dmu.c revision 290757
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, 0, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	/*
404	 * Note: We directly notify the prefetch code of this read, so that
405	 * we can tell it about the multi-block read.  dbuf_read() only knows
406	 * about the one block it is accessing.
407	 */
408	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
409	    DB_RF_NOPREFETCH;
410
411	rw_enter(&dn->dn_struct_rwlock, RW_READER);
412	if (dn->dn_datablkshift) {
413		int blkshift = dn->dn_datablkshift;
414		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
415		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
416	} else {
417		if (offset + length > dn->dn_datablksz) {
418			zfs_panic_recover("zfs: accessing past end of object "
419			    "%llx/%llx (size=%u access=%llu+%llu)",
420			    (longlong_t)dn->dn_objset->
421			    os_dsl_dataset->ds_object,
422			    (longlong_t)dn->dn_object, dn->dn_datablksz,
423			    (longlong_t)offset, (longlong_t)length);
424			rw_exit(&dn->dn_struct_rwlock);
425			return (SET_ERROR(EIO));
426		}
427		nblks = 1;
428	}
429	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
430
431	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
432	blkid = dbuf_whichblock(dn, 0, offset);
433	for (i = 0; i < nblks; i++) {
434		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
435		if (db == NULL) {
436			rw_exit(&dn->dn_struct_rwlock);
437			dmu_buf_rele_array(dbp, nblks, tag);
438			zio_nowait(zio);
439			return (SET_ERROR(EIO));
440		}
441
442		/* initiate async i/o */
443		if (read)
444			(void) dbuf_read(db, zio, dbuf_flags);
445#ifdef _KERNEL
446		else
447			curthread->td_ru.ru_oublock++;
448#endif
449		dbp[i] = &db->db;
450	}
451
452	if ((flags & DMU_READ_NO_PREFETCH) == 0 && read &&
453	    length <= zfetch_array_rd_sz) {
454		dmu_zfetch(&dn->dn_zfetch, blkid, nblks);
455	}
456	rw_exit(&dn->dn_struct_rwlock);
457
458	/* wait for async i/o */
459	err = zio_wait(zio);
460	if (err) {
461		dmu_buf_rele_array(dbp, nblks, tag);
462		return (err);
463	}
464
465	/* wait for other io to complete */
466	if (read) {
467		for (i = 0; i < nblks; i++) {
468			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
469			mutex_enter(&db->db_mtx);
470			while (db->db_state == DB_READ ||
471			    db->db_state == DB_FILL)
472				cv_wait(&db->db_changed, &db->db_mtx);
473			if (db->db_state == DB_UNCACHED)
474				err = SET_ERROR(EIO);
475			mutex_exit(&db->db_mtx);
476			if (err) {
477				dmu_buf_rele_array(dbp, nblks, tag);
478				return (err);
479			}
480		}
481	}
482
483	*numbufsp = nblks;
484	*dbpp = dbp;
485	return (0);
486}
487
488static int
489dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
490    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
491{
492	dnode_t *dn;
493	int err;
494
495	err = dnode_hold(os, object, FTAG, &dn);
496	if (err)
497		return (err);
498
499	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
500	    numbufsp, dbpp, DMU_READ_PREFETCH);
501
502	dnode_rele(dn, FTAG);
503
504	return (err);
505}
506
507int
508dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
509    uint64_t length, boolean_t read, void *tag, int *numbufsp,
510    dmu_buf_t ***dbpp)
511{
512	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
513	dnode_t *dn;
514	int err;
515
516	DB_DNODE_ENTER(db);
517	dn = DB_DNODE(db);
518	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
519	    numbufsp, dbpp, DMU_READ_PREFETCH);
520	DB_DNODE_EXIT(db);
521
522	return (err);
523}
524
525void
526dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
527{
528	int i;
529	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
530
531	if (numbufs == 0)
532		return;
533
534	for (i = 0; i < numbufs; i++) {
535		if (dbp[i])
536			dbuf_rele(dbp[i], tag);
537	}
538
539	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
540}
541
542/*
543 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
544 * indirect blocks prefeteched will be those that point to the blocks containing
545 * the data starting at offset, and continuing to offset + len.
546 *
547 * Note that if the indirect blocks above the blocks being prefetched are not in
548 * cache, they will be asychronously read in.
549 */
550void
551dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
552    uint64_t len, zio_priority_t pri)
553{
554	dnode_t *dn;
555	uint64_t blkid;
556	int nblks, err;
557
558	if (len == 0) {  /* they're interested in the bonus buffer */
559		dn = DMU_META_DNODE(os);
560
561		if (object == 0 || object >= DN_MAX_OBJECT)
562			return;
563
564		rw_enter(&dn->dn_struct_rwlock, RW_READER);
565		blkid = dbuf_whichblock(dn, level,
566		    object * sizeof (dnode_phys_t));
567		dbuf_prefetch(dn, level, blkid, pri, 0);
568		rw_exit(&dn->dn_struct_rwlock);
569		return;
570	}
571
572	/*
573	 * XXX - Note, if the dnode for the requested object is not
574	 * already cached, we will do a *synchronous* read in the
575	 * dnode_hold() call.  The same is true for any indirects.
576	 */
577	err = dnode_hold(os, object, FTAG, &dn);
578	if (err != 0)
579		return;
580
581	rw_enter(&dn->dn_struct_rwlock, RW_READER);
582	/*
583	 * offset + len - 1 is the last byte we want to prefetch for, and offset
584	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
585	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
586	 * offset)  is the first.  Then the number we need to prefetch is the
587	 * last - first + 1.
588	 */
589	if (level > 0 || dn->dn_datablkshift != 0) {
590		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
591		    dbuf_whichblock(dn, level, offset) + 1;
592	} else {
593		nblks = (offset < dn->dn_datablksz);
594	}
595
596	if (nblks != 0) {
597		blkid = dbuf_whichblock(dn, level, offset);
598		for (int i = 0; i < nblks; i++)
599			dbuf_prefetch(dn, level, blkid + i, pri, 0);
600	}
601
602	rw_exit(&dn->dn_struct_rwlock);
603
604	dnode_rele(dn, FTAG);
605}
606
607/*
608 * Get the next "chunk" of file data to free.  We traverse the file from
609 * the end so that the file gets shorter over time (if we crashes in the
610 * middle, this will leave us in a better state).  We find allocated file
611 * data by simply searching the allocated level 1 indirects.
