dmu.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25/* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26/* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27
28#include <sys/dmu.h>
29#include <sys/dmu_impl.h>
30#include <sys/dmu_tx.h>
31#include <sys/dbuf.h>
32#include <sys/dnode.h>
33#include <sys/zfs_context.h>
34#include <sys/dmu_objset.h>
35#include <sys/dmu_traverse.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dsl_pool.h>
39#include <sys/dsl_synctask.h>
40#include <sys/dsl_prop.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/zfs_ioctl.h>
43#include <sys/zap.h>
44#include <sys/zio_checksum.h>
45#include <sys/zio_compress.h>
46#include <sys/sa.h>
47#ifdef _KERNEL
48#include <sys/zfs_znode.h>
49#endif
50
51/*
52 * Enable/disable nopwrite feature.
53 */
54int zfs_nopwrite_enabled = 1;
55SYSCTL_DECL(_vfs_zfs);
56TUNABLE_INT("vfs.zfs.nopwrite_enabled", &zfs_nopwrite_enabled);
57SYSCTL_INT(_vfs_zfs, OID_AUTO, nopwrite_enabled, CTLFLAG_RDTUN,
58    &zfs_nopwrite_enabled, 0, "Enable nopwrite feature");
59
60const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
61	{	DMU_BSWAP_UINT8,	TRUE,	"unallocated"		},
62	{	DMU_BSWAP_ZAP,		TRUE,	"object directory"	},
63	{	DMU_BSWAP_UINT64,	TRUE,	"object array"		},
64	{	DMU_BSWAP_UINT8,	TRUE,	"packed nvlist"		},
65	{	DMU_BSWAP_UINT64,	TRUE,	"packed nvlist size"	},
66	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj"			},
67	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj header"		},
68	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map header"	},
69	{	DMU_BSWAP_UINT64,	TRUE,	"SPA space map"		},
70	{	DMU_BSWAP_UINT64,	TRUE,	"ZIL intent log"	},
71	{	DMU_BSWAP_DNODE,	TRUE,	"DMU dnode"		},
72	{	DMU_BSWAP_OBJSET,	TRUE,	"DMU objset"		},
73	{	DMU_BSWAP_UINT64,	TRUE,	"DSL directory"		},
74	{	DMU_BSWAP_ZAP,		TRUE,	"DSL directory child map"},
75	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset snap map"	},
76	{	DMU_BSWAP_ZAP,		TRUE,	"DSL props"		},
77	{	DMU_BSWAP_UINT64,	TRUE,	"DSL dataset"		},
78	{	DMU_BSWAP_ZNODE,	TRUE,	"ZFS znode"		},
79	{	DMU_BSWAP_OLDACL,	TRUE,	"ZFS V0 ACL"		},
80	{	DMU_BSWAP_UINT8,	FALSE,	"ZFS plain file"	},
81	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS directory"		},
82	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS master node"	},
83	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS delete queue"	},
84	{	DMU_BSWAP_UINT8,	FALSE,	"zvol object"		},
85	{	DMU_BSWAP_ZAP,		TRUE,	"zvol prop"		},
86	{	DMU_BSWAP_UINT8,	FALSE,	"other uint8[]"		},
87	{	DMU_BSWAP_UINT64,	FALSE,	"other uint64[]"	},
88	{	DMU_BSWAP_ZAP,		TRUE,	"other ZAP"		},
89	{	DMU_BSWAP_ZAP,		TRUE,	"persistent error log"	},
90	{	DMU_BSWAP_UINT8,	TRUE,	"SPA history"		},
91	{	DMU_BSWAP_UINT64,	TRUE,	"SPA history offsets"	},
92	{	DMU_BSWAP_ZAP,		TRUE,	"Pool properties"	},
93	{	DMU_BSWAP_ZAP,		TRUE,	"DSL permissions"	},
94	{	DMU_BSWAP_ACL,		TRUE,	"ZFS ACL"		},
95	{	DMU_BSWAP_UINT8,	TRUE,	"ZFS SYSACL"		},
96	{	DMU_BSWAP_UINT8,	TRUE,	"FUID table"		},
97	{	DMU_BSWAP_UINT64,	TRUE,	"FUID table size"	},
98	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dataset next clones"},
99	{	DMU_BSWAP_ZAP,		TRUE,	"scan work queue"	},
100	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group used"	},
101	{	DMU_BSWAP_ZAP,		TRUE,	"ZFS user/group quota"	},
102	{	DMU_BSWAP_ZAP,		TRUE,	"snapshot refcount tags"},
103	{	DMU_BSWAP_ZAP,		TRUE,	"DDT ZAP algorithm"	},
104	{	DMU_BSWAP_ZAP,		TRUE,	"DDT statistics"	},
105	{	DMU_BSWAP_UINT8,	TRUE,	"System attributes"	},
106	{	DMU_BSWAP_ZAP,		TRUE,	"SA master node"	},
107	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr registration"	},
108	{	DMU_BSWAP_ZAP,		TRUE,	"SA attr layouts"	},
109	{	DMU_BSWAP_ZAP,		TRUE,	"scan translations"	},
110	{	DMU_BSWAP_UINT8,	FALSE,	"deduplicated block"	},
111	{	DMU_BSWAP_ZAP,		TRUE,	"DSL deadlist map"	},
112	{	DMU_BSWAP_UINT64,	TRUE,	"DSL deadlist map hdr"	},
113	{	DMU_BSWAP_ZAP,		TRUE,	"DSL dir clones"	},
114	{	DMU_BSWAP_UINT64,	TRUE,	"bpobj subobj"		}
115};
116
117const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
118	{	byteswap_uint8_array,	"uint8"		},
119	{	byteswap_uint16_array,	"uint16"	},
120	{	byteswap_uint32_array,	"uint32"	},
121	{	byteswap_uint64_array,	"uint64"	},
122	{	zap_byteswap,		"zap"		},
123	{	dnode_buf_byteswap,	"dnode"		},
124	{	dmu_objset_byteswap,	"objset"	},
125	{	zfs_znode_byteswap,	"znode"		},
126	{	zfs_oldacl_byteswap,	"oldacl"	},
127	{	zfs_acl_byteswap,	"acl"		}
128};
129
130int
131dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
132    void *tag, dmu_buf_t **dbp, int flags)
133{
134	dnode_t *dn;
135	uint64_t blkid;
136	dmu_buf_impl_t *db;
137	int err;
138	int db_flags = DB_RF_CANFAIL;
139
140	if (flags & DMU_READ_NO_PREFETCH)
141		db_flags |= DB_RF_NOPREFETCH;
142
143	err = dnode_hold(os, object, FTAG, &dn);
144	if (err)
145		return (err);
146	blkid = dbuf_whichblock(dn, offset);
147	rw_enter(&dn->dn_struct_rwlock, RW_READER);
148	db = dbuf_hold(dn, blkid, tag);
149	rw_exit(&dn->dn_struct_rwlock);
150	if (db == NULL) {
151		err = SET_ERROR(EIO);
152	} else {
