dmu.c revision 268658
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27/* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
28
29#include <sys/dmu.h>
30#include <sys/dmu_impl.h>
31#include <sys/dmu_tx.h>
32#include <sys/dbuf.h>
33#include <sys/dnode.h>
34#include <sys/zfs_context.h>
35#include <sys/dmu_objset.h>
36#include <sys/dmu_traverse.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_prop.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/zfs_ioctl.h>
44#include <sys/zap.h>
45#include <sys/zio_checksum.h>
46#include <sys/zio_compress.h>
47#include <sys/sa.h>
48#include <sys/zfeature.h>
49#ifdef _KERNEL
50#include <sys/vm.h>
51#include <sys/zfs_znode.h>
52#endif
53
54/*
55 * Enable/disable nopwrite feature.
56 */
57int zfs_nopwrite_enabled = 1;
58SYSCTL_DECL(_vfs_zfs);
59TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
60SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
61    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
62
63const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
64	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
65	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
67	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
70	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
72	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
74	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
75	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
76	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
78	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
79	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
80	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
81	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
82	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
83	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
86	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
87	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
88	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
89	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
90	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
91	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
92	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
93	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
94	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
95	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
96	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
97	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
98	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
99	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
100	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
102	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
106	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
108	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
113	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
116	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
117	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
118};
119
120const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
121	{	byteswap_uint8_array,	"uint8"		},
122	{	byteswap_uint16_array,	"uint16"	},
123	{	byteswap_uint32_array,	"uint32"	},
124	{	byteswap_uint64_array,	"uint64"	},
125	{	zap_byteswap,		"zap"		},
126	{	dnode_buf_byteswap,	"dnode"		},
127	{	dmu_objset_byteswap,	"objset"	},
128	{	zfs_znode_byteswap,	"znode"		},
129	{	zfs_oldacl_byteswap,	"oldacl"	},
130	{	zfs_acl_byteswap,	"acl"		}
131};
132
133int
134dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
135    void *tag, dmu_buf_t **dbp)
136{
137	dnode_t *dn;
138	uint64_t blkid;
139	dmu_buf_impl_t *db;
140	int err;
141
142	err = dnode_hold(os, object, FTAG, &dn);
143	if (err)
144		return (err);
145	blkid = dbuf_whichblock(dn, offset);
146	rw_enter(&dn->dn_struct_rwlock, RW_READER);
147	db = dbuf_hold(dn, blkid, tag);
148	rw_exit(&dn->dn_struct_rwlock);
149	dnode_rele(dn, FTAG);
150
151	if (db == NULL) {
152		*dbp = NULL;
153		return (SET_ERROR(EIO));
154	}
155
156	*dbp = &db->db;
157	return (err);
158}
159
160int
161dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
162    void *tag, dmu_buf_t **dbp, int flags)
163{
164	int err;
165	int db_flags = DB_RF_CANFAIL;
166
167	if (flags & DMU_READ_NO_PREFETCH)
168		db_flags |= DB_RF_NOPREFETCH;
169
170	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
171	if (err == 0) {
172		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
173		err = dbuf_read(db, NULL, db_flags);
174		if (err != 0) {
175			dbuf_rele(db, tag);
176			*dbp = NULL;
177		}
178	}
179
180	return (err);
181}
182
183int
184dmu_bonus_max(void)
185{
186	return (DN_MAX_BONUSLEN);
187}
188
189int
190dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
191{
192	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
193	dnode_t *dn;
194	int error;
195
196	DB_DNODE_ENTER(db);
197	dn = DB_DNODE(db);
198
199	if (dn->dn_bonus != db) {
200		error = SET_ERROR(EINVAL);
201	} else if (newsize < 0 || newsize > db_fake->db_size) {
202		error = SET_ERROR(EINVAL);
203	} else {
204		dnode_setbonuslen(dn, newsize, tx);
205		error = 0;
206	}
207
208	DB_DNODE_EXIT(db);
209	return (error);
210}
211
212int
213dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
214{
215	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
216	dnode_t *dn;
217	int error;
218
219	DB_DNODE_ENTER(db);
220	dn = DB_DNODE(db);
221
222	if (!DMU_OT_IS_VALID(type)) {
223		error = SET_ERROR(EINVAL);
224	} else if (dn->dn_bonus != db) {
225		error = SET_ERROR(EINVAL);
226	} else {
227		dnode_setbonus_type(dn, type, tx);
228		error = 0;
229	}
230
231	DB_DNODE_EXIT(db);
232	return (error);
233}
234
235dmu_object_type_t
236dmu_get_bonustype(dmu_buf_t *db_fake)
237{
238	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
239	dnode_t *dn;
240	dmu_object_type_t type;
241
242	DB_DNODE_ENTER(db);
243	dn = DB_DNODE(db);
244	type = dn->dn_bonustype;
245	DB_DNODE_EXIT(db);
246
247	return (type);
248}
249
250int
251dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
252{
253	dnode_t *dn;
254	int error;
255
256	error = dnode_hold(os, object, FTAG, &dn);
257	dbuf_rm_spill(dn, tx);
258	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
259	dnode_rm_spill(dn, tx);
260	rw_exit(&dn->dn_struct_rwlock);
261	dnode_rele(dn, FTAG);
262	return (error);
263}
264
265/*
266 * returns ENOENT, EIO, or 0.
267 */
268int
269dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
270{
271	dnode_t *dn;
272	dmu_buf_impl_t *db;
273	int error;
274
275	error = dnode_hold(os, object, FTAG, &dn);
276	if (error)
277		return (error);
278
279	rw_enter(&dn->dn_struct_rwlock, RW_READER);
280	if (dn->dn_bonus == NULL) {
281		rw_exit(&dn->dn_struct_rwlock);
282		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
283		if (dn->dn_bonus == NULL)
284			dbuf_create_bonus(dn);
285	}
286	db = dn->dn_bonus;
287
288	/* as long as the bonus buf is held, the dnode will be held */
289	if (refcount_add(&db->db_holds, tag) == 1) {
290		VERIFY(dnode_add_ref(dn, db));
291		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
292	}
293
294	/*
295	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
296	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
297	 * a dnode hold for every dbuf.
298	 */
299	rw_exit(&dn->dn_struct_rwlock);
300
301	dnode_rele(dn, FTAG);
302
303	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
304
305	*dbp = &db->db;
306	return (0);
307}
308
309/*
310 * returns ENOENT, EIO, or 0.
311 *
312 * This interface will allocate a blank spill dbuf when a spill blk
313 * doesn't already exist on the dnode.
314 *
315 * if you only want to find an already existing spill db, then
316 * dmu_spill_hold_existing() should be used.