612 *
613 * On input, *start should be the first offset that does not need to be
614 * freed (e.g. "offset + length").  On return, *start will be the first
615 * offset that should be freed.
616 */
617static int
618get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
619{
620	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
621	/* bytes of data covered by a level-1 indirect block */
622	uint64_t iblkrange =
623	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
624
625	ASSERT3U(minimum, <=, *start);
626
627	if (*start - minimum <= iblkrange * maxblks) {
628		*start = minimum;
629		return (0);
630	}
631	ASSERT(ISP2(iblkrange));
632
633	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
634		int err;
635
636		/*
637		 * dnode_next_offset(BACKWARDS) will find an allocated L1
638		 * indirect block at or before the input offset.  We must
639		 * decrement *start so that it is at the end of the region
640		 * to search.
641		 */
642		(*start)--;
643		err = dnode_next_offset(dn,
644		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
645
646		/* if there are no indirect blocks before start, we are done */
647		if (err == ESRCH) {
648			*start = minimum;
649			break;
650		} else if (err != 0) {
651			return (err);
652		}
653
654		/* set start to the beginning of this L1 indirect */
655		*start = P2ALIGN(*start, iblkrange);
656	}
657	if (*start < minimum)
658		*start = minimum;
659	return (0);
660}
661
662static int
663dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
664    uint64_t length)
665{
666	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
667	int err;
668
669	if (offset >= object_size)
670		return (0);
671
672	if (length == DMU_OBJECT_END || offset + length > object_size)
673		length = object_size - offset;
674
675	while (length != 0) {
676		uint64_t chunk_end, chunk_begin;
677
678		chunk_end = chunk_begin = offset + length;
679
680		/* move chunk_begin backwards to the beginning of this chunk */
681		err = get_next_chunk(dn, &chunk_begin, offset);
682		if (err)
683			return (err);
684		ASSERT3U(chunk_begin, >=, offset);
685		ASSERT3U(chunk_begin, <=, chunk_end);
686
687		dmu_tx_t *tx = dmu_tx_create(os);
688		dmu_tx_hold_free(tx, dn->dn_object,
689		    chunk_begin, chunk_end - chunk_begin);
690
691		/*
692		 * Mark this transaction as typically resulting in a net
693		 * reduction in space used.
694		 */
695		dmu_tx_mark_netfree(tx);
696		err = dmu_tx_assign(tx, TXG_WAIT);
697		if (err) {
698			dmu_tx_abort(tx);
699			return (err);
700		}
701		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
702		dmu_tx_commit(tx);
703
704		length -= chunk_end - chunk_begin;
705	}
706	return (0);
707}
708
709int
710dmu_free_long_range(objset_t *os, uint64_t object,
711    uint64_t offset, uint64_t length)
712{
713	dnode_t *dn;
714	int err;
715
716	err = dnode_hold(os, object, FTAG, &dn);
717	if (err != 0)
718		return (err);
719	err = dmu_free_long_range_impl(os, dn, offset, length);
720
721	/*
722	 * It is important to zero out the maxblkid when freeing the entire
723	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
724	 * will take the fast path, and (b) dnode_reallocate() can verify
725	 * that the entire file has been freed.
726	 */
727	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
728		dn->dn_maxblkid = 0;
729
730	dnode_rele(dn, FTAG);
731	return (err);
732}
733
734int
735dmu_free_long_object(objset_t *os, uint64_t object)
736{
737	dmu_tx_t *tx;
738	int err;
739
740	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
741	if (err != 0)
742		return (err);
743
744	tx = dmu_tx_create(os);
745	dmu_tx_hold_bonus(tx, object);
746	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
747	dmu_tx_mark_netfree(tx);
748	err = dmu_tx_assign(tx, TXG_WAIT);
749	if (err == 0) {
750		err = dmu_object_free(os, object, tx);
751		dmu_tx_commit(tx);
752	} else {
753		dmu_tx_abort(tx);
754	}
755
756	return (err);
757}
758
759int
760dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
761    uint64_t size, dmu_tx_t *tx)
762{
763	dnode_t *dn;
764	int err = dnode_hold(os, object, FTAG, &dn);
765	if (err)
766		return (err);
767	ASSERT(offset < UINT64_MAX);
768	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
769	dnode_free_range(dn, offset, size, tx);
770	dnode_rele(dn, FTAG);
771	return (0);
772}
773
774int
775dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
776    void *buf, uint32_t flags)
777{
778	dnode_t *dn;
779	dmu_buf_t **dbp;
780	int numbufs, err;
781
782	err = dnode_hold(os, object, FTAG, &dn);
783	if (err)
784		return (err);
785
786	/*
787	 * Deal with odd block sizes, where there can't be data past the first
788	 * block.  If we ever do the tail block optimization, we will need to
789	 * handle that here as well.
790	 */
791	if (dn->dn_maxblkid == 0) {
792		int newsz = offset > dn->dn_datablksz ? 0 :
793		    MIN(size, dn->dn_datablksz - offset);
794		bzero((char *)buf + newsz, size - newsz);
795		size = newsz;
796	}
797
798	while (size > 0) {
799		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
800		int i;
801
802		/*
803		 * NB: we could do this block-at-a-time, but it's nice
804		 * to be reading in parallel.
