dmu.c revision 268657
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dmu_tx.h>
31#include <sys/dbuf.h>
32#include <sys/dnode.h>
33#include <sys/zfs_context.h>
34#include <sys/dmu_objset.h>
35#include <sys/dmu_traverse.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dsl_pool.h>
39#include <sys/dsl_synctask.h>
40#include <sys/dsl_prop.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/zfs_ioctl.h>
43#include <sys/zap.h>
44#include <sys/zio_checksum.h>
45#include <sys/zio_compress.h>
46#include <sys/sa.h>
47#ifdef _KERNEL
48#include <sys/vm.h>
49#include <sys/zfs_znode.h>
50#endif
51
52/*
53 * Enable/disable nopwrite feature.
54 */
55int zfs_nopwrite_enabled = 1;
56SYSCTL_DECL(_vfs_zfs);
57TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
58SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
59    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
60
61const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
62	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
63	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
64	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
65	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
66	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
67	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
68	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
69	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
70	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
72	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
73	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
74	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
75	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
76	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
78	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
79	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
80	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
81	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
82	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
83	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
85	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
86	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
87	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
88	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
89	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
90	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
91	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
92	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
93	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
94	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
95	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
96	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
97	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
98	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
99	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
100	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
102	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
104	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
106	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
108	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
111	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
113	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
116};
117
118const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
119	{	byteswap_uint8_array,	"uint8"		},
120	{	byteswap_uint16_array,	"uint16"	},
121	{	byteswap_uint32_array,	"uint32"	},
122	{	byteswap_uint64_array,	"uint64"	},
123	{	zap_byteswap,		"zap"		},
124	{	dnode_buf_byteswap,	"dnode"		},
125	{	dmu_objset_byteswap,	"objset"	},
126	{	zfs_znode_byteswap,	"znode"		},
127	{	zfs_oldacl_byteswap,	"oldacl"	},
128	{	zfs_acl_byteswap,	"acl"		}
129};
130
131int
132dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
133    void *tag, dmu_buf_t **dbp)
134{
135	dnode_t *dn;
136	uint64_t blkid;
137	dmu_buf_impl_t *db;
138	int err;
139
140	err = dnode_hold(os, object, FTAG, &dn);
141	if (err)
142		return (err);
143	blkid = dbuf_whichblock(dn, offset);
144	rw_enter(&dn->dn_struct_rwlock, RW_READER);
145	db = dbuf_hold(dn, blkid, tag);
146	rw_exit(&dn->dn_struct_rwlock);
147	dnode_rele(dn, FTAG);
148
149	if (db == NULL) {
150		*dbp = NULL;
151		return (SET_ERROR(EIO));
152	}
153
154	*dbp = &db->db;
155	return (err);
156}
157
158int
159dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
160    void *tag, dmu_buf_t **dbp, int flags)
161{
162	int err;
163	int db_flags = DB_RF_CANFAIL;
164
165	if (flags & DMU_READ_NO_PREFETCH)
166		db_flags |= DB_RF_NOPREFETCH;
167
168	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
169	if (err == 0) {
170		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
171		err = dbuf_read(db, NULL, db_flags);
172		if (err != 0) {
173			dbuf_rele(db, tag);
174			*dbp = NULL;
175		}
176	}
177
178	return (err);
179}
180
181int
182dmu_bonus_max(void)
183{
184	return (DN_MAX_BONUSLEN);
185}
186
187int
188dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
189{
190	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
191	dnode_t *dn;
192	int error;
193
194	DB_DNODE_ENTER(db);
195	dn = DB_DNODE(db);
196
197	if (dn->dn_bonus != db) {
198		error = SET_ERROR(EINVAL);
199	} else if (newsize < 0 || newsize > db_fake->db_size) {
200		error = SET_ERROR(EINVAL);
201	} else {
202		dnode_setbonuslen(dn, newsize, tx);
203		error = 0;
204	}
205
206	DB_DNODE_EXIT(db);
207	return (error);
208}
209
210int
211dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
212{
213	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
214	dnode_t *dn;
215	int error;
216
217	DB_DNODE_ENTER(db);
218	dn = DB_DNODE(db);
219
220	if (!DMU_OT_IS_VALID(type)) {
221		error = SET_ERROR(EINVAL);
222	} else if (dn->dn_bonus != db) {
223		error = SET_ERROR(EINVAL);
224	} else {
225		dnode_setbonus_type(dn, type, tx);
226		error = 0;
227	}
228
229	DB_DNODE_EXIT(db);
230	return (error);
231}
232
233dmu_object_type_t
234dmu_get_bonustype(dmu_buf_t *db_fake)
235{
236	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
237	dnode_t *dn;
238	dmu_object_type_t type;
239
240	DB_DNODE_ENTER(db);
241	dn = DB_DNODE(db);
242	type = dn->dn_bonustype;
243	DB_DNODE_EXIT(db);
244
245	return (type);
246}
247
248int
249dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
250{
251	dnode_t *dn;
252	int error;
253
254	error = dnode_hold(os, object, FTAG, &dn);
255	dbuf_rm_spill(dn, tx);
256	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
257	dnode_rm_spill(dn, tx);
258	rw_exit(&dn->dn_struct_rwlock);
259	dnode_rele(dn, FTAG);
260	return (error);
261}
262
263/*
264 * returns ENOENT, EIO, or 0.
265 */
266int
267dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
268{
269	dnode_t *dn;
270	dmu_buf_impl_t *db;
271	int error;
272
273	error = dnode_hold(os, object, FTAG, &dn);
274	if (error)
275		return (error);
276
277	rw_enter(&dn->dn_struct_rwlock, RW_READER);
278	if (dn->dn_bonus == NULL) {
279		rw_exit(&dn->dn_struct_rwlock);
280		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
281		if (dn->dn_bonus == NULL)
282			dbuf_create_bonus(dn);
283	}
284	db = dn->dn_bonus;
285
286	/* as long as the bonus buf is held, the dnode will be held */
287	if (refcount_add(&db->db_holds, tag) == 1) {
288		VERIFY(dnode_add_ref(dn, db));
289		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
290	}
291
292	/*
293	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
294	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
295	 * a dnode hold for every dbuf.
296	 */
297	rw_exit(&dn->dn_struct_rwlock);
298
299	dnode_rele(dn, FTAG);
300
301	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
302
303	*dbp = &db->db;
304	return (0);
305}
306
307/*
308 * returns ENOENT, EIO, or 0.
309 *
310 * This interface will allocate a blank spill dbuf when a spill blk
311 * doesn't already exist on the dnode.
