dmu.c revision 263397
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dmu_tx.h>
31#include <sys/dbuf.h>
32#include <sys/dnode.h>
33#include <sys/zfs_context.h>
34#include <sys/dmu_objset.h>
35#include <sys/dmu_traverse.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dsl_pool.h>
39#include <sys/dsl_synctask.h>
40#include <sys/dsl_prop.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/zfs_ioctl.h>
43#include <sys/zap.h>
44#include <sys/zio_checksum.h>
45#include <sys/zio_compress.h>
46#include <sys/sa.h>
47#ifdef _KERNEL
48#include <sys/vm.h>
49#include <sys/zfs_znode.h>
50#endif
51
52/*
53 * Enable/disable nopwrite feature.
54 */
55int zfs_nopwrite_enabled = 1;
56SYSCTL_DECL(_vfs_zfs);
57TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
58SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
59    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
60
61const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
62	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
63	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
64	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
65	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
66	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
67	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
68	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
69	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
70	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
71	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
72	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
73	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
74	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
75	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
76	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
77	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
78	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
79	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
80	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
81	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
82	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
83	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
84	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
85	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
86	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
87	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
88	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
89	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
90	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
91	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
92	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
93	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
94	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
95	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
96	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
97	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
98	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
99	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
100	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
102	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
103	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
104	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
105	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
106	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
108	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
110	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
111	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
112	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
113	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
114	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
115	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
116};
117
118const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
119	{	byteswap_uint8_array,	"uint8"		},
120	{	byteswap_uint16_array,	"uint16"	},
121	{	byteswap_uint32_array,	"uint32"	},
122	{	byteswap_uint64_array,	"uint64"	},
123	{	zap_byteswap,		"zap"		},
124	{	dnode_buf_byteswap,	"dnode"		},
125	{	dmu_objset_byteswap,	"objset"	},
126	{	zfs_znode_byteswap,	"znode"		},
127	{	zfs_oldacl_byteswap,	"oldacl"	},
128	{	zfs_acl_byteswap,	"acl"		}
129};
130
131int
132dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
133    void *tag, dmu_buf_t **dbp, int flags)
134{
135	dnode_t *dn;
136	uint64_t blkid;
137	dmu_buf_impl_t *db;
138	int err;
139	int db_flags = DB_RF_CANFAIL;
140
141	if (flags & DMU_READ_NO_PREFETCH)
142		db_flags |= DB_RF_NOPREFETCH;
143
144	err = dnode_hold(os, object, FTAG, &dn);
145	if (err)
146		return (err);
147	blkid = dbuf_whichblock(dn, offset);
148	rw_enter(&dn->dn_struct_rwlock, RW_READER);
149	db = dbuf_hold(dn, blkid, tag);
150	rw_exit(&dn->dn_struct_rwlock);
151	if (db == NULL) {
152		err = SET_ERROR(EIO);
153	} else {
154		err = dbuf_read(db, NULL, db_flags);
155		if (err) {
156			dbuf_rele(db, tag);
157			db = NULL;
158		}
159	}
160
161	dnode_rele(dn, FTAG);
162	*dbp = &db->db; /* NULL db plus first field offset is NULL */
163	return (err);
164}
165
166int
167dmu_bonus_max(void)
168{
169	return (DN_MAX_BONUSLEN);
170}
171
172int
173dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
174{
175	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
176	dnode_t *dn;
177	int error;
178
179	DB_DNODE_ENTER(db);
180	dn = DB_DNODE(db);
181
182	if (dn->dn_bonus != db) {
183		error = SET_ERROR(EINVAL);
184	} else if (newsize < 0 || newsize > db_fake->db_size) {
185		error = SET_ERROR(EINVAL);
186	} else {
187		dnode_setbonuslen(dn, newsize, tx);
188		error = 0;
189	}
190
191	DB_DNODE_EXIT(db);
192	return (error);
193}
194
195int
196dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
197{
198	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
199	dnode_t *dn;
200	int error;
201
202	DB_DNODE_ENTER(db);
203	dn = DB_DNODE(db);
204
205	if (!DMU_OT_IS_VALID(type)) {
206		error = SET_ERROR(EINVAL);
207	} else if (dn->dn_bonus != db) {
208		error = SET_ERROR(EINVAL);
209	} else {
210		dnode_setbonus_type(dn, type, tx);
211		error = 0;
212	}
213
214	DB_DNODE_EXIT(db);
215	return (error);
216}
217
218dmu_object_type_t
219dmu_get_bonustype(dmu_buf_t *db_fake)
220{
221	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
222	dnode_t *dn;
223	dmu_object_type_t type;
224
225	DB_DNODE_ENTER(db);
226	dn = DB_DNODE(db);
227	type = dn->dn_bonustype;
228	DB_DNODE_EXIT(db);
229
230	return (type);
231}
232
233int
234dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
235{
236	dnode_t *dn;
237	int error;
238
239	error = dnode_hold(os, object, FTAG, &dn);
240	dbuf_rm_spill(dn, tx);
241	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
242	dnode_rm_spill(dn, tx);
243	rw_exit(&dn->dn_struct_rwlock);
244	dnode_rele(dn, FTAG);
245	return (error);
246}
247
248/*
249 * returns ENOENT, EIO, or 0.
250 */
251int
252dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
253{
254	dnode_t *dn;
255	dmu_buf_impl_t *db;
256	int error;
257
258	error = dnode_hold(os, object, FTAG, &dn);
259	if (error)
260		return (error);
261
262	rw_enter(&dn->dn_struct_rwlock, RW_READER);
263	if (dn->dn_bonus == NULL) {
264		rw_exit(&dn->dn_struct_rwlock);
265		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
266		if (dn->dn_bonus == NULL)
267			dbuf_create_bonus(dn);
268	}
269	db = dn->dn_bonus;
270
271	/* as long as the bonus buf is held, the dnode will be held */
272	if (refcount_add(&db->db_holds, tag) == 1) {
273		VERIFY(dnode_add_ref(dn, db));
274		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
275	}
276
277	/*
278	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
279	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
280	 * a dnode hold for every dbuf.
281	 */
282	rw_exit(&dn->dn_struct_rwlock);
283
284	dnode_rele(dn, FTAG);
285
286	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
287
288	*dbp = &db->db;
289	return (0);
290}
291
292/*
293 * returns ENOENT, EIO, or 0.
294 *
295 * This interface will allocate a blank spill dbuf when a spill blk
296 * doesn't already exist on the dnode.
