dmu.c revision 288542
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		atomic_inc_32(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
404	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
405		dbuf_flags |= DB_RF_NOPREFETCH;
406
407	rw_enter(&dn->dn_struct_rwlock, RW_READER);
408	if (dn->dn_datablkshift) {
409		int blkshift = dn->dn_datablkshift;
410		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
411		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
412	} else {
413		if (offset + length > dn->dn_datablksz) {
414			zfs_panic_recover("zfs: accessing past end of object "
415			    "%llx/%llx (size=%u access=%llu+%llu)",
416			    (longlong_t)dn->dn_objset->
417			    os_dsl_dataset->ds_object,
418			    (longlong_t)dn->dn_object, dn->dn_datablksz,
419			    (longlong_t)offset, (longlong_t)length);
420			rw_exit(&dn->dn_struct_rwlock);
421			return (SET_ERROR(EIO));
422		}
423		nblks = 1;
424	}
425	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
426
427	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
428	blkid = dbuf_whichblock(dn, offset);
429	for (i = 0; i < nblks; i++) {
430		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
431		if (db == NULL) {
432			rw_exit(&dn->dn_struct_rwlock);
433			dmu_buf_rele_array(dbp, nblks, tag);
434			zio_nowait(zio);
435			return (SET_ERROR(EIO));
436		}
437		/* initiate async i/o */
438		if (read)
439			(void) dbuf_read(db, zio, dbuf_flags);
440#ifdef _KERNEL
441		else
442			curthread->td_ru.ru_oublock++;
443#endif
444		dbp[i] = &db->db;
445	}
446	rw_exit(&dn->dn_struct_rwlock);
447
448	/* wait for async i/o */
449	err = zio_wait(zio);
450	if (err) {
451		dmu_buf_rele_array(dbp, nblks, tag);
452		return (err);
453	}
454
455	/* wait for other io to complete */
456	if (read) {
457		for (i = 0; i < nblks; i++) {
458			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
459			mutex_enter(&db->db_mtx);
460			while (db->db_state == DB_READ ||
461			    db->db_state == DB_FILL)
462				cv_wait(&db->db_changed, &db->db_mtx);
463			if (db->db_state == DB_UNCACHED)
464				err = SET_ERROR(EIO);
465			mutex_exit(&db->db_mtx);
466			if (err) {
467				dmu_buf_rele_array(dbp, nblks, tag);
468				return (err);
469			}
470		}
471	}
472
473	*numbufsp = nblks;
474	*dbpp = dbp;
475	return (0);
476}
477
478static int
479dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
480    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
481{
482	dnode_t *dn;
483	int err;
484
485	err = dnode_hold(os, object, FTAG, &dn);
486	if (err)
487		return (err);
488
489	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
490	    numbufsp, dbpp, DMU_READ_PREFETCH);
491
492	dnode_rele(dn, FTAG);
493
494	return (err);
495}
496
497int
498dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
499    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
500{
501	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
502	dnode_t *dn;
503	int err;
504
505	DB_DNODE_ENTER(db);
506	dn = DB_DNODE(db);
507	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
508	    numbufsp, dbpp, DMU_READ_PREFETCH);
509	DB_DNODE_EXIT(db);
510
511	return (err);
512}
513
514void
515dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
516{
517	int i;
518	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
519
520	if (numbufs == 0)
521		return;
522
523	for (i = 0; i < numbufs; i++) {
524		if (dbp[i])
525			dbuf_rele(dbp[i], tag);
526	}
527
528	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
529}
530
531/*
532 * Issue prefetch i/os for the given blocks.
533 *
534 * Note: The assumption is that we *know* these blocks will be needed
535 * almost immediately.  Therefore, the prefetch i/os will be issued at
536 * ZIO_PRIORITY_SYNC_READ
537 *
538 * Note: indirect blocks and other metadata will be read synchronously,
539 * causing this function to block if they are not already cached.
540 */
541void
542dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
543{
544	dnode_t *dn;
545	uint64_t blkid;
546	int nblks, err;
547
548	if (zfs_prefetch_disable)
549		return;
550
551	if (len == 0) {  /* they're interested in the bonus buffer */
552		dn = DMU_META_DNODE(os);
553
554		if (object == 0 || object >= DN_MAX_OBJECT)
555			return;
556
557		rw_enter(&dn->dn_struct_rwlock, RW_READER);
558		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
559		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
560		rw_exit(&dn->dn_struct_rwlock);
561		return;
562	}
563
564	/*
565	 * XXX - Note, if the dnode for the requested object is not
566	 * already cached, we will do a *synchronous* read in the
567	 * dnode_hold() call.  The same is true for any indirects.
568	 */
569	err = dnode_hold(os, object, FTAG, &dn);
570	if (err != 0)
571		return;
572
573	rw_enter(&dn->dn_struct_rwlock, RW_READER);
574	if (dn->dn_datablkshift) {
575		int blkshift = dn->dn_datablkshift;
576		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
577		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
578	} else {
579		nblks = (offset < dn->dn_datablksz);
580	}
581
582	if (nblks != 0) {
583		blkid = dbuf_whichblock(dn, offset);
584		for (int i = 0; i < nblks; i++)
585			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
586	}
587
588	rw_exit(&dn->dn_struct_rwlock);
589
590	dnode_rele(dn, FTAG);
591}
592
593/*
594 * Get the next "chunk" of file data to free.  We traverse the file from
595 * the end so that the file gets shorter over time (if we crashes in the
596 * middle, this will leave us in a better state).  We find allocated file
597 * data by simply searching the allocated level 1 indirects.
598 *
599 * On input, *start should be the first offset that does not need to be
600 * freed (e.g. "offset + length").  On return, *start will be the first
601 * offset that should be freed.