312 *
313 * if you only want to find an already existing spill db, then
314 * dmu_spill_hold_existing() should be used.
315 */
316int
317dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
318{
319	dmu_buf_impl_t *db = NULL;
320	int err;
321
322	if ((flags & DB_RF_HAVESTRUCT) == 0)
323		rw_enter(&dn->dn_struct_rwlock, RW_READER);
324
325	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
326
327	if ((flags & DB_RF_HAVESTRUCT) == 0)
328		rw_exit(&dn->dn_struct_rwlock);
329
330	ASSERT(db != NULL);
331	err = dbuf_read(db, NULL, flags);
332	if (err == 0)
333		*dbp = &db->db;
334	else
335		dbuf_rele(db, tag);
336	return (err);
337}
338
339int
340dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
341{
342	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
343	dnode_t *dn;
344	int err;
345
346	DB_DNODE_ENTER(db);
347	dn = DB_DNODE(db);
348
349	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
350		err = SET_ERROR(EINVAL);
351	} else {
352		rw_enter(&dn->dn_struct_rwlock, RW_READER);
353
354		if (!dn->dn_have_spill) {
355			err = SET_ERROR(ENOENT);
356		} else {
357			err = dmu_spill_hold_by_dnode(dn,
358			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
359		}
360
361		rw_exit(&dn->dn_struct_rwlock);
362	}
363
364	DB_DNODE_EXIT(db);
365	return (err);
366}
367
368int
369dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
370{
371	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
372	dnode_t *dn;
373	int err;
374
375	DB_DNODE_ENTER(db);
376	dn = DB_DNODE(db);
377	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
378	DB_DNODE_EXIT(db);
379
380	return (err);
381}
382
383/*
384 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
385 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
386 * and can induce severe lock contention when writing to several files
387 * whose dnodes are in the same block.
388 */
389static int
390dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
391    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
392{
393	dmu_buf_t **dbp;
394	uint64_t blkid, nblks, i;
395	uint32_t dbuf_flags;
396	int err;
397	zio_t *zio;
398
399	ASSERT(length <= DMU_MAX_ACCESS);
400
401	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
402	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
403		dbuf_flags |= DB_RF_NOPREFETCH;
404
405	rw_enter(&dn->dn_struct_rwlock, RW_READER);
406	if (dn->dn_datablkshift) {
407		int blkshift = dn->dn_datablkshift;
408		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
409		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
410	} else {
411		if (offset + length > dn->dn_datablksz) {
412			zfs_panic_recover("zfs: accessing past end of object "
413			    "%llx/%llx (size=%u access=%llu+%llu)",
414			    (longlong_t)dn->dn_objset->
415			    os_dsl_dataset->ds_object,
416			    (longlong_t)dn->dn_object, dn->dn_datablksz,
417			    (longlong_t)offset, (longlong_t)length);
418			rw_exit(&dn->dn_struct_rwlock);
419			return (SET_ERROR(EIO));
420		}
421		nblks = 1;
422	}
423	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
424
425	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
426	blkid = dbuf_whichblock(dn, offset);
427	for (i = 0; i < nblks; i++) {
428		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
429		if (db == NULL) {
430			rw_exit(&dn->dn_struct_rwlock);
431			dmu_buf_rele_array(dbp, nblks, tag);
432			zio_nowait(zio);
433			return (SET_ERROR(EIO));
434		}
435		/* initiate async i/o */
436		if (read)
437			(void) dbuf_read(db, zio, dbuf_flags);
438#ifdef _KERNEL
439		else
440			curthread->td_ru.ru_oublock++;
441#endif
442		dbp[i] = &db->db;
443	}
444	rw_exit(&dn->dn_struct_rwlock);
445
446	/* wait for async i/o */
447	err = zio_wait(zio);
448	if (err) {
449		dmu_buf_rele_array(dbp, nblks, tag);
450		return (err);
451	}
452
453	/* wait for other io to complete */
454	if (read) {
455		for (i = 0; i < nblks; i++) {
456			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
457			mutex_enter(&db->db_mtx);
458			while (db->db_state == DB_READ ||
459			    db->db_state == DB_FILL)
460				cv_wait(&db->db_changed, &db->db_mtx);
461			if (db->db_state == DB_UNCACHED)
462				err = SET_ERROR(EIO);
463			mutex_exit(&db->db_mtx);
464			if (err) {
465				dmu_buf_rele_array(dbp, nblks, tag);
466				return (err);
467			}
468		}
469	}
470
471	*numbufsp = nblks;
472	*dbpp = dbp;
473	return (0);
474}
475
476static int
477dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
478    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
479{
480	dnode_t *dn;
481	int err;
482
483	err = dnode_hold(os, object, FTAG, &dn);
484	if (err)
485		return (err);
486
487	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
488	    numbufsp, dbpp, DMU_READ_PREFETCH);
489
490	dnode_rele(dn, FTAG);
491
492	return (err);
493}
494
495int
496dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
497    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
498{
499	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
500	dnode_t *dn;
501	int err;
502
503	DB_DNODE_ENTER(db);
504	dn = DB_DNODE(db);
505	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
506	    numbufsp, dbpp, DMU_READ_PREFETCH);
507	DB_DNODE_EXIT(db);
508
509	return (err);
510}
511
512void
513dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
514{
515	int i;
516	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
517
518	if (numbufs == 0)
519		return;
520
521	for (i = 0; i < numbufs; i++) {
522		if (dbp[i])
523			dbuf_rele(dbp[i], tag);
524	}
525
526	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
527}
528
529/*
530 * Issue prefetch i/os for the given blocks.
531 *
532 * Note: The assumption is that we *know* these blocks will be needed
533 * almost immediately.  Therefore, the prefetch i/os will be issued at
534 * ZIO_PRIORITY_SYNC_READ
535 *
536 * Note: indirect blocks and other metadata will be read synchronously,
537 * causing this function to block if they are not already cached.
538 */
539void
540dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
541{
542	dnode_t *dn;
543	uint64_t blkid;
544	int nblks, err;
545
546	if (zfs_prefetch_disable)
547		return;
548
549	if (len == 0) {  /* they're interested in the bonus buffer */
550		dn = DMU_META_DNODE(os);
551
552		if (object == 0 || object >= DN_MAX_OBJECT)
553			return;
554
555		rw_enter(&dn->dn_struct_rwlock, RW_READER);
556		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
557		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
558		rw_exit(&dn->dn_struct_rwlock);
559		return;
560	}
561
562	/*
563	 * XXX - Note, if the dnode for the requested object is not
564	 * already cached, we will do a *synchronous* read in the
565	 * dnode_hold() call.  The same is true for any indirects.