297 *
298 * if you only want to find an already existing spill db, then
299 * dmu_spill_hold_existing() should be used.
300 */
301int
302dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
303{
304	dmu_buf_impl_t *db = NULL;
305	int err;
306
307	if ((flags & DB_RF_HAVESTRUCT) == 0)
308		rw_enter(&dn->dn_struct_rwlock, RW_READER);
309
310	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
311
312	if ((flags & DB_RF_HAVESTRUCT) == 0)
313		rw_exit(&dn->dn_struct_rwlock);
314
315	ASSERT(db != NULL);
316	err = dbuf_read(db, NULL, flags);
317	if (err == 0)
318		*dbp = &db->db;
319	else
320		dbuf_rele(db, tag);
321	return (err);
322}
323
324int
325dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
326{
327	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
328	dnode_t *dn;
329	int err;
330
331	DB_DNODE_ENTER(db);
332	dn = DB_DNODE(db);
333
334	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
335		err = SET_ERROR(EINVAL);
336	} else {
337		rw_enter(&dn->dn_struct_rwlock, RW_READER);
338
339		if (!dn->dn_have_spill) {
340			err = SET_ERROR(ENOENT);
341		} else {
342			err = dmu_spill_hold_by_dnode(dn,
343			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
344		}
345
346		rw_exit(&dn->dn_struct_rwlock);
347	}
348
349	DB_DNODE_EXIT(db);
350	return (err);
351}
352
353int
354dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
355{
356	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
357	dnode_t *dn;
358	int err;
359
360	DB_DNODE_ENTER(db);
361	dn = DB_DNODE(db);
362	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
363	DB_DNODE_EXIT(db);
364
365	return (err);
366}
367
368/*
369 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
370 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
371 * and can induce severe lock contention when writing to several files
372 * whose dnodes are in the same block.
373 */
374static int
375dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
376    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
377{
378	dmu_buf_t **dbp;
379	uint64_t blkid, nblks, i;
380	uint32_t dbuf_flags;
381	int err;
382	zio_t *zio;
383
384	ASSERT(length <= DMU_MAX_ACCESS);
385
386	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
387	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
388		dbuf_flags |= DB_RF_NOPREFETCH;
389
390	rw_enter(&dn->dn_struct_rwlock, RW_READER);
391	if (dn->dn_datablkshift) {
392		int blkshift = dn->dn_datablkshift;
393		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
394		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
395	} else {
396		if (offset + length > dn->dn_datablksz) {
397			zfs_panic_recover("zfs: accessing past end of object "
398			    "%llx/%llx (size=%u access=%llu+%llu)",
399			    (longlong_t)dn->dn_objset->
400			    os_dsl_dataset->ds_object,
401			    (longlong_t)dn->dn_object, dn->dn_datablksz,
402			    (longlong_t)offset, (longlong_t)length);
403			rw_exit(&dn->dn_struct_rwlock);
404			return (SET_ERROR(EIO));
405		}
406		nblks = 1;
407	}
408	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
409
410	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
411	blkid = dbuf_whichblock(dn, offset);
412	for (i = 0; i < nblks; i++) {
413		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
414		if (db == NULL) {
415			rw_exit(&dn->dn_struct_rwlock);
416			dmu_buf_rele_array(dbp, nblks, tag);
417			zio_nowait(zio);
418			return (SET_ERROR(EIO));
419		}
420		/* initiate async i/o */
421		if (read)
422			(void) dbuf_read(db, zio, dbuf_flags);
423#ifdef _KERNEL
424		else
425			curthread->td_ru.ru_oublock++;
426#endif
427		dbp[i] = &db->db;
428	}
429	rw_exit(&dn->dn_struct_rwlock);
430
431	/* wait for async i/o */
432	err = zio_wait(zio);
433	if (err) {
434		dmu_buf_rele_array(dbp, nblks, tag);
435		return (err);
436	}
437
438	/* wait for other io to complete */
439	if (read) {
440		for (i = 0; i < nblks; i++) {
441			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
442			mutex_enter(&db->db_mtx);
443			while (db->db_state == DB_READ ||
444			    db->db_state == DB_FILL)
445				cv_wait(&db->db_changed, &db->db_mtx);
446			if (db->db_state == DB_UNCACHED)
447				err = SET_ERROR(EIO);
448			mutex_exit(&db->db_mtx);
449			if (err) {
450				dmu_buf_rele_array(dbp, nblks, tag);
451				return (err);
452			}
453		}
454	}
455
456	*numbufsp = nblks;
457	*dbpp = dbp;
458	return (0);
459}
460
461static int
462dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
463    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
464{
465	dnode_t *dn;
466	int err;
467
468	err = dnode_hold(os, object, FTAG, &dn);
469	if (err)
470		return (err);
471
472	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
473	    numbufsp, dbpp, DMU_READ_PREFETCH);
474
475	dnode_rele(dn, FTAG);
476
477	return (err);
478}
479
480int
481dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
482    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
483{
484	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
485	dnode_t *dn;
486	int err;
487
488	DB_DNODE_ENTER(db);
489	dn = DB_DNODE(db);
490	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
491	    numbufsp, dbpp, DMU_READ_PREFETCH);
492	DB_DNODE_EXIT(db);
493
494	return (err);
495}
496
497void
498dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
499{
500	int i;
501	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
502
503	if (numbufs == 0)
504		return;
505
506	for (i = 0; i < numbufs; i++) {
507		if (dbp[i])
508			dbuf_rele(dbp[i], tag);
509	}
510
511	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
512}
513
514/*
515 * Issue prefetch i/os for the given blocks.
516 *
517 * Note: The assumption is that we *know* these blocks will be needed
518 * almost immediately.  Therefore, the prefetch i/os will be issued at
519 * ZIO_PRIORITY_SYNC_READ
520 *
521 * Note: indirect blocks and other metadata will be read synchronously,
522 * causing this function to block if they are not already cached.
523 */
524void
525dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
526{
527	dnode_t *dn;
528	uint64_t blkid;
529	int nblks, err;
530
531	if (zfs_prefetch_disable)
532		return;
533
534	if (len == 0) {  /* they're interested in the bonus buffer */
535		dn = DMU_META_DNODE(os);
536
537		if (object == 0 || object >= DN_MAX_OBJECT)
538			return;
539
540		rw_enter(&dn->dn_struct_rwlock, RW_READER);
541		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
542		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
543		rw_exit(&dn->dn_struct_rwlock);
544		return;
545	}
546
547	/*
548	 * XXX - Note, if the dnode for the requested object is not
549	 * already cached, we will do a *synchronous* read in the
550	 * dnode_hold() call.  The same is true for any indirects.
