dbuf.c revision 307266
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/dmu.h>
33#include <sys/dmu_send.h>
34#include <sys/dmu_impl.h>
35#include <sys/dbuf.h>
36#include <sys/dmu_objset.h>
37#include <sys/dsl_dataset.h>
38#include <sys/dsl_dir.h>
39#include <sys/dmu_tx.h>
40#include <sys/spa.h>
41#include <sys/zio.h>
42#include <sys/dmu_zfetch.h>
43#include <sys/sa.h>
44#include <sys/sa_impl.h>
45#include <sys/zfeature.h>
46#include <sys/blkptr.h>
47#include <sys/range_tree.h>
48#include <sys/callb.h>
49
50uint_t zfs_dbuf_evict_key;
51
52/*
53 * Number of times that zfs_free_range() took the slow path while doing
54 * a zfs receive.  A nonzero value indicates a potential performance problem.
55 */
56uint64_t zfs_free_range_recv_miss;
57
58static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
59static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
60
61/*
62 * Global data structures and functions for the dbuf cache.
63 */
64static kmem_cache_t *dbuf_kmem_cache;
65static taskq_t *dbu_evict_taskq;
66
67static kthread_t *dbuf_cache_evict_thread;
68static kmutex_t dbuf_evict_lock;
69static kcondvar_t dbuf_evict_cv;
70static boolean_t dbuf_evict_thread_exit;
71
72/*
73 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
74 * are not currently held but have been recently released. These dbufs
75 * are not eligible for arc eviction until they are aged out of the cache.
76 * Dbufs are added to the dbuf cache once the last hold is released. If a
77 * dbuf is later accessed and still exists in the dbuf cache, then it will
78 * be removed from the cache and later re-added to the head of the cache.
79 * Dbufs that are aged out of the cache will be immediately destroyed and
80 * become eligible for arc eviction.
81 */
82static multilist_t dbuf_cache;
83static refcount_t dbuf_cache_size;
84uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
85
86/* Cap the size of the dbuf cache to log2 fraction of arc size. */
87int dbuf_cache_max_shift = 5;
88
89/*
90 * The dbuf cache uses a three-stage eviction policy:
91 *	- A low water marker designates when the dbuf eviction thread
92 *	should stop evicting from the dbuf cache.
93 *	- When we reach the maximum size (aka mid water mark), we
94 *	signal the eviction thread to run.
95 *	- The high water mark indicates when the eviction thread
96 *	is unable to keep up with the incoming load and eviction must
97 *	happen in the context of the calling thread.
98 *
99 * The dbuf cache:
100 *                                                 (max size)
101 *                                      low water   mid water   hi water
102 * +----------------------------------------+----------+----------+
103 * |                                        |          |          |
104 * |                                        |          |          |
105 * |                                        |          |          |
106 * |                                        |          |          |
107 * +----------------------------------------+----------+----------+
108 *                                        stop        signal     evict
109 *                                      evicting     eviction   directly
110 *                                                    thread
111 *
112 * The high and low water marks indicate the operating range for the eviction
113 * thread. The low water mark is, by default, 90% of the total size of the
114 * cache and the high water mark is at 110% (both of these percentages can be
115 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
116 * respectively). The eviction thread will try to ensure that the cache remains
117 * within this range by waking up every second and checking if the cache is
118 * above the low water mark. The thread can also be woken up by callers adding
119 * elements into the cache if the cache is larger than the mid water (i.e max
120 * cache size). Once the eviction thread is woken up and eviction is required,
121 * it will continue evicting buffers until it's able to reduce the cache size
122 * to the low water mark. If the cache size continues to grow and hits the high
123 * water mark, then callers adding elments to the cache will begin to evict
124 * directly from the cache until the cache is no longer above the high water
125 * mark.
126 */
127
128/*
129 * The percentage above and below the maximum cache size.
130 */
131uint_t dbuf_cache_hiwater_pct = 10;
132uint_t dbuf_cache_lowater_pct = 10;
133
134/* ARGSUSED */
135static int
136dbuf_cons(void *vdb, void *unused, int kmflag)
137{
138	dmu_buf_impl_t *db = vdb;
139	bzero(db, sizeof (dmu_buf_impl_t));
140
141	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
142	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
143	multilist_link_init(&db->db_cache_link);
144	refcount_create(&db->db_holds);
145
146	return (0);
147}
148
149/* ARGSUSED */
150static void
151dbuf_dest(void *vdb, void *unused)
152{
153	dmu_buf_impl_t *db = vdb;
154	mutex_destroy(&db->db_mtx);
155	cv_destroy(&db->db_changed);
156	ASSERT(!multilist_link_active(&db->db_cache_link));
157	refcount_destroy(&db->db_holds);
158}
159
160/*
161 * dbuf hash table routines
162 */
163static dbuf_hash_table_t dbuf_hash_table;
164
165static uint64_t dbuf_hash_count;
166
167static uint64_t
168dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
169{
170	uintptr_t osv = (uintptr_t)os;
171	uint64_t crc = -1ULL;
172
173	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
174	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
175	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
176	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
177	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
178	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
179	crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
180
181	crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
182
183	return (crc);
184}
185
186#define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
187	((dbuf)->db.db_object == (obj) &&		\
188	(dbuf)->db_objset == (os) &&			\
189	(dbuf)->db_level == (level) &&			\
190	(dbuf)->db_blkid == (blkid))
191
192dmu_buf_impl_t *
193dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
194{
195	dbuf_hash_table_t *h = &dbuf_hash_table;
196	uint64_t hv = dbuf_hash(os, obj, level, blkid);
197	uint64_t idx = hv & h->hash_table_mask;
198	dmu_buf_impl_t *db;
199
200	mutex_enter(DBUF_HASH_MUTEX(h, idx));
201	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
202		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
203			mutex_enter(&db->db_mtx);
204			if (db->db_state != DB_EVICTING) {
205				mutex_exit(DBUF_HASH_MUTEX(h, idx));
206				return (db);
207			}
208			mutex_exit(&db->db_mtx);
209		}
210	}
211	mutex_exit(DBUF_HASH_MUTEX(h, idx));
212	return (NULL);
213}
214
215static dmu_buf_impl_t *
216dbuf_find_bonus(objset_t *os, uint64_t object)
217{
218	dnode_t *dn;
219	dmu_buf_impl_t *db = NULL;
220
221	if (dnode_hold(os, object, FTAG, &dn) == 0) {
222		rw_enter(&dn->dn_struct_rwlock, RW_READER);
223		if (dn->dn_bonus != NULL) {
224			db = dn->dn_bonus;
225			mutex_enter(&db->db_mtx);
226		}
227		rw_exit(&dn->dn_struct_rwlock);
228		dnode_rele(dn, FTAG);
229	}
230	return (db);
231}
232
233/*
234 * Insert an entry into the hash table.  If there is already an element
235 * equal to elem in the hash table, then the already existing element
236 * will be returned and the new element will not be inserted.
237 * Otherwise returns NULL.
238 */
239static dmu_buf_impl_t *
240dbuf_hash_insert(dmu_buf_impl_t *db)
241{
242	dbuf_hash_table_t *h = &dbuf_hash_table;
243	objset_t *os = db->db_objset;
244	uint64_t obj = db->db.db_object;
245	int level = db->db_level;
246	uint64_t blkid = db->db_blkid;
247	uint64_t hv = dbuf_hash(os, obj, level, blkid);
248	uint64_t idx = hv & h->hash_table_mask;
249	dmu_buf_impl_t *dbf;
250
251	mutex_enter(DBUF_HASH_MUTEX(h, idx));
252	for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
253		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
254			mutex_enter(&dbf->db_mtx);
255			if (dbf->db_state != DB_EVICTING) {
256				mutex_exit(DBUF_HASH_MUTEX(h, idx));
257				return (dbf);
258			}
259			mutex_exit(&dbf->db_mtx);
260		}
261	}
262
263	mutex_enter(&db->db_mtx);
264	db->db_hash_next = h->hash_table[idx];
265	h->hash_table[idx] = db;
266	mutex_exit(DBUF_HASH_MUTEX(h, idx));
267	atomic_inc_64(&dbuf_hash_count);
268
269	return (NULL);
270}
271
272/*
273 * Remove an entry from the hash table.  It must be in the EVICTING state.
274 */
275static void
276dbuf_hash_remove(dmu_buf_impl_t *db)
277{
278	dbuf_hash_table_t *h = &dbuf_hash_table;
279	uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
280	    db->db_level, db->db_blkid);
281	uint64_t idx = hv & h->hash_table_mask;
282	dmu_buf_impl_t *dbf, **dbp;
283
284	/*
285	 * We musn't hold db_mtx to maintain lock ordering:
286	 * DBUF_HASH_MUTEX > db_mtx.
287	 */
288	ASSERT(refcount_is_zero(&db->db_holds));
289	ASSERT(db->db_state == DB_EVICTING);
290	ASSERT(!MUTEX_HELD(&db->db_mtx));
291
292	mutex_enter(DBUF_HASH_MUTEX(h, idx));
293	dbp = &h->hash_table[idx];
294	while ((dbf = *dbp) != db) {
295		dbp = &dbf->db_hash_next;
296		ASSERT(dbf != NULL);
297	}
298	*dbp = db->db_hash_next;
299	db->db_hash_next = NULL;
300	mutex_exit(DBUF_HASH_MUTEX(h, idx));
301	atomic_dec_64(&dbuf_hash_count);
302}
303
304typedef enum {
305	DBVU_EVICTING,
306	DBVU_NOT_EVICTING
307} dbvu_verify_type_t;
308
309static void
310dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
311{
312#ifdef ZFS_DEBUG
313	int64_t holds;
314
315	if (db->db_user == NULL)
316		return;
317
318	/* Only data blocks support the attachment of user data. */
319	ASSERT(db->db_level == 0);
320
321	/* Clients must resolve a dbuf before attaching user data. */
322	ASSERT(db->db.db_data != NULL);
323	ASSERT3U(db->db_state, ==, DB_CACHED);
324
325	holds = refcount_count(&db->db_holds);
326	if (verify_type == DBVU_EVICTING) {
327		/*
328		 * Immediate eviction occurs when holds == dirtycnt.
329		 * For normal eviction buffers, holds is zero on
330		 * eviction, except when dbuf_fix_old_data() calls
331		 * dbuf_clear_data().  However, the hold count can grow
332		 * during eviction even though db_mtx is held (see
333		 * dmu_bonus_hold() for an example), so we can only
334		 * test the generic invariant that holds >= dirtycnt.
335		 */
336		ASSERT3U(holds, >=, db->db_dirtycnt);
337	} else {
338		if (db->db_user_immediate_evict == TRUE)
339			ASSERT3U(holds, >=, db->db_dirtycnt);
340		else
341			ASSERT3U(holds, >, 0);
342	}
343#endif
344}
345
346static void
347dbuf_evict_user(dmu_buf_impl_t *db)
348{
349	dmu_buf_user_t *dbu = db->db_user;
350
351	ASSERT(MUTEX_HELD(&db->db_mtx));
352
353	if (dbu == NULL)
354		return;
355
356	dbuf_verify_user(db, DBVU_EVICTING);
357	db->db_user = NULL;
358
359#ifdef ZFS_DEBUG
360	if (dbu->dbu_clear_on_evict_dbufp != NULL)
361		*dbu->dbu_clear_on_evict_dbufp = NULL;
362#endif
363
364	/*
365	 * Invoke the callback from a taskq to avoid lock order reversals
366	 * and limit stack depth.
367	 */
368	taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
369	    &dbu->dbu_tqent);
370}
371
372boolean_t
373dbuf_is_metadata(dmu_buf_impl_t *db)
374{
375	if (db->db_level > 0) {
376		return (B_TRUE);
377	} else {
378		boolean_t is_metadata;
379
380		DB_DNODE_ENTER(db);
381		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
382		DB_DNODE_EXIT(db);
383
384		return (is_metadata);
385	}
386}
387
388/*
389 * This function *must* return indices evenly distributed between all
390 * sublists of the multilist. This is needed due to how the dbuf eviction
391 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
392 * distributed between all sublists and uses this assumption when
393 * deciding which sublist to evict from and how much to evict from it.
394 */
395unsigned int
396dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
397{
398	dmu_buf_impl_t *db = obj;
399
400	/*
401	 * The assumption here, is the hash value for a given
402	 * dmu_buf_impl_t will remain constant throughout it's lifetime
403	 * (i.e. it's objset, object, level and blkid fields don't change).
404	 * Thus, we don't need to store the dbuf's sublist index
405	 * on insertion, as this index can be recalculated on removal.
406	 *
407	 * Also, the low order bits of the hash value are thought to be
408	 * distributed evenly. Otherwise, in the case that the multilist
409	 * has a power of two number of sublists, each sublists' usage
410	 * would not be evenly distributed.
411	 */
412	return (dbuf_hash(db->db_objset, db->db.db_object,
413	    db->db_level, db->db_blkid) %
414	    multilist_get_num_sublists(ml));
415}
416
417static inline boolean_t
418dbuf_cache_above_hiwater(void)
419{
420	uint64_t dbuf_cache_hiwater_bytes =
421	    (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
422
423	return (refcount_count(&dbuf_cache_size) >
424	    dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
425}
426
427static inline boolean_t
428dbuf_cache_above_lowater(void)
429{
430	uint64_t dbuf_cache_lowater_bytes =
431	    (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
432
433	return (refcount_count(&dbuf_cache_size) >
434	    dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
435}
436
437/*
438 * Evict the oldest eligible dbuf from the dbuf cache.
439 */
440static void
441dbuf_evict_one(void)
442{
443	int idx = multilist_get_random_index(&dbuf_cache);
444	multilist_sublist_t *mls = multilist_sublist_lock(&dbuf_cache, idx);
445
446	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
447
448	/*
449	 * Set the thread's tsd to indicate that it's processing evictions.
450	 * Once a thread stops evicting from the dbuf cache it will
451	 * reset its tsd to NULL.
452	 */
453	ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
454	(void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
455
456	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
457	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
458		db = multilist_sublist_prev(mls, db);
459	}
460
461	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
462	    multilist_sublist_t *, mls);
463
464	if (db != NULL) {
465		multilist_sublist_remove(mls, db);
466		multilist_sublist_unlock(mls);
467		(void) refcount_remove_many(&dbuf_cache_size,
468		    db->db.db_size, db);
469		dbuf_destroy(db);
470	} else {
471		multilist_sublist_unlock(mls);
472	}
473	(void) tsd_set(zfs_dbuf_evict_key, NULL);
474}
475
476/*
477 * The dbuf evict thread is responsible for aging out dbufs from the
478 * cache. Once the cache has reached it's maximum size, dbufs are removed
479 * and destroyed. The eviction thread will continue running until the size
480 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
481 * out of the cache it is destroyed and becomes eligible for arc eviction.
