
872			err = SET_ERROR(EINTR);
873
874	if (err != 0) {
875		if (err == EINTR && dsp->dsa_err != 0)
876			err = dsp->dsa_err;
877		goto out;
878	}
879
880	bzero(drr, sizeof (dmu_replay_record_t));
881	drr->drr_type = DRR_END;
882	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
883	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
884
885	if (dump_record(dsp, NULL, 0) != 0)
886		err = dsp->dsa_err;
887
888out:
889	mutex_enter(&to_ds->ds_sendstream_lock);
890	list_remove(&to_ds->ds_sendstreams, dsp);
891	mutex_exit(&to_ds->ds_sendstream_lock);
892
893	kmem_free(drr, sizeof (dmu_replay_record_t));
894	kmem_free(dsp, sizeof (dmu_sendarg_t));
895
896	dsl_dataset_long_rele(to_ds, FTAG);
897
898	return (err);
899}
900
901int
902dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
903    boolean_t embedok, boolean_t large_block_ok,
904#ifdef illumos
905    int outfd, vnode_t *vp, offset_t *off)
906#else
907    int outfd, struct file *fp, offset_t *off)
908#endif
909{
910	dsl_pool_t *dp;
911	dsl_dataset_t *ds;
912	dsl_dataset_t *fromds = NULL;
913	int err;
914
915	err = dsl_pool_hold(pool, FTAG, &dp);
916	if (err != 0)
917		return (err);
918
919	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
920	if (err != 0) {
921		dsl_pool_rele(dp, FTAG);
922		return (err);
923	}
924
925	if (fromsnap != 0) {
926		zfs_bookmark_phys_t zb;
927		boolean_t is_clone;
928
929		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
930		if (err != 0) {
931			dsl_dataset_rele(ds, FTAG);
932			dsl_pool_rele(dp, FTAG);
933			return (err);
934		}
935		if (!dsl_dataset_is_before(ds, fromds, 0))
936			err = SET_ERROR(EXDEV);
937		zb.zbm_creation_time =
938		    dsl_dataset_phys(fromds)->ds_creation_time;
939		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
940		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
941		is_clone = (fromds->ds_dir != ds->ds_dir);
942		dsl_dataset_rele(fromds, FTAG);
943		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
944		    embedok, large_block_ok, outfd, 0, 0, fp, off);
945	} else {
946		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
947		    embedok, large_block_ok, outfd, 0, 0, fp, off);
948	}
949	dsl_dataset_rele(ds, FTAG);
950	return (err);
951}
952
953int
954dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
955    boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
956#ifdef illumos
957    vnode_t *vp, offset_t *off)
958#else
959    struct file *fp, offset_t *off)
960#endif
961{
962	dsl_pool_t *dp;
963	dsl_dataset_t *ds;
964	int err;
965	boolean_t owned = B_FALSE;
966
967	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
968		return (SET_ERROR(EINVAL));
969
970	err = dsl_pool_hold(tosnap, FTAG, &dp);
971	if (err != 0)
972		return (err);
973
974	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
975		/*
976		 * We are sending a filesystem or volume.  Ensure
977		 * that it doesn't change by owning the dataset.
978		 */
979		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
980		owned = B_TRUE;
981	} else {
982		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
983	}
984	if (err != 0) {
985		dsl_pool_rele(dp, FTAG);
986		return (err);
987	}
988
989	if (fromsnap != NULL) {
990		zfs_bookmark_phys_t zb;
991		boolean_t is_clone = B_FALSE;
992		int fsnamelen = strchr(tosnap, '@') - tosnap;
993
994		/*
995		 * If the fromsnap is in a different filesystem, then
996		 * mark the send stream as a clone.
997		 */
998		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
999		    (fromsnap[fsnamelen] != '@' &&
1000		    fromsnap[fsnamelen] != '#')) {
1001			is_clone = B_TRUE;
1002		}
1003
1004		if (strchr(fromsnap, '@')) {
1005			dsl_dataset_t *fromds;
1006			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1007			if (err == 0) {
1008				if (!dsl_dataset_is_before(ds, fromds, 0))
1009					err = SET_ERROR(EXDEV);
1010				zb.zbm_creation_time =
1011				    dsl_dataset_phys(fromds)->ds_creation_time;
1012				zb.zbm_creation_txg =
1013				    dsl_dataset_phys(fromds)->ds_creation_txg;
1014				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1015				is_clone = (ds->ds_dir != fromds->ds_dir);
1016				dsl_dataset_rele(fromds, FTAG);
1017			}
1018		} else {
1019			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1020		}
1021		if (err != 0) {
1022			dsl_dataset_rele(ds, FTAG);
1023			dsl_pool_rele(dp, FTAG);
1024			return (err);
1025		}
1026		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1027		    embedok, large_block_ok,
1028		    outfd, resumeobj, resumeoff, fp, off);
1029	} else {
1030		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1031		    embedok, large_block_ok,
1032		    outfd, resumeobj, resumeoff, fp, off);
1033	}
1034	if (owned)
1035		dsl_dataset_disown(ds, FTAG);
1036	else
1037		dsl_dataset_rele(ds, FTAG);
1038	return (err);
1039}
1040
1041static int
1042dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1043    uint64_t *sizep)
1044{
1045	int err;
1046	/*
1047	 * Assume that space (both on-disk and in-stream) is dominated by
1048	 * data.  We will adjust for indirect blocks and the copies property,
1049	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1050	 */
1051
1052	/*
1053	 * Subtract out approximate space used by indirect blocks.
1054	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1055	 * Assume all blocks are recordsize.  Assume ditto blocks and
1056	 * internal fragmentation counter out compression.
1057	 *
1058	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1059	 * block, which we observe in practice.
1060	 */
1061	uint64_t recordsize;
1062	err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1063	if (err != 0)
1064		return (err);
1065	size -= size / recordsize * sizeof (blkptr_t);
1066
1067	/* Add in the space for the record associated with each block. */
1068	size += size / recordsize * sizeof (dmu_replay_record_t);
1069
1070	*sizep = size;
1071
1072	return (0);
1073}
1074
1075int
1076dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1077{
1078	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1079	int err;
1080	uint64_t size;
1081
1082	ASSERT(dsl_pool_config_held(dp));
1083
1084	/* tosnap must be a snapshot */
1085	if (!ds->ds_is_snapshot)
1086		return (SET_ERROR(EINVAL));
1087
1088	/* fromsnap, if provided, must be a snapshot */
1089	if (fromds != NULL && !fromds->ds_is_snapshot)
1090		return (SET_ERROR(EINVAL));
1091
1092	/*
1093	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1094	 * or the origin's fs.
1095	 */
1096	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1097		return (SET_ERROR(EXDEV));
1098
1099	/* Get uncompressed size estimate of changed data. */
1100	if (fromds == NULL) {
1101		size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1102	} else {
1103		uint64_t used, comp;
1104		err = dsl_dataset_space_written(fromds, ds,
1105		    &used, &comp, &size);
1106		if (err != 0)
1107			return (err);
1108	}
1109
1110	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1111	return (err);
1112}
1113
1114/*
1115 * Simple callback used to traverse the blocks of a snapshot and sum their
1116 * uncompressed size
1117 */
1118/* ARGSUSED */
1119static int
1120dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1121    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1122{
1123	uint64_t *spaceptr = arg;
1124	if (bp != NULL && !BP_IS_HOLE(bp)) {
1125		*spaceptr += BP_GET_UCSIZE(bp);
1126	}
1127	return (0);
1128}
1129
1130/*
1131 * Given a desination snapshot and a TXG, calculate the approximate size of a
1132 * send stream sent from that TXG. from_txg may be zero, indicating that the
1133 * whole snapshot will be sent.
1134 */
1135int
1136dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1137    uint64_t *sizep)
1138{
1139	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1140	int err;
1141	uint64_t size = 0;
1142
1143	ASSERT(dsl_pool_config_held(dp));
1144
1145	/* tosnap must be a snapshot */
1146	if (!dsl_dataset_is_snapshot(ds))
1147		return (SET_ERROR(EINVAL));
1148
1149	/* verify that from_txg is before the provided snapshot was taken */
1150	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1151		return (SET_ERROR(EXDEV));
1152	}
1153
1154	/*
1155	 * traverse the blocks of the snapshot with birth times after
1156	 * from_txg, summing their uncompressed size
1157	 */
1158	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1159	    dmu_calculate_send_traversal, &size);
1160	if (err)
1161		return (err);
1162
1163	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1164	return (err);
1165}
1166
1167typedef struct dmu_recv_begin_arg {
1168	const char *drba_origin;
1169	dmu_recv_cookie_t *drba_cookie;
1170	cred_t *drba_cred;
1171	uint64_t drba_snapobj;
1172} dmu_recv_begin_arg_t;
1173
1174static int
1175recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1176    uint64_t fromguid)
1177{
1178	uint64_t val;
1179	int error;
1180	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1181
1182	/* temporary clone name must not exist */
1183	error = zap_lookup(dp->dp_meta_objset,
1184	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1185	    8, 1, &val);
1186	if (error != ENOENT)
1187		return (error == 0 ? EBUSY : error);
1188
1189	/* new snapshot name must not exist */
1190	error = zap_lookup(dp->dp_meta_objset,
1191	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1192	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1193	if (error != ENOENT)
1194		return (error == 0 ? EEXIST : error);
1195
1196	/*
1197	 * Check snapshot limit before receiving. We'll recheck again at the
1198	 * end, but might as well abort before receiving if we're already over
1199	 * the limit.
