dmu.c revision 299433
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, 0, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	/*
404	 * Note: We directly notify the prefetch code of this read, so that
405	 * we can tell it about the multi-block read.  dbuf_read() only knows
406	 * about the one block it is accessing.
407	 */
408	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
409	    DB_RF_NOPREFETCH;
410
411	rw_enter(&dn->dn_struct_rwlock, RW_READER);
412	if (dn->dn_datablkshift) {
413		int blkshift = dn->dn_datablkshift;
414		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
415		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
416	} else {
417		if (offset + length > dn->dn_datablksz) {
418			zfs_panic_recover("zfs: accessing past end of object "
419			    "%llx/%llx (size=%u access=%llu+%llu)",
420			    (longlong_t)dn->dn_objset->
421			    os_dsl_dataset->ds_object,
422			    (longlong_t)dn->dn_object, dn->dn_datablksz,
423			    (longlong_t)offset, (longlong_t)length);
424			rw_exit(&dn->dn_struct_rwlock);
425			return (SET_ERROR(EIO));
426		}
427		nblks = 1;
428	}
429	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
430
431	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
432	blkid = dbuf_whichblock(dn, 0, offset);
433	for (i = 0; i < nblks; i++) {
434		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
435		if (db == NULL) {
436			rw_exit(&dn->dn_struct_rwlock);
437			dmu_buf_rele_array(dbp, nblks, tag);
438			zio_nowait(zio);
439			return (SET_ERROR(EIO));
440		}
441
442		/* initiate async i/o */
443		if (read)
444			(void) dbuf_read(db, zio, dbuf_flags);
445#ifdef _KERNEL
446		else
447			curthread->td_ru.ru_oublock++;
448#endif
449		dbp[i] = &db->db;
450	}
451
452	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
453	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
454		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
455		    read && DNODE_IS_CACHEABLE(dn));
456	}
457	rw_exit(&dn->dn_struct_rwlock);
458
459	/* wait for async i/o */
460	err = zio_wait(zio);
461	if (err) {
462		dmu_buf_rele_array(dbp, nblks, tag);
463		return (err);
464	}
465
466	/* wait for other io to complete */
467	if (read) {
468		for (i = 0; i < nblks; i++) {
469			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
470			mutex_enter(&db->db_mtx);
471			while (db->db_state == DB_READ ||
472			    db->db_state == DB_FILL)
473				cv_wait(&db->db_changed, &db->db_mtx);
474			if (db->db_state == DB_UNCACHED)
475				err = SET_ERROR(EIO);
476			mutex_exit(&db->db_mtx);
477			if (err) {
478				dmu_buf_rele_array(dbp, nblks, tag);
479				return (err);
480			}
481		}
482	}
483
484	*numbufsp = nblks;
485	*dbpp = dbp;
486	return (0);
487}
488
489static int
490dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
491    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
492{
493	dnode_t *dn;
494	int err;
495
496	err = dnode_hold(os, object, FTAG, &dn);
497	if (err)
498		return (err);
499
500	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
501	    numbufsp, dbpp, DMU_READ_PREFETCH);
502
503	dnode_rele(dn, FTAG);
504
505	return (err);
506}
507
508int
509dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
510    uint64_t length, boolean_t read, void *tag, int *numbufsp,
511    dmu_buf_t ***dbpp)
512{
513	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
514	dnode_t *dn;
515	int err;
516
517	DB_DNODE_ENTER(db);
518	dn = DB_DNODE(db);
519	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
520	    numbufsp, dbpp, DMU_READ_PREFETCH);
521	DB_DNODE_EXIT(db);
522
523	return (err);
524}
525
526void
527dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
528{
529	int i;
530	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
531
532	if (numbufs == 0)
533		return;
534
535	for (i = 0; i < numbufs; i++) {
536		if (dbp[i])
537			dbuf_rele(dbp[i], tag);
538	}
539
540	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
541}
542
543/*
544 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
545 * indirect blocks prefeteched will be those that point to the blocks containing
546 * the data starting at offset, and continuing to offset + len.
547 *
548 * Note that if the indirect blocks above the blocks being prefetched are not in
549 * cache, they will be asychronously read in.
550 */
551void
552dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
553    uint64_t len, zio_priority_t pri)
554{
555	dnode_t *dn;
556	uint64_t blkid;
557	int nblks, err;
558
559	if (len == 0) {  /* they're interested in the bonus buffer */
560		dn = DMU_META_DNODE(os);
561
562		if (object == 0 || object >= DN_MAX_OBJECT)
563			return;
564
565		rw_enter(&dn->dn_struct_rwlock, RW_READER);
566		blkid = dbuf_whichblock(dn, level,
567		    object * sizeof (dnode_phys_t));
568		dbuf_prefetch(dn, level, blkid, pri, 0);
569		rw_exit(&dn->dn_struct_rwlock);
570		return;
571	}
572
573	/*
574	 * XXX - Note, if the dnode for the requested object is not
575	 * already cached, we will do a *synchronous* read in the
576	 * dnode_hold() call.  The same is true for any indirects.
577	 */
578	err = dnode_hold(os, object, FTAG, &dn);
579	if (err != 0)
580		return;
581
582	rw_enter(&dn->dn_struct_rwlock, RW_READER);
583	/*
584	 * offset + len - 1 is the last byte we want to prefetch for, and offset
585	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
586	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
587	 * offset)  is the first.  Then the number we need to prefetch is the
588	 * last - first + 1.
589	 */
590	if (level > 0 || dn->dn_datablkshift != 0) {
591		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
592		    dbuf_whichblock(dn, level, offset) + 1;
593	} else {
594		nblks = (offset < dn->dn_datablksz);
595	}
596
597	if (nblks != 0) {
598		blkid = dbuf_whichblock(dn, level, offset);
599		for (int i = 0; i < nblks; i++)
600			dbuf_prefetch(dn, level, blkid + i, pri, 0);
601	}
602
603	rw_exit(&dn->dn_struct_rwlock);
604
605	dnode_rele(dn, FTAG);
606}
607
608/*
609 * Get the next "chunk" of file data to free.  We traverse the file from
610 * the end so that the file gets shorter over time (if we crashes in the
611 * middle, this will leave us in a better state).  We find allocated file
612 * data by simply searching the allocated level 1 indirects.