482 */
483static void
484dbuf_evict_thread(void *dummy __unused)
485{
486	callb_cpr_t cpr;
487
488	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
489
490	mutex_enter(&dbuf_evict_lock);
491	while (!dbuf_evict_thread_exit) {
492		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
493			CALLB_CPR_SAFE_BEGIN(&cpr);
494			(void) cv_timedwait_hires(&dbuf_evict_cv,
495			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
496			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
497		}
498		mutex_exit(&dbuf_evict_lock);
499
500		/*
501		 * Keep evicting as long as we're above the low water mark
502		 * for the cache. We do this without holding the locks to
503		 * minimize lock contention.
504		 */
505		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
506			dbuf_evict_one();
507		}
508
509		mutex_enter(&dbuf_evict_lock);
510	}
511
512	dbuf_evict_thread_exit = B_FALSE;
513	cv_broadcast(&dbuf_evict_cv);
514	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
515	thread_exit();
516}
517
518/*
519 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
520 * If the dbuf cache is at its high water mark, then evict a dbuf from the
521 * dbuf cache using the callers context.
522 */
523static void
524dbuf_evict_notify(void)
525{
526
527	/*
528	 * We use thread specific data to track when a thread has
529	 * started processing evictions. This allows us to avoid deeply
530	 * nested stacks that would have a call flow similar to this:
531	 *
532	 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
533	 *	^						|
534	 *	|						|
535	 *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
536	 *
537	 * The dbuf_eviction_thread will always have its tsd set until
538	 * that thread exits. All other threads will only set their tsd
539	 * if they are participating in the eviction process. This only
540	 * happens if the eviction thread is unable to process evictions
541	 * fast enough. To keep the dbuf cache size in check, other threads
542	 * can evict from the dbuf cache directly. Those threads will set
543	 * their tsd values so that we ensure that they only evict one dbuf
544	 * from the dbuf cache.
545	 */
546	if (tsd_get(zfs_dbuf_evict_key) != NULL)
547		return;
548
549	if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
550		boolean_t evict_now = B_FALSE;
551
552		mutex_enter(&dbuf_evict_lock);
553		if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
554			evict_now = dbuf_cache_above_hiwater();
555			cv_signal(&dbuf_evict_cv);
556		}
557		mutex_exit(&dbuf_evict_lock);
558
559		if (evict_now) {
560			dbuf_evict_one();
561		}
562	}
563}
564
565void
566dbuf_init(void)
567{
568	uint64_t hsize = 1ULL << 16;
569	dbuf_hash_table_t *h = &dbuf_hash_table;
570	int i;
571
572	/*
573	 * The hash table is big enough to fill all of physical memory
574	 * with an average 4K block size.  The table will take up
575	 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
576	 */
577	while (hsize * 4096 < (uint64_t)physmem * PAGESIZE)
578		hsize <<= 1;
579
580retry:
581	h->hash_table_mask = hsize - 1;
582	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
583	if (h->hash_table == NULL) {
584		/* XXX - we should really return an error instead of assert */
585		ASSERT(hsize > (1ULL << 10));
586		hsize >>= 1;
587		goto retry;
588	}
589
590	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
591	    sizeof (dmu_buf_impl_t),
592	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
593
594	for (i = 0; i < DBUF_MUTEXES; i++)
595		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
596
597	/*
598	 * Setup the parameters for the dbuf cache. We cap the size of the
599	 * dbuf cache to 1/32nd (default) of the size of the ARC.
600	 */
601	dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
602	    arc_max_bytes() >> dbuf_cache_max_shift);
603
604	/*
605	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
606	 * configuration is not required.
607	 */
608	dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
609
610	multilist_create(&dbuf_cache, sizeof (dmu_buf_impl_t),
611	    offsetof(dmu_buf_impl_t, db_cache_link),
612	    zfs_arc_num_sublists_per_state,
613	    dbuf_cache_multilist_index_func);
614	refcount_create(&dbuf_cache_size);
615
616	tsd_create(&zfs_dbuf_evict_key, NULL);
617	dbuf_evict_thread_exit = B_FALSE;
618	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
619	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
620	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
621	    NULL, 0, &p0, TS_RUN, minclsyspri);
622}
623
624void
625dbuf_fini(void)
626{
627	dbuf_hash_table_t *h = &dbuf_hash_table;
628	int i;
629
630	for (i = 0; i < DBUF_MUTEXES; i++)
631		mutex_destroy(&h->hash_mutexes[i]);
632	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
633	kmem_cache_destroy(dbuf_kmem_cache);
634	taskq_destroy(dbu_evict_taskq);
635
636	mutex_enter(&dbuf_evict_lock);
637	dbuf_evict_thread_exit = B_TRUE;
638	while (dbuf_evict_thread_exit) {
639		cv_signal(&dbuf_evict_cv);
640		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
641	}
642	mutex_exit(&dbuf_evict_lock);
643	tsd_destroy(&zfs_dbuf_evict_key);
644
645	mutex_destroy(&dbuf_evict_lock);
646	cv_destroy(&dbuf_evict_cv);
647
648	refcount_destroy(&dbuf_cache_size);
649	multilist_destroy(&dbuf_cache);
650}
651
652/*
653 * Other stuff.
654 */
655
656#ifdef ZFS_DEBUG
657static void
658dbuf_verify(dmu_buf_impl_t *db)
659{
660	dnode_t *dn;
661	dbuf_dirty_record_t *dr;
662
663	ASSERT(MUTEX_HELD(&db->db_mtx));
664
665	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
666		return;
667
668	ASSERT(db->db_objset != NULL);
669	DB_DNODE_ENTER(db);
670	dn = DB_DNODE(db);
671	if (dn == NULL) {
672		ASSERT(db->db_parent == NULL);
673		ASSERT(db->db_blkptr == NULL);
674	} else {
675		ASSERT3U(db->db.db_object, ==, dn->dn_object);
676		ASSERT3P(db->db_objset, ==, dn->dn_objset);
677		ASSERT3U(db->db_level, <, dn->dn_nlevels);
678		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
679		    db->db_blkid == DMU_SPILL_BLKID ||
680		    !avl_is_empty(&dn->dn_dbufs));
681	}
682	if (db->db_blkid == DMU_BONUS_BLKID) {
683		ASSERT(dn != NULL);
684		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
685		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
686	} else if (db->db_blkid == DMU_SPILL_BLKID) {
687		ASSERT(dn != NULL);
688		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
689		ASSERT0(db->db.db_offset);
690	} else {
691		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
692	}
693
694	for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
695		ASSERT(dr->dr_dbuf == db);
696
697	for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
698		ASSERT(dr->dr_dbuf == db);
699
700	/*
701	 * We can't assert that db_size matches dn_datablksz because it
702	 * can be momentarily different when another thread is doing
703	 * dnode_set_blksz().
704	 */
705	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
706		dr = db->db_data_pending;
707		/*
708		 * It should only be modified in syncing context, so
709		 * make sure we only have one copy of the data.
710		 */
711		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
712	}
713
714	/* verify db->db_blkptr */
715	if (db->db_blkptr) {
716		if (db->db_parent == dn->dn_dbuf) {
717			/* db is pointed to by the dnode */
718			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
719			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
720				ASSERT(db->db_parent == NULL);
721			else
722				ASSERT(db->db_parent != NULL);
723			if (db->db_blkid != DMU_SPILL_BLKID)
724				ASSERT3P(db->db_blkptr, ==,
725				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
726		} else {
727			/* db is pointed to by an indirect block */
728			int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
729			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
730			ASSERT3U(db->db_parent->db.db_object, ==,
731			    db->db.db_object);
732			/*
733			 * dnode_grow_indblksz() can make this fail if we don't
734			 * have the struct_rwlock.  XXX indblksz no longer
735			 * grows.  safe to do this now?
736			 */
737			if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
738				ASSERT3P(db->db_blkptr, ==,
739				    ((blkptr_t *)db->db_parent->db.db_data +
740				    db->db_blkid % epb));
741			}
742		}
743	}
744	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
745	    (db->db_buf == NULL || db->db_buf->b_data) &&
746	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
747	    db->db_state != DB_FILL && !dn->dn_free_txg) {
748		/*
749		 * If the blkptr isn't set but they have nonzero data,
750		 * it had better be dirty, otherwise we'll lose that
751		 * data when we evict this buffer.
752		 *
753		 * There is an exception to this rule for indirect blocks; in
754		 * this case, if the indirect block is a hole, we fill in a few
755		 * fields on each of the child blocks (importantly, birth time)
756		 * to prevent hole birth times from being lost when you
757		 * partially fill in a hole.
758		 */
759		if (db->db_dirtycnt == 0) {
760			if (db->db_level == 0) {
761				uint64_t *buf = db->db.db_data;
762				int i;
763
764				for (i = 0; i < db->db.db_size >> 3; i++) {
765					ASSERT(buf[i] == 0);
766				}
767			} else {
768				blkptr_t *bps = db->db.db_data;
769				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
770				    db->db.db_size);
771				/*
772				 * We want to verify that all the blkptrs in the
773				 * indirect block are holes, but we may have
774				 * automatically set up a few fields for them.
775				 * We iterate through each blkptr and verify
776				 * they only have those fields set.
777				 */
778				for (int i = 0;
779				    i < db->db.db_size / sizeof (blkptr_t);
780				    i++) {
781					blkptr_t *bp = &bps[i];
782					ASSERT(ZIO_CHECKSUM_IS_ZERO(
783					    &bp->blk_cksum));
784					ASSERT(
785					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
786					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
787					    DVA_IS_EMPTY(&bp->blk_dva[2]));
788					ASSERT0(bp->blk_fill);
789					ASSERT0(bp->blk_pad[0]);
790					ASSERT0(bp->blk_pad[1]);
791					ASSERT(!BP_IS_EMBEDDED(bp));
792					ASSERT(BP_IS_HOLE(bp));
793					ASSERT0(bp->blk_phys_birth);
794				}
795			}
796		}
797	}
798	DB_DNODE_EXIT(db);
799}
800#endif
801
802static void
803dbuf_clear_data(dmu_buf_impl_t *db)
804{
805	ASSERT(MUTEX_HELD(&db->db_mtx));
806	dbuf_evict_user(db);
807	ASSERT3P(db->db_buf, ==, NULL);
808	db->db.db_data = NULL;
809	if (db->db_state != DB_NOFILL)
810		db->db_state = DB_UNCACHED;
811}
812
813static void
814dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
815{
816	ASSERT(MUTEX_HELD(&db->db_mtx));
817	ASSERT(buf != NULL);
818
819	db->db_buf = buf;
820	ASSERT(buf->b_data != NULL);
821	db->db.db_data = buf->b_data;
822}
823
824/*
825 * Loan out an arc_buf for read.  Return the loaned arc_buf.
826 */
827arc_buf_t *
828dbuf_loan_arcbuf(dmu_buf_impl_t *db)
829{
830	arc_buf_t *abuf;
831
832	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
833	mutex_enter(&db->db_mtx);
834	if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
835		int blksz = db->db.db_size;
836		spa_t *spa = db->db_objset->os_spa;
837
838		mutex_exit(&db->db_mtx);
839		abuf = arc_loan_buf(spa, blksz);
840		bcopy(db->db.db_data, abuf->b_data, blksz);
841	} else {
842		abuf = db->db_buf;
843		arc_loan_inuse_buf(abuf, db);
844		db->db_buf = NULL;
845		dbuf_clear_data(db);
846		mutex_exit(&db->db_mtx);
847	}
848	return (abuf);
849}
850
851/*
852 * Calculate which level n block references the data at the level 0 offset
853 * provided.
854 */
855uint64_t
856dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
857{
858	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
859		/*
860		 * The level n blkid is equal to the level 0 blkid divided by
861		 * the number of level 0s in a level n block.
862		 *
863		 * The level 0 blkid is offset >> datablkshift =
864		 * offset / 2^datablkshift.
865		 *
866		 * The number of level 0s in a level n is the number of block
867		 * pointers in an indirect block, raised to the power of level.
868		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
869		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
870		 *
871		 * Thus, the level n blkid is: offset /
872		 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
873		 * = offset / 2^(datablkshift + level *
874		 *   (indblkshift - SPA_BLKPTRSHIFT))
875		 * = offset >> (datablkshift + level *
876		 *   (indblkshift - SPA_BLKPTRSHIFT))
877		 */
878		return (offset >> (dn->dn_datablkshift + level *
879		    (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
880	} else {
881		ASSERT3U(offset, <, dn->dn_datablksz);
882		return (0);
883	}
884}
885
886static void
887dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
888{
889	dmu_buf_impl_t *db = vdb;
890
891	mutex_enter(&db->db_mtx);
892	ASSERT3U(db->db_state, ==, DB_READ);
893	/*
894	 * All reads are synchronous, so we must have a hold on the dbuf
895	 */
896	ASSERT(refcount_count(&db->db_holds) > 0);
897	ASSERT(db->db_buf == NULL);
898	ASSERT(db->db.db_data == NULL);
899	if (db->db_level == 0 && db->db_freed_in_flight) {
900		/* we were freed in flight; disregard any error */
901		arc_release(buf, db);
902		bzero(buf->b_data, db->db.db_size);
903		arc_buf_freeze(buf);
904		db->db_freed_in_flight = FALSE;
905		dbuf_set_data(db, buf);
906		db->db_state = DB_CACHED;
907	} else if (zio == NULL || zio->io_error == 0) {
908		dbuf_set_data(db, buf);
909		db->db_state = DB_CACHED;
910	} else {
911		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
912		ASSERT3P(db->db_buf, ==, NULL);
913		arc_buf_destroy(buf, db);
914		db->db_state = DB_UNCACHED;
915	}
916	cv_broadcast(&db->db_changed);
917	dbuf_rele_and_unlock(db, NULL);
918}
919
920static void
921dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
922{
923	dnode_t *dn;
924	zbookmark_phys_t zb;
925	arc_flags_t aflags = ARC_FLAG_NOWAIT;
926
927	DB_DNODE_ENTER(db);
928	dn = DB_DNODE(db);
929	ASSERT(!refcount_is_zero(&db->db_holds));
930	/* We need the struct_rwlock to prevent db_blkptr from changing. */
931	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
932	ASSERT(MUTEX_HELD(&db->db_mtx));
933	ASSERT(db->db_state == DB_UNCACHED);
934	ASSERT(db->db_buf == NULL);
935
936	if (db->db_blkid == DMU_BONUS_BLKID) {
937		int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
938
939		ASSERT3U(bonuslen, <=, db->db.db_size);
940		db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
941		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
942		if (bonuslen < DN_MAX_BONUSLEN)
943			bzero(db->db.db_data, DN_MAX_BONUSLEN);
944		if (bonuslen)
945			bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
946		DB_DNODE_EXIT(db);
947		db->db_state = DB_CACHED;
948		mutex_exit(&db->db_mtx);
949		return;
950	}
951
952	/*
953	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
954	 * processes the delete record and clears the bp while we are waiting
955	 * for the dn_mtx (resulting in a "no" from block_freed).