153		err = dbuf_read(db, NULL, db_flags);
154		if (err) {
155			dbuf_rele(db, tag);
156			db = NULL;
157		}
158	}
159
160	dnode_rele(dn, FTAG);
161	*dbp = &db->db; /* NULL db plus first field offset is NULL */
162	return (err);
163}
164
165int
166dmu_bonus_max(void)
167{
168	return (DN_MAX_BONUSLEN);
169}
170
171int
172dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
173{
174	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
175	dnode_t *dn;
176	int error;
177
178	DB_DNODE_ENTER(db);
179	dn = DB_DNODE(db);
180
181	if (dn->dn_bonus != db) {
182		error = SET_ERROR(EINVAL);
183	} else if (newsize < 0 || newsize > db_fake->db_size) {
184		error = SET_ERROR(EINVAL);
185	} else {
186		dnode_setbonuslen(dn, newsize, tx);
187		error = 0;
188	}
189
190	DB_DNODE_EXIT(db);
191	return (error);
192}
193
194int
195dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
196{
197	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
198	dnode_t *dn;
199	int error;
200
201	DB_DNODE_ENTER(db);
202	dn = DB_DNODE(db);
203
204	if (!DMU_OT_IS_VALID(type)) {
205		error = SET_ERROR(EINVAL);
206	} else if (dn->dn_bonus != db) {
207		error = SET_ERROR(EINVAL);
208	} else {
209		dnode_setbonus_type(dn, type, tx);
210		error = 0;
211	}
212
213	DB_DNODE_EXIT(db);
214	return (error);
215}
216
217dmu_object_type_t
218dmu_get_bonustype(dmu_buf_t *db_fake)
219{
220	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
221	dnode_t *dn;
222	dmu_object_type_t type;
223
224	DB_DNODE_ENTER(db);
225	dn = DB_DNODE(db);
226	type = dn->dn_bonustype;
227	DB_DNODE_EXIT(db);
228
229	return (type);
230}
231
232int
233dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
234{
235	dnode_t *dn;
236	int error;
237
238	error = dnode_hold(os, object, FTAG, &dn);
239	dbuf_rm_spill(dn, tx);
240	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
241	dnode_rm_spill(dn, tx);
242	rw_exit(&dn->dn_struct_rwlock);
243	dnode_rele(dn, FTAG);
244	return (error);
245}
246
247/*
248 * returns ENOENT, EIO, or 0.
249 */
250int
251dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
252{
253	dnode_t *dn;
254	dmu_buf_impl_t *db;
255	int error;
256
257	error = dnode_hold(os, object, FTAG, &dn);
258	if (error)
259		return (error);
260
261	rw_enter(&dn->dn_struct_rwlock, RW_READER);
262	if (dn->dn_bonus == NULL) {
263		rw_exit(&dn->dn_struct_rwlock);
264		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
265		if (dn->dn_bonus == NULL)
266			dbuf_create_bonus(dn);
267	}
268	db = dn->dn_bonus;
269
270	/* as long as the bonus buf is held, the dnode will be held */
271	if (refcount_add(&db->db_holds, tag) == 1) {
272		VERIFY(dnode_add_ref(dn, db));
273		(void) atomic_inc_32_nv(&dn->dn_dbufs_count);
274	}
275
276	/*
277	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
278	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
279	 * a dnode hold for every dbuf.
280	 */
281	rw_exit(&dn->dn_struct_rwlock);
282
283	dnode_rele(dn, FTAG);
284
285	VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
286
287	*dbp = &db->db;
288	return (0);
289}
290
291/*
292 * returns ENOENT, EIO, or 0.
293 *
294 * This interface will allocate a blank spill dbuf when a spill blk
295 * doesn't already exist on the dnode.
296 *
297 * if you only want to find an already existing spill db, then
298 * dmu_spill_hold_existing() should be used.
299 */
300int
301dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
302{
303	dmu_buf_impl_t *db = NULL;
304	int err;
305
306	if ((flags & DB_RF_HAVESTRUCT) == 0)
307		rw_enter(&dn->dn_struct_rwlock, RW_READER);
308
309	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
310
311	if ((flags & DB_RF_HAVESTRUCT) == 0)
312		rw_exit(&dn->dn_struct_rwlock);
313
314	ASSERT(db != NULL);
315	err = dbuf_read(db, NULL, flags);
316	if (err == 0)
317		*dbp = &db->db;
318	else
319		dbuf_rele(db, tag);
320	return (err);
321}
322
323int
324dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
325{
326	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
327	dnode_t *dn;
328	int err;
329
330	DB_DNODE_ENTER(db);
331	dn = DB_DNODE(db);
332
333	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
334		err = SET_ERROR(EINVAL);
335	} else {
336		rw_enter(&dn->dn_struct_rwlock, RW_READER);
337
338		if (!dn->dn_have_spill) {
339			err = SET_ERROR(ENOENT);
340		} else {
341			err = dmu_spill_hold_by_dnode(dn,
342			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
343		}
344
345		rw_exit(&dn->dn_struct_rwlock);
346	}
347
348	DB_DNODE_EXIT(db);
349	return (err);
350}
351
352int
353dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
354{
355	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
356	dnode_t *dn;
357	int err;
358
359	DB_DNODE_ENTER(db);
360	dn = DB_DNODE(db);
361	err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
362	DB_DNODE_EXIT(db);
363
364	return (err);
365}
366
367/*
368 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
369 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
370 * and can induce severe lock contention when writing to several files
371 * whose dnodes are in the same block.