613 *
614 * On input, *start should be the first offset that does not need to be
615 * freed (e.g. "offset + length").  On return, *start will be the first
616 * offset that should be freed.
617 */
618static int
619get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
620{
621	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
622	/* bytes of data covered by a level-1 indirect block */
623	uint64_t iblkrange =
624	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
625
626	ASSERT3U(minimum, <=, *start);
627
628	if (*start - minimum <= iblkrange * maxblks) {
629		*start = minimum;
630		return (0);
631	}
632	ASSERT(ISP2(iblkrange));
633
634	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
635		int err;
636
637		/*
638		 * dnode_next_offset(BACKWARDS) will find an allocated L1
639		 * indirect block at or before the input offset.  We must
640		 * decrement *start so that it is at the end of the region
641		 * to search.
642		 */
643		(*start)--;
644		err = dnode_next_offset(dn,
645		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
646
647		/* if there are no indirect blocks before start, we are done */
648		if (err == ESRCH) {
649			*start = minimum;
650			break;
651		} else if (err != 0) {
652			return (err);
653		}
654
655		/* set start to the beginning of this L1 indirect */
656		*start = P2ALIGN(*start, iblkrange);
657	}
658	if (*start < minimum)
659		*start = minimum;
660	return (0);
661}
662
663static int
664dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
665    uint64_t length)
666{
667	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
668	int err;
669
670	if (offset >= object_size)
671		return (0);
672
673	if (length == DMU_OBJECT_END || offset + length > object_size)
674		length = object_size - offset;
675
676	while (length != 0) {
677		uint64_t chunk_end, chunk_begin;
678
679		chunk_end = chunk_begin = offset + length;
680
681		/* move chunk_begin backwards to the beginning of this chunk */
682		err = get_next_chunk(dn, &chunk_begin, offset);
683		if (err)
684			return (err);
685		ASSERT3U(chunk_begin, >=, offset);
686		ASSERT3U(chunk_begin, <=, chunk_end);
687
688		dmu_tx_t *tx = dmu_tx_create(os);
689		dmu_tx_hold_free(tx, dn->dn_object,
690		    chunk_begin, chunk_end - chunk_begin);
691
692		/*
693		 * Mark this transaction as typically resulting in a net
694		 * reduction in space used.
695		 */
696		dmu_tx_mark_netfree(tx);
697		err = dmu_tx_assign(tx, TXG_WAIT);
698		if (err) {
699			dmu_tx_abort(tx);
700			return (err);
701		}
702		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
703		dmu_tx_commit(tx);
704
705		length -= chunk_end - chunk_begin;
706	}
707	return (0);
708}
709
710int
711dmu_free_long_range(objset_t *os, uint64_t object,
712    uint64_t offset, uint64_t length)
713{
714	dnode_t *dn;
715	int err;
716
717	err = dnode_hold(os, object, FTAG, &dn);
718	if (err != 0)
719		return (err);
720	err = dmu_free_long_range_impl(os, dn, offset, length);
721
722	/*
723	 * It is important to zero out the maxblkid when freeing the entire
724	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
725	 * will take the fast path, and (b) dnode_reallocate() can verify
726	 * that the entire file has been freed.
727	 */
728	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
729		dn->dn_maxblkid = 0;
730
731	dnode_rele(dn, FTAG);
732	return (err);
733}
734
735int
736dmu_free_long_object(objset_t *os, uint64_t object)
737{
738	dmu_tx_t *tx;
739	int err;
740
741	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
742	if (err != 0)
743		return (err);
744
745	tx = dmu_tx_create(os);
746	dmu_tx_hold_bonus(tx, object);
747	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
748	dmu_tx_mark_netfree(tx);
749	err = dmu_tx_assign(tx, TXG_WAIT);
750	if (err == 0) {
751		err = dmu_object_free(os, object, tx);
752		dmu_tx_commit(tx);
753	} else {
754		dmu_tx_abort(tx);
755	}
756
757	return (err);
758}
759
760int
761dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
762    uint64_t size, dmu_tx_t *tx)
763{
764	dnode_t *dn;
765	int err = dnode_hold(os, object, FTAG, &dn);
766	if (err)
767		return (err);
768	ASSERT(offset < UINT64_MAX);
769	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
770	dnode_free_range(dn, offset, size, tx);
771	dnode_rele(dn, FTAG);
772	return (0);
773}
774
775int
776dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
777    void *buf, uint32_t flags)
778{
779	dnode_t *dn;
780	dmu_buf_t **dbp;
781	int numbufs, err;
782
783	err = dnode_hold(os, object, FTAG, &dn);
784	if (err)
785		return (err);
786
787	/*
788	 * Deal with odd block sizes, where there can't be data past the first
789	 * block.  If we ever do the tail block optimization, we will need to
790	 * handle that here as well.
791	 */
792	if (dn->dn_maxblkid == 0) {
793		int newsz = offset > dn->dn_datablksz ? 0 :
794		    MIN(size, dn->dn_datablksz - offset);
795		bzero((char *)buf + newsz, size - newsz);
796		size = newsz;
797	}
798
799	while (size > 0) {
800		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
801		int i;
802
803		/*
804		 * NB: we could do this block-at-a-time, but it's nice
805		 * to be reading in parallel.