956	 */
957	if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
958	    (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
959	    BP_IS_HOLE(db->db_blkptr)))) {
960		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
961
962		dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa,
963		    db->db.db_size, db, type));
964		bzero(db->db.db_data, db->db.db_size);
965
966		if (db->db_blkptr != NULL && db->db_level > 0 &&
967		    BP_IS_HOLE(db->db_blkptr) &&
968		    db->db_blkptr->blk_birth != 0) {
969			blkptr_t *bps = db->db.db_data;
970			for (int i = 0; i < ((1 <<
971			    DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
972			    i++) {
973				blkptr_t *bp = &bps[i];
974				ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
975				    1 << dn->dn_indblkshift);
976				BP_SET_LSIZE(bp,
977				    BP_GET_LEVEL(db->db_blkptr) == 1 ?
978				    dn->dn_datablksz :
979				    BP_GET_LSIZE(db->db_blkptr));
980				BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
981				BP_SET_LEVEL(bp,
982				    BP_GET_LEVEL(db->db_blkptr) - 1);
983				BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
984			}
985		}
986		DB_DNODE_EXIT(db);
987		db->db_state = DB_CACHED;
988		mutex_exit(&db->db_mtx);
989		return;
990	}
991
992	DB_DNODE_EXIT(db);
993
994	db->db_state = DB_READ;
995	mutex_exit(&db->db_mtx);
996
997	if (DBUF_IS_L2CACHEABLE(db))
998		aflags |= ARC_FLAG_L2CACHE;
999
1000	SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1001	    db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1002	    db->db.db_object, db->db_level, db->db_blkid);
1003
1004	dbuf_add_ref(db, NULL);
1005
1006	(void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1007	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1008	    (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1009	    &aflags, &zb);
1010}
1011
1012int
1013dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1014{
1015	int err = 0;
1016	boolean_t havepzio = (zio != NULL);
1017	boolean_t prefetch;
1018	dnode_t *dn;
1019
1020	/*
1021	 * We don't have to hold the mutex to check db_state because it
1022	 * can't be freed while we have a hold on the buffer.
1023	 */
1024	ASSERT(!refcount_is_zero(&db->db_holds));
1025
1026	if (db->db_state == DB_NOFILL)
1027		return (SET_ERROR(EIO));
1028
1029	DB_DNODE_ENTER(db);
1030	dn = DB_DNODE(db);
1031	if ((flags & DB_RF_HAVESTRUCT) == 0)
1032		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1033
1034	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1035	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1036	    DBUF_IS_CACHEABLE(db);
1037
1038	mutex_enter(&db->db_mtx);
1039	if (db->db_state == DB_CACHED) {
1040		mutex_exit(&db->db_mtx);
1041		if (prefetch)
1042			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1043		if ((flags & DB_RF_HAVESTRUCT) == 0)
1044			rw_exit(&dn->dn_struct_rwlock);
1045		DB_DNODE_EXIT(db);
1046	} else if (db->db_state == DB_UNCACHED) {
1047		spa_t *spa = dn->dn_objset->os_spa;
1048
1049		if (zio == NULL)
1050			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1051		dbuf_read_impl(db, zio, flags);
1052
1053		/* dbuf_read_impl has dropped db_mtx for us */
1054
1055		if (prefetch)
1056			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1057
1058		if ((flags & DB_RF_HAVESTRUCT) == 0)
1059			rw_exit(&dn->dn_struct_rwlock);
1060		DB_DNODE_EXIT(db);
1061
1062		if (!havepzio)
1063			err = zio_wait(zio);
1064	} else {
1065		/*
1066		 * Another reader came in while the dbuf was in flight
1067		 * between UNCACHED and CACHED.  Either a writer will finish
1068		 * writing the buffer (sending the dbuf to CACHED) or the
1069		 * first reader's request will reach the read_done callback
1070		 * and send the dbuf to CACHED.  Otherwise, a failure
1071		 * occurred and the dbuf went to UNCACHED.
1072		 */
1073		mutex_exit(&db->db_mtx);
1074		if (prefetch)
1075			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1076		if ((flags & DB_RF_HAVESTRUCT) == 0)
1077			rw_exit(&dn->dn_struct_rwlock);
1078		DB_DNODE_EXIT(db);
1079
1080		/* Skip the wait per the caller's request. */
1081		mutex_enter(&db->db_mtx);
1082		if ((flags & DB_RF_NEVERWAIT) == 0) {
1083			while (db->db_state == DB_READ ||
1084			    db->db_state == DB_FILL) {
1085				ASSERT(db->db_state == DB_READ ||
1086				    (flags & DB_RF_HAVESTRUCT) == 0);
1087				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1088				    db, zio_t *, zio);
1089				cv_wait(&db->db_changed, &db->db_mtx);
1090			}
1091			if (db->db_state == DB_UNCACHED)
1092				err = SET_ERROR(EIO);
1093		}
1094		mutex_exit(&db->db_mtx);
1095	}
1096
1097	ASSERT(err || havepzio || db->db_state == DB_CACHED);
1098	return (err);
1099}
1100
1101static void
1102dbuf_noread(dmu_buf_impl_t *db)
1103{
1104	ASSERT(!refcount_is_zero(&db->db_holds));
1105	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1106	mutex_enter(&db->db_mtx);
1107	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1108		cv_wait(&db->db_changed, &db->db_mtx);
1109	if (db->db_state == DB_UNCACHED) {
1110		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1111		spa_t *spa = db->db_objset->os_spa;
1112
1113		ASSERT(db->db_buf == NULL);
1114		ASSERT(db->db.db_data == NULL);
1115		dbuf_set_data(db, arc_alloc_buf(spa, db->db.db_size, db, type));
1116		db->db_state = DB_FILL;
1117	} else if (db->db_state == DB_NOFILL) {
1118		dbuf_clear_data(db);
1119	} else {
1120		ASSERT3U(db->db_state, ==, DB_CACHED);
1121	}
1122	mutex_exit(&db->db_mtx);
1123}
1124
1125/*
1126 * This is our just-in-time copy function.  It makes a copy of
1127 * buffers, that have been modified in a previous transaction
1128 * group, before we modify them in the current active group.
1129 *
1130 * This function is used in two places: when we are dirtying a
1131 * buffer for the first time in a txg, and when we are freeing
1132 * a range in a dnode that includes this buffer.
1133 *
1134 * Note that when we are called from dbuf_free_range() we do
1135 * not put a hold on the buffer, we just traverse the active
1136 * dbuf list for the dnode.
1137 */
1138static void
1139dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1140{
1141	dbuf_dirty_record_t *dr = db->db_last_dirty;
1142
1143	ASSERT(MUTEX_HELD(&db->db_mtx));
1144	ASSERT(db->db.db_data != NULL);
1145	ASSERT(db->db_level == 0);
1146	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1147
1148	if (dr == NULL ||
1149	    (dr->dt.dl.dr_data !=
1150	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1151		return;
1152
1153	/*
1154	 * If the last dirty record for this dbuf has not yet synced
1155	 * and its referencing the dbuf data, either:
1156	 *	reset the reference to point to a new copy,
1157	 * or (if there a no active holders)
1158	 *	just null out the current db_data pointer.
1159	 */
1160	ASSERT(dr->dr_txg >= txg - 2);
1161	if (db->db_blkid == DMU_BONUS_BLKID) {
1162		/* Note that the data bufs here are zio_bufs */
1163		dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1164		arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1165		bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1166	} else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1167		int size = db->db.db_size;
1168		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1169		spa_t *spa = db->db_objset->os_spa;
1170
1171		dr->dt.dl.dr_data = arc_alloc_buf(spa, size, db, type);
1172		bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1173	} else {
1174		db->db_buf = NULL;
1175		dbuf_clear_data(db);
1176	}
1177}
1178
1179void
1180dbuf_unoverride(dbuf_dirty_record_t *dr)
1181{
1182	dmu_buf_impl_t *db = dr->dr_dbuf;
1183	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1184	uint64_t txg = dr->dr_txg;
1185
1186	ASSERT(MUTEX_HELD(&db->db_mtx));
1187	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1188	ASSERT(db->db_level == 0);
1189
1190	if (db->db_blkid == DMU_BONUS_BLKID ||
1191	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1192		return;
1193
1194	ASSERT(db->db_data_pending != dr);
1195
1196	/* free this block */
1197	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1198		zio_free(db->db_objset->os_spa, txg, bp);
1199
1200	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1201	dr->dt.dl.dr_nopwrite = B_FALSE;
1202
1203	/*
1204	 * Release the already-written buffer, so we leave it in
1205	 * a consistent dirty state.  Note that all callers are
1206	 * modifying the buffer, so they will immediately do
1207	 * another (redundant) arc_release().  Therefore, leave
1208	 * the buf thawed to save the effort of freezing &
1209	 * immediately re-thawing it.
1210	 */
1211	arc_release(dr->dt.dl.dr_data, db);
1212}
1213
1214/*
1215 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1216 * data blocks in the free range, so that any future readers will find
1217 * empty blocks.
1218 *
1219 * This is a no-op if the dataset is in the middle of an incremental
1220 * receive; see comment below for details.
1221 */
1222void
1223dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1224    dmu_tx_t *tx)
1225{
1226	dmu_buf_impl_t db_search;
1227	dmu_buf_impl_t *db, *db_next;
1228	uint64_t txg = tx->tx_txg;
1229	avl_index_t where;
1230
1231	if (end_blkid > dn->dn_maxblkid && (end_blkid != DMU_SPILL_BLKID))
1232		end_blkid = dn->dn_maxblkid;
1233	dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1234
1235	db_search.db_level = 0;
1236	db_search.db_blkid = start_blkid;
1237	db_search.db_state = DB_SEARCH;
1238
1239	mutex_enter(&dn->dn_dbufs_mtx);
1240	if (start_blkid >= dn->dn_unlisted_l0_blkid) {
1241		/* There can't be any dbufs in this range; no need to search. */
1242#ifdef DEBUG
1243		db = avl_find(&dn->dn_dbufs, &db_search, &where);
1244		ASSERT3P(db, ==, NULL);
1245		db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1246		ASSERT(db == NULL || db->db_level > 0);
1247#endif
1248		mutex_exit(&dn->dn_dbufs_mtx);
1249		return;
1250	} else if (dmu_objset_is_receiving(dn->dn_objset)) {
1251		/*
1252		 * If we are receiving, we expect there to be no dbufs in
1253		 * the range to be freed, because receive modifies each
1254		 * block at most once, and in offset order.  If this is
1255		 * not the case, it can lead to performance problems,
1256		 * so note that we unexpectedly took the slow path.
1257		 */
1258		atomic_inc_64(&zfs_free_range_recv_miss);
1259	}
1260
1261	db = avl_find(&dn->dn_dbufs, &db_search, &where);
1262	ASSERT3P(db, ==, NULL);
1263	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1264
1265	for (; db != NULL; db = db_next) {
1266		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1267		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1268
1269		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1270			break;
1271		}
1272		ASSERT3U(db->db_blkid, >=, start_blkid);
1273
1274		/* found a level 0 buffer in the range */
1275		mutex_enter(&db->db_mtx);
1276		if (dbuf_undirty(db, tx)) {
1277			/* mutex has been dropped and dbuf destroyed */
1278			continue;
1279		}
1280
1281		if (db->db_state == DB_UNCACHED ||
1282		    db->db_state == DB_NOFILL ||
1283		    db->db_state == DB_EVICTING) {
1284			ASSERT(db->db.db_data == NULL);
1285			mutex_exit(&db->db_mtx);
1286			continue;
1287		}
1288		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1289			/* will be handled in dbuf_read_done or dbuf_rele */
1290			db->db_freed_in_flight = TRUE;
1291			mutex_exit(&db->db_mtx);
1292			continue;
1293		}
1294		if (refcount_count(&db->db_holds) == 0) {
1295			ASSERT(db->db_buf);
1296			dbuf_destroy(db);
1297			continue;
1298		}
1299		/* The dbuf is referenced */
1300
1301		if (db->db_last_dirty != NULL) {
1302			dbuf_dirty_record_t *dr = db->db_last_dirty;
1303
1304			if (dr->dr_txg == txg) {
1305				/*
1306				 * This buffer is "in-use", re-adjust the file
1307				 * size to reflect that this buffer may
1308				 * contain new data when we sync.
1309				 */
1310				if (db->db_blkid != DMU_SPILL_BLKID &&
1311				    db->db_blkid > dn->dn_maxblkid)
1312					dn->dn_maxblkid = db->db_blkid;
1313				dbuf_unoverride(dr);
1314			} else {
1315				/*
1316				 * This dbuf is not dirty in the open context.
1317				 * Either uncache it (if its not referenced in
1318				 * the open context) or reset its contents to
1319				 * empty.
1320				 */
1321				dbuf_fix_old_data(db, txg);
1322			}
1323		}
1324		/* clear the contents if its cached */
1325		if (db->db_state == DB_CACHED) {
1326			ASSERT(db->db.db_data != NULL);
1327			arc_release(db->db_buf, db);
1328			bzero(db->db.db_data, db->db.db_size);
1329			arc_buf_freeze(db->db_buf);
1330		}
1331
1332		mutex_exit(&db->db_mtx);
1333	}
1334	mutex_exit(&dn->dn_dbufs_mtx);
1335}
1336
1337static int
1338dbuf_block_freeable(dmu_buf_impl_t *db)
1339{
1340	dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1341	uint64_t birth_txg = 0;
1342
1343	/*
1344	 * We don't need any locking to protect db_blkptr:
1345	 * If it's syncing, then db_last_dirty will be set
1346	 * so we'll ignore db_blkptr.