372 */
373static int
374dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
375    int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
376{
377	dmu_buf_t **dbp;
378	uint64_t blkid, nblks, i;
379	uint32_t dbuf_flags;
380	int err;
381	zio_t *zio;
382
383	ASSERT(length <= DMU_MAX_ACCESS);
384
385	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
386	if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
387		dbuf_flags |= DB_RF_NOPREFETCH;
388
389	rw_enter(&dn->dn_struct_rwlock, RW_READER);
390	if (dn->dn_datablkshift) {
391		int blkshift = dn->dn_datablkshift;
392		nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
393		    P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
394	} else {
395		if (offset + length > dn->dn_datablksz) {
396			zfs_panic_recover("zfs: accessing past end of object "
397			    "%llx/%llx (size=%u access=%llu+%llu)",
398			    (longlong_t)dn->dn_objset->
399			    os_dsl_dataset->ds_object,
400			    (longlong_t)dn->dn_object, dn->dn_datablksz,
401			    (longlong_t)offset, (longlong_t)length);
402			rw_exit(&dn->dn_struct_rwlock);
403			return (SET_ERROR(EIO));
404		}
405		nblks = 1;
406	}
407	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
408
409	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
410	blkid = dbuf_whichblock(dn, offset);
411	for (i = 0; i < nblks; i++) {
412		dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
413		if (db == NULL) {
414			rw_exit(&dn->dn_struct_rwlock);
415			dmu_buf_rele_array(dbp, nblks, tag);
416			zio_nowait(zio);
417			return (SET_ERROR(EIO));
418		}
419		/* initiate async i/o */
420		if (read)
421			(void) dbuf_read(db, zio, dbuf_flags);
422#ifdef _KERNEL
423		else
424			curthread->td_ru.ru_oublock++;
425#endif
426		dbp[i] = &db->db;
427	}
428	rw_exit(&dn->dn_struct_rwlock);
429
430	/* wait for async i/o */
431	err = zio_wait(zio);
432	if (err) {
433		dmu_buf_rele_array(dbp, nblks, tag);
434		return (err);
435	}
436
437	/* wait for other io to complete */
438	if (read) {
439		for (i = 0; i < nblks; i++) {
440			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
441			mutex_enter(&db->db_mtx);
442			while (db->db_state == DB_READ ||
443			    db->db_state == DB_FILL)
444				cv_wait(&db->db_changed, &db->db_mtx);
445			if (db->db_state == DB_UNCACHED)
446				err = SET_ERROR(EIO);
447			mutex_exit(&db->db_mtx);
448			if (err) {
449				dmu_buf_rele_array(dbp, nblks, tag);
450				return (err);
451			}
452		}
453	}
454
455	*numbufsp = nblks;
456	*dbpp = dbp;
457	return (0);
458}
459
460static int
461dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
462    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
463{
464	dnode_t *dn;
465	int err;
466
467	err = dnode_hold(os, object, FTAG, &dn);
468	if (err)
469		return (err);
470
471	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
472	    numbufsp, dbpp, DMU_READ_PREFETCH);
473
474	dnode_rele(dn, FTAG);
475
476	return (err);
477}
478
479int
480dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
481    uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
482{
483	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
484	dnode_t *dn;
485	int err;
486
487	DB_DNODE_ENTER(db);
488	dn = DB_DNODE(db);
489	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
490	    numbufsp, dbpp, DMU_READ_PREFETCH);
491	DB_DNODE_EXIT(db);
492
493	return (err);
494}
495
496void
497dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
498{
499	int i;
500	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
501
502	if (numbufs == 0)
503		return;
504
505	for (i = 0; i < numbufs; i++) {
506		if (dbp[i])
507			dbuf_rele(dbp[i], tag);
508	}
509
510	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
511}
512
513/*
514 * Issue prefetch i/os for the given blocks.
515 *
516 * Note: The assumption is that we *know* these blocks will be needed
517 * almost immediately.  Therefore, the prefetch i/os will be issued at
518 * ZIO_PRIORITY_SYNC_READ
519 *
520 * Note: indirect blocks and other metadata will be read synchronously,
521 * causing this function to block if they are not already cached.
522 */
523void
524dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
525{
526	dnode_t *dn;
527	uint64_t blkid;
528	int nblks, err;
529
530	if (zfs_prefetch_disable)
531		return;
532
533	if (len == 0) {  /* they're interested in the bonus buffer */
534		dn = DMU_META_DNODE(os);
535
536		if (object == 0 || object >= DN_MAX_OBJECT)
537			return;
538
539		rw_enter(&dn->dn_struct_rwlock, RW_READER);
540		blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
541		dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
542		rw_exit(&dn->dn_struct_rwlock);
543		return;
544	}
545
546	/*
547	 * XXX - Note, if the dnode for the requested object is not
548	 * already cached, we will do a *synchronous* read in the
549	 * dnode_hold() call.  The same is true for any indirects.
550	 */
551	err = dnode_hold(os, object, FTAG, &dn);
552	if (err != 0)
553		return;
554
555	rw_enter(&dn->dn_struct_rwlock, RW_READER);
556	if (dn->dn_datablkshift) {
557		int blkshift = dn->dn_datablkshift;
558		nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
559		    P2ALIGN(offset, 1 << blkshift)) >> blkshift;
560	} else {
561		nblks = (offset < dn->dn_datablksz);
562	}
563
564	if (nblks != 0) {
565		blkid = dbuf_whichblock(dn, offset);
566		for (int i = 0; i < nblks; i++)
567			dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
568	}
569
570	rw_exit(&dn->dn_struct_rwlock);
571
572	dnode_rele(dn, FTAG);
573}
574
575/*
576 * Get the next "chunk" of file data to free.  We traverse the file from
577 * the end so that the file gets shorter over time (if we crashes in the
578 * middle, this will leave us in a better state).  We find allocated file
579 * data by simply searching the allocated level 1 indirects.
580 *
581 * On input, *start should be the first offset that does not need to be
582 * freed (e.g. "offset + length").  On return, *start will be the first
583 * offset that should be freed.
584 */
585static int
586get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
587{
588	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
589	/* bytes of data covered by a level-1 indirect block */
590	uint64_t iblkrange =
591	    dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
592
593	ASSERT3U(minimum, <=, *start);
594
595	if (*start - minimum <= iblkrange * maxblks) {
596		*start = minimum;
597		return (0);
598	}
599	ASSERT(ISP2(iblkrange));
600
601	for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
602		int err;
603
604		/*
605		 * dnode_next_offset(BACKWARDS) will find an allocated L1
606		 * indirect block at or before the input offset.  We must
607		 * decrement *start so that it is at the end of the region
608		 * to search.
609		 */
610		(*start)--;
611		err = dnode_next_offset(dn,
612		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
613
614		/* if there are no indirect blocks before start, we are done */
615		if (err == ESRCH) {
616			*start = minimum;
617			break;
618		} else if (err != 0) {
619			return (err);
620		}
621
622		/* set start to the beginning of this L1 indirect */
623		*start = P2ALIGN(*start, iblkrange);
624	}
625	if (*start < minimum)
626		*start = minimum;
627	return (0);
628}
629
630static int
631dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
632    uint64_t length)
633{
634	uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
635	int err;
636
637	if (offset >= object_size)
638		return (0);
639
640	if (length == DMU_OBJECT_END || offset + length > object_size)
641		length = object_size - offset;
642
643	while (length != 0) {
644		uint64_t chunk_end, chunk_begin;
645
646		chunk_end = chunk_begin = offset + length;
647
648		/* move chunk_begin backwards to the beginning of this chunk */
649		err = get_next_chunk(dn, &chunk_begin, offset);
650		if (err)
651			return (err);
652		ASSERT3U(chunk_begin, >=, offset);
653		ASSERT3U(chunk_begin, <=, chunk_end);
654
655		dmu_tx_t *tx = dmu_tx_create(os);
656		dmu_tx_hold_free(tx, dn->dn_object,
657		    chunk_begin, chunk_end - chunk_begin);
658		err = dmu_tx_assign(tx, TXG_WAIT);
659		if (err) {
660			dmu_tx_abort(tx);
661			return (err);
662		}
663		dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
664		dmu_tx_commit(tx);
665
666		length -= chunk_end - chunk_begin;
667	}
668	return (0);
669}
670
671int
672dmu_free_long_range(objset_t *os, uint64_t object,
673    uint64_t offset, uint64_t length)
674{
675	dnode_t *dn;
676	int err;
677
678	err = dnode_hold(os, object, FTAG, &dn);
679	if (err != 0)
680		return (err);
681	err = dmu_free_long_range_impl(os, dn, offset, length);
682
683	/*
684	 * It is important to zero out the maxblkid when freeing the entire
685	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
686	 * will take the fast path, and (b) dnode_reallocate() can verify
687	 * that the entire file has been freed.