602 */
603static int
604get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
605{
606	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
607	/* bytes of data covered by a level-1 indirect block */
608	uint64_t iblkrange =
609	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
610
611	ASSERT3U(minimum, <=, *start);
612
613	if (*start - minimum <= iblkrange * maxblks) {
614		*start = minimum;
615		return (0);
616	}
617	ASSERT(ISP2(iblkrange));
618
619	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
620		int err;
621
622		/*
623		 * dnode_next_offset(BACKWARDS) will find an allocated L1
624		 * indirect block at or before the input offset.  We must
625		 * decrement *start so that it is at the end of the region
626		 * to search.
627		 */
628		(*start)--;
629		err = dnode_next_offset(dn,
630		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
631
632		/* if there are no indirect blocks before start, we are done */
633		if (err == ESRCH) {
634			*start = minimum;
635			break;
636		} else if (err != 0) {
637			return (err);
638		}
639
640		/* set start to the beginning of this L1 indirect */
641		*start = P2ALIGN(*start, iblkrange);
642	}
643	if (*start < minimum)
644		*start = minimum;
645	return (0);
646}
647
648static int
649dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
650    uint64_t length)
651{
652	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
653	int err;
654
655	if (offset >= object_size)
656		return (0);
657
658	if (length == DMU_OBJECT_END || offset + length > object_size)
659		length = object_size - offset;
660
661	while (length != 0) {
662		uint64_t chunk_end, chunk_begin;
663
664		chunk_end = chunk_begin = offset + length;
665
666		/* move chunk_begin backwards to the beginning of this chunk */
667		err = get_next_chunk(dn, &chunk_begin, offset);
668		if (err)
669			return (err);
670		ASSERT3U(chunk_begin, >=, offset);
671		ASSERT3U(chunk_begin, <=, chunk_end);
672
673		dmu_tx_t *tx = dmu_tx_create(os);
674		dmu_tx_hold_free(tx, dn->dn_object,
675		    chunk_begin, chunk_end - chunk_begin);
676
677		/*
678		 * Mark this transaction as typically resulting in a net
679		 * reduction in space used.
680		 */
681		dmu_tx_mark_netfree(tx);
682		err = dmu_tx_assign(tx, TXG_WAIT);
683		if (err) {
684			dmu_tx_abort(tx);
685			return (err);
686		}
687		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
688		dmu_tx_commit(tx);
689
690		length -= chunk_end - chunk_begin;
691	}
692	return (0);
693}
694
695int
696dmu_free_long_range(objset_t *os, uint64_t object,
697    uint64_t offset, uint64_t length)
698{
699	dnode_t *dn;
700	int err;
701
702	err = dnode_hold(os, object, FTAG, &dn);
703	if (err != 0)
704		return (err);
705	err = dmu_free_long_range_impl(os, dn, offset, length);
706
707	/*
708	 * It is important to zero out the maxblkid when freeing the entire
709	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
710	 * will take the fast path, and (b) dnode_reallocate() can verify
711	 * that the entire file has been freed.
712	 */
713	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
714		dn->dn_maxblkid = 0;
715
716	dnode_rele(dn, FTAG);
717	return (err);
718}
719
720int
721dmu_free_long_object(objset_t *os, uint64_t object)
722{
723	dmu_tx_t *tx;
724	int err;
725
726	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
727	if (err != 0)
728		return (err);
729
730	tx = dmu_tx_create(os);
731	dmu_tx_hold_bonus(tx, object);
732	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
733	dmu_tx_mark_netfree(tx);
734	err = dmu_tx_assign(tx, TXG_WAIT);
735	if (err == 0) {
736		err = dmu_object_free(os, object, tx);
737		dmu_tx_commit(tx);
738	} else {
739		dmu_tx_abort(tx);
740	}
741
742	return (err);
743}
744
745int
746dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
747    uint64_t size, dmu_tx_t *tx)
748{
749	dnode_t *dn;
750	int err = dnode_hold(os, object, FTAG, &dn);
751	if (err)
752		return (err);
753	ASSERT(offset < UINT64_MAX);
754	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
755	dnode_free_range(dn, offset, size, tx);
756	dnode_rele(dn, FTAG);
757	return (0);
758}
759
760int
761dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
762    void *buf, uint32_t flags)
763{
764	dnode_t *dn;
765	dmu_buf_t **dbp;
766	int numbufs, err;
767
768	err = dnode_hold(os, object, FTAG, &dn);
769	if (err)
770		return (err);
771
772	/*
773	 * Deal with odd block sizes, where there can't be data past the first
774	 * block.  If we ever do the tail block optimization, we will need to
775	 * handle that here as well.
776	 */
777	if (dn->dn_maxblkid == 0) {
778		int newsz = offset > dn->dn_datablksz ? 0 :
779		    MIN(size, dn->dn_datablksz - offset);
780		bzero((char *)buf + newsz, size - newsz);
781		size = newsz;
782	}
783
784	while (size > 0) {
785		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
786		int i;
787
788		/*
789		 * NB: we could do this block-at-a-time, but it's nice
790		 * to be reading in parallel.