1347	 *
1348	 * This logic ensures that only block births for
1349	 * filled blocks are considered.
1350	 */
1351	ASSERT(MUTEX_HELD(&db->db_mtx));
1352	if (db->db_last_dirty && (db->db_blkptr == NULL ||
1353	    !BP_IS_HOLE(db->db_blkptr))) {
1354		birth_txg = db->db_last_dirty->dr_txg;
1355	} else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1356		birth_txg = db->db_blkptr->blk_birth;
1357	}
1358
1359	/*
1360	 * If this block don't exist or is in a snapshot, it can't be freed.
1361	 * Don't pass the bp to dsl_dataset_block_freeable() since we
1362	 * are holding the db_mtx lock and might deadlock if we are
1363	 * prefetching a dedup-ed block.
1364	 */
1365	if (birth_txg != 0)
1366		return (ds == NULL ||
1367		    dsl_dataset_block_freeable(ds, NULL, birth_txg));
1368	else
1369		return (B_FALSE);
1370}
1371
1372void
1373dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1374{
1375	arc_buf_t *buf, *obuf;
1376	int osize = db->db.db_size;
1377	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1378	dnode_t *dn;
1379
1380	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1381
1382	DB_DNODE_ENTER(db);
1383	dn = DB_DNODE(db);
1384
1385	/* XXX does *this* func really need the lock? */
1386	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1387
1388	/*
1389	 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1390	 * is OK, because there can be no other references to the db
1391	 * when we are changing its size, so no concurrent DB_FILL can
1392	 * be happening.
1393	 */
1394	/*
1395	 * XXX we should be doing a dbuf_read, checking the return
1396	 * value and returning that up to our callers
1397	 */
1398	dmu_buf_will_dirty(&db->db, tx);
1399
1400	/* create the data buffer for the new block */
1401	buf = arc_alloc_buf(dn->dn_objset->os_spa, size, db, type);
1402
1403	/* copy old block data to the new block */
1404	obuf = db->db_buf;
1405	bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1406	/* zero the remainder */
1407	if (size > osize)
1408		bzero((uint8_t *)buf->b_data + osize, size - osize);
1409
1410	mutex_enter(&db->db_mtx);
1411	dbuf_set_data(db, buf);
1412	arc_buf_destroy(obuf, db);
1413	db->db.db_size = size;
1414
1415	if (db->db_level == 0) {
1416		ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1417		db->db_last_dirty->dt.dl.dr_data = buf;
1418	}
1419	mutex_exit(&db->db_mtx);
1420
1421	dnode_willuse_space(dn, size-osize, tx);
1422	DB_DNODE_EXIT(db);
1423}
1424
1425void
1426dbuf_release_bp(dmu_buf_impl_t *db)
1427{
1428	objset_t *os = db->db_objset;
1429
1430	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1431	ASSERT(arc_released(os->os_phys_buf) ||
1432	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
1433	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1434
1435	(void) arc_release(db->db_buf, db);
1436}
1437
1438/*
1439 * We already have a dirty record for this TXG, and we are being
1440 * dirtied again.
1441 */
1442static void
1443dbuf_redirty(dbuf_dirty_record_t *dr)
1444{
1445	dmu_buf_impl_t *db = dr->dr_dbuf;
1446
1447	ASSERT(MUTEX_HELD(&db->db_mtx));
1448
1449	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1450		/*
1451		 * If this buffer has already been written out,
1452		 * we now need to reset its state.
1453		 */
1454		dbuf_unoverride(dr);
1455		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1456		    db->db_state != DB_NOFILL) {
1457			/* Already released on initial dirty, so just thaw. */
1458			ASSERT(arc_released(db->db_buf));
1459			arc_buf_thaw(db->db_buf);
1460		}
1461	}
1462}
1463
1464dbuf_dirty_record_t *
1465dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1466{
1467	dnode_t *dn;
1468	objset_t *os;
1469	dbuf_dirty_record_t **drp, *dr;
1470	int drop_struct_lock = FALSE;
1471	boolean_t do_free_accounting = B_FALSE;
1472	int txgoff = tx->tx_txg & TXG_MASK;
1473
1474	ASSERT(tx->tx_txg != 0);
1475	ASSERT(!refcount_is_zero(&db->db_holds));
1476	DMU_TX_DIRTY_BUF(tx, db);
1477
1478	DB_DNODE_ENTER(db);
1479	dn = DB_DNODE(db);
1480	/*
1481	 * Shouldn't dirty a regular buffer in syncing context.  Private
1482	 * objects may be dirtied in syncing context, but only if they
1483	 * were already pre-dirtied in open context.
1484	 */
1485	ASSERT(!dmu_tx_is_syncing(tx) ||
1486	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1487	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1488	    dn->dn_objset->os_dsl_dataset == NULL);
1489	/*
1490	 * We make this assert for private objects as well, but after we
1491	 * check if we're already dirty.  They are allowed to re-dirty
1492	 * in syncing context.
1493	 */
1494	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1495	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1496	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1497
1498	mutex_enter(&db->db_mtx);
1499	/*
1500	 * XXX make this true for indirects too?  The problem is that
1501	 * transactions created with dmu_tx_create_assigned() from
1502	 * syncing context don't bother holding ahead.
1503	 */
1504	ASSERT(db->db_level != 0 ||
1505	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1506	    db->db_state == DB_NOFILL);
1507
1508	mutex_enter(&dn->dn_mtx);
1509	/*
1510	 * Don't set dirtyctx to SYNC if we're just modifying this as we
1511	 * initialize the objset.
1512	 */
1513	if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1514	    !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1515		dn->dn_dirtyctx =
1516		    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1517		ASSERT(dn->dn_dirtyctx_firstset == NULL);
1518		dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1519	}
1520	mutex_exit(&dn->dn_mtx);
1521
1522	if (db->db_blkid == DMU_SPILL_BLKID)
1523		dn->dn_have_spill = B_TRUE;
1524
1525	/*
1526	 * If this buffer is already dirty, we're done.
1527	 */
1528	drp = &db->db_last_dirty;
1529	ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1530	    db->db.db_object == DMU_META_DNODE_OBJECT);
1531	while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1532		drp = &dr->dr_next;
1533	if (dr && dr->dr_txg == tx->tx_txg) {
1534		DB_DNODE_EXIT(db);
1535
1536		dbuf_redirty(dr);
1537		mutex_exit(&db->db_mtx);
1538		return (dr);
1539	}
1540
1541	/*
1542	 * Only valid if not already dirty.
1543	 */
1544	ASSERT(dn->dn_object == 0 ||
1545	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1546	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1547
1548	ASSERT3U(dn->dn_nlevels, >, db->db_level);
1549	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1550	    dn->dn_phys->dn_nlevels > db->db_level ||
1551	    dn->dn_next_nlevels[txgoff] > db->db_level ||
1552	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1553	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1554
1555	/*
1556	 * We should only be dirtying in syncing context if it's the
1557	 * mos or we're initializing the os or it's a special object.
1558	 * However, we are allowed to dirty in syncing context provided
1559	 * we already dirtied it in open context.  Hence we must make
1560	 * this assertion only if we're not already dirty.
1561	 */
1562	os = dn->dn_objset;
1563	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1564	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1565	ASSERT(db->db.db_size != 0);
1566
1567	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1568
1569	if (db->db_blkid != DMU_BONUS_BLKID) {
1570		/*
1571		 * Update the accounting.
1572		 * Note: we delay "free accounting" until after we drop
1573		 * the db_mtx.  This keeps us from grabbing other locks
1574		 * (and possibly deadlocking) in bp_get_dsize() while
1575		 * also holding the db_mtx.
1576		 */
1577		dnode_willuse_space(dn, db->db.db_size, tx);
1578		do_free_accounting = dbuf_block_freeable(db);
1579	}
1580
1581	/*
1582	 * If this buffer is dirty in an old transaction group we need
1583	 * to make a copy of it so that the changes we make in this
1584	 * transaction group won't leak out when we sync the older txg.
1585	 */
1586	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1587	if (db->db_level == 0) {
1588		void *data_old = db->db_buf;
1589
1590		if (db->db_state != DB_NOFILL) {
1591			if (db->db_blkid == DMU_BONUS_BLKID) {
1592				dbuf_fix_old_data(db, tx->tx_txg);
1593				data_old = db->db.db_data;
1594			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1595				/*
1596				 * Release the data buffer from the cache so
1597				 * that we can modify it without impacting
1598				 * possible other users of this cached data
1599				 * block.  Note that indirect blocks and
1600				 * private objects are not released until the
1601				 * syncing state (since they are only modified
1602				 * then).
1603				 */
1604				arc_release(db->db_buf, db);
1605				dbuf_fix_old_data(db, tx->tx_txg);
1606				data_old = db->db_buf;
1607			}
1608			ASSERT(data_old != NULL);
1609		}
1610		dr->dt.dl.dr_data = data_old;
1611	} else {
1612		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1613		list_create(&dr->dt.di.dr_children,
1614		    sizeof (dbuf_dirty_record_t),
1615		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
1616	}
1617	if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1618		dr->dr_accounted = db->db.db_size;
1619	dr->dr_dbuf = db;
1620	dr->dr_txg = tx->tx_txg;
1621	dr->dr_next = *drp;
1622	*drp = dr;
1623
1624	/*
1625	 * We could have been freed_in_flight between the dbuf_noread
1626	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
1627	 * happened after the free.
1628	 */
1629	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1630	    db->db_blkid != DMU_SPILL_BLKID) {
1631		mutex_enter(&dn->dn_mtx);
1632		if (dn->dn_free_ranges[txgoff] != NULL) {
1633			range_tree_clear(dn->dn_free_ranges[txgoff],
1634			    db->db_blkid, 1);
1635		}
1636		mutex_exit(&dn->dn_mtx);
1637		db->db_freed_in_flight = FALSE;
1638	}
1639
1640	/*
1641	 * This buffer is now part of this txg
1642	 */
1643	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1644	db->db_dirtycnt += 1;
1645	ASSERT3U(db->db_dirtycnt, <=, 3);
1646
1647	mutex_exit(&db->db_mtx);
1648
1649	if (db->db_blkid == DMU_BONUS_BLKID ||
1650	    db->db_blkid == DMU_SPILL_BLKID) {
1651		mutex_enter(&dn->dn_mtx);
1652		ASSERT(!list_link_active(&dr->dr_dirty_node));
1653		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1654		mutex_exit(&dn->dn_mtx);
1655		dnode_setdirty(dn, tx);
1656		DB_DNODE_EXIT(db);
1657		return (dr);
1658	} else if (do_free_accounting) {
1659		blkptr_t *bp = db->db_blkptr;
1660		int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1661		    bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1662		/*
1663		 * This is only a guess -- if the dbuf is dirty
1664		 * in a previous txg, we don't know how much
1665		 * space it will use on disk yet.  We should
1666		 * really have the struct_rwlock to access
1667		 * db_blkptr, but since this is just a guess,
1668		 * it's OK if we get an odd answer.
1669		 */
1670		ddt_prefetch(os->os_spa, bp);
1671		dnode_willuse_space(dn, -willfree, tx);
1672	}
1673
1674	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1675		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1676		drop_struct_lock = TRUE;
1677	}
1678
1679	if (db->db_level == 0) {
1680		dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1681		ASSERT(dn->dn_maxblkid >= db->db_blkid);
1682	}
1683
1684	if (db->db_level+1 < dn->dn_nlevels) {
1685		dmu_buf_impl_t *parent = db->db_parent;
1686		dbuf_dirty_record_t *di;
1687		int parent_held = FALSE;
1688
1689		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1690			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1691
1692			parent = dbuf_hold_level(dn, db->db_level+1,
1693			    db->db_blkid >> epbs, FTAG);
1694			ASSERT(parent != NULL);
1695			parent_held = TRUE;
1696		}
1697		if (drop_struct_lock)
1698			rw_exit(&dn->dn_struct_rwlock);
1699		ASSERT3U(db->db_level+1, ==, parent->db_level);
1700		di = dbuf_dirty(parent, tx);
1701		if (parent_held)
1702			dbuf_rele(parent, FTAG);
1703
1704		mutex_enter(&db->db_mtx);
1705		/*
1706		 * Since we've dropped the mutex, it's possible that
1707		 * dbuf_undirty() might have changed this out from under us.
1708		 */
1709		if (db->db_last_dirty == dr ||
1710		    dn->dn_object == DMU_META_DNODE_OBJECT) {
1711			mutex_enter(&di->dt.di.dr_mtx);
1712			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1713			ASSERT(!list_link_active(&dr->dr_dirty_node));
1714			list_insert_tail(&di->dt.di.dr_children, dr);
1715			mutex_exit(&di->dt.di.dr_mtx);
1716			dr->dr_parent = di;
1717		}
1718		mutex_exit(&db->db_mtx);
1719	} else {
1720		ASSERT(db->db_level+1 == dn->dn_nlevels);
1721		ASSERT(db->db_blkid < dn->dn_nblkptr);
1722		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1723		mutex_enter(&dn->dn_mtx);
1724		ASSERT(!list_link_active(&dr->dr_dirty_node));
1725		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1726		mutex_exit(&dn->dn_mtx);
1727		if (drop_struct_lock)
1728			rw_exit(&dn->dn_struct_rwlock);
1729	}
1730
1731	dnode_setdirty(dn, tx);
1732	DB_DNODE_EXIT(db);
1733	return (dr);
1734}
1735
1736/*
1737 * Undirty a buffer in the transaction group referenced by the given
1738 * transaction.  Return whether this evicted the dbuf.
1739 */
1740static boolean_t
1741dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1742{
1743	dnode_t *dn;
1744	uint64_t txg = tx->tx_txg;
1745	dbuf_dirty_record_t *dr, **drp;
1746
1747	ASSERT(txg != 0);
1748
1749	/*
1750	 * Due to our use of dn_nlevels below, this can only be called
1751	 * in open context, unless we are operating on the MOS.
1752	 * From syncing context, dn_nlevels may be different from the
1753	 * dn_nlevels used when dbuf was dirtied.
1754	 */
1755	ASSERT(db->db_objset ==
1756	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1757	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1758	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1759	ASSERT0(db->db_level);
1760	ASSERT(MUTEX_HELD(&db->db_mtx));
1761
1762	/*
1763	 * If this buffer is not dirty, we're done.