317 */
318int
319dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
320{
321	dmu_buf_impl_t *db = NULL;
322	int err;
323
324	if ((flags & DB_RF_HAVESTRUCT) == 0)
325		rw_enter(&dn->dn_struct_rwlock, RW_READER);
326
327	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
328
329	if ((flags & DB_RF_HAVESTRUCT) == 0)
330		rw_exit(&dn->dn_struct_rwlock);
331
332	ASSERT(db != NULL);
333	err = dbuf_read(db, NULL, flags);
334	if (err == 0)
335		*dbp = &db->db;
336	else
337		dbuf_rele(db, tag);
338	return (err);
339}
340
341int
342dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
343{
344	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
345	dnode_t *dn;
346	int err;
347
348	DB_DNODE_ENTER(db);
349	dn = DB_DNODE(db);
350
351	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
352		err = SET_ERROR(EINVAL);
353	} else {
354		rw_enter(&dn->dn_struct_rwlock, RW_READER);
355
356		if (!dn->dn_have_spill) {
357			err = SET_ERROR(ENOENT);
358		} else {
359			err = dmu_spill_hold_by_dnode(dn,
360			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
361		}
362
363		rw_exit(&dn->dn_struct_rwlock);
364	}
365
366	DB_DNODE_EXIT(db);
367	return (err);
368}
369
370int
371dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
372{
373	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
374	dnode_t *dn;
375	int err;
376
377	DB_DNODE_ENTER(db);
378	dn = DB_DNODE(db);
379	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
380	DB_DNODE_EXIT(db);
381
382	return (err);
383}
384
385/*
386 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
387 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
388 * and can induce severe lock contention when writing to several files
389 * whose dnodes are in the same block.
390 */
391static int
392dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
393    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
394{
395	dmu_buf_t **dbp;
396	uint64_t blkid, nblks, i;
397	uint32_t dbuf_flags;
398	int err;
399	zio_t *zio;
400
401	ASSERT(length <= DMU_MAX_ACCESS);
402
403	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
404	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
405		dbuf_flags |= DB_RF_NOPREFETCH;
406
407	rw_enter(&dn->dn_struct_rwlock, RW_READER);
408	if (dn->dn_datablkshift) {
409		int blkshift = dn->dn_datablkshift;
410		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
411		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
412	} else {
413		if (offset + length > dn->dn_datablksz) {
414			zfs_panic_recover("zfs: accessing past end of object "
415			    "%llx/%llx (size=%u access=%llu+%llu)",
416			    (longlong_t)dn->dn_objset->
417			    os_dsl_dataset->ds_object,
418			    (longlong_t)dn->dn_object, dn->dn_datablksz,
419			    (longlong_t)offset, (longlong_t)length);
420			rw_exit(&dn->dn_struct_rwlock);
421			return (SET_ERROR(EIO));
422		}
423		nblks = 1;
424	}
425	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
426
427	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
428	blkid = dbuf_whichblock(dn, offset);
429	for (i = 0; i < nblks; i++) {
430		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
431		if (db == NULL) {
432			rw_exit(&dn->dn_struct_rwlock);
433			dmu_buf_rele_array(dbp, nblks, tag);
434			zio_nowait(zio);
435			return (SET_ERROR(EIO));
436		}
437		/* initiate async i/o */
438		if (read)
439			(void) dbuf_read(db, zio, dbuf_flags);
440#ifdef _KERNEL
441		else
442			curthread->td_ru.ru_oublock++;
443#endif
444		dbp[i] = &db->db;
445	}
446	rw_exit(&dn->dn_struct_rwlock);
447
448	/* wait for async i/o */
449	err = zio_wait(zio);
450	if (err) {
451		dmu_buf_rele_array(dbp, nblks, tag);
452		return (err);
453	}
454
455	/* wait for other io to complete */
456	if (read) {
457		for (i = 0; i < nblks; i++) {
458			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
459			mutex_enter(&db->db_mtx);
460			while (db->db_state == DB_READ ||
461			    db->db_state == DB_FILL)
462				cv_wait(&db->db_changed, &db->db_mtx);
463			if (db->db_state == DB_UNCACHED)
464				err = SET_ERROR(EIO);
465			mutex_exit(&db->db_mtx);
466			if (err) {
467				dmu_buf_rele_array(dbp, nblks, tag);
468				return (err);
469			}
470		}
471	}
472
473	*numbufsp = nblks;
474	*dbpp = dbp;
475	return (0);
476}
477
478static int
479dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
480    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
481{
482	dnode_t *dn;
483	int err;
484
485	err = dnode_hold(os, object, FTAG, &dn);
486	if (err)
487		return (err);
488
489	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
490	    numbufsp, dbpp, DMU_READ_PREFETCH);
491
492	dnode_rele(dn, FTAG);
493
494	return (err);
495}
496
497int
498dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
499    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
500{
501	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
502	dnode_t *dn;
503	int err;
504
505	DB_DNODE_ENTER(db);
506	dn = DB_DNODE(db);
507	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
508	    numbufsp, dbpp, DMU_READ_PREFETCH);
509	DB_DNODE_EXIT(db);
510
511	return (err);
512}
513
514void
515dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
516{
517	int i;
518	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
519
520	if (numbufs == 0)
521		return;
522
523	for (i = 0; i < numbufs; i++) {
524		if (dbp[i])
525			dbuf_rele(dbp[i], tag);
526	}
527
528	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
529}
530
531/*
532 * Issue prefetch i/os for the given blocks.
533 *
534 * Note: The assumption is that we *know* these blocks will be needed
535 * almost immediately.  Therefore, the prefetch i/os will be issued at
536 * ZIO_PRIORITY_SYNC_READ
537 *
538 * Note: indirect blocks and other metadata will be read synchronously,
539 * causing this function to block if they are not already cached.
540 */
541void
542dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
543{
544	dnode_t *dn;
545	uint64_t blkid;
546	int nblks, err;
547
548	if (zfs_prefetch_disable)
549		return;
550
551	if (len == 0) {  /* they're interested in the bonus buffer */
552		dn = DMU_META_DNODE(os);
553
554		if (object == 0 || object >= DN_MAX_OBJECT)
555			return;
556
557		rw_enter(&dn->dn_struct_rwlock, RW_READER);
558		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
559		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
560		rw_exit(&dn->dn_struct_rwlock);
561		return;
562	}
563
564	/*
565	 * XXX - Note, if the dnode for the requested object is not
566	 * already cached, we will do a *synchronous* read in the
567	 * dnode_hold() call.  The same is true for any indirects.