1200	 *
1201	 * Note that we do not check the file system limit with
1202	 * dsl_dir_fscount_check because the temporary %clones don't count
1203	 * against that limit.
1204	 */
1205	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1206	    NULL, drba->drba_cred);
1207	if (error != 0)
1208		return (error);
1209
1210	if (fromguid != 0) {
1211		dsl_dataset_t *snap;
1212		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1213
1214		/* Find snapshot in this dir that matches fromguid. */
1215		while (obj != 0) {
1216			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1217			    &snap);
1218			if (error != 0)
1219				return (SET_ERROR(ENODEV));
1220			if (snap->ds_dir != ds->ds_dir) {
1221				dsl_dataset_rele(snap, FTAG);
1222				return (SET_ERROR(ENODEV));
1223			}
1224			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1225				break;
1226			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1227			dsl_dataset_rele(snap, FTAG);
1228		}
1229		if (obj == 0)
1230			return (SET_ERROR(ENODEV));
1231
1232		if (drba->drba_cookie->drc_force) {
1233			drba->drba_snapobj = obj;
1234		} else {
1235			/*
1236			 * If we are not forcing, there must be no
1237			 * changes since fromsnap.
1238			 */
1239			if (dsl_dataset_modified_since_snap(ds, snap)) {
1240				dsl_dataset_rele(snap, FTAG);
1241				return (SET_ERROR(ETXTBSY));
1242			}
1243			drba->drba_snapobj = ds->ds_prev->ds_object;
1244		}
1245
1246		dsl_dataset_rele(snap, FTAG);
1247	} else {
1248		/* if full, then must be forced */
1249		if (!drba->drba_cookie->drc_force)
1250			return (SET_ERROR(EEXIST));
1251		/* start from $ORIGIN@$ORIGIN, if supported */
1252		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1253		    dp->dp_origin_snap->ds_object : 0;
1254	}
1255
1256	return (0);
1257
1258}
1259
1260static int
1261dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1262{
1263	dmu_recv_begin_arg_t *drba = arg;
1264	dsl_pool_t *dp = dmu_tx_pool(tx);
1265	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1266	uint64_t fromguid = drrb->drr_fromguid;
1267	int flags = drrb->drr_flags;
1268	int error;
1269	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1270	dsl_dataset_t *ds;
1271	const char *tofs = drba->drba_cookie->drc_tofs;
1272
1273	/* already checked */
1274	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1275	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1276
1277	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1278	    DMU_COMPOUNDSTREAM ||
1279	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1280	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1281		return (SET_ERROR(EINVAL));
1282
1283	/* Verify pool version supports SA if SA_SPILL feature set */
1284	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1285	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1286		return (SET_ERROR(ENOTSUP));
1287
1288	if (drba->drba_cookie->drc_resumable &&
1289	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1290		return (SET_ERROR(ENOTSUP));
1291
1292	/*
1293	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1294	 * record to a plan WRITE record, so the pool must have the
1295	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1296	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1297	 */
1298	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1299	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1300		return (SET_ERROR(ENOTSUP));
1301	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1302	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1303		return (SET_ERROR(ENOTSUP));
1304
1305	/*
1306	 * The receiving code doesn't know how to translate large blocks
1307	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1308	 * feature enabled if the stream has LARGE_BLOCKS.
1309	 */
1310	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1311	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1312		return (SET_ERROR(ENOTSUP));
1313
1314	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1315	if (error == 0) {
1316		/* target fs already exists; recv into temp clone */
1317
1318		/* Can't recv a clone into an existing fs */
1319		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1320			dsl_dataset_rele(ds, FTAG);
1321			return (SET_ERROR(EINVAL));
1322		}
1323
1324		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1325		dsl_dataset_rele(ds, FTAG);
1326	} else if (error == ENOENT) {
1327		/* target fs does not exist; must be a full backup or clone */
1328		char buf[MAXNAMELEN];
1329
1330		/*
1331		 * If it's a non-clone incremental, we are missing the
1332		 * target fs, so fail the recv.
1333		 */
1334		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1335		    drba->drba_origin))
1336			return (SET_ERROR(ENOENT));
1337
1338		/*
1339		 * If we're receiving a full send as a clone, and it doesn't
1340		 * contain all the necessary free records and freeobject
1341		 * records, reject it.
1342		 */
1343		if (fromguid == 0 && drba->drba_origin &&
1344		    !(flags & DRR_FLAG_FREERECORDS))
1345			return (SET_ERROR(EINVAL));
1346
1347		/* Open the parent of tofs */
1348		ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1349		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1350		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1351		if (error != 0)
1352			return (error);
1353
1354		/*
1355		 * Check filesystem and snapshot limits before receiving. We'll
1356		 * recheck snapshot limits again at the end (we create the
1357		 * filesystems and increment those counts during begin_sync).
1358		 */
1359		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1360		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1361		if (error != 0) {
1362			dsl_dataset_rele(ds, FTAG);
1363			return (error);
1364		}
1365
1366		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1367		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1368		if (error != 0) {
1369			dsl_dataset_rele(ds, FTAG);
1370			return (error);
1371		}
1372
1373		if (drba->drba_origin != NULL) {
1374			dsl_dataset_t *origin;
1375			error = dsl_dataset_hold(dp, drba->drba_origin,
1376			    FTAG, &origin);
1377			if (error != 0) {
1378				dsl_dataset_rele(ds, FTAG);
1379				return (error);
1380			}
1381			if (!origin->ds_is_snapshot) {
1382				dsl_dataset_rele(origin, FTAG);
1383				dsl_dataset_rele(ds, FTAG);
1384				return (SET_ERROR(EINVAL));
1385			}
1386			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1387			    fromguid != 0) {
1388				dsl_dataset_rele(origin, FTAG);
1389				dsl_dataset_rele(ds, FTAG);
1390				return (SET_ERROR(ENODEV));
1391			}
1392			dsl_dataset_rele(origin, FTAG);
1393		}
1394		dsl_dataset_rele(ds, FTAG);
1395		error = 0;
1396	}
1397	return (error);
1398}
1399
1400static void
1401dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1402{
1403	dmu_recv_begin_arg_t *drba = arg;
1404	dsl_pool_t *dp = dmu_tx_pool(tx);
1405	objset_t *mos = dp->dp_meta_objset;
1406	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1407	const char *tofs = drba->drba_cookie->drc_tofs;
1408	dsl_dataset_t *ds, *newds;
1409	uint64_t dsobj;
1410	int error;
1411	uint64_t crflags = 0;
1412
1413	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1414		crflags |= DS_FLAG_CI_DATASET;
1415
1416	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1417	if (error == 0) {
1418		/* create temporary clone */
1419		dsl_dataset_t *snap = NULL;
1420		if (drba->drba_snapobj != 0) {
1421			VERIFY0(dsl_dataset_hold_obj(dp,
1422			    drba->drba_snapobj, FTAG, &snap));
1423		}
1424		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1425		    snap, crflags, drba->drba_cred, tx);
1426		if (drba->drba_snapobj != 0)
1427			dsl_dataset_rele(snap, FTAG);
1428		dsl_dataset_rele(ds, FTAG);
1429	} else {
1430		dsl_dir_t *dd;
1431		const char *tail;
1432		dsl_dataset_t *origin = NULL;
1433
1434		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1435
1436		if (drba->drba_origin != NULL) {
1437			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1438			    FTAG, &origin));
1439		}
1440
1441		/* Create new dataset. */
1442		dsobj = dsl_dataset_create_sync(dd,
1443		    strrchr(tofs, '/') + 1,
1444		    origin, crflags, drba->drba_cred, tx);
1445		if (origin != NULL)
1446			dsl_dataset_rele(origin, FTAG);
1447		dsl_dir_rele(dd, FTAG);
1448		drba->drba_cookie->drc_newfs = B_TRUE;
1449	}
1450	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1451
1452	if (drba->drba_cookie->drc_resumable) {
1453		dsl_dataset_zapify(newds, tx);
1454		if (drrb->drr_fromguid != 0) {
1455			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1456			    8, 1, &drrb->drr_fromguid, tx));
1457		}
1458		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1459		    8, 1, &drrb->drr_toguid, tx));
1460		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1461		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1462		uint64_t one = 1;
1463		uint64_t zero = 0;
1464		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1465		    8, 1, &one, tx));
1466		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1467		    8, 1, &zero, tx));
1468		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1469		    8, 1, &zero, tx));
1470		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1471		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1472			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1473			    8, 1, &one, tx));
1474		}
1475	}
1476
1477	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1478	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1479
1480	/*
1481	 * If we actually created a non-clone, we need to create the
1482	 * objset in our new dataset.