1764	 */
1765	for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1766		if (dr->dr_txg <= txg)
1767			break;
1768	if (dr == NULL || dr->dr_txg < txg)
1769		return (B_FALSE);
1770	ASSERT(dr->dr_txg == txg);
1771	ASSERT(dr->dr_dbuf == db);
1772
1773	DB_DNODE_ENTER(db);
1774	dn = DB_DNODE(db);
1775
1776	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1777
1778	ASSERT(db->db.db_size != 0);
1779
1780	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1781	    dr->dr_accounted, txg);
1782
1783	*drp = dr->dr_next;
1784
1785	/*
1786	 * Note that there are three places in dbuf_dirty()
1787	 * where this dirty record may be put on a list.
1788	 * Make sure to do a list_remove corresponding to
1789	 * every one of those list_insert calls.
1790	 */
1791	if (dr->dr_parent) {
1792		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1793		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1794		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1795	} else if (db->db_blkid == DMU_SPILL_BLKID ||
1796	    db->db_level + 1 == dn->dn_nlevels) {
1797		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1798		mutex_enter(&dn->dn_mtx);
1799		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1800		mutex_exit(&dn->dn_mtx);
1801	}
1802	DB_DNODE_EXIT(db);
1803
1804	if (db->db_state != DB_NOFILL) {
1805		dbuf_unoverride(dr);
1806
1807		ASSERT(db->db_buf != NULL);
1808		ASSERT(dr->dt.dl.dr_data != NULL);
1809		if (dr->dt.dl.dr_data != db->db_buf)
1810			arc_buf_destroy(dr->dt.dl.dr_data, db);
1811	}
1812
1813	kmem_free(dr, sizeof (dbuf_dirty_record_t));
1814
1815	ASSERT(db->db_dirtycnt > 0);
1816	db->db_dirtycnt -= 1;
1817
1818	if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1819		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1820		dbuf_destroy(db);
1821		return (B_TRUE);
1822	}
1823
1824	return (B_FALSE);
1825}
1826
1827void
1828dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1829{
1830	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1831	int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1832
1833	ASSERT(tx->tx_txg != 0);
1834	ASSERT(!refcount_is_zero(&db->db_holds));
1835
1836	/*
1837	 * Quick check for dirtyness.  For already dirty blocks, this
1838	 * reduces runtime of this function by >90%, and overall performance
1839	 * by 50% for some workloads (e.g. file deletion with indirect blocks
1840	 * cached).
1841	 */
1842	mutex_enter(&db->db_mtx);
1843	dbuf_dirty_record_t *dr;
1844	for (dr = db->db_last_dirty;
1845	    dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1846		/*
1847		 * It's possible that it is already dirty but not cached,
1848		 * because there are some calls to dbuf_dirty() that don't
1849		 * go through dmu_buf_will_dirty().
1850		 */
1851		if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1852			/* This dbuf is already dirty and cached. */
1853			dbuf_redirty(dr);
1854			mutex_exit(&db->db_mtx);
1855			return;
1856		}
1857	}
1858	mutex_exit(&db->db_mtx);
1859
1860	DB_DNODE_ENTER(db);
1861	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1862		rf |= DB_RF_HAVESTRUCT;
1863	DB_DNODE_EXIT(db);
1864	(void) dbuf_read(db, NULL, rf);
1865	(void) dbuf_dirty(db, tx);
1866}
1867
1868void
1869dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1870{
1871	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1872
1873	db->db_state = DB_NOFILL;
1874
1875	dmu_buf_will_fill(db_fake, tx);
1876}
1877
1878void
1879dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1880{
1881	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1882
1883	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1884	ASSERT(tx->tx_txg != 0);
1885	ASSERT(db->db_level == 0);
1886	ASSERT(!refcount_is_zero(&db->db_holds));
1887
1888	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1889	    dmu_tx_private_ok(tx));
1890
1891	dbuf_noread(db);
1892	(void) dbuf_dirty(db, tx);
1893}
1894
1895#pragma weak dmu_buf_fill_done = dbuf_fill_done
1896/* ARGSUSED */
1897void
1898dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1899{
1900	mutex_enter(&db->db_mtx);
1901	DBUF_VERIFY(db);
1902
1903	if (db->db_state == DB_FILL) {
1904		if (db->db_level == 0 && db->db_freed_in_flight) {
1905			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1906			/* we were freed while filling */
1907			/* XXX dbuf_undirty? */
1908			bzero(db->db.db_data, db->db.db_size);
1909			db->db_freed_in_flight = FALSE;
1910		}
1911		db->db_state = DB_CACHED;
1912		cv_broadcast(&db->db_changed);
1913	}
1914	mutex_exit(&db->db_mtx);
1915}
1916
1917void
1918dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1919    bp_embedded_type_t etype, enum zio_compress comp,
1920    int uncompressed_size, int compressed_size, int byteorder,
1921    dmu_tx_t *tx)
1922{
1923	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1924	struct dirty_leaf *dl;
1925	dmu_object_type_t type;
1926
1927	if (etype == BP_EMBEDDED_TYPE_DATA) {
1928		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1929		    SPA_FEATURE_EMBEDDED_DATA));
1930	}
1931
1932	DB_DNODE_ENTER(db);
1933	type = DB_DNODE(db)->dn_type;
1934	DB_DNODE_EXIT(db);
1935
1936	ASSERT0(db->db_level);
1937	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1938
1939	dmu_buf_will_not_fill(dbuf, tx);
1940
1941	ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1942	dl = &db->db_last_dirty->dt.dl;
1943	encode_embedded_bp_compressed(&dl->dr_overridden_by,
1944	    data, comp, uncompressed_size, compressed_size);
1945	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1946	BP_SET_TYPE(&dl->dr_overridden_by, type);
1947	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1948	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1949
1950	dl->dr_override_state = DR_OVERRIDDEN;
1951	dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1952}
1953
1954/*
1955 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1956 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1957 */
1958void
1959dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1960{
1961	ASSERT(!refcount_is_zero(&db->db_holds));
1962	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1963	ASSERT(db->db_level == 0);
1964	ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1965	ASSERT(buf != NULL);
1966	ASSERT(arc_buf_size(buf) == db->db.db_size);
1967	ASSERT(tx->tx_txg != 0);
1968
1969	arc_return_buf(buf, db);
1970	ASSERT(arc_released(buf));
1971
1972	mutex_enter(&db->db_mtx);
1973
1974	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1975		cv_wait(&db->db_changed, &db->db_mtx);
1976
1977	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1978
1979	if (db->db_state == DB_CACHED &&
1980	    refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1981		mutex_exit(&db->db_mtx);
1982		(void) dbuf_dirty(db, tx);
1983		bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1984		arc_buf_destroy(buf, db);
1985		xuio_stat_wbuf_copied();
1986		return;
1987	}
1988
1989	xuio_stat_wbuf_nocopy();
1990	if (db->db_state == DB_CACHED) {
1991		dbuf_dirty_record_t *dr = db->db_last_dirty;
1992
1993		ASSERT(db->db_buf != NULL);
1994		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1995			ASSERT(dr->dt.dl.dr_data == db->db_buf);
1996			if (!arc_released(db->db_buf)) {
1997				ASSERT(dr->dt.dl.dr_override_state ==
1998				    DR_OVERRIDDEN);
1999				arc_release(db->db_buf, db);
2000			}
2001			dr->dt.dl.dr_data = buf;
2002			arc_buf_destroy(db->db_buf, db);
2003		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2004			arc_release(db->db_buf, db);
2005			arc_buf_destroy(db->db_buf, db);
2006		}
2007		db->db_buf = NULL;
2008	}
2009	ASSERT(db->db_buf == NULL);
2010	dbuf_set_data(db, buf);
2011	db->db_state = DB_FILL;
2012	mutex_exit(&db->db_mtx);
2013	(void) dbuf_dirty(db, tx);
2014	dmu_buf_fill_done(&db->db, tx);
2015}
2016
2017void
2018dbuf_destroy(dmu_buf_impl_t *db)
2019{
2020	dnode_t *dn;
2021	dmu_buf_impl_t *parent = db->db_parent;
2022	dmu_buf_impl_t *dndb;
2023
2024	ASSERT(MUTEX_HELD(&db->db_mtx));
2025	ASSERT(refcount_is_zero(&db->db_holds));
2026
2027	if (db->db_buf != NULL) {
2028		arc_buf_destroy(db->db_buf, db);
2029		db->db_buf = NULL;
2030	}
2031
2032	if (db->db_blkid == DMU_BONUS_BLKID) {
2033		ASSERT(db->db.db_data != NULL);
2034		zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2035		arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2036		db->db_state = DB_UNCACHED;
2037	}
2038
2039	dbuf_clear_data(db);
2040
2041	if (multilist_link_active(&db->db_cache_link)) {
2042		multilist_remove(&dbuf_cache, db);
2043		(void) refcount_remove_many(&dbuf_cache_size,
2044		    db->db.db_size, db);
2045	}
2046
2047	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2048	ASSERT(db->db_data_pending == NULL);
2049
2050	db->db_state = DB_EVICTING;
2051	db->db_blkptr = NULL;
2052
2053	/*
2054	 * Now that db_state is DB_EVICTING, nobody else can find this via
2055	 * the hash table.  We can now drop db_mtx, which allows us to
2056	 * acquire the dn_dbufs_mtx.
2057	 */
2058	mutex_exit(&db->db_mtx);
2059
2060	DB_DNODE_ENTER(db);
2061	dn = DB_DNODE(db);
2062	dndb = dn->dn_dbuf;
2063	if (db->db_blkid != DMU_BONUS_BLKID) {
2064		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2065		if (needlock)
2066			mutex_enter(&dn->dn_dbufs_mtx);
2067		avl_remove(&dn->dn_dbufs, db);
2068		atomic_dec_32(&dn->dn_dbufs_count);
2069		membar_producer();
2070		DB_DNODE_EXIT(db);
2071		if (needlock)
2072			mutex_exit(&dn->dn_dbufs_mtx);
2073		/*
2074		 * Decrementing the dbuf count means that the hold corresponding
2075		 * to the removed dbuf is no longer discounted in dnode_move(),
2076		 * so the dnode cannot be moved until after we release the hold.
2077		 * The membar_producer() ensures visibility of the decremented
2078		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2079		 * release any lock.
2080		 */
2081		dnode_rele(dn, db);
2082		db->db_dnode_handle = NULL;
2083
2084		dbuf_hash_remove(db);
2085	} else {
2086		DB_DNODE_EXIT(db);
2087	}
2088
2089	ASSERT(refcount_is_zero(&db->db_holds));
2090
2091	db->db_parent = NULL;
2092
2093	ASSERT(db->db_buf == NULL);
2094	ASSERT(db->db.db_data == NULL);
2095	ASSERT(db->db_hash_next == NULL);
2096	ASSERT(db->db_blkptr == NULL);
2097	ASSERT(db->db_data_pending == NULL);
2098	ASSERT(!multilist_link_active(&db->db_cache_link));
2099
2100	kmem_cache_free(dbuf_kmem_cache, db);
2101	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2102
2103	/*
2104	 * If this dbuf is referenced from an indirect dbuf,
2105	 * decrement the ref count on the indirect dbuf.
2106	 */
2107	if (parent && parent != dndb)
2108		dbuf_rele(parent, db);
2109}
2110
2111/*
2112 * Note: While bpp will always be updated if the function returns success,
2113 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2114 * this happens when the dnode is the meta-dnode, or a userused or groupused
2115 * object.
2116 */
2117static int
2118dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2119    dmu_buf_impl_t **parentp, blkptr_t **bpp)
2120{
2121	int nlevels, epbs;
2122
2123	*parentp = NULL;
2124	*bpp = NULL;
2125
2126	ASSERT(blkid != DMU_BONUS_BLKID);
2127
2128	if (blkid == DMU_SPILL_BLKID) {
2129		mutex_enter(&dn->dn_mtx);
2130		if (dn->dn_have_spill &&
2131		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2132			*bpp = &dn->dn_phys->dn_spill;
2133		else
2134			*bpp = NULL;
2135		dbuf_add_ref(dn->dn_dbuf, NULL);
2136		*parentp = dn->dn_dbuf;
2137		mutex_exit(&dn->dn_mtx);
2138		return (0);
2139	}
2140
2141	if (dn->dn_phys->dn_nlevels == 0)
2142		nlevels = 1;
2143	else
2144		nlevels = dn->dn_phys->dn_nlevels;
2145
2146	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2147
2148	ASSERT3U(level * epbs, <, 64);
2149	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2150	if (level >= nlevels ||
2151	    (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2152		/* the buffer has no parent yet */
2153		return (SET_ERROR(ENOENT));
2154	} else if (level < nlevels-1) {
2155		/* this block is referenced from an indirect block */
2156		int err = dbuf_hold_impl(dn, level+1,
2157		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2158		if (err)
2159			return (err);
2160		err = dbuf_read(*parentp, NULL,
2161		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2162		if (err) {
2163			dbuf_rele(*parentp, NULL);
2164			*parentp = NULL;
2165			return (err);
2166		}
2167		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2168		    (blkid & ((1ULL << epbs) - 1));
2169		return (0);
2170	} else {
2171		/* the block is referenced from the dnode */
2172		ASSERT3U(level, ==, nlevels-1);
2173		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2174		    blkid < dn->dn_phys->dn_nblkptr);
2175		if (dn->dn_dbuf) {
2176			dbuf_add_ref(dn->dn_dbuf, NULL);
2177			*parentp = dn->dn_dbuf;
2178		}
2179		*bpp = &dn->dn_phys->dn_blkptr[blkid];
2180		return (0);
2181	}
2182}
2183
2184static dmu_buf_impl_t *
2185dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2186    dmu_buf_impl_t *parent, blkptr_t *blkptr)
2187{
2188	objset_t *os = dn->dn_objset;
2189	dmu_buf_impl_t *db, *odb;
2190
2191	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2192	ASSERT(dn->dn_type != DMU_OT_NONE);
2193
2194	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2195
2196	db->db_objset = os;
2197	db->db.db_object = dn->dn_object;
2198	db->db_level = level;
2199	db->db_blkid = blkid;
2200	db->db_last_dirty = NULL;
2201	db->db_dirtycnt = 0;
2202	db->db_dnode_handle = dn->dn_handle;
2203	db->db_parent = parent;
2204	db->db_blkptr = blkptr;
2205
2206	db->db_user = NULL;
2207	db->db_user_immediate_evict = FALSE;
2208	db->db_freed_in_flight = FALSE;
2209	db->db_pending_evict = FALSE;
2210
2211	if (blkid == DMU_BONUS_BLKID) {
2212		ASSERT3P(parent, ==, dn->dn_dbuf);
2213		db->db.db_size = DN_MAX_BONUSLEN -
2214		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2215		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2216		db->db.db_offset = DMU_BONUS_BLKID;
2217		db->db_state = DB_UNCACHED;
2218		/* the bonus dbuf is not placed in the hash table */
2219		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2220		return (db);
2221	} else if (blkid == DMU_SPILL_BLKID) {
2222		db->db.db_size = (blkptr != NULL) ?