568	 */
569	err = dnode_hold(os, object, FTAG, &dn);
570	if (err != 0)
571		return;
572
573	rw_enter(&dn->dn_struct_rwlock, RW_READER);
574	if (dn->dn_datablkshift) {
575		int blkshift = dn->dn_datablkshift;
576		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
577		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
578	} else {
579		nblks = (offset < dn->dn_datablksz);
580	}
581
582	if (nblks != 0) {
583		blkid = dbuf_whichblock(dn, offset);
584		for (int i = 0; i < nblks; i++)
585			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
586	}
587
588	rw_exit(&dn->dn_struct_rwlock);
589
590	dnode_rele(dn, FTAG);
591}
592
593/*
594 * Get the next "chunk" of file data to free.  We traverse the file from
595 * the end so that the file gets shorter over time (if we crashes in the
596 * middle, this will leave us in a better state).  We find allocated file
597 * data by simply searching the allocated level 1 indirects.
598 *
599 * On input, *start should be the first offset that does not need to be
600 * freed (e.g. "offset + length").  On return, *start will be the first
601 * offset that should be freed.
602 */
603static int
604get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
605{
606	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
607	/* bytes of data covered by a level-1 indirect block */
608	uint64_t iblkrange =
609	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
610
611	ASSERT3U(minimum, <=, *start);
612
613	if (*start - minimum <= iblkrange * maxblks) {
614		*start = minimum;
615		return (0);
616	}
617	ASSERT(ISP2(iblkrange));
618
619	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
620		int err;
621
622		/*
623		 * dnode_next_offset(BACKWARDS) will find an allocated L1
624		 * indirect block at or before the input offset.  We must
625		 * decrement *start so that it is at the end of the region
626		 * to search.
627		 */
628		(*start)--;
629		err = dnode_next_offset(dn,
630		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
631
632		/* if there are no indirect blocks before start, we are done */
633		if (err == ESRCH) {
634			*start = minimum;
635			break;
636		} else if (err != 0) {
637			return (err);
638		}
639
640		/* set start to the beginning of this L1 indirect */
641		*start = P2ALIGN(*start, iblkrange);
642	}
643	if (*start < minimum)
644		*start = minimum;
645	return (0);
646}
647
648static int
649dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
650    uint64_t length)
651{
652	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
653	int err;
654
655	if (offset >= object_size)
656		return (0);
657
658	if (length == DMU_OBJECT_END || offset + length > object_size)
659		length = object_size - offset;
660
661	while (length != 0) {
662		uint64_t chunk_end, chunk_begin;
663
664		chunk_end = chunk_begin = offset + length;
665
666		/* move chunk_begin backwards to the beginning of this chunk */
667		err = get_next_chunk(dn, &chunk_begin, offset);
668		if (err)
669			return (err);
670		ASSERT3U(chunk_begin, >=, offset);
671		ASSERT3U(chunk_begin, <=, chunk_end);
672
673		dmu_tx_t *tx = dmu_tx_create(os);
674		dmu_tx_hold_free(tx, dn->dn_object,
675		    chunk_begin, chunk_end - chunk_begin);
676		err = dmu_tx_assign(tx, TXG_WAIT);
677		if (err) {
678			dmu_tx_abort(tx);
679			return (err);
680		}
681		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
682		dmu_tx_commit(tx);
683
684		length -= chunk_end - chunk_begin;
685	}
686	return (0);
687}
688
689int
690dmu_free_long_range(objset_t *os, uint64_t object,
691    uint64_t offset, uint64_t length)
692{
693	dnode_t *dn;
694	int err;
695
696	err = dnode_hold(os, object, FTAG, &dn);
697	if (err != 0)
698		return (err);
699	err = dmu_free_long_range_impl(os, dn, offset, length);
700
701	/*
702	 * It is important to zero out the maxblkid when freeing the entire
703	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
704	 * will take the fast path, and (b) dnode_reallocate() can verify
705	 * that the entire file has been freed.
706	 */
707	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
708		dn->dn_maxblkid = 0;
709
710	dnode_rele(dn, FTAG);
711	return (err);
712}
713
714int
715dmu_free_long_object(objset_t *os, uint64_t object)
716{
717	dmu_tx_t *tx;
718	int err;
719
720	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
721	if (err != 0)
722		return (err);
723
724	tx = dmu_tx_create(os);
725	dmu_tx_hold_bonus(tx, object);
726	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
727	err = dmu_tx_assign(tx, TXG_WAIT);
728	if (err == 0) {
729		err = dmu_object_free(os, object, tx);
730		dmu_tx_commit(tx);
731	} else {
732		dmu_tx_abort(tx);
733	}
734
735	return (err);
736}
737
738int
739dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
740    uint64_t size, dmu_tx_t *tx)
741{
742	dnode_t *dn;
743	int err = dnode_hold(os, object, FTAG, &dn);
744	if (err)
745		return (err);
746	ASSERT(offset < UINT64_MAX);
747	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
748	dnode_free_range(dn, offset, size, tx);
749	dnode_rele(dn, FTAG);
750	return (0);
751}
752
753int
754dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
755    void *buf, uint32_t flags)
756{
757	dnode_t *dn;
758	dmu_buf_t **dbp;
759	int numbufs, err;
760
761	err = dnode_hold(os, object, FTAG, &dn);
762	if (err)
763		return (err);
764
765	/*
766	 * Deal with odd block sizes, where there can't be data past the first
767	 * block.  If we ever do the tail block optimization, we will need to
768	 * handle that here as well.
769	 */
770	if (dn->dn_maxblkid == 0) {
771		int newsz = offset > dn->dn_datablksz ? 0 :
772		    MIN(size, dn->dn_datablksz - offset);
773		bzero((char *)buf + newsz, size - newsz);
774		size = newsz;
775	}
776
777	while (size > 0) {
778		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
779		int i;
780
781		/*
782		 * NB: we could do this block-at-a-time, but it's nice
783		 * to be reading in parallel.