1483	 */
1484	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1485		(void) dmu_objset_create_impl(dp->dp_spa,
1486		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1487	}
1488
1489	drba->drba_cookie->drc_ds = newds;
1490
1491	spa_history_log_internal_ds(newds, "receive", tx, "");
1492}
1493
1494static int
1495dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1496{
1497	dmu_recv_begin_arg_t *drba = arg;
1498	dsl_pool_t *dp = dmu_tx_pool(tx);
1499	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1500	int error;
1501	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1502	dsl_dataset_t *ds;
1503	const char *tofs = drba->drba_cookie->drc_tofs;
1504
1505	/* already checked */
1506	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1507	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1508
1509	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1510	    DMU_COMPOUNDSTREAM ||
1511	    drrb->drr_type >= DMU_OST_NUMTYPES)
1512		return (SET_ERROR(EINVAL));
1513
1514	/* Verify pool version supports SA if SA_SPILL feature set */
1515	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1516	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1517		return (SET_ERROR(ENOTSUP));
1518
1519	/*
1520	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1521	 * record to a plain WRITE record, so the pool must have the
1522	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1523	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1524	 */
1525	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1526	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1527		return (SET_ERROR(ENOTSUP));
1528	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1529	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1530		return (SET_ERROR(ENOTSUP));
1531
1532	char recvname[ZFS_MAXNAMELEN];
1533
1534	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1535	    tofs, recv_clone_name);
1536
1537	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1538		/* %recv does not exist; continue in tofs */
1539		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1540		if (error != 0)
1541			return (error);
1542	}
1543
1544	/* check that ds is marked inconsistent */
1545	if (!DS_IS_INCONSISTENT(ds)) {
1546		dsl_dataset_rele(ds, FTAG);
1547		return (SET_ERROR(EINVAL));
1548	}
1549
1550	/* check that there is resuming data, and that the toguid matches */
1551	if (!dsl_dataset_is_zapified(ds)) {
1552		dsl_dataset_rele(ds, FTAG);
1553		return (SET_ERROR(EINVAL));
1554	}
1555	uint64_t val;
1556	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1557	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1558	if (error != 0 || drrb->drr_toguid != val) {
1559		dsl_dataset_rele(ds, FTAG);
1560		return (SET_ERROR(EINVAL));
1561	}
1562
1563	/*
1564	 * Check if the receive is still running.  If so, it will be owned.
1565	 * Note that nothing else can own the dataset (e.g. after the receive
1566	 * fails) because it will be marked inconsistent.
1567	 */
1568	if (dsl_dataset_has_owner(ds)) {
1569		dsl_dataset_rele(ds, FTAG);
1570		return (SET_ERROR(EBUSY));
1571	}
1572
1573	/* There should not be any snapshots of this fs yet. */
1574	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1575		dsl_dataset_rele(ds, FTAG);
1576		return (SET_ERROR(EINVAL));
1577	}
1578
1579	/*
1580	 * Note: resume point will be checked when we process the first WRITE
1581	 * record.
1582	 */
1583
1584	/* check that the origin matches */
1585	val = 0;
1586	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1587	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1588	if (drrb->drr_fromguid != val) {
1589		dsl_dataset_rele(ds, FTAG);
1590		return (SET_ERROR(EINVAL));
1591	}
1592
1593	dsl_dataset_rele(ds, FTAG);
1594	return (0);
1595}
1596
1597static void
1598dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1599{
1600	dmu_recv_begin_arg_t *drba = arg;
1601	dsl_pool_t *dp = dmu_tx_pool(tx);
1602	const char *tofs = drba->drba_cookie->drc_tofs;
1603	dsl_dataset_t *ds;
1604	uint64_t dsobj;
1605	char recvname[ZFS_MAXNAMELEN];
1606
1607	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1608	    tofs, recv_clone_name);
1609
1610	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1611		/* %recv does not exist; continue in tofs */
1612		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1613		drba->drba_cookie->drc_newfs = B_TRUE;
1614	}
1615
1616	/* clear the inconsistent flag so that we can own it */
1617	ASSERT(DS_IS_INCONSISTENT(ds));
1618	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1619	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1620	dsobj = ds->ds_object;
1621	dsl_dataset_rele(ds, FTAG);
1622
1623	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1624
1625	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1626	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1627
1628	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1629
1630	drba->drba_cookie->drc_ds = ds;
1631
1632	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1633}
1634
1635/*
1636 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1637 * succeeds; otherwise we will leak the holds on the datasets.
1638 */
1639int
1640dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1641    boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1642{
1643	dmu_recv_begin_arg_t drba = { 0 };
1644
1645	bzero(drc, sizeof (dmu_recv_cookie_t));
1646	drc->drc_drr_begin = drr_begin;
1647	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1648	drc->drc_tosnap = tosnap;
1649	drc->drc_tofs = tofs;
1650	drc->drc_force = force;
1651	drc->drc_resumable = resumable;
1652	drc->drc_cred = CRED();
1653
1654	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1655		drc->drc_byteswap = B_TRUE;
1656		fletcher_4_incremental_byteswap(drr_begin,
1657		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1658		byteswap_record(drr_begin);
1659	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1660		fletcher_4_incremental_native(drr_begin,
1661		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1662	} else {
1663		return (SET_ERROR(EINVAL));
1664	}
1665
1666	drba.drba_origin = origin;
1667	drba.drba_cookie = drc;
1668	drba.drba_cred = CRED();
1669
1670	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1671	    DMU_BACKUP_FEATURE_RESUMING) {
1672		return (dsl_sync_task(tofs,
1673		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1674		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1675	} else  {
1676		return (dsl_sync_task(tofs,
1677		    dmu_recv_begin_check, dmu_recv_begin_sync,
1678		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1679	}
1680}
1681
1682struct receive_record_arg {
1683	dmu_replay_record_t header;
1684	void *payload; /* Pointer to a buffer containing the payload */
1685	/*
1686	 * If the record is a write, pointer to the arc_buf_t containing the
1687	 * payload.
1688	 */
1689	arc_buf_t *write_buf;
1690	int payload_size;
1691	uint64_t bytes_read; /* bytes read from stream when record created */
1692	boolean_t eos_marker; /* Marks the end of the stream */
1693	bqueue_node_t node;
1694};
1695
1696struct receive_writer_arg {
1697	objset_t *os;
1698	boolean_t byteswap;
1699	bqueue_t q;
1700
1701	/*
1702	 * These three args are used to signal to the main thread that we're
1703	 * done.
1704	 */
1705	kmutex_t mutex;
1706	kcondvar_t cv;
1707	boolean_t done;
1708
1709	int err;
1710	/* A map from guid to dataset to help handle dedup'd streams. */
1711	avl_tree_t *guid_to_ds_map;
1712	boolean_t resumable;
1713	uint64_t last_object, last_offset;
1714	uint64_t bytes_read; /* bytes read when current record created */
1715};
1716
1717struct objlist {
1718	list_t list; /* List of struct receive_objnode. */
1719	/*
1720	 * Last object looked up. Used to assert that objects are being looked
1721	 * up in ascending order.
1722	 */
1723	uint64_t last_lookup;
1724};
1725
1726struct receive_objnode {
1727	list_node_t node;
1728	uint64_t object;
1729};
1730
1731struct receive_arg  {
1732	objset_t *os;
1733	kthread_t *td;
1734	struct file *fp;
1735	uint64_t voff; /* The current offset in the stream */
1736	uint64_t bytes_read;
1737	/*
1738	 * A record that has had its payload read in, but hasn't yet been handed
1739	 * off to the worker thread.