551	 */
552	err = dnode_hold(os, object, FTAG, &dn);
553	if (err != 0)
554		return;
555
556	rw_enter(&dn->dn_struct_rwlock, RW_READER);
557	if (dn->dn_datablkshift) {
558		int blkshift = dn->dn_datablkshift;
559		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
560		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
561	} else {
562		nblks = (offset < dn->dn_datablksz);
563	}
564
565	if (nblks != 0) {
566		blkid = dbuf_whichblock(dn, offset);
567		for (int i = 0; i < nblks; i++)
568			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
569	}
570
571	rw_exit(&dn->dn_struct_rwlock);
572
573	dnode_rele(dn, FTAG);
574}
575
576/*
577 * Get the next "chunk" of file data to free.  We traverse the file from
578 * the end so that the file gets shorter over time (if we crashes in the
579 * middle, this will leave us in a better state).  We find allocated file
580 * data by simply searching the allocated level 1 indirects.
581 *
582 * On input, *start should be the first offset that does not need to be
583 * freed (e.g. "offset + length").  On return, *start will be the first
584 * offset that should be freed.
585 */
586static int
587get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
588{
589	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
590	/* bytes of data covered by a level-1 indirect block */
591	uint64_t iblkrange =
592	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
593
594	ASSERT3U(minimum, <=, *start);
595
596	if (*start - minimum <= iblkrange * maxblks) {
597		*start = minimum;
598		return (0);
599	}
600	ASSERT(ISP2(iblkrange));
601
602	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
603		int err;
604
605		/*
606		 * dnode_next_offset(BACKWARDS) will find an allocated L1
607		 * indirect block at or before the input offset.  We must
608		 * decrement *start so that it is at the end of the region
609		 * to search.
610		 */
611		(*start)--;
612		err = dnode_next_offset(dn,
613		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
614
615		/* if there are no indirect blocks before start, we are done */
616		if (err == ESRCH) {
617			*start = minimum;
618			break;
619		} else if (err != 0) {
620			return (err);
621		}
622
623		/* set start to the beginning of this L1 indirect */
624		*start = P2ALIGN(*start, iblkrange);
625	}
626	if (*start < minimum)
627		*start = minimum;
628	return (0);
629}
630
631static int
632dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
633    uint64_t length)
634{
635	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
636	int err;
637
638	if (offset >= object_size)
639		return (0);
640
641	if (length == DMU_OBJECT_END || offset + length > object_size)
642		length = object_size - offset;
643
644	while (length != 0) {
645		uint64_t chunk_end, chunk_begin;
646
647		chunk_end = chunk_begin = offset + length;
648
649		/* move chunk_begin backwards to the beginning of this chunk */
650		err = get_next_chunk(dn, &chunk_begin, offset);
651		if (err)
652			return (err);
653		ASSERT3U(chunk_begin, >=, offset);
654		ASSERT3U(chunk_begin, <=, chunk_end);
655
656		dmu_tx_t *tx = dmu_tx_create(os);
657		dmu_tx_hold_free(tx, dn->dn_object,
658		    chunk_begin, chunk_end - chunk_begin);
659		err = dmu_tx_assign(tx, TXG_WAIT);
660		if (err) {
661			dmu_tx_abort(tx);
662			return (err);
663		}
664		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
665		dmu_tx_commit(tx);
666
667		length -= chunk_end - chunk_begin;
668	}
669	return (0);
670}
671
672int
673dmu_free_long_range(objset_t *os, uint64_t object,
674    uint64_t offset, uint64_t length)
675{
676	dnode_t *dn;
677	int err;
678
679	err = dnode_hold(os, object, FTAG, &dn);
680	if (err != 0)
681		return (err);
682	err = dmu_free_long_range_impl(os, dn, offset, length);
683
684	/*
685	 * It is important to zero out the maxblkid when freeing the entire
686	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
687	 * will take the fast path, and (b) dnode_reallocate() can verify
688	 * that the entire file has been freed.
689	 */
690	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
691		dn->dn_maxblkid = 0;
692
693	dnode_rele(dn, FTAG);
694	return (err);
695}
696
697int
698dmu_free_long_object(objset_t *os, uint64_t object)
699{
700	dmu_tx_t *tx;
701	int err;
702
703	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
704	if (err != 0)
705		return (err);
706
707	tx = dmu_tx_create(os);
708	dmu_tx_hold_bonus(tx, object);
709	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
710	err = dmu_tx_assign(tx, TXG_WAIT);
711	if (err == 0) {
712		err = dmu_object_free(os, object, tx);
713		dmu_tx_commit(tx);
714	} else {
715		dmu_tx_abort(tx);
716	}
717
718	return (err);
719}
720
721int
722dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
723    uint64_t size, dmu_tx_t *tx)
724{
725	dnode_t *dn;
726	int err = dnode_hold(os, object, FTAG, &dn);
727	if (err)
728		return (err);
729	ASSERT(offset < UINT64_MAX);
730	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
731	dnode_free_range(dn, offset, size, tx);
732	dnode_rele(dn, FTAG);
733	return (0);
734}
735
736int
737dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
738    void *buf, uint32_t flags)
739{
740	dnode_t *dn;
741	dmu_buf_t **dbp;
742	int numbufs, err;
743
744	err = dnode_hold(os, object, FTAG, &dn);
745	if (err)
746		return (err);
747
748	/*
749	 * Deal with odd block sizes, where there can't be data past the first
750	 * block.  If we ever do the tail block optimization, we will need to
751	 * handle that here as well.
752	 */
753	if (dn->dn_maxblkid == 0) {
754		int newsz = offset > dn->dn_datablksz ? 0 :
755		    MIN(size, dn->dn_datablksz - offset);
756		bzero((char *)buf + newsz, size - newsz);
757		size = newsz;
758	}
759
760	while (size > 0) {
761		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
762		int i;
763
764		/*
765		 * NB: we could do this block-at-a-time, but it's nice
766		 * to be reading in parallel.