2223		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2224		db->db.db_offset = 0;
2225	} else {
2226		int blocksize =
2227		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2228		db->db.db_size = blocksize;
2229		db->db.db_offset = db->db_blkid * blocksize;
2230	}
2231
2232	/*
2233	 * Hold the dn_dbufs_mtx while we get the new dbuf
2234	 * in the hash table *and* added to the dbufs list.
2235	 * This prevents a possible deadlock with someone
2236	 * trying to look up this dbuf before its added to the
2237	 * dn_dbufs list.
2238	 */
2239	mutex_enter(&dn->dn_dbufs_mtx);
2240	db->db_state = DB_EVICTING;
2241	if ((odb = dbuf_hash_insert(db)) != NULL) {
2242		/* someone else inserted it first */
2243		kmem_cache_free(dbuf_kmem_cache, db);
2244		mutex_exit(&dn->dn_dbufs_mtx);
2245		return (odb);
2246	}
2247	avl_add(&dn->dn_dbufs, db);
2248	if (db->db_level == 0 && db->db_blkid >=
2249	    dn->dn_unlisted_l0_blkid)
2250		dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
2251	db->db_state = DB_UNCACHED;
2252	mutex_exit(&dn->dn_dbufs_mtx);
2253	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2254
2255	if (parent && parent != dn->dn_dbuf)
2256		dbuf_add_ref(parent, db);
2257
2258	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2259	    refcount_count(&dn->dn_holds) > 0);
2260	(void) refcount_add(&dn->dn_holds, db);
2261	atomic_inc_32(&dn->dn_dbufs_count);
2262
2263	dprintf_dbuf(db, "db=%p\n", db);
2264
2265	return (db);
2266}
2267
2268typedef struct dbuf_prefetch_arg {
2269	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
2270	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2271	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2272	int dpa_curlevel; /* The current level that we're reading */
2273	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2274	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2275	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2276	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2277} dbuf_prefetch_arg_t;
2278
2279/*
2280 * Actually issue the prefetch read for the block given.
2281 */
2282static void
2283dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2284{
2285	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2286		return;
2287
2288	arc_flags_t aflags =
2289	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2290
2291	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2292	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2293	ASSERT(dpa->dpa_zio != NULL);
2294	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2295	    dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2296	    &aflags, &dpa->dpa_zb);
2297}
2298
2299/*
2300 * Called when an indirect block above our prefetch target is read in.  This
2301 * will either read in the next indirect block down the tree or issue the actual
2302 * prefetch if the next block down is our target.
2303 */
2304static void
2305dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2306{
2307	dbuf_prefetch_arg_t *dpa = private;
2308
2309	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2310	ASSERT3S(dpa->dpa_curlevel, >, 0);
2311
2312	/*
2313	 * The dpa_dnode is only valid if we are called with a NULL
2314	 * zio. This indicates that the arc_read() returned without
2315	 * first calling zio_read() to issue a physical read. Once
2316	 * a physical read is made the dpa_dnode must be invalidated
2317	 * as the locks guarding it may have been dropped. If the
2318	 * dpa_dnode is still valid, then we want to add it to the dbuf
2319	 * cache. To do so, we must hold the dbuf associated with the block
2320	 * we just prefetched, read its contents so that we associate it
2321	 * with an arc_buf_t, and then release it.
2322	 */
2323	if (zio != NULL) {
2324		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2325		if (zio->io_flags & ZIO_FLAG_RAW) {
2326			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2327		} else {
2328			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2329		}
2330		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2331
2332		dpa->dpa_dnode = NULL;
2333	} else if (dpa->dpa_dnode != NULL) {
2334		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2335		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
2336		    dpa->dpa_zb.zb_level));
2337		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2338		    dpa->dpa_curlevel, curblkid, FTAG);
2339		(void) dbuf_read(db, NULL,
2340		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2341		dbuf_rele(db, FTAG);
2342	}
2343
2344	dpa->dpa_curlevel--;
2345
2346	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2347	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2348	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2349	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2350	if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2351		kmem_free(dpa, sizeof (*dpa));
2352	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2353		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2354		dbuf_issue_final_prefetch(dpa, bp);
2355		kmem_free(dpa, sizeof (*dpa));
2356	} else {
2357		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2358		zbookmark_phys_t zb;
2359
2360		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2361
2362		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2363		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2364
2365		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2366		    bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2367		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2368		    &iter_aflags, &zb);
2369	}
2370
2371	arc_buf_destroy(abuf, private);
2372}
2373
2374/*
2375 * Issue prefetch reads for the given block on the given level.  If the indirect
2376 * blocks above that block are not in memory, we will read them in
2377 * asynchronously.  As a result, this call never blocks waiting for a read to
2378 * complete.
2379 */
2380void
2381dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2382    arc_flags_t aflags)
2383{
2384	blkptr_t bp;
2385	int epbs, nlevels, curlevel;
2386	uint64_t curblkid;
2387
2388	ASSERT(blkid != DMU_BONUS_BLKID);
2389	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2390
2391	if (blkid > dn->dn_maxblkid)
2392		return;
2393
2394	if (dnode_block_freed(dn, blkid))
2395		return;
2396
2397	/*
2398	 * This dnode hasn't been written to disk yet, so there's nothing to
2399	 * prefetch.
2400	 */
2401	nlevels = dn->dn_phys->dn_nlevels;
2402	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2403		return;
2404
2405	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2406	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2407		return;
2408
2409	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2410	    level, blkid);
2411	if (db != NULL) {
2412		mutex_exit(&db->db_mtx);
2413		/*
2414		 * This dbuf already exists.  It is either CACHED, or
2415		 * (we assume) about to be read or filled.
2416		 */
2417		return;
2418	}
2419
2420	/*
2421	 * Find the closest ancestor (indirect block) of the target block
2422	 * that is present in the cache.  In this indirect block, we will
2423	 * find the bp that is at curlevel, curblkid.
2424	 */
2425	curlevel = level;
2426	curblkid = blkid;
2427	while (curlevel < nlevels - 1) {
2428		int parent_level = curlevel + 1;
2429		uint64_t parent_blkid = curblkid >> epbs;
2430		dmu_buf_impl_t *db;
2431
2432		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2433		    FALSE, TRUE, FTAG, &db) == 0) {
2434			blkptr_t *bpp = db->db_buf->b_data;
2435			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2436			dbuf_rele(db, FTAG);
2437			break;
2438		}
2439
2440		curlevel = parent_level;
2441		curblkid = parent_blkid;
2442	}
2443
2444	if (curlevel == nlevels - 1) {
2445		/* No cached indirect blocks found. */
2446		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2447		bp = dn->dn_phys->dn_blkptr[curblkid];
2448	}
2449	if (BP_IS_HOLE(&bp))
2450		return;
2451
2452	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2453
2454	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2455	    ZIO_FLAG_CANFAIL);
2456
2457	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2458	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2459	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2460	    dn->dn_object, level, blkid);
2461	dpa->dpa_curlevel = curlevel;
2462	dpa->dpa_prio = prio;
2463	dpa->dpa_aflags = aflags;
2464	dpa->dpa_spa = dn->dn_objset->os_spa;
2465	dpa->dpa_dnode = dn;
2466	dpa->dpa_epbs = epbs;
2467	dpa->dpa_zio = pio;
2468
2469	/*
2470	 * If we have the indirect just above us, no need to do the asynchronous
2471	 * prefetch chain; we'll just run the last step ourselves.  If we're at
2472	 * a higher level, though, we want to issue the prefetches for all the
2473	 * indirect blocks asynchronously, so we can go on with whatever we were
2474	 * doing.
2475	 */
2476	if (curlevel == level) {
2477		ASSERT3U(curblkid, ==, blkid);
2478		dbuf_issue_final_prefetch(dpa, &bp);
2479		kmem_free(dpa, sizeof (*dpa));
2480	} else {
2481		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2482		zbookmark_phys_t zb;
2483
2484		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2485		    dn->dn_object, curlevel, curblkid);
2486		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2487		    &bp, dbuf_prefetch_indirect_done, dpa, prio,
2488		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2489		    &iter_aflags, &zb);
2490	}
2491	/*
2492	 * We use pio here instead of dpa_zio since it's possible that
2493	 * dpa may have already been freed.
2494	 */
2495	zio_nowait(pio);
2496}
2497
2498/*
2499 * Returns with db_holds incremented, and db_mtx not held.
2500 * Note: dn_struct_rwlock must be held.
2501 */
2502int
2503dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2504    boolean_t fail_sparse, boolean_t fail_uncached,
2505    void *tag, dmu_buf_impl_t **dbp)
2506{
2507	dmu_buf_impl_t *db, *parent = NULL;
2508
2509	ASSERT(blkid != DMU_BONUS_BLKID);
2510	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2511	ASSERT3U(dn->dn_nlevels, >, level);
2512
2513	*dbp = NULL;
2514top:
2515	/* dbuf_find() returns with db_mtx held */
2516	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2517
2518	if (db == NULL) {
2519		blkptr_t *bp = NULL;
2520		int err;
2521
2522		if (fail_uncached)
2523			return (SET_ERROR(ENOENT));
2524
2525		ASSERT3P(parent, ==, NULL);
2526		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2527		if (fail_sparse) {
2528			if (err == 0 && bp && BP_IS_HOLE(bp))
2529				err = SET_ERROR(ENOENT);
2530			if (err) {
2531				if (parent)
2532					dbuf_rele(parent, NULL);
2533				return (err);
2534			}
2535		}
2536		if (err && err != ENOENT)
2537			return (err);
2538		db = dbuf_create(dn, level, blkid, parent, bp);
2539	}
2540
2541	if (fail_uncached && db->db_state != DB_CACHED) {
2542		mutex_exit(&db->db_mtx);
2543		return (SET_ERROR(ENOENT));
2544	}
2545
2546	if (db->db_buf != NULL)
2547		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2548
2549	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2550
2551	/*
2552	 * If this buffer is currently syncing out, and we are are
2553	 * still referencing it from db_data, we need to make a copy
2554	 * of it in case we decide we want to dirty it again in this txg.
2555	 */
2556	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2557	    dn->dn_object != DMU_META_DNODE_OBJECT &&
2558	    db->db_state == DB_CACHED && db->db_data_pending) {
2559		dbuf_dirty_record_t *dr = db->db_data_pending;
2560
2561		if (dr->dt.dl.dr_data == db->db_buf) {
2562			arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2563
2564			dbuf_set_data(db,
2565			    arc_alloc_buf(dn->dn_objset->os_spa,
2566			    db->db.db_size, db, type));
2567			bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2568			    db->db.db_size);
2569		}
2570	}
2571
2572	if (multilist_link_active(&db->db_cache_link)) {
2573		ASSERT(refcount_is_zero(&db->db_holds));
2574		multilist_remove(&dbuf_cache, db);
2575		(void) refcount_remove_many(&dbuf_cache_size,
2576		    db->db.db_size, db);
2577	}
2578	(void) refcount_add(&db->db_holds, tag);
2579	DBUF_VERIFY(db);
2580	mutex_exit(&db->db_mtx);
2581
2582	/* NOTE: we can't rele the parent until after we drop the db_mtx */
2583	if (parent)
2584		dbuf_rele(parent, NULL);
2585
2586	ASSERT3P(DB_DNODE(db), ==, dn);
2587	ASSERT3U(db->db_blkid, ==, blkid);
2588	ASSERT3U(db->db_level, ==, level);
2589	*dbp = db;
2590
2591	return (0);
2592}
2593
2594dmu_buf_impl_t *
2595dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2596{
2597	return (dbuf_hold_level(dn, 0, blkid, tag));
2598}
2599
2600dmu_buf_impl_t *
2601dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2602{
2603	dmu_buf_impl_t *db;
2604	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2605	return (err ? NULL : db);
2606}
2607
2608void
2609dbuf_create_bonus(dnode_t *dn)
2610{
2611	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2612
2613	ASSERT(dn->dn_bonus == NULL);
2614	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2615}
2616
2617int
2618dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2619{
2620	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2621	dnode_t *dn;
2622
2623	if (db->db_blkid != DMU_SPILL_BLKID)
2624		return (SET_ERROR(ENOTSUP));
2625	if (blksz == 0)
2626		blksz = SPA_MINBLOCKSIZE;
2627	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2628	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2629
2630	DB_DNODE_ENTER(db);
2631	dn = DB_DNODE(db);
2632	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2633	dbuf_new_size(db, blksz, tx);
2634	rw_exit(&dn->dn_struct_rwlock);
2635	DB_DNODE_EXIT(db);
2636
2637	return (0);
2638}
2639
2640void
2641dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2642{
2643	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2644}
2645
2646#pragma weak dmu_buf_add_ref = dbuf_add_ref
2647void
2648dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2649{
2650	int64_t holds = refcount_add(&db->db_holds, tag);
2651	ASSERT3S(holds, >, 1);
2652}
2653
2654#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2655boolean_t
2656dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2657    void *tag)
2658{
2659	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2660	dmu_buf_impl_t *found_db;
2661	boolean_t result = B_FALSE;
2662
2663	if (db->db_blkid == DMU_BONUS_BLKID)
2664		found_db = dbuf_find_bonus(os, obj);
2665	else
2666		found_db = dbuf_find(os, obj, 0, blkid);
2667
2668	if (found_db != NULL) {
2669		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2670			(void) refcount_add(&db->db_holds, tag);
2671			result = B_TRUE;
2672		}
2673		mutex_exit(&db->db_mtx);
2674	}
2675	return (result);
2676}
2677
2678/*
2679 * If you call dbuf_rele() you had better not be referencing the dnode handle
2680 * unless you have some other direct or indirect hold on the dnode. (An indirect
2681 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2682 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2683 * dnode's parent dbuf evicting its dnode handles.