806		 */
807		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
808		    TRUE, FTAG, &numbufs, &dbp, flags);
809		if (err)
810			break;
811
812		for (i = 0; i < numbufs; i++) {
813			int tocpy;
814			int bufoff;
815			dmu_buf_t *db = dbp[i];
816
817			ASSERT(size > 0);
818
819			bufoff = offset - db->db_offset;
820			tocpy = (int)MIN(db->db_size - bufoff, size);
821
822			bcopy((char *)db->db_data + bufoff, buf, tocpy);
823
824			offset += tocpy;
825			size -= tocpy;
826			buf = (char *)buf + tocpy;
827		}
828		dmu_buf_rele_array(dbp, numbufs, FTAG);
829	}
830	dnode_rele(dn, FTAG);
831	return (err);
832}
833
834void
835dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
836    const void *buf, dmu_tx_t *tx)
837{
838	dmu_buf_t **dbp;
839	int numbufs, i;
840
841	if (size == 0)
842		return;
843
844	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
845	    FALSE, FTAG, &numbufs, &dbp));
846
847	for (i = 0; i < numbufs; i++) {
848		int tocpy;
849		int bufoff;
850		dmu_buf_t *db = dbp[i];
851
852		ASSERT(size > 0);
853
854		bufoff = offset - db->db_offset;
855		tocpy = (int)MIN(db->db_size - bufoff, size);
856
857		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
858
859		if (tocpy == db->db_size)
860			dmu_buf_will_fill(db, tx);
861		else
862			dmu_buf_will_dirty(db, tx);
863
864		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
865
866		if (tocpy == db->db_size)
867			dmu_buf_fill_done(db, tx);
868
869		offset += tocpy;
870		size -= tocpy;
871		buf = (char *)buf + tocpy;
872	}
873	dmu_buf_rele_array(dbp, numbufs, FTAG);
874}
875
876void
877dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
878    dmu_tx_t *tx)
879{
880	dmu_buf_t **dbp;
881	int numbufs, i;
882
883	if (size == 0)
884		return;
885
886	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
887	    FALSE, FTAG, &numbufs, &dbp));
888
889	for (i = 0; i < numbufs; i++) {
890		dmu_buf_t *db = dbp[i];
891
892		dmu_buf_will_not_fill(db, tx);
893	}
894	dmu_buf_rele_array(dbp, numbufs, FTAG);
895}
896
897void
898dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
899    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
900    int compressed_size, int byteorder, dmu_tx_t *tx)
901{
902	dmu_buf_t *db;
903
904	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
905	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
906	VERIFY0(dmu_buf_hold_noread(os, object, offset,
907	    FTAG, &db));
908
909	dmu_buf_write_embedded(db,
910	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
911	    uncompressed_size, compressed_size, byteorder, tx);
912
913	dmu_buf_rele(db, FTAG);
914}
915
916/*
917 * DMU support for xuio
918 */
919kstat_t *xuio_ksp = NULL;
920
921int
922dmu_xuio_init(xuio_t *xuio, int nblk)
923{
924	dmu_xuio_t *priv;
925	uio_t *uio = &xuio->xu_uio;
926
927	uio->uio_iovcnt = nblk;
928	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
929
930	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
931	priv->cnt = nblk;
932	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
933	priv->iovp = uio->uio_iov;
934	XUIO_XUZC_PRIV(xuio) = priv;
935
936	if (XUIO_XUZC_RW(xuio) == UIO_READ)
937		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
938	else
939		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
940
941	return (0);
942}
943
944void
945dmu_xuio_fini(xuio_t *xuio)
946{
947	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
948	int nblk = priv->cnt;
949
950	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
951	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
952	kmem_free(priv, sizeof (dmu_xuio_t));
953
954	if (XUIO_XUZC_RW(xuio) == UIO_READ)
955		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
956	else
957		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
958}
959
960/*
961 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
962 * and increase priv->next by 1.
963 */
964int
965dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
966{
967	struct iovec *iov;
968	uio_t *uio = &xuio->xu_uio;
969	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970	int i = priv->next++;
971
972	ASSERT(i < priv->cnt);
973	ASSERT(off + n <= arc_buf_size(abuf));
974	iov = uio->uio_iov + i;
975	iov->iov_base = (char *)abuf->b_data + off;
976	iov->iov_len = n;
977	priv->bufs[i] = abuf;
978	return (0);
979}
980
981int
982dmu_xuio_cnt(xuio_t *xuio)
983{
984	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
985	return (priv->cnt);
986}
987
988arc_buf_t *
989dmu_xuio_arcbuf(xuio_t *xuio, int i)
990{
991	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
992
993	ASSERT(i < priv->cnt);
994	return (priv->bufs[i]);
995}
996
997void
998dmu_xuio_clear(xuio_t *xuio, int i)
999{
1000	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1001
1002	ASSERT(i < priv->cnt);
1003	priv->bufs[i] = NULL;
1004}
1005
1006static void
1007xuio_stat_init(void)
1008{
1009	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1010	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1011	    KSTAT_FLAG_VIRTUAL);
1012	if (xuio_ksp != NULL) {
1013		xuio_ksp->ks_data = &xuio_stats;
1014		kstat_install(xuio_ksp);
1015	}
1016}
1017
1018static void
1019xuio_stat_fini(void)
1020{
1021	if (xuio_ksp != NULL) {
1022		kstat_delete(xuio_ksp);
1023		xuio_ksp = NULL;
1024	}
1025}
1026
1027void
1028xuio_stat_wbuf_copied()
1029{
1030	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1031}
1032
1033void
1034xuio_stat_wbuf_nocopy()
1035{
1036	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1037}
1038
1039#ifdef _KERNEL
1040static int
1041dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1042{
1043	dmu_buf_t **dbp;
1044	int numbufs, i, err;
1045	xuio_t *xuio = NULL;
1046
1047	/*
1048	 * NB: we could do this block-at-a-time, but it's nice
1049	 * to be reading in parallel.
1050	 */
1051	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1052	    TRUE, FTAG, &numbufs, &dbp, 0);
1053	if (err)
1054		return (err);
1055
1056#ifdef UIO_XUIO
1057	if (uio->uio_extflg == UIO_XUIO)
1058		xuio = (xuio_t *)uio;
1059#endif
1060
1061	for (i = 0; i < numbufs; i++) {
1062		int tocpy;
1063		int bufoff;
1064		dmu_buf_t *db = dbp[i];
1065
1066		ASSERT(size > 0);
1067
1068		bufoff = uio->uio_loffset - db->db_offset;
1069		tocpy = (int)MIN(db->db_size - bufoff, size);
1070
1071		if (xuio) {
1072			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1073			arc_buf_t *dbuf_abuf = dbi->db_buf;
1074			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1075			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1076			if (!err) {
1077				uio->uio_resid -= tocpy;
1078				uio->uio_loffset += tocpy;
1079			}
1080
1081			if (abuf == dbuf_abuf)
1082				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1083			else
1084				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1085		} else {
1086			err = uiomove((char *)db->db_data + bufoff, tocpy,
1087			    UIO_READ, uio);
1088		}
1089		if (err)
1090			break;
1091
1092		size -= tocpy;
1093	}
1094	dmu_buf_rele_array(dbp, numbufs, FTAG);
1095
1096	return (err);
1097}
1098
1099/*
1100 * Read 'size' bytes into the uio buffer.