805		 */
806		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
807		    TRUE, FTAG, &numbufs, &dbp, flags);
808		if (err)
809			break;
810
811		for (i = 0; i < numbufs; i++) {
812			int tocpy;
813			int bufoff;
814			dmu_buf_t *db = dbp[i];
815
816			ASSERT(size > 0);
817
818			bufoff = offset - db->db_offset;
819			tocpy = (int)MIN(db->db_size - bufoff, size);
820
821			bcopy((char *)db->db_data + bufoff, buf, tocpy);
822
823			offset += tocpy;
824			size -= tocpy;
825			buf = (char *)buf + tocpy;
826		}
827		dmu_buf_rele_array(dbp, numbufs, FTAG);
828	}
829	dnode_rele(dn, FTAG);
830	return (err);
831}
832
833void
834dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
835    const void *buf, dmu_tx_t *tx)
836{
837	dmu_buf_t **dbp;
838	int numbufs, i;
839
840	if (size == 0)
841		return;
842
843	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
844	    FALSE, FTAG, &numbufs, &dbp));
845
846	for (i = 0; i < numbufs; i++) {
847		int tocpy;
848		int bufoff;
849		dmu_buf_t *db = dbp[i];
850
851		ASSERT(size > 0);
852
853		bufoff = offset - db->db_offset;
854		tocpy = (int)MIN(db->db_size - bufoff, size);
855
856		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
857
858		if (tocpy == db->db_size)
859			dmu_buf_will_fill(db, tx);
860		else
861			dmu_buf_will_dirty(db, tx);
862
863		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
864
865		if (tocpy == db->db_size)
866			dmu_buf_fill_done(db, tx);
867
868		offset += tocpy;
869		size -= tocpy;
870		buf = (char *)buf + tocpy;
871	}
872	dmu_buf_rele_array(dbp, numbufs, FTAG);
873}
874
875void
876dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
877    dmu_tx_t *tx)
878{
879	dmu_buf_t **dbp;
880	int numbufs, i;
881
882	if (size == 0)
883		return;
884
885	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
886	    FALSE, FTAG, &numbufs, &dbp));
887
888	for (i = 0; i < numbufs; i++) {
889		dmu_buf_t *db = dbp[i];
890
891		dmu_buf_will_not_fill(db, tx);
892	}
893	dmu_buf_rele_array(dbp, numbufs, FTAG);
894}
895
896void
897dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
898    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
899    int compressed_size, int byteorder, dmu_tx_t *tx)
900{
901	dmu_buf_t *db;
902
903	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
904	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
905	VERIFY0(dmu_buf_hold_noread(os, object, offset,
906	    FTAG, &db));
907
908	dmu_buf_write_embedded(db,
909	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
910	    uncompressed_size, compressed_size, byteorder, tx);
911
912	dmu_buf_rele(db, FTAG);
913}
914
915/*
916 * DMU support for xuio
917 */
918kstat_t *xuio_ksp = NULL;
919
920int
921dmu_xuio_init(xuio_t *xuio, int nblk)
922{
923	dmu_xuio_t *priv;
924	uio_t *uio = &xuio->xu_uio;
925
926	uio->uio_iovcnt = nblk;
927	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
928
929	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
930	priv->cnt = nblk;
931	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
932	priv->iovp = uio->uio_iov;
933	XUIO_XUZC_PRIV(xuio) = priv;
934
935	if (XUIO_XUZC_RW(xuio) == UIO_READ)
936		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
937	else
938		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
939
940	return (0);
941}
942
943void
944dmu_xuio_fini(xuio_t *xuio)
945{
946	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
947	int nblk = priv->cnt;
948
949	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
950	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
951	kmem_free(priv, sizeof (dmu_xuio_t));
952
953	if (XUIO_XUZC_RW(xuio) == UIO_READ)
954		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
955	else
956		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
957}
958
959/*
960 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
961 * and increase priv->next by 1.
962 */
963int
964dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
965{
966	struct iovec *iov;
967	uio_t *uio = &xuio->xu_uio;
968	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
969	int i = priv->next++;
970
971	ASSERT(i < priv->cnt);
972	ASSERT(off + n <= arc_buf_size(abuf));
973	iov = uio->uio_iov + i;
974	iov->iov_base = (char *)abuf->b_data + off;
975	iov->iov_len = n;
976	priv->bufs[i] = abuf;
977	return (0);
978}
979
980int
981dmu_xuio_cnt(xuio_t *xuio)
982{
983	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
984	return (priv->cnt);
985}
986
987arc_buf_t *
988dmu_xuio_arcbuf(xuio_t *xuio, int i)
989{
990	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
991
992	ASSERT(i < priv->cnt);
993	return (priv->bufs[i]);
994}
995
996void
997dmu_xuio_clear(xuio_t *xuio, int i)
998{
999	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1000
1001	ASSERT(i < priv->cnt);
1002	priv->bufs[i] = NULL;
1003}
1004
1005static void
1006xuio_stat_init(void)
1007{
1008	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1009	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1010	    KSTAT_FLAG_VIRTUAL);
1011	if (xuio_ksp != NULL) {
1012		xuio_ksp->ks_data = &xuio_stats;
1013		kstat_install(xuio_ksp);
1014	}
1015}
1016
1017static void
1018xuio_stat_fini(void)
1019{
1020	if (xuio_ksp != NULL) {
1021		kstat_delete(xuio_ksp);
1022		xuio_ksp = NULL;
1023	}
1024}
1025
1026void
1027xuio_stat_wbuf_copied()
1028{
1029	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1030}
1031
1032void
1033xuio_stat_wbuf_nocopy()
1034{
1035	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1036}
1037
1038#ifdef _KERNEL
1039static int
1040dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1041{
1042	dmu_buf_t **dbp;
1043	int numbufs, i, err;
1044	xuio_t *xuio = NULL;
1045
1046	/*
1047	 * NB: we could do this block-at-a-time, but it's nice
1048	 * to be reading in parallel.
1049	 */
1050	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1051	    TRUE, FTAG, &numbufs, &dbp, 0);
1052	if (err)
1053		return (err);
1054
1055#ifdef UIO_XUIO
1056	if (uio->uio_extflg == UIO_XUIO)
1057		xuio = (xuio_t *)uio;
1058#endif
1059
1060	for (i = 0; i < numbufs; i++) {
1061		int tocpy;
1062		int bufoff;
1063		dmu_buf_t *db = dbp[i];
1064
1065		ASSERT(size > 0);
1066
1067		bufoff = uio->uio_loffset - db->db_offset;
1068		tocpy = (int)MIN(db->db_size - bufoff, size);
1069
1070		if (xuio) {
1071			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1072			arc_buf_t *dbuf_abuf = dbi->db_buf;
1073			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1074			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1075			if (!err) {
1076				uio->uio_resid -= tocpy;
1077				uio->uio_loffset += tocpy;
1078			}
1079
1080			if (abuf == dbuf_abuf)
1081				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1082			else
1083				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1084		} else {
1085			err = uiomove((char *)db->db_data + bufoff, tocpy,
1086			    UIO_READ, uio);
1087		}
1088		if (err)
1089			break;
1090
1091		size -= tocpy;
1092	}
1093	dmu_buf_rele_array(dbp, numbufs, FTAG);
1094
1095	return (err);
1096}
1097
1098/*
1099 * Read 'size' bytes into the uio buffer.