784		 */
785		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
786		    TRUE, FTAG, &numbufs, &dbp, flags);
787		if (err)
788			break;
789
790		for (i = 0; i < numbufs; i++) {
791			int tocpy;
792			int bufoff;
793			dmu_buf_t *db = dbp[i];
794
795			ASSERT(size > 0);
796
797			bufoff = offset - db->db_offset;
798			tocpy = (int)MIN(db->db_size - bufoff, size);
799
800			bcopy((char *)db->db_data + bufoff, buf, tocpy);
801
802			offset += tocpy;
803			size -= tocpy;
804			buf = (char *)buf + tocpy;
805		}
806		dmu_buf_rele_array(dbp, numbufs, FTAG);
807	}
808	dnode_rele(dn, FTAG);
809	return (err);
810}
811
812void
813dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
814    const void *buf, dmu_tx_t *tx)
815{
816	dmu_buf_t **dbp;
817	int numbufs, i;
818
819	if (size == 0)
820		return;
821
822	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
823	    FALSE, FTAG, &numbufs, &dbp));
824
825	for (i = 0; i < numbufs; i++) {
826		int tocpy;
827		int bufoff;
828		dmu_buf_t *db = dbp[i];
829
830		ASSERT(size > 0);
831
832		bufoff = offset - db->db_offset;
833		tocpy = (int)MIN(db->db_size - bufoff, size);
834
835		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
836
837		if (tocpy == db->db_size)
838			dmu_buf_will_fill(db, tx);
839		else
840			dmu_buf_will_dirty(db, tx);
841
842		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
843
844		if (tocpy == db->db_size)
845			dmu_buf_fill_done(db, tx);
846
847		offset += tocpy;
848		size -= tocpy;
849		buf = (char *)buf + tocpy;
850	}
851	dmu_buf_rele_array(dbp, numbufs, FTAG);
852}
853
854void
855dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
856    dmu_tx_t *tx)
857{
858	dmu_buf_t **dbp;
859	int numbufs, i;
860
861	if (size == 0)
862		return;
863
864	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
865	    FALSE, FTAG, &numbufs, &dbp));
866
867	for (i = 0; i < numbufs; i++) {
868		dmu_buf_t *db = dbp[i];
869
870		dmu_buf_will_not_fill(db, tx);
871	}
872	dmu_buf_rele_array(dbp, numbufs, FTAG);
873}
874
875void
876dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
877    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
878    int compressed_size, int byteorder, dmu_tx_t *tx)
879{
880	dmu_buf_t *db;
881
882	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
883	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
884	VERIFY0(dmu_buf_hold_noread(os, object, offset,
885	    FTAG, &db));
886
887	dmu_buf_write_embedded(db,
888	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
889	    uncompressed_size, compressed_size, byteorder, tx);
890
891	dmu_buf_rele(db, FTAG);
892}
893
894/*
895 * DMU support for xuio
896 */
897kstat_t *xuio_ksp = NULL;
898
899int
900dmu_xuio_init(xuio_t *xuio, int nblk)
901{
902	dmu_xuio_t *priv;
903	uio_t *uio = &xuio->xu_uio;
904
905	uio->uio_iovcnt = nblk;
906	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
907
908	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
909	priv->cnt = nblk;
910	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
911	priv->iovp = uio->uio_iov;
912	XUIO_XUZC_PRIV(xuio) = priv;
913
914	if (XUIO_XUZC_RW(xuio) == UIO_READ)
915		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
916	else
917		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
918
919	return (0);
920}
921
922void
923dmu_xuio_fini(xuio_t *xuio)
924{
925	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
926	int nblk = priv->cnt;
927
928	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
929	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
930	kmem_free(priv, sizeof (dmu_xuio_t));
931
932	if (XUIO_XUZC_RW(xuio) == UIO_READ)
933		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
934	else
935		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
936}
937
938/*
939 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
940 * and increase priv->next by 1.
941 */
942int
943dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
944{
945	struct iovec *iov;
946	uio_t *uio = &xuio->xu_uio;
947	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
948	int i = priv->next++;
949
950	ASSERT(i < priv->cnt);
951	ASSERT(off + n <= arc_buf_size(abuf));
952	iov = uio->uio_iov + i;
953	iov->iov_base = (char *)abuf->b_data + off;
954	iov->iov_len = n;
955	priv->bufs[i] = abuf;
956	return (0);
957}
958
959int
960dmu_xuio_cnt(xuio_t *xuio)
961{
962	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
963	return (priv->cnt);
964}
965
966arc_buf_t *
967dmu_xuio_arcbuf(xuio_t *xuio, int i)
968{
969	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
970
971	ASSERT(i < priv->cnt);
972	return (priv->bufs[i]);
973}
974
975void
976dmu_xuio_clear(xuio_t *xuio, int i)
977{
978	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
979
980	ASSERT(i < priv->cnt);
981	priv->bufs[i] = NULL;
982}
983
984static void
985xuio_stat_init(void)
986{
987	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
988	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
989	    KSTAT_FLAG_VIRTUAL);
990	if (xuio_ksp != NULL) {
991		xuio_ksp->ks_data = &xuio_stats;
992		kstat_install(xuio_ksp);
993	}
994}
995
996static void
997xuio_stat_fini(void)
998{
999	if (xuio_ksp != NULL) {
1000		kstat_delete(xuio_ksp);
1001		xuio_ksp = NULL;
1002	}
1003}
1004
1005void
1006xuio_stat_wbuf_copied()
1007{
1008	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1009}
1010
1011void
1012xuio_stat_wbuf_nocopy()
1013{
1014	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1015}
1016
1017#ifdef _KERNEL
1018int
1019dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1020{
1021	dmu_buf_t **dbp;
1022	int numbufs, i, err;
1023	xuio_t *xuio = NULL;
1024
1025	/*
1026	 * NB: we could do this block-at-a-time, but it's nice
1027	 * to be reading in parallel.
1028	 */
1029	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
1030	    &numbufs, &dbp);
1031	if (err)
1032		return (err);
1033
1034#ifdef UIO_XUIO
1035	if (uio->uio_extflg == UIO_XUIO)
1036		xuio = (xuio_t *)uio;
1037#endif
1038
1039	for (i = 0; i < numbufs; i++) {
1040		int tocpy;
1041		int bufoff;
1042		dmu_buf_t *db = dbp[i];
1043
1044		ASSERT(size > 0);
1045
1046		bufoff = uio->uio_loffset - db->db_offset;
1047		tocpy = (int)MIN(db->db_size - bufoff, size);
1048
1049		if (xuio) {
1050			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1051			arc_buf_t *dbuf_abuf = dbi->db_buf;
1052			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1053			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1054			if (!err) {
1055				uio->uio_resid -= tocpy;
1056				uio->uio_loffset += tocpy;
1057			}
1058
1059			if (abuf == dbuf_abuf)
1060				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1061			else
1062				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1063		} else {
1064			err = uiomove((char *)db->db_data + bufoff, tocpy,
1065			    UIO_READ, uio);
1066		}
1067		if (err)
1068			break;
1069
1070		size -= tocpy;
1071	}
1072	dmu_buf_rele_array(dbp, numbufs, FTAG);
1073
1074	return (err);
1075}
1076
1077static int
1078dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1079{
1080	dmu_buf_t **dbp;
1081	int numbufs;
1082	int err = 0;
1083	int i;
1084
1085	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1086	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1087	if (err)
1088		return (err);
1089
1090	for (i = 0; i < numbufs; i++) {
1091		int tocpy;
1092		int bufoff;
1093		dmu_buf_t *db = dbp[i];
1094
1095		ASSERT(size > 0);
1096
1097		bufoff = uio->uio_loffset - db->db_offset;
1098		tocpy = (int)MIN(db->db_size - bufoff, size);
1099
1100		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1101
1102		if (tocpy == db->db_size)
1103			dmu_buf_will_fill(db, tx);
1104		else
1105			dmu_buf_will_dirty(db, tx);
1106
1107		/*
1108		 * XXX uiomove could block forever (eg. nfs-backed
1109		 * pages).  There needs to be a uiolockdown() function
1110		 * to lock the pages in memory, so that uiomove won't
1111		 * block.