767		 */
768		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
769		    TRUE, FTAG, &numbufs, &dbp, flags);
770		if (err)
771			break;
772
773		for (i = 0; i < numbufs; i++) {
774			int tocpy;
775			int bufoff;
776			dmu_buf_t *db = dbp[i];
777
778			ASSERT(size > 0);
779
780			bufoff = offset - db->db_offset;
781			tocpy = (int)MIN(db->db_size - bufoff, size);
782
783			bcopy((char *)db->db_data + bufoff, buf, tocpy);
784
785			offset += tocpy;
786			size -= tocpy;
787			buf = (char *)buf + tocpy;
788		}
789		dmu_buf_rele_array(dbp, numbufs, FTAG);
790	}
791	dnode_rele(dn, FTAG);
792	return (err);
793}
794
795void
796dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
797    const void *buf, dmu_tx_t *tx)
798{
799	dmu_buf_t **dbp;
800	int numbufs, i;
801
802	if (size == 0)
803		return;
804
805	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
806	    FALSE, FTAG, &numbufs, &dbp));
807
808	for (i = 0; i < numbufs; i++) {
809		int tocpy;
810		int bufoff;
811		dmu_buf_t *db = dbp[i];
812
813		ASSERT(size > 0);
814
815		bufoff = offset - db->db_offset;
816		tocpy = (int)MIN(db->db_size - bufoff, size);
817
818		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
819
820		if (tocpy == db->db_size)
821			dmu_buf_will_fill(db, tx);
822		else
823			dmu_buf_will_dirty(db, tx);
824
825		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
826
827		if (tocpy == db->db_size)
828			dmu_buf_fill_done(db, tx);
829
830		offset += tocpy;
831		size -= tocpy;
832		buf = (char *)buf + tocpy;
833	}
834	dmu_buf_rele_array(dbp, numbufs, FTAG);
835}
836
837void
838dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
839    dmu_tx_t *tx)
840{
841	dmu_buf_t **dbp;
842	int numbufs, i;
843
844	if (size == 0)
845		return;
846
847	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
848	    FALSE, FTAG, &numbufs, &dbp));
849
850	for (i = 0; i < numbufs; i++) {
851		dmu_buf_t *db = dbp[i];
852
853		dmu_buf_will_not_fill(db, tx);
854	}
855	dmu_buf_rele_array(dbp, numbufs, FTAG);
856}
857
858/*
859 * DMU support for xuio
860 */
861kstat_t *xuio_ksp = NULL;
862
863int
864dmu_xuio_init(xuio_t *xuio, int nblk)
865{
866	dmu_xuio_t *priv;
867	uio_t *uio = &xuio->xu_uio;
868
869	uio->uio_iovcnt = nblk;
870	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
871
872	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
873	priv->cnt = nblk;
874	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
875	priv->iovp = uio->uio_iov;
876	XUIO_XUZC_PRIV(xuio) = priv;
877
878	if (XUIO_XUZC_RW(xuio) == UIO_READ)
879		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
880	else
881		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
882
883	return (0);
884}
885
886void
887dmu_xuio_fini(xuio_t *xuio)
888{
889	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
890	int nblk = priv->cnt;
891
892	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
893	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
894	kmem_free(priv, sizeof (dmu_xuio_t));
895
896	if (XUIO_XUZC_RW(xuio) == UIO_READ)
897		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
898	else
899		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
900}
901
902/*
903 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
904 * and increase priv->next by 1.
905 */
906int
907dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
908{
909	struct iovec *iov;
910	uio_t *uio = &xuio->xu_uio;
911	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
912	int i = priv->next++;
913
914	ASSERT(i < priv->cnt);
915	ASSERT(off + n <= arc_buf_size(abuf));
916	iov = uio->uio_iov + i;
917	iov->iov_base = (char *)abuf->b_data + off;
918	iov->iov_len = n;
919	priv->bufs[i] = abuf;
920	return (0);
921}
922
923int
924dmu_xuio_cnt(xuio_t *xuio)
925{
926	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
927	return (priv->cnt);
928}
929
930arc_buf_t *
931dmu_xuio_arcbuf(xuio_t *xuio, int i)
932{
933	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
934
935	ASSERT(i < priv->cnt);
936	return (priv->bufs[i]);
937}
938
939void
940dmu_xuio_clear(xuio_t *xuio, int i)
941{
942	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
943
944	ASSERT(i < priv->cnt);
945	priv->bufs[i] = NULL;
946}
947
948static void
949xuio_stat_init(void)
950{
951	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
952	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
953	    KSTAT_FLAG_VIRTUAL);
954	if (xuio_ksp != NULL) {
955		xuio_ksp->ks_data = &xuio_stats;
956		kstat_install(xuio_ksp);
957	}
958}
959
960static void
961xuio_stat_fini(void)
962{
963	if (xuio_ksp != NULL) {
964		kstat_delete(xuio_ksp);
965		xuio_ksp = NULL;
966	}
967}
968
969void
970xuio_stat_wbuf_copied()
971{
972	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
973}
974
975void
976xuio_stat_wbuf_nocopy()
977{
978	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
979}
980
981#ifdef _KERNEL
982int
983dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
984{
985	dmu_buf_t **dbp;
986	int numbufs, i, err;
987	xuio_t *xuio = NULL;
988
989	/*
990	 * NB: we could do this block-at-a-time, but it's nice
991	 * to be reading in parallel.
992	 */
993	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
994	    &numbufs, &dbp);
995	if (err)
996		return (err);
997
998#ifdef UIO_XUIO
999	if (uio->uio_extflg == UIO_XUIO)
1000		xuio = (xuio_t *)uio;
1001#endif
1002
1003	for (i = 0; i < numbufs; i++) {
1004		int tocpy;
1005		int bufoff;
1006		dmu_buf_t *db = dbp[i];
1007
1008		ASSERT(size > 0);
1009
1010		bufoff = uio->uio_loffset - db->db_offset;
1011		tocpy = (int)MIN(db->db_size - bufoff, size);
1012
1013		if (xuio) {
1014			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1015			arc_buf_t *dbuf_abuf = dbi->db_buf;
1016			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1017			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1018			if (!err) {
1019				uio->uio_resid -= tocpy;
1020				uio->uio_loffset += tocpy;
1021			}
1022
1023			if (abuf == dbuf_abuf)
1024				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1025			else
1026				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1027		} else {
1028			err = uiomove((char *)db->db_data + bufoff, tocpy,
1029			    UIO_READ, uio);
1030		}
1031		if (err)
1032			break;
1033
1034		size -= tocpy;
1035	}
1036	dmu_buf_rele_array(dbp, numbufs, FTAG);
1037
1038	return (err);
1039}
1040
1041static int
1042dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1043{
1044	dmu_buf_t **dbp;
1045	int numbufs;
1046	int err = 0;
1047	int i;
1048
1049	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1050	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1051	if (err)
1052		return (err);
1053
1054	for (i = 0; i < numbufs; i++) {
1055		int tocpy;
1056		int bufoff;
1057		dmu_buf_t *db = dbp[i];
1058
1059		ASSERT(size > 0);
1060
1061		bufoff = uio->uio_loffset - db->db_offset;
1062		tocpy = (int)MIN(db->db_size - bufoff, size);
1063
1064		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1065
1066		if (tocpy == db->db_size)
1067			dmu_buf_will_fill(db, tx);
1068		else
1069			dmu_buf_will_dirty(db, tx);
1070
1071		/*
1072		 * XXX uiomove could block forever (eg. nfs-backed
1073		 * pages).  There needs to be a uiolockdown() function
1074		 * to lock the pages in memory, so that uiomove won't
1075		 * block.