1100 * From object zdb->db_object.
1101 * Starting at offset uio->uio_loffset.
1102 *
1103 * If the caller already has a dbuf in the target object
1104 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1105 * because we don't have to find the dnode_t for the object.
1106 */
1107int
1108dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1109{
1110	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1111	dnode_t *dn;
1112	int err;
1113
1114	if (size == 0)
1115		return (0);
1116
1117	DB_DNODE_ENTER(db);
1118	dn = DB_DNODE(db);
1119	err = dmu_read_uio_dnode(dn, uio, size);
1120	DB_DNODE_EXIT(db);
1121
1122	return (err);
1123}
1124
1125/*
1126 * Read 'size' bytes into the uio buffer.
1127 * From the specified object
1128 * Starting at offset uio->uio_loffset.
1129 */
1130int
1131dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1132{
1133	dnode_t *dn;
1134	int err;
1135
1136	if (size == 0)
1137		return (0);
1138
1139	err = dnode_hold(os, object, FTAG, &dn);
1140	if (err)
1141		return (err);
1142
1143	err = dmu_read_uio_dnode(dn, uio, size);
1144
1145	dnode_rele(dn, FTAG);
1146
1147	return (err);
1148}
1149
1150static int
1151dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1152{
1153	dmu_buf_t **dbp;
1154	int numbufs;
1155	int err = 0;
1156	int i;
1157
1158	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1159	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1160	if (err)
1161		return (err);
1162
1163	for (i = 0; i < numbufs; i++) {
1164		int tocpy;
1165		int bufoff;
1166		dmu_buf_t *db = dbp[i];
1167
1168		ASSERT(size > 0);
1169
1170		bufoff = uio->uio_loffset - db->db_offset;
1171		tocpy = (int)MIN(db->db_size - bufoff, size);
1172
1173		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1174
1175		if (tocpy == db->db_size)
1176			dmu_buf_will_fill(db, tx);
1177		else
1178			dmu_buf_will_dirty(db, tx);
1179
1180		/*
1181		 * XXX uiomove could block forever (eg. nfs-backed
1182		 * pages).  There needs to be a uiolockdown() function
1183		 * to lock the pages in memory, so that uiomove won't
1184		 * block.
1185		 */
1186		err = uiomove((char *)db->db_data + bufoff, tocpy,
1187		    UIO_WRITE, uio);
1188
1189		if (tocpy == db->db_size)
1190			dmu_buf_fill_done(db, tx);
1191
1192		if (err)
1193			break;
1194
1195		size -= tocpy;
1196	}
1197
1198	dmu_buf_rele_array(dbp, numbufs, FTAG);
1199	return (err);
1200}
1201
1202/*
1203 * Write 'size' bytes from the uio buffer.
1204 * To object zdb->db_object.
1205 * Starting at offset uio->uio_loffset.
1206 *
1207 * If the caller already has a dbuf in the target object
1208 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1209 * because we don't have to find the dnode_t for the object.
1210 */
1211int
1212dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1213    dmu_tx_t *tx)
1214{
1215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1216	dnode_t *dn;
1217	int err;
1218
1219	if (size == 0)
1220		return (0);
1221
1222	DB_DNODE_ENTER(db);
1223	dn = DB_DNODE(db);
1224	err = dmu_write_uio_dnode(dn, uio, size, tx);
1225	DB_DNODE_EXIT(db);
1226
1227	return (err);
1228}
1229
1230/*
1231 * Write 'size' bytes from the uio buffer.
1232 * To the specified object.
1233 * Starting at offset uio->uio_loffset.
1234 */
1235int
1236dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1237    dmu_tx_t *tx)
1238{
1239	dnode_t *dn;
1240	int err;
1241
1242	if (size == 0)
1243		return (0);
1244
1245	err = dnode_hold(os, object, FTAG, &dn);
1246	if (err)
1247		return (err);
1248
1249	err = dmu_write_uio_dnode(dn, uio, size, tx);
1250
1251	dnode_rele(dn, FTAG);
1252
1253	return (err);
1254}
1255
1256#ifdef sun
1257int
1258dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1259    page_t *pp, dmu_tx_t *tx)
1260{
1261	dmu_buf_t **dbp;
1262	int numbufs, i;
1263	int err;
1264
1265	if (size == 0)
1266		return (0);
1267
1268	err = dmu_buf_hold_array(os, object, offset, size,
1269	    FALSE, FTAG, &numbufs, &dbp);
1270	if (err)
1271		return (err);
1272
1273	for (i = 0; i < numbufs; i++) {
1274		int tocpy, copied, thiscpy;
1275		int bufoff;
1276		dmu_buf_t *db = dbp[i];
1277		caddr_t va;
1278
1279		ASSERT(size > 0);
1280		ASSERT3U(db->db_size, >=, PAGESIZE);
1281
1282		bufoff = offset - db->db_offset;
1283		tocpy = (int)MIN(db->db_size - bufoff, size);
1284
1285		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1286
1287		if (tocpy == db->db_size)
1288			dmu_buf_will_fill(db, tx);
1289		else
1290			dmu_buf_will_dirty(db, tx);
1291
1292		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1293			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1294			thiscpy = MIN(PAGESIZE, tocpy - copied);
1295			va = zfs_map_page(pp, S_READ);
1296			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1297			zfs_unmap_page(pp, va);
1298			pp = pp->p_next;
1299			bufoff += PAGESIZE;
1300		}
1301
1302		if (tocpy == db->db_size)
1303			dmu_buf_fill_done(db, tx);
1304
1305		offset += tocpy;
1306		size -= tocpy;
1307	}
1308	dmu_buf_rele_array(dbp, numbufs, FTAG);
1309	return (err);
1310}
1311
1312#else
1313
1314int
1315dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1316    vm_page_t *ma, dmu_tx_t *tx)
1317{
1318	dmu_buf_t **dbp;
1319	struct sf_buf *sf;
1320	int numbufs, i;
1321	int err;
1322
1323	if (size == 0)
1324		return (0);
1325
1326	err = dmu_buf_hold_array(os, object, offset, size,
1327	    FALSE, FTAG, &numbufs, &dbp);
1328	if (err)
1329		return (err);
1330
1331	for (i = 0; i < numbufs; i++) {
1332		int tocpy, copied, thiscpy;
1333		int bufoff;
1334		dmu_buf_t *db = dbp[i];
1335		caddr_t va;
1336
1337		ASSERT(size > 0);
1338		ASSERT3U(db->db_size, >=, PAGESIZE);
1339
1340		bufoff = offset - db->db_offset;
1341		tocpy = (int)MIN(db->db_size - bufoff, size);
1342
1343		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1344
1345		if (tocpy == db->db_size)
1346			dmu_buf_will_fill(db, tx);
1347		else
1348			dmu_buf_will_dirty(db, tx);
1349
1350		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1351			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1352			thiscpy = MIN(PAGESIZE, tocpy - copied);
1353			va = zfs_map_page(*ma, &sf);
1354			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1355			zfs_unmap_page(sf);
1356			ma += 1;
1357			bufoff += PAGESIZE;
1358		}
1359
1360		if (tocpy == db->db_size)
1361			dmu_buf_fill_done(db, tx);
1362
1363		offset += tocpy;
1364		size -= tocpy;
1365	}
1366	dmu_buf_rele_array(dbp, numbufs, FTAG);
1367	return (err);
1368}
1369#endif	/* sun */
1370#endif
1371
1372/*
1373 * Allocate a loaned anonymous arc buffer.