791		 */
792		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
793		    TRUE, FTAG, &numbufs, &dbp, flags);
794		if (err)
795			break;
796
797		for (i = 0; i < numbufs; i++) {
798			int tocpy;
799			int bufoff;
800			dmu_buf_t *db = dbp[i];
801
802			ASSERT(size > 0);
803
804			bufoff = offset - db->db_offset;
805			tocpy = (int)MIN(db->db_size - bufoff, size);
806
807			bcopy((char *)db->db_data + bufoff, buf, tocpy);
808
809			offset += tocpy;
810			size -= tocpy;
811			buf = (char *)buf + tocpy;
812		}
813		dmu_buf_rele_array(dbp, numbufs, FTAG);
814	}
815	dnode_rele(dn, FTAG);
816	return (err);
817}
818
819void
820dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
821    const void *buf, dmu_tx_t *tx)
822{
823	dmu_buf_t **dbp;
824	int numbufs, i;
825
826	if (size == 0)
827		return;
828
829	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
830	    FALSE, FTAG, &numbufs, &dbp));
831
832	for (i = 0; i < numbufs; i++) {
833		int tocpy;
834		int bufoff;
835		dmu_buf_t *db = dbp[i];
836
837		ASSERT(size > 0);
838
839		bufoff = offset - db->db_offset;
840		tocpy = (int)MIN(db->db_size - bufoff, size);
841
842		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
843
844		if (tocpy == db->db_size)
845			dmu_buf_will_fill(db, tx);
846		else
847			dmu_buf_will_dirty(db, tx);
848
849		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
850
851		if (tocpy == db->db_size)
852			dmu_buf_fill_done(db, tx);
853
854		offset += tocpy;
855		size -= tocpy;
856		buf = (char *)buf + tocpy;
857	}
858	dmu_buf_rele_array(dbp, numbufs, FTAG);
859}
860
861void
862dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
863    dmu_tx_t *tx)
864{
865	dmu_buf_t **dbp;
866	int numbufs, i;
867
868	if (size == 0)
869		return;
870
871	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
872	    FALSE, FTAG, &numbufs, &dbp));
873
874	for (i = 0; i < numbufs; i++) {
875		dmu_buf_t *db = dbp[i];
876
877		dmu_buf_will_not_fill(db, tx);
878	}
879	dmu_buf_rele_array(dbp, numbufs, FTAG);
880}
881
882void
883dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
884    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
885    int compressed_size, int byteorder, dmu_tx_t *tx)
886{
887	dmu_buf_t *db;
888
889	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
890	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
891	VERIFY0(dmu_buf_hold_noread(os, object, offset,
892	    FTAG, &db));
893
894	dmu_buf_write_embedded(db,
895	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
896	    uncompressed_size, compressed_size, byteorder, tx);
897
898	dmu_buf_rele(db, FTAG);
899}
900
901/*
902 * DMU support for xuio
903 */
904kstat_t *xuio_ksp = NULL;
905
906int
907dmu_xuio_init(xuio_t *xuio, int nblk)
908{
909	dmu_xuio_t *priv;
910	uio_t *uio = &xuio->xu_uio;
911
912	uio->uio_iovcnt = nblk;
913	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
914
915	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
916	priv->cnt = nblk;
917	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
918	priv->iovp = uio->uio_iov;
919	XUIO_XUZC_PRIV(xuio) = priv;
920
921	if (XUIO_XUZC_RW(xuio) == UIO_READ)
922		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
923	else
924		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
925
926	return (0);
927}
928
929void
930dmu_xuio_fini(xuio_t *xuio)
931{
932	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
933	int nblk = priv->cnt;
934
935	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
936	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
937	kmem_free(priv, sizeof (dmu_xuio_t));
938
939	if (XUIO_XUZC_RW(xuio) == UIO_READ)
940		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
941	else
942		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
943}
944
945/*
946 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
947 * and increase priv->next by 1.
948 */
949int
950dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
951{
952	struct iovec *iov;
953	uio_t *uio = &xuio->xu_uio;
954	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
955	int i = priv->next++;
956
957	ASSERT(i < priv->cnt);
958	ASSERT(off + n <= arc_buf_size(abuf));
959	iov = uio->uio_iov + i;
960	iov->iov_base = (char *)abuf->b_data + off;
961	iov->iov_len = n;
962	priv->bufs[i] = abuf;
963	return (0);
964}
965
966int
967dmu_xuio_cnt(xuio_t *xuio)
968{
969	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970	return (priv->cnt);
971}
972
973arc_buf_t *
974dmu_xuio_arcbuf(xuio_t *xuio, int i)
975{
976	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
977
978	ASSERT(i < priv->cnt);
979	return (priv->bufs[i]);
980}
981
982void
983dmu_xuio_clear(xuio_t *xuio, int i)
984{
985	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
986
987	ASSERT(i < priv->cnt);
988	priv->bufs[i] = NULL;
989}
990
991static void
992xuio_stat_init(void)
993{
994	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
995	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
996	    KSTAT_FLAG_VIRTUAL);
997	if (xuio_ksp != NULL) {
998		xuio_ksp->ks_data = &xuio_stats;
999		kstat_install(xuio_ksp);
1000	}
1001}
1002
1003static void
1004xuio_stat_fini(void)
1005{
1006	if (xuio_ksp != NULL) {
1007		kstat_delete(xuio_ksp);
1008		xuio_ksp = NULL;
1009	}
1010}
1011
1012void
1013xuio_stat_wbuf_copied()
1014{
1015	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1016}
1017
1018void
1019xuio_stat_wbuf_nocopy()
1020{
1021	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1022}
1023
1024#ifdef _KERNEL
1025static int
1026dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1027{
1028	dmu_buf_t **dbp;
1029	int numbufs, i, err;
1030	xuio_t *xuio = NULL;
1031
1032	/*
1033	 * NB: we could do this block-at-a-time, but it's nice
1034	 * to be reading in parallel.
1035	 */
1036	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1037	    TRUE, FTAG, &numbufs, &dbp, 0);
1038	if (err)
1039		return (err);
1040
1041#ifdef UIO_XUIO
1042	if (uio->uio_extflg == UIO_XUIO)
1043		xuio = (xuio_t *)uio;
1044#endif
1045
1046	for (i = 0; i < numbufs; i++) {
1047		int tocpy;
1048		int bufoff;
1049		dmu_buf_t *db = dbp[i];
1050
1051		ASSERT(size > 0);
1052
1053		bufoff = uio->uio_loffset - db->db_offset;
1054		tocpy = (int)MIN(db->db_size - bufoff, size);
1055
1056		if (xuio) {
1057			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1058			arc_buf_t *dbuf_abuf = dbi->db_buf;
1059			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1060			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1061			if (!err) {
1062				uio->uio_resid -= tocpy;
1063				uio->uio_loffset += tocpy;
1064			}
1065
1066			if (abuf == dbuf_abuf)
1067				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1068			else
1069				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1070		} else {
1071			err = uiomove((char *)db->db_data + bufoff, tocpy,
1072			    UIO_READ, uio);
1073		}
1074		if (err)
1075			break;
1076
1077		size -= tocpy;
1078	}
1079	dmu_buf_rele_array(dbp, numbufs, FTAG);
1080
1081	return (err);
1082}
1083
1084/*
1085 * Read 'size' bytes into the uio buffer.