1076		 */
1077		err = uiomove((char *)db->db_data + bufoff, tocpy,
1078		    UIO_WRITE, uio);
1079
1080		if (tocpy == db->db_size)
1081			dmu_buf_fill_done(db, tx);
1082
1083		if (err)
1084			break;
1085
1086		size -= tocpy;
1087	}
1088
1089	dmu_buf_rele_array(dbp, numbufs, FTAG);
1090	return (err);
1091}
1092
1093int
1094dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1095    dmu_tx_t *tx)
1096{
1097	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1098	dnode_t *dn;
1099	int err;
1100
1101	if (size == 0)
1102		return (0);
1103
1104	DB_DNODE_ENTER(db);
1105	dn = DB_DNODE(db);
1106	err = dmu_write_uio_dnode(dn, uio, size, tx);
1107	DB_DNODE_EXIT(db);
1108
1109	return (err);
1110}
1111
1112int
1113dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1114    dmu_tx_t *tx)
1115{
1116	dnode_t *dn;
1117	int err;
1118
1119	if (size == 0)
1120		return (0);
1121
1122	err = dnode_hold(os, object, FTAG, &dn);
1123	if (err)
1124		return (err);
1125
1126	err = dmu_write_uio_dnode(dn, uio, size, tx);
1127
1128	dnode_rele(dn, FTAG);
1129
1130	return (err);
1131}
1132
1133#ifdef sun
1134int
1135dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1136    page_t *pp, dmu_tx_t *tx)
1137{
1138	dmu_buf_t **dbp;
1139	int numbufs, i;
1140	int err;
1141
1142	if (size == 0)
1143		return (0);
1144
1145	err = dmu_buf_hold_array(os, object, offset, size,
1146	    FALSE, FTAG, &numbufs, &dbp);
1147	if (err)
1148		return (err);
1149
1150	for (i = 0; i < numbufs; i++) {
1151		int tocpy, copied, thiscpy;
1152		int bufoff;
1153		dmu_buf_t *db = dbp[i];
1154		caddr_t va;
1155
1156		ASSERT(size > 0);
1157		ASSERT3U(db->db_size, >=, PAGESIZE);
1158
1159		bufoff = offset - db->db_offset;
1160		tocpy = (int)MIN(db->db_size - bufoff, size);
1161
1162		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1163
1164		if (tocpy == db->db_size)
1165			dmu_buf_will_fill(db, tx);
1166		else
1167			dmu_buf_will_dirty(db, tx);
1168
1169		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1170			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1171			thiscpy = MIN(PAGESIZE, tocpy - copied);
1172			va = zfs_map_page(pp, S_READ);
1173			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1174			zfs_unmap_page(pp, va);
1175			pp = pp->p_next;
1176			bufoff += PAGESIZE;
1177		}
1178
1179		if (tocpy == db->db_size)
1180			dmu_buf_fill_done(db, tx);
1181
1182		offset += tocpy;
1183		size -= tocpy;
1184	}
1185	dmu_buf_rele_array(dbp, numbufs, FTAG);
1186	return (err);
1187}
1188
1189#else
1190
1191int
1192dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1193    vm_page_t *ma, dmu_tx_t *tx)
1194{
1195	dmu_buf_t **dbp;
1196	struct sf_buf *sf;
1197	int numbufs, i;
1198	int err;
1199
1200	if (size == 0)
1201		return (0);
1202
1203	err = dmu_buf_hold_array(os, object, offset, size,
1204	    FALSE, FTAG, &numbufs, &dbp);
1205	if (err)
1206		return (err);
1207
1208	for (i = 0; i < numbufs; i++) {
1209		int tocpy, copied, thiscpy;
1210		int bufoff;
1211		dmu_buf_t *db = dbp[i];
1212		caddr_t va;
1213
1214		ASSERT(size > 0);
1215		ASSERT3U(db->db_size, >=, PAGESIZE);
1216
1217		bufoff = offset - db->db_offset;
1218		tocpy = (int)MIN(db->db_size - bufoff, size);
1219
1220		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1221
1222		if (tocpy == db->db_size)
1223			dmu_buf_will_fill(db, tx);
1224		else
1225			dmu_buf_will_dirty(db, tx);
1226
1227		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1228			ASSERT3U(ptoa((*ma)->pindex), ==, db->db_offset + bufoff);
1229			thiscpy = MIN(PAGESIZE, tocpy - copied);
1230			va = zfs_map_page(*ma, &sf);
1231			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1232			zfs_unmap_page(sf);
1233			ma += 1;
1234			bufoff += PAGESIZE;
1235		}
1236
1237		if (tocpy == db->db_size)
1238			dmu_buf_fill_done(db, tx);
1239
1240		offset += tocpy;
1241		size -= tocpy;
1242	}
1243	dmu_buf_rele_array(dbp, numbufs, FTAG);
1244	return (err);
1245}
1246#endif	/* sun */
1247#endif
1248
1249/*
1250 * Allocate a loaned anonymous arc buffer.
1251 */
1252arc_buf_t *
1253dmu_request_arcbuf(dmu_buf_t *handle, int size)
1254{
1255	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1256
1257	return (arc_loan_buf(db->db_objset->os_spa, size));
1258}
1259
1260/*
1261 * Free a loaned arc buffer.
1262 */
1263void
1264dmu_return_arcbuf(arc_buf_t *buf)
1265{
1266	arc_return_buf(buf, FTAG);
1267	VERIFY(arc_buf_remove_ref(buf, FTAG));
1268}
1269
1270/*
1271 * When possible directly assign passed loaned arc buffer to a dbuf.