688	 */
689	if (offset == 0 && length == DMU_OBJECT_END)
690		dn->dn_maxblkid = 0;
691
692	dnode_rele(dn, FTAG);
693	return (err);
694}
695
696int
697dmu_free_long_object(objset_t *os, uint64_t object)
698{
699	dmu_tx_t *tx;
700	int err;
701
702	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
703	if (err != 0)
704		return (err);
705
706	tx = dmu_tx_create(os);
707	dmu_tx_hold_bonus(tx, object);
708	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
709	err = dmu_tx_assign(tx, TXG_WAIT);
710	if (err == 0) {
711		err = dmu_object_free(os, object, tx);
712		dmu_tx_commit(tx);
713	} else {
714		dmu_tx_abort(tx);
715	}
716
717	return (err);
718}
719
720int
721dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
722    uint64_t size, dmu_tx_t *tx)
723{
724	dnode_t *dn;
725	int err = dnode_hold(os, object, FTAG, &dn);
726	if (err)
727		return (err);
728	ASSERT(offset < UINT64_MAX);
729	ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
730	dnode_free_range(dn, offset, size, tx);
731	dnode_rele(dn, FTAG);
732	return (0);
733}
734
735int
736dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
737    void *buf, uint32_t flags)
738{
739	dnode_t *dn;
740	dmu_buf_t **dbp;
741	int numbufs, err;
742
743	err = dnode_hold(os, object, FTAG, &dn);
744	if (err)
745		return (err);
746
747	/*
748	 * Deal with odd block sizes, where there can't be data past the first
749	 * block.  If we ever do the tail block optimization, we will need to
750	 * handle that here as well.
751	 */
752	if (dn->dn_maxblkid == 0) {
753		int newsz = offset > dn->dn_datablksz ? 0 :
754		    MIN(size, dn->dn_datablksz - offset);
755		bzero((char *)buf + newsz, size - newsz);
756		size = newsz;
757	}
758
759	while (size > 0) {
760		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
761		int i;
762
763		/*
764		 * NB: we could do this block-at-a-time, but it's nice
765		 * to be reading in parallel.
766		 */
767		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
768		    TRUE, FTAG, &numbufs, &dbp, flags);
769		if (err)
770			break;
771
772		for (i = 0; i < numbufs; i++) {
773			int tocpy;
774			int bufoff;
775			dmu_buf_t *db = dbp[i];
776
777			ASSERT(size > 0);
778
779			bufoff = offset - db->db_offset;
780			tocpy = (int)MIN(db->db_size - bufoff, size);
781
782			bcopy((char *)db->db_data + bufoff, buf, tocpy);
783
784			offset += tocpy;
785			size -= tocpy;
786			buf = (char *)buf + tocpy;
787		}
788		dmu_buf_rele_array(dbp, numbufs, FTAG);
789	}
790	dnode_rele(dn, FTAG);
791	return (err);
792}
793
794void
795dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
796    const void *buf, dmu_tx_t *tx)
797{
798	dmu_buf_t **dbp;
799	int numbufs, i;
800
801	if (size == 0)
802		return;
803
804	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
805	    FALSE, FTAG, &numbufs, &dbp));
806
807	for (i = 0; i < numbufs; i++) {
808		int tocpy;
809		int bufoff;
810		dmu_buf_t *db = dbp[i];
811
812		ASSERT(size > 0);
813
814		bufoff = offset - db->db_offset;
815		tocpy = (int)MIN(db->db_size - bufoff, size);
816
817		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
818
819		if (tocpy == db->db_size)
820			dmu_buf_will_fill(db, tx);
821		else
822			dmu_buf_will_dirty(db, tx);
823
824		bcopy(buf, (char *)db->db_data + bufoff, tocpy);
825
826		if (tocpy == db->db_size)
827			dmu_buf_fill_done(db, tx);
828
829		offset += tocpy;
830		size -= tocpy;
831		buf = (char *)buf + tocpy;
832	}
833	dmu_buf_rele_array(dbp, numbufs, FTAG);
834}
835
836void
837dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
838    dmu_tx_t *tx)
839{
840	dmu_buf_t **dbp;
841	int numbufs, i;
842
843	if (size == 0)
844		return;
845
846	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
847	    FALSE, FTAG, &numbufs, &dbp));
848
849	for (i = 0; i < numbufs; i++) {
850		dmu_buf_t *db = dbp[i];
851
852		dmu_buf_will_not_fill(db, tx);
853	}
854	dmu_buf_rele_array(dbp, numbufs, FTAG);
855}
856
857/*
858 * DMU support for xuio
859 */
860kstat_t *xuio_ksp = NULL;
861
862int
863dmu_xuio_init(xuio_t *xuio, int nblk)
864{
865	dmu_xuio_t *priv;
866	uio_t *uio = &xuio->xu_uio;
867
868	uio->uio_iovcnt = nblk;
869	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
870
871	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
872	priv->cnt = nblk;
873	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
874	priv->iovp = uio->uio_iov;
875	XUIO_XUZC_PRIV(xuio) = priv;
876
877	if (XUIO_XUZC_RW(xuio) == UIO_READ)
878		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
879	else
880		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
881
882	return (0);
883}
884
885void
886dmu_xuio_fini(xuio_t *xuio)
887{
888	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
889	int nblk = priv->cnt;
890
891	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
892	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
893	kmem_free(priv, sizeof (dmu_xuio_t));
894
895	if (XUIO_XUZC_RW(xuio) == UIO_READ)
896		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
897	else
898		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
899}
900
901/*
902 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
903 * and increase priv->next by 1.