1112		 */
1113		err = uiomove((char *)db->db_data + bufoff, tocpy,
1114		    UIO_WRITE, uio);
1115
1116		if (tocpy == db->db_size)
1117			dmu_buf_fill_done(db, tx);
1118
1119		if (err)
1120			break;
1121
1122		size -= tocpy;
1123	}
1124
1125	dmu_buf_rele_array(dbp, numbufs, FTAG);
1126	return (err);
1127}
1128
1129int
1130dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1131    dmu_tx_t *tx)
1132{
1133	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1134	dnode_t *dn;
1135	int err;
1136
1137	if (size == 0)
1138		return (0);
1139
1140	DB_DNODE_ENTER(db);
1141	dn = DB_DNODE(db);
1142	err = dmu_write_uio_dnode(dn, uio, size, tx);
1143	DB_DNODE_EXIT(db);
1144
1145	return (err);
1146}
1147
1148int
1149dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1150    dmu_tx_t *tx)
1151{
1152	dnode_t *dn;
1153	int err;
1154
1155	if (size == 0)
1156		return (0);
1157
1158	err = dnode_hold(os, object, FTAG, &dn);
1159	if (err)
1160		return (err);
1161
1162	err = dmu_write_uio_dnode(dn, uio, size, tx);
1163
1164	dnode_rele(dn, FTAG);
1165
1166	return (err);
1167}
1168
1169#ifdef sun
1170int
1171dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1172    page_t *pp, dmu_tx_t *tx)
1173{
1174	dmu_buf_t **dbp;
1175	int numbufs, i;
1176	int err;
1177
1178	if (size == 0)
1179		return (0);
1180
1181	err = dmu_buf_hold_array(os, object, offset, size,
1182	    FALSE, FTAG, &numbufs, &dbp);
1183	if (err)
1184		return (err);
1185
1186	for (i = 0; i < numbufs; i++) {
1187		int tocpy, copied, thiscpy;
1188		int bufoff;
1189		dmu_buf_t *db = dbp[i];
1190		caddr_t va;
1191
1192		ASSERT(size > 0);
1193		ASSERT3U(db->db_size, >=, PAGESIZE);
1194
1195		bufoff = offset - db->db_offset;
1196		tocpy = (int)MIN(db->db_size - bufoff, size);
1197
1198		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1199
1200		if (tocpy == db->db_size)
1201			dmu_buf_will_fill(db, tx);
1202		else
1203			dmu_buf_will_dirty(db, tx);
1204
1205		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1206			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1207			thiscpy = MIN(PAGESIZE, tocpy - copied);
1208			va = zfs_map_page(pp, S_READ);
1209			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1210			zfs_unmap_page(pp, va);
1211			pp = pp->p_next;
1212			bufoff += PAGESIZE;
1213		}
1214
1215		if (tocpy == db->db_size)
1216			dmu_buf_fill_done(db, tx);
1217
1218		offset += tocpy;
1219		size -= tocpy;
1220	}
1221	dmu_buf_rele_array(dbp, numbufs, FTAG);
1222	return (err);
1223}
1224
1225#else
1226
1227int
1228dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1229    vm_page_t *ma, dmu_tx_t *tx)
1230{
1231	dmu_buf_t **dbp;
1232	struct sf_buf *sf;
1233	int numbufs, i;
1234	int err;
1235
1236	if (size == 0)
1237		return (0);
1238
1239	err = dmu_buf_hold_array(os, object, offset, size,
1240	    FALSE, FTAG, &numbufs, &dbp);
1241	if (err)
1242		return (err);
1243
1244	for (i = 0; i < numbufs; i++) {
1245		int tocpy, copied, thiscpy;
1246		int bufoff;
1247		dmu_buf_t *db = dbp[i];
1248		caddr_t va;
1249
1250		ASSERT(size > 0);
1251		ASSERT3U(db->db_size, >=, PAGESIZE);
1252
1253		bufoff = offset - db->db_offset;
1254		tocpy = (int)MIN(db->db_size - bufoff, size);
1255
1256		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1257
1258		if (tocpy == db->db_size)
1259			dmu_buf_will_fill(db, tx);
1260		else
1261			dmu_buf_will_dirty(db, tx);
1262
1263		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1264			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1265			thiscpy = MIN(PAGESIZE, tocpy - copied);
1266			va = zfs_map_page(*ma, &sf);
1267			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1268			zfs_unmap_page(sf);
1269			ma += 1;
1270			bufoff += PAGESIZE;
1271		}
1272
1273		if (tocpy == db->db_size)
1274			dmu_buf_fill_done(db, tx);
1275
1276		offset += tocpy;
1277		size -= tocpy;
1278	}
1279	dmu_buf_rele_array(dbp, numbufs, FTAG);
1280	return (err);
1281}
1282#endif	/* sun */
1283#endif
1284
1285/*
1286 * Allocate a loaned anonymous arc buffer.
1287 */
1288arc_buf_t *
1289dmu_request_arcbuf(dmu_buf_t *handle, int size)
1290{
1291	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1292
1293	return (arc_loan_buf(db->db_objset->os_spa, size));
1294}
1295
1296/*
1297 * Free a loaned arc buffer.
1298 */
1299void
1300dmu_return_arcbuf(arc_buf_t *buf)
1301{
1302	arc_return_buf(buf, FTAG);
1303	VERIFY(arc_buf_remove_ref(buf, FTAG));
1304}
1305
1306/*
1307 * When possible directly assign passed loaned arc buffer to a dbuf.
1308 * If this is not possible copy the contents of passed arc buf via
1309 * dmu_write().