2684 */
2685void
2686dbuf_rele(dmu_buf_impl_t *db, void *tag)
2687{
2688	mutex_enter(&db->db_mtx);
2689	dbuf_rele_and_unlock(db, tag);
2690}
2691
2692void
2693dmu_buf_rele(dmu_buf_t *db, void *tag)
2694{
2695	dbuf_rele((dmu_buf_impl_t *)db, tag);
2696}
2697
2698/*
2699 * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2700 * db_dirtycnt and db_holds to be updated atomically.
2701 */
2702void
2703dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2704{
2705	int64_t holds;
2706
2707	ASSERT(MUTEX_HELD(&db->db_mtx));
2708	DBUF_VERIFY(db);
2709
2710	/*
2711	 * Remove the reference to the dbuf before removing its hold on the
2712	 * dnode so we can guarantee in dnode_move() that a referenced bonus
2713	 * buffer has a corresponding dnode hold.
2714	 */
2715	holds = refcount_remove(&db->db_holds, tag);
2716	ASSERT(holds >= 0);
2717
2718	/*
2719	 * We can't freeze indirects if there is a possibility that they
2720	 * may be modified in the current syncing context.
2721	 */
2722	if (db->db_buf != NULL &&
2723	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2724		arc_buf_freeze(db->db_buf);
2725	}
2726
2727	if (holds == db->db_dirtycnt &&
2728	    db->db_level == 0 && db->db_user_immediate_evict)
2729		dbuf_evict_user(db);
2730
2731	if (holds == 0) {
2732		if (db->db_blkid == DMU_BONUS_BLKID) {
2733			dnode_t *dn;
2734			boolean_t evict_dbuf = db->db_pending_evict;
2735
2736			/*
2737			 * If the dnode moves here, we cannot cross this
2738			 * barrier until the move completes.
2739			 */
2740			DB_DNODE_ENTER(db);
2741
2742			dn = DB_DNODE(db);
2743			atomic_dec_32(&dn->dn_dbufs_count);
2744
2745			/*
2746			 * Decrementing the dbuf count means that the bonus
2747			 * buffer's dnode hold is no longer discounted in
2748			 * dnode_move(). The dnode cannot move until after
2749			 * the dnode_rele() below.
2750			 */
2751			DB_DNODE_EXIT(db);
2752
2753			/*
2754			 * Do not reference db after its lock is dropped.
2755			 * Another thread may evict it.
2756			 */
2757			mutex_exit(&db->db_mtx);
2758
2759			if (evict_dbuf)
2760				dnode_evict_bonus(dn);
2761
2762			dnode_rele(dn, db);
2763		} else if (db->db_buf == NULL) {
2764			/*
2765			 * This is a special case: we never associated this
2766			 * dbuf with any data allocated from the ARC.
2767			 */
2768			ASSERT(db->db_state == DB_UNCACHED ||
2769			    db->db_state == DB_NOFILL);
2770			dbuf_destroy(db);
2771		} else if (arc_released(db->db_buf)) {
2772			/*
2773			 * This dbuf has anonymous data associated with it.
2774			 */
2775			dbuf_destroy(db);
2776		} else {
2777			boolean_t do_arc_evict = B_FALSE;
2778			blkptr_t bp;
2779			spa_t *spa = dmu_objset_spa(db->db_objset);
2780
2781			if (!DBUF_IS_CACHEABLE(db) &&
2782			    db->db_blkptr != NULL &&
2783			    !BP_IS_HOLE(db->db_blkptr) &&
2784			    !BP_IS_EMBEDDED(db->db_blkptr)) {
2785				do_arc_evict = B_TRUE;
2786				bp = *db->db_blkptr;
2787			}
2788
2789			if (!DBUF_IS_CACHEABLE(db) ||
2790			    db->db_pending_evict) {
2791				dbuf_destroy(db);
2792			} else if (!multilist_link_active(&db->db_cache_link)) {
2793				multilist_insert(&dbuf_cache, db);
2794				(void) refcount_add_many(&dbuf_cache_size,
2795				    db->db.db_size, db);
2796				mutex_exit(&db->db_mtx);
2797
2798				dbuf_evict_notify();
2799			}
2800
2801			if (do_arc_evict)
2802				arc_freed(spa, &bp);
2803		}
2804	} else {
2805		mutex_exit(&db->db_mtx);
2806	}
2807
2808}
2809
2810#pragma weak dmu_buf_refcount = dbuf_refcount
2811uint64_t
2812dbuf_refcount(dmu_buf_impl_t *db)
2813{
2814	return (refcount_count(&db->db_holds));
2815}
2816
2817void *
2818dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2819    dmu_buf_user_t *new_user)
2820{
2821	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2822
2823	mutex_enter(&db->db_mtx);
2824	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2825	if (db->db_user == old_user)
2826		db->db_user = new_user;
2827	else
2828		old_user = db->db_user;
2829	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2830	mutex_exit(&db->db_mtx);
2831
2832	return (old_user);
2833}
2834
2835void *
2836dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2837{
2838	return (dmu_buf_replace_user(db_fake, NULL, user));
2839}
2840
2841void *
2842dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2843{
2844	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2845
2846	db->db_user_immediate_evict = TRUE;
2847	return (dmu_buf_set_user(db_fake, user));
2848}
2849
2850void *
2851dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2852{
2853	return (dmu_buf_replace_user(db_fake, user, NULL));
2854}
2855
2856void *
2857dmu_buf_get_user(dmu_buf_t *db_fake)
2858{
2859	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2860
2861	dbuf_verify_user(db, DBVU_NOT_EVICTING);
2862	return (db->db_user);
2863}
2864
2865void
2866dmu_buf_user_evict_wait()
2867{
2868	taskq_wait(dbu_evict_taskq);
2869}
2870
2871boolean_t
2872dmu_buf_freeable(dmu_buf_t *dbuf)
2873{
2874	boolean_t res = B_FALSE;
2875	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2876
2877	if (db->db_blkptr)
2878		res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2879		    db->db_blkptr, db->db_blkptr->blk_birth);
2880
2881	return (res);
2882}
2883
2884blkptr_t *
2885dmu_buf_get_blkptr(dmu_buf_t *db)
2886{
2887	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2888	return (dbi->db_blkptr);
2889}
2890
2891static void
2892dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2893{
2894	/* ASSERT(dmu_tx_is_syncing(tx) */
2895	ASSERT(MUTEX_HELD(&db->db_mtx));
2896
2897	if (db->db_blkptr != NULL)
2898		return;
2899
2900	if (db->db_blkid == DMU_SPILL_BLKID) {
2901		db->db_blkptr = &dn->dn_phys->dn_spill;
2902		BP_ZERO(db->db_blkptr);
2903		return;
2904	}
2905	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2906		/*
2907		 * This buffer was allocated at a time when there was
2908		 * no available blkptrs from the dnode, or it was
2909		 * inappropriate to hook it in (i.e., nlevels mis-match).
2910		 */
2911		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2912		ASSERT(db->db_parent == NULL);
2913		db->db_parent = dn->dn_dbuf;
2914		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2915		DBUF_VERIFY(db);
2916	} else {
2917		dmu_buf_impl_t *parent = db->db_parent;
2918		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2919
2920		ASSERT(dn->dn_phys->dn_nlevels > 1);
2921		if (parent == NULL) {
2922			mutex_exit(&db->db_mtx);
2923			rw_enter(&dn->dn_struct_rwlock, RW_READER);
2924			parent = dbuf_hold_level(dn, db->db_level + 1,
2925			    db->db_blkid >> epbs, db);
2926			rw_exit(&dn->dn_struct_rwlock);
2927			mutex_enter(&db->db_mtx);
2928			db->db_parent = parent;
2929		}
2930		db->db_blkptr = (blkptr_t *)parent->db.db_data +
2931		    (db->db_blkid & ((1ULL << epbs) - 1));
2932		DBUF_VERIFY(db);
2933	}
2934}
2935
2936static void
2937dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2938{
2939	dmu_buf_impl_t *db = dr->dr_dbuf;
2940	dnode_t *dn;
2941	zio_t *zio;
2942
2943	ASSERT(dmu_tx_is_syncing(tx));
2944
2945	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2946
2947	mutex_enter(&db->db_mtx);
2948
2949	ASSERT(db->db_level > 0);
2950	DBUF_VERIFY(db);
2951
2952	/* Read the block if it hasn't been read yet. */
2953	if (db->db_buf == NULL) {
2954		mutex_exit(&db->db_mtx);
2955		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2956		mutex_enter(&db->db_mtx);
2957	}
2958	ASSERT3U(db->db_state, ==, DB_CACHED);
2959	ASSERT(db->db_buf != NULL);
2960
2961	DB_DNODE_ENTER(db);
2962	dn = DB_DNODE(db);
2963	/* Indirect block size must match what the dnode thinks it is. */
2964	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2965	dbuf_check_blkptr(dn, db);
2966	DB_DNODE_EXIT(db);
2967
2968	/* Provide the pending dirty record to child dbufs */
2969	db->db_data_pending = dr;
2970
2971	mutex_exit(&db->db_mtx);
2972	dbuf_write(dr, db->db_buf, tx);
2973
2974	zio = dr->dr_zio;
2975	mutex_enter(&dr->dt.di.dr_mtx);
2976	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2977	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2978	mutex_exit(&dr->dt.di.dr_mtx);
2979	zio_nowait(zio);
2980}
2981
2982static void
2983dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2984{
2985	arc_buf_t **datap = &dr->dt.dl.dr_data;
2986	dmu_buf_impl_t *db = dr->dr_dbuf;
2987	dnode_t *dn;
2988	objset_t *os;
2989	uint64_t txg = tx->tx_txg;
2990
2991	ASSERT(dmu_tx_is_syncing(tx));
2992
2993	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2994
2995	mutex_enter(&db->db_mtx);
2996	/*
2997	 * To be synced, we must be dirtied.  But we
2998	 * might have been freed after the dirty.
2999	 */
3000	if (db->db_state == DB_UNCACHED) {
3001		/* This buffer has been freed since it was dirtied */
3002		ASSERT(db->db.db_data == NULL);
3003	} else if (db->db_state == DB_FILL) {
3004		/* This buffer was freed and is now being re-filled */
3005		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3006	} else {
3007		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3008	}
3009	DBUF_VERIFY(db);
3010
3011	DB_DNODE_ENTER(db);
3012	dn = DB_DNODE(db);
3013
3014	if (db->db_blkid == DMU_SPILL_BLKID) {
3015		mutex_enter(&dn->dn_mtx);
3016		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3017		mutex_exit(&dn->dn_mtx);
3018	}
3019
3020	/*
3021	 * If this is a bonus buffer, simply copy the bonus data into the
3022	 * dnode.  It will be written out when the dnode is synced (and it
3023	 * will be synced, since it must have been dirty for dbuf_sync to
3024	 * be called).
3025	 */
3026	if (db->db_blkid == DMU_BONUS_BLKID) {
3027		dbuf_dirty_record_t **drp;
3028
3029		ASSERT(*datap != NULL);
3030		ASSERT0(db->db_level);
3031		ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3032		bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3033		DB_DNODE_EXIT(db);
3034
3035		if (*datap != db->db.db_data) {
3036			zio_buf_free(*datap, DN_MAX_BONUSLEN);
3037			arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3038		}
3039		db->db_data_pending = NULL;
3040		drp = &db->db_last_dirty;
3041		while (*drp != dr)
3042			drp = &(*drp)->dr_next;
3043		ASSERT(dr->dr_next == NULL);
3044		ASSERT(dr->dr_dbuf == db);
3045		*drp = dr->dr_next;
3046		if (dr->dr_dbuf->db_level != 0) {
3047			list_destroy(&dr->dt.di.dr_children);
3048			mutex_destroy(&dr->dt.di.dr_mtx);
3049		}
3050		kmem_free(dr, sizeof (dbuf_dirty_record_t));
3051		ASSERT(db->db_dirtycnt > 0);
3052		db->db_dirtycnt -= 1;
3053		dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3054		return;
3055	}
3056
3057	os = dn->dn_objset;
3058
3059	/*
3060	 * This function may have dropped the db_mtx lock allowing a dmu_sync
3061	 * operation to sneak in. As a result, we need to ensure that we
3062	 * don't check the dr_override_state until we have returned from
3063	 * dbuf_check_blkptr.
3064	 */
3065	dbuf_check_blkptr(dn, db);
3066
3067	/*
3068	 * If this buffer is in the middle of an immediate write,
3069	 * wait for the synchronous IO to complete.
3070	 */
3071	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3072		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3073		cv_wait(&db->db_changed, &db->db_mtx);
3074		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3075	}
3076
3077	if (db->db_state != DB_NOFILL &&
3078	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3079	    refcount_count(&db->db_holds) > 1 &&
3080	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3081	    *datap == db->db_buf) {
3082		/*
3083		 * If this buffer is currently "in use" (i.e., there
3084		 * are active holds and db_data still references it),
3085		 * then make a copy before we start the write so that
3086		 * any modifications from the open txg will not leak
3087		 * into this write.
3088		 *
3089		 * NOTE: this copy does not need to be made for
3090		 * objects only modified in the syncing context (e.g.
3091		 * DNONE_DNODE blocks).
3092		 */
3093		int blksz = arc_buf_size(*datap);
3094		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3095		*datap = arc_alloc_buf(os->os_spa, blksz, db, type);
3096		bcopy(db->db.db_data, (*datap)->b_data, blksz);
3097	}
3098	db->db_data_pending = dr;
3099
3100	mutex_exit(&db->db_mtx);
3101
3102	dbuf_write(dr, *datap, tx);
3103
3104	ASSERT(!list_link_active(&dr->dr_dirty_node));
3105	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3106		list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3107		DB_DNODE_EXIT(db);
3108	} else {
3109		/*
3110		 * Although zio_nowait() does not "wait for an IO", it does
3111		 * initiate the IO. If this is an empty write it seems plausible
3112		 * that the IO could actually be completed before the nowait
3113		 * returns. We need to DB_DNODE_EXIT() first in case
3114		 * zio_nowait() invalidates the dbuf.
3115		 */
3116		DB_DNODE_EXIT(db);
3117		zio_nowait(dr->dr_zio);
3118	}
3119}
3120
3121void
3122dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3123{
3124	dbuf_dirty_record_t *dr;
3125
3126	while (dr = list_head(list)) {
3127		if (dr->dr_zio != NULL) {
3128			/*
3129			 * If we find an already initialized zio then we
3130			 * are processing the meta-dnode, and we have finished.