904 */
905int
906dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
907{
908	struct iovec *iov;
909	uio_t *uio = &xuio->xu_uio;
910	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
911	int i = priv->next++;
912
913	ASSERT(i < priv->cnt);
914	ASSERT(off + n <= arc_buf_size(abuf));
915	iov = uio->uio_iov + i;
916	iov->iov_base = (char *)abuf->b_data + off;
917	iov->iov_len = n;
918	priv->bufs[i] = abuf;
919	return (0);
920}
921
922int
923dmu_xuio_cnt(xuio_t *xuio)
924{
925	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
926	return (priv->cnt);
927}
928
929arc_buf_t *
930dmu_xuio_arcbuf(xuio_t *xuio, int i)
931{
932	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
933
934	ASSERT(i < priv->cnt);
935	return (priv->bufs[i]);
936}
937
938void
939dmu_xuio_clear(xuio_t *xuio, int i)
940{
941	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
942
943	ASSERT(i < priv->cnt);
944	priv->bufs[i] = NULL;
945}
946
947static void
948xuio_stat_init(void)
949{
950	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
951	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
952	    KSTAT_FLAG_VIRTUAL);
953	if (xuio_ksp != NULL) {
954		xuio_ksp->ks_data = &xuio_stats;
955		kstat_install(xuio_ksp);
956	}
957}
958
959static void
960xuio_stat_fini(void)
961{
962	if (xuio_ksp != NULL) {
963		kstat_delete(xuio_ksp);
964		xuio_ksp = NULL;
965	}
966}
967
968void
969xuio_stat_wbuf_copied()
970{
971	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
972}
973
974void
975xuio_stat_wbuf_nocopy()
976{
977	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
978}
979
980#ifdef _KERNEL
981int
982dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
983{
984	dmu_buf_t **dbp;
985	int numbufs, i, err;
986	xuio_t *xuio = NULL;
987
988	/*
989	 * NB: we could do this block-at-a-time, but it's nice
990	 * to be reading in parallel.
991	 */
992	err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
993	    &numbufs, &dbp);
994	if (err)
995		return (err);
996
997#ifdef UIO_XUIO
998	if (uio->uio_extflg == UIO_XUIO)
999		xuio = (xuio_t *)uio;
1000#endif
1001
1002	for (i = 0; i < numbufs; i++) {
1003		int tocpy;
1004		int bufoff;
1005		dmu_buf_t *db = dbp[i];
1006
1007		ASSERT(size > 0);
1008
1009		bufoff = uio->uio_loffset - db->db_offset;
1010		tocpy = (int)MIN(db->db_size - bufoff, size);
1011
1012		if (xuio) {
1013			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1014			arc_buf_t *dbuf_abuf = dbi->db_buf;
1015			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1016			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1017			if (!err) {
1018				uio->uio_resid -= tocpy;
1019				uio->uio_loffset += tocpy;
1020			}
1021
1022			if (abuf == dbuf_abuf)
1023				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1024			else
1025				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1026		} else {
1027			err = uiomove((char *)db->db_data + bufoff, tocpy,
1028			    UIO_READ, uio);
1029		}
1030		if (err)
1031			break;
1032
1033		size -= tocpy;
1034	}
1035	dmu_buf_rele_array(dbp, numbufs, FTAG);
1036
1037	return (err);
1038}
1039
1040static int
1041dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1042{
1043	dmu_buf_t **dbp;
1044	int numbufs;
1045	int err = 0;
1046	int i;
1047
1048	err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1049	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1050	if (err)
1051		return (err);
1052
1053	for (i = 0; i < numbufs; i++) {
1054		int tocpy;
1055		int bufoff;
1056		dmu_buf_t *db = dbp[i];
1057
1058		ASSERT(size > 0);
1059
1060		bufoff = uio->uio_loffset - db->db_offset;
1061		tocpy = (int)MIN(db->db_size - bufoff, size);
1062
1063		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1064
1065		if (tocpy == db->db_size)
1066			dmu_buf_will_fill(db, tx);
1067		else
1068			dmu_buf_will_dirty(db, tx);
1069
1070		/*
1071		 * XXX uiomove could block forever (eg. nfs-backed
1072		 * pages).  There needs to be a uiolockdown() function
1073		 * to lock the pages in memory, so that uiomove won't
1074		 * block.
1075		 */
1076		err = uiomove((char *)db->db_data + bufoff, tocpy,
1077		    UIO_WRITE, uio);
1078
1079		if (tocpy == db->db_size)
1080			dmu_buf_fill_done(db, tx);
1081
1082		if (err)
1083			break;
1084
1085		size -= tocpy;
1086	}
1087
1088	dmu_buf_rele_array(dbp, numbufs, FTAG);
1089	return (err);
1090}
1091
1092int
1093dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1094    dmu_tx_t *tx)
1095{
1096	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1097	dnode_t *dn;
1098	int err;
1099
1100	if (size == 0)
1101		return (0);
1102
1103	DB_DNODE_ENTER(db);
1104	dn = DB_DNODE(db);
1105	err = dmu_write_uio_dnode(dn, uio, size, tx);
1106	DB_DNODE_EXIT(db);
1107
1108	return (err);
1109}
1110
1111int
1112dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1113    dmu_tx_t *tx)
1114{
1115	dnode_t *dn;
1116	int err;
1117
1118	if (size == 0)
1119		return (0);
1120
1121	err = dnode_hold(os, object, FTAG, &dn);
1122	if (err)
1123		return (err);
1124
1125	err = dmu_write_uio_dnode(dn, uio, size, tx);
1126
1127	dnode_rele(dn, FTAG);
1128
1129	return (err);
1130}
1131
1132#ifdef sun
1133int
1134dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1135    page_t *pp, dmu_tx_t *tx)
1136{
1137	dmu_buf_t **dbp;
1138	int numbufs, i;
1139	int err;
1140
1141	if (size == 0)
1142		return (0);
1143
1144	err = dmu_buf_hold_array(os, object, offset, size,
1145	    FALSE, FTAG, &numbufs, &dbp);
1146	if (err)
1147		return (err);
1148
1149	for (i = 0; i < numbufs; i++) {
1150		int tocpy, copied, thiscpy;
1151		int bufoff;
1152		dmu_buf_t *db = dbp[i];
1153		caddr_t va;
1154
1155		ASSERT(size > 0);
1156		ASSERT3U(db->db_size, >=, PAGESIZE);
1157
1158		bufoff = offset - db->db_offset;
1159		tocpy = (int)MIN(db->db_size - bufoff, size);
1160
1161		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1162
1163		if (tocpy == db->db_size)
1164			dmu_buf_will_fill(db, tx);
1165		else
1166			dmu_buf_will_dirty(db, tx);
1167
1168		for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1169			ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1170			thiscpy = MIN(PAGESIZE, tocpy - copied);
1171			va = zfs_map_page(pp, S_READ);
1172			bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1173			zfs_unmap_page(pp, va);
1174			pp = pp->p_next;
1175			bufoff += PAGESIZE;
1176		}
1177
1178		if (tocpy == db->db_size)
1179			dmu_buf_fill_done(db, tx);
1180
1181		offset += tocpy;
1182		size -= tocpy;
1183	}
1184	dmu_buf_rele_array(dbp, numbufs, FTAG);
1185	return (err);
1186}
1187#endif	/* sun */
1188#endif
1189
1190/*
1191 * Allocate a loaned anonymous arc buffer.