1086 * From object zdb->db_object.
1087 * Starting at offset uio->uio_loffset.
1088 *
1089 * If the caller already has a dbuf in the target object
1090 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1091 * because we don't have to find the dnode_t for the object.
1092 */
1093int
1094dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1095{
1096	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1097	dnode_t *dn;
1098	int err;
1099
1100	if (size == 0)
1101		return (0);
1102
1103	DB_DNODE_ENTER(db);
1104	dn = DB_DNODE(db);
1105	err = dmu_read_uio_dnode(dn, uio, size);
1106	DB_DNODE_EXIT(db);
1107
1108	return (err);
1109}
1110
1111/*
1112 * Read 'size' bytes into the uio buffer.
1113 * From the specified object
1114 * Starting at offset uio->uio_loffset.
1115 */
1116int
1117dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1118{
1119	dnode_t *dn;
1120	int err;
1121
1122	if (size == 0)
1123		return (0);
1124
1125	err = dnode_hold(os, object, FTAG, &dn);
1126	if (err)
1127		return (err);
1128
1129	err = dmu_read_uio_dnode(dn, uio, size);
1130
1131	dnode_rele(dn, FTAG);
1132
1133	return (err);
1134}
1135
1136static int
1137dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1138{
1139	dmu_buf_t **dbp;
1140	int numbufs;
1141	int err = 0;
1142	int i;
1143
1144	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1145	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1146	if (err)
1147		return (err);
1148
1149	for (i = 0; i < numbufs; i++) {
1150		int tocpy;
1151		int bufoff;
1152		dmu_buf_t *db = dbp[i];
1153
1154		ASSERT(size > 0);
1155
1156		bufoff = uio->uio_loffset - db->db_offset;
1157		tocpy = (int)MIN(db->db_size - bufoff, size);
1158
1159		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1160
1161		if (tocpy == db->db_size)
1162			dmu_buf_will_fill(db, tx);
1163		else
1164			dmu_buf_will_dirty(db, tx);
1165
1166		/*
1167		 * XXX uiomove could block forever (eg. nfs-backed
1168		 * pages).  There needs to be a uiolockdown() function
1169		 * to lock the pages in memory, so that uiomove won't
1170		 * block.
1171		 */
1172		err = uiomove((char *)db->db_data + bufoff, tocpy,
1173		    UIO_WRITE, uio);
1174
1175		if (tocpy == db->db_size)
1176			dmu_buf_fill_done(db, tx);
1177
1178		if (err)
1179			break;
1180
1181		size -= tocpy;
1182	}
1183
1184	dmu_buf_rele_array(dbp, numbufs, FTAG);
1185	return (err);
1186}
1187
1188/*
1189 * Write 'size' bytes from the uio buffer.
1190 * To object zdb->db_object.
1191 * Starting at offset uio->uio_loffset.
1192 *
1193 * If the caller already has a dbuf in the target object
1194 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1195 * because we don't have to find the dnode_t for the object.
1196 */
1197int
1198dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1199    dmu_tx_t *tx)
1200{
1201	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1202	dnode_t *dn;
1203	int err;
1204
1205	if (size == 0)
1206		return (0);
1207
1208	DB_DNODE_ENTER(db);
1209	dn = DB_DNODE(db);
1210	err = dmu_write_uio_dnode(dn, uio, size, tx);
1211	DB_DNODE_EXIT(db);
1212
1213	return (err);
1214}
1215
1216/*
1217 * Write 'size' bytes from the uio buffer.
1218 * To the specified object.
1219 * Starting at offset uio->uio_loffset.