1101 * From object zdb->db_object.
1102 * Starting at offset uio->uio_loffset.
1103 *
1104 * If the caller already has a dbuf in the target object
1105 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1106 * because we don't have to find the dnode_t for the object.
1107 */
1108int
1109dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1110{
1111	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1112	dnode_t *dn;
1113	int err;
1114
1115	if (size == 0)
1116		return (0);
1117
1118	DB_DNODE_ENTER(db);
1119	dn = DB_DNODE(db);
1120	err = dmu_read_uio_dnode(dn, uio, size);
1121	DB_DNODE_EXIT(db);
1122
1123	return (err);
1124}
1125
1126/*
1127 * Read 'size' bytes into the uio buffer.
1128 * From the specified object
1129 * Starting at offset uio->uio_loffset.
1130 */
1131int
1132dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1133{
1134	dnode_t *dn;
1135	int err;
1136
1137	if (size == 0)
1138		return (0);
1139
1140	err = dnode_hold(os, object, FTAG, &dn);
1141	if (err)
1142		return (err);
1143
1144	err = dmu_read_uio_dnode(dn, uio, size);
1145
1146	dnode_rele(dn, FTAG);
1147
1148	return (err);
1149}
1150
1151static int
1152dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1153{
1154	dmu_buf_t **dbp;
1155	int numbufs;
1156	int err = 0;
1157	int i;
1158
1159	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1160	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1161	if (err)
1162		return (err);
1163
1164	for (i = 0; i < numbufs; i++) {
1165		int tocpy;
1166		int bufoff;
1167		dmu_buf_t *db = dbp[i];
1168
1169		ASSERT(size > 0);
1170
1171		bufoff = uio->uio_loffset - db->db_offset;
1172		tocpy = (int)MIN(db->db_size - bufoff, size);
1173
1174		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1175
1176		if (tocpy == db->db_size)
1177			dmu_buf_will_fill(db, tx);
1178		else
1179			dmu_buf_will_dirty(db, tx);
1180
1181		/*
1182		 * XXX uiomove could block forever (eg. nfs-backed
1183		 * pages).  There needs to be a uiolockdown() function
1184		 * to lock the pages in memory, so that uiomove won't
1185		 * block.
1186		 */
1187		err = uiomove((char *)db->db_data + bufoff, tocpy,
1188		    UIO_WRITE, uio);
1189
1190		if (tocpy == db->db_size)
1191			dmu_buf_fill_done(db, tx);
1192
1193		if (err)
1194			break;
1195
1196		size -= tocpy;
1197	}
1198
1199	dmu_buf_rele_array(dbp, numbufs, FTAG);
1200	return (err);
1201}
1202
1203/*
1204 * Write 'size' bytes from the uio buffer.
1205 * To object zdb->db_object.
1206 * Starting at offset uio->uio_loffset.
1207 *
1208 * If the caller already has a dbuf in the target object
1209 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1210 * because we don't have to find the dnode_t for the object.
1211 */
1212int
1213dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1214    dmu_tx_t *tx)
1215{
1216	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1217	dnode_t *dn;
1218	int err;
1219
1220	if (size == 0)
1221		return (0);
1222
1223	DB_DNODE_ENTER(db);
1224	dn = DB_DNODE(db);
1225	err = dmu_write_uio_dnode(dn, uio, size, tx);
1226	DB_DNODE_EXIT(db);
1227
1228	return (err);
1229}
1230
1231/*
1232 * Write 'size' bytes from the uio buffer.
1233 * To the specified object.
1234 * Starting at offset uio->uio_loffset.
1235 */
1236int
1237dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1238    dmu_tx_t *tx)
1239{
1240	dnode_t *dn;
1241	int err;
1242
1243	if (size == 0)
1244		return (0);
1245
1246	err = dnode_hold(os, object, FTAG, &dn);
1247	if (err)
1248		return (err);
1249
1250	err = dmu_write_uio_dnode(dn, uio, size, tx);
1251
1252	dnode_rele(dn, FTAG);
1253
1254	return (err);
1255}
1256
1257#ifdef illumos
1258int
1259dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1260    page_t *pp, dmu_tx_t *tx)
1261{
1262	dmu_buf_t **dbp;
1263	int numbufs, i;
1264	int err;
1265
1266	if (size == 0)
1267		return (0);
1268
1269	err = dmu_buf_hold_array(os, object, offset, size,
1270	    FALSE, FTAG, &numbufs, &dbp);
1271	if (err)
1272		return (err);
1273
1274	for (i = 0; i < numbufs; i++) {
1275		int tocpy, copied, thiscpy;
1276		int bufoff;
1277		dmu_buf_t *db = dbp[i];
1278		caddr_t va;
1279
1280		ASSERT(size > 0);
1281		ASSERT3U(db->db_size, >=, PAGESIZE);
1282
1283		bufoff = offset - db->db_offset;
1284		tocpy = (int)MIN(db->db_size - bufoff, size);
1285
1286		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1287
1288		if (tocpy == db->db_size)
1289			dmu_buf_will_fill(db, tx);
1290		else
1291			dmu_buf_will_dirty(db, tx);
1292
1293		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1294			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1295			thiscpy = MIN(PAGESIZE, tocpy - copied);
1296			va = zfs_map_page(pp, S_READ);
1297			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1298			zfs_unmap_page(pp, va);
1299			pp = pp->p_next;
1300			bufoff += PAGESIZE;
1301		}
1302
1303		if (tocpy == db->db_size)
1304			dmu_buf_fill_done(db, tx);
1305
1306		offset += tocpy;
1307		size -= tocpy;
1308	}
1309	dmu_buf_rele_array(dbp, numbufs, FTAG);
1310	return (err);
1311}
1312
1313#else	/* !illumos */
1314
1315int
1316dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1317    vm_page_t *ma, dmu_tx_t *tx)
1318{
1319	dmu_buf_t **dbp;
1320	struct sf_buf *sf;
1321	int numbufs, i;
1322	int err;
1323
1324	if (size == 0)
1325		return (0);
1326
1327	err = dmu_buf_hold_array(os, object, offset, size,
1328	    FALSE, FTAG, &numbufs, &dbp);
1329	if (err)
1330		return (err);
1331
1332	for (i = 0; i < numbufs; i++) {
1333		int tocpy, copied, thiscpy;
1334		int bufoff;
1335		dmu_buf_t *db = dbp[i];
1336		caddr_t va;
1337
1338		ASSERT(size > 0);
1339		ASSERT3U(db->db_size, >=, PAGESIZE);
1340
1341		bufoff = offset - db->db_offset;
1342		tocpy = (int)MIN(db->db_size - bufoff, size);
1343
1344		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1345
1346		if (tocpy == db->db_size)
1347			dmu_buf_will_fill(db, tx);
1348		else
1349			dmu_buf_will_dirty(db, tx);
1350
1351		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1352			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1353			thiscpy = MIN(PAGESIZE, tocpy - copied);
1354			va = zfs_map_page(*ma, &sf);
1355			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1356			zfs_unmap_page(sf);
1357			ma += 1;
1358			bufoff += PAGESIZE;
1359		}
1360
1361		if (tocpy == db->db_size)
1362			dmu_buf_fill_done(db, tx);
1363
1364		offset += tocpy;
1365		size -= tocpy;
1366	}
1367	dmu_buf_rele_array(dbp, numbufs, FTAG);
1368	return (err);
1369}
1370#endif	/* illumos */
1371#endif	/* _KERNEL */
1372
1373/*
1374 * Allocate a loaned anonymous arc buffer.