1192 */
1193arc_buf_t *
1194dmu_request_arcbuf(dmu_buf_t *handle, int size)
1195{
1196	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1197	spa_t *spa;
1198
1199	DB_GET_SPA(&spa, db);
1200	return (arc_loan_buf(spa, size));
1201}
1202
1203/*
1204 * Free a loaned arc buffer.
1205 */
1206void
1207dmu_return_arcbuf(arc_buf_t *buf)
1208{
1209	arc_return_buf(buf, FTAG);
1210	VERIFY(arc_buf_remove_ref(buf, FTAG));
1211}
1212
1213/*
1214 * When possible directly assign passed loaned arc buffer to a dbuf.
1215 * If this is not possible copy the contents of passed arc buf via
1216 * dmu_write().
1217 */
1218void
1219dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1220    dmu_tx_t *tx)
1221{
1222	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1223	dnode_t *dn;
1224	dmu_buf_impl_t *db;
1225	uint32_t blksz = (uint32_t)arc_buf_size(buf);
1226	uint64_t blkid;
1227
1228	DB_DNODE_ENTER(dbuf);
1229	dn = DB_DNODE(dbuf);
1230	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1231	blkid = dbuf_whichblock(dn, offset);
1232	VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1233	rw_exit(&dn->dn_struct_rwlock);
1234	DB_DNODE_EXIT(dbuf);
1235
1236	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1237		dbuf_assign_arcbuf(db, buf, tx);
1238		dbuf_rele(db, FTAG);
1239	} else {
1240		objset_t *os;
1241		uint64_t object;
1242
1243		DB_DNODE_ENTER(dbuf);
1244		dn = DB_DNODE(dbuf);
1245		os = dn->dn_objset;
1246		object = dn->dn_object;
1247		DB_DNODE_EXIT(dbuf);
1248
1249		dbuf_rele(db, FTAG);
1250		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1251		dmu_return_arcbuf(buf);
1252		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1253	}
1254}
1255
1256typedef struct {
1257	dbuf_dirty_record_t	*dsa_dr;
1258	dmu_sync_cb_t		*dsa_done;
1259	zgd_t			*dsa_zgd;
1260	dmu_tx_t		*dsa_tx;
1261} dmu_sync_arg_t;
1262
1263/* ARGSUSED */
1264static void
1265dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1266{
1267	dmu_sync_arg_t *dsa = varg;
1268	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1269	blkptr_t *bp = zio->io_bp;
1270
1271	if (zio->io_error == 0) {
1272		if (BP_IS_HOLE(bp)) {
1273			/*
1274			 * A block of zeros may compress to a hole, but the
1275			 * block size still needs to be known for replay.
1276			 */
1277			BP_SET_LSIZE(bp, db->db_size);
1278		} else {
1279			ASSERT(BP_GET_LEVEL(bp) == 0);
1280			bp->blk_fill = 1;
1281		}
1282	}
1283}
1284
1285static void
1286dmu_sync_late_arrival_ready(zio_t *zio)
1287{
1288	dmu_sync_ready(zio, NULL, zio->io_private);
1289}
1290
1291/* ARGSUSED */
1292static void
1293dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1294{
1295	dmu_sync_arg_t *dsa = varg;
1296	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1297	dmu_buf_impl_t *db = dr->dr_dbuf;
1298
1299	mutex_enter(&db->db_mtx);
1300	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1301	if (zio->io_error == 0) {
1302		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1303		if (dr->dt.dl.dr_nopwrite) {
1304			blkptr_t *bp = zio->io_bp;
1305			blkptr_t *bp_orig = &zio->io_bp_orig;
1306			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1307
1308			ASSERT(BP_EQUAL(bp, bp_orig));
1309			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1310			ASSERT(zio_checksum_table[chksum].ci_dedup);
1311		}
1312		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1313		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1314		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1315		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1316			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1317	} else {
1318		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1319	}
1320	cv_broadcast(&db->db_changed);
1321	mutex_exit(&db->db_mtx);
1322
1323	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1324
1325	kmem_free(dsa, sizeof (*dsa));
1326}
1327
1328static void
1329dmu_sync_late_arrival_done(zio_t *zio)
1330{
1331	blkptr_t *bp = zio->io_bp;
1332	dmu_sync_arg_t *dsa = zio->io_private;
1333	blkptr_t *bp_orig = &zio->io_bp_orig;
1334
1335	if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1336		/*
1337		 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1338		 * then there is nothing to do here. Otherwise, free the
1339		 * newly allocated block in this txg.
1340		 */
1341		if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1342			ASSERT(BP_EQUAL(bp, bp_orig));
1343		} else {
1344			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1345			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1346			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1347			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1348		}
1349	}
1350
1351	dmu_tx_commit(dsa->dsa_tx);
1352
1353	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1354
1355	kmem_free(dsa, sizeof (*dsa));
1356}
1357
1358static int
1359dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1360    zio_prop_t *zp, zbookmark_t *zb)
1361{
1362	dmu_sync_arg_t *dsa;
1363	dmu_tx_t *tx;
1364
1365	tx = dmu_tx_create(os);
1366	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1367	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1368		dmu_tx_abort(tx);
1369		/* Make zl_get_data do txg_waited_synced() */
1370		return (SET_ERROR(EIO));
1371	}
1372
1373	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1374	dsa->dsa_dr = NULL;
1375	dsa->dsa_done = done;
1376	dsa->dsa_zgd = zgd;
1377	dsa->dsa_tx = tx;
1378
1379	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1380	    zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1381	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1382	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1383
1384	return (0);
1385}
1386
1387/*
1388 * Intent log support: sync the block associated with db to disk.
1389 * N.B. and XXX: the caller is responsible for making sure that the
1390 * data isn't changing while dmu_sync() is writing it.
1391 *
1392 * Return values:
1393 *
1394 *	EEXIST: this txg has already been synced, so there's nothing to do.
1395 *		The caller should not log the write.
1396 *
1397 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1398 *		The caller should not log the write.
1399 *
1400 *	EALREADY: this block is already in the process of being synced.
1401 *		The caller should track its progress (somehow).
1402 *
1403 *	EIO: could not do the I/O.
1404 *		The caller should do a txg_wait_synced().
1405 *
1406 *	0: the I/O has been initiated.
1407 *		The caller should log this blkptr in the done callback.
1408 *		It is possible that the I/O will fail, in which case
1409 *		the error will be reported to the done callback and
1410 *		propagated to pio from zio_done().