566	 */
567	err = dnode_hold(os, object, FTAG, &dn);
568	if (err != 0)
569		return;
570
571	rw_enter(&dn->dn_struct_rwlock, RW_READER);
572	if (dn->dn_datablkshift) {
573		int blkshift = dn->dn_datablkshift;
574		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
575		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
576	} else {
577		nblks = (offset < dn->dn_datablksz);
578	}
579
580	if (nblks != 0) {
581		blkid = dbuf_whichblock(dn, offset);
582		for (int i = 0; i < nblks; i++)
583			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
584	}
585
586	rw_exit(&dn->dn_struct_rwlock);
587
588	dnode_rele(dn, FTAG);
589}
590
591/*
592 * Get the next "chunk" of file data to free.  We traverse the file from
593 * the end so that the file gets shorter over time (if we crashes in the
594 * middle, this will leave us in a better state).  We find allocated file
595 * data by simply searching the allocated level 1 indirects.
596 *
597 * On input, *start should be the first offset that does not need to be
598 * freed (e.g. "offset + length").  On return, *start will be the first
599 * offset that should be freed.
600 */
601static int
602get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
603{
604	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
605	/* bytes of data covered by a level-1 indirect block */
606	uint64_t iblkrange =
607	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
608
609	ASSERT3U(minimum, <=, *start);
610
611	if (*start - minimum <= iblkrange * maxblks) {
612		*start = minimum;
613		return (0);
614	}
615	ASSERT(ISP2(iblkrange));
616
617	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
618		int err;
619
620		/*
621		 * dnode_next_offset(BACKWARDS) will find an allocated L1
622		 * indirect block at or before the input offset.  We must
623		 * decrement *start so that it is at the end of the region
624		 * to search.
625		 */
626		(*start)--;
627		err = dnode_next_offset(dn,
628		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
629
630		/* if there are no indirect blocks before start, we are done */
631		if (err == ESRCH) {
632			*start = minimum;
633			break;
634		} else if (err != 0) {
635			return (err);
636		}
637
638		/* set start to the beginning of this L1 indirect */
639		*start = P2ALIGN(*start, iblkrange);
640	}
641	if (*start < minimum)
642		*start = minimum;
643	return (0);
644}
645
646static int
647dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
648    uint64_t length)
649{
650	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
651	int err;
652
653	if (offset >= object_size)
654		return (0);
655
656	if (length == DMU_OBJECT_END || offset + length > object_size)
657		length = object_size - offset;
658
659	while (length != 0) {
660		uint64_t chunk_end, chunk_begin;
661
662		chunk_end = chunk_begin = offset + length;
663
664		/* move chunk_begin backwards to the beginning of this chunk */
665		err = get_next_chunk(dn, &chunk_begin, offset);
666		if (err)
667			return (err);
668		ASSERT3U(chunk_begin, >=, offset);
669		ASSERT3U(chunk_begin, <=, chunk_end);
670
671		dmu_tx_t *tx = dmu_tx_create(os);
672		dmu_tx_hold_free(tx, dn->dn_object,
673		    chunk_begin, chunk_end - chunk_begin);
674		err = dmu_tx_assign(tx, TXG_WAIT);
675		if (err) {
676			dmu_tx_abort(tx);
677			return (err);
678		}
679		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
680		dmu_tx_commit(tx);
681
682		length -= chunk_end - chunk_begin;
683	}
684	return (0);
685}
686
687int
688dmu_free_long_range(objset_t *os, uint64_t object,
689    uint64_t offset, uint64_t length)
690{
691	dnode_t *dn;
692	int err;
693
694	err = dnode_hold(os, object, FTAG, &dn);
695	if (err != 0)
696		return (err);
697	err = dmu_free_long_range_impl(os, dn, offset, length);
698
699	/*
700	 * It is important to zero out the maxblkid when freeing the entire
701	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
702	 * will take the fast path, and (b) dnode_reallocate() can verify
703	 * that the entire file has been freed.
704	 */
705	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
706		dn->dn_maxblkid = 0;
707
708	dnode_rele(dn, FTAG);
709	return (err);
710}
711
712int
713dmu_free_long_object(objset_t *os, uint64_t object)
714{
715	dmu_tx_t *tx;
716	int err;
717
718	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
719	if (err != 0)
720		return (err);
721
722	tx = dmu_tx_create(os);
723	dmu_tx_hold_bonus(tx, object);
724	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
725	err = dmu_tx_assign(tx, TXG_WAIT);
726	if (err == 0) {
727		err = dmu_object_free(os, object, tx);
728		dmu_tx_commit(tx);
729	} else {
730		dmu_tx_abort(tx);
731	}
732
733	return (err);
734}
735
736int
737dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
738    uint64_t size, dmu_tx_t *tx)
739{
740	dnode_t *dn;
741	int err = dnode_hold(os, object, FTAG, &dn);
742	if (err)
743		return (err);
744	ASSERT(offset < UINT64_MAX);
745	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
746	dnode_free_range(dn, offset, size, tx);
747	dnode_rele(dn, FTAG);
748	return (0);
749}
750
751int
752dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
753    void *buf, uint32_t flags)
754{
755	dnode_t *dn;
756	dmu_buf_t **dbp;
757	int numbufs, err;
758
759	err = dnode_hold(os, object, FTAG, &dn);
760	if (err)
761		return (err);
762
763	/*
764	 * Deal with odd block sizes, where there can't be data past the first
765	 * block.  If we ever do the tail block optimization, we will need to
766	 * handle that here as well.
767	 */
768	if (dn->dn_maxblkid == 0) {
769		int newsz = offset > dn->dn_datablksz ? 0 :
770		    MIN(size, dn->dn_datablksz - offset);
771		bzero((char *)buf + newsz, size - newsz);
772		size = newsz;
773	}
774
775	while (size > 0) {
776		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
777		int i;
778
779		/*
780		 * NB: we could do this block-at-a-time, but it's nice
781		 * to be reading in parallel.