1220 */
1221int
1222dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1223    dmu_tx_t *tx)
1224{
1225	dnode_t *dn;
1226	int err;
1227
1228	if (size == 0)
1229		return (0);
1230
1231	err = dnode_hold(os, object, FTAG, &dn);
1232	if (err)
1233		return (err);
1234
1235	err = dmu_write_uio_dnode(dn, uio, size, tx);
1236
1237	dnode_rele(dn, FTAG);
1238
1239	return (err);
1240}
1241
1242#ifdef sun
1243int
1244dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1245    page_t *pp, dmu_tx_t *tx)
1246{
1247	dmu_buf_t **dbp;
1248	int numbufs, i;
1249	int err;
1250
1251	if (size == 0)
1252		return (0);
1253
1254	err = dmu_buf_hold_array(os, object, offset, size,
1255	    FALSE, FTAG, &numbufs, &dbp);
1256	if (err)
1257		return (err);
1258
1259	for (i = 0; i < numbufs; i++) {
1260		int tocpy, copied, thiscpy;
1261		int bufoff;
1262		dmu_buf_t *db = dbp[i];
1263		caddr_t va;
1264
1265		ASSERT(size > 0);
1266		ASSERT3U(db->db_size, >=, PAGESIZE);
1267
1268		bufoff = offset - db->db_offset;
1269		tocpy = (int)MIN(db->db_size - bufoff, size);
1270
1271		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1272
1273		if (tocpy == db->db_size)
1274			dmu_buf_will_fill(db, tx);
1275		else
1276			dmu_buf_will_dirty(db, tx);
1277
1278		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1279			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1280			thiscpy = MIN(PAGESIZE, tocpy - copied);
1281			va = zfs_map_page(pp, S_READ);
1282			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1283			zfs_unmap_page(pp, va);
1284			pp = pp->p_next;
1285			bufoff += PAGESIZE;
1286		}
1287
1288		if (tocpy == db->db_size)
1289			dmu_buf_fill_done(db, tx);
1290
1291		offset += tocpy;
1292		size -= tocpy;
1293	}
1294	dmu_buf_rele_array(dbp, numbufs, FTAG);
1295	return (err);
1296}
1297
1298#else
1299
1300int
1301dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1302    vm_page_t *ma, dmu_tx_t *tx)
1303{
1304	dmu_buf_t **dbp;
1305	struct sf_buf *sf;
1306	int numbufs, i;
1307	int err;
1308
1309	if (size == 0)
1310		return (0);
1311
1312	err = dmu_buf_hold_array(os, object, offset, size,
1313	    FALSE, FTAG, &numbufs, &dbp);
1314	if (err)
1315		return (err);
1316
1317	for (i = 0; i < numbufs; i++) {
1318		int tocpy, copied, thiscpy;
1319		int bufoff;
1320		dmu_buf_t *db = dbp[i];
1321		caddr_t va;
1322
1323		ASSERT(size > 0);
1324		ASSERT3U(db->db_size, >=, PAGESIZE);
1325
1326		bufoff = offset - db->db_offset;
1327		tocpy = (int)MIN(db->db_size - bufoff, size);
1328
1329		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1330
1331		if (tocpy == db->db_size)
1332			dmu_buf_will_fill(db, tx);
1333		else
1334			dmu_buf_will_dirty(db, tx);
1335
1336		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1337			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1338			thiscpy = MIN(PAGESIZE, tocpy - copied);
1339			va = zfs_map_page(*ma, &sf);
1340			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1341			zfs_unmap_page(sf);
1342			ma += 1;
1343			bufoff += PAGESIZE;
1344		}
1345
1346		if (tocpy == db->db_size)
1347			dmu_buf_fill_done(db, tx);
1348
1349		offset += tocpy;
1350		size -= tocpy;
1351	}
1352	dmu_buf_rele_array(dbp, numbufs, FTAG);
1353	return (err);
1354}
1355#endif	/* sun */
1356#endif
1357
1358/*
1359 * Allocate a loaned anonymous arc buffer.
1360 */
1361arc_buf_t *
1362dmu_request_arcbuf(dmu_buf_t *handle, int size)
1363{
1364	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1365
1366	return (arc_loan_buf(db->db_objset->os_spa, size));
1367}
1368
1369/*
1370 * Free a loaned arc buffer.
1371 */
1372void
1373dmu_return_arcbuf(arc_buf_t *buf)
1374{
1375	arc_return_buf(buf, FTAG);
1376	VERIFY(arc_buf_remove_ref(buf, FTAG));
1377}
1378
1379/*
1380 * When possible directly assign passed loaned arc buffer to a dbuf.
1381 * If this is not possible copy the contents of passed arc buf via
1382 * dmu_write().
1383 */
1384void
1385dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1386    dmu_tx_t *tx)
1387{
1388	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1389	dnode_t *dn;
1390	dmu_buf_impl_t *db;
1391	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1392	uint64_t blkid;
1393
1394	DB_DNODE_ENTER(dbuf);
1395	dn = DB_DNODE(dbuf);
1396	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1397	blkid = dbuf_whichblock(dn, offset);
1398	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1399	rw_exit(&dn->dn_struct_rwlock);
1400	DB_DNODE_EXIT(dbuf);
1401
1402	/*
1403	 * We can only assign if the offset is aligned, the arc buf is the
1404	 * same size as the dbuf, and the dbuf is not metadata.  It
1405	 * can't be metadata because the loaned arc buf comes from the
1406	 * user-data kmem arena.
1407	 */
1408	if (offset == db->db.db_offset && blksz == db->db.db_size &&
1409	    DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA) {
1410		dbuf_assign_arcbuf(db, buf, tx);
1411		dbuf_rele(db, FTAG);
1412	} else {
1413		objset_t *os;
1414		uint64_t object;
1415
1416		DB_DNODE_ENTER(dbuf);
1417		dn = DB_DNODE(dbuf);
1418		os = dn->dn_objset;
1419		object = dn->dn_object;
1420		DB_DNODE_EXIT(dbuf);
1421
1422		dbuf_rele(db, FTAG);
1423		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1424		dmu_return_arcbuf(buf);
1425		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1426	}
1427}
1428
1429typedef struct {
1430	dbuf_dirty_record_t	*dsa_dr;
1431	dmu_sync_cb_t		*dsa_done;
1432	zgd_t			*dsa_zgd;
1433	dmu_tx_t		*dsa_tx;
1434} dmu_sync_arg_t;
1435
1436/* ARGSUSED */
1437static void
1438dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1439{
1440	dmu_sync_arg_t *dsa = varg;
1441	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1442	blkptr_t *bp = zio->io_bp;
1443
1444	if (zio->io_error == 0) {
1445		if (BP_IS_HOLE(bp)) {
1446			/*
1447			 * A block of zeros may compress to a hole, but the
1448			 * block size still needs to be known for replay.