1310 */
1311void
1312dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1313    dmu_tx_t *tx)
1314{
1315	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1316	dnode_t *dn;
1317	dmu_buf_impl_t *db;
1318	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1319	uint64_t blkid;
1320
1321	DB_DNODE_ENTER(dbuf);
1322	dn = DB_DNODE(dbuf);
1323	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1324	blkid = dbuf_whichblock(dn, offset);
1325	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1326	rw_exit(&dn->dn_struct_rwlock);
1327	DB_DNODE_EXIT(dbuf);
1328
1329	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1330		dbuf_assign_arcbuf(db, buf, tx);
1331		dbuf_rele(db, FTAG);
1332	} else {
1333		objset_t *os;
1334		uint64_t object;
1335
1336		DB_DNODE_ENTER(dbuf);
1337		dn = DB_DNODE(dbuf);
1338		os = dn->dn_objset;
1339		object = dn->dn_object;
1340		DB_DNODE_EXIT(dbuf);
1341
1342		dbuf_rele(db, FTAG);
1343		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1344		dmu_return_arcbuf(buf);
1345		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1346	}
1347}
1348
1349typedef struct {
1350	dbuf_dirty_record_t	*dsa_dr;
1351	dmu_sync_cb_t		*dsa_done;
1352	zgd_t			*dsa_zgd;
1353	dmu_tx_t		*dsa_tx;
1354} dmu_sync_arg_t;
1355
1356/* ARGSUSED */
1357static void
1358dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1359{
1360	dmu_sync_arg_t *dsa = varg;
1361	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1362	blkptr_t *bp = zio->io_bp;
1363
1364	if (zio->io_error == 0) {
1365		if (BP_IS_HOLE(bp)) {
1366			/*
1367			 * A block of zeros may compress to a hole, but the
1368			 * block size still needs to be known for replay.
1369			 */
1370			BP_SET_LSIZE(bp, db->db_size);
1371		} else if (!BP_IS_EMBEDDED(bp)) {
1372			ASSERT(BP_GET_LEVEL(bp) == 0);
1373			bp->blk_fill = 1;
1374		}
1375	}
1376}
1377
1378static void
1379dmu_sync_late_arrival_ready(zio_t *zio)
1380{
1381	dmu_sync_ready(zio, NULL, zio->io_private);
1382}
1383
1384/* ARGSUSED */
1385static void
1386dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1387{
1388	dmu_sync_arg_t *dsa = varg;
1389	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1390	dmu_buf_impl_t *db = dr->dr_dbuf;
1391
1392	mutex_enter(&db->db_mtx);
1393	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1394	if (zio->io_error == 0) {
1395		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1396		if (dr->dt.dl.dr_nopwrite) {
1397			blkptr_t *bp = zio->io_bp;
1398			blkptr_t *bp_orig = &zio->io_bp_orig;
1399			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1400
1401			ASSERT(BP_EQUAL(bp, bp_orig));
1402			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1403			ASSERT(zio_checksum_table[chksum].ci_dedup);
1404		}
1405		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1406		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1407		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1408		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1409			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1410	} else {
1411		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1412	}
1413	cv_broadcast(&db->db_changed);
1414	mutex_exit(&db->db_mtx);
1415
1416	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1417
1418	kmem_free(dsa, sizeof (*dsa));
1419}
1420
1421static void
1422dmu_sync_late_arrival_done(zio_t *zio)
1423{
1424	blkptr_t *bp = zio->io_bp;
1425	dmu_sync_arg_t *dsa = zio->io_private;
1426	blkptr_t *bp_orig = &zio->io_bp_orig;
1427
1428	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1429		/*
1430		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1431		 * then there is nothing to do here. Otherwise, free the
1432		 * newly allocated block in this txg.
1433		 */
1434		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1435			ASSERT(BP_EQUAL(bp, bp_orig));
1436		} else {
1437			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1438			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1439			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1440			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1441		}
1442	}
1443
1444	dmu_tx_commit(dsa->dsa_tx);
1445
1446	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1447
1448	kmem_free(dsa, sizeof (*dsa));
1449}
1450
1451static int
1452dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1453    zio_prop_t *zp, zbookmark_phys_t *zb)
1454{
1455	dmu_sync_arg_t *dsa;
1456	dmu_tx_t *tx;
1457
1458	tx = dmu_tx_create(os);
1459	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1460	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1461		dmu_tx_abort(tx);
1462		/* Make zl_get_data do txg_waited_synced() */
1463		return (SET_ERROR(EIO));
1464	}
1465
1466	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1467	dsa->dsa_dr = NULL;
1468	dsa->dsa_done = done;
1469	dsa->dsa_zgd = zgd;
1470	dsa->dsa_tx = tx;
1471
1472	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1473	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1474	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1475	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1476
1477	return (0);
1478}
1479
1480/*
1481 * Intent log support: sync the block associated with db to disk.
1482 * N.B. and XXX: the caller is responsible for making sure that the
1483 * data isn't changing while dmu_sync() is writing it.
1484 *
1485 * Return values:
1486 *
1487 *	EEXIST: this txg has already been synced, so there's nothing to do.
1488 *		The caller should not log the write.
1489 *
1490 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1491 *		The caller should not log the write.
1492 *
1493 *	EALREADY: this block is already in the process of being synced.
1494 *		The caller should track its progress (somehow).
1495 *
1496 *	EIO: could not do the I/O.
1497 *		The caller should do a txg_wait_synced().
1498 *
1499 *	0: the I/O has been initiated.
1500 *		The caller should log this blkptr in the done callback.
1501 *		It is possible that the I/O will fail, in which case
1502 *		the error will be reported to the done callback and
1503 *		propagated to pio from zio_done().
1504 */
1505int
1506dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1507{
1508	blkptr_t *bp = zgd->zgd_bp;
1509	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1510	objset_t *os = db->db_objset;
1511	dsl_dataset_t *ds = os->os_dsl_dataset;
1512	dbuf_dirty_record_t *dr;
1513	dmu_sync_arg_t *dsa;
1514	zbookmark_phys_t zb;
1515	zio_prop_t zp;
1516	dnode_t *dn;
1517
1518	ASSERT(pio != NULL);
1519	ASSERT(txg != 0);
1520
1521	SET_BOOKMARK(&zb, ds->ds_object,
1522	    db->db.db_object, db->db_level, db->db_blkid);
1523
1524	DB_DNODE_ENTER(db);
1525	dn = DB_DNODE(db);
1526	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1527	DB_DNODE_EXIT(db);
1528
1529	/*
1530	 * If we're frozen (running ziltest), we always need to generate a bp.
1531	 */
1532	if (txg > spa_freeze_txg(os->os_spa))
1533		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1534
1535	/*
1536	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1537	 * and us.  If we determine that this txg is not yet syncing,
1538	 * but it begins to sync a moment later, that's OK because the
1539	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1540	 */
1541	mutex_enter(&db->db_mtx);
1542
1543	if (txg <= spa_last_synced_txg(os->os_spa)) {
1544		/*
1545		 * This txg has already synced.  There's nothing to do.