1740	 */
1741	struct receive_record_arg *rrd;
1742	/* A record that has had its header read in, but not its payload. */
1743	struct receive_record_arg *next_rrd;
1744	zio_cksum_t cksum;
1745	zio_cksum_t prev_cksum;
1746	int err;
1747	boolean_t byteswap;
1748	/* Sorted list of objects not to issue prefetches for. */
1749	struct objlist ignore_objlist;
1750};
1751
1752typedef struct guid_map_entry {
1753	uint64_t	guid;
1754	dsl_dataset_t	*gme_ds;
1755	avl_node_t	avlnode;
1756} guid_map_entry_t;
1757
1758static int
1759guid_compare(const void *arg1, const void *arg2)
1760{
1761	const guid_map_entry_t *gmep1 = arg1;
1762	const guid_map_entry_t *gmep2 = arg2;
1763
1764	if (gmep1->guid < gmep2->guid)
1765		return (-1);
1766	else if (gmep1->guid > gmep2->guid)
1767		return (1);
1768	return (0);
1769}
1770
1771static void
1772free_guid_map_onexit(void *arg)
1773{
1774	avl_tree_t *ca = arg;
1775	void *cookie = NULL;
1776	guid_map_entry_t *gmep;
1777
1778	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1779		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1780		dsl_dataset_rele(gmep->gme_ds, gmep);
1781		kmem_free(gmep, sizeof (guid_map_entry_t));
1782	}
1783	avl_destroy(ca);
1784	kmem_free(ca, sizeof (avl_tree_t));
1785}
1786
1787static int
1788restore_bytes(struct receive_arg *ra, void *buf, int len, off_t off, ssize_t *resid)
1789{
1790	struct uio auio;
1791	struct iovec aiov;
1792	int error;
1793
1794	aiov.iov_base = buf;
1795	aiov.iov_len = len;
1796	auio.uio_iov = &aiov;
1797	auio.uio_iovcnt = 1;
1798	auio.uio_resid = len;
1799	auio.uio_segflg = UIO_SYSSPACE;
1800	auio.uio_rw = UIO_READ;
1801	auio.uio_offset = off;
1802	auio.uio_td = ra->td;
1803#ifdef _KERNEL
1804	error = fo_read(ra->fp, &auio, ra->td->td_ucred, FOF_OFFSET, ra->td);
1805#else
1806	fprintf(stderr, "%s: returning EOPNOTSUPP\n", __func__);
1807	error = EOPNOTSUPP;
1808#endif
1809	*resid = auio.uio_resid;
1810	return (error);
1811}
1812
1813static int
1814receive_read(struct receive_arg *ra, int len, void *buf)
1815{
1816	int done = 0;
1817
1818	/* some things will require 8-byte alignment, so everything must */
1819	ASSERT0(len % 8);
1820
1821	while (done < len) {
1822		ssize_t resid;
1823
1824		ra->err = restore_bytes(ra, buf + done,
1825		    len - done, ra->voff, &resid);
1826
1827		if (resid == len - done) {
1828			/*
1829			 * Note: ECKSUM indicates that the receive
1830			 * was interrupted and can potentially be resumed.
1831			 */
1832			ra->err = SET_ERROR(ECKSUM);
1833		}
1834		ra->voff += len - done - resid;
1835		done = len - resid;
1836		if (ra->err != 0)
1837			return (ra->err);
1838	}
1839
1840	ra->bytes_read += len;
1841
1842	ASSERT3U(done, ==, len);
1843	return (0);
1844}
1845
1846static void
1847byteswap_record(dmu_replay_record_t *drr)
1848{
1849#define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1850#define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1851	drr->drr_type = BSWAP_32(drr->drr_type);
1852	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1853
1854	switch (drr->drr_type) {
1855	case DRR_BEGIN:
1856		DO64(drr_begin.drr_magic);
1857		DO64(drr_begin.drr_versioninfo);
1858		DO64(drr_begin.drr_creation_time);
1859		DO32(drr_begin.drr_type);
1860		DO32(drr_begin.drr_flags);
1861		DO64(drr_begin.drr_toguid);
1862		DO64(drr_begin.drr_fromguid);
1863		break;
1864	case DRR_OBJECT:
1865		DO64(drr_object.drr_object);
1866		DO32(drr_object.drr_type);
1867		DO32(drr_object.drr_bonustype);
1868		DO32(drr_object.drr_blksz);
1869		DO32(drr_object.drr_bonuslen);
1870		DO64(drr_object.drr_toguid);
1871		break;
1872	case DRR_FREEOBJECTS:
1873		DO64(drr_freeobjects.drr_firstobj);
1874		DO64(drr_freeobjects.drr_numobjs);
1875		DO64(drr_freeobjects.drr_toguid);
1876		break;
1877	case DRR_WRITE:
1878		DO64(drr_write.drr_object);
1879		DO32(drr_write.drr_type);
1880		DO64(drr_write.drr_offset);
1881		DO64(drr_write.drr_length);
1882		DO64(drr_write.drr_toguid);
1883		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1884		DO64(drr_write.drr_key.ddk_prop);
1885		break;
1886	case DRR_WRITE_BYREF:
1887		DO64(drr_write_byref.drr_object);
1888		DO64(drr_write_byref.drr_offset);
1889		DO64(drr_write_byref.drr_length);
1890		DO64(drr_write_byref.drr_toguid);
1891		DO64(drr_write_byref.drr_refguid);
1892		DO64(drr_write_byref.drr_refobject);
1893		DO64(drr_write_byref.drr_refoffset);
1894		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1895		    drr_key.ddk_cksum);
1896		DO64(drr_write_byref.drr_key.ddk_prop);
1897		break;
1898	case DRR_WRITE_EMBEDDED:
1899		DO64(drr_write_embedded.drr_object);
1900		DO64(drr_write_embedded.drr_offset);
1901		DO64(drr_write_embedded.drr_length);
1902		DO64(drr_write_embedded.drr_toguid);
1903		DO32(drr_write_embedded.drr_lsize);
1904		DO32(drr_write_embedded.drr_psize);
1905		break;
1906	case DRR_FREE:
1907		DO64(drr_free.drr_object);
1908		DO64(drr_free.drr_offset);
1909		DO64(drr_free.drr_length);
1910		DO64(drr_free.drr_toguid);
1911		break;
1912	case DRR_SPILL:
1913		DO64(drr_spill.drr_object);
1914		DO64(drr_spill.drr_length);
1915		DO64(drr_spill.drr_toguid);
1916		break;
1917	case DRR_END:
1918		DO64(drr_end.drr_toguid);
1919		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1920		break;
1921	}
1922
1923	if (drr->drr_type != DRR_BEGIN) {
1924		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1925	}
1926
1927#undef DO64
1928#undef DO32
1929}
1930
1931static inline uint8_t
1932deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1933{
1934	if (bonus_type == DMU_OT_SA) {
1935		return (1);
1936	} else {
1937		return (1 +
1938		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1939	}
1940}
1941
1942static void
1943save_resume_state(struct receive_writer_arg *rwa,
1944    uint64_t object, uint64_t offset, dmu_tx_t *tx)
1945{
1946	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1947
1948	if (!rwa->resumable)
1949		return;
1950
1951	/*
1952	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1953	 * update this on disk, so it must not be 0.
1954	 */
1955	ASSERT(rwa->bytes_read != 0);
1956
1957	/*
1958	 * We only resume from write records, which have a valid
1959	 * (non-meta-dnode) object number.
1960	 */
1961	ASSERT(object != 0);
1962
1963	/*
1964	 * For resuming to work correctly, we must receive records in order,
1965	 * sorted by object,offset.  This is checked by the callers, but
1966	 * assert it here for good measure.
1967	 */
1968	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1969	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1970	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1971	ASSERT3U(rwa->bytes_read, >=,
1972	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1973
1974	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1975	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1976	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1977}
1978
1979static int
1980receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1981    void *data)
1982{
1983	dmu_object_info_t doi;
1984	dmu_tx_t *tx;
1985	uint64_t object;
1986	int err;
1987
1988	if (drro->drr_type == DMU_OT_NONE ||
1989	    !DMU_OT_IS_VALID(drro->drr_type) ||
1990	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1991	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1992	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1993	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1994	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1995	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1996	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1997		return (SET_ERROR(EINVAL));
1998	}
1999
2000	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2001
2002	if (err != 0 && err != ENOENT)
2003		return (SET_ERROR(EINVAL));
2004	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2005
2006	/*
2007	 * If we are losing blkptrs or changing the block size this must
2008	 * be a new file instance.  We must clear out the previous file
2009	 * contents before we can change this type of metadata in the dnode.