1449			 */
1450			BP_SET_LSIZE(bp, db->db_size);
1451		} else if (!BP_IS_EMBEDDED(bp)) {
1452			ASSERT(BP_GET_LEVEL(bp) == 0);
1453			bp->blk_fill = 1;
1454		}
1455	}
1456}
1457
1458static void
1459dmu_sync_late_arrival_ready(zio_t *zio)
1460{
1461	dmu_sync_ready(zio, NULL, zio->io_private);
1462}
1463
1464/* ARGSUSED */
1465static void
1466dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1467{
1468	dmu_sync_arg_t *dsa = varg;
1469	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1470	dmu_buf_impl_t *db = dr->dr_dbuf;
1471
1472	mutex_enter(&db->db_mtx);
1473	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1474	if (zio->io_error == 0) {
1475		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1476		if (dr->dt.dl.dr_nopwrite) {
1477			blkptr_t *bp = zio->io_bp;
1478			blkptr_t *bp_orig = &zio->io_bp_orig;
1479			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1480
1481			ASSERT(BP_EQUAL(bp, bp_orig));
1482			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1483			ASSERT(zio_checksum_table[chksum].ci_dedup);
1484		}
1485		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1486		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1487		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1488		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1489			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1490	} else {
1491		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1492	}
1493	cv_broadcast(&db->db_changed);
1494	mutex_exit(&db->db_mtx);
1495
1496	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1497
1498	kmem_free(dsa, sizeof (*dsa));
1499}
1500
1501static void
1502dmu_sync_late_arrival_done(zio_t *zio)
1503{
1504	blkptr_t *bp = zio->io_bp;
1505	dmu_sync_arg_t *dsa = zio->io_private;
1506	blkptr_t *bp_orig = &zio->io_bp_orig;
1507
1508	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1509		/*
1510		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1511		 * then there is nothing to do here. Otherwise, free the
1512		 * newly allocated block in this txg.
1513		 */
1514		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1515			ASSERT(BP_EQUAL(bp, bp_orig));
1516		} else {
1517			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1518			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1519			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1520			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1521		}
1522	}
1523
1524	dmu_tx_commit(dsa->dsa_tx);
1525
1526	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1527
1528	kmem_free(dsa, sizeof (*dsa));
1529}
1530
1531static int
1532dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1533    zio_prop_t *zp, zbookmark_phys_t *zb)
1534{
1535	dmu_sync_arg_t *dsa;
1536	dmu_tx_t *tx;
1537
1538	tx = dmu_tx_create(os);
1539	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1540	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1541		dmu_tx_abort(tx);
1542		/* Make zl_get_data do txg_waited_synced() */
1543		return (SET_ERROR(EIO));
1544	}
1545
1546	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1547	dsa->dsa_dr = NULL;
1548	dsa->dsa_done = done;
1549	dsa->dsa_zgd = zgd;
1550	dsa->dsa_tx = tx;
1551
1552	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1553	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1554	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1555	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1556
1557	return (0);
1558}
1559
1560/*
1561 * Intent log support: sync the block associated with db to disk.
1562 * N.B. and XXX: the caller is responsible for making sure that the
1563 * data isn't changing while dmu_sync() is writing it.
1564 *
1565 * Return values:
1566 *
1567 *	EEXIST: this txg has already been synced, so there's nothing to do.
1568 *		The caller should not log the write.
1569 *
1570 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1571 *		The caller should not log the write.
1572 *
1573 *	EALREADY: this block is already in the process of being synced.
1574 *		The caller should track its progress (somehow).
1575 *
1576 *	EIO: could not do the I/O.
1577 *		The caller should do a txg_wait_synced().
1578 *
1579 *	0: the I/O has been initiated.
1580 *		The caller should log this blkptr in the done callback.
1581 *		It is possible that the I/O will fail, in which case
1582 *		the error will be reported to the done callback and
1583 *		propagated to pio from zio_done().
1584 */
1585int
1586dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1587{
1588	blkptr_t *bp = zgd->zgd_bp;
1589	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1590	objset_t *os = db->db_objset;
1591	dsl_dataset_t *ds = os->os_dsl_dataset;
1592	dbuf_dirty_record_t *dr;
1593	dmu_sync_arg_t *dsa;
1594	zbookmark_phys_t zb;
1595	zio_prop_t zp;
1596	dnode_t *dn;
1597
1598	ASSERT(pio != NULL);
1599	ASSERT(txg != 0);
1600
1601	SET_BOOKMARK(&zb, ds->ds_object,
1602	    db->db.db_object, db->db_level, db->db_blkid);
1603
1604	DB_DNODE_ENTER(db);
1605	dn = DB_DNODE(db);
1606	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1607	DB_DNODE_EXIT(db);
1608
1609	/*
1610	 * If we're frozen (running ziltest), we always need to generate a bp.
1611	 */
1612	if (txg > spa_freeze_txg(os->os_spa))
1613		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1614
1615	/*
1616	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1617	 * and us.  If we determine that this txg is not yet syncing,
1618	 * but it begins to sync a moment later, that's OK because the
1619	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1620	 */
1621	mutex_enter(&db->db_mtx);
1622
1623	if (txg <= spa_last_synced_txg(os->os_spa)) {
1624		/*
1625		 * This txg has already synced.  There's nothing to do.
1626		 */
1627		mutex_exit(&db->db_mtx);
1628		return (SET_ERROR(EEXIST));
1629	}
1630
1631	if (txg <= spa_syncing_txg(os->os_spa)) {
1632		/*
1633		 * This txg is currently syncing, so we can't mess with
1634		 * the dirty record anymore; just write a new log block.
1635		 */
1636		mutex_exit(&db->db_mtx);
1637		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1638	}
1639
1640	dr = db->db_last_dirty;
1641	while (dr && dr->dr_txg != txg)
1642		dr = dr->dr_next;
1643
1644	if (dr == NULL) {
1645		/*
1646		 * There's no dr for this dbuf, so it must have been freed.
1647		 * There's no need to log writes to freed blocks, so we're done.
1648		 */
1649		mutex_exit(&db->db_mtx);
1650		return (SET_ERROR(ENOENT));
1651	}
1652
1653	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1654
1655	/*
1656	 * Assume the on-disk data is X, the current syncing data is Y,
1657	 * and the current in-memory data is Z (currently in dmu_sync).