1411 */
1412int
1413dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1414{
1415	blkptr_t *bp = zgd->zgd_bp;
1416	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1417	objset_t *os = db->db_objset;
1418	dsl_dataset_t *ds = os->os_dsl_dataset;
1419	dbuf_dirty_record_t *dr;
1420	dmu_sync_arg_t *dsa;
1421	zbookmark_t zb;
1422	zio_prop_t zp;
1423	dnode_t *dn;
1424
1425	ASSERT(pio != NULL);
1426	ASSERT(txg != 0);
1427
1428	SET_BOOKMARK(&zb, ds->ds_object,
1429	    db->db.db_object, db->db_level, db->db_blkid);
1430
1431	DB_DNODE_ENTER(db);
1432	dn = DB_DNODE(db);
1433	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1434	DB_DNODE_EXIT(db);
1435
1436	/*
1437	 * If we're frozen (running ziltest), we always need to generate a bp.
1438	 */
1439	if (txg > spa_freeze_txg(os->os_spa))
1440		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1441
1442	/*
1443	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1444	 * and us.  If we determine that this txg is not yet syncing,
1445	 * but it begins to sync a moment later, that's OK because the
1446	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1447	 */
1448	mutex_enter(&db->db_mtx);
1449
1450	if (txg <= spa_last_synced_txg(os->os_spa)) {
1451		/*
1452		 * This txg has already synced.  There's nothing to do.
1453		 */
1454		mutex_exit(&db->db_mtx);
1455		return (SET_ERROR(EEXIST));
1456	}
1457
1458	if (txg <= spa_syncing_txg(os->os_spa)) {
1459		/*
1460		 * This txg is currently syncing, so we can't mess with
1461		 * the dirty record anymore; just write a new log block.
1462		 */
1463		mutex_exit(&db->db_mtx);
1464		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1465	}
1466
1467	dr = db->db_last_dirty;
1468	while (dr && dr->dr_txg != txg)
1469		dr = dr->dr_next;
1470
1471	if (dr == NULL) {
1472		/*
1473		 * There's no dr for this dbuf, so it must have been freed.
1474		 * There's no need to log writes to freed blocks, so we're done.
1475		 */
1476		mutex_exit(&db->db_mtx);
1477		return (SET_ERROR(ENOENT));
1478	}
1479
1480	ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1481
1482	/*
1483	 * Assume the on-disk data is X, the current syncing data is Y,
1484	 * and the current in-memory data is Z (currently in dmu_sync).
1485	 * X and Z are identical but Y is has been modified. Normally,
1486	 * when X and Z are the same we will perform a nopwrite but if Y
1487	 * is different we must disable nopwrite since the resulting write
1488	 * of Y to disk can free the block containing X. If we allowed a
1489	 * nopwrite to occur the block pointing to Z would reference a freed
1490	 * block. Since this is a rare case we simplify this by disabling
1491	 * nopwrite if the current dmu_sync-ing dbuf has been modified in
1492	 * a previous transaction.
1493	 */
1494	if (dr->dr_next)
1495		zp.zp_nopwrite = B_FALSE;
1496
1497	ASSERT(dr->dr_txg == txg);
1498	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1499	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1500		/*
1501		 * We have already issued a sync write for this buffer,
1502		 * or this buffer has already been synced.  It could not
1503		 * have been dirtied since, or we would have cleared the state.
1504		 */
1505		mutex_exit(&db->db_mtx);
1506		return (SET_ERROR(EALREADY));
1507	}
1508
1509	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1510	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1511	mutex_exit(&db->db_mtx);
1512
1513	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1514	dsa->dsa_dr = dr;
1515	dsa->dsa_done = done;
1516	dsa->dsa_zgd = zgd;
1517	dsa->dsa_tx = NULL;
1518
1519	zio_nowait(arc_write(pio, os->os_spa, txg,
1520	    bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1521	    DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1522	    NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1523	    ZIO_FLAG_CANFAIL, &zb));
1524
1525	return (0);
1526}
1527
1528int
1529dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1530	dmu_tx_t *tx)
1531{
1532	dnode_t *dn;
1533	int err;
1534
1535	err = dnode_hold(os, object, FTAG, &dn);
1536	if (err)
1537		return (err);
1538	err = dnode_set_blksz(dn, size, ibs, tx);
1539	dnode_rele(dn, FTAG);
1540	return (err);
1541}
1542
1543void
1544dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1545	dmu_tx_t *tx)
1546{
1547	dnode_t *dn;
1548
1549	/* XXX assumes dnode_hold will not get an i/o error */
1550	(void) dnode_hold(os, object, FTAG, &dn);
1551	ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1552	dn->dn_checksum = checksum;
1553	dnode_setdirty(dn, tx);
1554	dnode_rele(dn, FTAG);
1555}
1556
1557void
1558dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1559	dmu_tx_t *tx)
1560{
1561	dnode_t *dn;
1562
1563	/* XXX assumes dnode_hold will not get an i/o error */
1564	(void) dnode_hold(os, object, FTAG, &dn);
1565	ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1566	dn->dn_compress = compress;
1567	dnode_setdirty(dn, tx);
1568	dnode_rele(dn, FTAG);
1569}
1570
1571int zfs_mdcomp_disable = 0;
1572TUNABLE_INT("vfs.zfs.mdcomp_disable", &zfs_mdcomp_disable);
1573SYSCTL_INT(_vfs_zfs, OID_AUTO, mdcomp_disable, CTLFLAG_RW,
1574    &zfs_mdcomp_disable, 0, "Disable metadata compression");
1575
1576void
1577dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1578{
1579	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1580	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1581	    (wp & WP_SPILL));
1582	enum zio_checksum checksum = os->os_checksum;
1583	enum zio_compress compress = os->os_compress;
1584	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1585	boolean_t dedup = B_FALSE;
1586	boolean_t nopwrite = B_FALSE;
1587	boolean_t dedup_verify = os->os_dedup_verify;
1588	int copies = os->os_copies;
1589
1590	/*
1591	 * We maintain different write policies for each of the following
1592	 * types of data:
1593	 *	 1. metadata
1594	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1595	 *	 3. all other level 0 blocks
1596	 */
1597	if (ismd) {
1598		/*
1599		 * XXX -- we should design a compression algorithm
1600		 * that specializes in arrays of bps.
1601		 */
1602		compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1603		    ZIO_COMPRESS_LZJB;
1604
1605		/*
1606		 * Metadata always gets checksummed.  If the data
1607		 * checksum is multi-bit correctable, and it's not a
1608		 * ZBT-style checksum, then it's suitable for metadata
1609		 * as well.  Otherwise, the metadata checksum defaults
1610		 * to fletcher4.
1611		 */
1612		if (zio_checksum_table[checksum].ci_correctable < 1 ||
1613		    zio_checksum_table[checksum].ci_eck)
1614			checksum = ZIO_CHECKSUM_FLETCHER_4;
1615	} else if (wp & WP_NOFILL) {
1616		ASSERT(level == 0);
1617
1618		/*
1619		 * If we're writing preallocated blocks, we aren't actually
1620		 * writing them so don't set any policy properties.  These
1621		 * blocks are currently only used by an external subsystem
1622		 * outside of zfs (i.e. dump) and not written by the zio
1623		 * pipeline.