1375 */
1376arc_buf_t *
1377dmu_request_arcbuf(dmu_buf_t *handle, int size)
1378{
1379	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1380
1381	return (arc_loan_buf(db->db_objset->os_spa, size));
1382}
1383
1384/*
1385 * Free a loaned arc buffer.
1386 */
1387void
1388dmu_return_arcbuf(arc_buf_t *buf)
1389{
1390	arc_return_buf(buf, FTAG);
1391	VERIFY(arc_buf_remove_ref(buf, FTAG));
1392}
1393
1394/*
1395 * When possible directly assign passed loaned arc buffer to a dbuf.
1396 * If this is not possible copy the contents of passed arc buf via
1397 * dmu_write().
1398 */
1399void
1400dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1401    dmu_tx_t *tx)
1402{
1403	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1404	dnode_t *dn;
1405	dmu_buf_impl_t *db;
1406	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1407	uint64_t blkid;
1408
1409	DB_DNODE_ENTER(dbuf);
1410	dn = DB_DNODE(dbuf);
1411	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1412	blkid = dbuf_whichblock(dn, 0, offset);
1413	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1414	rw_exit(&dn->dn_struct_rwlock);
1415	DB_DNODE_EXIT(dbuf);
1416
1417	/*
1418	 * We can only assign if the offset is aligned, the arc buf is the
1419	 * same size as the dbuf, and the dbuf is not metadata.  It
1420	 * can't be metadata because the loaned arc buf comes from the
1421	 * user-data kmem arena.
1422	 */
1423	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1424	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1425#ifdef _KERNEL
1426		curthread->td_ru.ru_oublock++;
1427#endif
1428		dbuf_assign_arcbuf(db, buf, tx);
1429		dbuf_rele(db, FTAG);
1430	} else {
1431		objset_t *os;
1432		uint64_t object;
1433
1434		DB_DNODE_ENTER(dbuf);
1435		dn = DB_DNODE(dbuf);
1436		os = dn->dn_objset;
1437		object = dn->dn_object;
1438		DB_DNODE_EXIT(dbuf);
1439
1440		dbuf_rele(db, FTAG);
1441		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1442		dmu_return_arcbuf(buf);
1443		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1444	}
1445}
1446
1447typedef struct {
1448	dbuf_dirty_record_t	*dsa_dr;
1449	dmu_sync_cb_t		*dsa_done;
1450	zgd_t			*dsa_zgd;
1451	dmu_tx_t		*dsa_tx;
1452} dmu_sync_arg_t;
1453
1454/* ARGSUSED */
1455static void
1456dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1457{
1458	dmu_sync_arg_t *dsa = varg;
1459	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1460	blkptr_t *bp = zio->io_bp;
1461
1462	if (zio->io_error == 0) {
1463		if (BP_IS_HOLE(bp)) {
1464			/*
1465			 * A block of zeros may compress to a hole, but the
1466			 * block size still needs to be known for replay.
1467			 */
1468			BP_SET_LSIZE(bp, db->db_size);
1469		} else if (!BP_IS_EMBEDDED(bp)) {
1470			ASSERT(BP_GET_LEVEL(bp) == 0);
1471			bp->blk_fill = 1;
1472		}
1473	}
1474}
1475
1476static void
1477dmu_sync_late_arrival_ready(zio_t *zio)
1478{
1479	dmu_sync_ready(zio, NULL, zio->io_private);
1480}
1481
1482/* ARGSUSED */
1483static void
1484dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1485{
1486	dmu_sync_arg_t *dsa = varg;
1487	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1488	dmu_buf_impl_t *db = dr->dr_dbuf;
1489
1490	mutex_enter(&db->db_mtx);
1491	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1492	if (zio->io_error == 0) {
1493		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1494		if (dr->dt.dl.dr_nopwrite) {
1495			blkptr_t *bp = zio->io_bp;
1496			blkptr_t *bp_orig = &zio->io_bp_orig;
1497			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1498
1499			ASSERT(BP_EQUAL(bp, bp_orig));
1500			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1501			ASSERT(zio_checksum_table[chksum].ci_flags &
1502			    ZCHECKSUM_FLAG_NOPWRITE);
1503		}
1504		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1505		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1506		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1507
1508		/*
1509		 * Old style holes are filled with all zeros, whereas
1510		 * new-style holes maintain their lsize, type, level,
1511		 * and birth time (see zio_write_compress). While we
1512		 * need to reset the BP_SET_LSIZE() call that happened
1513		 * in dmu_sync_ready for old style holes, we do *not*
1514		 * want to wipe out the information contained in new
1515		 * style holes. Thus, only zero out the block pointer if
1516		 * it's an old style hole.