782		 */
783		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
784		    TRUE, FTAG, &numbufs, &dbp, flags);
785		if (err)
786			break;
787
788		for (i = 0; i < numbufs; i++) {
789			int tocpy;
790			int bufoff;
791			dmu_buf_t *db = dbp[i];
792
793			ASSERT(size > 0);
794
795			bufoff = offset - db->db_offset;
796			tocpy = (int)MIN(db->db_size - bufoff, size);
797
798			bcopy((char *)db->db_data + bufoff, buf, tocpy);
799
800			offset += tocpy;
801			size -= tocpy;
802			buf = (char *)buf + tocpy;
803		}
804		dmu_buf_rele_array(dbp, numbufs, FTAG);
805	}
806	dnode_rele(dn, FTAG);
807	return (err);
808}
809
810void
811dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
812    const void *buf, dmu_tx_t *tx)
813{
814	dmu_buf_t **dbp;
815	int numbufs, i;
816
817	if (size == 0)
818		return;
819
820	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
821	    FALSE, FTAG, &numbufs, &dbp));
822
823	for (i = 0; i < numbufs; i++) {
824		int tocpy;
825		int bufoff;
826		dmu_buf_t *db = dbp[i];
827
828		ASSERT(size > 0);
829
830		bufoff = offset - db->db_offset;
831		tocpy = (int)MIN(db->db_size - bufoff, size);
832
833		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
834
835		if (tocpy == db->db_size)
836			dmu_buf_will_fill(db, tx);
837		else
838			dmu_buf_will_dirty(db, tx);
839
840		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
841
842		if (tocpy == db->db_size)
843			dmu_buf_fill_done(db, tx);
844
845		offset += tocpy;
846		size -= tocpy;
847		buf = (char *)buf + tocpy;
848	}
849	dmu_buf_rele_array(dbp, numbufs, FTAG);
850}
851
852void
853dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
854    dmu_tx_t *tx)
855{
856	dmu_buf_t **dbp;
857	int numbufs, i;
858
859	if (size == 0)
860		return;
861
862	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
863	    FALSE, FTAG, &numbufs, &dbp));
864
865	for (i = 0; i < numbufs; i++) {
866		dmu_buf_t *db = dbp[i];
867
868		dmu_buf_will_not_fill(db, tx);
869	}
870	dmu_buf_rele_array(dbp, numbufs, FTAG);
871}
872
873void
874dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
875    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
876    int compressed_size, int byteorder, dmu_tx_t *tx)
877{
878	dmu_buf_t *db;
879
880	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
881	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
882	VERIFY0(dmu_buf_hold_noread(os, object, offset,
883	    FTAG, &db));
884
885	dmu_buf_write_embedded(db,
886	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
887	    uncompressed_size, compressed_size, byteorder, tx);
888
889	dmu_buf_rele(db, FTAG);
890}
891
892/*
893 * DMU support for xuio
894 */
895kstat_t *xuio_ksp = NULL;
896
897int
898dmu_xuio_init(xuio_t *xuio, int nblk)
899{
900	dmu_xuio_t *priv;
901	uio_t *uio = &xuio->xu_uio;
902
903	uio->uio_iovcnt = nblk;
904	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
905
906	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
907	priv->cnt = nblk;
908	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
909	priv->iovp = uio->uio_iov;
910	XUIO_XUZC_PRIV(xuio) = priv;
911
912	if (XUIO_XUZC_RW(xuio) == UIO_READ)
913		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
914	else
915		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
916
917	return (0);
918}
919
920void
921dmu_xuio_fini(xuio_t *xuio)
922{
923	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
924	int nblk = priv->cnt;
925
926	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
927	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
928	kmem_free(priv, sizeof (dmu_xuio_t));
929
930	if (XUIO_XUZC_RW(xuio) == UIO_READ)
931		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
932	else
933		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
934}
935
936/*
937 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
938 * and increase priv->next by 1.
939 */
940int
941dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
942{
943	struct iovec *iov;
944	uio_t *uio = &xuio->xu_uio;
945	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
946	int i = priv->next++;
947
948	ASSERT(i < priv->cnt);
949	ASSERT(off + n <= arc_buf_size(abuf));
950	iov = uio->uio_iov + i;
951	iov->iov_base = (char *)abuf->b_data + off;
952	iov->iov_len = n;
953	priv->bufs[i] = abuf;
954	return (0);
955}
956
957int
958dmu_xuio_cnt(xuio_t *xuio)
959{
960	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
961	return (priv->cnt);
962}
963
964arc_buf_t *
965dmu_xuio_arcbuf(xuio_t *xuio, int i)
966{
967	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
968
969	ASSERT(i < priv->cnt);
970	return (priv->bufs[i]);
971}
972
973void
974dmu_xuio_clear(xuio_t *xuio, int i)
975{
976	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
977
978	ASSERT(i < priv->cnt);
979	priv->bufs[i] = NULL;
980}
981
982static void
983xuio_stat_init(void)
984{
985	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
986	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
987	    KSTAT_FLAG_VIRTUAL);
988	if (xuio_ksp != NULL) {
989		xuio_ksp->ks_data = &xuio_stats;
990		kstat_install(xuio_ksp);
991	}
992}
993
994static void
995xuio_stat_fini(void)
996{
997	if (xuio_ksp != NULL) {
998		kstat_delete(xuio_ksp);
999		xuio_ksp = NULL;
1000	}
1001}
1002
1003void
1004xuio_stat_wbuf_copied()
1005{
1006	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1007}
1008
1009void
1010xuio_stat_wbuf_nocopy()
1011{
1012	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1013}
1014
1015#ifdef _KERNEL
1016int
1017dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1018{
1019	dmu_buf_t **dbp;
1020	int numbufs, i, err;
1021	xuio_t *xuio = NULL;
1022
1023	/*
1024	 * NB: we could do this block-at-a-time, but it's nice
1025	 * to be reading in parallel.
1026	 */
1027	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
1028	    &numbufs, &dbp);
1029	if (err)
1030		return (err);
1031
1032#ifdef UIO_XUIO
1033	if (uio->uio_extflg == UIO_XUIO)
1034		xuio = (xuio_t *)uio;
1035#endif
1036
1037	for (i = 0; i < numbufs; i++) {
1038		int tocpy;
1039		int bufoff;
1040		dmu_buf_t *db = dbp[i];
1041
1042		ASSERT(size > 0);
1043
1044		bufoff = uio->uio_loffset - db->db_offset;
1045		tocpy = (int)MIN(db->db_size - bufoff, size);
1046
1047		if (xuio) {
1048			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1049			arc_buf_t *dbuf_abuf = dbi->db_buf;
1050			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1051			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1052			if (!err) {
1053				uio->uio_resid -= tocpy;
1054				uio->uio_loffset += tocpy;
1055			}
1056
1057			if (abuf == dbuf_abuf)
1058				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1059			else
1060				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1061		} else {
1062			err = uiomove((char *)db->db_data + bufoff, tocpy,
1063			    UIO_READ, uio);
1064		}
1065		if (err)
1066			break;
1067
1068		size -= tocpy;
1069	}
1070	dmu_buf_rele_array(dbp, numbufs, FTAG);
1071
1072	return (err);
1073}
1074
1075static int
1076dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1077{
1078	dmu_buf_t **dbp;
1079	int numbufs;
1080	int err = 0;
1081	int i;
1082
1083	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1084	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1085	if (err)
1086		return (err);
1087
1088	for (i = 0; i < numbufs; i++) {
1089		int tocpy;
1090		int bufoff;
1091		dmu_buf_t *db = dbp[i];
1092
1093		ASSERT(size > 0);
1094
1095		bufoff = uio->uio_loffset - db->db_offset;
1096		tocpy = (int)MIN(db->db_size - bufoff, size);
1097
1098		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1099
1100		if (tocpy == db->db_size)
1101			dmu_buf_will_fill(db, tx);
1102		else
1103			dmu_buf_will_dirty(db, tx);
1104
1105		/*
1106		 * XXX uiomove could block forever (eg. nfs-backed
1107		 * pages).  There needs to be a uiolockdown() function
1108		 * to lock the pages in memory, so that uiomove won't
1109		 * block.