1624		 */
1625		compress = ZIO_COMPRESS_OFF;
1626		checksum = ZIO_CHECKSUM_NOPARITY;
1627	} else {
1628		compress = zio_compress_select(dn->dn_compress, compress);
1629
1630		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1631		    zio_checksum_select(dn->dn_checksum, checksum) :
1632		    dedup_checksum;
1633
1634		/*
1635		 * Determine dedup setting.  If we are in dmu_sync(),
1636		 * we won't actually dedup now because that's all
1637		 * done in syncing context; but we do want to use the
1638		 * dedup checkum.  If the checksum is not strong
1639		 * enough to ensure unique signatures, force
1640		 * dedup_verify.
1641		 */
1642		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1643			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1644			if (!zio_checksum_table[checksum].ci_dedup)
1645				dedup_verify = B_TRUE;
1646		}
1647
1648		/*
1649		 * Enable nopwrite if we have a cryptographically secure
1650		 * checksum that has no known collisions (i.e. SHA-256)
1651		 * and compression is enabled.  We don't enable nopwrite if
1652		 * dedup is enabled as the two features are mutually exclusive.
1653		 */
1654		nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1655		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1656	}
1657
1658	zp->zp_checksum = checksum;
1659	zp->zp_compress = compress;
1660	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1661	zp->zp_level = level;
1662	zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1663	zp->zp_dedup = dedup;
1664	zp->zp_dedup_verify = dedup && dedup_verify;
1665	zp->zp_nopwrite = nopwrite;
1666}
1667
1668int
1669dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1670{
1671	dnode_t *dn;
1672	int i, err;
1673
1674	err = dnode_hold(os, object, FTAG, &dn);
1675	if (err)
1676		return (err);
1677	/*
1678	 * Sync any current changes before
1679	 * we go trundling through the block pointers.
1680	 */
1681	for (i = 0; i < TXG_SIZE; i++) {
1682		if (list_link_active(&dn->dn_dirty_link[i]))
1683			break;
1684	}
1685	if (i != TXG_SIZE) {
1686		dnode_rele(dn, FTAG);
1687		txg_wait_synced(dmu_objset_pool(os), 0);
1688		err = dnode_hold(os, object, FTAG, &dn);
1689		if (err)
1690			return (err);
1691	}
1692
1693	err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1694	dnode_rele(dn, FTAG);
1695
1696	return (err);
1697}
1698
1699void
1700dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1701{
1702	dnode_phys_t *dnp;
1703
1704	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1705	mutex_enter(&dn->dn_mtx);
1706
1707	dnp = dn->dn_phys;
1708
1709	doi->doi_data_block_size = dn->dn_datablksz;
1710	doi->doi_metadata_block_size = dn->dn_indblkshift ?
1711	    1ULL << dn->dn_indblkshift : 0;
1712	doi->doi_type = dn->dn_type;
1713	doi->doi_bonus_type = dn->dn_bonustype;
1714	doi->doi_bonus_size = dn->dn_bonuslen;
1715	doi->doi_indirection = dn->dn_nlevels;
1716	doi->doi_checksum = dn->dn_checksum;
1717	doi->doi_compress = dn->dn_compress;
1718	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1719	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1720	doi->doi_fill_count = 0;
1721	for (int i = 0; i < dnp->dn_nblkptr; i++)
1722		doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1723
1724	mutex_exit(&dn->dn_mtx);
1725	rw_exit(&dn->dn_struct_rwlock);
1726}
1727
1728/*
1729 * Get information on a DMU object.
1730 * If doi is NULL, just indicates whether the object exists.
1731 */
1732int
1733dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1734{
1735	dnode_t *dn;
1736	int err = dnode_hold(os, object, FTAG, &dn);
1737
1738	if (err)
1739		return (err);
1740
1741	if (doi != NULL)
1742		dmu_object_info_from_dnode(dn, doi);
1743
1744	dnode_rele(dn, FTAG);
1745	return (0);
1746}
1747
1748/*
1749 * As above, but faster; can be used when you have a held dbuf in hand.
1750 */
1751void
1752dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1753{
1754	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1755
1756	DB_DNODE_ENTER(db);
1757	dmu_object_info_from_dnode(DB_DNODE(db), doi);
1758	DB_DNODE_EXIT(db);
1759}
1760
1761/*
1762 * Faster still when you only care about the size.
1763 * This is specifically optimized for zfs_getattr().
1764 */
1765void
1766dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1767    u_longlong_t *nblk512)
1768{
1769	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1770	dnode_t *dn;
1771
1772	DB_DNODE_ENTER(db);
1773	dn = DB_DNODE(db);
1774
1775	*blksize = dn->dn_datablksz;
1776	/* add 1 for dnode space */
1777	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1778	    SPA_MINBLOCKSHIFT) + 1;
1779	DB_DNODE_EXIT(db);
1780}
1781
1782void
1783byteswap_uint64_array(void *vbuf, size_t size)
1784{
1785	uint64_t *buf = vbuf;
1786	size_t count = size >> 3;
1787	int i;
1788
1789	ASSERT((size & 7) == 0);
1790
1791	for (i = 0; i < count; i++)
1792		buf[i] = BSWAP_64(buf[i]);
1793}
1794
1795void
1796byteswap_uint32_array(void *vbuf, size_t size)
1797{
1798	uint32_t *buf = vbuf;
1799	size_t count = size >> 2;
1800	int i;
1801
1802	ASSERT((size & 3) == 0);
1803
1804	for (i = 0; i < count; i++)
1805		buf[i] = BSWAP_32(buf[i]);
1806}
1807
1808void
1809byteswap_uint16_array(void *vbuf, size_t size)
1810{
1811	uint16_t *buf = vbuf;
1812	size_t count = size >> 1;
1813	int i;
1814
1815	ASSERT((size & 1) == 0);
1816
1817	for (i = 0; i < count; i++)
1818		buf[i] = BSWAP_16(buf[i]);
1819}
1820
1821/* ARGSUSED */
1822void
1823byteswap_uint8_array(void *vbuf, size_t size)
1824{
1825}
1826
1827void
1828dmu_init(void)
1829{
1830	zfs_dbgmsg_init();
1831	sa_cache_init();
1832	xuio_stat_init();
1833	dmu_objset_init();
1834	dnode_init();
1835	dbuf_init();
1836	zfetch_init();
1837	zio_compress_init();
1838	l2arc_init();
1839	arc_init();
1840}
1841
1842void
1843dmu_fini(void)
1844{
1845	arc_fini(); /* arc depends on l2arc, so arc must go first */
1846	l2arc_fini();
1847	zfetch_fini();
1848	zio_compress_fini();
1849	dbuf_fini();
1850	dnode_fini();
1851	dmu_objset_fini();
1852	xuio_stat_fini();
1853	sa_cache_fini();
1854	zfs_dbgmsg_fini();
1855}
1856