1272 * If this is not possible copy the contents of passed arc buf via
1273 * dmu_write().
1274 */
1275void
1276dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1277    dmu_tx_t *tx)
1278{
1279	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1280	dnode_t *dn;
1281	dmu_buf_impl_t *db;
1282	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1283	uint64_t blkid;
1284
1285	DB_DNODE_ENTER(dbuf);
1286	dn = DB_DNODE(dbuf);
1287	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1288	blkid = dbuf_whichblock(dn, offset);
1289	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1290	rw_exit(&dn->dn_struct_rwlock);
1291	DB_DNODE_EXIT(dbuf);
1292
1293	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1294		dbuf_assign_arcbuf(db, buf, tx);
1295		dbuf_rele(db, FTAG);
1296	} else {
1297		objset_t *os;
1298		uint64_t object;
1299
1300		DB_DNODE_ENTER(dbuf);
1301		dn = DB_DNODE(dbuf);
1302		os = dn->dn_objset;
1303		object = dn->dn_object;
1304		DB_DNODE_EXIT(dbuf);
1305
1306		dbuf_rele(db, FTAG);
1307		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1308		dmu_return_arcbuf(buf);
1309		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1310	}
1311}
1312
1313typedef struct {
1314	dbuf_dirty_record_t	*dsa_dr;
1315	dmu_sync_cb_t		*dsa_done;
1316	zgd_t			*dsa_zgd;
1317	dmu_tx_t		*dsa_tx;
1318} dmu_sync_arg_t;
1319
1320/* ARGSUSED */
1321static void
1322dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1323{
1324	dmu_sync_arg_t *dsa = varg;
1325	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1326	blkptr_t *bp = zio->io_bp;
1327
1328	if (zio->io_error == 0) {
1329		if (BP_IS_HOLE(bp)) {
1330			/*
1331			 * A block of zeros may compress to a hole, but the
1332			 * block size still needs to be known for replay.
1333			 */
1334			BP_SET_LSIZE(bp, db->db_size);
1335		} else {
1336			ASSERT(BP_GET_LEVEL(bp) == 0);
1337			bp->blk_fill = 1;
1338		}
1339	}
1340}
1341
1342static void
1343dmu_sync_late_arrival_ready(zio_t *zio)
1344{
1345	dmu_sync_ready(zio, NULL, zio->io_private);
1346}
1347
1348/* ARGSUSED */
1349static void
1350dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1351{
1352	dmu_sync_arg_t *dsa = varg;
1353	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1354	dmu_buf_impl_t *db = dr->dr_dbuf;
1355
1356	mutex_enter(&db->db_mtx);
1357	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1358	if (zio->io_error == 0) {
1359		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1360		if (dr->dt.dl.dr_nopwrite) {
1361			blkptr_t *bp = zio->io_bp;
1362			blkptr_t *bp_orig = &zio->io_bp_orig;
1363			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1364
1365			ASSERT(BP_EQUAL(bp, bp_orig));
1366			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1367			ASSERT(zio_checksum_table[chksum].ci_dedup);
1368		}
1369		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1370		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1371		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1372		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1373			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1374	} else {
1375		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1376	}
1377	cv_broadcast(&db->db_changed);
1378	mutex_exit(&db->db_mtx);
1379
1380	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1381
1382	kmem_free(dsa, sizeof (*dsa));
1383}
1384
1385static void
1386dmu_sync_late_arrival_done(zio_t *zio)
1387{
1388	blkptr_t *bp = zio->io_bp;
1389	dmu_sync_arg_t *dsa = zio->io_private;
1390	blkptr_t *bp_orig = &zio->io_bp_orig;
1391
1392	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1393		/*
1394		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1395		 * then there is nothing to do here. Otherwise, free the
1396		 * newly allocated block in this txg.
1397		 */
1398		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1399			ASSERT(BP_EQUAL(bp, bp_orig));
1400		} else {
1401			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1402			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1403			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1404			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1405		}
1406	}
1407
1408	dmu_tx_commit(dsa->dsa_tx);
1409
1410	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1411
1412	kmem_free(dsa, sizeof (*dsa));
1413}
1414
1415static int
1416dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1417    zio_prop_t *zp, zbookmark_t *zb)
1418{
1419	dmu_sync_arg_t *dsa;
1420	dmu_tx_t *tx;
1421
1422	tx = dmu_tx_create(os);
1423	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1424	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1425		dmu_tx_abort(tx);
1426		/* Make zl_get_data do txg_waited_synced() */
1427		return (SET_ERROR(EIO));
1428	}
1429
1430	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1431	dsa->dsa_dr = NULL;
1432	dsa->dsa_done = done;
1433	dsa->dsa_zgd = zgd;
1434	dsa->dsa_tx = tx;
1435
1436	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1437	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1438	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1439	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1440
1441	return (0);
1442}
1443
1444/*
1445 * Intent log support: sync the block associated with db to disk.
1446 * N.B. and XXX: the caller is responsible for making sure that the
1447 * data isn't changing while dmu_sync() is writing it.
1448 *
1449 * Return values:
1450 *
1451 *	EEXIST: this txg has already been synced, so there's nothing to do.
1452 *		The caller should not log the write.
1453 *
1454 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1455 *		The caller should not log the write.
1456 *
1457 *	EALREADY: this block is already in the process of being synced.
1458 *		The caller should track its progress (somehow).
1459 *
1460 *	EIO: could not do the I/O.
1461 *		The caller should do a txg_wait_synced().
1462 *
1463 *	0: the I/O has been initiated.
1464 *		The caller should log this blkptr in the done callback.
1465 *		It is possible that the I/O will fail, in which case
1466 *		the error will be reported to the done callback and
1467 *		propagated to pio from zio_done().
1468 */
1469int
1470dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1471{
1472	blkptr_t *bp = zgd->zgd_bp;
1473	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1474	objset_t *os = db->db_objset;
1475	dsl_dataset_t *ds = os->os_dsl_dataset;
1476	dbuf_dirty_record_t *dr;
1477	dmu_sync_arg_t *dsa;
1478	zbookmark_t zb;
1479	zio_prop_t zp;
1480	dnode_t *dn;
1481
1482	ASSERT(pio != NULL);
1483	ASSERT(txg != 0);
1484
1485	SET_BOOKMARK(&zb, ds->ds_object,
1486	    db->db.db_object, db->db_level, db->db_blkid);
1487
1488	DB_DNODE_ENTER(db);
1489	dn = DB_DNODE(db);
1490	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1491	DB_DNODE_EXIT(db);
1492
1493	/*
1494	 * If we're frozen (running ziltest), we always need to generate a bp.