1110		 */
1111		err = uiomove((char *)db->db_data + bufoff, tocpy,
1112		    UIO_WRITE, uio);
1113
1114		if (tocpy == db->db_size)
1115			dmu_buf_fill_done(db, tx);
1116
1117		if (err)
1118			break;
1119
1120		size -= tocpy;
1121	}
1122
1123	dmu_buf_rele_array(dbp, numbufs, FTAG);
1124	return (err);
1125}
1126
1127int
1128dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1129    dmu_tx_t *tx)
1130{
1131	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1132	dnode_t *dn;
1133	int err;
1134
1135	if (size == 0)
1136		return (0);
1137
1138	DB_DNODE_ENTER(db);
1139	dn = DB_DNODE(db);
1140	err = dmu_write_uio_dnode(dn, uio, size, tx);
1141	DB_DNODE_EXIT(db);
1142
1143	return (err);
1144}
1145
1146int
1147dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1148    dmu_tx_t *tx)
1149{
1150	dnode_t *dn;
1151	int err;
1152
1153	if (size == 0)
1154		return (0);
1155
1156	err = dnode_hold(os, object, FTAG, &dn);
1157	if (err)
1158		return (err);
1159
1160	err = dmu_write_uio_dnode(dn, uio, size, tx);
1161
1162	dnode_rele(dn, FTAG);
1163
1164	return (err);
1165}
1166
1167#ifdef sun
1168int
1169dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1170    page_t *pp, dmu_tx_t *tx)
1171{
1172	dmu_buf_t **dbp;
1173	int numbufs, i;
1174	int err;
1175
1176	if (size == 0)
1177		return (0);
1178
1179	err = dmu_buf_hold_array(os, object, offset, size,
1180	    FALSE, FTAG, &numbufs, &dbp);
1181	if (err)
1182		return (err);
1183
1184	for (i = 0; i < numbufs; i++) {
1185		int tocpy, copied, thiscpy;
1186		int bufoff;
1187		dmu_buf_t *db = dbp[i];
1188		caddr_t va;
1189
1190		ASSERT(size > 0);
1191		ASSERT3U(db->db_size, >=, PAGESIZE);
1192
1193		bufoff = offset - db->db_offset;
1194		tocpy = (int)MIN(db->db_size - bufoff, size);
1195
1196		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1197
1198		if (tocpy == db->db_size)
1199			dmu_buf_will_fill(db, tx);
1200		else
1201			dmu_buf_will_dirty(db, tx);
1202
1203		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1204			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1205			thiscpy = MIN(PAGESIZE, tocpy - copied);
1206			va = zfs_map_page(pp, S_READ);
1207			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1208			zfs_unmap_page(pp, va);
1209			pp = pp->p_next;
1210			bufoff += PAGESIZE;
1211		}
1212
1213		if (tocpy == db->db_size)
1214			dmu_buf_fill_done(db, tx);
1215
1216		offset += tocpy;
1217		size -= tocpy;
1218	}
1219	dmu_buf_rele_array(dbp, numbufs, FTAG);
1220	return (err);
1221}
1222
1223#else
1224
1225int
1226dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1227    vm_page_t *ma, dmu_tx_t *tx)
1228{
1229	dmu_buf_t **dbp;
1230	struct sf_buf *sf;
1231	int numbufs, i;
1232	int err;
1233
1234	if (size == 0)
1235		return (0);
1236
1237	err = dmu_buf_hold_array(os, object, offset, size,
1238	    FALSE, FTAG, &numbufs, &dbp);
1239	if (err)
1240		return (err);
1241
1242	for (i = 0; i < numbufs; i++) {
1243		int tocpy, copied, thiscpy;
1244		int bufoff;
1245		dmu_buf_t *db = dbp[i];
1246		caddr_t va;
1247
1248		ASSERT(size > 0);
1249		ASSERT3U(db->db_size, >=, PAGESIZE);
1250
1251		bufoff = offset - db->db_offset;
1252		tocpy = (int)MIN(db->db_size - bufoff, size);
1253
1254		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1255
1256		if (tocpy == db->db_size)
1257			dmu_buf_will_fill(db, tx);
1258		else
1259			dmu_buf_will_dirty(db, tx);
1260
1261		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1262			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1263			thiscpy = MIN(PAGESIZE, tocpy - copied);
1264			va = zfs_map_page(*ma, &sf);
1265			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1266			zfs_unmap_page(sf);
1267			ma += 1;
1268			bufoff += PAGESIZE;
1269		}
1270
1271		if (tocpy == db->db_size)
1272			dmu_buf_fill_done(db, tx);
1273
1274		offset += tocpy;
1275		size -= tocpy;
1276	}
1277	dmu_buf_rele_array(dbp, numbufs, FTAG);
1278	return (err);
1279}
1280#endif	/* sun */
1281#endif
1282
1283/*
1284 * Allocate a loaned anonymous arc buffer.
1285 */
1286arc_buf_t *
1287dmu_request_arcbuf(dmu_buf_t *handle, int size)
1288{
1289	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1290
1291	return (arc_loan_buf(db->db_objset->os_spa, size));
1292}
1293
1294/*
1295 * Free a loaned arc buffer.
1296 */
1297void
1298dmu_return_arcbuf(arc_buf_t *buf)
1299{
1300	arc_return_buf(buf, FTAG);
1301	VERIFY(arc_buf_remove_ref(buf, FTAG));
1302}
1303
1304/*
1305 * When possible directly assign passed loaned arc buffer to a dbuf.
1306 * If this is not possible copy the contents of passed arc buf via
1307 * dmu_write().