2010	 */
2011	if (err == 0) {
2012		int nblkptr;
2013
2014		nblkptr = deduce_nblkptr(drro->drr_bonustype,
2015		    drro->drr_bonuslen);
2016
2017		if (drro->drr_blksz != doi.doi_data_block_size ||
2018		    nblkptr < doi.doi_nblkptr) {
2019			err = dmu_free_long_range(rwa->os, drro->drr_object,
2020			    0, DMU_OBJECT_END);
2021			if (err != 0)
2022				return (SET_ERROR(EINVAL));
2023		}
2024	}
2025
2026	tx = dmu_tx_create(rwa->os);
2027	dmu_tx_hold_bonus(tx, object);
2028	err = dmu_tx_assign(tx, TXG_WAIT);
2029	if (err != 0) {
2030		dmu_tx_abort(tx);
2031		return (err);
2032	}
2033
2034	if (object == DMU_NEW_OBJECT) {
2035		/* currently free, want to be allocated */
2036		err = dmu_object_claim(rwa->os, drro->drr_object,
2037		    drro->drr_type, drro->drr_blksz,
2038		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2039	} else if (drro->drr_type != doi.doi_type ||
2040	    drro->drr_blksz != doi.doi_data_block_size ||
2041	    drro->drr_bonustype != doi.doi_bonus_type ||
2042	    drro->drr_bonuslen != doi.doi_bonus_size) {
2043		/* currently allocated, but with different properties */
2044		err = dmu_object_reclaim(rwa->os, drro->drr_object,
2045		    drro->drr_type, drro->drr_blksz,
2046		    drro->drr_bonustype, drro->drr_bonuslen, tx);
2047	}
2048	if (err != 0) {
2049		dmu_tx_commit(tx);
2050		return (SET_ERROR(EINVAL));
2051	}
2052
2053	dmu_object_set_checksum(rwa->os, drro->drr_object,
2054	    drro->drr_checksumtype, tx);
2055	dmu_object_set_compress(rwa->os, drro->drr_object,
2056	    drro->drr_compress, tx);
2057
2058	if (data != NULL) {
2059		dmu_buf_t *db;
2060
2061		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2062		dmu_buf_will_dirty(db, tx);
2063
2064		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2065		bcopy(data, db->db_data, drro->drr_bonuslen);
2066		if (rwa->byteswap) {
2067			dmu_object_byteswap_t byteswap =
2068			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2069			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2070			    drro->drr_bonuslen);
2071		}
2072		dmu_buf_rele(db, FTAG);
2073	}
2074	dmu_tx_commit(tx);
2075
2076	return (0);
2077}
2078
2079/* ARGSUSED */
2080static int
2081receive_freeobjects(struct receive_writer_arg *rwa,
2082    struct drr_freeobjects *drrfo)
2083{
2084	uint64_t obj;
2085	int next_err = 0;
2086
2087	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2088		return (SET_ERROR(EINVAL));
2089
2090	for (obj = drrfo->drr_firstobj;
2091	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2092	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2093		int err;
2094
2095		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2096			continue;
2097
2098		err = dmu_free_long_object(rwa->os, obj);
2099		if (err != 0)
2100			return (err);
2101	}
2102	if (next_err != ESRCH)
2103		return (next_err);
2104	return (0);
2105}
2106
2107static int
2108receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2109    arc_buf_t *abuf)
2110{
2111	dmu_tx_t *tx;
2112	int err;
2113
2114	if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2115	    !DMU_OT_IS_VALID(drrw->drr_type))
2116		return (SET_ERROR(EINVAL));
2117
2118	/*
2119	 * For resuming to work, records must be in increasing order
2120	 * by (object, offset).
2121	 */
2122	if (drrw->drr_object < rwa->last_object ||
2123	    (drrw->drr_object == rwa->last_object &&
2124	    drrw->drr_offset < rwa->last_offset)) {
2125		return (SET_ERROR(EINVAL));
2126	}
2127	rwa->last_object = drrw->drr_object;
2128	rwa->last_offset = drrw->drr_offset;
2129
2130	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2131		return (SET_ERROR(EINVAL));
2132
2133	tx = dmu_tx_create(rwa->os);
2134
2135	dmu_tx_hold_write(tx, drrw->drr_object,
2136	    drrw->drr_offset, drrw->drr_length);
2137	err = dmu_tx_assign(tx, TXG_WAIT);
2138	if (err != 0) {
2139		dmu_tx_abort(tx);
2140		return (err);
2141	}
2142	if (rwa->byteswap) {
2143		dmu_object_byteswap_t byteswap =
2144		    DMU_OT_BYTESWAP(drrw->drr_type);
2145		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2146		    drrw->drr_length);
2147	}
2148
2149	dmu_buf_t *bonus;
2150	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2151		return (SET_ERROR(EINVAL));
2152	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2153
2154	/*
2155	 * Note: If the receive fails, we want the resume stream to start
2156	 * with the same record that we last successfully received (as opposed
2157	 * to the next record), so that we can verify that we are
2158	 * resuming from the correct location.
2159	 */
2160	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2161	dmu_tx_commit(tx);
2162	dmu_buf_rele(bonus, FTAG);
2163
2164	return (0);
2165}
2166
2167/*
2168 * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2169 * streams to refer to a copy of the data that is already on the
2170 * system because it came in earlier in the stream.  This function
2171 * finds the earlier copy of the data, and uses that copy instead of
2172 * data from the stream to fulfill this write.
2173 */
2174static int
2175receive_write_byref(struct receive_writer_arg *rwa,
2176    struct drr_write_byref *drrwbr)
2177{
2178	dmu_tx_t *tx;
2179	int err;
2180	guid_map_entry_t gmesrch;
2181	guid_map_entry_t *gmep;
2182	avl_index_t where;
2183	objset_t *ref_os = NULL;
2184	dmu_buf_t *dbp;
2185
2186	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2187		return (SET_ERROR(EINVAL));
2188
2189	/*
2190	 * If the GUID of the referenced dataset is different from the
2191	 * GUID of the target dataset, find the referenced dataset.
2192	 */
2193	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2194		gmesrch.guid = drrwbr->drr_refguid;
2195		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2196		    &where)) == NULL) {
2197			return (SET_ERROR(EINVAL));
2198		}
2199		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2200			return (SET_ERROR(EINVAL));
2201	} else {
2202		ref_os = rwa->os;
2203	}
2204
2205	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2206	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2207	if (err != 0)
2208		return (err);
2209
2210	tx = dmu_tx_create(rwa->os);
2211
2212	dmu_tx_hold_write(tx, drrwbr->drr_object,
2213	    drrwbr->drr_offset, drrwbr->drr_length);
2214	err = dmu_tx_assign(tx, TXG_WAIT);
2215	if (err != 0) {
2216		dmu_tx_abort(tx);
2217		return (err);
2218	}
2219	dmu_write(rwa->os, drrwbr->drr_object,
2220	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2221	dmu_buf_rele(dbp, FTAG);
2222
2223	/* See comment in restore_write. */
2224	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2225	dmu_tx_commit(tx);
2226	return (0);
2227}
2228
2229static int
2230receive_write_embedded(struct receive_writer_arg *rwa,
2231    struct drr_write_embedded *drrwe, void *data)
2232{
2233	dmu_tx_t *tx;
2234	int err;
2235
2236	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2237		return (EINVAL);
2238
2239	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2240		return (EINVAL);
2241
2242	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2243		return (EINVAL);
2244	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2245		return (EINVAL);
2246
2247	tx = dmu_tx_create(rwa->os);
2248
2249	dmu_tx_hold_write(tx, drrwe->drr_object,
2250	    drrwe->drr_offset, drrwe->drr_length);
2251	err = dmu_tx_assign(tx, TXG_WAIT);
2252	if (err != 0) {
2253		dmu_tx_abort(tx);
2254		return (err);
2255	}
2256
2257	dmu_write_embedded(rwa->os, drrwe->drr_object,
2258	    drrwe->drr_offset, data, drrwe->drr_etype,
2259	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2260	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2261
2262	/* See comment in restore_write. */
2263	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2264	dmu_tx_commit(tx);
2265	return (0);
2266}
2267
2268static int
2269receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2270    void *data)
2271{
2272	dmu_tx_t *tx;
2273	dmu_buf_t *db, *db_spill;
2274	int err;
2275
2276	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2277	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2278		return (SET_ERROR(EINVAL));
2279
2280	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2281		return (SET_ERROR(EINVAL));
2282
2283	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2284	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2285		dmu_buf_rele(db, FTAG);
2286		return (err);
2287	}
2288
2289	tx = dmu_tx_create(rwa->os);
2290
2291	dmu_tx_hold_spill(tx, db->db_object);
2292
2293	err = dmu_tx_assign(tx, TXG_WAIT);
2294	if (err != 0) {
2295		dmu_buf_rele(db, FTAG);
2296		dmu_buf_rele(db_spill, FTAG);
2297		dmu_tx_abort(tx);
2298		return (err);
2299	}
2300	dmu_buf_will_dirty(db_spill, tx);
2301
2302	if (db_spill->db_size < drrs->drr_length)
2303		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2304		    drrs->drr_length, tx));
2305	bcopy(data, db_spill->db_data, drrs->drr_length);
2306
2307	dmu_buf_rele(db, FTAG);
2308	dmu_buf_rele(db_spill, FTAG);
2309
2310	dmu_tx_commit(tx);
2311	return (0);
2312}
2313
2314/* ARGSUSED */
2315static int
2316receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2317{
2318	int err;
2319
2320	if (drrf->drr_length != -1ULL &&
2321	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2322		return (SET_ERROR(EINVAL));
2323
2324	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2325		return (SET_ERROR(EINVAL));
2326
2327	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2328	    drrf->drr_offset, drrf->drr_length);
2329
2330	return (err);
2331}
2332
2333/* used to destroy the drc_ds on error */
2334static void
2335dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2336{
2337	if (drc->drc_resumable) {
2338		/* wait for our resume state to be written to disk */
2339		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2340		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2341	} else {
2342		char name[MAXNAMELEN];
2343		dsl_dataset_name(drc->drc_ds, name);
2344		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2345		(void) dsl_destroy_head(name);
2346	}
2347}
2348
2349static void
2350receive_cksum(struct receive_arg *ra, int len, void *buf)
2351{
2352	if (ra->byteswap) {
2353		fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2354	} else {
2355		fletcher_4_incremental_native(buf, len, &ra->cksum);
2356	}
2357}
2358
2359/*
2360 * Read the payload into a buffer of size len, and update the current record's
2361 * payload field.