1495	 */
1496	if (txg > spa_freeze_txg(os->os_spa))
1497		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1498
1499	/*
1500	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1501	 * and us.  If we determine that this txg is not yet syncing,
1502	 * but it begins to sync a moment later, that's OK because the
1503	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1504	 */
1505	mutex_enter(&db->db_mtx);
1506
1507	if (txg <= spa_last_synced_txg(os->os_spa)) {
1508		/*
1509		 * This txg has already synced.  There's nothing to do.
1510		 */
1511		mutex_exit(&db->db_mtx);
1512		return (SET_ERROR(EEXIST));
1513	}
1514
1515	if (txg <= spa_syncing_txg(os->os_spa)) {
1516		/*
1517		 * This txg is currently syncing, so we can't mess with
1518		 * the dirty record anymore; just write a new log block.
1519		 */
1520		mutex_exit(&db->db_mtx);
1521		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1522	}
1523
1524	dr = db->db_last_dirty;
1525	while (dr && dr->dr_txg != txg)
1526		dr = dr->dr_next;
1527
1528	if (dr == NULL) {
1529		/*
1530		 * There's no dr for this dbuf, so it must have been freed.
1531		 * There's no need to log writes to freed blocks, so we're done.
1532		 */
1533		mutex_exit(&db->db_mtx);
1534		return (SET_ERROR(ENOENT));
1535	}
1536
1537	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1538
1539	/*
1540	 * Assume the on-disk data is X, the current syncing data is Y,
1541	 * and the current in-memory data is Z (currently in dmu_sync).
1542	 * X and Z are identical but Y is has been modified. Normally,
1543	 * when X and Z are the same we will perform a nopwrite but if Y
1544	 * is different we must disable nopwrite since the resulting write
1545	 * of Y to disk can free the block containing X. If we allowed a
1546	 * nopwrite to occur the block pointing to Z would reference a freed
1547	 * block. Since this is a rare case we simplify this by disabling
1548	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1549	 * a previous transaction.
1550	 */
1551	if (dr->dr_next)
1552		zp.zp_nopwrite = B_FALSE;
1553
1554	ASSERT(dr->dr_txg == txg);
1555	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1556	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1557		/*
1558		 * We have already issued a sync write for this buffer,
1559		 * or this buffer has already been synced.  It could not
1560		 * have been dirtied since, or we would have cleared the state.
1561		 */
1562		mutex_exit(&db->db_mtx);
1563		return (SET_ERROR(EALREADY));
1564	}
1565
1566	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1567	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1568	mutex_exit(&db->db_mtx);
1569
1570	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1571	dsa->dsa_dr = dr;
1572	dsa->dsa_done = done;
1573	dsa->dsa_zgd = zgd;
1574	dsa->dsa_tx = NULL;
1575
1576	zio_nowait(arc_write(pio, os->os_spa, txg,
1577	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1578	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1579	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1580	    ZIO_FLAG_CANFAIL, &zb));
1581
1582	return (0);
1583}
1584
1585int
1586dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1587	dmu_tx_t *tx)
1588{
1589	dnode_t *dn;
1590	int err;
1591
1592	err = dnode_hold(os, object, FTAG, &dn);
1593	if (err)
1594		return (err);
1595	err = dnode_set_blksz(dn, size, ibs, tx);
1596	dnode_rele(dn, FTAG);
1597	return (err);
1598}
1599
1600void
1601dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1602	dmu_tx_t *tx)
1603{
1604	dnode_t *dn;
1605
1606	/* XXX assumes dnode_hold will not get an i/o error */
1607	(void) dnode_hold(os, object, FTAG, &dn);
1608	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1609	dn->dn_checksum = checksum;
1610	dnode_setdirty(dn, tx);
1611	dnode_rele(dn, FTAG);
1612}
1613
1614void
1615dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1616	dmu_tx_t *tx)
1617{
1618	dnode_t *dn;
1619
1620	/* XXX assumes dnode_hold will not get an i/o error */
1621	(void) dnode_hold(os, object, FTAG, &dn);
1622	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1623	dn->dn_compress = compress;
1624	dnode_setdirty(dn, tx);
1625	dnode_rele(dn, FTAG);
1626}
1627
1628int zfs_mdcomp_disable = 0;
1629TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1630SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1631    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1632
1633void
1634dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1635{
1636	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1637	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1638	    (wp & WP_SPILL));
1639	enum zio_checksum checksum = os->os_checksum;
1640	enum zio_compress compress = os->os_compress;
1641	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1642	boolean_t dedup = B_FALSE;
1643	boolean_t nopwrite = B_FALSE;
1644	boolean_t dedup_verify = os->os_dedup_verify;
1645	int copies = os->os_copies;
1646
1647	/*
1648	 * We maintain different write policies for each of the following
1649	 * types of data:
1650	 *	 1. metadata
1651	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1652	 *	 3. all other level 0 blocks
1653	 */
1654	if (ismd) {
1655		/*
1656		 * XXX -- we should design a compression algorithm
1657		 * that specializes in arrays of bps.
1658		 */
1659		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1660		    ZIO_COMPRESS_LZJB;
1661
1662		/*
1663		 * Metadata always gets checksummed.  If the data
1664		 * checksum is multi-bit correctable, and it's not a
1665		 * ZBT-style checksum, then it's suitable for metadata
1666		 * as well.  Otherwise, the metadata checksum defaults
1667		 * to fletcher4.
1668		 */
1669		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1670		    zio_checksum_table[checksum].ci_eck)
1671			checksum = ZIO_CHECKSUM_FLETCHER_4;
1672	} else if (wp & WP_NOFILL) {
1673		ASSERT(level == 0);
1674
1675		/*
1676		 * If we're writing preallocated blocks, we aren't actually
1677		 * writing them so don't set any policy properties.  These
1678		 * blocks are currently only used by an external subsystem
1679		 * outside of zfs (i.e. dump) and not written by the zio
1680		 * pipeline.