1374 */
1375arc_buf_t *
1376dmu_request_arcbuf(dmu_buf_t *handle, int size)
1377{
1378	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1379
1380	return (arc_loan_buf(db->db_objset->os_spa, size));
1381}
1382
1383/*
1384 * Free a loaned arc buffer.
1385 */
1386void
1387dmu_return_arcbuf(arc_buf_t *buf)
1388{
1389	arc_return_buf(buf, FTAG);
1390	VERIFY(arc_buf_remove_ref(buf, FTAG));
1391}
1392
1393/*
1394 * When possible directly assign passed loaned arc buffer to a dbuf.
1395 * If this is not possible copy the contents of passed arc buf via
1396 * dmu_write().
1397 */
1398void
1399dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1400    dmu_tx_t *tx)
1401{
1402	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1403	dnode_t *dn;
1404	dmu_buf_impl_t *db;
1405	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1406	uint64_t blkid;
1407
1408	DB_DNODE_ENTER(dbuf);
1409	dn = DB_DNODE(dbuf);
1410	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1411	blkid = dbuf_whichblock(dn, 0, offset);
1412	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1413	rw_exit(&dn->dn_struct_rwlock);
1414	DB_DNODE_EXIT(dbuf);
1415
1416	/*
1417	 * We can only assign if the offset is aligned, the arc buf is the
1418	 * same size as the dbuf, and the dbuf is not metadata.  It
1419	 * can't be metadata because the loaned arc buf comes from the
1420	 * user-data kmem arena.
1421	 */
1422	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1423	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1424		dbuf_assign_arcbuf(db, buf, tx);
1425		dbuf_rele(db, FTAG);
1426	} else {
1427		objset_t *os;
1428		uint64_t object;
1429
1430		DB_DNODE_ENTER(dbuf);
1431		dn = DB_DNODE(dbuf);
1432		os = dn->dn_objset;
1433		object = dn->dn_object;
1434		DB_DNODE_EXIT(dbuf);
1435
1436		dbuf_rele(db, FTAG);
1437		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1438		dmu_return_arcbuf(buf);
1439		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1440	}
1441}
1442
1443typedef struct {
1444	dbuf_dirty_record_t	*dsa_dr;
1445	dmu_sync_cb_t		*dsa_done;
1446	zgd_t			*dsa_zgd;
1447	dmu_tx_t		*dsa_tx;
1448} dmu_sync_arg_t;
1449
1450/* ARGSUSED */
1451static void
1452dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1453{
1454	dmu_sync_arg_t *dsa = varg;
1455	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1456	blkptr_t *bp = zio->io_bp;
1457
1458	if (zio->io_error == 0) {
1459		if (BP_IS_HOLE(bp)) {
1460			/*
1461			 * A block of zeros may compress to a hole, but the
1462			 * block size still needs to be known for replay.
1463			 */
1464			BP_SET_LSIZE(bp, db->db_size);
1465		} else if (!BP_IS_EMBEDDED(bp)) {
1466			ASSERT(BP_GET_LEVEL(bp) == 0);
1467			bp->blk_fill = 1;
1468		}
1469	}
1470}
1471
1472static void
1473dmu_sync_late_arrival_ready(zio_t *zio)
1474{
1475	dmu_sync_ready(zio, NULL, zio->io_private);
1476}
1477
1478/* ARGSUSED */
1479static void
1480dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1481{
1482	dmu_sync_arg_t *dsa = varg;
1483	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1484	dmu_buf_impl_t *db = dr->dr_dbuf;
1485
1486	mutex_enter(&db->db_mtx);
1487	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1488	if (zio->io_error == 0) {
1489		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1490		if (dr->dt.dl.dr_nopwrite) {
1491			blkptr_t *bp = zio->io_bp;
1492			blkptr_t *bp_orig = &zio->io_bp_orig;
1493			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1494
1495			ASSERT(BP_EQUAL(bp, bp_orig));
1496			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1497			ASSERT(zio_checksum_table[chksum].ci_flags &
1498			    ZCHECKSUM_FLAG_NOPWRITE);
1499		}
1500		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1501		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1502		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1503
1504		/*
1505		 * Old style holes are filled with all zeros, whereas
1506		 * new-style holes maintain their lsize, type, level,
1507		 * and birth time (see zio_write_compress). While we
1508		 * need to reset the BP_SET_LSIZE() call that happened
1509		 * in dmu_sync_ready for old style holes, we do *not*
1510		 * want to wipe out the information contained in new
1511		 * style holes. Thus, only zero out the block pointer if
1512		 * it's an old style hole.