1658	 * X and Z are identical but Y is has been modified. Normally,
1659	 * when X and Z are the same we will perform a nopwrite but if Y
1660	 * is different we must disable nopwrite since the resulting write
1661	 * of Y to disk can free the block containing X. If we allowed a
1662	 * nopwrite to occur the block pointing to Z would reference a freed
1663	 * block. Since this is a rare case we simplify this by disabling
1664	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1665	 * a previous transaction.
1666	 */
1667	if (dr->dr_next)
1668		zp.zp_nopwrite = B_FALSE;
1669
1670	ASSERT(dr->dr_txg == txg);
1671	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1672	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1673		/*
1674		 * We have already issued a sync write for this buffer,
1675		 * or this buffer has already been synced.  It could not
1676		 * have been dirtied since, or we would have cleared the state.
1677		 */
1678		mutex_exit(&db->db_mtx);
1679		return (SET_ERROR(EALREADY));
1680	}
1681
1682	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1683	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1684	mutex_exit(&db->db_mtx);
1685
1686	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1687	dsa->dsa_dr = dr;
1688	dsa->dsa_done = done;
1689	dsa->dsa_zgd = zgd;
1690	dsa->dsa_tx = NULL;
1691
1692	zio_nowait(arc_write(pio, os->os_spa, txg,
1693	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1694	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1695	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1696	    ZIO_FLAG_CANFAIL, &zb));
1697
1698	return (0);
1699}
1700
1701int
1702dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1703	dmu_tx_t *tx)
1704{
1705	dnode_t *dn;
1706	int err;
1707
1708	err = dnode_hold(os, object, FTAG, &dn);
1709	if (err)
1710		return (err);
1711	err = dnode_set_blksz(dn, size, ibs, tx);
1712	dnode_rele(dn, FTAG);
1713	return (err);
1714}
1715
1716void
1717dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1718	dmu_tx_t *tx)
1719{
1720	dnode_t *dn;
1721
1722	/*
1723	 * Send streams include each object's checksum function.  This
1724	 * check ensures that the receiving system can understand the
1725	 * checksum function transmitted.
1726	 */
1727	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1728
1729	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1730	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1731	dn->dn_checksum = checksum;
1732	dnode_setdirty(dn, tx);
1733	dnode_rele(dn, FTAG);
1734}
1735
1736void
1737dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1738	dmu_tx_t *tx)
1739{
1740	dnode_t *dn;
1741
1742	/*
1743	 * Send streams include each object's compression function.  This
1744	 * check ensures that the receiving system can understand the
1745	 * compression function transmitted.
1746	 */
1747	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1748
1749	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1750	dn->dn_compress = compress;
1751	dnode_setdirty(dn, tx);
1752	dnode_rele(dn, FTAG);
1753}
1754
1755int zfs_mdcomp_disable = 0;
1756TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1757SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1758    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1759
1760/*
1761 * When the "redundant_metadata" property is set to "most", only indirect
1762 * blocks of this level and higher will have an additional ditto block.
1763 */
1764int zfs_redundant_metadata_most_ditto_level = 2;
1765
1766void
1767dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1768{
1769	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1770	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1771	    (wp & WP_SPILL));
1772	enum zio_checksum checksum = os->os_checksum;
1773	enum zio_compress compress = os->os_compress;
1774	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1775	boolean_t dedup = B_FALSE;
1776	boolean_t nopwrite = B_FALSE;
1777	boolean_t dedup_verify = os->os_dedup_verify;
1778	int copies = os->os_copies;
1779
1780	/*
1781	 * We maintain different write policies for each of the following
1782	 * types of data:
1783	 *	 1. metadata
1784	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1785	 *	 3. all other level 0 blocks
1786	 */
1787	if (ismd) {
1788		if (zfs_mdcomp_disable) {
1789			compress = ZIO_COMPRESS_EMPTY;
1790		} else {
1791			/*
1792			 * XXX -- we should design a compression algorithm
1793			 * that specializes in arrays of bps.
1794			 */
1795			compress = zio_compress_select(os->os_spa,
1796			    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1797		}
1798
1799		/*
1800		 * Metadata always gets checksummed.  If the data
1801		 * checksum is multi-bit correctable, and it's not a
1802		 * ZBT-style checksum, then it's suitable for metadata
1803		 * as well.  Otherwise, the metadata checksum defaults
1804		 * to fletcher4.
1805		 */
1806		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1807		    zio_checksum_table[checksum].ci_eck)
1808			checksum = ZIO_CHECKSUM_FLETCHER_4;
1809
1810		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1811		    (os->os_redundant_metadata ==
1812		    ZFS_REDUNDANT_METADATA_MOST &&
1813		    (level >= zfs_redundant_metadata_most_ditto_level ||
1814		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1815			copies++;
1816	} else if (wp & WP_NOFILL) {
1817		ASSERT(level == 0);
1818
1819		/*
1820		 * If we're writing preallocated blocks, we aren't actually
1821		 * writing them so don't set any policy properties.  These
1822		 * blocks are currently only used by an external subsystem
1823		 * outside of zfs (i.e. dump) and not written by the zio
1824		 * pipeline.
1825		 */
1826		compress = ZIO_COMPRESS_OFF;
1827		checksum = ZIO_CHECKSUM_NOPARITY;
1828	} else {
1829		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1830		    compress);
1831
1832		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1833		    zio_checksum_select(dn->dn_checksum, checksum) :
1834		    dedup_checksum;
1835
1836		/*
1837		 * Determine dedup setting.  If we are in dmu_sync(),
1838		 * we won't actually dedup now because that's all
1839		 * done in syncing context; but we do want to use the
1840		 * dedup checkum.  If the checksum is not strong
1841		 * enough to ensure unique signatures, force
1842		 * dedup_verify.
1843		 */
1844		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1845			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1846			if (!zio_checksum_table[checksum].ci_dedup)
1847				dedup_verify = B_TRUE;
1848		}
1849
1850		/*
1851		 * Enable nopwrite if we have a cryptographically secure
1852		 * checksum that has no known collisions (i.e. SHA-256)
1853		 * and compression is enabled.  We don't enable nopwrite if
1854		 * dedup is enabled as the two features are mutually exclusive.