2362 * Allocate ra->next_rrd and read the next record's header into
2363 * ra->next_rrd->header.
2364 * Verify checksum of payload and next record.
2365 */
2366static int
2367receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2368{
2369	int err;
2370
2371	if (len != 0) {
2372		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2373		err = receive_read(ra, len, buf);
2374		if (err != 0)
2375			return (err);
2376		receive_cksum(ra, len, buf);
2377
2378		/* note: rrd is NULL when reading the begin record's payload */
2379		if (ra->rrd != NULL) {
2380			ra->rrd->payload = buf;
2381			ra->rrd->payload_size = len;
2382			ra->rrd->bytes_read = ra->bytes_read;
2383		}
2384	}
2385
2386	ra->prev_cksum = ra->cksum;
2387
2388	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2389	err = receive_read(ra, sizeof (ra->next_rrd->header),
2390	    &ra->next_rrd->header);
2391	ra->next_rrd->bytes_read = ra->bytes_read;
2392	if (err != 0) {
2393		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2394		ra->next_rrd = NULL;
2395		return (err);
2396	}
2397	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2398		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2399		ra->next_rrd = NULL;
2400		return (SET_ERROR(EINVAL));
2401	}
2402
2403	/*
2404	 * Note: checksum is of everything up to but not including the
2405	 * checksum itself.
2406	 */
2407	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2408	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2409	receive_cksum(ra,
2410	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2411	    &ra->next_rrd->header);
2412
2413	zio_cksum_t cksum_orig =
2414	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2415	zio_cksum_t *cksump =
2416	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2417
2418	if (ra->byteswap)
2419		byteswap_record(&ra->next_rrd->header);
2420
2421	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2422	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2423		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2424		ra->next_rrd = NULL;
2425		return (SET_ERROR(ECKSUM));
2426	}
2427
2428	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2429
2430	return (0);
2431}
2432
2433static void
2434objlist_create(struct objlist *list)
2435{
2436	list_create(&list->list, sizeof (struct receive_objnode),
2437	    offsetof(struct receive_objnode, node));
2438	list->last_lookup = 0;
2439}
2440
2441static void
2442objlist_destroy(struct objlist *list)
2443{
2444	for (struct receive_objnode *n = list_remove_head(&list->list);
2445	    n != NULL; n = list_remove_head(&list->list)) {
2446		kmem_free(n, sizeof (*n));
2447	}
2448	list_destroy(&list->list);
2449}
2450
2451/*
2452 * This function looks through the objlist to see if the specified object number
2453 * is contained in the objlist.  In the process, it will remove all object
2454 * numbers in the list that are smaller than the specified object number.  Thus,
2455 * any lookup of an object number smaller than a previously looked up object
2456 * number will always return false; therefore, all lookups should be done in
2457 * ascending order.
2458 */
2459static boolean_t
2460objlist_exists(struct objlist *list, uint64_t object)
2461{
2462	struct receive_objnode *node = list_head(&list->list);
2463	ASSERT3U(object, >=, list->last_lookup);
2464	list->last_lookup = object;
2465	while (node != NULL && node->object < object) {
2466		VERIFY3P(node, ==, list_remove_head(&list->list));
2467		kmem_free(node, sizeof (*node));
2468		node = list_head(&list->list);
2469	}
2470	return (node != NULL && node->object == object);
2471}
2472
2473/*
2474 * The objlist is a list of object numbers stored in ascending order.  However,
2475 * the insertion of new object numbers does not seek out the correct location to
2476 * store a new object number; instead, it appends it to the list for simplicity.
2477 * Thus, any users must take care to only insert new object numbers in ascending
2478 * order.
2479 */
2480static void
2481objlist_insert(struct objlist *list, uint64_t object)
2482{
2483	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2484	node->object = object;
2485#ifdef ZFS_DEBUG
2486	struct receive_objnode *last_object = list_tail(&list->list);
2487	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2488	ASSERT3U(node->object, >, last_objnum);
2489#endif
2490	list_insert_tail(&list->list, node);
2491}
2492
2493/*
2494 * Issue the prefetch reads for any necessary indirect blocks.
2495 *
2496 * We use the object ignore list to tell us whether or not to issue prefetches
2497 * for a given object.  We do this for both correctness (in case the blocksize
2498 * of an object has changed) and performance (if the object doesn't exist, don't
2499 * needlessly try to issue prefetches).  We also trim the list as we go through
2500 * the stream to prevent it from growing to an unbounded size.
2501 *
2502 * The object numbers within will always be in sorted order, and any write
2503 * records we see will also be in sorted order, but they're not sorted with
2504 * respect to each other (i.e. we can get several object records before
2505 * receiving each object's write records).  As a result, once we've reached a
2506 * given object number, we can safely remove any reference to lower object
2507 * numbers in the ignore list. In practice, we receive up to 32 object records
2508 * before receiving write records, so the list can have up to 32 nodes in it.
2509 */
2510/* ARGSUSED */
2511static void
2512receive_read_prefetch(struct receive_arg *ra,
2513    uint64_t object, uint64_t offset, uint64_t length)
2514{
2515	if (!objlist_exists(&ra->ignore_objlist, object)) {
2516		dmu_prefetch(ra->os, object, 1, offset, length,
2517		    ZIO_PRIORITY_SYNC_READ);
2518	}
2519}
2520
2521/*
2522 * Read records off the stream, issuing any necessary prefetches.
2523 */
2524static int
2525receive_read_record(struct receive_arg *ra)
2526{
2527	int err;
2528
2529	switch (ra->rrd->header.drr_type) {
2530	case DRR_OBJECT:
2531	{
2532		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2533		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2534		void *buf = kmem_zalloc(size, KM_SLEEP);
2535		dmu_object_info_t doi;
2536		err = receive_read_payload_and_next_header(ra, size, buf);
2537		if (err != 0) {
2538			kmem_free(buf, size);
2539			return (err);
2540		}
2541		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2542		/*
2543		 * See receive_read_prefetch for an explanation why we're
2544		 * storing this object in the ignore_obj_list.
2545		 */
2546		if (err == ENOENT ||
2547		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2548			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2549			err = 0;
2550		}
2551		return (err);
2552	}
2553	case DRR_FREEOBJECTS:
2554	{
2555		err = receive_read_payload_and_next_header(ra, 0, NULL);
2556		return (err);
2557	}
2558	case DRR_WRITE:
2559	{
2560		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2561		arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2562		    drrw->drr_length);
2563
2564		err = receive_read_payload_and_next_header(ra,
2565		    drrw->drr_length, abuf->b_data);
2566		if (err != 0) {
2567			dmu_return_arcbuf(abuf);
2568			return (err);
2569		}
2570		ra->rrd->write_buf = abuf;
2571		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2572		    drrw->drr_length);
2573		return (err);
2574	}
2575	case DRR_WRITE_BYREF:
2576	{
2577		struct drr_write_byref *drrwb =
2578		    &ra->rrd->header.drr_u.drr_write_byref;
2579		err = receive_read_payload_and_next_header(ra, 0, NULL);
2580		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2581		    drrwb->drr_length);
2582		return (err);
2583	}
2584	case DRR_WRITE_EMBEDDED:
2585	{
2586		struct drr_write_embedded *drrwe =
2587		    &ra->rrd->header.drr_u.drr_write_embedded;
2588		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2589		void *buf = kmem_zalloc(size, KM_SLEEP);
2590
2591		err = receive_read_payload_and_next_header(ra, size, buf);
2592		if (err != 0) {
2593			kmem_free(buf, size);
2594			return (err);
2595		}
2596
2597		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2598		    drrwe->drr_length);
2599		return (err);
2600	}
2601	case DRR_FREE:
2602	{
2603		/*
2604		 * It might be beneficial to prefetch indirect blocks here, but
2605		 * we don't really have the data to decide for sure.
2606		 */
2607		err = receive_read_payload_and_next_header(ra, 0, NULL);
2608		return (err);
2609	}
2610	case DRR_END:
2611	{
2612		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2613		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2614			return (SET_ERROR(ECKSUM));
2615		return (0);
2616	}
2617	case DRR_SPILL:
2618	{
2619		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2620		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2621		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2622		    buf);
2623		if (err != 0)
2624			kmem_free(buf, drrs->drr_length);
2625		return (err);
2626	}
2627	default:
2628		return (SET_ERROR(EINVAL));
2629	}
2630}
2631
2632/*
2633 * Commit the records to the pool.