1546		 */
1547		mutex_exit(&db->db_mtx);
1548		return (SET_ERROR(EEXIST));
1549	}
1550
1551	if (txg <= spa_syncing_txg(os->os_spa)) {
1552		/*
1553		 * This txg is currently syncing, so we can't mess with
1554		 * the dirty record anymore; just write a new log block.
1555		 */
1556		mutex_exit(&db->db_mtx);
1557		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1558	}
1559
1560	dr = db->db_last_dirty;
1561	while (dr && dr->dr_txg != txg)
1562		dr = dr->dr_next;
1563
1564	if (dr == NULL) {
1565		/*
1566		 * There's no dr for this dbuf, so it must have been freed.
1567		 * There's no need to log writes to freed blocks, so we're done.
1568		 */
1569		mutex_exit(&db->db_mtx);
1570		return (SET_ERROR(ENOENT));
1571	}
1572
1573	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1574
1575	/*
1576	 * Assume the on-disk data is X, the current syncing data is Y,
1577	 * and the current in-memory data is Z (currently in dmu_sync).
1578	 * X and Z are identical but Y is has been modified. Normally,
1579	 * when X and Z are the same we will perform a nopwrite but if Y
1580	 * is different we must disable nopwrite since the resulting write
1581	 * of Y to disk can free the block containing X. If we allowed a
1582	 * nopwrite to occur the block pointing to Z would reference a freed
1583	 * block. Since this is a rare case we simplify this by disabling
1584	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1585	 * a previous transaction.
1586	 */
1587	if (dr->dr_next)
1588		zp.zp_nopwrite = B_FALSE;
1589
1590	ASSERT(dr->dr_txg == txg);
1591	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1592	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1593		/*
1594		 * We have already issued a sync write for this buffer,
1595		 * or this buffer has already been synced.  It could not
1596		 * have been dirtied since, or we would have cleared the state.
1597		 */
1598		mutex_exit(&db->db_mtx);
1599		return (SET_ERROR(EALREADY));
1600	}
1601
1602	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1603	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1604	mutex_exit(&db->db_mtx);
1605
1606	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1607	dsa->dsa_dr = dr;
1608	dsa->dsa_done = done;
1609	dsa->dsa_zgd = zgd;
1610	dsa->dsa_tx = NULL;
1611
1612	zio_nowait(arc_write(pio, os->os_spa, txg,
1613	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1614	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1615	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1616	    ZIO_FLAG_CANFAIL, &zb));
1617
1618	return (0);
1619}
1620
1621int
1622dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1623	dmu_tx_t *tx)
1624{
1625	dnode_t *dn;
1626	int err;
1627
1628	err = dnode_hold(os, object, FTAG, &dn);
1629	if (err)
1630		return (err);
1631	err = dnode_set_blksz(dn, size, ibs, tx);
1632	dnode_rele(dn, FTAG);
1633	return (err);
1634}
1635
1636void
1637dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1638	dmu_tx_t *tx)
1639{
1640	dnode_t *dn;
1641
1642	/*
1643	 * Send streams include each object's checksum function.  This
1644	 * check ensures that the receiving system can understand the
1645	 * checksum function transmitted.
1646	 */
1647	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1648
1649	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1650	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1651	dn->dn_checksum = checksum;
1652	dnode_setdirty(dn, tx);
1653	dnode_rele(dn, FTAG);
1654}
1655
1656void
1657dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1658	dmu_tx_t *tx)
1659{
1660	dnode_t *dn;
1661
1662	/*
1663	 * Send streams include each object's compression function.  This
1664	 * check ensures that the receiving system can understand the
1665	 * compression function transmitted.
1666	 */
1667	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1668
1669	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1670	dn->dn_compress = compress;
1671	dnode_setdirty(dn, tx);
1672	dnode_rele(dn, FTAG);
1673}
1674
1675int zfs_mdcomp_disable = 0;
1676TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1677SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1678    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1679
1680/*
1681 * When the "redundant_metadata" property is set to "most", only indirect
1682 * blocks of this level and higher will have an additional ditto block.
1683 */
1684int zfs_redundant_metadata_most_ditto_level = 2;
1685
1686void
1687dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1688{
1689	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1690	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1691	    (wp & WP_SPILL));
1692	enum zio_checksum checksum = os->os_checksum;
1693	enum zio_compress compress = os->os_compress;
1694	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1695	boolean_t dedup = B_FALSE;
1696	boolean_t nopwrite = B_FALSE;
1697	boolean_t dedup_verify = os->os_dedup_verify;
1698	int copies = os->os_copies;
1699
1700	/*
1701	 * We maintain different write policies for each of the following
1702	 * types of data:
1703	 *	 1. metadata
1704	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1705	 *	 3. all other level 0 blocks
1706	 */
1707	if (ismd) {
1708		/*
1709		 * XXX -- we should design a compression algorithm
1710		 * that specializes in arrays of bps.
1711		 */
1712		boolean_t lz4_ac = spa_feature_is_active(os->os_spa,
1713		    SPA_FEATURE_LZ4_COMPRESS);
1714
1715		if (zfs_mdcomp_disable) {
1716			compress = ZIO_COMPRESS_EMPTY;
1717		} else if (lz4_ac) {
1718			compress = ZIO_COMPRESS_LZ4;
1719		} else {
1720			compress = ZIO_COMPRESS_LZJB;
1721		}
1722
1723		/*
1724		 * Metadata always gets checksummed.  If the data
1725		 * checksum is multi-bit correctable, and it's not a
1726		 * ZBT-style checksum, then it's suitable for metadata
1727		 * as well.  Otherwise, the metadata checksum defaults
1728		 * to fletcher4.
1729		 */
1730		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1731		    zio_checksum_table[checksum].ci_eck)
1732			checksum = ZIO_CHECKSUM_FLETCHER_4;
1733
1734		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1735		    (os->os_redundant_metadata ==
1736		    ZFS_REDUNDANT_METADATA_MOST &&
1737		    (level >= zfs_redundant_metadata_most_ditto_level ||
1738		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1739			copies++;
1740	} else if (wp & WP_NOFILL) {
1741		ASSERT(level == 0);
1742
1743		/*
1744		 * If we're writing preallocated blocks, we aren't actually
1745		 * writing them so don't set any policy properties.  These
1746		 * blocks are currently only used by an external subsystem
1747		 * outside of zfs (i.e. dump) and not written by the zio
1748		 * pipeline.