1513		 */
1514		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1515		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1516			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1517	} else {
1518		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1519	}
1520	cv_broadcast(&db->db_changed);
1521	mutex_exit(&db->db_mtx);
1522
1523	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1524
1525	kmem_free(dsa, sizeof (*dsa));
1526}
1527
1528static void
1529dmu_sync_late_arrival_done(zio_t *zio)
1530{
1531	blkptr_t *bp = zio->io_bp;
1532	dmu_sync_arg_t *dsa = zio->io_private;
1533	blkptr_t *bp_orig = &zio->io_bp_orig;
1534
1535	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1536		/*
1537		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1538		 * then there is nothing to do here. Otherwise, free the
1539		 * newly allocated block in this txg.
1540		 */
1541		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1542			ASSERT(BP_EQUAL(bp, bp_orig));
1543		} else {
1544			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1545			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1546			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1547			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1548		}
1549	}
1550
1551	dmu_tx_commit(dsa->dsa_tx);
1552
1553	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1554
1555	kmem_free(dsa, sizeof (*dsa));
1556}
1557
1558static int
1559dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1560    zio_prop_t *zp, zbookmark_phys_t *zb)
1561{
1562	dmu_sync_arg_t *dsa;
1563	dmu_tx_t *tx;
1564
1565	tx = dmu_tx_create(os);
1566	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1567	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1568		dmu_tx_abort(tx);
1569		/* Make zl_get_data do txg_waited_synced() */
1570		return (SET_ERROR(EIO));
1571	}
1572
1573	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1574	dsa->dsa_dr = NULL;
1575	dsa->dsa_done = done;
1576	dsa->dsa_zgd = zgd;
1577	dsa->dsa_tx = tx;
1578
1579	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1580	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1581	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1582	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1583
1584	return (0);
1585}
1586
1587/*
1588 * Intent log support: sync the block associated with db to disk.
1589 * N.B. and XXX: the caller is responsible for making sure that the
1590 * data isn't changing while dmu_sync() is writing it.
1591 *
1592 * Return values:
1593 *
1594 *	EEXIST: this txg has already been synced, so there's nothing to do.
1595 *		The caller should not log the write.
1596 *
1597 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1598 *		The caller should not log the write.
1599 *
1600 *	EALREADY: this block is already in the process of being synced.
1601 *		The caller should track its progress (somehow).
1602 *
1603 *	EIO: could not do the I/O.
1604 *		The caller should do a txg_wait_synced().
1605 *
1606 *	0: the I/O has been initiated.
1607 *		The caller should log this blkptr in the done callback.
1608 *		It is possible that the I/O will fail, in which case
1609 *		the error will be reported to the done callback and
1610 *		propagated to pio from zio_done().
1611 */
1612int
1613dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1614{
1615	blkptr_t *bp = zgd->zgd_bp;
1616	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1617	objset_t *os = db->db_objset;
1618	dsl_dataset_t *ds = os->os_dsl_dataset;
1619	dbuf_dirty_record_t *dr;
1620	dmu_sync_arg_t *dsa;
1621	zbookmark_phys_t zb;
1622	zio_prop_t zp;
1623	dnode_t *dn;
1624
1625	ASSERT(pio != NULL);
1626	ASSERT(txg != 0);
1627
1628	SET_BOOKMARK(&zb, ds->ds_object,
1629	    db->db.db_object, db->db_level, db->db_blkid);
1630
1631	DB_DNODE_ENTER(db);
1632	dn = DB_DNODE(db);
1633	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1634	DB_DNODE_EXIT(db);
1635
1636	/*
1637	 * If we're frozen (running ziltest), we always need to generate a bp.
1638	 */
1639	if (txg > spa_freeze_txg(os->os_spa))
1640		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1641
1642	/*
1643	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1644	 * and us.  If we determine that this txg is not yet syncing,
1645	 * but it begins to sync a moment later, that's OK because the
1646	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1647	 */
1648	mutex_enter(&db->db_mtx);
1649
1650	if (txg <= spa_last_synced_txg(os->os_spa)) {
1651		/*
1652		 * This txg has already synced.  There's nothing to do.
1653		 */
1654		mutex_exit(&db->db_mtx);
1655		return (SET_ERROR(EEXIST));
1656	}
1657
1658	if (txg <= spa_syncing_txg(os->os_spa)) {
1659		/*
1660		 * This txg is currently syncing, so we can't mess with
1661		 * the dirty record anymore; just write a new log block.
1662		 */
1663		mutex_exit(&db->db_mtx);
1664		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1665	}
1666
1667	dr = db->db_last_dirty;
1668	while (dr && dr->dr_txg != txg)
1669		dr = dr->dr_next;
1670
1671	if (dr == NULL) {
1672		/*
1673		 * There's no dr for this dbuf, so it must have been freed.
1674		 * There's no need to log writes to freed blocks, so we're done.
1675		 */
1676		mutex_exit(&db->db_mtx);
1677		return (SET_ERROR(ENOENT));
1678	}
1679
1680	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1681
1682	/*
1683	 * Assume the on-disk data is X, the current syncing data (in
1684	 * txg - 1) is Y, and the current in-memory data is Z (currently
1685	 * in dmu_sync).
1686	 *
1687	 * We usually want to perform a nopwrite if X and Z are the
1688	 * same.  However, if Y is different (i.e. the BP is going to
1689	 * change before this write takes effect), then a nopwrite will
1690	 * be incorrect - we would override with X, which could have
1691	 * been freed when Y was written.
1692	 *
1693	 * (Note that this is not a concern when we are nop-writing from
1694	 * syncing context, because X and Y must be identical, because
1695	 * all previous txgs have been synced.)
1696	 *
1697	 * Therefore, we disable nopwrite if the current BP could change
1698	 * before this TXG.  There are two ways it could change: by
1699	 * being dirty (dr_next is non-NULL), or by being freed
1700	 * (dnode_block_freed()).  This behavior is verified by
1701	 * zio_done(), which VERIFYs that the override BP is identical
1702	 * to the on-disk BP.