2634 */
2635static int
2636receive_process_record(struct receive_writer_arg *rwa,
2637    struct receive_record_arg *rrd)
2638{
2639	int err;
2640
2641	/* Processing in order, therefore bytes_read should be increasing. */
2642	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2643	rwa->bytes_read = rrd->bytes_read;
2644
2645	switch (rrd->header.drr_type) {
2646	case DRR_OBJECT:
2647	{
2648		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2649		err = receive_object(rwa, drro, rrd->payload);
2650		kmem_free(rrd->payload, rrd->payload_size);
2651		rrd->payload = NULL;
2652		return (err);
2653	}
2654	case DRR_FREEOBJECTS:
2655	{
2656		struct drr_freeobjects *drrfo =
2657		    &rrd->header.drr_u.drr_freeobjects;
2658		return (receive_freeobjects(rwa, drrfo));
2659	}
2660	case DRR_WRITE:
2661	{
2662		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2663		err = receive_write(rwa, drrw, rrd->write_buf);
2664		/* if receive_write() is successful, it consumes the arc_buf */
2665		if (err != 0)
2666			dmu_return_arcbuf(rrd->write_buf);
2667		rrd->write_buf = NULL;
2668		rrd->payload = NULL;
2669		return (err);
2670	}
2671	case DRR_WRITE_BYREF:
2672	{
2673		struct drr_write_byref *drrwbr =
2674		    &rrd->header.drr_u.drr_write_byref;
2675		return (receive_write_byref(rwa, drrwbr));
2676	}
2677	case DRR_WRITE_EMBEDDED:
2678	{
2679		struct drr_write_embedded *drrwe =
2680		    &rrd->header.drr_u.drr_write_embedded;
2681		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2682		kmem_free(rrd->payload, rrd->payload_size);
2683		rrd->payload = NULL;
2684		return (err);
2685	}
2686	case DRR_FREE:
2687	{
2688		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2689		return (receive_free(rwa, drrf));
2690	}
2691	case DRR_SPILL:
2692	{
2693		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2694		err = receive_spill(rwa, drrs, rrd->payload);
2695		kmem_free(rrd->payload, rrd->payload_size);
2696		rrd->payload = NULL;
2697		return (err);
2698	}
2699	default:
2700		return (SET_ERROR(EINVAL));
2701	}
2702}
2703
2704/*
2705 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2706 * receive_process_record  When we're done, signal the main thread and exit.
2707 */
2708static void
2709receive_writer_thread(void *arg)
2710{
2711	struct receive_writer_arg *rwa = arg;
2712	struct receive_record_arg *rrd;
2713	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2714	    rrd = bqueue_dequeue(&rwa->q)) {
2715		/*
2716		 * If there's an error, the main thread will stop putting things
2717		 * on the queue, but we need to clear everything in it before we
2718		 * can exit.
2719		 */
2720		if (rwa->err == 0) {
2721			rwa->err = receive_process_record(rwa, rrd);
2722		} else if (rrd->write_buf != NULL) {
2723			dmu_return_arcbuf(rrd->write_buf);
2724			rrd->write_buf = NULL;
2725			rrd->payload = NULL;
2726		} else if (rrd->payload != NULL) {
2727			kmem_free(rrd->payload, rrd->payload_size);
2728			rrd->payload = NULL;
2729		}
2730		kmem_free(rrd, sizeof (*rrd));
2731	}
2732	kmem_free(rrd, sizeof (*rrd));
2733	mutex_enter(&rwa->mutex);
2734	rwa->done = B_TRUE;
2735	cv_signal(&rwa->cv);
2736	mutex_exit(&rwa->mutex);
2737	thread_exit();
2738}
2739
2740static int
2741resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2742{
2743	uint64_t val;
2744	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2745	uint64_t dsobj = dmu_objset_id(ra->os);
2746	uint64_t resume_obj, resume_off;
2747
2748	if (nvlist_lookup_uint64(begin_nvl,
2749	    "resume_object", &resume_obj) != 0 ||
2750	    nvlist_lookup_uint64(begin_nvl,
2751	    "resume_offset", &resume_off) != 0) {
2752		return (SET_ERROR(EINVAL));
2753	}
2754	VERIFY0(zap_lookup(mos, dsobj,
2755	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2756	if (resume_obj != val)
2757		return (SET_ERROR(EINVAL));
2758	VERIFY0(zap_lookup(mos, dsobj,
2759	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2760	if (resume_off != val)
2761		return (SET_ERROR(EINVAL));
2762
2763	return (0);
2764}
2765
2766/*
2767 * Read in the stream's records, one by one, and apply them to the pool.  There
2768 * are two threads involved; the thread that calls this function will spin up a
2769 * worker thread, read the records off the stream one by one, and issue
2770 * prefetches for any necessary indirect blocks.  It will then push the records
2771 * onto an internal blocking queue.  The worker thread will pull the records off
2772 * the queue, and actually write the data into the DMU.  This way, the worker
2773 * thread doesn't have to wait for reads to complete, since everything it needs
2774 * (the indirect blocks) will be prefetched.
2775 *
2776 * NB: callers *must* call dmu_recv_end() if this succeeds.
2777 */
2778int
2779dmu_recv_stream(dmu_recv_cookie_t *drc, struct file *fp, offset_t *voffp,
2780    int cleanup_fd, uint64_t *action_handlep)
2781{
2782	int err = 0;
2783	struct receive_arg ra = { 0 };
2784	struct receive_writer_arg rwa = { 0 };
2785	int featureflags;
2786	nvlist_t *begin_nvl = NULL;
2787
2788	ra.byteswap = drc->drc_byteswap;
2789	ra.cksum = drc->drc_cksum;
2790	ra.td = curthread;
2791	ra.fp = fp;
2792	ra.voff = *voffp;
2793
2794	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2795		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2796		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2797		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2798	}
2799
2800	objlist_create(&ra.ignore_objlist);
2801
2802	/* these were verified in dmu_recv_begin */
2803	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2804	    DMU_SUBSTREAM);
2805	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2806
2807	/*
2808	 * Open the objset we are modifying.
2809	 */
2810	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2811
2812	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2813
2814	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2815
2816	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2817	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2818		minor_t minor;
2819
2820		if (cleanup_fd == -1) {
2821			ra.err = SET_ERROR(EBADF);
2822			goto out;
2823		}
2824		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2825		if (ra.err != 0) {
2826			cleanup_fd = -1;
2827			goto out;
2828		}
2829
2830		if (*action_handlep == 0) {
2831			rwa.guid_to_ds_map =
2832			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2833			avl_create(rwa.guid_to_ds_map, guid_compare,
2834			    sizeof (guid_map_entry_t),
2835			    offsetof(guid_map_entry_t, avlnode));
2836			err = zfs_onexit_add_cb(minor,
2837			    free_guid_map_onexit, rwa.guid_to_ds_map,
2838			    action_handlep);
2839			if (ra.err != 0)
2840				goto out;
2841		} else {
2842			err = zfs_onexit_cb_data(minor, *action_handlep,
2843			    (void **)&rwa.guid_to_ds_map);
2844			if (ra.err != 0)
2845				goto out;
2846		}
2847
2848		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2849	}
2850
2851	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2852	void *payload = NULL;
2853	if (payloadlen != 0)
2854		payload = kmem_alloc(payloadlen, KM_SLEEP);
2855
2856	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2857	if (err != 0) {
2858		if (payloadlen != 0)
2859			kmem_free(payload, payloadlen);
2860		goto out;
2861	}
2862	if (payloadlen != 0) {
2863		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2864		kmem_free(payload, payloadlen);
2865		if (err != 0)
2866			goto out;
2867	}
2868
2869	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2870		err = resume_check(&ra, begin_nvl);
2871		if (err != 0)
2872			goto out;
2873	}
2874
2875	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2876	    offsetof(struct receive_record_arg, node));
2877	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2878	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2879	rwa.os = ra.os;
2880	rwa.byteswap = drc->drc_byteswap;
2881	rwa.resumable = drc->drc_resumable;
2882
2883	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, &p0,
2884	    TS_RUN, minclsyspri);
2885	/*
2886	 * We're reading rwa.err without locks, which is safe since we are the
2887	 * only reader, and the worker thread is the only writer.  It's ok if we
2888	 * miss a write for an iteration or two of the loop, since the writer
2889	 * thread will keep freeing records we send it until we send it an eos
2890	 * marker.
2891	 *
2892	 * We can leave this loop in 3 ways:  First, if rwa.err is
2893	 * non-zero.  In that case, the writer thread will free the rrd we just
2894	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2895	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2896	 * has been handed off to the writer thread who will free it.  Finally,
2897	 * if receive_read_record fails or we're at the end of the stream, then
2898	 * we free ra.rrd and exit.