1517		 */
1518		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1519		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1520			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1521	} else {
1522		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1523	}
1524	cv_broadcast(&db->db_changed);
1525	mutex_exit(&db->db_mtx);
1526
1527	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1528
1529	kmem_free(dsa, sizeof (*dsa));
1530}
1531
1532static void
1533dmu_sync_late_arrival_done(zio_t *zio)
1534{
1535	blkptr_t *bp = zio->io_bp;
1536	dmu_sync_arg_t *dsa = zio->io_private;
1537	blkptr_t *bp_orig = &zio->io_bp_orig;
1538
1539	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1540		/*
1541		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1542		 * then there is nothing to do here. Otherwise, free the
1543		 * newly allocated block in this txg.
1544		 */
1545		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1546			ASSERT(BP_EQUAL(bp, bp_orig));
1547		} else {
1548			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1549			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1550			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1551			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1552		}
1553	}
1554
1555	dmu_tx_commit(dsa->dsa_tx);
1556
1557	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1558
1559	kmem_free(dsa, sizeof (*dsa));
1560}
1561
1562static int
1563dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1564    zio_prop_t *zp, zbookmark_phys_t *zb)
1565{
1566	dmu_sync_arg_t *dsa;
1567	dmu_tx_t *tx;
1568
1569	tx = dmu_tx_create(os);
1570	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1571	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1572		dmu_tx_abort(tx);
1573		/* Make zl_get_data do txg_waited_synced() */
1574		return (SET_ERROR(EIO));
1575	}
1576
1577	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1578	dsa->dsa_dr = NULL;
1579	dsa->dsa_done = done;
1580	dsa->dsa_zgd = zgd;
1581	dsa->dsa_tx = tx;
1582
1583	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1584	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1585	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1586	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1587
1588	return (0);
1589}
1590
1591/*
1592 * Intent log support: sync the block associated with db to disk.
1593 * N.B. and XXX: the caller is responsible for making sure that the
1594 * data isn't changing while dmu_sync() is writing it.
1595 *
1596 * Return values:
1597 *
1598 *	EEXIST: this txg has already been synced, so there's nothing to do.
1599 *		The caller should not log the write.
1600 *
1601 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1602 *		The caller should not log the write.
1603 *
1604 *	EALREADY: this block is already in the process of being synced.
1605 *		The caller should track its progress (somehow).
1606 *
1607 *	EIO: could not do the I/O.
1608 *		The caller should do a txg_wait_synced().
1609 *
1610 *	0: the I/O has been initiated.
1611 *		The caller should log this blkptr in the done callback.
1612 *		It is possible that the I/O will fail, in which case
1613 *		the error will be reported to the done callback and
1614 *		propagated to pio from zio_done().
1615 */
1616int
1617dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1618{
1619	blkptr_t *bp = zgd->zgd_bp;
1620	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1621	objset_t *os = db->db_objset;
1622	dsl_dataset_t *ds = os->os_dsl_dataset;
1623	dbuf_dirty_record_t *dr;
1624	dmu_sync_arg_t *dsa;
1625	zbookmark_phys_t zb;
1626	zio_prop_t zp;
1627	dnode_t *dn;
1628
1629	ASSERT(pio != NULL);
1630	ASSERT(txg != 0);
1631
1632	SET_BOOKMARK(&zb, ds->ds_object,
1633	    db->db.db_object, db->db_level, db->db_blkid);
1634
1635	DB_DNODE_ENTER(db);
1636	dn = DB_DNODE(db);
1637	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1638	DB_DNODE_EXIT(db);
1639
1640	/*
1641	 * If we're frozen (running ziltest), we always need to generate a bp.
1642	 */
1643	if (txg > spa_freeze_txg(os->os_spa))
1644		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1645
1646	/*
1647	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1648	 * and us.  If we determine that this txg is not yet syncing,
1649	 * but it begins to sync a moment later, that's OK because the
1650	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1651	 */
1652	mutex_enter(&db->db_mtx);
1653
1654	if (txg <= spa_last_synced_txg(os->os_spa)) {
1655		/*
1656		 * This txg has already synced.  There's nothing to do.
1657		 */
1658		mutex_exit(&db->db_mtx);
1659		return (SET_ERROR(EEXIST));
1660	}
1661
1662	if (txg <= spa_syncing_txg(os->os_spa)) {
1663		/*
1664		 * This txg is currently syncing, so we can't mess with
1665		 * the dirty record anymore; just write a new log block.
1666		 */
1667		mutex_exit(&db->db_mtx);
1668		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1669	}
1670
1671	dr = db->db_last_dirty;
1672	while (dr && dr->dr_txg != txg)
1673		dr = dr->dr_next;
1674
1675	if (dr == NULL) {
1676		/*
1677		 * There's no dr for this dbuf, so it must have been freed.
1678		 * There's no need to log writes to freed blocks, so we're done.
1679		 */
1680		mutex_exit(&db->db_mtx);
1681		return (SET_ERROR(ENOENT));
1682	}
1683
1684	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1685
1686	/*
1687	 * Assume the on-disk data is X, the current syncing data (in
1688	 * txg - 1) is Y, and the current in-memory data is Z (currently
1689	 * in dmu_sync).
1690	 *
1691	 * We usually want to perform a nopwrite if X and Z are the
1692	 * same.  However, if Y is different (i.e. the BP is going to
1693	 * change before this write takes effect), then a nopwrite will
1694	 * be incorrect - we would override with X, which could have
1695	 * been freed when Y was written.
1696	 *
1697	 * (Note that this is not a concern when we are nop-writing from
1698	 * syncing context, because X and Y must be identical, because
1699	 * all previous txgs have been synced.)
1700	 *
1701	 * Therefore, we disable nopwrite if the current BP could change
1702	 * before this TXG.  There are two ways it could change: by
1703	 * being dirty (dr_next is non-NULL), or by being freed
1704	 * (dnode_block_freed()).  This behavior is verified by
1705	 * zio_done(), which VERIFYs that the override BP is identical
1706	 * to the on-disk BP.