1703	 */
1704	DB_DNODE_ENTER(db);
1705	dn = DB_DNODE(db);
1706	if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1707		zp.zp_nopwrite = B_FALSE;
1708	DB_DNODE_EXIT(db);
1709
1710	ASSERT(dr->dr_txg == txg);
1711	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1712	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1713		/*
1714		 * We have already issued a sync write for this buffer,
1715		 * or this buffer has already been synced.  It could not
1716		 * have been dirtied since, or we would have cleared the state.
1717		 */
1718		mutex_exit(&db->db_mtx);
1719		return (SET_ERROR(EALREADY));
1720	}
1721
1722	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1723	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1724	mutex_exit(&db->db_mtx);
1725
1726	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1727	dsa->dsa_dr = dr;
1728	dsa->dsa_done = done;
1729	dsa->dsa_zgd = zgd;
1730	dsa->dsa_tx = NULL;
1731
1732	zio_nowait(arc_write(pio, os->os_spa, txg,
1733	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1734	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1735	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1736	    ZIO_FLAG_CANFAIL, &zb));
1737
1738	return (0);
1739}
1740
1741int
1742dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1743	dmu_tx_t *tx)
1744{
1745	dnode_t *dn;
1746	int err;
1747
1748	err = dnode_hold(os, object, FTAG, &dn);
1749	if (err)
1750		return (err);
1751	err = dnode_set_blksz(dn, size, ibs, tx);
1752	dnode_rele(dn, FTAG);
1753	return (err);
1754}
1755
1756void
1757dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1758	dmu_tx_t *tx)
1759{
1760	dnode_t *dn;
1761
1762	/*
1763	 * Send streams include each object's checksum function.  This
1764	 * check ensures that the receiving system can understand the
1765	 * checksum function transmitted.
1766	 */
1767	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1768
1769	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1770	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1771	dn->dn_checksum = checksum;
1772	dnode_setdirty(dn, tx);
1773	dnode_rele(dn, FTAG);
1774}
1775
1776void
1777dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1778	dmu_tx_t *tx)
1779{
1780	dnode_t *dn;
1781
1782	/*
1783	 * Send streams include each object's compression function.  This
1784	 * check ensures that the receiving system can understand the
1785	 * compression function transmitted.
1786	 */
1787	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1788
1789	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1790	dn->dn_compress = compress;
1791	dnode_setdirty(dn, tx);
1792	dnode_rele(dn, FTAG);
1793}
1794
1795int zfs_mdcomp_disable = 0;
1796TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1797SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1798    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1799
1800/*
1801 * When the "redundant_metadata" property is set to "most", only indirect
1802 * blocks of this level and higher will have an additional ditto block.
1803 */
1804int zfs_redundant_metadata_most_ditto_level = 2;
1805
1806void
1807dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1808{
1809	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1810	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1811	    (wp & WP_SPILL));
1812	enum zio_checksum checksum = os->os_checksum;
1813	enum zio_compress compress = os->os_compress;
1814	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1815	boolean_t dedup = B_FALSE;
1816	boolean_t nopwrite = B_FALSE;
1817	boolean_t dedup_verify = os->os_dedup_verify;
1818	int copies = os->os_copies;
1819
1820	/*
1821	 * We maintain different write policies for each of the following
1822	 * types of data:
1823	 *	 1. metadata
1824	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1825	 *	 3. all other level 0 blocks
1826	 */
1827	if (ismd) {
1828		if (zfs_mdcomp_disable) {
1829			compress = ZIO_COMPRESS_EMPTY;
1830		} else {
1831			/*
1832			 * XXX -- we should design a compression algorithm
1833			 * that specializes in arrays of bps.
1834			 */
1835			compress = zio_compress_select(os->os_spa,
1836			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1837		}
1838
1839		/*
1840		 * Metadata always gets checksummed.  If the data
1841		 * checksum is multi-bit correctable, and it's not a
1842		 * ZBT-style checksum, then it's suitable for metadata
1843		 * as well.  Otherwise, the metadata checksum defaults
1844		 * to fletcher4.
1845		 */
1846		if (!(zio_checksum_table[checksum].ci_flags &
1847		    ZCHECKSUM_FLAG_METADATA) ||
1848		    (zio_checksum_table[checksum].ci_flags &
1849		    ZCHECKSUM_FLAG_EMBEDDED))
1850			checksum = ZIO_CHECKSUM_FLETCHER_4;
1851
1852		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1853		    (os->os_redundant_metadata ==
1854		    ZFS_REDUNDANT_METADATA_MOST &&
1855		    (level >= zfs_redundant_metadata_most_ditto_level ||
1856		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1857			copies++;
1858	} else if (wp & WP_NOFILL) {
1859		ASSERT(level == 0);
1860
1861		/*
1862		 * If we're writing preallocated blocks, we aren't actually
1863		 * writing them so don't set any policy properties.  These
1864		 * blocks are currently only used by an external subsystem
1865		 * outside of zfs (i.e. dump) and not written by the zio
1866		 * pipeline.
1867		 */
1868		compress = ZIO_COMPRESS_OFF;
1869		checksum = ZIO_CHECKSUM_NOPARITY;
1870	} else {
1871		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1872		    compress);
1873
1874		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1875		    zio_checksum_select(dn->dn_checksum, checksum) :
1876		    dedup_checksum;
1877
1878		/*
1879		 * Determine dedup setting.  If we are in dmu_sync(),
1880		 * we won't actually dedup now because that's all
1881		 * done in syncing context; but we do want to use the
1882		 * dedup checkum.  If the checksum is not strong
1883		 * enough to ensure unique signatures, force
1884		 * dedup_verify.
1885		 */
1886		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1887			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1888			if (!(zio_checksum_table[checksum].ci_flags &
1889			    ZCHECKSUM_FLAG_DEDUP))
1890				dedup_verify = B_TRUE;
1891		}
1892
1893		/*
1894		 * Enable nopwrite if we have secure enough checksum
1895		 * algorithm (see comment in zio_nop_write) and
1896		 * compression is enabled.  We don't enable nopwrite if
1897		 * dedup is enabled as the two features are mutually
1898		 * exclusive.