1855		 */
1856		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1857		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1858	}
1859
1860	zp->zp_checksum = checksum;
1861	zp->zp_compress = compress;
1862	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1863	zp->zp_level = level;
1864	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1865	zp->zp_dedup = dedup;
1866	zp->zp_dedup_verify = dedup && dedup_verify;
1867	zp->zp_nopwrite = nopwrite;
1868}
1869
1870int
1871dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1872{
1873	dnode_t *dn;
1874	int i, err;
1875
1876	err = dnode_hold(os, object, FTAG, &dn);
1877	if (err)
1878		return (err);
1879	/*
1880	 * Sync any current changes before
1881	 * we go trundling through the block pointers.
1882	 */
1883	for (i = 0; i < TXG_SIZE; i++) {
1884		if (list_link_active(&dn->dn_dirty_link[i]))
1885			break;
1886	}
1887	if (i != TXG_SIZE) {
1888		dnode_rele(dn, FTAG);
1889		txg_wait_synced(dmu_objset_pool(os), 0);
1890		err = dnode_hold(os, object, FTAG, &dn);
1891		if (err)
1892			return (err);
1893	}
1894
1895	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1896	dnode_rele(dn, FTAG);
1897
1898	return (err);
1899}
1900
1901void
1902dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1903{
1904	dnode_phys_t *dnp;
1905
1906	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1907	mutex_enter(&dn->dn_mtx);
1908
1909	dnp = dn->dn_phys;
1910
1911	doi->doi_data_block_size = dn->dn_datablksz;
1912	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1913	    1ULL << dn->dn_indblkshift : 0;
1914	doi->doi_type = dn->dn_type;
1915	doi->doi_bonus_type = dn->dn_bonustype;
1916	doi->doi_bonus_size = dn->dn_bonuslen;
1917	doi->doi_indirection = dn->dn_nlevels;
1918	doi->doi_checksum = dn->dn_checksum;
1919	doi->doi_compress = dn->dn_compress;
1920	doi->doi_nblkptr = dn->dn_nblkptr;
1921	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1922	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1923	doi->doi_fill_count = 0;
1924	for (int i = 0; i < dnp->dn_nblkptr; i++)
1925		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1926
1927	mutex_exit(&dn->dn_mtx);
1928	rw_exit(&dn->dn_struct_rwlock);
1929}
1930
1931/*
1932 * Get information on a DMU object.
1933 * If doi is NULL, just indicates whether the object exists.
1934 */
1935int
1936dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1937{
1938	dnode_t *dn;
1939	int err = dnode_hold(os, object, FTAG, &dn);
1940
1941	if (err)
1942		return (err);
1943
1944	if (doi != NULL)
1945		dmu_object_info_from_dnode(dn, doi);
1946
1947	dnode_rele(dn, FTAG);
1948	return (0);
1949}
1950
1951/*
1952 * As above, but faster; can be used when you have a held dbuf in hand.
1953 */
1954void
1955dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1956{
1957	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1958
1959	DB_DNODE_ENTER(db);
1960	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1961	DB_DNODE_EXIT(db);
1962}
1963
1964/*
1965 * Faster still when you only care about the size.
1966 * This is specifically optimized for zfs_getattr().
1967 */
1968void
1969dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1970    u_longlong_t *nblk512)
1971{
1972	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1973	dnode_t *dn;
1974
1975	DB_DNODE_ENTER(db);
1976	dn = DB_DNODE(db);
1977
1978	*blksize = dn->dn_datablksz;
1979	/* add 1 for dnode space */
1980	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1981	    SPA_MINBLOCKSHIFT) + 1;
1982	DB_DNODE_EXIT(db);
1983}
1984
1985void
1986byteswap_uint64_array(void *vbuf, size_t size)
1987{
1988	uint64_t *buf = vbuf;
1989	size_t count = size >> 3;
1990	int i;
1991
1992	ASSERT((size & 7) == 0);
1993
1994	for (i = 0; i < count; i++)
1995		buf[i] = BSWAP_64(buf[i]);
1996}
1997
1998void
1999byteswap_uint32_array(void *vbuf, size_t size)
2000{
2001	uint32_t *buf = vbuf;
2002	size_t count = size >> 2;
2003	int i;
2004
2005	ASSERT((size & 3) == 0);
2006
2007	for (i = 0; i < count; i++)
2008		buf[i] = BSWAP_32(buf[i]);
2009}
2010
2011void
2012byteswap_uint16_array(void *vbuf, size_t size)
2013{
2014	uint16_t *buf = vbuf;
2015	size_t count = size >> 1;
2016	int i;
2017
2018	ASSERT((size & 1) == 0);
2019
2020	for (i = 0; i < count; i++)
2021		buf[i] = BSWAP_16(buf[i]);
2022}
2023
2024/* ARGSUSED */
2025void
2026byteswap_uint8_array(void *vbuf, size_t size)
2027{
2028}
2029
2030void
2031dmu_init(void)
2032{
2033	zfs_dbgmsg_init();
2034	sa_cache_init();
2035	xuio_stat_init();
2036	dmu_objset_init();
2037	dnode_init();
2038	dbuf_init();
2039	zfetch_init();
2040	zio_compress_init();
2041	l2arc_init();
2042	arc_init();
2043}
2044
2045void
2046dmu_fini(void)
2047{
2048	arc_fini(); /* arc depends on l2arc, so arc must go first */
2049	l2arc_fini();
2050	zfetch_fini();
2051	zio_compress_fini();
2052	dbuf_fini();
2053	dnode_fini();
2054	dmu_objset_fini();
2055	xuio_stat_fini();
2056	sa_cache_fini();
2057	zfs_dbgmsg_fini();
2058}
2059