1707	 */
1708	DB_DNODE_ENTER(db);
1709	dn = DB_DNODE(db);
1710	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1711		zp.zp_nopwrite = B_FALSE;
1712	DB_DNODE_EXIT(db);
1713
1714	ASSERT(dr->dr_txg == txg);
1715	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1716	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1717		/*
1718		 * We have already issued a sync write for this buffer,
1719		 * or this buffer has already been synced.  It could not
1720		 * have been dirtied since, or we would have cleared the state.
1721		 */
1722		mutex_exit(&db->db_mtx);
1723		return (SET_ERROR(EALREADY));
1724	}
1725
1726	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1727	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1728	mutex_exit(&db->db_mtx);
1729
1730	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1731	dsa->dsa_dr = dr;
1732	dsa->dsa_done = done;
1733	dsa->dsa_zgd = zgd;
1734	dsa->dsa_tx = NULL;
1735
1736	zio_nowait(arc_write(pio, os->os_spa, txg,
1737	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1738	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1739	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1740	    ZIO_FLAG_CANFAIL, &zb));
1741
1742	return (0);
1743}
1744
1745int
1746dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1747    dmu_tx_t *tx)
1748{
1749	dnode_t *dn;
1750	int err;
1751
1752	err = dnode_hold(os, object, FTAG, &dn);
1753	if (err)
1754		return (err);
1755	err = dnode_set_blksz(dn, size, ibs, tx);
1756	dnode_rele(dn, FTAG);
1757	return (err);
1758}
1759
1760void
1761dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1762    dmu_tx_t *tx)
1763{
1764	dnode_t *dn;
1765
1766	/*
1767	 * Send streams include each object's checksum function.  This
1768	 * check ensures that the receiving system can understand the
1769	 * checksum function transmitted.
1770	 */
1771	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1772
1773	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1774	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1775	dn->dn_checksum = checksum;
1776	dnode_setdirty(dn, tx);
1777	dnode_rele(dn, FTAG);
1778}
1779
1780void
1781dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1782    dmu_tx_t *tx)
1783{
1784	dnode_t *dn;
1785
1786	/*
1787	 * Send streams include each object's compression function.  This
1788	 * check ensures that the receiving system can understand the
1789	 * compression function transmitted.
1790	 */
1791	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1792
1793	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1794	dn->dn_compress = compress;
1795	dnode_setdirty(dn, tx);
1796	dnode_rele(dn, FTAG);
1797}
1798
1799int zfs_mdcomp_disable = 0;
1800TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1801SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1802    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1803
1804/*
1805 * When the "redundant_metadata" property is set to "most", only indirect
1806 * blocks of this level and higher will have an additional ditto block.
1807 */
1808int zfs_redundant_metadata_most_ditto_level = 2;
1809
1810void
1811dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1812{
1813	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1814	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1815	    (wp & WP_SPILL));
1816	enum zio_checksum checksum = os->os_checksum;
1817	enum zio_compress compress = os->os_compress;
1818	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1819	boolean_t dedup = B_FALSE;
1820	boolean_t nopwrite = B_FALSE;
1821	boolean_t dedup_verify = os->os_dedup_verify;
1822	int copies = os->os_copies;
1823
1824	/*
1825	 * We maintain different write policies for each of the following
1826	 * types of data:
1827	 *	 1. metadata
1828	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1829	 *	 3. all other level 0 blocks
1830	 */
1831	if (ismd) {
1832		if (zfs_mdcomp_disable) {
1833			compress = ZIO_COMPRESS_EMPTY;
1834		} else {
1835			/*
1836			 * XXX -- we should design a compression algorithm
1837			 * that specializes in arrays of bps.
1838			 */
1839			compress = zio_compress_select(os->os_spa,
1840			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1841		}
1842
1843		/*
1844		 * Metadata always gets checksummed.  If the data
1845		 * checksum is multi-bit correctable, and it's not a
1846		 * ZBT-style checksum, then it's suitable for metadata
1847		 * as well.  Otherwise, the metadata checksum defaults
1848		 * to fletcher4.
1849		 */
1850		if (!(zio_checksum_table[checksum].ci_flags &
1851		    ZCHECKSUM_FLAG_METADATA) ||
1852		    (zio_checksum_table[checksum].ci_flags &
1853		    ZCHECKSUM_FLAG_EMBEDDED))
1854			checksum = ZIO_CHECKSUM_FLETCHER_4;
1855
1856		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1857		    (os->os_redundant_metadata ==
1858		    ZFS_REDUNDANT_METADATA_MOST &&
1859		    (level >= zfs_redundant_metadata_most_ditto_level ||
1860		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1861			copies++;
1862	} else if (wp & WP_NOFILL) {
1863		ASSERT(level == 0);
1864
1865		/*
1866		 * If we're writing preallocated blocks, we aren't actually
1867		 * writing them so don't set any policy properties.  These
1868		 * blocks are currently only used by an external subsystem
1869		 * outside of zfs (i.e. dump) and not written by the zio
1870		 * pipeline.
1871		 */
1872		compress = ZIO_COMPRESS_OFF;
1873		checksum = ZIO_CHECKSUM_NOPARITY;
1874	} else {
1875		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1876		    compress);
1877
1878		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1879		    zio_checksum_select(dn->dn_checksum, checksum) :
1880		    dedup_checksum;
1881
1882		/*
1883		 * Determine dedup setting.  If we are in dmu_sync(),
1884		 * we won't actually dedup now because that's all
1885		 * done in syncing context; but we do want to use the
1886		 * dedup checkum.  If the checksum is not strong
1887		 * enough to ensure unique signatures, force
1888		 * dedup_verify.
1889		 */
1890		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1891			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1892			if (!(zio_checksum_table[checksum].ci_flags &
1893			    ZCHECKSUM_FLAG_DEDUP))
1894				dedup_verify = B_TRUE;
1895		}
1896
1897		/*
1898		 * Enable nopwrite if we have secure enough checksum
1899		 * algorithm (see comment in zio_nop_write) and
1900		 * compression is enabled.  We don't enable nopwrite if
1901		 * dedup is enabled as the two features are mutually
1902		 * exclusive.