2899	 */
2900	while (rwa.err == 0) {
2901		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2902			err = SET_ERROR(EINTR);
2903			break;
2904		}
2905
2906		ASSERT3P(ra.rrd, ==, NULL);
2907		ra.rrd = ra.next_rrd;
2908		ra.next_rrd = NULL;
2909		/* Allocates and loads header into ra.next_rrd */
2910		err = receive_read_record(&ra);
2911
2912		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2913			kmem_free(ra.rrd, sizeof (*ra.rrd));
2914			ra.rrd = NULL;
2915			break;
2916		}
2917
2918		bqueue_enqueue(&rwa.q, ra.rrd,
2919		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2920		ra.rrd = NULL;
2921	}
2922	if (ra.next_rrd == NULL)
2923		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2924	ra.next_rrd->eos_marker = B_TRUE;
2925	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2926
2927	mutex_enter(&rwa.mutex);
2928	while (!rwa.done) {
2929		cv_wait(&rwa.cv, &rwa.mutex);
2930	}
2931	mutex_exit(&rwa.mutex);
2932
2933	cv_destroy(&rwa.cv);
2934	mutex_destroy(&rwa.mutex);
2935	bqueue_destroy(&rwa.q);
2936	if (err == 0)
2937		err = rwa.err;
2938
2939out:
2940	nvlist_free(begin_nvl);
2941	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2942		zfs_onexit_fd_rele(cleanup_fd);
2943
2944	if (err != 0) {
2945		/*
2946		 * Clean up references. If receive is not resumable,
2947		 * destroy what we created, so we don't leave it in
2948		 * the inconsistent state.
2949		 */
2950		dmu_recv_cleanup_ds(drc);
2951	}
2952
2953	*voffp = ra.voff;
2954	objlist_destroy(&ra.ignore_objlist);
2955	return (err);
2956}
2957
2958static int
2959dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2960{
2961	dmu_recv_cookie_t *drc = arg;
2962	dsl_pool_t *dp = dmu_tx_pool(tx);
2963	int error;
2964
2965	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2966
2967	if (!drc->drc_newfs) {
2968		dsl_dataset_t *origin_head;
2969
2970		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2971		if (error != 0)
2972			return (error);
2973		if (drc->drc_force) {
2974			/*
2975			 * We will destroy any snapshots in tofs (i.e. before
2976			 * origin_head) that are after the origin (which is
2977			 * the snap before drc_ds, because drc_ds can not
2978			 * have any snaps of its own).
2979			 */
2980			uint64_t obj;
2981
2982			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2983			while (obj !=
2984			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2985				dsl_dataset_t *snap;
2986				error = dsl_dataset_hold_obj(dp, obj, FTAG,
2987				    &snap);
2988				if (error != 0)
2989					break;
2990				if (snap->ds_dir != origin_head->ds_dir)
2991					error = SET_ERROR(EINVAL);
2992				if (error == 0)  {
2993					error = dsl_destroy_snapshot_check_impl(
2994					    snap, B_FALSE);
2995				}
2996				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2997				dsl_dataset_rele(snap, FTAG);
2998				if (error != 0)
2999					break;
3000			}
3001			if (error != 0) {
3002				dsl_dataset_rele(origin_head, FTAG);
3003				return (error);
3004			}
3005		}
3006		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3007		    origin_head, drc->drc_force, drc->drc_owner, tx);
3008		if (error != 0) {
3009			dsl_dataset_rele(origin_head, FTAG);
3010			return (error);
3011		}
3012		error = dsl_dataset_snapshot_check_impl(origin_head,
3013		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3014		dsl_dataset_rele(origin_head, FTAG);
3015		if (error != 0)
3016			return (error);
3017
3018		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3019	} else {
3020		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3021		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3022	}
3023	return (error);
3024}
3025
3026static void
3027dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3028{
3029	dmu_recv_cookie_t *drc = arg;
3030	dsl_pool_t *dp = dmu_tx_pool(tx);
3031
3032	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3033	    tx, "snap=%s", drc->drc_tosnap);
3034
3035	if (!drc->drc_newfs) {
3036		dsl_dataset_t *origin_head;
3037
3038		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3039		    &origin_head));
3040
3041		if (drc->drc_force) {
3042			/*
3043			 * Destroy any snapshots of drc_tofs (origin_head)
3044			 * after the origin (the snap before drc_ds).
3045			 */
3046			uint64_t obj;
3047
3048			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3049			while (obj !=
3050			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3051				dsl_dataset_t *snap;
3052				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3053				    &snap));
3054				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3055				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3056				dsl_destroy_snapshot_sync_impl(snap,
3057				    B_FALSE, tx);
3058				dsl_dataset_rele(snap, FTAG);
3059			}
3060		}
3061		VERIFY3P(drc->drc_ds->ds_prev, ==,
3062		    origin_head->ds_prev);
3063
3064		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3065		    origin_head, tx);
3066		dsl_dataset_snapshot_sync_impl(origin_head,
3067		    drc->drc_tosnap, tx);
3068
3069		/* set snapshot's creation time and guid */
3070		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3071		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3072		    drc->drc_drrb->drr_creation_time;
3073		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3074		    drc->drc_drrb->drr_toguid;
3075		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3076		    ~DS_FLAG_INCONSISTENT;
3077
3078		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3079		dsl_dataset_phys(origin_head)->ds_flags &=
3080		    ~DS_FLAG_INCONSISTENT;
3081
3082		dsl_dataset_rele(origin_head, FTAG);
3083		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3084
3085		if (drc->drc_owner != NULL)
3086			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3087	} else {
3088		dsl_dataset_t *ds = drc->drc_ds;
3089
3090		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3091
3092		/* set snapshot's creation time and guid */
3093		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3094		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3095		    drc->drc_drrb->drr_creation_time;
3096		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3097		    drc->drc_drrb->drr_toguid;
3098		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3099		    ~DS_FLAG_INCONSISTENT;
3100
3101		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3102		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3103		if (dsl_dataset_has_resume_receive_state(ds)) {
3104			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3105			    DS_FIELD_RESUME_FROMGUID, tx);
3106			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3107			    DS_FIELD_RESUME_OBJECT, tx);
3108			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3109			    DS_FIELD_RESUME_OFFSET, tx);
3110			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3111			    DS_FIELD_RESUME_BYTES, tx);
3112			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3113			    DS_FIELD_RESUME_TOGUID, tx);
3114			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3115			    DS_FIELD_RESUME_TONAME, tx);
3116		}
3117	}
3118	drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3119	/*
3120	 * Release the hold from dmu_recv_begin.  This must be done before
3121	 * we return to open context, so that when we free the dataset's dnode,
3122	 * we can evict its bonus buffer.
3123	 */
3124	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3125	drc->drc_ds = NULL;
3126}
3127
3128static int
3129add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3130{
3131	dsl_pool_t *dp;
3132	dsl_dataset_t *snapds;
3133	guid_map_entry_t *gmep;
3134	int err;
3135
3136	ASSERT(guid_map != NULL);
3137
3138	err = dsl_pool_hold(name, FTAG, &dp);
3139	if (err != 0)
3140		return (err);
3141	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3142	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3143	if (err == 0) {
3144		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3145		gmep->gme_ds = snapds;
3146		avl_add(guid_map, gmep);
3147		dsl_dataset_long_hold(snapds, gmep);
3148	} else
3149		kmem_free(gmep, sizeof (*gmep));
3150
3151	dsl_pool_rele(dp, FTAG);
3152	return (err);
3153}
3154
3155static int dmu_recv_end_modified_blocks = 3;
3156
3157static int
3158dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3159{
3160	int error;
3161	char name[MAXNAMELEN];
3162
3163#ifdef _KERNEL
3164	/*
3165	 * We will be destroying the ds; make sure its origin is unmounted if
3166	 * necessary.
3167	 */
3168	dsl_dataset_name(drc->drc_ds, name);
3169	zfs_destroy_unmount_origin(name);
3170#endif
3171
3172	error = dsl_sync_task(drc->drc_tofs,
3173	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3174	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3175
3176	if (error != 0)
3177		dmu_recv_cleanup_ds(drc);
3178	return (error);
3179}
3180
3181static int
3182dmu_recv_new_end(dmu_recv_cookie_t *drc)
3183{
3184	int error;
3185
3186	error = dsl_sync_task(drc->drc_tofs,
3187	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3188	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3189
3190	if (error != 0) {
3191		dmu_recv_cleanup_ds(drc);
3192	} else if (drc->drc_guid_to_ds_map != NULL) {
3193		(void) add_ds_to_guidmap(drc->drc_tofs,
3194		    drc->drc_guid_to_ds_map,
3195		    drc->drc_newsnapobj);
3196	}
3197	return (error);
3198}
3199
3200int
3201dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3202{
3203	drc->drc_owner = owner;
3204
3205	if (drc->drc_newfs)
3206		return (dmu_recv_new_end(drc));
3207	else
3208		return (dmu_recv_existing_end(drc));
3209}
3210
3211/*
3212 * Return TRUE if this objset is currently being received into.
3213 */
3214boolean_t
3215dmu_objset_is_receiving(objset_t *os)
3216{
3217	return (os->os_dsl_dataset != NULL &&
3218	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3219}
3220