1899		 */
1900		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
1901		    ZCHECKSUM_FLAG_NOPWRITE) &&
1902		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1903	}
1904
1905	zp->zp_checksum = checksum;
1906	zp->zp_compress = compress;
1907	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1908	zp->zp_level = level;
1909	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1910	zp->zp_dedup = dedup;
1911	zp->zp_dedup_verify = dedup && dedup_verify;
1912	zp->zp_nopwrite = nopwrite;
1913}
1914
1915int
1916dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1917{
1918	dnode_t *dn;
1919	int err;
1920
1921	/*
1922	 * Sync any current changes before
1923	 * we go trundling through the block pointers.
1924	 */
1925	err = dmu_object_wait_synced(os, object);
1926	if (err) {
1927		return (err);
1928	}
1929
1930	err = dnode_hold(os, object, FTAG, &dn);
1931	if (err) {
1932		return (err);
1933	}
1934
1935	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1936	dnode_rele(dn, FTAG);
1937
1938	return (err);
1939}
1940
1941/*
1942 * Given the ZFS object, if it contains any dirty nodes
1943 * this function flushes all dirty blocks to disk. This
1944 * ensures the DMU object info is updated. A more efficient
1945 * future version might just find the TXG with the maximum
1946 * ID and wait for that to be synced.
1947 */
1948int
1949dmu_object_wait_synced(objset_t *os, uint64_t object) {
1950	dnode_t *dn;
1951	int error, i;
1952
1953	error = dnode_hold(os, object, FTAG, &dn);
1954	if (error) {
1955		return (error);
1956	}
1957
1958	for (i = 0; i < TXG_SIZE; i++) {
1959		if (list_link_active(&dn->dn_dirty_link[i])) {
1960			break;
1961		}
1962	}
1963	dnode_rele(dn, FTAG);
1964	if (i != TXG_SIZE) {
1965		txg_wait_synced(dmu_objset_pool(os), 0);
1966	}
1967
1968	return (0);
1969}
1970
1971void
1972dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1973{
1974	dnode_phys_t *dnp;
1975
1976	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1977	mutex_enter(&dn->dn_mtx);
1978
1979	dnp = dn->dn_phys;
1980
1981	doi->doi_data_block_size = dn->dn_datablksz;
1982	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1983	    1ULL << dn->dn_indblkshift : 0;
1984	doi->doi_type = dn->dn_type;
1985	doi->doi_bonus_type = dn->dn_bonustype;
1986	doi->doi_bonus_size = dn->dn_bonuslen;
1987	doi->doi_indirection = dn->dn_nlevels;
1988	doi->doi_checksum = dn->dn_checksum;
1989	doi->doi_compress = dn->dn_compress;
1990	doi->doi_nblkptr = dn->dn_nblkptr;
1991	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1992	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1993	doi->doi_fill_count = 0;
1994	for (int i = 0; i < dnp->dn_nblkptr; i++)
1995		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1996
1997	mutex_exit(&dn->dn_mtx);
1998	rw_exit(&dn->dn_struct_rwlock);
1999}
2000
2001/*
2002 * Get information on a DMU object.
2003 * If doi is NULL, just indicates whether the object exists.
2004 */
2005int
2006dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2007{
2008	dnode_t *dn;
2009	int err = dnode_hold(os, object, FTAG, &dn);
2010
2011	if (err)
2012		return (err);
2013
2014	if (doi != NULL)
2015		dmu_object_info_from_dnode(dn, doi);
2016
2017	dnode_rele(dn, FTAG);
2018	return (0);
2019}
2020
2021/*
2022 * As above, but faster; can be used when you have a held dbuf in hand.
2023 */
2024void
2025dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2026{
2027	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2028
2029	DB_DNODE_ENTER(db);
2030	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2031	DB_DNODE_EXIT(db);
2032}
2033
2034/*
2035 * Faster still when you only care about the size.
2036 * This is specifically optimized for zfs_getattr().
2037 */
2038void
2039dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2040    u_longlong_t *nblk512)
2041{
2042	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2043	dnode_t *dn;
2044
2045	DB_DNODE_ENTER(db);
2046	dn = DB_DNODE(db);
2047
2048	*blksize = dn->dn_datablksz;
2049	/* add 1 for dnode space */
2050	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2051	    SPA_MINBLOCKSHIFT) + 1;
2052	DB_DNODE_EXIT(db);
2053}
2054
2055void
2056byteswap_uint64_array(void *vbuf, size_t size)
2057{
2058	uint64_t *buf = vbuf;
2059	size_t count = size >> 3;
2060	int i;
2061
2062	ASSERT((size & 7) == 0);
2063
2064	for (i = 0; i < count; i++)
2065		buf[i] = BSWAP_64(buf[i]);
2066}
2067
2068void
2069byteswap_uint32_array(void *vbuf, size_t size)
2070{
2071	uint32_t *buf = vbuf;
2072	size_t count = size >> 2;
2073	int i;
2074
2075	ASSERT((size & 3) == 0);
2076
2077	for (i = 0; i < count; i++)
2078		buf[i] = BSWAP_32(buf[i]);
2079}
2080
2081void
2082byteswap_uint16_array(void *vbuf, size_t size)
2083{
2084	uint16_t *buf = vbuf;
2085	size_t count = size >> 1;
2086	int i;
2087
2088	ASSERT((size & 1) == 0);
2089
2090	for (i = 0; i < count; i++)
2091		buf[i] = BSWAP_16(buf[i]);
2092}
2093
2094/* ARGSUSED */
2095void
2096byteswap_uint8_array(void *vbuf, size_t size)
2097{
2098}
2099
2100void
2101dmu_init(void)
2102{
2103	zfs_dbgmsg_init();
2104	sa_cache_init();
2105	xuio_stat_init();
2106	dmu_objset_init();
2107	dnode_init();
2108	dbuf_init();
2109	zfetch_init();
2110	zio_compress_init();
2111	l2arc_init();
2112	arc_init();
2113}
2114
2115void
2116dmu_fini(void)
2117{
2118	arc_fini(); /* arc depends on l2arc, so arc must go first */
2119	l2arc_fini();
2120	zfetch_fini();
2121	zio_compress_fini();
2122	dbuf_fini();
2123	dnode_fini();
2124	dmu_objset_fini();
2125	xuio_stat_fini();
2126	sa_cache_fini();
2127	zfs_dbgmsg_fini();
2128}
2129