1903		 */
1904		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1905		    ZCHECKSUM_FLAG_NOPWRITE) &&
1906		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1907	}
1908
1909	zp->zp_checksum = checksum;
1910	zp->zp_compress = compress;
1911	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1912	zp->zp_level = level;
1913	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1914	zp->zp_dedup = dedup;
1915	zp->zp_dedup_verify = dedup && dedup_verify;
1916	zp->zp_nopwrite = nopwrite;
1917}
1918
1919int
1920dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1921{
1922	dnode_t *dn;
1923	int err;
1924
1925	/*
1926	 * Sync any current changes before
1927	 * we go trundling through the block pointers.
1928	 */
1929	err = dmu_object_wait_synced(os, object);
1930	if (err) {
1931		return (err);
1932	}
1933
1934	err = dnode_hold(os, object, FTAG, &dn);
1935	if (err) {
1936		return (err);
1937	}
1938
1939	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1940	dnode_rele(dn, FTAG);
1941
1942	return (err);
1943}
1944
1945/*
1946 * Given the ZFS object, if it contains any dirty nodes
1947 * this function flushes all dirty blocks to disk. This
1948 * ensures the DMU object info is updated. A more efficient
1949 * future version might just find the TXG with the maximum
1950 * ID and wait for that to be synced.
1951 */
1952int
1953dmu_object_wait_synced(objset_t *os, uint64_t object)
1954{
1955	dnode_t *dn;
1956	int error, i;
1957
1958	error = dnode_hold(os, object, FTAG, &dn);
1959	if (error) {
1960		return (error);
1961	}
1962
1963	for (i = 0; i < TXG_SIZE; i++) {
1964		if (list_link_active(&dn->dn_dirty_link[i])) {
1965			break;
1966		}
1967	}
1968	dnode_rele(dn, FTAG);
1969	if (i != TXG_SIZE) {
1970		txg_wait_synced(dmu_objset_pool(os), 0);
1971	}
1972
1973	return (0);
1974}
1975
1976void
1977dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1978{
1979	dnode_phys_t *dnp;
1980
1981	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1982	mutex_enter(&dn->dn_mtx);
1983
1984	dnp = dn->dn_phys;
1985
1986	doi->doi_data_block_size = dn->dn_datablksz;
1987	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1988	    1ULL << dn->dn_indblkshift : 0;
1989	doi->doi_type = dn->dn_type;
1990	doi->doi_bonus_type = dn->dn_bonustype;
1991	doi->doi_bonus_size = dn->dn_bonuslen;
1992	doi->doi_indirection = dn->dn_nlevels;
1993	doi->doi_checksum = dn->dn_checksum;
1994	doi->doi_compress = dn->dn_compress;
1995	doi->doi_nblkptr = dn->dn_nblkptr;
1996	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1997	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1998	doi->doi_fill_count = 0;
1999	for (int i = 0; i < dnp->dn_nblkptr; i++)
2000		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2001
2002	mutex_exit(&dn->dn_mtx);
2003	rw_exit(&dn->dn_struct_rwlock);
2004}
2005
2006/*
2007 * Get information on a DMU object.
2008 * If doi is NULL, just indicates whether the object exists.
2009 */
2010int
2011dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2012{
2013	dnode_t *dn;
2014	int err = dnode_hold(os, object, FTAG, &dn);
2015
2016	if (err)
2017		return (err);
2018
2019	if (doi != NULL)
2020		dmu_object_info_from_dnode(dn, doi);
2021
2022	dnode_rele(dn, FTAG);
2023	return (0);
2024}
2025
2026/*
2027 * As above, but faster; can be used when you have a held dbuf in hand.
2028 */
2029void
2030dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2031{
2032	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2033
2034	DB_DNODE_ENTER(db);
2035	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2036	DB_DNODE_EXIT(db);
2037}
2038
2039/*
2040 * Faster still when you only care about the size.
2041 * This is specifically optimized for zfs_getattr().
2042 */
2043void
2044dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2045    u_longlong_t *nblk512)
2046{
2047	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2048	dnode_t *dn;
2049
2050	DB_DNODE_ENTER(db);
2051	dn = DB_DNODE(db);
2052
2053	*blksize = dn->dn_datablksz;
2054	/* add 1 for dnode space */
2055	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2056	    SPA_MINBLOCKSHIFT) + 1;
2057	DB_DNODE_EXIT(db);
2058}
2059
2060void
2061byteswap_uint64_array(void *vbuf, size_t size)
2062{
2063	uint64_t *buf = vbuf;
2064	size_t count = size >> 3;
2065	int i;
2066
2067	ASSERT((size & 7) == 0);
2068
2069	for (i = 0; i < count; i++)
2070		buf[i] = BSWAP_64(buf[i]);
2071}
2072
2073void
2074byteswap_uint32_array(void *vbuf, size_t size)
2075{
2076	uint32_t *buf = vbuf;
2077	size_t count = size >> 2;
2078	int i;
2079
2080	ASSERT((size & 3) == 0);
2081
2082	for (i = 0; i < count; i++)
2083		buf[i] = BSWAP_32(buf[i]);
2084}
2085
2086void
2087byteswap_uint16_array(void *vbuf, size_t size)
2088{
2089	uint16_t *buf = vbuf;
2090	size_t count = size >> 1;
2091	int i;
2092
2093	ASSERT((size & 1) == 0);
2094
2095	for (i = 0; i < count; i++)
2096		buf[i] = BSWAP_16(buf[i]);
2097}
2098
2099/* ARGSUSED */
2100void
2101byteswap_uint8_array(void *vbuf, size_t size)
2102{
2103}
2104
2105void
2106dmu_init(void)
2107{
2108	zfs_dbgmsg_init();
2109	sa_cache_init();
2110	xuio_stat_init();
2111	dmu_objset_init();
2112	dnode_init();
2113	dbuf_init();
2114	zfetch_init();
2115	zio_compress_init();
2116	l2arc_init();
2117	arc_init();
2118}
2119
2120void
2121dmu_fini(void)
2122{
2123	arc_fini(); /* arc depends on l2arc, so arc must go first */
2124	l2arc_fini();
2125	zfetch_fini();
2126	zio_compress_fini();
2127	dbuf_fini();
2128	dnode_fini();
2129	dmu_objset_fini();
2130	xuio_stat_fini();
2131	sa_cache_fini();
2132	zfs_dbgmsg_fini();
2133}
2134