1308 */
1309void
1310dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1311    dmu_tx_t *tx)
1312{
1313	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1314	dnode_t *dn;
1315	dmu_buf_impl_t *db;
1316	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1317	uint64_t blkid;
1318
1319	DB_DNODE_ENTER(dbuf);
1320	dn = DB_DNODE(dbuf);
1321	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1322	blkid = dbuf_whichblock(dn, offset);
1323	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1324	rw_exit(&dn->dn_struct_rwlock);
1325	DB_DNODE_EXIT(dbuf);
1326
1327	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1328		dbuf_assign_arcbuf(db, buf, tx);
1329		dbuf_rele(db, FTAG);
1330	} else {
1331		objset_t *os;
1332		uint64_t object;
1333
1334		DB_DNODE_ENTER(dbuf);
1335		dn = DB_DNODE(dbuf);
1336		os = dn->dn_objset;
1337		object = dn->dn_object;
1338		DB_DNODE_EXIT(dbuf);
1339
1340		dbuf_rele(db, FTAG);
1341		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1342		dmu_return_arcbuf(buf);
1343		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1344	}
1345}
1346
1347typedef struct {
1348	dbuf_dirty_record_t	*dsa_dr;
1349	dmu_sync_cb_t		*dsa_done;
1350	zgd_t			*dsa_zgd;
1351	dmu_tx_t		*dsa_tx;
1352} dmu_sync_arg_t;
1353
1354/* ARGSUSED */
1355static void
1356dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1357{
1358	dmu_sync_arg_t *dsa = varg;
1359	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1360	blkptr_t *bp = zio->io_bp;
1361
1362	if (zio->io_error == 0) {
1363		if (BP_IS_HOLE(bp)) {
1364			/*
1365			 * A block of zeros may compress to a hole, but the
1366			 * block size still needs to be known for replay.
1367			 */
1368			BP_SET_LSIZE(bp, db->db_size);
1369		} else if (!BP_IS_EMBEDDED(bp)) {
1370			ASSERT(BP_GET_LEVEL(bp) == 0);
1371			bp->blk_fill = 1;
1372		}
1373	}
1374}
1375
1376static void
1377dmu_sync_late_arrival_ready(zio_t *zio)
1378{
1379	dmu_sync_ready(zio, NULL, zio->io_private);
1380}
1381
1382/* ARGSUSED */
1383static void
1384dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1385{
1386	dmu_sync_arg_t *dsa = varg;
1387	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1388	dmu_buf_impl_t *db = dr->dr_dbuf;
1389
1390	mutex_enter(&db->db_mtx);
1391	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1392	if (zio->io_error == 0) {
1393		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1394		if (dr->dt.dl.dr_nopwrite) {
1395			blkptr_t *bp = zio->io_bp;
1396			blkptr_t *bp_orig = &zio->io_bp_orig;
1397			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1398
1399			ASSERT(BP_EQUAL(bp, bp_orig));
1400			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1401			ASSERT(zio_checksum_table[chksum].ci_dedup);
1402		}
1403		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1404		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1405		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1406		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1407			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1408	} else {
1409		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1410	}
1411	cv_broadcast(&db->db_changed);
1412	mutex_exit(&db->db_mtx);
1413
1414	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1415
1416	kmem_free(dsa, sizeof (*dsa));
1417}
1418
1419static void
1420dmu_sync_late_arrival_done(zio_t *zio)
1421{
1422	blkptr_t *bp = zio->io_bp;
1423	dmu_sync_arg_t *dsa = zio->io_private;
1424	blkptr_t *bp_orig = &zio->io_bp_orig;
1425
1426	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1427		/*
1428		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1429		 * then there is nothing to do here. Otherwise, free the
1430		 * newly allocated block in this txg.
1431		 */
1432		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1433			ASSERT(BP_EQUAL(bp, bp_orig));
1434		} else {
1435			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1436			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1437			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1438			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1439		}
1440	}
1441
1442	dmu_tx_commit(dsa->dsa_tx);
1443
1444	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1445
1446	kmem_free(dsa, sizeof (*dsa));
1447}
1448
1449static int
1450dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1451    zio_prop_t *zp, zbookmark_phys_t *zb)
1452{
1453	dmu_sync_arg_t *dsa;
1454	dmu_tx_t *tx;
1455
1456	tx = dmu_tx_create(os);
1457	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1458	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1459		dmu_tx_abort(tx);
1460		/* Make zl_get_data do txg_waited_synced() */
1461		return (SET_ERROR(EIO));
1462	}
1463
1464	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1465	dsa->dsa_dr = NULL;
1466	dsa->dsa_done = done;
1467	dsa->dsa_zgd = zgd;
1468	dsa->dsa_tx = tx;
1469
1470	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1471	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1472	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1473	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1474
1475	return (0);
1476}
1477
1478/*
1479 * Intent log support: sync the block associated with db to disk.
1480 * N.B. and XXX: the caller is responsible for making sure that the
1481 * data isn't changing while dmu_sync() is writing it.
1482 *
1483 * Return values:
1484 *
1485 *	EEXIST: this txg has already been synced, so there's nothing to do.
1486 *		The caller should not log the write.
1487 *
1488 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1489 *		The caller should not log the write.
1490 *
1491 *	EALREADY: this block is already in the process of being synced.
1492 *		The caller should track its progress (somehow).
1493 *
1494 *	EIO: could not do the I/O.
1495 *		The caller should do a txg_wait_synced().
1496 *
1497 *	0: the I/O has been initiated.
1498 *		The caller should log this blkptr in the done callback.
1499 *		It is possible that the I/O will fail, in which case
1500 *		the error will be reported to the done callback and
1501 *		propagated to pio from zio_done().
1502 */
1503int
1504dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1505{
1506	blkptr_t *bp = zgd->zgd_bp;
1507	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1508	objset_t *os = db->db_objset;
1509	dsl_dataset_t *ds = os->os_dsl_dataset;
1510	dbuf_dirty_record_t *dr;
1511	dmu_sync_arg_t *dsa;
1512	zbookmark_phys_t zb;
1513	zio_prop_t zp;
1514	dnode_t *dn;
1515
1516	ASSERT(pio != NULL);
1517	ASSERT(txg != 0);
1518
1519	SET_BOOKMARK(&zb, ds->ds_object,
1520	    db->db.db_object, db->db_level, db->db_blkid);
1521
1522	DB_DNODE_ENTER(db);
1523	dn = DB_DNODE(db);
1524	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1525	DB_DNODE_EXIT(db);
1526
1527	/*
1528	 * If we're frozen (running ziltest), we always need to generate a bp.