3131			 * The dbufs for all dnodes are put back on the list
3132			 * during processing, so that we can zio_wait()
3133			 * these IOs after initiating all child IOs.
3134			 */
3135			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3136			    DMU_META_DNODE_OBJECT);
3137			break;
3138		}
3139		if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3140		    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3141			VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3142		}
3143		list_remove(list, dr);
3144		if (dr->dr_dbuf->db_level > 0)
3145			dbuf_sync_indirect(dr, tx);
3146		else
3147			dbuf_sync_leaf(dr, tx);
3148	}
3149}
3150
3151/* ARGSUSED */
3152static void
3153dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3154{
3155	dmu_buf_impl_t *db = vdb;
3156	dnode_t *dn;
3157	blkptr_t *bp = zio->io_bp;
3158	blkptr_t *bp_orig = &zio->io_bp_orig;
3159	spa_t *spa = zio->io_spa;
3160	int64_t delta;
3161	uint64_t fill = 0;
3162	int i;
3163
3164	ASSERT3P(db->db_blkptr, !=, NULL);
3165	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3166
3167	DB_DNODE_ENTER(db);
3168	dn = DB_DNODE(db);
3169	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3170	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3171	zio->io_prev_space_delta = delta;
3172
3173	if (bp->blk_birth != 0) {
3174		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3175		    BP_GET_TYPE(bp) == dn->dn_type) ||
3176		    (db->db_blkid == DMU_SPILL_BLKID &&
3177		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3178		    BP_IS_EMBEDDED(bp));
3179		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3180	}
3181
3182	mutex_enter(&db->db_mtx);
3183
3184#ifdef ZFS_DEBUG
3185	if (db->db_blkid == DMU_SPILL_BLKID) {
3186		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3187		ASSERT(!(BP_IS_HOLE(bp)) &&
3188		    db->db_blkptr == &dn->dn_phys->dn_spill);
3189	}
3190#endif
3191
3192	if (db->db_level == 0) {
3193		mutex_enter(&dn->dn_mtx);
3194		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3195		    db->db_blkid != DMU_SPILL_BLKID)
3196			dn->dn_phys->dn_maxblkid = db->db_blkid;
3197		mutex_exit(&dn->dn_mtx);
3198
3199		if (dn->dn_type == DMU_OT_DNODE) {
3200			dnode_phys_t *dnp = db->db.db_data;
3201			for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3202			    i--, dnp++) {
3203				if (dnp->dn_type != DMU_OT_NONE)
3204					fill++;
3205			}
3206		} else {
3207			if (BP_IS_HOLE(bp)) {
3208				fill = 0;
3209			} else {
3210				fill = 1;
3211			}
3212		}
3213	} else {
3214		blkptr_t *ibp = db->db.db_data;
3215		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3216		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3217			if (BP_IS_HOLE(ibp))
3218				continue;
3219			fill += BP_GET_FILL(ibp);
3220		}
3221	}
3222	DB_DNODE_EXIT(db);
3223
3224	if (!BP_IS_EMBEDDED(bp))
3225		bp->blk_fill = fill;
3226
3227	mutex_exit(&db->db_mtx);
3228
3229	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3230	*db->db_blkptr = *bp;
3231	rw_exit(&dn->dn_struct_rwlock);
3232}
3233
3234/* ARGSUSED */
3235/*
3236 * This function gets called just prior to running through the compression
3237 * stage of the zio pipeline. If we're an indirect block comprised of only
3238 * holes, then we want this indirect to be compressed away to a hole. In
3239 * order to do that we must zero out any information about the holes that
3240 * this indirect points to prior to before we try to compress it.
3241 */
3242static void
3243dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3244{
3245	dmu_buf_impl_t *db = vdb;
3246	dnode_t *dn;
3247	blkptr_t *bp;
3248	uint64_t i;
3249	int epbs;
3250
3251	ASSERT3U(db->db_level, >, 0);
3252	DB_DNODE_ENTER(db);
3253	dn = DB_DNODE(db);
3254	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3255
3256	/* Determine if all our children are holes */
3257	for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3258		if (!BP_IS_HOLE(bp))
3259			break;
3260	}
3261
3262	/*
3263	 * If all the children are holes, then zero them all out so that
3264	 * we may get compressed away.
3265	 */
3266	if (i == 1 << epbs) {
3267		/* didn't find any non-holes */
3268		bzero(db->db.db_data, db->db.db_size);
3269	}
3270	DB_DNODE_EXIT(db);
3271}
3272
3273/*
3274 * The SPA will call this callback several times for each zio - once
3275 * for every physical child i/o (zio->io_phys_children times).  This
3276 * allows the DMU to monitor the progress of each logical i/o.  For example,
3277 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3278 * block.  There may be a long delay before all copies/fragments are completed,
3279 * so this callback allows us to retire dirty space gradually, as the physical
3280 * i/os complete.
3281 */
3282/* ARGSUSED */
3283static void
3284dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3285{
3286	dmu_buf_impl_t *db = arg;
3287	objset_t *os = db->db_objset;
3288	dsl_pool_t *dp = dmu_objset_pool(os);
3289	dbuf_dirty_record_t *dr;
3290	int delta = 0;
3291
3292	dr = db->db_data_pending;
3293	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3294
3295	/*
3296	 * The callback will be called io_phys_children times.  Retire one
3297	 * portion of our dirty space each time we are called.  Any rounding
3298	 * error will be cleaned up by dsl_pool_sync()'s call to
3299	 * dsl_pool_undirty_space().
3300	 */
3301	delta = dr->dr_accounted / zio->io_phys_children;
3302	dsl_pool_undirty_space(dp, delta, zio->io_txg);
3303}
3304
3305/* ARGSUSED */
3306static void
3307dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3308{
3309	dmu_buf_impl_t *db = vdb;
3310	blkptr_t *bp_orig = &zio->io_bp_orig;
3311	blkptr_t *bp = db->db_blkptr;
3312	objset_t *os = db->db_objset;
3313	dmu_tx_t *tx = os->os_synctx;
3314	dbuf_dirty_record_t **drp, *dr;
3315
3316	ASSERT0(zio->io_error);
3317	ASSERT(db->db_blkptr == bp);
3318
3319	/*
3320	 * For nopwrites and rewrites we ensure that the bp matches our
3321	 * original and bypass all the accounting.
3322	 */
3323	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3324		ASSERT(BP_EQUAL(bp, bp_orig));
3325	} else {
3326		dsl_dataset_t *ds = os->os_dsl_dataset;
3327		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3328		dsl_dataset_block_born(ds, bp, tx);
3329	}
3330
3331	mutex_enter(&db->db_mtx);
3332
3333	DBUF_VERIFY(db);
3334
3335	drp = &db->db_last_dirty;
3336	while ((dr = *drp) != db->db_data_pending)
3337		drp = &dr->dr_next;
3338	ASSERT(!list_link_active(&dr->dr_dirty_node));
3339	ASSERT(dr->dr_dbuf == db);
3340	ASSERT(dr->dr_next == NULL);
3341	*drp = dr->dr_next;
3342
3343#ifdef ZFS_DEBUG
3344	if (db->db_blkid == DMU_SPILL_BLKID) {
3345		dnode_t *dn;
3346
3347		DB_DNODE_ENTER(db);
3348		dn = DB_DNODE(db);
3349		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3350		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3351		    db->db_blkptr == &dn->dn_phys->dn_spill);
3352		DB_DNODE_EXIT(db);
3353	}
3354#endif
3355
3356	if (db->db_level == 0) {
3357		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3358		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3359		if (db->db_state != DB_NOFILL) {
3360			if (dr->dt.dl.dr_data != db->db_buf)
3361				arc_buf_destroy(dr->dt.dl.dr_data, db);
3362		}
3363	} else {
3364		dnode_t *dn;
3365
3366		DB_DNODE_ENTER(db);
3367		dn = DB_DNODE(db);
3368		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3369		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3370		if (!BP_IS_HOLE(db->db_blkptr)) {
3371			int epbs =
3372			    dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3373			ASSERT3U(db->db_blkid, <=,
3374			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3375			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3376			    db->db.db_size);
3377		}
3378		DB_DNODE_EXIT(db);
3379		mutex_destroy(&dr->dt.di.dr_mtx);
3380		list_destroy(&dr->dt.di.dr_children);
3381	}
3382	kmem_free(dr, sizeof (dbuf_dirty_record_t));
3383
3384	cv_broadcast(&db->db_changed);
3385	ASSERT(db->db_dirtycnt > 0);
3386	db->db_dirtycnt -= 1;
3387	db->db_data_pending = NULL;
3388	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3389}
3390
3391static void
3392dbuf_write_nofill_ready(zio_t *zio)
3393{
3394	dbuf_write_ready(zio, NULL, zio->io_private);
3395}
3396
3397static void
3398dbuf_write_nofill_done(zio_t *zio)
3399{
3400	dbuf_write_done(zio, NULL, zio->io_private);
3401}
3402
3403static void
3404dbuf_write_override_ready(zio_t *zio)
3405{
3406	dbuf_dirty_record_t *dr = zio->io_private;
3407	dmu_buf_impl_t *db = dr->dr_dbuf;
3408
3409	dbuf_write_ready(zio, NULL, db);
3410}
3411
3412static void
3413dbuf_write_override_done(zio_t *zio)
3414{
3415	dbuf_dirty_record_t *dr = zio->io_private;
3416	dmu_buf_impl_t *db = dr->dr_dbuf;
3417	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3418
3419	mutex_enter(&db->db_mtx);
3420	if (!BP_EQUAL(zio->io_bp, obp)) {
3421		if (!BP_IS_HOLE(obp))
3422			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3423		arc_release(dr->dt.dl.dr_data, db);
3424	}
3425	mutex_exit(&db->db_mtx);
3426
3427	dbuf_write_done(zio, NULL, db);
3428}
3429
3430/* Issue I/O to commit a dirty buffer to disk. */
3431static void
3432dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3433{
3434	dmu_buf_impl_t *db = dr->dr_dbuf;
3435	dnode_t *dn;
3436	objset_t *os;
3437	dmu_buf_impl_t *parent = db->db_parent;
3438	uint64_t txg = tx->tx_txg;
3439	zbookmark_phys_t zb;
3440	zio_prop_t zp;
3441	zio_t *zio;
3442	int wp_flag = 0;
3443
3444	ASSERT(dmu_tx_is_syncing(tx));
3445
3446	DB_DNODE_ENTER(db);
3447	dn = DB_DNODE(db);
3448	os = dn->dn_objset;
3449
3450	if (db->db_state != DB_NOFILL) {
3451		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3452			/*
3453			 * Private object buffers are released here rather
3454			 * than in dbuf_dirty() since they are only modified
3455			 * in the syncing context and we don't want the
3456			 * overhead of making multiple copies of the data.
3457			 */
3458			if (BP_IS_HOLE(db->db_blkptr)) {
3459				arc_buf_thaw(data);
3460			} else {
3461				dbuf_release_bp(db);
3462			}
3463		}
3464	}
3465
3466	if (parent != dn->dn_dbuf) {
3467		/* Our parent is an indirect block. */
3468		/* We have a dirty parent that has been scheduled for write. */
3469		ASSERT(parent && parent->db_data_pending);
3470		/* Our parent's buffer is one level closer to the dnode. */
3471		ASSERT(db->db_level == parent->db_level-1);
3472		/*
3473		 * We're about to modify our parent's db_data by modifying
3474		 * our block pointer, so the parent must be released.
3475		 */
3476		ASSERT(arc_released(parent->db_buf));
3477		zio = parent->db_data_pending->dr_zio;
3478	} else {
3479		/* Our parent is the dnode itself. */
3480		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3481		    db->db_blkid != DMU_SPILL_BLKID) ||
3482		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3483		if (db->db_blkid != DMU_SPILL_BLKID)
3484			ASSERT3P(db->db_blkptr, ==,
3485			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
3486		zio = dn->dn_zio;
3487	}
3488
3489	ASSERT(db->db_level == 0 || data == db->db_buf);
3490	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3491	ASSERT(zio);
3492
3493	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3494	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3495	    db->db.db_object, db->db_level, db->db_blkid);
3496
3497	if (db->db_blkid == DMU_SPILL_BLKID)
3498		wp_flag = WP_SPILL;
3499	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3500
3501	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3502	DB_DNODE_EXIT(db);
3503
3504	/*
3505	 * We copy the blkptr now (rather than when we instantiate the dirty
3506	 * record), because its value can change between open context and
3507	 * syncing context. We do not need to hold dn_struct_rwlock to read
3508	 * db_blkptr because we are in syncing context.
3509	 */
3510	dr->dr_bp_copy = *db->db_blkptr;
3511
3512	if (db->db_level == 0 &&
3513	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3514		/*
3515		 * The BP for this block has been provided by open context
3516		 * (by dmu_sync() or dmu_buf_write_embedded()).
3517		 */
3518		void *contents = (data != NULL) ? data->b_data : NULL;
3519
3520		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3521		    &dr->dr_bp_copy, contents, db->db.db_size, &zp,
3522		    dbuf_write_override_ready, NULL, NULL,
3523		    dbuf_write_override_done,
3524		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3525		mutex_enter(&db->db_mtx);
3526		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3527		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3528		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3529		mutex_exit(&db->db_mtx);
3530	} else if (db->db_state == DB_NOFILL) {
3531		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3532		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3533		dr->dr_zio = zio_write(zio, os->os_spa, txg,
3534		    &dr->dr_bp_copy, NULL, db->db.db_size, &zp,
3535		    dbuf_write_nofill_ready, NULL, NULL,
3536		    dbuf_write_nofill_done, db,
3537		    ZIO_PRIORITY_ASYNC_WRITE,
3538		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3539	} else {
3540		ASSERT(arc_released(data));
3541
3542		/*
3543		 * For indirect blocks, we want to setup the children
3544		 * ready callback so that we can properly handle an indirect
3545		 * block that only contains holes.
3546		 */
3547		arc_done_func_t *children_ready_cb = NULL;
3548		if (db->db_level != 0)
3549			children_ready_cb = dbuf_write_children_ready;
3550
3551		dr->dr_zio = arc_write(zio, os->os_spa, txg,
3552		    &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3553		    &zp, dbuf_write_ready, children_ready_cb,
3554		    dbuf_write_physdone, dbuf_write_done, db,
3555		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3556	}
3557}
3558