1681		 */
1682		compress = ZIO_COMPRESS_OFF;
1683		checksum = ZIO_CHECKSUM_NOPARITY;
1684	} else {
1685		compress = zio_compress_select(dn->dn_compress, compress);
1686
1687		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1688		    zio_checksum_select(dn->dn_checksum, checksum) :
1689		    dedup_checksum;
1690
1691		/*
1692		 * Determine dedup setting.  If we are in dmu_sync(),
1693		 * we won't actually dedup now because that's all
1694		 * done in syncing context; but we do want to use the
1695		 * dedup checkum.  If the checksum is not strong
1696		 * enough to ensure unique signatures, force
1697		 * dedup_verify.
1698		 */
1699		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1700			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1701			if (!zio_checksum_table[checksum].ci_dedup)
1702				dedup_verify = B_TRUE;
1703		}
1704
1705		/*
1706		 * Enable nopwrite if we have a cryptographically secure
1707		 * checksum that has no known collisions (i.e. SHA-256)
1708		 * and compression is enabled.  We don't enable nopwrite if
1709		 * dedup is enabled as the two features are mutually exclusive.
1710		 */
1711		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1712		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1713	}
1714
1715	zp->zp_checksum = checksum;
1716	zp->zp_compress = compress;
1717	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1718	zp->zp_level = level;
1719	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1720	zp->zp_dedup = dedup;
1721	zp->zp_dedup_verify = dedup && dedup_verify;
1722	zp->zp_nopwrite = nopwrite;
1723}
1724
1725int
1726dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1727{
1728	dnode_t *dn;
1729	int i, err;
1730
1731	err = dnode_hold(os, object, FTAG, &dn);
1732	if (err)
1733		return (err);
1734	/*
1735	 * Sync any current changes before
1736	 * we go trundling through the block pointers.
1737	 */
1738	for (i = 0; i < TXG_SIZE; i++) {
1739		if (list_link_active(&dn->dn_dirty_link[i]))
1740			break;
1741	}
1742	if (i != TXG_SIZE) {
1743		dnode_rele(dn, FTAG);
1744		txg_wait_synced(dmu_objset_pool(os), 0);
1745		err = dnode_hold(os, object, FTAG, &dn);
1746		if (err)
1747			return (err);
1748	}
1749
1750	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1751	dnode_rele(dn, FTAG);
1752
1753	return (err);
1754}
1755
1756void
1757dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1758{
1759	dnode_phys_t *dnp;
1760
1761	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1762	mutex_enter(&dn->dn_mtx);
1763
1764	dnp = dn->dn_phys;
1765
1766	doi->doi_data_block_size = dn->dn_datablksz;
1767	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1768	    1ULL << dn->dn_indblkshift : 0;
1769	doi->doi_type = dn->dn_type;
1770	doi->doi_bonus_type = dn->dn_bonustype;
1771	doi->doi_bonus_size = dn->dn_bonuslen;
1772	doi->doi_indirection = dn->dn_nlevels;
1773	doi->doi_checksum = dn->dn_checksum;
1774	doi->doi_compress = dn->dn_compress;
1775	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1776	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1777	doi->doi_fill_count = 0;
1778	for (int i = 0; i < dnp->dn_nblkptr; i++)
1779		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1780
1781	mutex_exit(&dn->dn_mtx);
1782	rw_exit(&dn->dn_struct_rwlock);
1783}
1784
1785/*
1786 * Get information on a DMU object.
1787 * If doi is NULL, just indicates whether the object exists.
1788 */
1789int
1790dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1791{
1792	dnode_t *dn;
1793	int err = dnode_hold(os, object, FTAG, &dn);
1794
1795	if (err)
1796		return (err);
1797
1798	if (doi != NULL)
1799		dmu_object_info_from_dnode(dn, doi);
1800
1801	dnode_rele(dn, FTAG);
1802	return (0);
1803}
1804
1805/*
1806 * As above, but faster; can be used when you have a held dbuf in hand.
1807 */
1808void
1809dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1810{
1811	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1812
1813	DB_DNODE_ENTER(db);
1814	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1815	DB_DNODE_EXIT(db);
1816}
1817
1818/*
1819 * Faster still when you only care about the size.
1820 * This is specifically optimized for zfs_getattr().
1821 */
1822void
1823dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1824    u_longlong_t *nblk512)
1825{
1826	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1827	dnode_t *dn;
1828
1829	DB_DNODE_ENTER(db);
1830	dn = DB_DNODE(db);
1831
1832	*blksize = dn->dn_datablksz;
1833	/* add 1 for dnode space */
1834	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1835	    SPA_MINBLOCKSHIFT) + 1;
1836	DB_DNODE_EXIT(db);
1837}
1838
1839void
1840byteswap_uint64_array(void *vbuf, size_t size)
1841{
1842	uint64_t *buf = vbuf;
1843	size_t count = size >> 3;
1844	int i;
1845
1846	ASSERT((size & 7) == 0);
1847
1848	for (i = 0; i < count; i++)
1849		buf[i] = BSWAP_64(buf[i]);
1850}
1851
1852void
1853byteswap_uint32_array(void *vbuf, size_t size)
1854{
1855	uint32_t *buf = vbuf;
1856	size_t count = size >> 2;
1857	int i;
1858
1859	ASSERT((size & 3) == 0);
1860
1861	for (i = 0; i < count; i++)
1862		buf[i] = BSWAP_32(buf[i]);
1863}
1864
1865void
1866byteswap_uint16_array(void *vbuf, size_t size)
1867{
1868	uint16_t *buf = vbuf;
1869	size_t count = size >> 1;
1870	int i;
1871
1872	ASSERT((size & 1) == 0);
1873
1874	for (i = 0; i < count; i++)
1875		buf[i] = BSWAP_16(buf[i]);
1876}
1877
1878/* ARGSUSED */
1879void
1880byteswap_uint8_array(void *vbuf, size_t size)
1881{
1882}
1883
1884void
1885dmu_init(void)
1886{
1887	zfs_dbgmsg_init();
1888	sa_cache_init();
1889	xuio_stat_init();
1890	dmu_objset_init();
1891	dnode_init();
1892	dbuf_init();
1893	zfetch_init();
1894	zio_compress_init();
1895	l2arc_init();
1896	arc_init();
1897}
1898
1899void
1900dmu_fini(void)
1901{
1902	arc_fini(); /* arc depends on l2arc, so arc must go first */
1903	l2arc_fini();
1904	zfetch_fini();
1905	zio_compress_fini();
1906	dbuf_fini();
1907	dnode_fini();
1908	dmu_objset_fini();
1909	xuio_stat_fini();
1910	sa_cache_fini();
1911	zfs_dbgmsg_fini();
1912}
1913