1529	 */
1530	if (txg > spa_freeze_txg(os->os_spa))
1531		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1532
1533	/*
1534	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1535	 * and us.  If we determine that this txg is not yet syncing,
1536	 * but it begins to sync a moment later, that's OK because the
1537	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1538	 */
1539	mutex_enter(&db->db_mtx);
1540
1541	if (txg <= spa_last_synced_txg(os->os_spa)) {
1542		/*
1543		 * This txg has already synced.  There's nothing to do.
1544		 */
1545		mutex_exit(&db->db_mtx);
1546		return (SET_ERROR(EEXIST));
1547	}
1548
1549	if (txg <= spa_syncing_txg(os->os_spa)) {
1550		/*
1551		 * This txg is currently syncing, so we can't mess with
1552		 * the dirty record anymore; just write a new log block.
1553		 */
1554		mutex_exit(&db->db_mtx);
1555		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1556	}
1557
1558	dr = db->db_last_dirty;
1559	while (dr && dr->dr_txg != txg)
1560		dr = dr->dr_next;
1561
1562	if (dr == NULL) {
1563		/*
1564		 * There's no dr for this dbuf, so it must have been freed.
1565		 * There's no need to log writes to freed blocks, so we're done.
1566		 */
1567		mutex_exit(&db->db_mtx);
1568		return (SET_ERROR(ENOENT));
1569	}
1570
1571	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1572
1573	/*
1574	 * Assume the on-disk data is X, the current syncing data is Y,
1575	 * and the current in-memory data is Z (currently in dmu_sync).
1576	 * X and Z are identical but Y is has been modified. Normally,
1577	 * when X and Z are the same we will perform a nopwrite but if Y
1578	 * is different we must disable nopwrite since the resulting write
1579	 * of Y to disk can free the block containing X. If we allowed a
1580	 * nopwrite to occur the block pointing to Z would reference a freed
1581	 * block. Since this is a rare case we simplify this by disabling
1582	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1583	 * a previous transaction.
1584	 */
1585	if (dr->dr_next)
1586		zp.zp_nopwrite = B_FALSE;
1587
1588	ASSERT(dr->dr_txg == txg);
1589	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1590	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1591		/*
1592		 * We have already issued a sync write for this buffer,
1593		 * or this buffer has already been synced.  It could not
1594		 * have been dirtied since, or we would have cleared the state.
1595		 */
1596		mutex_exit(&db->db_mtx);
1597		return (SET_ERROR(EALREADY));
1598	}
1599
1600	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1601	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1602	mutex_exit(&db->db_mtx);
1603
1604	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1605	dsa->dsa_dr = dr;
1606	dsa->dsa_done = done;
1607	dsa->dsa_zgd = zgd;
1608	dsa->dsa_tx = NULL;
1609
1610	zio_nowait(arc_write(pio, os->os_spa, txg,
1611	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1612	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1613	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1614	    ZIO_FLAG_CANFAIL, &zb));
1615
1616	return (0);
1617}
1618
1619int
1620dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1621	dmu_tx_t *tx)
1622{
1623	dnode_t *dn;
1624	int err;
1625
1626	err = dnode_hold(os, object, FTAG, &dn);
1627	if (err)
1628		return (err);
1629	err = dnode_set_blksz(dn, size, ibs, tx);
1630	dnode_rele(dn, FTAG);
1631	return (err);
1632}
1633
1634void
1635dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1636	dmu_tx_t *tx)
1637{
1638	dnode_t *dn;
1639
1640	/*
1641	 * Send streams include each object's checksum function.  This
1642	 * check ensures that the receiving system can understand the
1643	 * checksum function transmitted.
1644	 */
1645	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1646
1647	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1648	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1649	dn->dn_checksum = checksum;
1650	dnode_setdirty(dn, tx);
1651	dnode_rele(dn, FTAG);
1652}
1653
1654void
1655dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1656	dmu_tx_t *tx)
1657{
1658	dnode_t *dn;
1659
1660	/*
1661	 * Send streams include each object's compression function.  This
1662	 * check ensures that the receiving system can understand the
1663	 * compression function transmitted.
1664	 */
1665	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1666
1667	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1668	dn->dn_compress = compress;
1669	dnode_setdirty(dn, tx);
1670	dnode_rele(dn, FTAG);
1671}
1672
1673int zfs_mdcomp_disable = 0;
1674TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1675SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1676    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1677
1678/*
1679 * When the "redundant_metadata" property is set to "most", only indirect
1680 * blocks of this level and higher will have an additional ditto block.
1681 */
1682int zfs_redundant_metadata_most_ditto_level = 2;
1683
1684void
1685dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1686{
1687	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1688	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1689	    (wp & WP_SPILL));
1690	enum zio_checksum checksum = os->os_checksum;
1691	enum zio_compress compress = os->os_compress;
1692	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1693	boolean_t dedup = B_FALSE;
1694	boolean_t nopwrite = B_FALSE;
1695	boolean_t dedup_verify = os->os_dedup_verify;
1696	int copies = os->os_copies;
1697
1698	/*
1699	 * We maintain different write policies for each of the following
1700	 * types of data:
1701	 *	 1. metadata
1702	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1703	 *	 3. all other level 0 blocks
1704	 */
1705	if (ismd) {
1706		/*
1707		 * XXX -- we should design a compression algorithm
1708		 * that specializes in arrays of bps.
1709		 */
1710		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1711		    ZIO_COMPRESS_LZJB;
1712
1713		/*
1714		 * Metadata always gets checksummed.  If the data
1715		 * checksum is multi-bit correctable, and it's not a
1716		 * ZBT-style checksum, then it's suitable for metadata
1717		 * as well.  Otherwise, the metadata checksum defaults
1718		 * to fletcher4.
1719		 */
1720		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1721		    zio_checksum_table[checksum].ci_eck)
1722			checksum = ZIO_CHECKSUM_FLETCHER_4;
1723
1724		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1725		    (os->os_redundant_metadata ==
1726		    ZFS_REDUNDANT_METADATA_MOST &&
1727		    (level >= zfs_redundant_metadata_most_ditto_level ||
1728		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1729			copies++;
1730	} else if (wp & WP_NOFILL) {
1731		ASSERT(level == 0);
1732
1733		/*
1734		 * If we're writing preallocated blocks, we aren't actually
1735		 * writing them so don't set any policy properties.  These
1736		 * blocks are currently only used by an external subsystem
1737		 * outside of zfs (i.e. dump) and not written by the zio
1738		 * pipeline.