1749		 */
1750		compress = ZIO_COMPRESS_OFF;
1751		checksum = ZIO_CHECKSUM_NOPARITY;
1752	} else {
1753		compress = zio_compress_select(dn->dn_compress, compress);
1754
1755		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1756		    zio_checksum_select(dn->dn_checksum, checksum) :
1757		    dedup_checksum;
1758
1759		/*
1760		 * Determine dedup setting.  If we are in dmu_sync(),
1761		 * we won't actually dedup now because that's all
1762		 * done in syncing context; but we do want to use the
1763		 * dedup checkum.  If the checksum is not strong
1764		 * enough to ensure unique signatures, force
1765		 * dedup_verify.
1766		 */
1767		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1768			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1769			if (!zio_checksum_table[checksum].ci_dedup)
1770				dedup_verify = B_TRUE;
1771		}
1772
1773		/*
1774		 * Enable nopwrite if we have a cryptographically secure
1775		 * checksum that has no known collisions (i.e. SHA-256)
1776		 * and compression is enabled.  We don't enable nopwrite if
1777		 * dedup is enabled as the two features are mutually exclusive.
1778		 */
1779		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1780		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1781	}
1782
1783	zp->zp_checksum = checksum;
1784	zp->zp_compress = compress;
1785	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1786	zp->zp_level = level;
1787	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1788	zp->zp_dedup = dedup;
1789	zp->zp_dedup_verify = dedup && dedup_verify;
1790	zp->zp_nopwrite = nopwrite;
1791}
1792
1793int
1794dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1795{
1796	dnode_t *dn;
1797	int i, err;
1798
1799	err = dnode_hold(os, object, FTAG, &dn);
1800	if (err)
1801		return (err);
1802	/*
1803	 * Sync any current changes before
1804	 * we go trundling through the block pointers.
1805	 */
1806	for (i = 0; i < TXG_SIZE; i++) {
1807		if (list_link_active(&dn->dn_dirty_link[i]))
1808			break;
1809	}
1810	if (i != TXG_SIZE) {
1811		dnode_rele(dn, FTAG);
1812		txg_wait_synced(dmu_objset_pool(os), 0);
1813		err = dnode_hold(os, object, FTAG, &dn);
1814		if (err)
1815			return (err);
1816	}
1817
1818	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1819	dnode_rele(dn, FTAG);
1820
1821	return (err);
1822}
1823
1824void
1825dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1826{
1827	dnode_phys_t *dnp;
1828
1829	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1830	mutex_enter(&dn->dn_mtx);
1831
1832	dnp = dn->dn_phys;
1833
1834	doi->doi_data_block_size = dn->dn_datablksz;
1835	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1836	    1ULL << dn->dn_indblkshift : 0;
1837	doi->doi_type = dn->dn_type;
1838	doi->doi_bonus_type = dn->dn_bonustype;
1839	doi->doi_bonus_size = dn->dn_bonuslen;
1840	doi->doi_indirection = dn->dn_nlevels;
1841	doi->doi_checksum = dn->dn_checksum;
1842	doi->doi_compress = dn->dn_compress;
1843	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1844	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1845	doi->doi_fill_count = 0;
1846	for (int i = 0; i < dnp->dn_nblkptr; i++)
1847		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1848
1849	mutex_exit(&dn->dn_mtx);
1850	rw_exit(&dn->dn_struct_rwlock);
1851}
1852
1853/*
1854 * Get information on a DMU object.
1855 * If doi is NULL, just indicates whether the object exists.
1856 */
1857int
1858dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1859{
1860	dnode_t *dn;
1861	int err = dnode_hold(os, object, FTAG, &dn);
1862
1863	if (err)
1864		return (err);
1865
1866	if (doi != NULL)
1867		dmu_object_info_from_dnode(dn, doi);
1868
1869	dnode_rele(dn, FTAG);
1870	return (0);
1871}
1872
1873/*
1874 * As above, but faster; can be used when you have a held dbuf in hand.
1875 */
1876void
1877dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1878{
1879	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1880
1881	DB_DNODE_ENTER(db);
1882	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1883	DB_DNODE_EXIT(db);
1884}
1885
1886/*
1887 * Faster still when you only care about the size.
1888 * This is specifically optimized for zfs_getattr().
1889 */
1890void
1891dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1892    u_longlong_t *nblk512)
1893{
1894	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1895	dnode_t *dn;
1896
1897	DB_DNODE_ENTER(db);
1898	dn = DB_DNODE(db);
1899
1900	*blksize = dn->dn_datablksz;
1901	/* add 1 for dnode space */
1902	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1903	    SPA_MINBLOCKSHIFT) + 1;
1904	DB_DNODE_EXIT(db);
1905}
1906
1907void
1908byteswap_uint64_array(void *vbuf, size_t size)
1909{
1910	uint64_t *buf = vbuf;
1911	size_t count = size >> 3;
1912	int i;
1913
1914	ASSERT((size & 7) == 0);
1915
1916	for (i = 0; i < count; i++)
1917		buf[i] = BSWAP_64(buf[i]);
1918}
1919
1920void
1921byteswap_uint32_array(void *vbuf, size_t size)
1922{
1923	uint32_t *buf = vbuf;
1924	size_t count = size >> 2;
1925	int i;
1926
1927	ASSERT((size & 3) == 0);
1928
1929	for (i = 0; i < count; i++)
1930		buf[i] = BSWAP_32(buf[i]);
1931}
1932
1933void
1934byteswap_uint16_array(void *vbuf, size_t size)
1935{
1936	uint16_t *buf = vbuf;
1937	size_t count = size >> 1;
1938	int i;
1939
1940	ASSERT((size & 1) == 0);
1941
1942	for (i = 0; i < count; i++)
1943		buf[i] = BSWAP_16(buf[i]);
1944}
1945
1946/* ARGSUSED */
1947void
1948byteswap_uint8_array(void *vbuf, size_t size)
1949{
1950}
1951
1952void
1953dmu_init(void)
1954{
1955	zfs_dbgmsg_init();
1956	sa_cache_init();
1957	xuio_stat_init();
1958	dmu_objset_init();
1959	dnode_init();
1960	dbuf_init();
1961	zfetch_init();
1962	zio_compress_init();
1963	l2arc_init();
1964	arc_init();
1965}
1966
1967void
1968dmu_fini(void)
1969{
1970	arc_fini(); /* arc depends on l2arc, so arc must go first */
1971	l2arc_fini();
1972	zfetch_fini();
1973	zio_compress_fini();
1974	dbuf_fini();
1975	dnode_fini();
1976	dmu_objset_fini();
1977	xuio_stat_fini();
1978	sa_cache_fini();
1979	zfs_dbgmsg_fini();
1980}
1981