1739		 */
1740		compress = ZIO_COMPRESS_OFF;
1741		checksum = ZIO_CHECKSUM_NOPARITY;
1742	} else {
1743		compress = zio_compress_select(dn->dn_compress, compress);
1744
1745		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1746		    zio_checksum_select(dn->dn_checksum, checksum) :
1747		    dedup_checksum;
1748
1749		/*
1750		 * Determine dedup setting.  If we are in dmu_sync(),
1751		 * we won't actually dedup now because that's all
1752		 * done in syncing context; but we do want to use the
1753		 * dedup checkum.  If the checksum is not strong
1754		 * enough to ensure unique signatures, force
1755		 * dedup_verify.
1756		 */
1757		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1758			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1759			if (!zio_checksum_table[checksum].ci_dedup)
1760				dedup_verify = B_TRUE;
1761		}
1762
1763		/*
1764		 * Enable nopwrite if we have a cryptographically secure
1765		 * checksum that has no known collisions (i.e. SHA-256)
1766		 * and compression is enabled.  We don't enable nopwrite if
1767		 * dedup is enabled as the two features are mutually exclusive.
1768		 */
1769		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1770		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1771	}
1772
1773	zp->zp_checksum = checksum;
1774	zp->zp_compress = compress;
1775	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1776	zp->zp_level = level;
1777	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1778	zp->zp_dedup = dedup;
1779	zp->zp_dedup_verify = dedup && dedup_verify;
1780	zp->zp_nopwrite = nopwrite;
1781}
1782
1783int
1784dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1785{
1786	dnode_t *dn;
1787	int i, err;
1788
1789	err = dnode_hold(os, object, FTAG, &dn);
1790	if (err)
1791		return (err);
1792	/*
1793	 * Sync any current changes before
1794	 * we go trundling through the block pointers.
1795	 */
1796	for (i = 0; i < TXG_SIZE; i++) {
1797		if (list_link_active(&dn->dn_dirty_link[i]))
1798			break;
1799	}
1800	if (i != TXG_SIZE) {
1801		dnode_rele(dn, FTAG);
1802		txg_wait_synced(dmu_objset_pool(os), 0);
1803		err = dnode_hold(os, object, FTAG, &dn);
1804		if (err)
1805			return (err);
1806	}
1807
1808	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1809	dnode_rele(dn, FTAG);
1810
1811	return (err);
1812}
1813
1814void
1815dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1816{
1817	dnode_phys_t *dnp;
1818
1819	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1820	mutex_enter(&dn->dn_mtx);
1821
1822	dnp = dn->dn_phys;
1823
1824	doi->doi_data_block_size = dn->dn_datablksz;
1825	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1826	    1ULL << dn->dn_indblkshift : 0;
1827	doi->doi_type = dn->dn_type;
1828	doi->doi_bonus_type = dn->dn_bonustype;
1829	doi->doi_bonus_size = dn->dn_bonuslen;
1830	doi->doi_indirection = dn->dn_nlevels;
1831	doi->doi_checksum = dn->dn_checksum;
1832	doi->doi_compress = dn->dn_compress;
1833	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1834	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1835	doi->doi_fill_count = 0;
1836	for (int i = 0; i < dnp->dn_nblkptr; i++)
1837		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
1838
1839	mutex_exit(&dn->dn_mtx);
1840	rw_exit(&dn->dn_struct_rwlock);
1841}
1842
1843/*
1844 * Get information on a DMU object.
1845 * If doi is NULL, just indicates whether the object exists.
1846 */
1847int
1848dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1849{
1850	dnode_t *dn;
1851	int err = dnode_hold(os, object, FTAG, &dn);
1852
1853	if (err)
1854		return (err);
1855
1856	if (doi != NULL)
1857		dmu_object_info_from_dnode(dn, doi);
1858
1859	dnode_rele(dn, FTAG);
1860	return (0);
1861}
1862
1863/*
1864 * As above, but faster; can be used when you have a held dbuf in hand.
1865 */
1866void
1867dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1868{
1869	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1870
1871	DB_DNODE_ENTER(db);
1872	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1873	DB_DNODE_EXIT(db);
1874}
1875
1876/*
1877 * Faster still when you only care about the size.
1878 * This is specifically optimized for zfs_getattr().
1879 */
1880void
1881dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1882    u_longlong_t *nblk512)
1883{
1884	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1885	dnode_t *dn;
1886
1887	DB_DNODE_ENTER(db);
1888	dn = DB_DNODE(db);
1889
1890	*blksize = dn->dn_datablksz;
1891	/* add 1 for dnode space */
1892	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1893	    SPA_MINBLOCKSHIFT) + 1;
1894	DB_DNODE_EXIT(db);
1895}
1896
1897void
1898byteswap_uint64_array(void *vbuf, size_t size)
1899{
1900	uint64_t *buf = vbuf;
1901	size_t count = size >> 3;
1902	int i;
1903
1904	ASSERT((size & 7) == 0);
1905
1906	for (i = 0; i < count; i++)
1907		buf[i] = BSWAP_64(buf[i]);
1908}
1909
1910void
1911byteswap_uint32_array(void *vbuf, size_t size)
1912{
1913	uint32_t *buf = vbuf;
1914	size_t count = size >> 2;
1915	int i;
1916
1917	ASSERT((size & 3) == 0);
1918
1919	for (i = 0; i < count; i++)
1920		buf[i] = BSWAP_32(buf[i]);
1921}
1922
1923void
1924byteswap_uint16_array(void *vbuf, size_t size)
1925{
1926	uint16_t *buf = vbuf;
1927	size_t count = size >> 1;
1928	int i;
1929
1930	ASSERT((size & 1) == 0);
1931
1932	for (i = 0; i < count; i++)
1933		buf[i] = BSWAP_16(buf[i]);
1934}
1935
1936/* ARGSUSED */
1937void
1938byteswap_uint8_array(void *vbuf, size_t size)
1939{
1940}
1941
1942void
1943dmu_init(void)
1944{
1945	zfs_dbgmsg_init();
1946	sa_cache_init();
1947	xuio_stat_init();
1948	dmu_objset_init();
1949	dnode_init();
1950	dbuf_init();
1951	zfetch_init();
1952	zio_compress_init();
1953	l2arc_init();
1954	arc_init();
1955}
1956
1957void
1958dmu_fini(void)
1959{
1960	arc_fini(); /* arc depends on l2arc, so arc must go first */
1961	l2arc_fini();
1962	zfetch_fini();
1963	zio_compress_fini();
1964	dbuf_fini();
1965	dnode_fini();
1966	dmu_objset_fini();
1967	xuio_stat_fini();
1968	sa_cache_fini();
1969	zfs_dbgmsg_fini();
1970}
1971